Merge tag 'drm-intel-next-fixes-2014-10-17' of git://anongit.freedesktop.org/drm...
[deliverable/linux.git] / arch / x86 / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
33 #include <linux/tboot.h>
34 #include <linux/hrtimer.h>
35 #include "kvm_cache_regs.h"
36 #include "x86.h"
37
38 #include <asm/io.h>
39 #include <asm/desc.h>
40 #include <asm/vmx.h>
41 #include <asm/virtext.h>
42 #include <asm/mce.h>
43 #include <asm/i387.h>
44 #include <asm/xcr.h>
45 #include <asm/perf_event.h>
46 #include <asm/debugreg.h>
47 #include <asm/kexec.h>
48
49 #include "trace.h"
50
51 #define __ex(x) __kvm_handle_fault_on_reboot(x)
52 #define __ex_clear(x, reg) \
53 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
54
55 MODULE_AUTHOR("Qumranet");
56 MODULE_LICENSE("GPL");
57
58 static const struct x86_cpu_id vmx_cpu_id[] = {
59 X86_FEATURE_MATCH(X86_FEATURE_VMX),
60 {}
61 };
62 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
63
64 static bool __read_mostly enable_vpid = 1;
65 module_param_named(vpid, enable_vpid, bool, 0444);
66
67 static bool __read_mostly flexpriority_enabled = 1;
68 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
69
70 static bool __read_mostly enable_ept = 1;
71 module_param_named(ept, enable_ept, bool, S_IRUGO);
72
73 static bool __read_mostly enable_unrestricted_guest = 1;
74 module_param_named(unrestricted_guest,
75 enable_unrestricted_guest, bool, S_IRUGO);
76
77 static bool __read_mostly enable_ept_ad_bits = 1;
78 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
79
80 static bool __read_mostly emulate_invalid_guest_state = true;
81 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
82
83 static bool __read_mostly vmm_exclusive = 1;
84 module_param(vmm_exclusive, bool, S_IRUGO);
85
86 static bool __read_mostly fasteoi = 1;
87 module_param(fasteoi, bool, S_IRUGO);
88
89 static bool __read_mostly enable_apicv = 1;
90 module_param(enable_apicv, bool, S_IRUGO);
91
92 static bool __read_mostly enable_shadow_vmcs = 1;
93 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
94 /*
95 * If nested=1, nested virtualization is supported, i.e., guests may use
96 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
97 * use VMX instructions.
98 */
99 static bool __read_mostly nested = 0;
100 module_param(nested, bool, S_IRUGO);
101
102 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
103 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
104 #define KVM_VM_CR0_ALWAYS_ON \
105 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
106 #define KVM_CR4_GUEST_OWNED_BITS \
107 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
108 | X86_CR4_OSXMMEXCPT)
109
110 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
111 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
112
113 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
114
115 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
116
117 /*
118 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
119 * ple_gap: upper bound on the amount of time between two successive
120 * executions of PAUSE in a loop. Also indicate if ple enabled.
121 * According to test, this time is usually smaller than 128 cycles.
122 * ple_window: upper bound on the amount of time a guest is allowed to execute
123 * in a PAUSE loop. Tests indicate that most spinlocks are held for
124 * less than 2^12 cycles
125 * Time is measured based on a counter that runs at the same rate as the TSC,
126 * refer SDM volume 3b section 21.6.13 & 22.1.3.
127 */
128 #define KVM_VMX_DEFAULT_PLE_GAP 128
129 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
130 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
131 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
132 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
133 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
134
135 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
136 module_param(ple_gap, int, S_IRUGO);
137
138 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
139 module_param(ple_window, int, S_IRUGO);
140
141 /* Default doubles per-vcpu window every exit. */
142 static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
143 module_param(ple_window_grow, int, S_IRUGO);
144
145 /* Default resets per-vcpu window every exit to ple_window. */
146 static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
147 module_param(ple_window_shrink, int, S_IRUGO);
148
149 /* Default is to compute the maximum so we can never overflow. */
150 static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
151 static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
152 module_param(ple_window_max, int, S_IRUGO);
153
154 extern const ulong vmx_return;
155
156 #define NR_AUTOLOAD_MSRS 8
157 #define VMCS02_POOL_SIZE 1
158
159 struct vmcs {
160 u32 revision_id;
161 u32 abort;
162 char data[0];
163 };
164
165 /*
166 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
167 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
168 * loaded on this CPU (so we can clear them if the CPU goes down).
169 */
170 struct loaded_vmcs {
171 struct vmcs *vmcs;
172 int cpu;
173 int launched;
174 struct list_head loaded_vmcss_on_cpu_link;
175 };
176
177 struct shared_msr_entry {
178 unsigned index;
179 u64 data;
180 u64 mask;
181 };
182
183 /*
184 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
185 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
186 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
187 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
188 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
189 * More than one of these structures may exist, if L1 runs multiple L2 guests.
190 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
191 * underlying hardware which will be used to run L2.
192 * This structure is packed to ensure that its layout is identical across
193 * machines (necessary for live migration).
194 * If there are changes in this struct, VMCS12_REVISION must be changed.
195 */
196 typedef u64 natural_width;
197 struct __packed vmcs12 {
198 /* According to the Intel spec, a VMCS region must start with the
199 * following two fields. Then follow implementation-specific data.
200 */
201 u32 revision_id;
202 u32 abort;
203
204 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
205 u32 padding[7]; /* room for future expansion */
206
207 u64 io_bitmap_a;
208 u64 io_bitmap_b;
209 u64 msr_bitmap;
210 u64 vm_exit_msr_store_addr;
211 u64 vm_exit_msr_load_addr;
212 u64 vm_entry_msr_load_addr;
213 u64 tsc_offset;
214 u64 virtual_apic_page_addr;
215 u64 apic_access_addr;
216 u64 ept_pointer;
217 u64 guest_physical_address;
218 u64 vmcs_link_pointer;
219 u64 guest_ia32_debugctl;
220 u64 guest_ia32_pat;
221 u64 guest_ia32_efer;
222 u64 guest_ia32_perf_global_ctrl;
223 u64 guest_pdptr0;
224 u64 guest_pdptr1;
225 u64 guest_pdptr2;
226 u64 guest_pdptr3;
227 u64 guest_bndcfgs;
228 u64 host_ia32_pat;
229 u64 host_ia32_efer;
230 u64 host_ia32_perf_global_ctrl;
231 u64 padding64[8]; /* room for future expansion */
232 /*
233 * To allow migration of L1 (complete with its L2 guests) between
234 * machines of different natural widths (32 or 64 bit), we cannot have
235 * unsigned long fields with no explict size. We use u64 (aliased
236 * natural_width) instead. Luckily, x86 is little-endian.
237 */
238 natural_width cr0_guest_host_mask;
239 natural_width cr4_guest_host_mask;
240 natural_width cr0_read_shadow;
241 natural_width cr4_read_shadow;
242 natural_width cr3_target_value0;
243 natural_width cr3_target_value1;
244 natural_width cr3_target_value2;
245 natural_width cr3_target_value3;
246 natural_width exit_qualification;
247 natural_width guest_linear_address;
248 natural_width guest_cr0;
249 natural_width guest_cr3;
250 natural_width guest_cr4;
251 natural_width guest_es_base;
252 natural_width guest_cs_base;
253 natural_width guest_ss_base;
254 natural_width guest_ds_base;
255 natural_width guest_fs_base;
256 natural_width guest_gs_base;
257 natural_width guest_ldtr_base;
258 natural_width guest_tr_base;
259 natural_width guest_gdtr_base;
260 natural_width guest_idtr_base;
261 natural_width guest_dr7;
262 natural_width guest_rsp;
263 natural_width guest_rip;
264 natural_width guest_rflags;
265 natural_width guest_pending_dbg_exceptions;
266 natural_width guest_sysenter_esp;
267 natural_width guest_sysenter_eip;
268 natural_width host_cr0;
269 natural_width host_cr3;
270 natural_width host_cr4;
271 natural_width host_fs_base;
272 natural_width host_gs_base;
273 natural_width host_tr_base;
274 natural_width host_gdtr_base;
275 natural_width host_idtr_base;
276 natural_width host_ia32_sysenter_esp;
277 natural_width host_ia32_sysenter_eip;
278 natural_width host_rsp;
279 natural_width host_rip;
280 natural_width paddingl[8]; /* room for future expansion */
281 u32 pin_based_vm_exec_control;
282 u32 cpu_based_vm_exec_control;
283 u32 exception_bitmap;
284 u32 page_fault_error_code_mask;
285 u32 page_fault_error_code_match;
286 u32 cr3_target_count;
287 u32 vm_exit_controls;
288 u32 vm_exit_msr_store_count;
289 u32 vm_exit_msr_load_count;
290 u32 vm_entry_controls;
291 u32 vm_entry_msr_load_count;
292 u32 vm_entry_intr_info_field;
293 u32 vm_entry_exception_error_code;
294 u32 vm_entry_instruction_len;
295 u32 tpr_threshold;
296 u32 secondary_vm_exec_control;
297 u32 vm_instruction_error;
298 u32 vm_exit_reason;
299 u32 vm_exit_intr_info;
300 u32 vm_exit_intr_error_code;
301 u32 idt_vectoring_info_field;
302 u32 idt_vectoring_error_code;
303 u32 vm_exit_instruction_len;
304 u32 vmx_instruction_info;
305 u32 guest_es_limit;
306 u32 guest_cs_limit;
307 u32 guest_ss_limit;
308 u32 guest_ds_limit;
309 u32 guest_fs_limit;
310 u32 guest_gs_limit;
311 u32 guest_ldtr_limit;
312 u32 guest_tr_limit;
313 u32 guest_gdtr_limit;
314 u32 guest_idtr_limit;
315 u32 guest_es_ar_bytes;
316 u32 guest_cs_ar_bytes;
317 u32 guest_ss_ar_bytes;
318 u32 guest_ds_ar_bytes;
319 u32 guest_fs_ar_bytes;
320 u32 guest_gs_ar_bytes;
321 u32 guest_ldtr_ar_bytes;
322 u32 guest_tr_ar_bytes;
323 u32 guest_interruptibility_info;
324 u32 guest_activity_state;
325 u32 guest_sysenter_cs;
326 u32 host_ia32_sysenter_cs;
327 u32 vmx_preemption_timer_value;
328 u32 padding32[7]; /* room for future expansion */
329 u16 virtual_processor_id;
330 u16 guest_es_selector;
331 u16 guest_cs_selector;
332 u16 guest_ss_selector;
333 u16 guest_ds_selector;
334 u16 guest_fs_selector;
335 u16 guest_gs_selector;
336 u16 guest_ldtr_selector;
337 u16 guest_tr_selector;
338 u16 host_es_selector;
339 u16 host_cs_selector;
340 u16 host_ss_selector;
341 u16 host_ds_selector;
342 u16 host_fs_selector;
343 u16 host_gs_selector;
344 u16 host_tr_selector;
345 };
346
347 /*
348 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
349 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
350 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
351 */
352 #define VMCS12_REVISION 0x11e57ed0
353
354 /*
355 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
356 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
357 * current implementation, 4K are reserved to avoid future complications.
358 */
359 #define VMCS12_SIZE 0x1000
360
361 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
362 struct vmcs02_list {
363 struct list_head list;
364 gpa_t vmptr;
365 struct loaded_vmcs vmcs02;
366 };
367
368 /*
369 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
370 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
371 */
372 struct nested_vmx {
373 /* Has the level1 guest done vmxon? */
374 bool vmxon;
375 gpa_t vmxon_ptr;
376
377 /* The guest-physical address of the current VMCS L1 keeps for L2 */
378 gpa_t current_vmptr;
379 /* The host-usable pointer to the above */
380 struct page *current_vmcs12_page;
381 struct vmcs12 *current_vmcs12;
382 struct vmcs *current_shadow_vmcs;
383 /*
384 * Indicates if the shadow vmcs must be updated with the
385 * data hold by vmcs12
386 */
387 bool sync_shadow_vmcs;
388
389 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
390 struct list_head vmcs02_pool;
391 int vmcs02_num;
392 u64 vmcs01_tsc_offset;
393 /* L2 must run next, and mustn't decide to exit to L1. */
394 bool nested_run_pending;
395 /*
396 * Guest pages referred to in vmcs02 with host-physical pointers, so
397 * we must keep them pinned while L2 runs.
398 */
399 struct page *apic_access_page;
400 struct page *virtual_apic_page;
401 u64 msr_ia32_feature_control;
402
403 struct hrtimer preemption_timer;
404 bool preemption_timer_expired;
405
406 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
407 u64 vmcs01_debugctl;
408 };
409
410 #define POSTED_INTR_ON 0
411 /* Posted-Interrupt Descriptor */
412 struct pi_desc {
413 u32 pir[8]; /* Posted interrupt requested */
414 u32 control; /* bit 0 of control is outstanding notification bit */
415 u32 rsvd[7];
416 } __aligned(64);
417
418 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
419 {
420 return test_and_set_bit(POSTED_INTR_ON,
421 (unsigned long *)&pi_desc->control);
422 }
423
424 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
425 {
426 return test_and_clear_bit(POSTED_INTR_ON,
427 (unsigned long *)&pi_desc->control);
428 }
429
430 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
431 {
432 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
433 }
434
435 struct vcpu_vmx {
436 struct kvm_vcpu vcpu;
437 unsigned long host_rsp;
438 u8 fail;
439 bool nmi_known_unmasked;
440 u32 exit_intr_info;
441 u32 idt_vectoring_info;
442 ulong rflags;
443 struct shared_msr_entry *guest_msrs;
444 int nmsrs;
445 int save_nmsrs;
446 unsigned long host_idt_base;
447 #ifdef CONFIG_X86_64
448 u64 msr_host_kernel_gs_base;
449 u64 msr_guest_kernel_gs_base;
450 #endif
451 u32 vm_entry_controls_shadow;
452 u32 vm_exit_controls_shadow;
453 /*
454 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
455 * non-nested (L1) guest, it always points to vmcs01. For a nested
456 * guest (L2), it points to a different VMCS.
457 */
458 struct loaded_vmcs vmcs01;
459 struct loaded_vmcs *loaded_vmcs;
460 bool __launched; /* temporary, used in vmx_vcpu_run */
461 struct msr_autoload {
462 unsigned nr;
463 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
464 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
465 } msr_autoload;
466 struct {
467 int loaded;
468 u16 fs_sel, gs_sel, ldt_sel;
469 #ifdef CONFIG_X86_64
470 u16 ds_sel, es_sel;
471 #endif
472 int gs_ldt_reload_needed;
473 int fs_reload_needed;
474 u64 msr_host_bndcfgs;
475 unsigned long vmcs_host_cr4; /* May not match real cr4 */
476 } host_state;
477 struct {
478 int vm86_active;
479 ulong save_rflags;
480 struct kvm_segment segs[8];
481 } rmode;
482 struct {
483 u32 bitmask; /* 4 bits per segment (1 bit per field) */
484 struct kvm_save_segment {
485 u16 selector;
486 unsigned long base;
487 u32 limit;
488 u32 ar;
489 } seg[8];
490 } segment_cache;
491 int vpid;
492 bool emulation_required;
493
494 /* Support for vnmi-less CPUs */
495 int soft_vnmi_blocked;
496 ktime_t entry_time;
497 s64 vnmi_blocked_time;
498 u32 exit_reason;
499
500 bool rdtscp_enabled;
501
502 /* Posted interrupt descriptor */
503 struct pi_desc pi_desc;
504
505 /* Support for a guest hypervisor (nested VMX) */
506 struct nested_vmx nested;
507
508 /* Dynamic PLE window. */
509 int ple_window;
510 bool ple_window_dirty;
511 };
512
513 enum segment_cache_field {
514 SEG_FIELD_SEL = 0,
515 SEG_FIELD_BASE = 1,
516 SEG_FIELD_LIMIT = 2,
517 SEG_FIELD_AR = 3,
518
519 SEG_FIELD_NR = 4
520 };
521
522 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
523 {
524 return container_of(vcpu, struct vcpu_vmx, vcpu);
525 }
526
527 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
528 #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
529 #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
530 [number##_HIGH] = VMCS12_OFFSET(name)+4
531
532
533 static unsigned long shadow_read_only_fields[] = {
534 /*
535 * We do NOT shadow fields that are modified when L0
536 * traps and emulates any vmx instruction (e.g. VMPTRLD,
537 * VMXON...) executed by L1.
538 * For example, VM_INSTRUCTION_ERROR is read
539 * by L1 if a vmx instruction fails (part of the error path).
540 * Note the code assumes this logic. If for some reason
541 * we start shadowing these fields then we need to
542 * force a shadow sync when L0 emulates vmx instructions
543 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
544 * by nested_vmx_failValid)
545 */
546 VM_EXIT_REASON,
547 VM_EXIT_INTR_INFO,
548 VM_EXIT_INSTRUCTION_LEN,
549 IDT_VECTORING_INFO_FIELD,
550 IDT_VECTORING_ERROR_CODE,
551 VM_EXIT_INTR_ERROR_CODE,
552 EXIT_QUALIFICATION,
553 GUEST_LINEAR_ADDRESS,
554 GUEST_PHYSICAL_ADDRESS
555 };
556 static int max_shadow_read_only_fields =
557 ARRAY_SIZE(shadow_read_only_fields);
558
559 static unsigned long shadow_read_write_fields[] = {
560 TPR_THRESHOLD,
561 GUEST_RIP,
562 GUEST_RSP,
563 GUEST_CR0,
564 GUEST_CR3,
565 GUEST_CR4,
566 GUEST_INTERRUPTIBILITY_INFO,
567 GUEST_RFLAGS,
568 GUEST_CS_SELECTOR,
569 GUEST_CS_AR_BYTES,
570 GUEST_CS_LIMIT,
571 GUEST_CS_BASE,
572 GUEST_ES_BASE,
573 GUEST_BNDCFGS,
574 CR0_GUEST_HOST_MASK,
575 CR0_READ_SHADOW,
576 CR4_READ_SHADOW,
577 TSC_OFFSET,
578 EXCEPTION_BITMAP,
579 CPU_BASED_VM_EXEC_CONTROL,
580 VM_ENTRY_EXCEPTION_ERROR_CODE,
581 VM_ENTRY_INTR_INFO_FIELD,
582 VM_ENTRY_INSTRUCTION_LEN,
583 VM_ENTRY_EXCEPTION_ERROR_CODE,
584 HOST_FS_BASE,
585 HOST_GS_BASE,
586 HOST_FS_SELECTOR,
587 HOST_GS_SELECTOR
588 };
589 static int max_shadow_read_write_fields =
590 ARRAY_SIZE(shadow_read_write_fields);
591
592 static const unsigned short vmcs_field_to_offset_table[] = {
593 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
594 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
595 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
596 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
597 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
598 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
599 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
600 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
601 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
602 FIELD(HOST_ES_SELECTOR, host_es_selector),
603 FIELD(HOST_CS_SELECTOR, host_cs_selector),
604 FIELD(HOST_SS_SELECTOR, host_ss_selector),
605 FIELD(HOST_DS_SELECTOR, host_ds_selector),
606 FIELD(HOST_FS_SELECTOR, host_fs_selector),
607 FIELD(HOST_GS_SELECTOR, host_gs_selector),
608 FIELD(HOST_TR_SELECTOR, host_tr_selector),
609 FIELD64(IO_BITMAP_A, io_bitmap_a),
610 FIELD64(IO_BITMAP_B, io_bitmap_b),
611 FIELD64(MSR_BITMAP, msr_bitmap),
612 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
613 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
614 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
615 FIELD64(TSC_OFFSET, tsc_offset),
616 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
617 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
618 FIELD64(EPT_POINTER, ept_pointer),
619 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
620 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
621 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
622 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
623 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
624 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
625 FIELD64(GUEST_PDPTR0, guest_pdptr0),
626 FIELD64(GUEST_PDPTR1, guest_pdptr1),
627 FIELD64(GUEST_PDPTR2, guest_pdptr2),
628 FIELD64(GUEST_PDPTR3, guest_pdptr3),
629 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
630 FIELD64(HOST_IA32_PAT, host_ia32_pat),
631 FIELD64(HOST_IA32_EFER, host_ia32_efer),
632 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
633 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
634 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
635 FIELD(EXCEPTION_BITMAP, exception_bitmap),
636 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
637 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
638 FIELD(CR3_TARGET_COUNT, cr3_target_count),
639 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
640 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
641 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
642 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
643 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
644 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
645 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
646 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
647 FIELD(TPR_THRESHOLD, tpr_threshold),
648 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
649 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
650 FIELD(VM_EXIT_REASON, vm_exit_reason),
651 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
652 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
653 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
654 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
655 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
656 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
657 FIELD(GUEST_ES_LIMIT, guest_es_limit),
658 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
659 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
660 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
661 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
662 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
663 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
664 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
665 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
666 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
667 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
668 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
669 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
670 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
671 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
672 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
673 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
674 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
675 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
676 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
677 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
678 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
679 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
680 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
681 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
682 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
683 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
684 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
685 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
686 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
687 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
688 FIELD(EXIT_QUALIFICATION, exit_qualification),
689 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
690 FIELD(GUEST_CR0, guest_cr0),
691 FIELD(GUEST_CR3, guest_cr3),
692 FIELD(GUEST_CR4, guest_cr4),
693 FIELD(GUEST_ES_BASE, guest_es_base),
694 FIELD(GUEST_CS_BASE, guest_cs_base),
695 FIELD(GUEST_SS_BASE, guest_ss_base),
696 FIELD(GUEST_DS_BASE, guest_ds_base),
697 FIELD(GUEST_FS_BASE, guest_fs_base),
698 FIELD(GUEST_GS_BASE, guest_gs_base),
699 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
700 FIELD(GUEST_TR_BASE, guest_tr_base),
701 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
702 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
703 FIELD(GUEST_DR7, guest_dr7),
704 FIELD(GUEST_RSP, guest_rsp),
705 FIELD(GUEST_RIP, guest_rip),
706 FIELD(GUEST_RFLAGS, guest_rflags),
707 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
708 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
709 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
710 FIELD(HOST_CR0, host_cr0),
711 FIELD(HOST_CR3, host_cr3),
712 FIELD(HOST_CR4, host_cr4),
713 FIELD(HOST_FS_BASE, host_fs_base),
714 FIELD(HOST_GS_BASE, host_gs_base),
715 FIELD(HOST_TR_BASE, host_tr_base),
716 FIELD(HOST_GDTR_BASE, host_gdtr_base),
717 FIELD(HOST_IDTR_BASE, host_idtr_base),
718 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
719 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
720 FIELD(HOST_RSP, host_rsp),
721 FIELD(HOST_RIP, host_rip),
722 };
723 static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
724
725 static inline short vmcs_field_to_offset(unsigned long field)
726 {
727 if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
728 return -1;
729 return vmcs_field_to_offset_table[field];
730 }
731
732 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
733 {
734 return to_vmx(vcpu)->nested.current_vmcs12;
735 }
736
737 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
738 {
739 struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
740 if (is_error_page(page))
741 return NULL;
742
743 return page;
744 }
745
746 static void nested_release_page(struct page *page)
747 {
748 kvm_release_page_dirty(page);
749 }
750
751 static void nested_release_page_clean(struct page *page)
752 {
753 kvm_release_page_clean(page);
754 }
755
756 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
757 static u64 construct_eptp(unsigned long root_hpa);
758 static void kvm_cpu_vmxon(u64 addr);
759 static void kvm_cpu_vmxoff(void);
760 static bool vmx_mpx_supported(void);
761 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
762 static void vmx_set_segment(struct kvm_vcpu *vcpu,
763 struct kvm_segment *var, int seg);
764 static void vmx_get_segment(struct kvm_vcpu *vcpu,
765 struct kvm_segment *var, int seg);
766 static bool guest_state_valid(struct kvm_vcpu *vcpu);
767 static u32 vmx_segment_access_rights(struct kvm_segment *var);
768 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
769 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
770 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
771 static int alloc_identity_pagetable(struct kvm *kvm);
772
773 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
774 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
775 /*
776 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
777 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
778 */
779 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
780 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
781
782 static unsigned long *vmx_io_bitmap_a;
783 static unsigned long *vmx_io_bitmap_b;
784 static unsigned long *vmx_msr_bitmap_legacy;
785 static unsigned long *vmx_msr_bitmap_longmode;
786 static unsigned long *vmx_msr_bitmap_legacy_x2apic;
787 static unsigned long *vmx_msr_bitmap_longmode_x2apic;
788 static unsigned long *vmx_vmread_bitmap;
789 static unsigned long *vmx_vmwrite_bitmap;
790
791 static bool cpu_has_load_ia32_efer;
792 static bool cpu_has_load_perf_global_ctrl;
793
794 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
795 static DEFINE_SPINLOCK(vmx_vpid_lock);
796
797 static struct vmcs_config {
798 int size;
799 int order;
800 u32 revision_id;
801 u32 pin_based_exec_ctrl;
802 u32 cpu_based_exec_ctrl;
803 u32 cpu_based_2nd_exec_ctrl;
804 u32 vmexit_ctrl;
805 u32 vmentry_ctrl;
806 } vmcs_config;
807
808 static struct vmx_capability {
809 u32 ept;
810 u32 vpid;
811 } vmx_capability;
812
813 #define VMX_SEGMENT_FIELD(seg) \
814 [VCPU_SREG_##seg] = { \
815 .selector = GUEST_##seg##_SELECTOR, \
816 .base = GUEST_##seg##_BASE, \
817 .limit = GUEST_##seg##_LIMIT, \
818 .ar_bytes = GUEST_##seg##_AR_BYTES, \
819 }
820
821 static const struct kvm_vmx_segment_field {
822 unsigned selector;
823 unsigned base;
824 unsigned limit;
825 unsigned ar_bytes;
826 } kvm_vmx_segment_fields[] = {
827 VMX_SEGMENT_FIELD(CS),
828 VMX_SEGMENT_FIELD(DS),
829 VMX_SEGMENT_FIELD(ES),
830 VMX_SEGMENT_FIELD(FS),
831 VMX_SEGMENT_FIELD(GS),
832 VMX_SEGMENT_FIELD(SS),
833 VMX_SEGMENT_FIELD(TR),
834 VMX_SEGMENT_FIELD(LDTR),
835 };
836
837 static u64 host_efer;
838
839 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
840
841 /*
842 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
843 * away by decrementing the array size.
844 */
845 static const u32 vmx_msr_index[] = {
846 #ifdef CONFIG_X86_64
847 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
848 #endif
849 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
850 };
851
852 static inline bool is_page_fault(u32 intr_info)
853 {
854 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
855 INTR_INFO_VALID_MASK)) ==
856 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
857 }
858
859 static inline bool is_no_device(u32 intr_info)
860 {
861 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
862 INTR_INFO_VALID_MASK)) ==
863 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
864 }
865
866 static inline bool is_invalid_opcode(u32 intr_info)
867 {
868 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
869 INTR_INFO_VALID_MASK)) ==
870 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
871 }
872
873 static inline bool is_external_interrupt(u32 intr_info)
874 {
875 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
876 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
877 }
878
879 static inline bool is_machine_check(u32 intr_info)
880 {
881 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
882 INTR_INFO_VALID_MASK)) ==
883 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
884 }
885
886 static inline bool cpu_has_vmx_msr_bitmap(void)
887 {
888 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
889 }
890
891 static inline bool cpu_has_vmx_tpr_shadow(void)
892 {
893 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
894 }
895
896 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
897 {
898 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
899 }
900
901 static inline bool cpu_has_secondary_exec_ctrls(void)
902 {
903 return vmcs_config.cpu_based_exec_ctrl &
904 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
905 }
906
907 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
908 {
909 return vmcs_config.cpu_based_2nd_exec_ctrl &
910 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
911 }
912
913 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
914 {
915 return vmcs_config.cpu_based_2nd_exec_ctrl &
916 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
917 }
918
919 static inline bool cpu_has_vmx_apic_register_virt(void)
920 {
921 return vmcs_config.cpu_based_2nd_exec_ctrl &
922 SECONDARY_EXEC_APIC_REGISTER_VIRT;
923 }
924
925 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
926 {
927 return vmcs_config.cpu_based_2nd_exec_ctrl &
928 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
929 }
930
931 static inline bool cpu_has_vmx_posted_intr(void)
932 {
933 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
934 }
935
936 static inline bool cpu_has_vmx_apicv(void)
937 {
938 return cpu_has_vmx_apic_register_virt() &&
939 cpu_has_vmx_virtual_intr_delivery() &&
940 cpu_has_vmx_posted_intr();
941 }
942
943 static inline bool cpu_has_vmx_flexpriority(void)
944 {
945 return cpu_has_vmx_tpr_shadow() &&
946 cpu_has_vmx_virtualize_apic_accesses();
947 }
948
949 static inline bool cpu_has_vmx_ept_execute_only(void)
950 {
951 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
952 }
953
954 static inline bool cpu_has_vmx_eptp_uncacheable(void)
955 {
956 return vmx_capability.ept & VMX_EPTP_UC_BIT;
957 }
958
959 static inline bool cpu_has_vmx_eptp_writeback(void)
960 {
961 return vmx_capability.ept & VMX_EPTP_WB_BIT;
962 }
963
964 static inline bool cpu_has_vmx_ept_2m_page(void)
965 {
966 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
967 }
968
969 static inline bool cpu_has_vmx_ept_1g_page(void)
970 {
971 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
972 }
973
974 static inline bool cpu_has_vmx_ept_4levels(void)
975 {
976 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
977 }
978
979 static inline bool cpu_has_vmx_ept_ad_bits(void)
980 {
981 return vmx_capability.ept & VMX_EPT_AD_BIT;
982 }
983
984 static inline bool cpu_has_vmx_invept_context(void)
985 {
986 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
987 }
988
989 static inline bool cpu_has_vmx_invept_global(void)
990 {
991 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
992 }
993
994 static inline bool cpu_has_vmx_invvpid_single(void)
995 {
996 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
997 }
998
999 static inline bool cpu_has_vmx_invvpid_global(void)
1000 {
1001 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1002 }
1003
1004 static inline bool cpu_has_vmx_ept(void)
1005 {
1006 return vmcs_config.cpu_based_2nd_exec_ctrl &
1007 SECONDARY_EXEC_ENABLE_EPT;
1008 }
1009
1010 static inline bool cpu_has_vmx_unrestricted_guest(void)
1011 {
1012 return vmcs_config.cpu_based_2nd_exec_ctrl &
1013 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1014 }
1015
1016 static inline bool cpu_has_vmx_ple(void)
1017 {
1018 return vmcs_config.cpu_based_2nd_exec_ctrl &
1019 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1020 }
1021
1022 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
1023 {
1024 return flexpriority_enabled && irqchip_in_kernel(kvm);
1025 }
1026
1027 static inline bool cpu_has_vmx_vpid(void)
1028 {
1029 return vmcs_config.cpu_based_2nd_exec_ctrl &
1030 SECONDARY_EXEC_ENABLE_VPID;
1031 }
1032
1033 static inline bool cpu_has_vmx_rdtscp(void)
1034 {
1035 return vmcs_config.cpu_based_2nd_exec_ctrl &
1036 SECONDARY_EXEC_RDTSCP;
1037 }
1038
1039 static inline bool cpu_has_vmx_invpcid(void)
1040 {
1041 return vmcs_config.cpu_based_2nd_exec_ctrl &
1042 SECONDARY_EXEC_ENABLE_INVPCID;
1043 }
1044
1045 static inline bool cpu_has_virtual_nmis(void)
1046 {
1047 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1048 }
1049
1050 static inline bool cpu_has_vmx_wbinvd_exit(void)
1051 {
1052 return vmcs_config.cpu_based_2nd_exec_ctrl &
1053 SECONDARY_EXEC_WBINVD_EXITING;
1054 }
1055
1056 static inline bool cpu_has_vmx_shadow_vmcs(void)
1057 {
1058 u64 vmx_msr;
1059 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1060 /* check if the cpu supports writing r/o exit information fields */
1061 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1062 return false;
1063
1064 return vmcs_config.cpu_based_2nd_exec_ctrl &
1065 SECONDARY_EXEC_SHADOW_VMCS;
1066 }
1067
1068 static inline bool report_flexpriority(void)
1069 {
1070 return flexpriority_enabled;
1071 }
1072
1073 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1074 {
1075 return vmcs12->cpu_based_vm_exec_control & bit;
1076 }
1077
1078 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1079 {
1080 return (vmcs12->cpu_based_vm_exec_control &
1081 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1082 (vmcs12->secondary_vm_exec_control & bit);
1083 }
1084
1085 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1086 {
1087 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1088 }
1089
1090 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1091 {
1092 return vmcs12->pin_based_vm_exec_control &
1093 PIN_BASED_VMX_PREEMPTION_TIMER;
1094 }
1095
1096 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1097 {
1098 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1099 }
1100
1101 static inline bool is_exception(u32 intr_info)
1102 {
1103 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1104 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1105 }
1106
1107 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1108 u32 exit_intr_info,
1109 unsigned long exit_qualification);
1110 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1111 struct vmcs12 *vmcs12,
1112 u32 reason, unsigned long qualification);
1113
1114 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1115 {
1116 int i;
1117
1118 for (i = 0; i < vmx->nmsrs; ++i)
1119 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1120 return i;
1121 return -1;
1122 }
1123
1124 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1125 {
1126 struct {
1127 u64 vpid : 16;
1128 u64 rsvd : 48;
1129 u64 gva;
1130 } operand = { vpid, 0, gva };
1131
1132 asm volatile (__ex(ASM_VMX_INVVPID)
1133 /* CF==1 or ZF==1 --> rc = -1 */
1134 "; ja 1f ; ud2 ; 1:"
1135 : : "a"(&operand), "c"(ext) : "cc", "memory");
1136 }
1137
1138 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1139 {
1140 struct {
1141 u64 eptp, gpa;
1142 } operand = {eptp, gpa};
1143
1144 asm volatile (__ex(ASM_VMX_INVEPT)
1145 /* CF==1 or ZF==1 --> rc = -1 */
1146 "; ja 1f ; ud2 ; 1:\n"
1147 : : "a" (&operand), "c" (ext) : "cc", "memory");
1148 }
1149
1150 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1151 {
1152 int i;
1153
1154 i = __find_msr_index(vmx, msr);
1155 if (i >= 0)
1156 return &vmx->guest_msrs[i];
1157 return NULL;
1158 }
1159
1160 static void vmcs_clear(struct vmcs *vmcs)
1161 {
1162 u64 phys_addr = __pa(vmcs);
1163 u8 error;
1164
1165 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1166 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1167 : "cc", "memory");
1168 if (error)
1169 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1170 vmcs, phys_addr);
1171 }
1172
1173 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1174 {
1175 vmcs_clear(loaded_vmcs->vmcs);
1176 loaded_vmcs->cpu = -1;
1177 loaded_vmcs->launched = 0;
1178 }
1179
1180 static void vmcs_load(struct vmcs *vmcs)
1181 {
1182 u64 phys_addr = __pa(vmcs);
1183 u8 error;
1184
1185 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1186 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1187 : "cc", "memory");
1188 if (error)
1189 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1190 vmcs, phys_addr);
1191 }
1192
1193 #ifdef CONFIG_KEXEC
1194 /*
1195 * This bitmap is used to indicate whether the vmclear
1196 * operation is enabled on all cpus. All disabled by
1197 * default.
1198 */
1199 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1200
1201 static inline void crash_enable_local_vmclear(int cpu)
1202 {
1203 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1204 }
1205
1206 static inline void crash_disable_local_vmclear(int cpu)
1207 {
1208 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1209 }
1210
1211 static inline int crash_local_vmclear_enabled(int cpu)
1212 {
1213 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1214 }
1215
1216 static void crash_vmclear_local_loaded_vmcss(void)
1217 {
1218 int cpu = raw_smp_processor_id();
1219 struct loaded_vmcs *v;
1220
1221 if (!crash_local_vmclear_enabled(cpu))
1222 return;
1223
1224 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1225 loaded_vmcss_on_cpu_link)
1226 vmcs_clear(v->vmcs);
1227 }
1228 #else
1229 static inline void crash_enable_local_vmclear(int cpu) { }
1230 static inline void crash_disable_local_vmclear(int cpu) { }
1231 #endif /* CONFIG_KEXEC */
1232
1233 static void __loaded_vmcs_clear(void *arg)
1234 {
1235 struct loaded_vmcs *loaded_vmcs = arg;
1236 int cpu = raw_smp_processor_id();
1237
1238 if (loaded_vmcs->cpu != cpu)
1239 return; /* vcpu migration can race with cpu offline */
1240 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1241 per_cpu(current_vmcs, cpu) = NULL;
1242 crash_disable_local_vmclear(cpu);
1243 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1244
1245 /*
1246 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1247 * is before setting loaded_vmcs->vcpu to -1 which is done in
1248 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1249 * then adds the vmcs into percpu list before it is deleted.
1250 */
1251 smp_wmb();
1252
1253 loaded_vmcs_init(loaded_vmcs);
1254 crash_enable_local_vmclear(cpu);
1255 }
1256
1257 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1258 {
1259 int cpu = loaded_vmcs->cpu;
1260
1261 if (cpu != -1)
1262 smp_call_function_single(cpu,
1263 __loaded_vmcs_clear, loaded_vmcs, 1);
1264 }
1265
1266 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
1267 {
1268 if (vmx->vpid == 0)
1269 return;
1270
1271 if (cpu_has_vmx_invvpid_single())
1272 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
1273 }
1274
1275 static inline void vpid_sync_vcpu_global(void)
1276 {
1277 if (cpu_has_vmx_invvpid_global())
1278 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1279 }
1280
1281 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1282 {
1283 if (cpu_has_vmx_invvpid_single())
1284 vpid_sync_vcpu_single(vmx);
1285 else
1286 vpid_sync_vcpu_global();
1287 }
1288
1289 static inline void ept_sync_global(void)
1290 {
1291 if (cpu_has_vmx_invept_global())
1292 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1293 }
1294
1295 static inline void ept_sync_context(u64 eptp)
1296 {
1297 if (enable_ept) {
1298 if (cpu_has_vmx_invept_context())
1299 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1300 else
1301 ept_sync_global();
1302 }
1303 }
1304
1305 static __always_inline unsigned long vmcs_readl(unsigned long field)
1306 {
1307 unsigned long value;
1308
1309 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1310 : "=a"(value) : "d"(field) : "cc");
1311 return value;
1312 }
1313
1314 static __always_inline u16 vmcs_read16(unsigned long field)
1315 {
1316 return vmcs_readl(field);
1317 }
1318
1319 static __always_inline u32 vmcs_read32(unsigned long field)
1320 {
1321 return vmcs_readl(field);
1322 }
1323
1324 static __always_inline u64 vmcs_read64(unsigned long field)
1325 {
1326 #ifdef CONFIG_X86_64
1327 return vmcs_readl(field);
1328 #else
1329 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1330 #endif
1331 }
1332
1333 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1334 {
1335 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1336 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1337 dump_stack();
1338 }
1339
1340 static void vmcs_writel(unsigned long field, unsigned long value)
1341 {
1342 u8 error;
1343
1344 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1345 : "=q"(error) : "a"(value), "d"(field) : "cc");
1346 if (unlikely(error))
1347 vmwrite_error(field, value);
1348 }
1349
1350 static void vmcs_write16(unsigned long field, u16 value)
1351 {
1352 vmcs_writel(field, value);
1353 }
1354
1355 static void vmcs_write32(unsigned long field, u32 value)
1356 {
1357 vmcs_writel(field, value);
1358 }
1359
1360 static void vmcs_write64(unsigned long field, u64 value)
1361 {
1362 vmcs_writel(field, value);
1363 #ifndef CONFIG_X86_64
1364 asm volatile ("");
1365 vmcs_writel(field+1, value >> 32);
1366 #endif
1367 }
1368
1369 static void vmcs_clear_bits(unsigned long field, u32 mask)
1370 {
1371 vmcs_writel(field, vmcs_readl(field) & ~mask);
1372 }
1373
1374 static void vmcs_set_bits(unsigned long field, u32 mask)
1375 {
1376 vmcs_writel(field, vmcs_readl(field) | mask);
1377 }
1378
1379 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1380 {
1381 vmcs_write32(VM_ENTRY_CONTROLS, val);
1382 vmx->vm_entry_controls_shadow = val;
1383 }
1384
1385 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1386 {
1387 if (vmx->vm_entry_controls_shadow != val)
1388 vm_entry_controls_init(vmx, val);
1389 }
1390
1391 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1392 {
1393 return vmx->vm_entry_controls_shadow;
1394 }
1395
1396
1397 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1398 {
1399 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1400 }
1401
1402 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1403 {
1404 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1405 }
1406
1407 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1408 {
1409 vmcs_write32(VM_EXIT_CONTROLS, val);
1410 vmx->vm_exit_controls_shadow = val;
1411 }
1412
1413 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1414 {
1415 if (vmx->vm_exit_controls_shadow != val)
1416 vm_exit_controls_init(vmx, val);
1417 }
1418
1419 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1420 {
1421 return vmx->vm_exit_controls_shadow;
1422 }
1423
1424
1425 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1426 {
1427 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1428 }
1429
1430 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1431 {
1432 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1433 }
1434
1435 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1436 {
1437 vmx->segment_cache.bitmask = 0;
1438 }
1439
1440 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1441 unsigned field)
1442 {
1443 bool ret;
1444 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1445
1446 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1447 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1448 vmx->segment_cache.bitmask = 0;
1449 }
1450 ret = vmx->segment_cache.bitmask & mask;
1451 vmx->segment_cache.bitmask |= mask;
1452 return ret;
1453 }
1454
1455 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1456 {
1457 u16 *p = &vmx->segment_cache.seg[seg].selector;
1458
1459 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1460 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1461 return *p;
1462 }
1463
1464 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1465 {
1466 ulong *p = &vmx->segment_cache.seg[seg].base;
1467
1468 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1469 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1470 return *p;
1471 }
1472
1473 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1474 {
1475 u32 *p = &vmx->segment_cache.seg[seg].limit;
1476
1477 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1478 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1479 return *p;
1480 }
1481
1482 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1483 {
1484 u32 *p = &vmx->segment_cache.seg[seg].ar;
1485
1486 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1487 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1488 return *p;
1489 }
1490
1491 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1492 {
1493 u32 eb;
1494
1495 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1496 (1u << NM_VECTOR) | (1u << DB_VECTOR);
1497 if ((vcpu->guest_debug &
1498 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1499 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1500 eb |= 1u << BP_VECTOR;
1501 if (to_vmx(vcpu)->rmode.vm86_active)
1502 eb = ~0;
1503 if (enable_ept)
1504 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1505 if (vcpu->fpu_active)
1506 eb &= ~(1u << NM_VECTOR);
1507
1508 /* When we are running a nested L2 guest and L1 specified for it a
1509 * certain exception bitmap, we must trap the same exceptions and pass
1510 * them to L1. When running L2, we will only handle the exceptions
1511 * specified above if L1 did not want them.
1512 */
1513 if (is_guest_mode(vcpu))
1514 eb |= get_vmcs12(vcpu)->exception_bitmap;
1515
1516 vmcs_write32(EXCEPTION_BITMAP, eb);
1517 }
1518
1519 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1520 unsigned long entry, unsigned long exit)
1521 {
1522 vm_entry_controls_clearbit(vmx, entry);
1523 vm_exit_controls_clearbit(vmx, exit);
1524 }
1525
1526 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1527 {
1528 unsigned i;
1529 struct msr_autoload *m = &vmx->msr_autoload;
1530
1531 switch (msr) {
1532 case MSR_EFER:
1533 if (cpu_has_load_ia32_efer) {
1534 clear_atomic_switch_msr_special(vmx,
1535 VM_ENTRY_LOAD_IA32_EFER,
1536 VM_EXIT_LOAD_IA32_EFER);
1537 return;
1538 }
1539 break;
1540 case MSR_CORE_PERF_GLOBAL_CTRL:
1541 if (cpu_has_load_perf_global_ctrl) {
1542 clear_atomic_switch_msr_special(vmx,
1543 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1544 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1545 return;
1546 }
1547 break;
1548 }
1549
1550 for (i = 0; i < m->nr; ++i)
1551 if (m->guest[i].index == msr)
1552 break;
1553
1554 if (i == m->nr)
1555 return;
1556 --m->nr;
1557 m->guest[i] = m->guest[m->nr];
1558 m->host[i] = m->host[m->nr];
1559 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1560 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1561 }
1562
1563 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1564 unsigned long entry, unsigned long exit,
1565 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1566 u64 guest_val, u64 host_val)
1567 {
1568 vmcs_write64(guest_val_vmcs, guest_val);
1569 vmcs_write64(host_val_vmcs, host_val);
1570 vm_entry_controls_setbit(vmx, entry);
1571 vm_exit_controls_setbit(vmx, exit);
1572 }
1573
1574 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1575 u64 guest_val, u64 host_val)
1576 {
1577 unsigned i;
1578 struct msr_autoload *m = &vmx->msr_autoload;
1579
1580 switch (msr) {
1581 case MSR_EFER:
1582 if (cpu_has_load_ia32_efer) {
1583 add_atomic_switch_msr_special(vmx,
1584 VM_ENTRY_LOAD_IA32_EFER,
1585 VM_EXIT_LOAD_IA32_EFER,
1586 GUEST_IA32_EFER,
1587 HOST_IA32_EFER,
1588 guest_val, host_val);
1589 return;
1590 }
1591 break;
1592 case MSR_CORE_PERF_GLOBAL_CTRL:
1593 if (cpu_has_load_perf_global_ctrl) {
1594 add_atomic_switch_msr_special(vmx,
1595 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1596 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1597 GUEST_IA32_PERF_GLOBAL_CTRL,
1598 HOST_IA32_PERF_GLOBAL_CTRL,
1599 guest_val, host_val);
1600 return;
1601 }
1602 break;
1603 }
1604
1605 for (i = 0; i < m->nr; ++i)
1606 if (m->guest[i].index == msr)
1607 break;
1608
1609 if (i == NR_AUTOLOAD_MSRS) {
1610 printk_once(KERN_WARNING "Not enough msr switch entries. "
1611 "Can't add msr %x\n", msr);
1612 return;
1613 } else if (i == m->nr) {
1614 ++m->nr;
1615 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1616 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1617 }
1618
1619 m->guest[i].index = msr;
1620 m->guest[i].value = guest_val;
1621 m->host[i].index = msr;
1622 m->host[i].value = host_val;
1623 }
1624
1625 static void reload_tss(void)
1626 {
1627 /*
1628 * VT restores TR but not its size. Useless.
1629 */
1630 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1631 struct desc_struct *descs;
1632
1633 descs = (void *)gdt->address;
1634 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1635 load_TR_desc();
1636 }
1637
1638 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1639 {
1640 u64 guest_efer;
1641 u64 ignore_bits;
1642
1643 guest_efer = vmx->vcpu.arch.efer;
1644
1645 /*
1646 * NX is emulated; LMA and LME handled by hardware; SCE meaningless
1647 * outside long mode
1648 */
1649 ignore_bits = EFER_NX | EFER_SCE;
1650 #ifdef CONFIG_X86_64
1651 ignore_bits |= EFER_LMA | EFER_LME;
1652 /* SCE is meaningful only in long mode on Intel */
1653 if (guest_efer & EFER_LMA)
1654 ignore_bits &= ~(u64)EFER_SCE;
1655 #endif
1656 guest_efer &= ~ignore_bits;
1657 guest_efer |= host_efer & ignore_bits;
1658 vmx->guest_msrs[efer_offset].data = guest_efer;
1659 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1660
1661 clear_atomic_switch_msr(vmx, MSR_EFER);
1662 /* On ept, can't emulate nx, and must switch nx atomically */
1663 if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1664 guest_efer = vmx->vcpu.arch.efer;
1665 if (!(guest_efer & EFER_LMA))
1666 guest_efer &= ~EFER_LME;
1667 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1668 return false;
1669 }
1670
1671 return true;
1672 }
1673
1674 static unsigned long segment_base(u16 selector)
1675 {
1676 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1677 struct desc_struct *d;
1678 unsigned long table_base;
1679 unsigned long v;
1680
1681 if (!(selector & ~3))
1682 return 0;
1683
1684 table_base = gdt->address;
1685
1686 if (selector & 4) { /* from ldt */
1687 u16 ldt_selector = kvm_read_ldt();
1688
1689 if (!(ldt_selector & ~3))
1690 return 0;
1691
1692 table_base = segment_base(ldt_selector);
1693 }
1694 d = (struct desc_struct *)(table_base + (selector & ~7));
1695 v = get_desc_base(d);
1696 #ifdef CONFIG_X86_64
1697 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1698 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1699 #endif
1700 return v;
1701 }
1702
1703 static inline unsigned long kvm_read_tr_base(void)
1704 {
1705 u16 tr;
1706 asm("str %0" : "=g"(tr));
1707 return segment_base(tr);
1708 }
1709
1710 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1711 {
1712 struct vcpu_vmx *vmx = to_vmx(vcpu);
1713 int i;
1714
1715 if (vmx->host_state.loaded)
1716 return;
1717
1718 vmx->host_state.loaded = 1;
1719 /*
1720 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1721 * allow segment selectors with cpl > 0 or ti == 1.
1722 */
1723 vmx->host_state.ldt_sel = kvm_read_ldt();
1724 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1725 savesegment(fs, vmx->host_state.fs_sel);
1726 if (!(vmx->host_state.fs_sel & 7)) {
1727 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1728 vmx->host_state.fs_reload_needed = 0;
1729 } else {
1730 vmcs_write16(HOST_FS_SELECTOR, 0);
1731 vmx->host_state.fs_reload_needed = 1;
1732 }
1733 savesegment(gs, vmx->host_state.gs_sel);
1734 if (!(vmx->host_state.gs_sel & 7))
1735 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1736 else {
1737 vmcs_write16(HOST_GS_SELECTOR, 0);
1738 vmx->host_state.gs_ldt_reload_needed = 1;
1739 }
1740
1741 #ifdef CONFIG_X86_64
1742 savesegment(ds, vmx->host_state.ds_sel);
1743 savesegment(es, vmx->host_state.es_sel);
1744 #endif
1745
1746 #ifdef CONFIG_X86_64
1747 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1748 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1749 #else
1750 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1751 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1752 #endif
1753
1754 #ifdef CONFIG_X86_64
1755 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1756 if (is_long_mode(&vmx->vcpu))
1757 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1758 #endif
1759 if (boot_cpu_has(X86_FEATURE_MPX))
1760 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1761 for (i = 0; i < vmx->save_nmsrs; ++i)
1762 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1763 vmx->guest_msrs[i].data,
1764 vmx->guest_msrs[i].mask);
1765 }
1766
1767 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1768 {
1769 if (!vmx->host_state.loaded)
1770 return;
1771
1772 ++vmx->vcpu.stat.host_state_reload;
1773 vmx->host_state.loaded = 0;
1774 #ifdef CONFIG_X86_64
1775 if (is_long_mode(&vmx->vcpu))
1776 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1777 #endif
1778 if (vmx->host_state.gs_ldt_reload_needed) {
1779 kvm_load_ldt(vmx->host_state.ldt_sel);
1780 #ifdef CONFIG_X86_64
1781 load_gs_index(vmx->host_state.gs_sel);
1782 #else
1783 loadsegment(gs, vmx->host_state.gs_sel);
1784 #endif
1785 }
1786 if (vmx->host_state.fs_reload_needed)
1787 loadsegment(fs, vmx->host_state.fs_sel);
1788 #ifdef CONFIG_X86_64
1789 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1790 loadsegment(ds, vmx->host_state.ds_sel);
1791 loadsegment(es, vmx->host_state.es_sel);
1792 }
1793 #endif
1794 reload_tss();
1795 #ifdef CONFIG_X86_64
1796 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1797 #endif
1798 if (vmx->host_state.msr_host_bndcfgs)
1799 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1800 /*
1801 * If the FPU is not active (through the host task or
1802 * the guest vcpu), then restore the cr0.TS bit.
1803 */
1804 if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
1805 stts();
1806 load_gdt(this_cpu_ptr(&host_gdt));
1807 }
1808
1809 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1810 {
1811 preempt_disable();
1812 __vmx_load_host_state(vmx);
1813 preempt_enable();
1814 }
1815
1816 /*
1817 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1818 * vcpu mutex is already taken.
1819 */
1820 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1821 {
1822 struct vcpu_vmx *vmx = to_vmx(vcpu);
1823 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1824
1825 if (!vmm_exclusive)
1826 kvm_cpu_vmxon(phys_addr);
1827 else if (vmx->loaded_vmcs->cpu != cpu)
1828 loaded_vmcs_clear(vmx->loaded_vmcs);
1829
1830 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1831 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1832 vmcs_load(vmx->loaded_vmcs->vmcs);
1833 }
1834
1835 if (vmx->loaded_vmcs->cpu != cpu) {
1836 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1837 unsigned long sysenter_esp;
1838
1839 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1840 local_irq_disable();
1841 crash_disable_local_vmclear(cpu);
1842
1843 /*
1844 * Read loaded_vmcs->cpu should be before fetching
1845 * loaded_vmcs->loaded_vmcss_on_cpu_link.
1846 * See the comments in __loaded_vmcs_clear().
1847 */
1848 smp_rmb();
1849
1850 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1851 &per_cpu(loaded_vmcss_on_cpu, cpu));
1852 crash_enable_local_vmclear(cpu);
1853 local_irq_enable();
1854
1855 /*
1856 * Linux uses per-cpu TSS and GDT, so set these when switching
1857 * processors.
1858 */
1859 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1860 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
1861
1862 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1863 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1864 vmx->loaded_vmcs->cpu = cpu;
1865 }
1866 }
1867
1868 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1869 {
1870 __vmx_load_host_state(to_vmx(vcpu));
1871 if (!vmm_exclusive) {
1872 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1873 vcpu->cpu = -1;
1874 kvm_cpu_vmxoff();
1875 }
1876 }
1877
1878 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1879 {
1880 ulong cr0;
1881
1882 if (vcpu->fpu_active)
1883 return;
1884 vcpu->fpu_active = 1;
1885 cr0 = vmcs_readl(GUEST_CR0);
1886 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1887 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1888 vmcs_writel(GUEST_CR0, cr0);
1889 update_exception_bitmap(vcpu);
1890 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1891 if (is_guest_mode(vcpu))
1892 vcpu->arch.cr0_guest_owned_bits &=
1893 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
1894 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1895 }
1896
1897 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1898
1899 /*
1900 * Return the cr0 value that a nested guest would read. This is a combination
1901 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1902 * its hypervisor (cr0_read_shadow).
1903 */
1904 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1905 {
1906 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1907 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1908 }
1909 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1910 {
1911 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1912 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1913 }
1914
1915 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1916 {
1917 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1918 * set this *before* calling this function.
1919 */
1920 vmx_decache_cr0_guest_bits(vcpu);
1921 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
1922 update_exception_bitmap(vcpu);
1923 vcpu->arch.cr0_guest_owned_bits = 0;
1924 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1925 if (is_guest_mode(vcpu)) {
1926 /*
1927 * L1's specified read shadow might not contain the TS bit,
1928 * so now that we turned on shadowing of this bit, we need to
1929 * set this bit of the shadow. Like in nested_vmx_run we need
1930 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1931 * up-to-date here because we just decached cr0.TS (and we'll
1932 * only update vmcs12->guest_cr0 on nested exit).
1933 */
1934 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1935 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1936 (vcpu->arch.cr0 & X86_CR0_TS);
1937 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1938 } else
1939 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1940 }
1941
1942 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1943 {
1944 unsigned long rflags, save_rflags;
1945
1946 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1947 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1948 rflags = vmcs_readl(GUEST_RFLAGS);
1949 if (to_vmx(vcpu)->rmode.vm86_active) {
1950 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1951 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1952 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1953 }
1954 to_vmx(vcpu)->rflags = rflags;
1955 }
1956 return to_vmx(vcpu)->rflags;
1957 }
1958
1959 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1960 {
1961 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1962 to_vmx(vcpu)->rflags = rflags;
1963 if (to_vmx(vcpu)->rmode.vm86_active) {
1964 to_vmx(vcpu)->rmode.save_rflags = rflags;
1965 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1966 }
1967 vmcs_writel(GUEST_RFLAGS, rflags);
1968 }
1969
1970 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1971 {
1972 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1973 int ret = 0;
1974
1975 if (interruptibility & GUEST_INTR_STATE_STI)
1976 ret |= KVM_X86_SHADOW_INT_STI;
1977 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1978 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1979
1980 return ret;
1981 }
1982
1983 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1984 {
1985 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1986 u32 interruptibility = interruptibility_old;
1987
1988 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1989
1990 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1991 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1992 else if (mask & KVM_X86_SHADOW_INT_STI)
1993 interruptibility |= GUEST_INTR_STATE_STI;
1994
1995 if ((interruptibility != interruptibility_old))
1996 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1997 }
1998
1999 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2000 {
2001 unsigned long rip;
2002
2003 rip = kvm_rip_read(vcpu);
2004 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2005 kvm_rip_write(vcpu, rip);
2006
2007 /* skipping an emulated instruction also counts */
2008 vmx_set_interrupt_shadow(vcpu, 0);
2009 }
2010
2011 /*
2012 * KVM wants to inject page-faults which it got to the guest. This function
2013 * checks whether in a nested guest, we need to inject them to L1 or L2.
2014 */
2015 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
2016 {
2017 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2018
2019 if (!(vmcs12->exception_bitmap & (1u << nr)))
2020 return 0;
2021
2022 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
2023 vmcs_read32(VM_EXIT_INTR_INFO),
2024 vmcs_readl(EXIT_QUALIFICATION));
2025 return 1;
2026 }
2027
2028 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
2029 bool has_error_code, u32 error_code,
2030 bool reinject)
2031 {
2032 struct vcpu_vmx *vmx = to_vmx(vcpu);
2033 u32 intr_info = nr | INTR_INFO_VALID_MASK;
2034
2035 if (!reinject && is_guest_mode(vcpu) &&
2036 nested_vmx_check_exception(vcpu, nr))
2037 return;
2038
2039 if (has_error_code) {
2040 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2041 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2042 }
2043
2044 if (vmx->rmode.vm86_active) {
2045 int inc_eip = 0;
2046 if (kvm_exception_is_soft(nr))
2047 inc_eip = vcpu->arch.event_exit_inst_len;
2048 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2049 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2050 return;
2051 }
2052
2053 if (kvm_exception_is_soft(nr)) {
2054 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2055 vmx->vcpu.arch.event_exit_inst_len);
2056 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2057 } else
2058 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2059
2060 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2061 }
2062
2063 static bool vmx_rdtscp_supported(void)
2064 {
2065 return cpu_has_vmx_rdtscp();
2066 }
2067
2068 static bool vmx_invpcid_supported(void)
2069 {
2070 return cpu_has_vmx_invpcid() && enable_ept;
2071 }
2072
2073 /*
2074 * Swap MSR entry in host/guest MSR entry array.
2075 */
2076 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2077 {
2078 struct shared_msr_entry tmp;
2079
2080 tmp = vmx->guest_msrs[to];
2081 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2082 vmx->guest_msrs[from] = tmp;
2083 }
2084
2085 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2086 {
2087 unsigned long *msr_bitmap;
2088
2089 if (irqchip_in_kernel(vcpu->kvm) && apic_x2apic_mode(vcpu->arch.apic)) {
2090 if (is_long_mode(vcpu))
2091 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2092 else
2093 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2094 } else {
2095 if (is_long_mode(vcpu))
2096 msr_bitmap = vmx_msr_bitmap_longmode;
2097 else
2098 msr_bitmap = vmx_msr_bitmap_legacy;
2099 }
2100
2101 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2102 }
2103
2104 /*
2105 * Set up the vmcs to automatically save and restore system
2106 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2107 * mode, as fiddling with msrs is very expensive.
2108 */
2109 static void setup_msrs(struct vcpu_vmx *vmx)
2110 {
2111 int save_nmsrs, index;
2112
2113 save_nmsrs = 0;
2114 #ifdef CONFIG_X86_64
2115 if (is_long_mode(&vmx->vcpu)) {
2116 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2117 if (index >= 0)
2118 move_msr_up(vmx, index, save_nmsrs++);
2119 index = __find_msr_index(vmx, MSR_LSTAR);
2120 if (index >= 0)
2121 move_msr_up(vmx, index, save_nmsrs++);
2122 index = __find_msr_index(vmx, MSR_CSTAR);
2123 if (index >= 0)
2124 move_msr_up(vmx, index, save_nmsrs++);
2125 index = __find_msr_index(vmx, MSR_TSC_AUX);
2126 if (index >= 0 && vmx->rdtscp_enabled)
2127 move_msr_up(vmx, index, save_nmsrs++);
2128 /*
2129 * MSR_STAR is only needed on long mode guests, and only
2130 * if efer.sce is enabled.
2131 */
2132 index = __find_msr_index(vmx, MSR_STAR);
2133 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2134 move_msr_up(vmx, index, save_nmsrs++);
2135 }
2136 #endif
2137 index = __find_msr_index(vmx, MSR_EFER);
2138 if (index >= 0 && update_transition_efer(vmx, index))
2139 move_msr_up(vmx, index, save_nmsrs++);
2140
2141 vmx->save_nmsrs = save_nmsrs;
2142
2143 if (cpu_has_vmx_msr_bitmap())
2144 vmx_set_msr_bitmap(&vmx->vcpu);
2145 }
2146
2147 /*
2148 * reads and returns guest's timestamp counter "register"
2149 * guest_tsc = host_tsc + tsc_offset -- 21.3
2150 */
2151 static u64 guest_read_tsc(void)
2152 {
2153 u64 host_tsc, tsc_offset;
2154
2155 rdtscll(host_tsc);
2156 tsc_offset = vmcs_read64(TSC_OFFSET);
2157 return host_tsc + tsc_offset;
2158 }
2159
2160 /*
2161 * Like guest_read_tsc, but always returns L1's notion of the timestamp
2162 * counter, even if a nested guest (L2) is currently running.
2163 */
2164 static u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2165 {
2166 u64 tsc_offset;
2167
2168 tsc_offset = is_guest_mode(vcpu) ?
2169 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2170 vmcs_read64(TSC_OFFSET);
2171 return host_tsc + tsc_offset;
2172 }
2173
2174 /*
2175 * Engage any workarounds for mis-matched TSC rates. Currently limited to
2176 * software catchup for faster rates on slower CPUs.
2177 */
2178 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2179 {
2180 if (!scale)
2181 return;
2182
2183 if (user_tsc_khz > tsc_khz) {
2184 vcpu->arch.tsc_catchup = 1;
2185 vcpu->arch.tsc_always_catchup = 1;
2186 } else
2187 WARN(1, "user requested TSC rate below hardware speed\n");
2188 }
2189
2190 static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2191 {
2192 return vmcs_read64(TSC_OFFSET);
2193 }
2194
2195 /*
2196 * writes 'offset' into guest's timestamp counter offset register
2197 */
2198 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2199 {
2200 if (is_guest_mode(vcpu)) {
2201 /*
2202 * We're here if L1 chose not to trap WRMSR to TSC. According
2203 * to the spec, this should set L1's TSC; The offset that L1
2204 * set for L2 remains unchanged, and still needs to be added
2205 * to the newly set TSC to get L2's TSC.
2206 */
2207 struct vmcs12 *vmcs12;
2208 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2209 /* recalculate vmcs02.TSC_OFFSET: */
2210 vmcs12 = get_vmcs12(vcpu);
2211 vmcs_write64(TSC_OFFSET, offset +
2212 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2213 vmcs12->tsc_offset : 0));
2214 } else {
2215 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2216 vmcs_read64(TSC_OFFSET), offset);
2217 vmcs_write64(TSC_OFFSET, offset);
2218 }
2219 }
2220
2221 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
2222 {
2223 u64 offset = vmcs_read64(TSC_OFFSET);
2224
2225 vmcs_write64(TSC_OFFSET, offset + adjustment);
2226 if (is_guest_mode(vcpu)) {
2227 /* Even when running L2, the adjustment needs to apply to L1 */
2228 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
2229 } else
2230 trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2231 offset + adjustment);
2232 }
2233
2234 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2235 {
2236 return target_tsc - native_read_tsc();
2237 }
2238
2239 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2240 {
2241 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2242 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2243 }
2244
2245 /*
2246 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2247 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2248 * all guests if the "nested" module option is off, and can also be disabled
2249 * for a single guest by disabling its VMX cpuid bit.
2250 */
2251 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2252 {
2253 return nested && guest_cpuid_has_vmx(vcpu);
2254 }
2255
2256 /*
2257 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2258 * returned for the various VMX controls MSRs when nested VMX is enabled.
2259 * The same values should also be used to verify that vmcs12 control fields are
2260 * valid during nested entry from L1 to L2.
2261 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2262 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2263 * bit in the high half is on if the corresponding bit in the control field
2264 * may be on. See also vmx_control_verify().
2265 * TODO: allow these variables to be modified (downgraded) by module options
2266 * or other means.
2267 */
2268 static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
2269 static u32 nested_vmx_true_procbased_ctls_low;
2270 static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
2271 static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
2272 static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
2273 static u32 nested_vmx_true_exit_ctls_low;
2274 static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
2275 static u32 nested_vmx_true_entry_ctls_low;
2276 static u32 nested_vmx_misc_low, nested_vmx_misc_high;
2277 static u32 nested_vmx_ept_caps;
2278 static __init void nested_vmx_setup_ctls_msrs(void)
2279 {
2280 /*
2281 * Note that as a general rule, the high half of the MSRs (bits in
2282 * the control fields which may be 1) should be initialized by the
2283 * intersection of the underlying hardware's MSR (i.e., features which
2284 * can be supported) and the list of features we want to expose -
2285 * because they are known to be properly supported in our code.
2286 * Also, usually, the low half of the MSRs (bits which must be 1) can
2287 * be set to 0, meaning that L1 may turn off any of these bits. The
2288 * reason is that if one of these bits is necessary, it will appear
2289 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2290 * fields of vmcs01 and vmcs02, will turn these bits off - and
2291 * nested_vmx_exit_handled() will not pass related exits to L1.
2292 * These rules have exceptions below.
2293 */
2294
2295 /* pin-based controls */
2296 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2297 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high);
2298 nested_vmx_pinbased_ctls_low |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2299 nested_vmx_pinbased_ctls_high &= PIN_BASED_EXT_INTR_MASK |
2300 PIN_BASED_NMI_EXITING | PIN_BASED_VIRTUAL_NMIS;
2301 nested_vmx_pinbased_ctls_high |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2302 PIN_BASED_VMX_PREEMPTION_TIMER;
2303
2304 /* exit controls */
2305 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2306 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high);
2307 nested_vmx_exit_ctls_low = VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2308
2309 nested_vmx_exit_ctls_high &=
2310 #ifdef CONFIG_X86_64
2311 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2312 #endif
2313 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2314 nested_vmx_exit_ctls_high |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2315 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2316 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2317
2318 if (vmx_mpx_supported())
2319 nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2320
2321 /* We support free control of debug control saving. */
2322 nested_vmx_true_exit_ctls_low = nested_vmx_exit_ctls_low &
2323 ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2324
2325 /* entry controls */
2326 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2327 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
2328 nested_vmx_entry_ctls_low = VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2329 nested_vmx_entry_ctls_high &=
2330 #ifdef CONFIG_X86_64
2331 VM_ENTRY_IA32E_MODE |
2332 #endif
2333 VM_ENTRY_LOAD_IA32_PAT;
2334 nested_vmx_entry_ctls_high |= (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR |
2335 VM_ENTRY_LOAD_IA32_EFER);
2336 if (vmx_mpx_supported())
2337 nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2338
2339 /* We support free control of debug control loading. */
2340 nested_vmx_true_entry_ctls_low = nested_vmx_entry_ctls_low &
2341 ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2342
2343 /* cpu-based controls */
2344 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2345 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
2346 nested_vmx_procbased_ctls_low = CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2347 nested_vmx_procbased_ctls_high &=
2348 CPU_BASED_VIRTUAL_INTR_PENDING |
2349 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2350 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2351 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2352 CPU_BASED_CR3_STORE_EXITING |
2353 #ifdef CONFIG_X86_64
2354 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2355 #endif
2356 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2357 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
2358 CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
2359 CPU_BASED_PAUSE_EXITING | CPU_BASED_TPR_SHADOW |
2360 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2361 /*
2362 * We can allow some features even when not supported by the
2363 * hardware. For example, L1 can specify an MSR bitmap - and we
2364 * can use it to avoid exits to L1 - even when L0 runs L2
2365 * without MSR bitmaps.
2366 */
2367 nested_vmx_procbased_ctls_high |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2368 CPU_BASED_USE_MSR_BITMAPS;
2369
2370 /* We support free control of CR3 access interception. */
2371 nested_vmx_true_procbased_ctls_low = nested_vmx_procbased_ctls_low &
2372 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2373
2374 /* secondary cpu-based controls */
2375 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2376 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
2377 nested_vmx_secondary_ctls_low = 0;
2378 nested_vmx_secondary_ctls_high &=
2379 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2380 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2381 SECONDARY_EXEC_WBINVD_EXITING;
2382
2383 if (enable_ept) {
2384 /* nested EPT: emulate EPT also to L1 */
2385 nested_vmx_secondary_ctls_high |= SECONDARY_EXEC_ENABLE_EPT;
2386 nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2387 VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2388 VMX_EPT_INVEPT_BIT;
2389 nested_vmx_ept_caps &= vmx_capability.ept;
2390 /*
2391 * For nested guests, we don't do anything specific
2392 * for single context invalidation. Hence, only advertise
2393 * support for global context invalidation.
2394 */
2395 nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT;
2396 } else
2397 nested_vmx_ept_caps = 0;
2398
2399 /* miscellaneous data */
2400 rdmsr(MSR_IA32_VMX_MISC, nested_vmx_misc_low, nested_vmx_misc_high);
2401 nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2402 nested_vmx_misc_low |= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2403 VMX_MISC_ACTIVITY_HLT;
2404 nested_vmx_misc_high = 0;
2405 }
2406
2407 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2408 {
2409 /*
2410 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2411 */
2412 return ((control & high) | low) == control;
2413 }
2414
2415 static inline u64 vmx_control_msr(u32 low, u32 high)
2416 {
2417 return low | ((u64)high << 32);
2418 }
2419
2420 /* Returns 0 on success, non-0 otherwise. */
2421 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2422 {
2423 switch (msr_index) {
2424 case MSR_IA32_VMX_BASIC:
2425 /*
2426 * This MSR reports some information about VMX support. We
2427 * should return information about the VMX we emulate for the
2428 * guest, and the VMCS structure we give it - not about the
2429 * VMX support of the underlying hardware.
2430 */
2431 *pdata = VMCS12_REVISION | VMX_BASIC_TRUE_CTLS |
2432 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2433 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2434 break;
2435 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2436 case MSR_IA32_VMX_PINBASED_CTLS:
2437 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2438 nested_vmx_pinbased_ctls_high);
2439 break;
2440 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2441 *pdata = vmx_control_msr(nested_vmx_true_procbased_ctls_low,
2442 nested_vmx_procbased_ctls_high);
2443 break;
2444 case MSR_IA32_VMX_PROCBASED_CTLS:
2445 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2446 nested_vmx_procbased_ctls_high);
2447 break;
2448 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2449 *pdata = vmx_control_msr(nested_vmx_true_exit_ctls_low,
2450 nested_vmx_exit_ctls_high);
2451 break;
2452 case MSR_IA32_VMX_EXIT_CTLS:
2453 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2454 nested_vmx_exit_ctls_high);
2455 break;
2456 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2457 *pdata = vmx_control_msr(nested_vmx_true_entry_ctls_low,
2458 nested_vmx_entry_ctls_high);
2459 break;
2460 case MSR_IA32_VMX_ENTRY_CTLS:
2461 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2462 nested_vmx_entry_ctls_high);
2463 break;
2464 case MSR_IA32_VMX_MISC:
2465 *pdata = vmx_control_msr(nested_vmx_misc_low,
2466 nested_vmx_misc_high);
2467 break;
2468 /*
2469 * These MSRs specify bits which the guest must keep fixed (on or off)
2470 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2471 * We picked the standard core2 setting.
2472 */
2473 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2474 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2475 case MSR_IA32_VMX_CR0_FIXED0:
2476 *pdata = VMXON_CR0_ALWAYSON;
2477 break;
2478 case MSR_IA32_VMX_CR0_FIXED1:
2479 *pdata = -1ULL;
2480 break;
2481 case MSR_IA32_VMX_CR4_FIXED0:
2482 *pdata = VMXON_CR4_ALWAYSON;
2483 break;
2484 case MSR_IA32_VMX_CR4_FIXED1:
2485 *pdata = -1ULL;
2486 break;
2487 case MSR_IA32_VMX_VMCS_ENUM:
2488 *pdata = 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2489 break;
2490 case MSR_IA32_VMX_PROCBASED_CTLS2:
2491 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2492 nested_vmx_secondary_ctls_high);
2493 break;
2494 case MSR_IA32_VMX_EPT_VPID_CAP:
2495 /* Currently, no nested vpid support */
2496 *pdata = nested_vmx_ept_caps;
2497 break;
2498 default:
2499 return 1;
2500 }
2501
2502 return 0;
2503 }
2504
2505 /*
2506 * Reads an msr value (of 'msr_index') into 'pdata'.
2507 * Returns 0 on success, non-0 otherwise.
2508 * Assumes vcpu_load() was already called.
2509 */
2510 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2511 {
2512 u64 data;
2513 struct shared_msr_entry *msr;
2514
2515 if (!pdata) {
2516 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2517 return -EINVAL;
2518 }
2519
2520 switch (msr_index) {
2521 #ifdef CONFIG_X86_64
2522 case MSR_FS_BASE:
2523 data = vmcs_readl(GUEST_FS_BASE);
2524 break;
2525 case MSR_GS_BASE:
2526 data = vmcs_readl(GUEST_GS_BASE);
2527 break;
2528 case MSR_KERNEL_GS_BASE:
2529 vmx_load_host_state(to_vmx(vcpu));
2530 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2531 break;
2532 #endif
2533 case MSR_EFER:
2534 return kvm_get_msr_common(vcpu, msr_index, pdata);
2535 case MSR_IA32_TSC:
2536 data = guest_read_tsc();
2537 break;
2538 case MSR_IA32_SYSENTER_CS:
2539 data = vmcs_read32(GUEST_SYSENTER_CS);
2540 break;
2541 case MSR_IA32_SYSENTER_EIP:
2542 data = vmcs_readl(GUEST_SYSENTER_EIP);
2543 break;
2544 case MSR_IA32_SYSENTER_ESP:
2545 data = vmcs_readl(GUEST_SYSENTER_ESP);
2546 break;
2547 case MSR_IA32_BNDCFGS:
2548 if (!vmx_mpx_supported())
2549 return 1;
2550 data = vmcs_read64(GUEST_BNDCFGS);
2551 break;
2552 case MSR_IA32_FEATURE_CONTROL:
2553 if (!nested_vmx_allowed(vcpu))
2554 return 1;
2555 data = to_vmx(vcpu)->nested.msr_ia32_feature_control;
2556 break;
2557 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2558 if (!nested_vmx_allowed(vcpu))
2559 return 1;
2560 return vmx_get_vmx_msr(vcpu, msr_index, pdata);
2561 case MSR_TSC_AUX:
2562 if (!to_vmx(vcpu)->rdtscp_enabled)
2563 return 1;
2564 /* Otherwise falls through */
2565 default:
2566 msr = find_msr_entry(to_vmx(vcpu), msr_index);
2567 if (msr) {
2568 data = msr->data;
2569 break;
2570 }
2571 return kvm_get_msr_common(vcpu, msr_index, pdata);
2572 }
2573
2574 *pdata = data;
2575 return 0;
2576 }
2577
2578 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
2579
2580 /*
2581 * Writes msr value into into the appropriate "register".
2582 * Returns 0 on success, non-0 otherwise.
2583 * Assumes vcpu_load() was already called.
2584 */
2585 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2586 {
2587 struct vcpu_vmx *vmx = to_vmx(vcpu);
2588 struct shared_msr_entry *msr;
2589 int ret = 0;
2590 u32 msr_index = msr_info->index;
2591 u64 data = msr_info->data;
2592
2593 switch (msr_index) {
2594 case MSR_EFER:
2595 ret = kvm_set_msr_common(vcpu, msr_info);
2596 break;
2597 #ifdef CONFIG_X86_64
2598 case MSR_FS_BASE:
2599 vmx_segment_cache_clear(vmx);
2600 vmcs_writel(GUEST_FS_BASE, data);
2601 break;
2602 case MSR_GS_BASE:
2603 vmx_segment_cache_clear(vmx);
2604 vmcs_writel(GUEST_GS_BASE, data);
2605 break;
2606 case MSR_KERNEL_GS_BASE:
2607 vmx_load_host_state(vmx);
2608 vmx->msr_guest_kernel_gs_base = data;
2609 break;
2610 #endif
2611 case MSR_IA32_SYSENTER_CS:
2612 vmcs_write32(GUEST_SYSENTER_CS, data);
2613 break;
2614 case MSR_IA32_SYSENTER_EIP:
2615 vmcs_writel(GUEST_SYSENTER_EIP, data);
2616 break;
2617 case MSR_IA32_SYSENTER_ESP:
2618 vmcs_writel(GUEST_SYSENTER_ESP, data);
2619 break;
2620 case MSR_IA32_BNDCFGS:
2621 if (!vmx_mpx_supported())
2622 return 1;
2623 vmcs_write64(GUEST_BNDCFGS, data);
2624 break;
2625 case MSR_IA32_TSC:
2626 kvm_write_tsc(vcpu, msr_info);
2627 break;
2628 case MSR_IA32_CR_PAT:
2629 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2630 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2631 return 1;
2632 vmcs_write64(GUEST_IA32_PAT, data);
2633 vcpu->arch.pat = data;
2634 break;
2635 }
2636 ret = kvm_set_msr_common(vcpu, msr_info);
2637 break;
2638 case MSR_IA32_TSC_ADJUST:
2639 ret = kvm_set_msr_common(vcpu, msr_info);
2640 break;
2641 case MSR_IA32_FEATURE_CONTROL:
2642 if (!nested_vmx_allowed(vcpu) ||
2643 (to_vmx(vcpu)->nested.msr_ia32_feature_control &
2644 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
2645 return 1;
2646 vmx->nested.msr_ia32_feature_control = data;
2647 if (msr_info->host_initiated && data == 0)
2648 vmx_leave_nested(vcpu);
2649 break;
2650 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2651 return 1; /* they are read-only */
2652 case MSR_TSC_AUX:
2653 if (!vmx->rdtscp_enabled)
2654 return 1;
2655 /* Check reserved bit, higher 32 bits should be zero */
2656 if ((data >> 32) != 0)
2657 return 1;
2658 /* Otherwise falls through */
2659 default:
2660 msr = find_msr_entry(vmx, msr_index);
2661 if (msr) {
2662 msr->data = data;
2663 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2664 preempt_disable();
2665 kvm_set_shared_msr(msr->index, msr->data,
2666 msr->mask);
2667 preempt_enable();
2668 }
2669 break;
2670 }
2671 ret = kvm_set_msr_common(vcpu, msr_info);
2672 }
2673
2674 return ret;
2675 }
2676
2677 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2678 {
2679 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2680 switch (reg) {
2681 case VCPU_REGS_RSP:
2682 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2683 break;
2684 case VCPU_REGS_RIP:
2685 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2686 break;
2687 case VCPU_EXREG_PDPTR:
2688 if (enable_ept)
2689 ept_save_pdptrs(vcpu);
2690 break;
2691 default:
2692 break;
2693 }
2694 }
2695
2696 static __init int cpu_has_kvm_support(void)
2697 {
2698 return cpu_has_vmx();
2699 }
2700
2701 static __init int vmx_disabled_by_bios(void)
2702 {
2703 u64 msr;
2704
2705 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2706 if (msr & FEATURE_CONTROL_LOCKED) {
2707 /* launched w/ TXT and VMX disabled */
2708 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2709 && tboot_enabled())
2710 return 1;
2711 /* launched w/o TXT and VMX only enabled w/ TXT */
2712 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2713 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2714 && !tboot_enabled()) {
2715 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2716 "activate TXT before enabling KVM\n");
2717 return 1;
2718 }
2719 /* launched w/o TXT and VMX disabled */
2720 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2721 && !tboot_enabled())
2722 return 1;
2723 }
2724
2725 return 0;
2726 }
2727
2728 static void kvm_cpu_vmxon(u64 addr)
2729 {
2730 asm volatile (ASM_VMX_VMXON_RAX
2731 : : "a"(&addr), "m"(addr)
2732 : "memory", "cc");
2733 }
2734
2735 static int hardware_enable(void)
2736 {
2737 int cpu = raw_smp_processor_id();
2738 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2739 u64 old, test_bits;
2740
2741 if (read_cr4() & X86_CR4_VMXE)
2742 return -EBUSY;
2743
2744 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2745
2746 /*
2747 * Now we can enable the vmclear operation in kdump
2748 * since the loaded_vmcss_on_cpu list on this cpu
2749 * has been initialized.
2750 *
2751 * Though the cpu is not in VMX operation now, there
2752 * is no problem to enable the vmclear operation
2753 * for the loaded_vmcss_on_cpu list is empty!
2754 */
2755 crash_enable_local_vmclear(cpu);
2756
2757 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2758
2759 test_bits = FEATURE_CONTROL_LOCKED;
2760 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2761 if (tboot_enabled())
2762 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2763
2764 if ((old & test_bits) != test_bits) {
2765 /* enable and lock */
2766 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2767 }
2768 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
2769
2770 if (vmm_exclusive) {
2771 kvm_cpu_vmxon(phys_addr);
2772 ept_sync_global();
2773 }
2774
2775 native_store_gdt(this_cpu_ptr(&host_gdt));
2776
2777 return 0;
2778 }
2779
2780 static void vmclear_local_loaded_vmcss(void)
2781 {
2782 int cpu = raw_smp_processor_id();
2783 struct loaded_vmcs *v, *n;
2784
2785 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2786 loaded_vmcss_on_cpu_link)
2787 __loaded_vmcs_clear(v);
2788 }
2789
2790
2791 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2792 * tricks.
2793 */
2794 static void kvm_cpu_vmxoff(void)
2795 {
2796 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2797 }
2798
2799 static void hardware_disable(void)
2800 {
2801 if (vmm_exclusive) {
2802 vmclear_local_loaded_vmcss();
2803 kvm_cpu_vmxoff();
2804 }
2805 write_cr4(read_cr4() & ~X86_CR4_VMXE);
2806 }
2807
2808 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2809 u32 msr, u32 *result)
2810 {
2811 u32 vmx_msr_low, vmx_msr_high;
2812 u32 ctl = ctl_min | ctl_opt;
2813
2814 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2815
2816 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2817 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2818
2819 /* Ensure minimum (required) set of control bits are supported. */
2820 if (ctl_min & ~ctl)
2821 return -EIO;
2822
2823 *result = ctl;
2824 return 0;
2825 }
2826
2827 static __init bool allow_1_setting(u32 msr, u32 ctl)
2828 {
2829 u32 vmx_msr_low, vmx_msr_high;
2830
2831 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2832 return vmx_msr_high & ctl;
2833 }
2834
2835 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2836 {
2837 u32 vmx_msr_low, vmx_msr_high;
2838 u32 min, opt, min2, opt2;
2839 u32 _pin_based_exec_control = 0;
2840 u32 _cpu_based_exec_control = 0;
2841 u32 _cpu_based_2nd_exec_control = 0;
2842 u32 _vmexit_control = 0;
2843 u32 _vmentry_control = 0;
2844
2845 min = CPU_BASED_HLT_EXITING |
2846 #ifdef CONFIG_X86_64
2847 CPU_BASED_CR8_LOAD_EXITING |
2848 CPU_BASED_CR8_STORE_EXITING |
2849 #endif
2850 CPU_BASED_CR3_LOAD_EXITING |
2851 CPU_BASED_CR3_STORE_EXITING |
2852 CPU_BASED_USE_IO_BITMAPS |
2853 CPU_BASED_MOV_DR_EXITING |
2854 CPU_BASED_USE_TSC_OFFSETING |
2855 CPU_BASED_MWAIT_EXITING |
2856 CPU_BASED_MONITOR_EXITING |
2857 CPU_BASED_INVLPG_EXITING |
2858 CPU_BASED_RDPMC_EXITING;
2859
2860 opt = CPU_BASED_TPR_SHADOW |
2861 CPU_BASED_USE_MSR_BITMAPS |
2862 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2863 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2864 &_cpu_based_exec_control) < 0)
2865 return -EIO;
2866 #ifdef CONFIG_X86_64
2867 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2868 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2869 ~CPU_BASED_CR8_STORE_EXITING;
2870 #endif
2871 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2872 min2 = 0;
2873 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2874 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2875 SECONDARY_EXEC_WBINVD_EXITING |
2876 SECONDARY_EXEC_ENABLE_VPID |
2877 SECONDARY_EXEC_ENABLE_EPT |
2878 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2879 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2880 SECONDARY_EXEC_RDTSCP |
2881 SECONDARY_EXEC_ENABLE_INVPCID |
2882 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2883 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2884 SECONDARY_EXEC_SHADOW_VMCS;
2885 if (adjust_vmx_controls(min2, opt2,
2886 MSR_IA32_VMX_PROCBASED_CTLS2,
2887 &_cpu_based_2nd_exec_control) < 0)
2888 return -EIO;
2889 }
2890 #ifndef CONFIG_X86_64
2891 if (!(_cpu_based_2nd_exec_control &
2892 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2893 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2894 #endif
2895
2896 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2897 _cpu_based_2nd_exec_control &= ~(
2898 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2899 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2900 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2901
2902 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2903 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2904 enabled */
2905 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2906 CPU_BASED_CR3_STORE_EXITING |
2907 CPU_BASED_INVLPG_EXITING);
2908 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2909 vmx_capability.ept, vmx_capability.vpid);
2910 }
2911
2912 min = VM_EXIT_SAVE_DEBUG_CONTROLS;
2913 #ifdef CONFIG_X86_64
2914 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2915 #endif
2916 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
2917 VM_EXIT_ACK_INTR_ON_EXIT | VM_EXIT_CLEAR_BNDCFGS;
2918 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2919 &_vmexit_control) < 0)
2920 return -EIO;
2921
2922 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2923 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
2924 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2925 &_pin_based_exec_control) < 0)
2926 return -EIO;
2927
2928 if (!(_cpu_based_2nd_exec_control &
2929 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
2930 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
2931 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2932
2933 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2934 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
2935 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2936 &_vmentry_control) < 0)
2937 return -EIO;
2938
2939 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2940
2941 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2942 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2943 return -EIO;
2944
2945 #ifdef CONFIG_X86_64
2946 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2947 if (vmx_msr_high & (1u<<16))
2948 return -EIO;
2949 #endif
2950
2951 /* Require Write-Back (WB) memory type for VMCS accesses. */
2952 if (((vmx_msr_high >> 18) & 15) != 6)
2953 return -EIO;
2954
2955 vmcs_conf->size = vmx_msr_high & 0x1fff;
2956 vmcs_conf->order = get_order(vmcs_config.size);
2957 vmcs_conf->revision_id = vmx_msr_low;
2958
2959 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2960 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2961 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2962 vmcs_conf->vmexit_ctrl = _vmexit_control;
2963 vmcs_conf->vmentry_ctrl = _vmentry_control;
2964
2965 cpu_has_load_ia32_efer =
2966 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2967 VM_ENTRY_LOAD_IA32_EFER)
2968 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2969 VM_EXIT_LOAD_IA32_EFER);
2970
2971 cpu_has_load_perf_global_ctrl =
2972 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2973 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
2974 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2975 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2976
2977 /*
2978 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2979 * but due to arrata below it can't be used. Workaround is to use
2980 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2981 *
2982 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2983 *
2984 * AAK155 (model 26)
2985 * AAP115 (model 30)
2986 * AAT100 (model 37)
2987 * BC86,AAY89,BD102 (model 44)
2988 * BA97 (model 46)
2989 *
2990 */
2991 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
2992 switch (boot_cpu_data.x86_model) {
2993 case 26:
2994 case 30:
2995 case 37:
2996 case 44:
2997 case 46:
2998 cpu_has_load_perf_global_ctrl = false;
2999 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3000 "does not work properly. Using workaround\n");
3001 break;
3002 default:
3003 break;
3004 }
3005 }
3006
3007 return 0;
3008 }
3009
3010 static struct vmcs *alloc_vmcs_cpu(int cpu)
3011 {
3012 int node = cpu_to_node(cpu);
3013 struct page *pages;
3014 struct vmcs *vmcs;
3015
3016 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
3017 if (!pages)
3018 return NULL;
3019 vmcs = page_address(pages);
3020 memset(vmcs, 0, vmcs_config.size);
3021 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3022 return vmcs;
3023 }
3024
3025 static struct vmcs *alloc_vmcs(void)
3026 {
3027 return alloc_vmcs_cpu(raw_smp_processor_id());
3028 }
3029
3030 static void free_vmcs(struct vmcs *vmcs)
3031 {
3032 free_pages((unsigned long)vmcs, vmcs_config.order);
3033 }
3034
3035 /*
3036 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3037 */
3038 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3039 {
3040 if (!loaded_vmcs->vmcs)
3041 return;
3042 loaded_vmcs_clear(loaded_vmcs);
3043 free_vmcs(loaded_vmcs->vmcs);
3044 loaded_vmcs->vmcs = NULL;
3045 }
3046
3047 static void free_kvm_area(void)
3048 {
3049 int cpu;
3050
3051 for_each_possible_cpu(cpu) {
3052 free_vmcs(per_cpu(vmxarea, cpu));
3053 per_cpu(vmxarea, cpu) = NULL;
3054 }
3055 }
3056
3057 static void init_vmcs_shadow_fields(void)
3058 {
3059 int i, j;
3060
3061 /* No checks for read only fields yet */
3062
3063 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3064 switch (shadow_read_write_fields[i]) {
3065 case GUEST_BNDCFGS:
3066 if (!vmx_mpx_supported())
3067 continue;
3068 break;
3069 default:
3070 break;
3071 }
3072
3073 if (j < i)
3074 shadow_read_write_fields[j] =
3075 shadow_read_write_fields[i];
3076 j++;
3077 }
3078 max_shadow_read_write_fields = j;
3079
3080 /* shadowed fields guest access without vmexit */
3081 for (i = 0; i < max_shadow_read_write_fields; i++) {
3082 clear_bit(shadow_read_write_fields[i],
3083 vmx_vmwrite_bitmap);
3084 clear_bit(shadow_read_write_fields[i],
3085 vmx_vmread_bitmap);
3086 }
3087 for (i = 0; i < max_shadow_read_only_fields; i++)
3088 clear_bit(shadow_read_only_fields[i],
3089 vmx_vmread_bitmap);
3090 }
3091
3092 static __init int alloc_kvm_area(void)
3093 {
3094 int cpu;
3095
3096 for_each_possible_cpu(cpu) {
3097 struct vmcs *vmcs;
3098
3099 vmcs = alloc_vmcs_cpu(cpu);
3100 if (!vmcs) {
3101 free_kvm_area();
3102 return -ENOMEM;
3103 }
3104
3105 per_cpu(vmxarea, cpu) = vmcs;
3106 }
3107 return 0;
3108 }
3109
3110 static __init int hardware_setup(void)
3111 {
3112 if (setup_vmcs_config(&vmcs_config) < 0)
3113 return -EIO;
3114
3115 if (boot_cpu_has(X86_FEATURE_NX))
3116 kvm_enable_efer_bits(EFER_NX);
3117
3118 if (!cpu_has_vmx_vpid())
3119 enable_vpid = 0;
3120 if (!cpu_has_vmx_shadow_vmcs())
3121 enable_shadow_vmcs = 0;
3122 if (enable_shadow_vmcs)
3123 init_vmcs_shadow_fields();
3124
3125 if (!cpu_has_vmx_ept() ||
3126 !cpu_has_vmx_ept_4levels()) {
3127 enable_ept = 0;
3128 enable_unrestricted_guest = 0;
3129 enable_ept_ad_bits = 0;
3130 }
3131
3132 if (!cpu_has_vmx_ept_ad_bits())
3133 enable_ept_ad_bits = 0;
3134
3135 if (!cpu_has_vmx_unrestricted_guest())
3136 enable_unrestricted_guest = 0;
3137
3138 if (!cpu_has_vmx_flexpriority()) {
3139 flexpriority_enabled = 0;
3140
3141 /*
3142 * set_apic_access_page_addr() is used to reload apic access
3143 * page upon invalidation. No need to do anything if the
3144 * processor does not have the APIC_ACCESS_ADDR VMCS field.
3145 */
3146 kvm_x86_ops->set_apic_access_page_addr = NULL;
3147 }
3148
3149 if (!cpu_has_vmx_tpr_shadow())
3150 kvm_x86_ops->update_cr8_intercept = NULL;
3151
3152 if (enable_ept && !cpu_has_vmx_ept_2m_page())
3153 kvm_disable_largepages();
3154
3155 if (!cpu_has_vmx_ple())
3156 ple_gap = 0;
3157
3158 if (!cpu_has_vmx_apicv())
3159 enable_apicv = 0;
3160
3161 if (enable_apicv)
3162 kvm_x86_ops->update_cr8_intercept = NULL;
3163 else {
3164 kvm_x86_ops->hwapic_irr_update = NULL;
3165 kvm_x86_ops->deliver_posted_interrupt = NULL;
3166 kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
3167 }
3168
3169 if (nested)
3170 nested_vmx_setup_ctls_msrs();
3171
3172 return alloc_kvm_area();
3173 }
3174
3175 static __exit void hardware_unsetup(void)
3176 {
3177 free_kvm_area();
3178 }
3179
3180 static bool emulation_required(struct kvm_vcpu *vcpu)
3181 {
3182 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3183 }
3184
3185 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3186 struct kvm_segment *save)
3187 {
3188 if (!emulate_invalid_guest_state) {
3189 /*
3190 * CS and SS RPL should be equal during guest entry according
3191 * to VMX spec, but in reality it is not always so. Since vcpu
3192 * is in the middle of the transition from real mode to
3193 * protected mode it is safe to assume that RPL 0 is a good
3194 * default value.
3195 */
3196 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3197 save->selector &= ~SELECTOR_RPL_MASK;
3198 save->dpl = save->selector & SELECTOR_RPL_MASK;
3199 save->s = 1;
3200 }
3201 vmx_set_segment(vcpu, save, seg);
3202 }
3203
3204 static void enter_pmode(struct kvm_vcpu *vcpu)
3205 {
3206 unsigned long flags;
3207 struct vcpu_vmx *vmx = to_vmx(vcpu);
3208
3209 /*
3210 * Update real mode segment cache. It may be not up-to-date if sement
3211 * register was written while vcpu was in a guest mode.
3212 */
3213 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3214 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3215 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3216 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3217 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3218 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3219
3220 vmx->rmode.vm86_active = 0;
3221
3222 vmx_segment_cache_clear(vmx);
3223
3224 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3225
3226 flags = vmcs_readl(GUEST_RFLAGS);
3227 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3228 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3229 vmcs_writel(GUEST_RFLAGS, flags);
3230
3231 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3232 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3233
3234 update_exception_bitmap(vcpu);
3235
3236 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3237 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3238 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3239 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3240 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3241 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3242 }
3243
3244 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3245 {
3246 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3247 struct kvm_segment var = *save;
3248
3249 var.dpl = 0x3;
3250 if (seg == VCPU_SREG_CS)
3251 var.type = 0x3;
3252
3253 if (!emulate_invalid_guest_state) {
3254 var.selector = var.base >> 4;
3255 var.base = var.base & 0xffff0;
3256 var.limit = 0xffff;
3257 var.g = 0;
3258 var.db = 0;
3259 var.present = 1;
3260 var.s = 1;
3261 var.l = 0;
3262 var.unusable = 0;
3263 var.type = 0x3;
3264 var.avl = 0;
3265 if (save->base & 0xf)
3266 printk_once(KERN_WARNING "kvm: segment base is not "
3267 "paragraph aligned when entering "
3268 "protected mode (seg=%d)", seg);
3269 }
3270
3271 vmcs_write16(sf->selector, var.selector);
3272 vmcs_write32(sf->base, var.base);
3273 vmcs_write32(sf->limit, var.limit);
3274 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3275 }
3276
3277 static void enter_rmode(struct kvm_vcpu *vcpu)
3278 {
3279 unsigned long flags;
3280 struct vcpu_vmx *vmx = to_vmx(vcpu);
3281
3282 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3283 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3284 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3285 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3286 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3287 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3288 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3289
3290 vmx->rmode.vm86_active = 1;
3291
3292 /*
3293 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3294 * vcpu. Warn the user that an update is overdue.
3295 */
3296 if (!vcpu->kvm->arch.tss_addr)
3297 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3298 "called before entering vcpu\n");
3299
3300 vmx_segment_cache_clear(vmx);
3301
3302 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3303 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3304 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3305
3306 flags = vmcs_readl(GUEST_RFLAGS);
3307 vmx->rmode.save_rflags = flags;
3308
3309 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3310
3311 vmcs_writel(GUEST_RFLAGS, flags);
3312 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3313 update_exception_bitmap(vcpu);
3314
3315 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3316 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3317 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3318 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3319 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3320 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3321
3322 kvm_mmu_reset_context(vcpu);
3323 }
3324
3325 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3326 {
3327 struct vcpu_vmx *vmx = to_vmx(vcpu);
3328 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3329
3330 if (!msr)
3331 return;
3332
3333 /*
3334 * Force kernel_gs_base reloading before EFER changes, as control
3335 * of this msr depends on is_long_mode().
3336 */
3337 vmx_load_host_state(to_vmx(vcpu));
3338 vcpu->arch.efer = efer;
3339 if (efer & EFER_LMA) {
3340 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3341 msr->data = efer;
3342 } else {
3343 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3344
3345 msr->data = efer & ~EFER_LME;
3346 }
3347 setup_msrs(vmx);
3348 }
3349
3350 #ifdef CONFIG_X86_64
3351
3352 static void enter_lmode(struct kvm_vcpu *vcpu)
3353 {
3354 u32 guest_tr_ar;
3355
3356 vmx_segment_cache_clear(to_vmx(vcpu));
3357
3358 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3359 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
3360 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3361 __func__);
3362 vmcs_write32(GUEST_TR_AR_BYTES,
3363 (guest_tr_ar & ~AR_TYPE_MASK)
3364 | AR_TYPE_BUSY_64_TSS);
3365 }
3366 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3367 }
3368
3369 static void exit_lmode(struct kvm_vcpu *vcpu)
3370 {
3371 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3372 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3373 }
3374
3375 #endif
3376
3377 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3378 {
3379 vpid_sync_context(to_vmx(vcpu));
3380 if (enable_ept) {
3381 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3382 return;
3383 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3384 }
3385 }
3386
3387 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3388 {
3389 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3390
3391 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3392 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3393 }
3394
3395 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3396 {
3397 if (enable_ept && is_paging(vcpu))
3398 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3399 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3400 }
3401
3402 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3403 {
3404 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3405
3406 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3407 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3408 }
3409
3410 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3411 {
3412 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3413
3414 if (!test_bit(VCPU_EXREG_PDPTR,
3415 (unsigned long *)&vcpu->arch.regs_dirty))
3416 return;
3417
3418 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3419 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3420 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3421 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3422 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3423 }
3424 }
3425
3426 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3427 {
3428 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3429
3430 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3431 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3432 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3433 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3434 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3435 }
3436
3437 __set_bit(VCPU_EXREG_PDPTR,
3438 (unsigned long *)&vcpu->arch.regs_avail);
3439 __set_bit(VCPU_EXREG_PDPTR,
3440 (unsigned long *)&vcpu->arch.regs_dirty);
3441 }
3442
3443 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3444
3445 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3446 unsigned long cr0,
3447 struct kvm_vcpu *vcpu)
3448 {
3449 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3450 vmx_decache_cr3(vcpu);
3451 if (!(cr0 & X86_CR0_PG)) {
3452 /* From paging/starting to nonpaging */
3453 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3454 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3455 (CPU_BASED_CR3_LOAD_EXITING |
3456 CPU_BASED_CR3_STORE_EXITING));
3457 vcpu->arch.cr0 = cr0;
3458 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3459 } else if (!is_paging(vcpu)) {
3460 /* From nonpaging to paging */
3461 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3462 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3463 ~(CPU_BASED_CR3_LOAD_EXITING |
3464 CPU_BASED_CR3_STORE_EXITING));
3465 vcpu->arch.cr0 = cr0;
3466 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3467 }
3468
3469 if (!(cr0 & X86_CR0_WP))
3470 *hw_cr0 &= ~X86_CR0_WP;
3471 }
3472
3473 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3474 {
3475 struct vcpu_vmx *vmx = to_vmx(vcpu);
3476 unsigned long hw_cr0;
3477
3478 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3479 if (enable_unrestricted_guest)
3480 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3481 else {
3482 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3483
3484 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3485 enter_pmode(vcpu);
3486
3487 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3488 enter_rmode(vcpu);
3489 }
3490
3491 #ifdef CONFIG_X86_64
3492 if (vcpu->arch.efer & EFER_LME) {
3493 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3494 enter_lmode(vcpu);
3495 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3496 exit_lmode(vcpu);
3497 }
3498 #endif
3499
3500 if (enable_ept)
3501 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3502
3503 if (!vcpu->fpu_active)
3504 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3505
3506 vmcs_writel(CR0_READ_SHADOW, cr0);
3507 vmcs_writel(GUEST_CR0, hw_cr0);
3508 vcpu->arch.cr0 = cr0;
3509
3510 /* depends on vcpu->arch.cr0 to be set to a new value */
3511 vmx->emulation_required = emulation_required(vcpu);
3512 }
3513
3514 static u64 construct_eptp(unsigned long root_hpa)
3515 {
3516 u64 eptp;
3517
3518 /* TODO write the value reading from MSR */
3519 eptp = VMX_EPT_DEFAULT_MT |
3520 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3521 if (enable_ept_ad_bits)
3522 eptp |= VMX_EPT_AD_ENABLE_BIT;
3523 eptp |= (root_hpa & PAGE_MASK);
3524
3525 return eptp;
3526 }
3527
3528 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3529 {
3530 unsigned long guest_cr3;
3531 u64 eptp;
3532
3533 guest_cr3 = cr3;
3534 if (enable_ept) {
3535 eptp = construct_eptp(cr3);
3536 vmcs_write64(EPT_POINTER, eptp);
3537 if (is_paging(vcpu) || is_guest_mode(vcpu))
3538 guest_cr3 = kvm_read_cr3(vcpu);
3539 else
3540 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
3541 ept_load_pdptrs(vcpu);
3542 }
3543
3544 vmx_flush_tlb(vcpu);
3545 vmcs_writel(GUEST_CR3, guest_cr3);
3546 }
3547
3548 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3549 {
3550 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
3551 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3552
3553 if (cr4 & X86_CR4_VMXE) {
3554 /*
3555 * To use VMXON (and later other VMX instructions), a guest
3556 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3557 * So basically the check on whether to allow nested VMX
3558 * is here.
3559 */
3560 if (!nested_vmx_allowed(vcpu))
3561 return 1;
3562 }
3563 if (to_vmx(vcpu)->nested.vmxon &&
3564 ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
3565 return 1;
3566
3567 vcpu->arch.cr4 = cr4;
3568 if (enable_ept) {
3569 if (!is_paging(vcpu)) {
3570 hw_cr4 &= ~X86_CR4_PAE;
3571 hw_cr4 |= X86_CR4_PSE;
3572 /*
3573 * SMEP/SMAP is disabled if CPU is in non-paging mode
3574 * in hardware. However KVM always uses paging mode to
3575 * emulate guest non-paging mode with TDP.
3576 * To emulate this behavior, SMEP/SMAP needs to be
3577 * manually disabled when guest switches to non-paging
3578 * mode.
3579 */
3580 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP);
3581 } else if (!(cr4 & X86_CR4_PAE)) {
3582 hw_cr4 &= ~X86_CR4_PAE;
3583 }
3584 }
3585
3586 vmcs_writel(CR4_READ_SHADOW, cr4);
3587 vmcs_writel(GUEST_CR4, hw_cr4);
3588 return 0;
3589 }
3590
3591 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3592 struct kvm_segment *var, int seg)
3593 {
3594 struct vcpu_vmx *vmx = to_vmx(vcpu);
3595 u32 ar;
3596
3597 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3598 *var = vmx->rmode.segs[seg];
3599 if (seg == VCPU_SREG_TR
3600 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3601 return;
3602 var->base = vmx_read_guest_seg_base(vmx, seg);
3603 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3604 return;
3605 }
3606 var->base = vmx_read_guest_seg_base(vmx, seg);
3607 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3608 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3609 ar = vmx_read_guest_seg_ar(vmx, seg);
3610 var->unusable = (ar >> 16) & 1;
3611 var->type = ar & 15;
3612 var->s = (ar >> 4) & 1;
3613 var->dpl = (ar >> 5) & 3;
3614 /*
3615 * Some userspaces do not preserve unusable property. Since usable
3616 * segment has to be present according to VMX spec we can use present
3617 * property to amend userspace bug by making unusable segment always
3618 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3619 * segment as unusable.
3620 */
3621 var->present = !var->unusable;
3622 var->avl = (ar >> 12) & 1;
3623 var->l = (ar >> 13) & 1;
3624 var->db = (ar >> 14) & 1;
3625 var->g = (ar >> 15) & 1;
3626 }
3627
3628 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3629 {
3630 struct kvm_segment s;
3631
3632 if (to_vmx(vcpu)->rmode.vm86_active) {
3633 vmx_get_segment(vcpu, &s, seg);
3634 return s.base;
3635 }
3636 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3637 }
3638
3639 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3640 {
3641 struct vcpu_vmx *vmx = to_vmx(vcpu);
3642
3643 if (unlikely(vmx->rmode.vm86_active))
3644 return 0;
3645 else {
3646 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3647 return AR_DPL(ar);
3648 }
3649 }
3650
3651 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3652 {
3653 u32 ar;
3654
3655 if (var->unusable || !var->present)
3656 ar = 1 << 16;
3657 else {
3658 ar = var->type & 15;
3659 ar |= (var->s & 1) << 4;
3660 ar |= (var->dpl & 3) << 5;
3661 ar |= (var->present & 1) << 7;
3662 ar |= (var->avl & 1) << 12;
3663 ar |= (var->l & 1) << 13;
3664 ar |= (var->db & 1) << 14;
3665 ar |= (var->g & 1) << 15;
3666 }
3667
3668 return ar;
3669 }
3670
3671 static void vmx_set_segment(struct kvm_vcpu *vcpu,
3672 struct kvm_segment *var, int seg)
3673 {
3674 struct vcpu_vmx *vmx = to_vmx(vcpu);
3675 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3676
3677 vmx_segment_cache_clear(vmx);
3678
3679 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3680 vmx->rmode.segs[seg] = *var;
3681 if (seg == VCPU_SREG_TR)
3682 vmcs_write16(sf->selector, var->selector);
3683 else if (var->s)
3684 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3685 goto out;
3686 }
3687
3688 vmcs_writel(sf->base, var->base);
3689 vmcs_write32(sf->limit, var->limit);
3690 vmcs_write16(sf->selector, var->selector);
3691
3692 /*
3693 * Fix the "Accessed" bit in AR field of segment registers for older
3694 * qemu binaries.
3695 * IA32 arch specifies that at the time of processor reset the
3696 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3697 * is setting it to 0 in the userland code. This causes invalid guest
3698 * state vmexit when "unrestricted guest" mode is turned on.
3699 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3700 * tree. Newer qemu binaries with that qemu fix would not need this
3701 * kvm hack.
3702 */
3703 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3704 var->type |= 0x1; /* Accessed */
3705
3706 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3707
3708 out:
3709 vmx->emulation_required = emulation_required(vcpu);
3710 }
3711
3712 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3713 {
3714 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3715
3716 *db = (ar >> 14) & 1;
3717 *l = (ar >> 13) & 1;
3718 }
3719
3720 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3721 {
3722 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3723 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3724 }
3725
3726 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3727 {
3728 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3729 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3730 }
3731
3732 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3733 {
3734 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3735 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3736 }
3737
3738 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3739 {
3740 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3741 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3742 }
3743
3744 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3745 {
3746 struct kvm_segment var;
3747 u32 ar;
3748
3749 vmx_get_segment(vcpu, &var, seg);
3750 var.dpl = 0x3;
3751 if (seg == VCPU_SREG_CS)
3752 var.type = 0x3;
3753 ar = vmx_segment_access_rights(&var);
3754
3755 if (var.base != (var.selector << 4))
3756 return false;
3757 if (var.limit != 0xffff)
3758 return false;
3759 if (ar != 0xf3)
3760 return false;
3761
3762 return true;
3763 }
3764
3765 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3766 {
3767 struct kvm_segment cs;
3768 unsigned int cs_rpl;
3769
3770 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3771 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3772
3773 if (cs.unusable)
3774 return false;
3775 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3776 return false;
3777 if (!cs.s)
3778 return false;
3779 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
3780 if (cs.dpl > cs_rpl)
3781 return false;
3782 } else {
3783 if (cs.dpl != cs_rpl)
3784 return false;
3785 }
3786 if (!cs.present)
3787 return false;
3788
3789 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3790 return true;
3791 }
3792
3793 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3794 {
3795 struct kvm_segment ss;
3796 unsigned int ss_rpl;
3797
3798 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3799 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3800
3801 if (ss.unusable)
3802 return true;
3803 if (ss.type != 3 && ss.type != 7)
3804 return false;
3805 if (!ss.s)
3806 return false;
3807 if (ss.dpl != ss_rpl) /* DPL != RPL */
3808 return false;
3809 if (!ss.present)
3810 return false;
3811
3812 return true;
3813 }
3814
3815 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3816 {
3817 struct kvm_segment var;
3818 unsigned int rpl;
3819
3820 vmx_get_segment(vcpu, &var, seg);
3821 rpl = var.selector & SELECTOR_RPL_MASK;
3822
3823 if (var.unusable)
3824 return true;
3825 if (!var.s)
3826 return false;
3827 if (!var.present)
3828 return false;
3829 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3830 if (var.dpl < rpl) /* DPL < RPL */
3831 return false;
3832 }
3833
3834 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3835 * rights flags
3836 */
3837 return true;
3838 }
3839
3840 static bool tr_valid(struct kvm_vcpu *vcpu)
3841 {
3842 struct kvm_segment tr;
3843
3844 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3845
3846 if (tr.unusable)
3847 return false;
3848 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3849 return false;
3850 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3851 return false;
3852 if (!tr.present)
3853 return false;
3854
3855 return true;
3856 }
3857
3858 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3859 {
3860 struct kvm_segment ldtr;
3861
3862 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3863
3864 if (ldtr.unusable)
3865 return true;
3866 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3867 return false;
3868 if (ldtr.type != 2)
3869 return false;
3870 if (!ldtr.present)
3871 return false;
3872
3873 return true;
3874 }
3875
3876 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3877 {
3878 struct kvm_segment cs, ss;
3879
3880 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3881 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3882
3883 return ((cs.selector & SELECTOR_RPL_MASK) ==
3884 (ss.selector & SELECTOR_RPL_MASK));
3885 }
3886
3887 /*
3888 * Check if guest state is valid. Returns true if valid, false if
3889 * not.
3890 * We assume that registers are always usable
3891 */
3892 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3893 {
3894 if (enable_unrestricted_guest)
3895 return true;
3896
3897 /* real mode guest state checks */
3898 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3899 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3900 return false;
3901 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3902 return false;
3903 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3904 return false;
3905 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3906 return false;
3907 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3908 return false;
3909 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3910 return false;
3911 } else {
3912 /* protected mode guest state checks */
3913 if (!cs_ss_rpl_check(vcpu))
3914 return false;
3915 if (!code_segment_valid(vcpu))
3916 return false;
3917 if (!stack_segment_valid(vcpu))
3918 return false;
3919 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3920 return false;
3921 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3922 return false;
3923 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3924 return false;
3925 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3926 return false;
3927 if (!tr_valid(vcpu))
3928 return false;
3929 if (!ldtr_valid(vcpu))
3930 return false;
3931 }
3932 /* TODO:
3933 * - Add checks on RIP
3934 * - Add checks on RFLAGS
3935 */
3936
3937 return true;
3938 }
3939
3940 static int init_rmode_tss(struct kvm *kvm)
3941 {
3942 gfn_t fn;
3943 u16 data = 0;
3944 int idx, r;
3945
3946 idx = srcu_read_lock(&kvm->srcu);
3947 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
3948 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3949 if (r < 0)
3950 goto out;
3951 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3952 r = kvm_write_guest_page(kvm, fn++, &data,
3953 TSS_IOPB_BASE_OFFSET, sizeof(u16));
3954 if (r < 0)
3955 goto out;
3956 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3957 if (r < 0)
3958 goto out;
3959 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3960 if (r < 0)
3961 goto out;
3962 data = ~0;
3963 r = kvm_write_guest_page(kvm, fn, &data,
3964 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3965 sizeof(u8));
3966 out:
3967 srcu_read_unlock(&kvm->srcu, idx);
3968 return r;
3969 }
3970
3971 static int init_rmode_identity_map(struct kvm *kvm)
3972 {
3973 int i, idx, r = 0;
3974 pfn_t identity_map_pfn;
3975 u32 tmp;
3976
3977 if (!enable_ept)
3978 return 0;
3979
3980 /* Protect kvm->arch.ept_identity_pagetable_done. */
3981 mutex_lock(&kvm->slots_lock);
3982
3983 if (likely(kvm->arch.ept_identity_pagetable_done))
3984 goto out2;
3985
3986 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
3987
3988 r = alloc_identity_pagetable(kvm);
3989 if (r < 0)
3990 goto out2;
3991
3992 idx = srcu_read_lock(&kvm->srcu);
3993 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3994 if (r < 0)
3995 goto out;
3996 /* Set up identity-mapping pagetable for EPT in real mode */
3997 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3998 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3999 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4000 r = kvm_write_guest_page(kvm, identity_map_pfn,
4001 &tmp, i * sizeof(tmp), sizeof(tmp));
4002 if (r < 0)
4003 goto out;
4004 }
4005 kvm->arch.ept_identity_pagetable_done = true;
4006
4007 out:
4008 srcu_read_unlock(&kvm->srcu, idx);
4009
4010 out2:
4011 mutex_unlock(&kvm->slots_lock);
4012 return r;
4013 }
4014
4015 static void seg_setup(int seg)
4016 {
4017 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4018 unsigned int ar;
4019
4020 vmcs_write16(sf->selector, 0);
4021 vmcs_writel(sf->base, 0);
4022 vmcs_write32(sf->limit, 0xffff);
4023 ar = 0x93;
4024 if (seg == VCPU_SREG_CS)
4025 ar |= 0x08; /* code segment */
4026
4027 vmcs_write32(sf->ar_bytes, ar);
4028 }
4029
4030 static int alloc_apic_access_page(struct kvm *kvm)
4031 {
4032 struct page *page;
4033 struct kvm_userspace_memory_region kvm_userspace_mem;
4034 int r = 0;
4035
4036 mutex_lock(&kvm->slots_lock);
4037 if (kvm->arch.apic_access_page_done)
4038 goto out;
4039 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
4040 kvm_userspace_mem.flags = 0;
4041 kvm_userspace_mem.guest_phys_addr = APIC_DEFAULT_PHYS_BASE;
4042 kvm_userspace_mem.memory_size = PAGE_SIZE;
4043 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
4044 if (r)
4045 goto out;
4046
4047 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4048 if (is_error_page(page)) {
4049 r = -EFAULT;
4050 goto out;
4051 }
4052
4053 /*
4054 * Do not pin the page in memory, so that memory hot-unplug
4055 * is able to migrate it.
4056 */
4057 put_page(page);
4058 kvm->arch.apic_access_page_done = true;
4059 out:
4060 mutex_unlock(&kvm->slots_lock);
4061 return r;
4062 }
4063
4064 static int alloc_identity_pagetable(struct kvm *kvm)
4065 {
4066 /* Called with kvm->slots_lock held. */
4067
4068 struct kvm_userspace_memory_region kvm_userspace_mem;
4069 int r = 0;
4070
4071 BUG_ON(kvm->arch.ept_identity_pagetable_done);
4072
4073 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
4074 kvm_userspace_mem.flags = 0;
4075 kvm_userspace_mem.guest_phys_addr =
4076 kvm->arch.ept_identity_map_addr;
4077 kvm_userspace_mem.memory_size = PAGE_SIZE;
4078 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
4079
4080 return r;
4081 }
4082
4083 static void allocate_vpid(struct vcpu_vmx *vmx)
4084 {
4085 int vpid;
4086
4087 vmx->vpid = 0;
4088 if (!enable_vpid)
4089 return;
4090 spin_lock(&vmx_vpid_lock);
4091 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4092 if (vpid < VMX_NR_VPIDS) {
4093 vmx->vpid = vpid;
4094 __set_bit(vpid, vmx_vpid_bitmap);
4095 }
4096 spin_unlock(&vmx_vpid_lock);
4097 }
4098
4099 static void free_vpid(struct vcpu_vmx *vmx)
4100 {
4101 if (!enable_vpid)
4102 return;
4103 spin_lock(&vmx_vpid_lock);
4104 if (vmx->vpid != 0)
4105 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
4106 spin_unlock(&vmx_vpid_lock);
4107 }
4108
4109 #define MSR_TYPE_R 1
4110 #define MSR_TYPE_W 2
4111 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4112 u32 msr, int type)
4113 {
4114 int f = sizeof(unsigned long);
4115
4116 if (!cpu_has_vmx_msr_bitmap())
4117 return;
4118
4119 /*
4120 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4121 * have the write-low and read-high bitmap offsets the wrong way round.
4122 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4123 */
4124 if (msr <= 0x1fff) {
4125 if (type & MSR_TYPE_R)
4126 /* read-low */
4127 __clear_bit(msr, msr_bitmap + 0x000 / f);
4128
4129 if (type & MSR_TYPE_W)
4130 /* write-low */
4131 __clear_bit(msr, msr_bitmap + 0x800 / f);
4132
4133 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4134 msr &= 0x1fff;
4135 if (type & MSR_TYPE_R)
4136 /* read-high */
4137 __clear_bit(msr, msr_bitmap + 0x400 / f);
4138
4139 if (type & MSR_TYPE_W)
4140 /* write-high */
4141 __clear_bit(msr, msr_bitmap + 0xc00 / f);
4142
4143 }
4144 }
4145
4146 static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4147 u32 msr, int type)
4148 {
4149 int f = sizeof(unsigned long);
4150
4151 if (!cpu_has_vmx_msr_bitmap())
4152 return;
4153
4154 /*
4155 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4156 * have the write-low and read-high bitmap offsets the wrong way round.
4157 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4158 */
4159 if (msr <= 0x1fff) {
4160 if (type & MSR_TYPE_R)
4161 /* read-low */
4162 __set_bit(msr, msr_bitmap + 0x000 / f);
4163
4164 if (type & MSR_TYPE_W)
4165 /* write-low */
4166 __set_bit(msr, msr_bitmap + 0x800 / f);
4167
4168 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4169 msr &= 0x1fff;
4170 if (type & MSR_TYPE_R)
4171 /* read-high */
4172 __set_bit(msr, msr_bitmap + 0x400 / f);
4173
4174 if (type & MSR_TYPE_W)
4175 /* write-high */
4176 __set_bit(msr, msr_bitmap + 0xc00 / f);
4177
4178 }
4179 }
4180
4181 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4182 {
4183 if (!longmode_only)
4184 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4185 msr, MSR_TYPE_R | MSR_TYPE_W);
4186 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4187 msr, MSR_TYPE_R | MSR_TYPE_W);
4188 }
4189
4190 static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4191 {
4192 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4193 msr, MSR_TYPE_R);
4194 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4195 msr, MSR_TYPE_R);
4196 }
4197
4198 static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4199 {
4200 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4201 msr, MSR_TYPE_R);
4202 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4203 msr, MSR_TYPE_R);
4204 }
4205
4206 static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4207 {
4208 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4209 msr, MSR_TYPE_W);
4210 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4211 msr, MSR_TYPE_W);
4212 }
4213
4214 static int vmx_vm_has_apicv(struct kvm *kvm)
4215 {
4216 return enable_apicv && irqchip_in_kernel(kvm);
4217 }
4218
4219 /*
4220 * Send interrupt to vcpu via posted interrupt way.
4221 * 1. If target vcpu is running(non-root mode), send posted interrupt
4222 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4223 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4224 * interrupt from PIR in next vmentry.
4225 */
4226 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4227 {
4228 struct vcpu_vmx *vmx = to_vmx(vcpu);
4229 int r;
4230
4231 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4232 return;
4233
4234 r = pi_test_and_set_on(&vmx->pi_desc);
4235 kvm_make_request(KVM_REQ_EVENT, vcpu);
4236 #ifdef CONFIG_SMP
4237 if (!r && (vcpu->mode == IN_GUEST_MODE))
4238 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4239 POSTED_INTR_VECTOR);
4240 else
4241 #endif
4242 kvm_vcpu_kick(vcpu);
4243 }
4244
4245 static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4246 {
4247 struct vcpu_vmx *vmx = to_vmx(vcpu);
4248
4249 if (!pi_test_and_clear_on(&vmx->pi_desc))
4250 return;
4251
4252 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4253 }
4254
4255 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
4256 {
4257 return;
4258 }
4259
4260 /*
4261 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4262 * will not change in the lifetime of the guest.
4263 * Note that host-state that does change is set elsewhere. E.g., host-state
4264 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4265 */
4266 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4267 {
4268 u32 low32, high32;
4269 unsigned long tmpl;
4270 struct desc_ptr dt;
4271 unsigned long cr4;
4272
4273 vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
4274 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
4275
4276 /* Save the most likely value for this task's CR4 in the VMCS. */
4277 cr4 = read_cr4();
4278 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4279 vmx->host_state.vmcs_host_cr4 = cr4;
4280
4281 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
4282 #ifdef CONFIG_X86_64
4283 /*
4284 * Load null selectors, so we can avoid reloading them in
4285 * __vmx_load_host_state(), in case userspace uses the null selectors
4286 * too (the expected case).
4287 */
4288 vmcs_write16(HOST_DS_SELECTOR, 0);
4289 vmcs_write16(HOST_ES_SELECTOR, 0);
4290 #else
4291 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4292 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4293 #endif
4294 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4295 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4296
4297 native_store_idt(&dt);
4298 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
4299 vmx->host_idt_base = dt.address;
4300
4301 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
4302
4303 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4304 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4305 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4306 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4307
4308 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4309 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4310 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4311 }
4312 }
4313
4314 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4315 {
4316 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4317 if (enable_ept)
4318 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4319 if (is_guest_mode(&vmx->vcpu))
4320 vmx->vcpu.arch.cr4_guest_owned_bits &=
4321 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4322 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4323 }
4324
4325 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4326 {
4327 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4328
4329 if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4330 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4331 return pin_based_exec_ctrl;
4332 }
4333
4334 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4335 {
4336 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4337
4338 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4339 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4340
4341 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
4342 exec_control &= ~CPU_BASED_TPR_SHADOW;
4343 #ifdef CONFIG_X86_64
4344 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4345 CPU_BASED_CR8_LOAD_EXITING;
4346 #endif
4347 }
4348 if (!enable_ept)
4349 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4350 CPU_BASED_CR3_LOAD_EXITING |
4351 CPU_BASED_INVLPG_EXITING;
4352 return exec_control;
4353 }
4354
4355 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4356 {
4357 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4358 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4359 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4360 if (vmx->vpid == 0)
4361 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4362 if (!enable_ept) {
4363 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4364 enable_unrestricted_guest = 0;
4365 /* Enable INVPCID for non-ept guests may cause performance regression. */
4366 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4367 }
4368 if (!enable_unrestricted_guest)
4369 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4370 if (!ple_gap)
4371 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4372 if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4373 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4374 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4375 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4376 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4377 (handle_vmptrld).
4378 We can NOT enable shadow_vmcs here because we don't have yet
4379 a current VMCS12
4380 */
4381 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4382 return exec_control;
4383 }
4384
4385 static void ept_set_mmio_spte_mask(void)
4386 {
4387 /*
4388 * EPT Misconfigurations can be generated if the value of bits 2:0
4389 * of an EPT paging-structure entry is 110b (write/execute).
4390 * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
4391 * spte.
4392 */
4393 kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
4394 }
4395
4396 /*
4397 * Sets up the vmcs for emulated real mode.
4398 */
4399 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
4400 {
4401 #ifdef CONFIG_X86_64
4402 unsigned long a;
4403 #endif
4404 int i;
4405
4406 /* I/O */
4407 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4408 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
4409
4410 if (enable_shadow_vmcs) {
4411 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4412 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4413 }
4414 if (cpu_has_vmx_msr_bitmap())
4415 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
4416
4417 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4418
4419 /* Control */
4420 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4421
4422 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4423
4424 if (cpu_has_secondary_exec_ctrls()) {
4425 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4426 vmx_secondary_exec_control(vmx));
4427 }
4428
4429 if (vmx_vm_has_apicv(vmx->vcpu.kvm)) {
4430 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4431 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4432 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4433 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4434
4435 vmcs_write16(GUEST_INTR_STATUS, 0);
4436
4437 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4438 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4439 }
4440
4441 if (ple_gap) {
4442 vmcs_write32(PLE_GAP, ple_gap);
4443 vmx->ple_window = ple_window;
4444 vmx->ple_window_dirty = true;
4445 }
4446
4447 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4448 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4449 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4450
4451 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4452 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4453 vmx_set_constant_host_state(vmx);
4454 #ifdef CONFIG_X86_64
4455 rdmsrl(MSR_FS_BASE, a);
4456 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4457 rdmsrl(MSR_GS_BASE, a);
4458 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4459 #else
4460 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4461 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4462 #endif
4463
4464 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4465 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4466 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
4467 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4468 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
4469
4470 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4471 u32 msr_low, msr_high;
4472 u64 host_pat;
4473 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
4474 host_pat = msr_low | ((u64) msr_high << 32);
4475 /* Write the default value follow host pat */
4476 vmcs_write64(GUEST_IA32_PAT, host_pat);
4477 /* Keep arch.pat sync with GUEST_IA32_PAT */
4478 vmx->vcpu.arch.pat = host_pat;
4479 }
4480
4481 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
4482 u32 index = vmx_msr_index[i];
4483 u32 data_low, data_high;
4484 int j = vmx->nmsrs;
4485
4486 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4487 continue;
4488 if (wrmsr_safe(index, data_low, data_high) < 0)
4489 continue;
4490 vmx->guest_msrs[j].index = i;
4491 vmx->guest_msrs[j].data = 0;
4492 vmx->guest_msrs[j].mask = -1ull;
4493 ++vmx->nmsrs;
4494 }
4495
4496
4497 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
4498
4499 /* 22.2.1, 20.8.1 */
4500 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
4501
4502 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
4503 set_cr4_guest_host_mask(vmx);
4504
4505 return 0;
4506 }
4507
4508 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4509 {
4510 struct vcpu_vmx *vmx = to_vmx(vcpu);
4511 struct msr_data apic_base_msr;
4512
4513 vmx->rmode.vm86_active = 0;
4514
4515 vmx->soft_vnmi_blocked = 0;
4516
4517 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4518 kvm_set_cr8(&vmx->vcpu, 0);
4519 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE;
4520 if (kvm_vcpu_is_bsp(&vmx->vcpu))
4521 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4522 apic_base_msr.host_initiated = true;
4523 kvm_set_apic_base(&vmx->vcpu, &apic_base_msr);
4524
4525 vmx_segment_cache_clear(vmx);
4526
4527 seg_setup(VCPU_SREG_CS);
4528 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4529 vmcs_write32(GUEST_CS_BASE, 0xffff0000);
4530
4531 seg_setup(VCPU_SREG_DS);
4532 seg_setup(VCPU_SREG_ES);
4533 seg_setup(VCPU_SREG_FS);
4534 seg_setup(VCPU_SREG_GS);
4535 seg_setup(VCPU_SREG_SS);
4536
4537 vmcs_write16(GUEST_TR_SELECTOR, 0);
4538 vmcs_writel(GUEST_TR_BASE, 0);
4539 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4540 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4541
4542 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4543 vmcs_writel(GUEST_LDTR_BASE, 0);
4544 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4545 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4546
4547 vmcs_write32(GUEST_SYSENTER_CS, 0);
4548 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4549 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4550
4551 vmcs_writel(GUEST_RFLAGS, 0x02);
4552 kvm_rip_write(vcpu, 0xfff0);
4553
4554 vmcs_writel(GUEST_GDTR_BASE, 0);
4555 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4556
4557 vmcs_writel(GUEST_IDTR_BASE, 0);
4558 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4559
4560 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4561 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4562 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4563
4564 /* Special registers */
4565 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4566
4567 setup_msrs(vmx);
4568
4569 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4570
4571 if (cpu_has_vmx_tpr_shadow()) {
4572 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4573 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
4574 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4575 __pa(vmx->vcpu.arch.apic->regs));
4576 vmcs_write32(TPR_THRESHOLD, 0);
4577 }
4578
4579 kvm_vcpu_reload_apic_access_page(vcpu);
4580
4581 if (vmx_vm_has_apicv(vcpu->kvm))
4582 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
4583
4584 if (vmx->vpid != 0)
4585 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4586
4587 vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4588 vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
4589 vmx_set_cr4(&vmx->vcpu, 0);
4590 vmx_set_efer(&vmx->vcpu, 0);
4591 vmx_fpu_activate(&vmx->vcpu);
4592 update_exception_bitmap(&vmx->vcpu);
4593
4594 vpid_sync_context(vmx);
4595 }
4596
4597 /*
4598 * In nested virtualization, check if L1 asked to exit on external interrupts.
4599 * For most existing hypervisors, this will always return true.
4600 */
4601 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4602 {
4603 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4604 PIN_BASED_EXT_INTR_MASK;
4605 }
4606
4607 /*
4608 * In nested virtualization, check if L1 has set
4609 * VM_EXIT_ACK_INTR_ON_EXIT
4610 */
4611 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
4612 {
4613 return get_vmcs12(vcpu)->vm_exit_controls &
4614 VM_EXIT_ACK_INTR_ON_EXIT;
4615 }
4616
4617 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
4618 {
4619 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4620 PIN_BASED_NMI_EXITING;
4621 }
4622
4623 static void enable_irq_window(struct kvm_vcpu *vcpu)
4624 {
4625 u32 cpu_based_vm_exec_control;
4626
4627 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4628 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4629 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4630 }
4631
4632 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4633 {
4634 u32 cpu_based_vm_exec_control;
4635
4636 if (!cpu_has_virtual_nmis() ||
4637 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4638 enable_irq_window(vcpu);
4639 return;
4640 }
4641
4642 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4643 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4644 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4645 }
4646
4647 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4648 {
4649 struct vcpu_vmx *vmx = to_vmx(vcpu);
4650 uint32_t intr;
4651 int irq = vcpu->arch.interrupt.nr;
4652
4653 trace_kvm_inj_virq(irq);
4654
4655 ++vcpu->stat.irq_injections;
4656 if (vmx->rmode.vm86_active) {
4657 int inc_eip = 0;
4658 if (vcpu->arch.interrupt.soft)
4659 inc_eip = vcpu->arch.event_exit_inst_len;
4660 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4661 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4662 return;
4663 }
4664 intr = irq | INTR_INFO_VALID_MASK;
4665 if (vcpu->arch.interrupt.soft) {
4666 intr |= INTR_TYPE_SOFT_INTR;
4667 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4668 vmx->vcpu.arch.event_exit_inst_len);
4669 } else
4670 intr |= INTR_TYPE_EXT_INTR;
4671 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4672 }
4673
4674 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4675 {
4676 struct vcpu_vmx *vmx = to_vmx(vcpu);
4677
4678 if (is_guest_mode(vcpu))
4679 return;
4680
4681 if (!cpu_has_virtual_nmis()) {
4682 /*
4683 * Tracking the NMI-blocked state in software is built upon
4684 * finding the next open IRQ window. This, in turn, depends on
4685 * well-behaving guests: They have to keep IRQs disabled at
4686 * least as long as the NMI handler runs. Otherwise we may
4687 * cause NMI nesting, maybe breaking the guest. But as this is
4688 * highly unlikely, we can live with the residual risk.
4689 */
4690 vmx->soft_vnmi_blocked = 1;
4691 vmx->vnmi_blocked_time = 0;
4692 }
4693
4694 ++vcpu->stat.nmi_injections;
4695 vmx->nmi_known_unmasked = false;
4696 if (vmx->rmode.vm86_active) {
4697 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4698 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4699 return;
4700 }
4701 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4702 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4703 }
4704
4705 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4706 {
4707 if (!cpu_has_virtual_nmis())
4708 return to_vmx(vcpu)->soft_vnmi_blocked;
4709 if (to_vmx(vcpu)->nmi_known_unmasked)
4710 return false;
4711 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4712 }
4713
4714 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4715 {
4716 struct vcpu_vmx *vmx = to_vmx(vcpu);
4717
4718 if (!cpu_has_virtual_nmis()) {
4719 if (vmx->soft_vnmi_blocked != masked) {
4720 vmx->soft_vnmi_blocked = masked;
4721 vmx->vnmi_blocked_time = 0;
4722 }
4723 } else {
4724 vmx->nmi_known_unmasked = !masked;
4725 if (masked)
4726 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4727 GUEST_INTR_STATE_NMI);
4728 else
4729 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4730 GUEST_INTR_STATE_NMI);
4731 }
4732 }
4733
4734 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4735 {
4736 if (to_vmx(vcpu)->nested.nested_run_pending)
4737 return 0;
4738
4739 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4740 return 0;
4741
4742 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4743 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4744 | GUEST_INTR_STATE_NMI));
4745 }
4746
4747 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4748 {
4749 return (!to_vmx(vcpu)->nested.nested_run_pending &&
4750 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4751 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4752 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4753 }
4754
4755 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4756 {
4757 int ret;
4758 struct kvm_userspace_memory_region tss_mem = {
4759 .slot = TSS_PRIVATE_MEMSLOT,
4760 .guest_phys_addr = addr,
4761 .memory_size = PAGE_SIZE * 3,
4762 .flags = 0,
4763 };
4764
4765 ret = kvm_set_memory_region(kvm, &tss_mem);
4766 if (ret)
4767 return ret;
4768 kvm->arch.tss_addr = addr;
4769 return init_rmode_tss(kvm);
4770 }
4771
4772 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4773 {
4774 switch (vec) {
4775 case BP_VECTOR:
4776 /*
4777 * Update instruction length as we may reinject the exception
4778 * from user space while in guest debugging mode.
4779 */
4780 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4781 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4782 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4783 return false;
4784 /* fall through */
4785 case DB_VECTOR:
4786 if (vcpu->guest_debug &
4787 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4788 return false;
4789 /* fall through */
4790 case DE_VECTOR:
4791 case OF_VECTOR:
4792 case BR_VECTOR:
4793 case UD_VECTOR:
4794 case DF_VECTOR:
4795 case SS_VECTOR:
4796 case GP_VECTOR:
4797 case MF_VECTOR:
4798 return true;
4799 break;
4800 }
4801 return false;
4802 }
4803
4804 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4805 int vec, u32 err_code)
4806 {
4807 /*
4808 * Instruction with address size override prefix opcode 0x67
4809 * Cause the #SS fault with 0 error code in VM86 mode.
4810 */
4811 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4812 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
4813 if (vcpu->arch.halt_request) {
4814 vcpu->arch.halt_request = 0;
4815 return kvm_emulate_halt(vcpu);
4816 }
4817 return 1;
4818 }
4819 return 0;
4820 }
4821
4822 /*
4823 * Forward all other exceptions that are valid in real mode.
4824 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4825 * the required debugging infrastructure rework.
4826 */
4827 kvm_queue_exception(vcpu, vec);
4828 return 1;
4829 }
4830
4831 /*
4832 * Trigger machine check on the host. We assume all the MSRs are already set up
4833 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4834 * We pass a fake environment to the machine check handler because we want
4835 * the guest to be always treated like user space, no matter what context
4836 * it used internally.
4837 */
4838 static void kvm_machine_check(void)
4839 {
4840 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4841 struct pt_regs regs = {
4842 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4843 .flags = X86_EFLAGS_IF,
4844 };
4845
4846 do_machine_check(&regs, 0);
4847 #endif
4848 }
4849
4850 static int handle_machine_check(struct kvm_vcpu *vcpu)
4851 {
4852 /* already handled by vcpu_run */
4853 return 1;
4854 }
4855
4856 static int handle_exception(struct kvm_vcpu *vcpu)
4857 {
4858 struct vcpu_vmx *vmx = to_vmx(vcpu);
4859 struct kvm_run *kvm_run = vcpu->run;
4860 u32 intr_info, ex_no, error_code;
4861 unsigned long cr2, rip, dr6;
4862 u32 vect_info;
4863 enum emulation_result er;
4864
4865 vect_info = vmx->idt_vectoring_info;
4866 intr_info = vmx->exit_intr_info;
4867
4868 if (is_machine_check(intr_info))
4869 return handle_machine_check(vcpu);
4870
4871 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
4872 return 1; /* already handled by vmx_vcpu_run() */
4873
4874 if (is_no_device(intr_info)) {
4875 vmx_fpu_activate(vcpu);
4876 return 1;
4877 }
4878
4879 if (is_invalid_opcode(intr_info)) {
4880 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
4881 if (er != EMULATE_DONE)
4882 kvm_queue_exception(vcpu, UD_VECTOR);
4883 return 1;
4884 }
4885
4886 error_code = 0;
4887 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4888 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4889
4890 /*
4891 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4892 * MMIO, it is better to report an internal error.
4893 * See the comments in vmx_handle_exit.
4894 */
4895 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4896 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4897 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4898 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4899 vcpu->run->internal.ndata = 2;
4900 vcpu->run->internal.data[0] = vect_info;
4901 vcpu->run->internal.data[1] = intr_info;
4902 return 0;
4903 }
4904
4905 if (is_page_fault(intr_info)) {
4906 /* EPT won't cause page fault directly */
4907 BUG_ON(enable_ept);
4908 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4909 trace_kvm_page_fault(cr2, error_code);
4910
4911 if (kvm_event_needs_reinjection(vcpu))
4912 kvm_mmu_unprotect_page_virt(vcpu, cr2);
4913 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
4914 }
4915
4916 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4917
4918 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4919 return handle_rmode_exception(vcpu, ex_no, error_code);
4920
4921 switch (ex_no) {
4922 case DB_VECTOR:
4923 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4924 if (!(vcpu->guest_debug &
4925 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4926 vcpu->arch.dr6 &= ~15;
4927 vcpu->arch.dr6 |= dr6 | DR6_RTM;
4928 if (!(dr6 & ~DR6_RESERVED)) /* icebp */
4929 skip_emulated_instruction(vcpu);
4930
4931 kvm_queue_exception(vcpu, DB_VECTOR);
4932 return 1;
4933 }
4934 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4935 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4936 /* fall through */
4937 case BP_VECTOR:
4938 /*
4939 * Update instruction length as we may reinject #BP from
4940 * user space while in guest debugging mode. Reading it for
4941 * #DB as well causes no harm, it is not used in that case.
4942 */
4943 vmx->vcpu.arch.event_exit_inst_len =
4944 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4945 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4946 rip = kvm_rip_read(vcpu);
4947 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4948 kvm_run->debug.arch.exception = ex_no;
4949 break;
4950 default:
4951 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4952 kvm_run->ex.exception = ex_no;
4953 kvm_run->ex.error_code = error_code;
4954 break;
4955 }
4956 return 0;
4957 }
4958
4959 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4960 {
4961 ++vcpu->stat.irq_exits;
4962 return 1;
4963 }
4964
4965 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4966 {
4967 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4968 return 0;
4969 }
4970
4971 static int handle_io(struct kvm_vcpu *vcpu)
4972 {
4973 unsigned long exit_qualification;
4974 int size, in, string;
4975 unsigned port;
4976
4977 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4978 string = (exit_qualification & 16) != 0;
4979 in = (exit_qualification & 8) != 0;
4980
4981 ++vcpu->stat.io_exits;
4982
4983 if (string || in)
4984 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4985
4986 port = exit_qualification >> 16;
4987 size = (exit_qualification & 7) + 1;
4988 skip_emulated_instruction(vcpu);
4989
4990 return kvm_fast_pio_out(vcpu, size, port);
4991 }
4992
4993 static void
4994 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4995 {
4996 /*
4997 * Patch in the VMCALL instruction:
4998 */
4999 hypercall[0] = 0x0f;
5000 hypercall[1] = 0x01;
5001 hypercall[2] = 0xc1;
5002 }
5003
5004 static bool nested_cr0_valid(struct vmcs12 *vmcs12, unsigned long val)
5005 {
5006 unsigned long always_on = VMXON_CR0_ALWAYSON;
5007
5008 if (nested_vmx_secondary_ctls_high &
5009 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
5010 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
5011 always_on &= ~(X86_CR0_PE | X86_CR0_PG);
5012 return (val & always_on) == always_on;
5013 }
5014
5015 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5016 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5017 {
5018 if (is_guest_mode(vcpu)) {
5019 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5020 unsigned long orig_val = val;
5021
5022 /*
5023 * We get here when L2 changed cr0 in a way that did not change
5024 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5025 * but did change L0 shadowed bits. So we first calculate the
5026 * effective cr0 value that L1 would like to write into the
5027 * hardware. It consists of the L2-owned bits from the new
5028 * value combined with the L1-owned bits from L1's guest_cr0.
5029 */
5030 val = (val & ~vmcs12->cr0_guest_host_mask) |
5031 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5032
5033 if (!nested_cr0_valid(vmcs12, val))
5034 return 1;
5035
5036 if (kvm_set_cr0(vcpu, val))
5037 return 1;
5038 vmcs_writel(CR0_READ_SHADOW, orig_val);
5039 return 0;
5040 } else {
5041 if (to_vmx(vcpu)->nested.vmxon &&
5042 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
5043 return 1;
5044 return kvm_set_cr0(vcpu, val);
5045 }
5046 }
5047
5048 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5049 {
5050 if (is_guest_mode(vcpu)) {
5051 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5052 unsigned long orig_val = val;
5053
5054 /* analogously to handle_set_cr0 */
5055 val = (val & ~vmcs12->cr4_guest_host_mask) |
5056 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5057 if (kvm_set_cr4(vcpu, val))
5058 return 1;
5059 vmcs_writel(CR4_READ_SHADOW, orig_val);
5060 return 0;
5061 } else
5062 return kvm_set_cr4(vcpu, val);
5063 }
5064
5065 /* called to set cr0 as approriate for clts instruction exit. */
5066 static void handle_clts(struct kvm_vcpu *vcpu)
5067 {
5068 if (is_guest_mode(vcpu)) {
5069 /*
5070 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5071 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5072 * just pretend it's off (also in arch.cr0 for fpu_activate).
5073 */
5074 vmcs_writel(CR0_READ_SHADOW,
5075 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
5076 vcpu->arch.cr0 &= ~X86_CR0_TS;
5077 } else
5078 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5079 }
5080
5081 static int handle_cr(struct kvm_vcpu *vcpu)
5082 {
5083 unsigned long exit_qualification, val;
5084 int cr;
5085 int reg;
5086 int err;
5087
5088 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5089 cr = exit_qualification & 15;
5090 reg = (exit_qualification >> 8) & 15;
5091 switch ((exit_qualification >> 4) & 3) {
5092 case 0: /* mov to cr */
5093 val = kvm_register_readl(vcpu, reg);
5094 trace_kvm_cr_write(cr, val);
5095 switch (cr) {
5096 case 0:
5097 err = handle_set_cr0(vcpu, val);
5098 kvm_complete_insn_gp(vcpu, err);
5099 return 1;
5100 case 3:
5101 err = kvm_set_cr3(vcpu, val);
5102 kvm_complete_insn_gp(vcpu, err);
5103 return 1;
5104 case 4:
5105 err = handle_set_cr4(vcpu, val);
5106 kvm_complete_insn_gp(vcpu, err);
5107 return 1;
5108 case 8: {
5109 u8 cr8_prev = kvm_get_cr8(vcpu);
5110 u8 cr8 = (u8)val;
5111 err = kvm_set_cr8(vcpu, cr8);
5112 kvm_complete_insn_gp(vcpu, err);
5113 if (irqchip_in_kernel(vcpu->kvm))
5114 return 1;
5115 if (cr8_prev <= cr8)
5116 return 1;
5117 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5118 return 0;
5119 }
5120 }
5121 break;
5122 case 2: /* clts */
5123 handle_clts(vcpu);
5124 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5125 skip_emulated_instruction(vcpu);
5126 vmx_fpu_activate(vcpu);
5127 return 1;
5128 case 1: /*mov from cr*/
5129 switch (cr) {
5130 case 3:
5131 val = kvm_read_cr3(vcpu);
5132 kvm_register_write(vcpu, reg, val);
5133 trace_kvm_cr_read(cr, val);
5134 skip_emulated_instruction(vcpu);
5135 return 1;
5136 case 8:
5137 val = kvm_get_cr8(vcpu);
5138 kvm_register_write(vcpu, reg, val);
5139 trace_kvm_cr_read(cr, val);
5140 skip_emulated_instruction(vcpu);
5141 return 1;
5142 }
5143 break;
5144 case 3: /* lmsw */
5145 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5146 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5147 kvm_lmsw(vcpu, val);
5148
5149 skip_emulated_instruction(vcpu);
5150 return 1;
5151 default:
5152 break;
5153 }
5154 vcpu->run->exit_reason = 0;
5155 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5156 (int)(exit_qualification >> 4) & 3, cr);
5157 return 0;
5158 }
5159
5160 static int handle_dr(struct kvm_vcpu *vcpu)
5161 {
5162 unsigned long exit_qualification;
5163 int dr, reg;
5164
5165 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5166 if (!kvm_require_cpl(vcpu, 0))
5167 return 1;
5168 dr = vmcs_readl(GUEST_DR7);
5169 if (dr & DR7_GD) {
5170 /*
5171 * As the vm-exit takes precedence over the debug trap, we
5172 * need to emulate the latter, either for the host or the
5173 * guest debugging itself.
5174 */
5175 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5176 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5177 vcpu->run->debug.arch.dr7 = dr;
5178 vcpu->run->debug.arch.pc =
5179 vmcs_readl(GUEST_CS_BASE) +
5180 vmcs_readl(GUEST_RIP);
5181 vcpu->run->debug.arch.exception = DB_VECTOR;
5182 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5183 return 0;
5184 } else {
5185 vcpu->arch.dr7 &= ~DR7_GD;
5186 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
5187 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
5188 kvm_queue_exception(vcpu, DB_VECTOR);
5189 return 1;
5190 }
5191 }
5192
5193 if (vcpu->guest_debug == 0) {
5194 u32 cpu_based_vm_exec_control;
5195
5196 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5197 cpu_based_vm_exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5198 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5199
5200 /*
5201 * No more DR vmexits; force a reload of the debug registers
5202 * and reenter on this instruction. The next vmexit will
5203 * retrieve the full state of the debug registers.
5204 */
5205 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5206 return 1;
5207 }
5208
5209 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5210 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5211 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5212 if (exit_qualification & TYPE_MOV_FROM_DR) {
5213 unsigned long val;
5214
5215 if (kvm_get_dr(vcpu, dr, &val))
5216 return 1;
5217 kvm_register_write(vcpu, reg, val);
5218 } else
5219 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5220 return 1;
5221
5222 skip_emulated_instruction(vcpu);
5223 return 1;
5224 }
5225
5226 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5227 {
5228 return vcpu->arch.dr6;
5229 }
5230
5231 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5232 {
5233 }
5234
5235 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5236 {
5237 u32 cpu_based_vm_exec_control;
5238
5239 get_debugreg(vcpu->arch.db[0], 0);
5240 get_debugreg(vcpu->arch.db[1], 1);
5241 get_debugreg(vcpu->arch.db[2], 2);
5242 get_debugreg(vcpu->arch.db[3], 3);
5243 get_debugreg(vcpu->arch.dr6, 6);
5244 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5245
5246 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5247
5248 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5249 cpu_based_vm_exec_control |= CPU_BASED_MOV_DR_EXITING;
5250 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5251 }
5252
5253 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5254 {
5255 vmcs_writel(GUEST_DR7, val);
5256 }
5257
5258 static int handle_cpuid(struct kvm_vcpu *vcpu)
5259 {
5260 kvm_emulate_cpuid(vcpu);
5261 return 1;
5262 }
5263
5264 static int handle_rdmsr(struct kvm_vcpu *vcpu)
5265 {
5266 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5267 u64 data;
5268
5269 if (vmx_get_msr(vcpu, ecx, &data)) {
5270 trace_kvm_msr_read_ex(ecx);
5271 kvm_inject_gp(vcpu, 0);
5272 return 1;
5273 }
5274
5275 trace_kvm_msr_read(ecx, data);
5276
5277 /* FIXME: handling of bits 32:63 of rax, rdx */
5278 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
5279 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
5280 skip_emulated_instruction(vcpu);
5281 return 1;
5282 }
5283
5284 static int handle_wrmsr(struct kvm_vcpu *vcpu)
5285 {
5286 struct msr_data msr;
5287 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5288 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5289 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
5290
5291 msr.data = data;
5292 msr.index = ecx;
5293 msr.host_initiated = false;
5294 if (vmx_set_msr(vcpu, &msr) != 0) {
5295 trace_kvm_msr_write_ex(ecx, data);
5296 kvm_inject_gp(vcpu, 0);
5297 return 1;
5298 }
5299
5300 trace_kvm_msr_write(ecx, data);
5301 skip_emulated_instruction(vcpu);
5302 return 1;
5303 }
5304
5305 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5306 {
5307 kvm_make_request(KVM_REQ_EVENT, vcpu);
5308 return 1;
5309 }
5310
5311 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5312 {
5313 u32 cpu_based_vm_exec_control;
5314
5315 /* clear pending irq */
5316 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5317 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5318 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5319
5320 kvm_make_request(KVM_REQ_EVENT, vcpu);
5321
5322 ++vcpu->stat.irq_window_exits;
5323
5324 /*
5325 * If the user space waits to inject interrupts, exit as soon as
5326 * possible
5327 */
5328 if (!irqchip_in_kernel(vcpu->kvm) &&
5329 vcpu->run->request_interrupt_window &&
5330 !kvm_cpu_has_interrupt(vcpu)) {
5331 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
5332 return 0;
5333 }
5334 return 1;
5335 }
5336
5337 static int handle_halt(struct kvm_vcpu *vcpu)
5338 {
5339 skip_emulated_instruction(vcpu);
5340 return kvm_emulate_halt(vcpu);
5341 }
5342
5343 static int handle_vmcall(struct kvm_vcpu *vcpu)
5344 {
5345 skip_emulated_instruction(vcpu);
5346 kvm_emulate_hypercall(vcpu);
5347 return 1;
5348 }
5349
5350 static int handle_invd(struct kvm_vcpu *vcpu)
5351 {
5352 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5353 }
5354
5355 static int handle_invlpg(struct kvm_vcpu *vcpu)
5356 {
5357 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5358
5359 kvm_mmu_invlpg(vcpu, exit_qualification);
5360 skip_emulated_instruction(vcpu);
5361 return 1;
5362 }
5363
5364 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5365 {
5366 int err;
5367
5368 err = kvm_rdpmc(vcpu);
5369 kvm_complete_insn_gp(vcpu, err);
5370
5371 return 1;
5372 }
5373
5374 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5375 {
5376 skip_emulated_instruction(vcpu);
5377 kvm_emulate_wbinvd(vcpu);
5378 return 1;
5379 }
5380
5381 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5382 {
5383 u64 new_bv = kvm_read_edx_eax(vcpu);
5384 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5385
5386 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5387 skip_emulated_instruction(vcpu);
5388 return 1;
5389 }
5390
5391 static int handle_apic_access(struct kvm_vcpu *vcpu)
5392 {
5393 if (likely(fasteoi)) {
5394 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5395 int access_type, offset;
5396
5397 access_type = exit_qualification & APIC_ACCESS_TYPE;
5398 offset = exit_qualification & APIC_ACCESS_OFFSET;
5399 /*
5400 * Sane guest uses MOV to write EOI, with written value
5401 * not cared. So make a short-circuit here by avoiding
5402 * heavy instruction emulation.
5403 */
5404 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5405 (offset == APIC_EOI)) {
5406 kvm_lapic_set_eoi(vcpu);
5407 skip_emulated_instruction(vcpu);
5408 return 1;
5409 }
5410 }
5411 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5412 }
5413
5414 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5415 {
5416 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5417 int vector = exit_qualification & 0xff;
5418
5419 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5420 kvm_apic_set_eoi_accelerated(vcpu, vector);
5421 return 1;
5422 }
5423
5424 static int handle_apic_write(struct kvm_vcpu *vcpu)
5425 {
5426 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5427 u32 offset = exit_qualification & 0xfff;
5428
5429 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5430 kvm_apic_write_nodecode(vcpu, offset);
5431 return 1;
5432 }
5433
5434 static int handle_task_switch(struct kvm_vcpu *vcpu)
5435 {
5436 struct vcpu_vmx *vmx = to_vmx(vcpu);
5437 unsigned long exit_qualification;
5438 bool has_error_code = false;
5439 u32 error_code = 0;
5440 u16 tss_selector;
5441 int reason, type, idt_v, idt_index;
5442
5443 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5444 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5445 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5446
5447 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5448
5449 reason = (u32)exit_qualification >> 30;
5450 if (reason == TASK_SWITCH_GATE && idt_v) {
5451 switch (type) {
5452 case INTR_TYPE_NMI_INTR:
5453 vcpu->arch.nmi_injected = false;
5454 vmx_set_nmi_mask(vcpu, true);
5455 break;
5456 case INTR_TYPE_EXT_INTR:
5457 case INTR_TYPE_SOFT_INTR:
5458 kvm_clear_interrupt_queue(vcpu);
5459 break;
5460 case INTR_TYPE_HARD_EXCEPTION:
5461 if (vmx->idt_vectoring_info &
5462 VECTORING_INFO_DELIVER_CODE_MASK) {
5463 has_error_code = true;
5464 error_code =
5465 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5466 }
5467 /* fall through */
5468 case INTR_TYPE_SOFT_EXCEPTION:
5469 kvm_clear_exception_queue(vcpu);
5470 break;
5471 default:
5472 break;
5473 }
5474 }
5475 tss_selector = exit_qualification;
5476
5477 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5478 type != INTR_TYPE_EXT_INTR &&
5479 type != INTR_TYPE_NMI_INTR))
5480 skip_emulated_instruction(vcpu);
5481
5482 if (kvm_task_switch(vcpu, tss_selector,
5483 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5484 has_error_code, error_code) == EMULATE_FAIL) {
5485 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5486 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5487 vcpu->run->internal.ndata = 0;
5488 return 0;
5489 }
5490
5491 /* clear all local breakpoint enable flags */
5492 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~0x55);
5493
5494 /*
5495 * TODO: What about debug traps on tss switch?
5496 * Are we supposed to inject them and update dr6?
5497 */
5498
5499 return 1;
5500 }
5501
5502 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5503 {
5504 unsigned long exit_qualification;
5505 gpa_t gpa;
5506 u32 error_code;
5507 int gla_validity;
5508
5509 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5510
5511 gla_validity = (exit_qualification >> 7) & 0x3;
5512 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5513 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5514 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5515 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
5516 vmcs_readl(GUEST_LINEAR_ADDRESS));
5517 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5518 (long unsigned int)exit_qualification);
5519 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5520 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
5521 return 0;
5522 }
5523
5524 /*
5525 * EPT violation happened while executing iret from NMI,
5526 * "blocked by NMI" bit has to be set before next VM entry.
5527 * There are errata that may cause this bit to not be set:
5528 * AAK134, BY25.
5529 */
5530 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5531 cpu_has_virtual_nmis() &&
5532 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5533 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5534
5535 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5536 trace_kvm_page_fault(gpa, exit_qualification);
5537
5538 /* It is a write fault? */
5539 error_code = exit_qualification & (1U << 1);
5540 /* It is a fetch fault? */
5541 error_code |= (exit_qualification & (1U << 2)) << 2;
5542 /* ept page table is present? */
5543 error_code |= (exit_qualification >> 3) & 0x1;
5544
5545 vcpu->arch.exit_qualification = exit_qualification;
5546
5547 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5548 }
5549
5550 static u64 ept_rsvd_mask(u64 spte, int level)
5551 {
5552 int i;
5553 u64 mask = 0;
5554
5555 for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
5556 mask |= (1ULL << i);
5557
5558 if (level == 4)
5559 /* bits 7:3 reserved */
5560 mask |= 0xf8;
5561 else if (spte & (1ULL << 7))
5562 /*
5563 * 1GB/2MB page, bits 29:12 or 20:12 reserved respectively,
5564 * level == 1 if the hypervisor is using the ignored bit 7.
5565 */
5566 mask |= (PAGE_SIZE << ((level - 1) * 9)) - PAGE_SIZE;
5567 else if (level > 1)
5568 /* bits 6:3 reserved */
5569 mask |= 0x78;
5570
5571 return mask;
5572 }
5573
5574 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
5575 int level)
5576 {
5577 printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
5578
5579 /* 010b (write-only) */
5580 WARN_ON((spte & 0x7) == 0x2);
5581
5582 /* 110b (write/execute) */
5583 WARN_ON((spte & 0x7) == 0x6);
5584
5585 /* 100b (execute-only) and value not supported by logical processor */
5586 if (!cpu_has_vmx_ept_execute_only())
5587 WARN_ON((spte & 0x7) == 0x4);
5588
5589 /* not 000b */
5590 if ((spte & 0x7)) {
5591 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
5592
5593 if (rsvd_bits != 0) {
5594 printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
5595 __func__, rsvd_bits);
5596 WARN_ON(1);
5597 }
5598
5599 /* bits 5:3 are _not_ reserved for large page or leaf page */
5600 if ((rsvd_bits & 0x38) == 0) {
5601 u64 ept_mem_type = (spte & 0x38) >> 3;
5602
5603 if (ept_mem_type == 2 || ept_mem_type == 3 ||
5604 ept_mem_type == 7) {
5605 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
5606 __func__, ept_mem_type);
5607 WARN_ON(1);
5608 }
5609 }
5610 }
5611 }
5612
5613 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5614 {
5615 u64 sptes[4];
5616 int nr_sptes, i, ret;
5617 gpa_t gpa;
5618
5619 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5620 if (!kvm_io_bus_write(vcpu->kvm, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5621 skip_emulated_instruction(vcpu);
5622 return 1;
5623 }
5624
5625 ret = handle_mmio_page_fault_common(vcpu, gpa, true);
5626 if (likely(ret == RET_MMIO_PF_EMULATE))
5627 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5628 EMULATE_DONE;
5629
5630 if (unlikely(ret == RET_MMIO_PF_INVALID))
5631 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
5632
5633 if (unlikely(ret == RET_MMIO_PF_RETRY))
5634 return 1;
5635
5636 /* It is the real ept misconfig */
5637 printk(KERN_ERR "EPT: Misconfiguration.\n");
5638 printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
5639
5640 nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
5641
5642 for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
5643 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
5644
5645 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5646 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
5647
5648 return 0;
5649 }
5650
5651 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5652 {
5653 u32 cpu_based_vm_exec_control;
5654
5655 /* clear pending NMI */
5656 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5657 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5658 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5659 ++vcpu->stat.nmi_window_exits;
5660 kvm_make_request(KVM_REQ_EVENT, vcpu);
5661
5662 return 1;
5663 }
5664
5665 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5666 {
5667 struct vcpu_vmx *vmx = to_vmx(vcpu);
5668 enum emulation_result err = EMULATE_DONE;
5669 int ret = 1;
5670 u32 cpu_exec_ctrl;
5671 bool intr_window_requested;
5672 unsigned count = 130;
5673
5674 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5675 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
5676
5677 while (vmx->emulation_required && count-- != 0) {
5678 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5679 return handle_interrupt_window(&vmx->vcpu);
5680
5681 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5682 return 1;
5683
5684 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
5685
5686 if (err == EMULATE_USER_EXIT) {
5687 ++vcpu->stat.mmio_exits;
5688 ret = 0;
5689 goto out;
5690 }
5691
5692 if (err != EMULATE_DONE) {
5693 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5694 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5695 vcpu->run->internal.ndata = 0;
5696 return 0;
5697 }
5698
5699 if (vcpu->arch.halt_request) {
5700 vcpu->arch.halt_request = 0;
5701 ret = kvm_emulate_halt(vcpu);
5702 goto out;
5703 }
5704
5705 if (signal_pending(current))
5706 goto out;
5707 if (need_resched())
5708 schedule();
5709 }
5710
5711 out:
5712 return ret;
5713 }
5714
5715 static int __grow_ple_window(int val)
5716 {
5717 if (ple_window_grow < 1)
5718 return ple_window;
5719
5720 val = min(val, ple_window_actual_max);
5721
5722 if (ple_window_grow < ple_window)
5723 val *= ple_window_grow;
5724 else
5725 val += ple_window_grow;
5726
5727 return val;
5728 }
5729
5730 static int __shrink_ple_window(int val, int modifier, int minimum)
5731 {
5732 if (modifier < 1)
5733 return ple_window;
5734
5735 if (modifier < ple_window)
5736 val /= modifier;
5737 else
5738 val -= modifier;
5739
5740 return max(val, minimum);
5741 }
5742
5743 static void grow_ple_window(struct kvm_vcpu *vcpu)
5744 {
5745 struct vcpu_vmx *vmx = to_vmx(vcpu);
5746 int old = vmx->ple_window;
5747
5748 vmx->ple_window = __grow_ple_window(old);
5749
5750 if (vmx->ple_window != old)
5751 vmx->ple_window_dirty = true;
5752
5753 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
5754 }
5755
5756 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5757 {
5758 struct vcpu_vmx *vmx = to_vmx(vcpu);
5759 int old = vmx->ple_window;
5760
5761 vmx->ple_window = __shrink_ple_window(old,
5762 ple_window_shrink, ple_window);
5763
5764 if (vmx->ple_window != old)
5765 vmx->ple_window_dirty = true;
5766
5767 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
5768 }
5769
5770 /*
5771 * ple_window_actual_max is computed to be one grow_ple_window() below
5772 * ple_window_max. (See __grow_ple_window for the reason.)
5773 * This prevents overflows, because ple_window_max is int.
5774 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
5775 * this process.
5776 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
5777 */
5778 static void update_ple_window_actual_max(void)
5779 {
5780 ple_window_actual_max =
5781 __shrink_ple_window(max(ple_window_max, ple_window),
5782 ple_window_grow, INT_MIN);
5783 }
5784
5785 /*
5786 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5787 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5788 */
5789 static int handle_pause(struct kvm_vcpu *vcpu)
5790 {
5791 if (ple_gap)
5792 grow_ple_window(vcpu);
5793
5794 skip_emulated_instruction(vcpu);
5795 kvm_vcpu_on_spin(vcpu);
5796
5797 return 1;
5798 }
5799
5800 static int handle_nop(struct kvm_vcpu *vcpu)
5801 {
5802 skip_emulated_instruction(vcpu);
5803 return 1;
5804 }
5805
5806 static int handle_mwait(struct kvm_vcpu *vcpu)
5807 {
5808 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5809 return handle_nop(vcpu);
5810 }
5811
5812 static int handle_monitor(struct kvm_vcpu *vcpu)
5813 {
5814 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5815 return handle_nop(vcpu);
5816 }
5817
5818 /*
5819 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
5820 * We could reuse a single VMCS for all the L2 guests, but we also want the
5821 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
5822 * allows keeping them loaded on the processor, and in the future will allow
5823 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
5824 * every entry if they never change.
5825 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
5826 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
5827 *
5828 * The following functions allocate and free a vmcs02 in this pool.
5829 */
5830
5831 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
5832 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
5833 {
5834 struct vmcs02_list *item;
5835 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5836 if (item->vmptr == vmx->nested.current_vmptr) {
5837 list_move(&item->list, &vmx->nested.vmcs02_pool);
5838 return &item->vmcs02;
5839 }
5840
5841 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
5842 /* Recycle the least recently used VMCS. */
5843 item = list_entry(vmx->nested.vmcs02_pool.prev,
5844 struct vmcs02_list, list);
5845 item->vmptr = vmx->nested.current_vmptr;
5846 list_move(&item->list, &vmx->nested.vmcs02_pool);
5847 return &item->vmcs02;
5848 }
5849
5850 /* Create a new VMCS */
5851 item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
5852 if (!item)
5853 return NULL;
5854 item->vmcs02.vmcs = alloc_vmcs();
5855 if (!item->vmcs02.vmcs) {
5856 kfree(item);
5857 return NULL;
5858 }
5859 loaded_vmcs_init(&item->vmcs02);
5860 item->vmptr = vmx->nested.current_vmptr;
5861 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
5862 vmx->nested.vmcs02_num++;
5863 return &item->vmcs02;
5864 }
5865
5866 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
5867 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
5868 {
5869 struct vmcs02_list *item;
5870 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5871 if (item->vmptr == vmptr) {
5872 free_loaded_vmcs(&item->vmcs02);
5873 list_del(&item->list);
5874 kfree(item);
5875 vmx->nested.vmcs02_num--;
5876 return;
5877 }
5878 }
5879
5880 /*
5881 * Free all VMCSs saved for this vcpu, except the one pointed by
5882 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
5883 * must be &vmx->vmcs01.
5884 */
5885 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
5886 {
5887 struct vmcs02_list *item, *n;
5888
5889 WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
5890 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
5891 /*
5892 * Something will leak if the above WARN triggers. Better than
5893 * a use-after-free.
5894 */
5895 if (vmx->loaded_vmcs == &item->vmcs02)
5896 continue;
5897
5898 free_loaded_vmcs(&item->vmcs02);
5899 list_del(&item->list);
5900 kfree(item);
5901 vmx->nested.vmcs02_num--;
5902 }
5903 }
5904
5905 /*
5906 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5907 * set the success or error code of an emulated VMX instruction, as specified
5908 * by Vol 2B, VMX Instruction Reference, "Conventions".
5909 */
5910 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5911 {
5912 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5913 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5914 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5915 }
5916
5917 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5918 {
5919 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5920 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5921 X86_EFLAGS_SF | X86_EFLAGS_OF))
5922 | X86_EFLAGS_CF);
5923 }
5924
5925 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5926 u32 vm_instruction_error)
5927 {
5928 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5929 /*
5930 * failValid writes the error number to the current VMCS, which
5931 * can't be done there isn't a current VMCS.
5932 */
5933 nested_vmx_failInvalid(vcpu);
5934 return;
5935 }
5936 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5937 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5938 X86_EFLAGS_SF | X86_EFLAGS_OF))
5939 | X86_EFLAGS_ZF);
5940 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
5941 /*
5942 * We don't need to force a shadow sync because
5943 * VM_INSTRUCTION_ERROR is not shadowed
5944 */
5945 }
5946
5947 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
5948 {
5949 struct vcpu_vmx *vmx =
5950 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
5951
5952 vmx->nested.preemption_timer_expired = true;
5953 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
5954 kvm_vcpu_kick(&vmx->vcpu);
5955
5956 return HRTIMER_NORESTART;
5957 }
5958
5959 /*
5960 * Decode the memory-address operand of a vmx instruction, as recorded on an
5961 * exit caused by such an instruction (run by a guest hypervisor).
5962 * On success, returns 0. When the operand is invalid, returns 1 and throws
5963 * #UD or #GP.
5964 */
5965 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
5966 unsigned long exit_qualification,
5967 u32 vmx_instruction_info, gva_t *ret)
5968 {
5969 /*
5970 * According to Vol. 3B, "Information for VM Exits Due to Instruction
5971 * Execution", on an exit, vmx_instruction_info holds most of the
5972 * addressing components of the operand. Only the displacement part
5973 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5974 * For how an actual address is calculated from all these components,
5975 * refer to Vol. 1, "Operand Addressing".
5976 */
5977 int scaling = vmx_instruction_info & 3;
5978 int addr_size = (vmx_instruction_info >> 7) & 7;
5979 bool is_reg = vmx_instruction_info & (1u << 10);
5980 int seg_reg = (vmx_instruction_info >> 15) & 7;
5981 int index_reg = (vmx_instruction_info >> 18) & 0xf;
5982 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5983 int base_reg = (vmx_instruction_info >> 23) & 0xf;
5984 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
5985
5986 if (is_reg) {
5987 kvm_queue_exception(vcpu, UD_VECTOR);
5988 return 1;
5989 }
5990
5991 /* Addr = segment_base + offset */
5992 /* offset = base + [index * scale] + displacement */
5993 *ret = vmx_get_segment_base(vcpu, seg_reg);
5994 if (base_is_valid)
5995 *ret += kvm_register_read(vcpu, base_reg);
5996 if (index_is_valid)
5997 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
5998 *ret += exit_qualification; /* holds the displacement */
5999
6000 if (addr_size == 1) /* 32 bit */
6001 *ret &= 0xffffffff;
6002
6003 /*
6004 * TODO: throw #GP (and return 1) in various cases that the VM*
6005 * instructions require it - e.g., offset beyond segment limit,
6006 * unusable or unreadable/unwritable segment, non-canonical 64-bit
6007 * address, and so on. Currently these are not checked.
6008 */
6009 return 0;
6010 }
6011
6012 /*
6013 * This function performs the various checks including
6014 * - if it's 4KB aligned
6015 * - No bits beyond the physical address width are set
6016 * - Returns 0 on success or else 1
6017 * (Intel SDM Section 30.3)
6018 */
6019 static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
6020 gpa_t *vmpointer)
6021 {
6022 gva_t gva;
6023 gpa_t vmptr;
6024 struct x86_exception e;
6025 struct page *page;
6026 struct vcpu_vmx *vmx = to_vmx(vcpu);
6027 int maxphyaddr = cpuid_maxphyaddr(vcpu);
6028
6029 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6030 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
6031 return 1;
6032
6033 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6034 sizeof(vmptr), &e)) {
6035 kvm_inject_page_fault(vcpu, &e);
6036 return 1;
6037 }
6038
6039 switch (exit_reason) {
6040 case EXIT_REASON_VMON:
6041 /*
6042 * SDM 3: 24.11.5
6043 * The first 4 bytes of VMXON region contain the supported
6044 * VMCS revision identifier
6045 *
6046 * Note - IA32_VMX_BASIC[48] will never be 1
6047 * for the nested case;
6048 * which replaces physical address width with 32
6049 *
6050 */
6051 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6052 nested_vmx_failInvalid(vcpu);
6053 skip_emulated_instruction(vcpu);
6054 return 1;
6055 }
6056
6057 page = nested_get_page(vcpu, vmptr);
6058 if (page == NULL ||
6059 *(u32 *)kmap(page) != VMCS12_REVISION) {
6060 nested_vmx_failInvalid(vcpu);
6061 kunmap(page);
6062 skip_emulated_instruction(vcpu);
6063 return 1;
6064 }
6065 kunmap(page);
6066 vmx->nested.vmxon_ptr = vmptr;
6067 break;
6068 case EXIT_REASON_VMCLEAR:
6069 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6070 nested_vmx_failValid(vcpu,
6071 VMXERR_VMCLEAR_INVALID_ADDRESS);
6072 skip_emulated_instruction(vcpu);
6073 return 1;
6074 }
6075
6076 if (vmptr == vmx->nested.vmxon_ptr) {
6077 nested_vmx_failValid(vcpu,
6078 VMXERR_VMCLEAR_VMXON_POINTER);
6079 skip_emulated_instruction(vcpu);
6080 return 1;
6081 }
6082 break;
6083 case EXIT_REASON_VMPTRLD:
6084 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6085 nested_vmx_failValid(vcpu,
6086 VMXERR_VMPTRLD_INVALID_ADDRESS);
6087 skip_emulated_instruction(vcpu);
6088 return 1;
6089 }
6090
6091 if (vmptr == vmx->nested.vmxon_ptr) {
6092 nested_vmx_failValid(vcpu,
6093 VMXERR_VMCLEAR_VMXON_POINTER);
6094 skip_emulated_instruction(vcpu);
6095 return 1;
6096 }
6097 break;
6098 default:
6099 return 1; /* shouldn't happen */
6100 }
6101
6102 if (vmpointer)
6103 *vmpointer = vmptr;
6104 return 0;
6105 }
6106
6107 /*
6108 * Emulate the VMXON instruction.
6109 * Currently, we just remember that VMX is active, and do not save or even
6110 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
6111 * do not currently need to store anything in that guest-allocated memory
6112 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
6113 * argument is different from the VMXON pointer (which the spec says they do).
6114 */
6115 static int handle_vmon(struct kvm_vcpu *vcpu)
6116 {
6117 struct kvm_segment cs;
6118 struct vcpu_vmx *vmx = to_vmx(vcpu);
6119 struct vmcs *shadow_vmcs;
6120 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
6121 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
6122
6123 /* The Intel VMX Instruction Reference lists a bunch of bits that
6124 * are prerequisite to running VMXON, most notably cr4.VMXE must be
6125 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
6126 * Otherwise, we should fail with #UD. We test these now:
6127 */
6128 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
6129 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
6130 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
6131 kvm_queue_exception(vcpu, UD_VECTOR);
6132 return 1;
6133 }
6134
6135 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6136 if (is_long_mode(vcpu) && !cs.l) {
6137 kvm_queue_exception(vcpu, UD_VECTOR);
6138 return 1;
6139 }
6140
6141 if (vmx_get_cpl(vcpu)) {
6142 kvm_inject_gp(vcpu, 0);
6143 return 1;
6144 }
6145
6146 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
6147 return 1;
6148
6149 if (vmx->nested.vmxon) {
6150 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6151 skip_emulated_instruction(vcpu);
6152 return 1;
6153 }
6154
6155 if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
6156 != VMXON_NEEDED_FEATURES) {
6157 kvm_inject_gp(vcpu, 0);
6158 return 1;
6159 }
6160
6161 if (enable_shadow_vmcs) {
6162 shadow_vmcs = alloc_vmcs();
6163 if (!shadow_vmcs)
6164 return -ENOMEM;
6165 /* mark vmcs as shadow */
6166 shadow_vmcs->revision_id |= (1u << 31);
6167 /* init shadow vmcs */
6168 vmcs_clear(shadow_vmcs);
6169 vmx->nested.current_shadow_vmcs = shadow_vmcs;
6170 }
6171
6172 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
6173 vmx->nested.vmcs02_num = 0;
6174
6175 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
6176 HRTIMER_MODE_REL);
6177 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
6178
6179 vmx->nested.vmxon = true;
6180
6181 skip_emulated_instruction(vcpu);
6182 nested_vmx_succeed(vcpu);
6183 return 1;
6184 }
6185
6186 /*
6187 * Intel's VMX Instruction Reference specifies a common set of prerequisites
6188 * for running VMX instructions (except VMXON, whose prerequisites are
6189 * slightly different). It also specifies what exception to inject otherwise.
6190 */
6191 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
6192 {
6193 struct kvm_segment cs;
6194 struct vcpu_vmx *vmx = to_vmx(vcpu);
6195
6196 if (!vmx->nested.vmxon) {
6197 kvm_queue_exception(vcpu, UD_VECTOR);
6198 return 0;
6199 }
6200
6201 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6202 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
6203 (is_long_mode(vcpu) && !cs.l)) {
6204 kvm_queue_exception(vcpu, UD_VECTOR);
6205 return 0;
6206 }
6207
6208 if (vmx_get_cpl(vcpu)) {
6209 kvm_inject_gp(vcpu, 0);
6210 return 0;
6211 }
6212
6213 return 1;
6214 }
6215
6216 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
6217 {
6218 u32 exec_control;
6219 if (vmx->nested.current_vmptr == -1ull)
6220 return;
6221
6222 /* current_vmptr and current_vmcs12 are always set/reset together */
6223 if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
6224 return;
6225
6226 if (enable_shadow_vmcs) {
6227 /* copy to memory all shadowed fields in case
6228 they were modified */
6229 copy_shadow_to_vmcs12(vmx);
6230 vmx->nested.sync_shadow_vmcs = false;
6231 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6232 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
6233 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6234 vmcs_write64(VMCS_LINK_POINTER, -1ull);
6235 }
6236 kunmap(vmx->nested.current_vmcs12_page);
6237 nested_release_page(vmx->nested.current_vmcs12_page);
6238 vmx->nested.current_vmptr = -1ull;
6239 vmx->nested.current_vmcs12 = NULL;
6240 }
6241
6242 /*
6243 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
6244 * just stops using VMX.
6245 */
6246 static void free_nested(struct vcpu_vmx *vmx)
6247 {
6248 if (!vmx->nested.vmxon)
6249 return;
6250
6251 vmx->nested.vmxon = false;
6252 nested_release_vmcs12(vmx);
6253 if (enable_shadow_vmcs)
6254 free_vmcs(vmx->nested.current_shadow_vmcs);
6255 /* Unpin physical memory we referred to in current vmcs02 */
6256 if (vmx->nested.apic_access_page) {
6257 nested_release_page(vmx->nested.apic_access_page);
6258 vmx->nested.apic_access_page = NULL;
6259 }
6260 if (vmx->nested.virtual_apic_page) {
6261 nested_release_page(vmx->nested.virtual_apic_page);
6262 vmx->nested.virtual_apic_page = NULL;
6263 }
6264
6265 nested_free_all_saved_vmcss(vmx);
6266 }
6267
6268 /* Emulate the VMXOFF instruction */
6269 static int handle_vmoff(struct kvm_vcpu *vcpu)
6270 {
6271 if (!nested_vmx_check_permission(vcpu))
6272 return 1;
6273 free_nested(to_vmx(vcpu));
6274 skip_emulated_instruction(vcpu);
6275 nested_vmx_succeed(vcpu);
6276 return 1;
6277 }
6278
6279 /* Emulate the VMCLEAR instruction */
6280 static int handle_vmclear(struct kvm_vcpu *vcpu)
6281 {
6282 struct vcpu_vmx *vmx = to_vmx(vcpu);
6283 gpa_t vmptr;
6284 struct vmcs12 *vmcs12;
6285 struct page *page;
6286
6287 if (!nested_vmx_check_permission(vcpu))
6288 return 1;
6289
6290 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
6291 return 1;
6292
6293 if (vmptr == vmx->nested.current_vmptr)
6294 nested_release_vmcs12(vmx);
6295
6296 page = nested_get_page(vcpu, vmptr);
6297 if (page == NULL) {
6298 /*
6299 * For accurate processor emulation, VMCLEAR beyond available
6300 * physical memory should do nothing at all. However, it is
6301 * possible that a nested vmx bug, not a guest hypervisor bug,
6302 * resulted in this case, so let's shut down before doing any
6303 * more damage:
6304 */
6305 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6306 return 1;
6307 }
6308 vmcs12 = kmap(page);
6309 vmcs12->launch_state = 0;
6310 kunmap(page);
6311 nested_release_page(page);
6312
6313 nested_free_vmcs02(vmx, vmptr);
6314
6315 skip_emulated_instruction(vcpu);
6316 nested_vmx_succeed(vcpu);
6317 return 1;
6318 }
6319
6320 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
6321
6322 /* Emulate the VMLAUNCH instruction */
6323 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
6324 {
6325 return nested_vmx_run(vcpu, true);
6326 }
6327
6328 /* Emulate the VMRESUME instruction */
6329 static int handle_vmresume(struct kvm_vcpu *vcpu)
6330 {
6331
6332 return nested_vmx_run(vcpu, false);
6333 }
6334
6335 enum vmcs_field_type {
6336 VMCS_FIELD_TYPE_U16 = 0,
6337 VMCS_FIELD_TYPE_U64 = 1,
6338 VMCS_FIELD_TYPE_U32 = 2,
6339 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
6340 };
6341
6342 static inline int vmcs_field_type(unsigned long field)
6343 {
6344 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
6345 return VMCS_FIELD_TYPE_U32;
6346 return (field >> 13) & 0x3 ;
6347 }
6348
6349 static inline int vmcs_field_readonly(unsigned long field)
6350 {
6351 return (((field >> 10) & 0x3) == 1);
6352 }
6353
6354 /*
6355 * Read a vmcs12 field. Since these can have varying lengths and we return
6356 * one type, we chose the biggest type (u64) and zero-extend the return value
6357 * to that size. Note that the caller, handle_vmread, might need to use only
6358 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
6359 * 64-bit fields are to be returned).
6360 */
6361 static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
6362 unsigned long field, u64 *ret)
6363 {
6364 short offset = vmcs_field_to_offset(field);
6365 char *p;
6366
6367 if (offset < 0)
6368 return 0;
6369
6370 p = ((char *)(get_vmcs12(vcpu))) + offset;
6371
6372 switch (vmcs_field_type(field)) {
6373 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6374 *ret = *((natural_width *)p);
6375 return 1;
6376 case VMCS_FIELD_TYPE_U16:
6377 *ret = *((u16 *)p);
6378 return 1;
6379 case VMCS_FIELD_TYPE_U32:
6380 *ret = *((u32 *)p);
6381 return 1;
6382 case VMCS_FIELD_TYPE_U64:
6383 *ret = *((u64 *)p);
6384 return 1;
6385 default:
6386 return 0; /* can never happen. */
6387 }
6388 }
6389
6390
6391 static inline bool vmcs12_write_any(struct kvm_vcpu *vcpu,
6392 unsigned long field, u64 field_value){
6393 short offset = vmcs_field_to_offset(field);
6394 char *p = ((char *) get_vmcs12(vcpu)) + offset;
6395 if (offset < 0)
6396 return false;
6397
6398 switch (vmcs_field_type(field)) {
6399 case VMCS_FIELD_TYPE_U16:
6400 *(u16 *)p = field_value;
6401 return true;
6402 case VMCS_FIELD_TYPE_U32:
6403 *(u32 *)p = field_value;
6404 return true;
6405 case VMCS_FIELD_TYPE_U64:
6406 *(u64 *)p = field_value;
6407 return true;
6408 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6409 *(natural_width *)p = field_value;
6410 return true;
6411 default:
6412 return false; /* can never happen. */
6413 }
6414
6415 }
6416
6417 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
6418 {
6419 int i;
6420 unsigned long field;
6421 u64 field_value;
6422 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6423 const unsigned long *fields = shadow_read_write_fields;
6424 const int num_fields = max_shadow_read_write_fields;
6425
6426 vmcs_load(shadow_vmcs);
6427
6428 for (i = 0; i < num_fields; i++) {
6429 field = fields[i];
6430 switch (vmcs_field_type(field)) {
6431 case VMCS_FIELD_TYPE_U16:
6432 field_value = vmcs_read16(field);
6433 break;
6434 case VMCS_FIELD_TYPE_U32:
6435 field_value = vmcs_read32(field);
6436 break;
6437 case VMCS_FIELD_TYPE_U64:
6438 field_value = vmcs_read64(field);
6439 break;
6440 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6441 field_value = vmcs_readl(field);
6442 break;
6443 }
6444 vmcs12_write_any(&vmx->vcpu, field, field_value);
6445 }
6446
6447 vmcs_clear(shadow_vmcs);
6448 vmcs_load(vmx->loaded_vmcs->vmcs);
6449 }
6450
6451 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
6452 {
6453 const unsigned long *fields[] = {
6454 shadow_read_write_fields,
6455 shadow_read_only_fields
6456 };
6457 const int max_fields[] = {
6458 max_shadow_read_write_fields,
6459 max_shadow_read_only_fields
6460 };
6461 int i, q;
6462 unsigned long field;
6463 u64 field_value = 0;
6464 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6465
6466 vmcs_load(shadow_vmcs);
6467
6468 for (q = 0; q < ARRAY_SIZE(fields); q++) {
6469 for (i = 0; i < max_fields[q]; i++) {
6470 field = fields[q][i];
6471 vmcs12_read_any(&vmx->vcpu, field, &field_value);
6472
6473 switch (vmcs_field_type(field)) {
6474 case VMCS_FIELD_TYPE_U16:
6475 vmcs_write16(field, (u16)field_value);
6476 break;
6477 case VMCS_FIELD_TYPE_U32:
6478 vmcs_write32(field, (u32)field_value);
6479 break;
6480 case VMCS_FIELD_TYPE_U64:
6481 vmcs_write64(field, (u64)field_value);
6482 break;
6483 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6484 vmcs_writel(field, (long)field_value);
6485 break;
6486 }
6487 }
6488 }
6489
6490 vmcs_clear(shadow_vmcs);
6491 vmcs_load(vmx->loaded_vmcs->vmcs);
6492 }
6493
6494 /*
6495 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
6496 * used before) all generate the same failure when it is missing.
6497 */
6498 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
6499 {
6500 struct vcpu_vmx *vmx = to_vmx(vcpu);
6501 if (vmx->nested.current_vmptr == -1ull) {
6502 nested_vmx_failInvalid(vcpu);
6503 skip_emulated_instruction(vcpu);
6504 return 0;
6505 }
6506 return 1;
6507 }
6508
6509 static int handle_vmread(struct kvm_vcpu *vcpu)
6510 {
6511 unsigned long field;
6512 u64 field_value;
6513 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6514 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6515 gva_t gva = 0;
6516
6517 if (!nested_vmx_check_permission(vcpu) ||
6518 !nested_vmx_check_vmcs12(vcpu))
6519 return 1;
6520
6521 /* Decode instruction info and find the field to read */
6522 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6523 /* Read the field, zero-extended to a u64 field_value */
6524 if (!vmcs12_read_any(vcpu, field, &field_value)) {
6525 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6526 skip_emulated_instruction(vcpu);
6527 return 1;
6528 }
6529 /*
6530 * Now copy part of this value to register or memory, as requested.
6531 * Note that the number of bits actually copied is 32 or 64 depending
6532 * on the guest's mode (32 or 64 bit), not on the given field's length.
6533 */
6534 if (vmx_instruction_info & (1u << 10)) {
6535 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
6536 field_value);
6537 } else {
6538 if (get_vmx_mem_address(vcpu, exit_qualification,
6539 vmx_instruction_info, &gva))
6540 return 1;
6541 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
6542 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
6543 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
6544 }
6545
6546 nested_vmx_succeed(vcpu);
6547 skip_emulated_instruction(vcpu);
6548 return 1;
6549 }
6550
6551
6552 static int handle_vmwrite(struct kvm_vcpu *vcpu)
6553 {
6554 unsigned long field;
6555 gva_t gva;
6556 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6557 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6558 /* The value to write might be 32 or 64 bits, depending on L1's long
6559 * mode, and eventually we need to write that into a field of several
6560 * possible lengths. The code below first zero-extends the value to 64
6561 * bit (field_value), and then copies only the approriate number of
6562 * bits into the vmcs12 field.
6563 */
6564 u64 field_value = 0;
6565 struct x86_exception e;
6566
6567 if (!nested_vmx_check_permission(vcpu) ||
6568 !nested_vmx_check_vmcs12(vcpu))
6569 return 1;
6570
6571 if (vmx_instruction_info & (1u << 10))
6572 field_value = kvm_register_readl(vcpu,
6573 (((vmx_instruction_info) >> 3) & 0xf));
6574 else {
6575 if (get_vmx_mem_address(vcpu, exit_qualification,
6576 vmx_instruction_info, &gva))
6577 return 1;
6578 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
6579 &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
6580 kvm_inject_page_fault(vcpu, &e);
6581 return 1;
6582 }
6583 }
6584
6585
6586 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6587 if (vmcs_field_readonly(field)) {
6588 nested_vmx_failValid(vcpu,
6589 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
6590 skip_emulated_instruction(vcpu);
6591 return 1;
6592 }
6593
6594 if (!vmcs12_write_any(vcpu, field, field_value)) {
6595 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6596 skip_emulated_instruction(vcpu);
6597 return 1;
6598 }
6599
6600 nested_vmx_succeed(vcpu);
6601 skip_emulated_instruction(vcpu);
6602 return 1;
6603 }
6604
6605 /* Emulate the VMPTRLD instruction */
6606 static int handle_vmptrld(struct kvm_vcpu *vcpu)
6607 {
6608 struct vcpu_vmx *vmx = to_vmx(vcpu);
6609 gpa_t vmptr;
6610 u32 exec_control;
6611
6612 if (!nested_vmx_check_permission(vcpu))
6613 return 1;
6614
6615 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
6616 return 1;
6617
6618 if (vmx->nested.current_vmptr != vmptr) {
6619 struct vmcs12 *new_vmcs12;
6620 struct page *page;
6621 page = nested_get_page(vcpu, vmptr);
6622 if (page == NULL) {
6623 nested_vmx_failInvalid(vcpu);
6624 skip_emulated_instruction(vcpu);
6625 return 1;
6626 }
6627 new_vmcs12 = kmap(page);
6628 if (new_vmcs12->revision_id != VMCS12_REVISION) {
6629 kunmap(page);
6630 nested_release_page_clean(page);
6631 nested_vmx_failValid(vcpu,
6632 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
6633 skip_emulated_instruction(vcpu);
6634 return 1;
6635 }
6636
6637 nested_release_vmcs12(vmx);
6638 vmx->nested.current_vmptr = vmptr;
6639 vmx->nested.current_vmcs12 = new_vmcs12;
6640 vmx->nested.current_vmcs12_page = page;
6641 if (enable_shadow_vmcs) {
6642 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6643 exec_control |= SECONDARY_EXEC_SHADOW_VMCS;
6644 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6645 vmcs_write64(VMCS_LINK_POINTER,
6646 __pa(vmx->nested.current_shadow_vmcs));
6647 vmx->nested.sync_shadow_vmcs = true;
6648 }
6649 }
6650
6651 nested_vmx_succeed(vcpu);
6652 skip_emulated_instruction(vcpu);
6653 return 1;
6654 }
6655
6656 /* Emulate the VMPTRST instruction */
6657 static int handle_vmptrst(struct kvm_vcpu *vcpu)
6658 {
6659 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6660 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6661 gva_t vmcs_gva;
6662 struct x86_exception e;
6663
6664 if (!nested_vmx_check_permission(vcpu))
6665 return 1;
6666
6667 if (get_vmx_mem_address(vcpu, exit_qualification,
6668 vmx_instruction_info, &vmcs_gva))
6669 return 1;
6670 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
6671 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
6672 (void *)&to_vmx(vcpu)->nested.current_vmptr,
6673 sizeof(u64), &e)) {
6674 kvm_inject_page_fault(vcpu, &e);
6675 return 1;
6676 }
6677 nested_vmx_succeed(vcpu);
6678 skip_emulated_instruction(vcpu);
6679 return 1;
6680 }
6681
6682 /* Emulate the INVEPT instruction */
6683 static int handle_invept(struct kvm_vcpu *vcpu)
6684 {
6685 u32 vmx_instruction_info, types;
6686 unsigned long type;
6687 gva_t gva;
6688 struct x86_exception e;
6689 struct {
6690 u64 eptp, gpa;
6691 } operand;
6692
6693 if (!(nested_vmx_secondary_ctls_high & SECONDARY_EXEC_ENABLE_EPT) ||
6694 !(nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
6695 kvm_queue_exception(vcpu, UD_VECTOR);
6696 return 1;
6697 }
6698
6699 if (!nested_vmx_check_permission(vcpu))
6700 return 1;
6701
6702 if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
6703 kvm_queue_exception(vcpu, UD_VECTOR);
6704 return 1;
6705 }
6706
6707 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6708 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
6709
6710 types = (nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
6711
6712 if (!(types & (1UL << type))) {
6713 nested_vmx_failValid(vcpu,
6714 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6715 return 1;
6716 }
6717
6718 /* According to the Intel VMX instruction reference, the memory
6719 * operand is read even if it isn't needed (e.g., for type==global)
6720 */
6721 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6722 vmx_instruction_info, &gva))
6723 return 1;
6724 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
6725 sizeof(operand), &e)) {
6726 kvm_inject_page_fault(vcpu, &e);
6727 return 1;
6728 }
6729
6730 switch (type) {
6731 case VMX_EPT_EXTENT_GLOBAL:
6732 kvm_mmu_sync_roots(vcpu);
6733 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
6734 nested_vmx_succeed(vcpu);
6735 break;
6736 default:
6737 /* Trap single context invalidation invept calls */
6738 BUG_ON(1);
6739 break;
6740 }
6741
6742 skip_emulated_instruction(vcpu);
6743 return 1;
6744 }
6745
6746 /*
6747 * The exit handlers return 1 if the exit was handled fully and guest execution
6748 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
6749 * to be done to userspace and return 0.
6750 */
6751 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6752 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
6753 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
6754 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
6755 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6756 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6757 [EXIT_REASON_CR_ACCESS] = handle_cr,
6758 [EXIT_REASON_DR_ACCESS] = handle_dr,
6759 [EXIT_REASON_CPUID] = handle_cpuid,
6760 [EXIT_REASON_MSR_READ] = handle_rdmsr,
6761 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
6762 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
6763 [EXIT_REASON_HLT] = handle_halt,
6764 [EXIT_REASON_INVD] = handle_invd,
6765 [EXIT_REASON_INVLPG] = handle_invlpg,
6766 [EXIT_REASON_RDPMC] = handle_rdpmc,
6767 [EXIT_REASON_VMCALL] = handle_vmcall,
6768 [EXIT_REASON_VMCLEAR] = handle_vmclear,
6769 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
6770 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
6771 [EXIT_REASON_VMPTRST] = handle_vmptrst,
6772 [EXIT_REASON_VMREAD] = handle_vmread,
6773 [EXIT_REASON_VMRESUME] = handle_vmresume,
6774 [EXIT_REASON_VMWRITE] = handle_vmwrite,
6775 [EXIT_REASON_VMOFF] = handle_vmoff,
6776 [EXIT_REASON_VMON] = handle_vmon,
6777 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
6778 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
6779 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
6780 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
6781 [EXIT_REASON_WBINVD] = handle_wbinvd,
6782 [EXIT_REASON_XSETBV] = handle_xsetbv,
6783 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
6784 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
6785 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
6786 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
6787 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
6788 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
6789 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
6790 [EXIT_REASON_INVEPT] = handle_invept,
6791 };
6792
6793 static const int kvm_vmx_max_exit_handlers =
6794 ARRAY_SIZE(kvm_vmx_exit_handlers);
6795
6796 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
6797 struct vmcs12 *vmcs12)
6798 {
6799 unsigned long exit_qualification;
6800 gpa_t bitmap, last_bitmap;
6801 unsigned int port;
6802 int size;
6803 u8 b;
6804
6805 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
6806 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
6807
6808 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6809
6810 port = exit_qualification >> 16;
6811 size = (exit_qualification & 7) + 1;
6812
6813 last_bitmap = (gpa_t)-1;
6814 b = -1;
6815
6816 while (size > 0) {
6817 if (port < 0x8000)
6818 bitmap = vmcs12->io_bitmap_a;
6819 else if (port < 0x10000)
6820 bitmap = vmcs12->io_bitmap_b;
6821 else
6822 return 1;
6823 bitmap += (port & 0x7fff) / 8;
6824
6825 if (last_bitmap != bitmap)
6826 if (kvm_read_guest(vcpu->kvm, bitmap, &b, 1))
6827 return 1;
6828 if (b & (1 << (port & 7)))
6829 return 1;
6830
6831 port++;
6832 size--;
6833 last_bitmap = bitmap;
6834 }
6835
6836 return 0;
6837 }
6838
6839 /*
6840 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
6841 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
6842 * disinterest in the current event (read or write a specific MSR) by using an
6843 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
6844 */
6845 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
6846 struct vmcs12 *vmcs12, u32 exit_reason)
6847 {
6848 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
6849 gpa_t bitmap;
6850
6851 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
6852 return 1;
6853
6854 /*
6855 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
6856 * for the four combinations of read/write and low/high MSR numbers.
6857 * First we need to figure out which of the four to use:
6858 */
6859 bitmap = vmcs12->msr_bitmap;
6860 if (exit_reason == EXIT_REASON_MSR_WRITE)
6861 bitmap += 2048;
6862 if (msr_index >= 0xc0000000) {
6863 msr_index -= 0xc0000000;
6864 bitmap += 1024;
6865 }
6866
6867 /* Then read the msr_index'th bit from this bitmap: */
6868 if (msr_index < 1024*8) {
6869 unsigned char b;
6870 if (kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1))
6871 return 1;
6872 return 1 & (b >> (msr_index & 7));
6873 } else
6874 return 1; /* let L1 handle the wrong parameter */
6875 }
6876
6877 /*
6878 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6879 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6880 * intercept (via guest_host_mask etc.) the current event.
6881 */
6882 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
6883 struct vmcs12 *vmcs12)
6884 {
6885 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6886 int cr = exit_qualification & 15;
6887 int reg = (exit_qualification >> 8) & 15;
6888 unsigned long val = kvm_register_readl(vcpu, reg);
6889
6890 switch ((exit_qualification >> 4) & 3) {
6891 case 0: /* mov to cr */
6892 switch (cr) {
6893 case 0:
6894 if (vmcs12->cr0_guest_host_mask &
6895 (val ^ vmcs12->cr0_read_shadow))
6896 return 1;
6897 break;
6898 case 3:
6899 if ((vmcs12->cr3_target_count >= 1 &&
6900 vmcs12->cr3_target_value0 == val) ||
6901 (vmcs12->cr3_target_count >= 2 &&
6902 vmcs12->cr3_target_value1 == val) ||
6903 (vmcs12->cr3_target_count >= 3 &&
6904 vmcs12->cr3_target_value2 == val) ||
6905 (vmcs12->cr3_target_count >= 4 &&
6906 vmcs12->cr3_target_value3 == val))
6907 return 0;
6908 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
6909 return 1;
6910 break;
6911 case 4:
6912 if (vmcs12->cr4_guest_host_mask &
6913 (vmcs12->cr4_read_shadow ^ val))
6914 return 1;
6915 break;
6916 case 8:
6917 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
6918 return 1;
6919 break;
6920 }
6921 break;
6922 case 2: /* clts */
6923 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
6924 (vmcs12->cr0_read_shadow & X86_CR0_TS))
6925 return 1;
6926 break;
6927 case 1: /* mov from cr */
6928 switch (cr) {
6929 case 3:
6930 if (vmcs12->cpu_based_vm_exec_control &
6931 CPU_BASED_CR3_STORE_EXITING)
6932 return 1;
6933 break;
6934 case 8:
6935 if (vmcs12->cpu_based_vm_exec_control &
6936 CPU_BASED_CR8_STORE_EXITING)
6937 return 1;
6938 break;
6939 }
6940 break;
6941 case 3: /* lmsw */
6942 /*
6943 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6944 * cr0. Other attempted changes are ignored, with no exit.
6945 */
6946 if (vmcs12->cr0_guest_host_mask & 0xe &
6947 (val ^ vmcs12->cr0_read_shadow))
6948 return 1;
6949 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6950 !(vmcs12->cr0_read_shadow & 0x1) &&
6951 (val & 0x1))
6952 return 1;
6953 break;
6954 }
6955 return 0;
6956 }
6957
6958 /*
6959 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
6960 * should handle it ourselves in L0 (and then continue L2). Only call this
6961 * when in is_guest_mode (L2).
6962 */
6963 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
6964 {
6965 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6966 struct vcpu_vmx *vmx = to_vmx(vcpu);
6967 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6968 u32 exit_reason = vmx->exit_reason;
6969
6970 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
6971 vmcs_readl(EXIT_QUALIFICATION),
6972 vmx->idt_vectoring_info,
6973 intr_info,
6974 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6975 KVM_ISA_VMX);
6976
6977 if (vmx->nested.nested_run_pending)
6978 return 0;
6979
6980 if (unlikely(vmx->fail)) {
6981 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
6982 vmcs_read32(VM_INSTRUCTION_ERROR));
6983 return 1;
6984 }
6985
6986 switch (exit_reason) {
6987 case EXIT_REASON_EXCEPTION_NMI:
6988 if (!is_exception(intr_info))
6989 return 0;
6990 else if (is_page_fault(intr_info))
6991 return enable_ept;
6992 else if (is_no_device(intr_info) &&
6993 !(vmcs12->guest_cr0 & X86_CR0_TS))
6994 return 0;
6995 return vmcs12->exception_bitmap &
6996 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
6997 case EXIT_REASON_EXTERNAL_INTERRUPT:
6998 return 0;
6999 case EXIT_REASON_TRIPLE_FAULT:
7000 return 1;
7001 case EXIT_REASON_PENDING_INTERRUPT:
7002 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
7003 case EXIT_REASON_NMI_WINDOW:
7004 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
7005 case EXIT_REASON_TASK_SWITCH:
7006 return 1;
7007 case EXIT_REASON_CPUID:
7008 if (kvm_register_read(vcpu, VCPU_REGS_RAX) == 0xa)
7009 return 0;
7010 return 1;
7011 case EXIT_REASON_HLT:
7012 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
7013 case EXIT_REASON_INVD:
7014 return 1;
7015 case EXIT_REASON_INVLPG:
7016 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
7017 case EXIT_REASON_RDPMC:
7018 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
7019 case EXIT_REASON_RDTSC:
7020 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
7021 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
7022 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
7023 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
7024 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
7025 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
7026 case EXIT_REASON_INVEPT:
7027 /*
7028 * VMX instructions trap unconditionally. This allows L1 to
7029 * emulate them for its L2 guest, i.e., allows 3-level nesting!
7030 */
7031 return 1;
7032 case EXIT_REASON_CR_ACCESS:
7033 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
7034 case EXIT_REASON_DR_ACCESS:
7035 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
7036 case EXIT_REASON_IO_INSTRUCTION:
7037 return nested_vmx_exit_handled_io(vcpu, vmcs12);
7038 case EXIT_REASON_MSR_READ:
7039 case EXIT_REASON_MSR_WRITE:
7040 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
7041 case EXIT_REASON_INVALID_STATE:
7042 return 1;
7043 case EXIT_REASON_MWAIT_INSTRUCTION:
7044 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
7045 case EXIT_REASON_MONITOR_INSTRUCTION:
7046 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
7047 case EXIT_REASON_PAUSE_INSTRUCTION:
7048 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
7049 nested_cpu_has2(vmcs12,
7050 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
7051 case EXIT_REASON_MCE_DURING_VMENTRY:
7052 return 0;
7053 case EXIT_REASON_TPR_BELOW_THRESHOLD:
7054 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
7055 case EXIT_REASON_APIC_ACCESS:
7056 return nested_cpu_has2(vmcs12,
7057 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
7058 case EXIT_REASON_EPT_VIOLATION:
7059 /*
7060 * L0 always deals with the EPT violation. If nested EPT is
7061 * used, and the nested mmu code discovers that the address is
7062 * missing in the guest EPT table (EPT12), the EPT violation
7063 * will be injected with nested_ept_inject_page_fault()
7064 */
7065 return 0;
7066 case EXIT_REASON_EPT_MISCONFIG:
7067 /*
7068 * L2 never uses directly L1's EPT, but rather L0's own EPT
7069 * table (shadow on EPT) or a merged EPT table that L0 built
7070 * (EPT on EPT). So any problems with the structure of the
7071 * table is L0's fault.
7072 */
7073 return 0;
7074 case EXIT_REASON_WBINVD:
7075 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
7076 case EXIT_REASON_XSETBV:
7077 return 1;
7078 default:
7079 return 1;
7080 }
7081 }
7082
7083 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
7084 {
7085 *info1 = vmcs_readl(EXIT_QUALIFICATION);
7086 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
7087 }
7088
7089 /*
7090 * The guest has exited. See if we can fix it or if we need userspace
7091 * assistance.
7092 */
7093 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
7094 {
7095 struct vcpu_vmx *vmx = to_vmx(vcpu);
7096 u32 exit_reason = vmx->exit_reason;
7097 u32 vectoring_info = vmx->idt_vectoring_info;
7098
7099 /* If guest state is invalid, start emulating */
7100 if (vmx->emulation_required)
7101 return handle_invalid_guest_state(vcpu);
7102
7103 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
7104 nested_vmx_vmexit(vcpu, exit_reason,
7105 vmcs_read32(VM_EXIT_INTR_INFO),
7106 vmcs_readl(EXIT_QUALIFICATION));
7107 return 1;
7108 }
7109
7110 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
7111 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
7112 vcpu->run->fail_entry.hardware_entry_failure_reason
7113 = exit_reason;
7114 return 0;
7115 }
7116
7117 if (unlikely(vmx->fail)) {
7118 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
7119 vcpu->run->fail_entry.hardware_entry_failure_reason
7120 = vmcs_read32(VM_INSTRUCTION_ERROR);
7121 return 0;
7122 }
7123
7124 /*
7125 * Note:
7126 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
7127 * delivery event since it indicates guest is accessing MMIO.
7128 * The vm-exit can be triggered again after return to guest that
7129 * will cause infinite loop.
7130 */
7131 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
7132 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
7133 exit_reason != EXIT_REASON_EPT_VIOLATION &&
7134 exit_reason != EXIT_REASON_TASK_SWITCH)) {
7135 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7136 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
7137 vcpu->run->internal.ndata = 2;
7138 vcpu->run->internal.data[0] = vectoring_info;
7139 vcpu->run->internal.data[1] = exit_reason;
7140 return 0;
7141 }
7142
7143 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
7144 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
7145 get_vmcs12(vcpu))))) {
7146 if (vmx_interrupt_allowed(vcpu)) {
7147 vmx->soft_vnmi_blocked = 0;
7148 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
7149 vcpu->arch.nmi_pending) {
7150 /*
7151 * This CPU don't support us in finding the end of an
7152 * NMI-blocked window if the guest runs with IRQs
7153 * disabled. So we pull the trigger after 1 s of
7154 * futile waiting, but inform the user about this.
7155 */
7156 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
7157 "state on VCPU %d after 1 s timeout\n",
7158 __func__, vcpu->vcpu_id);
7159 vmx->soft_vnmi_blocked = 0;
7160 }
7161 }
7162
7163 if (exit_reason < kvm_vmx_max_exit_handlers
7164 && kvm_vmx_exit_handlers[exit_reason])
7165 return kvm_vmx_exit_handlers[exit_reason](vcpu);
7166 else {
7167 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
7168 vcpu->run->hw.hardware_exit_reason = exit_reason;
7169 }
7170 return 0;
7171 }
7172
7173 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
7174 {
7175 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7176
7177 if (is_guest_mode(vcpu) &&
7178 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
7179 return;
7180
7181 if (irr == -1 || tpr < irr) {
7182 vmcs_write32(TPR_THRESHOLD, 0);
7183 return;
7184 }
7185
7186 vmcs_write32(TPR_THRESHOLD, irr);
7187 }
7188
7189 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
7190 {
7191 u32 sec_exec_control;
7192
7193 /*
7194 * There is not point to enable virtualize x2apic without enable
7195 * apicv
7196 */
7197 if (!cpu_has_vmx_virtualize_x2apic_mode() ||
7198 !vmx_vm_has_apicv(vcpu->kvm))
7199 return;
7200
7201 if (!vm_need_tpr_shadow(vcpu->kvm))
7202 return;
7203
7204 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7205
7206 if (set) {
7207 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7208 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
7209 } else {
7210 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
7211 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7212 }
7213 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
7214
7215 vmx_set_msr_bitmap(vcpu);
7216 }
7217
7218 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
7219 {
7220 struct vcpu_vmx *vmx = to_vmx(vcpu);
7221
7222 /*
7223 * Currently we do not handle the nested case where L2 has an
7224 * APIC access page of its own; that page is still pinned.
7225 * Hence, we skip the case where the VCPU is in guest mode _and_
7226 * L1 prepared an APIC access page for L2.
7227 *
7228 * For the case where L1 and L2 share the same APIC access page
7229 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
7230 * in the vmcs12), this function will only update either the vmcs01
7231 * or the vmcs02. If the former, the vmcs02 will be updated by
7232 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
7233 * the next L2->L1 exit.
7234 */
7235 if (!is_guest_mode(vcpu) ||
7236 !nested_cpu_has2(vmx->nested.current_vmcs12,
7237 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
7238 vmcs_write64(APIC_ACCESS_ADDR, hpa);
7239 }
7240
7241 static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
7242 {
7243 u16 status;
7244 u8 old;
7245
7246 if (!vmx_vm_has_apicv(kvm))
7247 return;
7248
7249 if (isr == -1)
7250 isr = 0;
7251
7252 status = vmcs_read16(GUEST_INTR_STATUS);
7253 old = status >> 8;
7254 if (isr != old) {
7255 status &= 0xff;
7256 status |= isr << 8;
7257 vmcs_write16(GUEST_INTR_STATUS, status);
7258 }
7259 }
7260
7261 static void vmx_set_rvi(int vector)
7262 {
7263 u16 status;
7264 u8 old;
7265
7266 status = vmcs_read16(GUEST_INTR_STATUS);
7267 old = (u8)status & 0xff;
7268 if ((u8)vector != old) {
7269 status &= ~0xff;
7270 status |= (u8)vector;
7271 vmcs_write16(GUEST_INTR_STATUS, status);
7272 }
7273 }
7274
7275 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
7276 {
7277 if (max_irr == -1)
7278 return;
7279
7280 /*
7281 * If a vmexit is needed, vmx_check_nested_events handles it.
7282 */
7283 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
7284 return;
7285
7286 if (!is_guest_mode(vcpu)) {
7287 vmx_set_rvi(max_irr);
7288 return;
7289 }
7290
7291 /*
7292 * Fall back to pre-APICv interrupt injection since L2
7293 * is run without virtual interrupt delivery.
7294 */
7295 if (!kvm_event_needs_reinjection(vcpu) &&
7296 vmx_interrupt_allowed(vcpu)) {
7297 kvm_queue_interrupt(vcpu, max_irr, false);
7298 vmx_inject_irq(vcpu);
7299 }
7300 }
7301
7302 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
7303 {
7304 if (!vmx_vm_has_apicv(vcpu->kvm))
7305 return;
7306
7307 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
7308 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
7309 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
7310 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
7311 }
7312
7313 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
7314 {
7315 u32 exit_intr_info;
7316
7317 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
7318 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
7319 return;
7320
7321 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7322 exit_intr_info = vmx->exit_intr_info;
7323
7324 /* Handle machine checks before interrupts are enabled */
7325 if (is_machine_check(exit_intr_info))
7326 kvm_machine_check();
7327
7328 /* We need to handle NMIs before interrupts are enabled */
7329 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
7330 (exit_intr_info & INTR_INFO_VALID_MASK)) {
7331 kvm_before_handle_nmi(&vmx->vcpu);
7332 asm("int $2");
7333 kvm_after_handle_nmi(&vmx->vcpu);
7334 }
7335 }
7336
7337 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
7338 {
7339 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7340
7341 /*
7342 * If external interrupt exists, IF bit is set in rflags/eflags on the
7343 * interrupt stack frame, and interrupt will be enabled on a return
7344 * from interrupt handler.
7345 */
7346 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
7347 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
7348 unsigned int vector;
7349 unsigned long entry;
7350 gate_desc *desc;
7351 struct vcpu_vmx *vmx = to_vmx(vcpu);
7352 #ifdef CONFIG_X86_64
7353 unsigned long tmp;
7354 #endif
7355
7356 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7357 desc = (gate_desc *)vmx->host_idt_base + vector;
7358 entry = gate_offset(*desc);
7359 asm volatile(
7360 #ifdef CONFIG_X86_64
7361 "mov %%" _ASM_SP ", %[sp]\n\t"
7362 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
7363 "push $%c[ss]\n\t"
7364 "push %[sp]\n\t"
7365 #endif
7366 "pushf\n\t"
7367 "orl $0x200, (%%" _ASM_SP ")\n\t"
7368 __ASM_SIZE(push) " $%c[cs]\n\t"
7369 "call *%[entry]\n\t"
7370 :
7371 #ifdef CONFIG_X86_64
7372 [sp]"=&r"(tmp)
7373 #endif
7374 :
7375 [entry]"r"(entry),
7376 [ss]"i"(__KERNEL_DS),
7377 [cs]"i"(__KERNEL_CS)
7378 );
7379 } else
7380 local_irq_enable();
7381 }
7382
7383 static bool vmx_mpx_supported(void)
7384 {
7385 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
7386 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
7387 }
7388
7389 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7390 {
7391 u32 exit_intr_info;
7392 bool unblock_nmi;
7393 u8 vector;
7394 bool idtv_info_valid;
7395
7396 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7397
7398 if (cpu_has_virtual_nmis()) {
7399 if (vmx->nmi_known_unmasked)
7400 return;
7401 /*
7402 * Can't use vmx->exit_intr_info since we're not sure what
7403 * the exit reason is.
7404 */
7405 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7406 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7407 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7408 /*
7409 * SDM 3: 27.7.1.2 (September 2008)
7410 * Re-set bit "block by NMI" before VM entry if vmexit caused by
7411 * a guest IRET fault.
7412 * SDM 3: 23.2.2 (September 2008)
7413 * Bit 12 is undefined in any of the following cases:
7414 * If the VM exit sets the valid bit in the IDT-vectoring
7415 * information field.
7416 * If the VM exit is due to a double fault.
7417 */
7418 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7419 vector != DF_VECTOR && !idtv_info_valid)
7420 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7421 GUEST_INTR_STATE_NMI);
7422 else
7423 vmx->nmi_known_unmasked =
7424 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7425 & GUEST_INTR_STATE_NMI);
7426 } else if (unlikely(vmx->soft_vnmi_blocked))
7427 vmx->vnmi_blocked_time +=
7428 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
7429 }
7430
7431 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7432 u32 idt_vectoring_info,
7433 int instr_len_field,
7434 int error_code_field)
7435 {
7436 u8 vector;
7437 int type;
7438 bool idtv_info_valid;
7439
7440 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7441
7442 vcpu->arch.nmi_injected = false;
7443 kvm_clear_exception_queue(vcpu);
7444 kvm_clear_interrupt_queue(vcpu);
7445
7446 if (!idtv_info_valid)
7447 return;
7448
7449 kvm_make_request(KVM_REQ_EVENT, vcpu);
7450
7451 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7452 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7453
7454 switch (type) {
7455 case INTR_TYPE_NMI_INTR:
7456 vcpu->arch.nmi_injected = true;
7457 /*
7458 * SDM 3: 27.7.1.2 (September 2008)
7459 * Clear bit "block by NMI" before VM entry if a NMI
7460 * delivery faulted.
7461 */
7462 vmx_set_nmi_mask(vcpu, false);
7463 break;
7464 case INTR_TYPE_SOFT_EXCEPTION:
7465 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7466 /* fall through */
7467 case INTR_TYPE_HARD_EXCEPTION:
7468 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
7469 u32 err = vmcs_read32(error_code_field);
7470 kvm_requeue_exception_e(vcpu, vector, err);
7471 } else
7472 kvm_requeue_exception(vcpu, vector);
7473 break;
7474 case INTR_TYPE_SOFT_INTR:
7475 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7476 /* fall through */
7477 case INTR_TYPE_EXT_INTR:
7478 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7479 break;
7480 default:
7481 break;
7482 }
7483 }
7484
7485 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7486 {
7487 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7488 VM_EXIT_INSTRUCTION_LEN,
7489 IDT_VECTORING_ERROR_CODE);
7490 }
7491
7492 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7493 {
7494 __vmx_complete_interrupts(vcpu,
7495 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7496 VM_ENTRY_INSTRUCTION_LEN,
7497 VM_ENTRY_EXCEPTION_ERROR_CODE);
7498
7499 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7500 }
7501
7502 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7503 {
7504 int i, nr_msrs;
7505 struct perf_guest_switch_msr *msrs;
7506
7507 msrs = perf_guest_get_msrs(&nr_msrs);
7508
7509 if (!msrs)
7510 return;
7511
7512 for (i = 0; i < nr_msrs; i++)
7513 if (msrs[i].host == msrs[i].guest)
7514 clear_atomic_switch_msr(vmx, msrs[i].msr);
7515 else
7516 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7517 msrs[i].host);
7518 }
7519
7520 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
7521 {
7522 struct vcpu_vmx *vmx = to_vmx(vcpu);
7523 unsigned long debugctlmsr, cr4;
7524
7525 /* Record the guest's net vcpu time for enforced NMI injections. */
7526 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
7527 vmx->entry_time = ktime_get();
7528
7529 /* Don't enter VMX if guest state is invalid, let the exit handler
7530 start emulation until we arrive back to a valid state */
7531 if (vmx->emulation_required)
7532 return;
7533
7534 if (vmx->ple_window_dirty) {
7535 vmx->ple_window_dirty = false;
7536 vmcs_write32(PLE_WINDOW, vmx->ple_window);
7537 }
7538
7539 if (vmx->nested.sync_shadow_vmcs) {
7540 copy_vmcs12_to_shadow(vmx);
7541 vmx->nested.sync_shadow_vmcs = false;
7542 }
7543
7544 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
7545 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7546 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
7547 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7548
7549 cr4 = read_cr4();
7550 if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
7551 vmcs_writel(HOST_CR4, cr4);
7552 vmx->host_state.vmcs_host_cr4 = cr4;
7553 }
7554
7555 /* When single-stepping over STI and MOV SS, we must clear the
7556 * corresponding interruptibility bits in the guest state. Otherwise
7557 * vmentry fails as it then expects bit 14 (BS) in pending debug
7558 * exceptions being set, but that's not correct for the guest debugging
7559 * case. */
7560 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7561 vmx_set_interrupt_shadow(vcpu, 0);
7562
7563 atomic_switch_perf_msrs(vmx);
7564 debugctlmsr = get_debugctlmsr();
7565
7566 vmx->__launched = vmx->loaded_vmcs->launched;
7567 asm(
7568 /* Store host registers */
7569 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
7570 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
7571 "push %%" _ASM_CX " \n\t"
7572 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
7573 "je 1f \n\t"
7574 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
7575 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
7576 "1: \n\t"
7577 /* Reload cr2 if changed */
7578 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
7579 "mov %%cr2, %%" _ASM_DX " \n\t"
7580 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
7581 "je 2f \n\t"
7582 "mov %%" _ASM_AX", %%cr2 \n\t"
7583 "2: \n\t"
7584 /* Check if vmlaunch of vmresume is needed */
7585 "cmpl $0, %c[launched](%0) \n\t"
7586 /* Load guest registers. Don't clobber flags. */
7587 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
7588 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
7589 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
7590 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
7591 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
7592 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
7593 #ifdef CONFIG_X86_64
7594 "mov %c[r8](%0), %%r8 \n\t"
7595 "mov %c[r9](%0), %%r9 \n\t"
7596 "mov %c[r10](%0), %%r10 \n\t"
7597 "mov %c[r11](%0), %%r11 \n\t"
7598 "mov %c[r12](%0), %%r12 \n\t"
7599 "mov %c[r13](%0), %%r13 \n\t"
7600 "mov %c[r14](%0), %%r14 \n\t"
7601 "mov %c[r15](%0), %%r15 \n\t"
7602 #endif
7603 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
7604
7605 /* Enter guest mode */
7606 "jne 1f \n\t"
7607 __ex(ASM_VMX_VMLAUNCH) "\n\t"
7608 "jmp 2f \n\t"
7609 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
7610 "2: "
7611 /* Save guest registers, load host registers, keep flags */
7612 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
7613 "pop %0 \n\t"
7614 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
7615 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
7616 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
7617 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
7618 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
7619 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
7620 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
7621 #ifdef CONFIG_X86_64
7622 "mov %%r8, %c[r8](%0) \n\t"
7623 "mov %%r9, %c[r9](%0) \n\t"
7624 "mov %%r10, %c[r10](%0) \n\t"
7625 "mov %%r11, %c[r11](%0) \n\t"
7626 "mov %%r12, %c[r12](%0) \n\t"
7627 "mov %%r13, %c[r13](%0) \n\t"
7628 "mov %%r14, %c[r14](%0) \n\t"
7629 "mov %%r15, %c[r15](%0) \n\t"
7630 #endif
7631 "mov %%cr2, %%" _ASM_AX " \n\t"
7632 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
7633
7634 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
7635 "setbe %c[fail](%0) \n\t"
7636 ".pushsection .rodata \n\t"
7637 ".global vmx_return \n\t"
7638 "vmx_return: " _ASM_PTR " 2b \n\t"
7639 ".popsection"
7640 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
7641 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
7642 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
7643 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
7644 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
7645 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
7646 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
7647 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
7648 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
7649 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
7650 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
7651 #ifdef CONFIG_X86_64
7652 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
7653 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
7654 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
7655 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
7656 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
7657 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
7658 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
7659 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
7660 #endif
7661 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
7662 [wordsize]"i"(sizeof(ulong))
7663 : "cc", "memory"
7664 #ifdef CONFIG_X86_64
7665 , "rax", "rbx", "rdi", "rsi"
7666 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
7667 #else
7668 , "eax", "ebx", "edi", "esi"
7669 #endif
7670 );
7671
7672 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7673 if (debugctlmsr)
7674 update_debugctlmsr(debugctlmsr);
7675
7676 #ifndef CONFIG_X86_64
7677 /*
7678 * The sysexit path does not restore ds/es, so we must set them to
7679 * a reasonable value ourselves.
7680 *
7681 * We can't defer this to vmx_load_host_state() since that function
7682 * may be executed in interrupt context, which saves and restore segments
7683 * around it, nullifying its effect.
7684 */
7685 loadsegment(ds, __USER_DS);
7686 loadsegment(es, __USER_DS);
7687 #endif
7688
7689 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
7690 | (1 << VCPU_EXREG_RFLAGS)
7691 | (1 << VCPU_EXREG_PDPTR)
7692 | (1 << VCPU_EXREG_SEGMENTS)
7693 | (1 << VCPU_EXREG_CR3));
7694 vcpu->arch.regs_dirty = 0;
7695
7696 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7697
7698 vmx->loaded_vmcs->launched = 1;
7699
7700 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
7701 trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
7702
7703 /*
7704 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
7705 * we did not inject a still-pending event to L1 now because of
7706 * nested_run_pending, we need to re-enable this bit.
7707 */
7708 if (vmx->nested.nested_run_pending)
7709 kvm_make_request(KVM_REQ_EVENT, vcpu);
7710
7711 vmx->nested.nested_run_pending = 0;
7712
7713 vmx_complete_atomic_exit(vmx);
7714 vmx_recover_nmi_blocking(vmx);
7715 vmx_complete_interrupts(vmx);
7716 }
7717
7718 static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
7719 {
7720 struct vcpu_vmx *vmx = to_vmx(vcpu);
7721 int cpu;
7722
7723 if (vmx->loaded_vmcs == &vmx->vmcs01)
7724 return;
7725
7726 cpu = get_cpu();
7727 vmx->loaded_vmcs = &vmx->vmcs01;
7728 vmx_vcpu_put(vcpu);
7729 vmx_vcpu_load(vcpu, cpu);
7730 vcpu->cpu = cpu;
7731 put_cpu();
7732 }
7733
7734 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
7735 {
7736 struct vcpu_vmx *vmx = to_vmx(vcpu);
7737
7738 free_vpid(vmx);
7739 leave_guest_mode(vcpu);
7740 vmx_load_vmcs01(vcpu);
7741 free_nested(vmx);
7742 free_loaded_vmcs(vmx->loaded_vmcs);
7743 kfree(vmx->guest_msrs);
7744 kvm_vcpu_uninit(vcpu);
7745 kmem_cache_free(kvm_vcpu_cache, vmx);
7746 }
7747
7748 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
7749 {
7750 int err;
7751 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
7752 int cpu;
7753
7754 if (!vmx)
7755 return ERR_PTR(-ENOMEM);
7756
7757 allocate_vpid(vmx);
7758
7759 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
7760 if (err)
7761 goto free_vcpu;
7762
7763 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
7764 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
7765 > PAGE_SIZE);
7766
7767 err = -ENOMEM;
7768 if (!vmx->guest_msrs) {
7769 goto uninit_vcpu;
7770 }
7771
7772 vmx->loaded_vmcs = &vmx->vmcs01;
7773 vmx->loaded_vmcs->vmcs = alloc_vmcs();
7774 if (!vmx->loaded_vmcs->vmcs)
7775 goto free_msrs;
7776 if (!vmm_exclusive)
7777 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
7778 loaded_vmcs_init(vmx->loaded_vmcs);
7779 if (!vmm_exclusive)
7780 kvm_cpu_vmxoff();
7781
7782 cpu = get_cpu();
7783 vmx_vcpu_load(&vmx->vcpu, cpu);
7784 vmx->vcpu.cpu = cpu;
7785 err = vmx_vcpu_setup(vmx);
7786 vmx_vcpu_put(&vmx->vcpu);
7787 put_cpu();
7788 if (err)
7789 goto free_vmcs;
7790 if (vm_need_virtualize_apic_accesses(kvm)) {
7791 err = alloc_apic_access_page(kvm);
7792 if (err)
7793 goto free_vmcs;
7794 }
7795
7796 if (enable_ept) {
7797 if (!kvm->arch.ept_identity_map_addr)
7798 kvm->arch.ept_identity_map_addr =
7799 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
7800 err = init_rmode_identity_map(kvm);
7801 if (err)
7802 goto free_vmcs;
7803 }
7804
7805 vmx->nested.current_vmptr = -1ull;
7806 vmx->nested.current_vmcs12 = NULL;
7807
7808 return &vmx->vcpu;
7809
7810 free_vmcs:
7811 free_loaded_vmcs(vmx->loaded_vmcs);
7812 free_msrs:
7813 kfree(vmx->guest_msrs);
7814 uninit_vcpu:
7815 kvm_vcpu_uninit(&vmx->vcpu);
7816 free_vcpu:
7817 free_vpid(vmx);
7818 kmem_cache_free(kvm_vcpu_cache, vmx);
7819 return ERR_PTR(err);
7820 }
7821
7822 static void __init vmx_check_processor_compat(void *rtn)
7823 {
7824 struct vmcs_config vmcs_conf;
7825
7826 *(int *)rtn = 0;
7827 if (setup_vmcs_config(&vmcs_conf) < 0)
7828 *(int *)rtn = -EIO;
7829 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7830 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7831 smp_processor_id());
7832 *(int *)rtn = -EIO;
7833 }
7834 }
7835
7836 static int get_ept_level(void)
7837 {
7838 return VMX_EPT_DEFAULT_GAW + 1;
7839 }
7840
7841 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7842 {
7843 u64 ret;
7844
7845 /* For VT-d and EPT combination
7846 * 1. MMIO: always map as UC
7847 * 2. EPT with VT-d:
7848 * a. VT-d without snooping control feature: can't guarantee the
7849 * result, try to trust guest.
7850 * b. VT-d with snooping control feature: snooping control feature of
7851 * VT-d engine can guarantee the cache correctness. Just set it
7852 * to WB to keep consistent with host. So the same as item 3.
7853 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
7854 * consistent with host MTRR
7855 */
7856 if (is_mmio)
7857 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7858 else if (kvm_arch_has_noncoherent_dma(vcpu->kvm))
7859 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
7860 VMX_EPT_MT_EPTE_SHIFT;
7861 else
7862 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
7863 | VMX_EPT_IPAT_BIT;
7864
7865 return ret;
7866 }
7867
7868 static int vmx_get_lpage_level(void)
7869 {
7870 if (enable_ept && !cpu_has_vmx_ept_1g_page())
7871 return PT_DIRECTORY_LEVEL;
7872 else
7873 /* For shadow and EPT supported 1GB page */
7874 return PT_PDPE_LEVEL;
7875 }
7876
7877 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7878 {
7879 struct kvm_cpuid_entry2 *best;
7880 struct vcpu_vmx *vmx = to_vmx(vcpu);
7881 u32 exec_control;
7882
7883 vmx->rdtscp_enabled = false;
7884 if (vmx_rdtscp_supported()) {
7885 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7886 if (exec_control & SECONDARY_EXEC_RDTSCP) {
7887 best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
7888 if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
7889 vmx->rdtscp_enabled = true;
7890 else {
7891 exec_control &= ~SECONDARY_EXEC_RDTSCP;
7892 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7893 exec_control);
7894 }
7895 }
7896 }
7897
7898 /* Exposing INVPCID only when PCID is exposed */
7899 best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7900 if (vmx_invpcid_supported() &&
7901 best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
7902 guest_cpuid_has_pcid(vcpu)) {
7903 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7904 exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
7905 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7906 exec_control);
7907 } else {
7908 if (cpu_has_secondary_exec_ctrls()) {
7909 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7910 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
7911 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7912 exec_control);
7913 }
7914 if (best)
7915 best->ebx &= ~bit(X86_FEATURE_INVPCID);
7916 }
7917 }
7918
7919 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
7920 {
7921 if (func == 1 && nested)
7922 entry->ecx |= bit(X86_FEATURE_VMX);
7923 }
7924
7925 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
7926 struct x86_exception *fault)
7927 {
7928 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7929 u32 exit_reason;
7930
7931 if (fault->error_code & PFERR_RSVD_MASK)
7932 exit_reason = EXIT_REASON_EPT_MISCONFIG;
7933 else
7934 exit_reason = EXIT_REASON_EPT_VIOLATION;
7935 nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
7936 vmcs12->guest_physical_address = fault->address;
7937 }
7938
7939 /* Callbacks for nested_ept_init_mmu_context: */
7940
7941 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
7942 {
7943 /* return the page table to be shadowed - in our case, EPT12 */
7944 return get_vmcs12(vcpu)->ept_pointer;
7945 }
7946
7947 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
7948 {
7949 kvm_init_shadow_ept_mmu(vcpu, &vcpu->arch.mmu,
7950 nested_vmx_ept_caps & VMX_EPT_EXECUTE_ONLY_BIT);
7951
7952 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
7953 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
7954 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
7955
7956 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
7957 }
7958
7959 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
7960 {
7961 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
7962 }
7963
7964 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
7965 struct x86_exception *fault)
7966 {
7967 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7968
7969 WARN_ON(!is_guest_mode(vcpu));
7970
7971 /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
7972 if (vmcs12->exception_bitmap & (1u << PF_VECTOR))
7973 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
7974 vmcs_read32(VM_EXIT_INTR_INFO),
7975 vmcs_readl(EXIT_QUALIFICATION));
7976 else
7977 kvm_inject_page_fault(vcpu, fault);
7978 }
7979
7980 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
7981 struct vmcs12 *vmcs12)
7982 {
7983 struct vcpu_vmx *vmx = to_vmx(vcpu);
7984
7985 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
7986 /* TODO: Also verify bits beyond physical address width are 0 */
7987 if (!PAGE_ALIGNED(vmcs12->apic_access_addr))
7988 return false;
7989
7990 /*
7991 * Translate L1 physical address to host physical
7992 * address for vmcs02. Keep the page pinned, so this
7993 * physical address remains valid. We keep a reference
7994 * to it so we can release it later.
7995 */
7996 if (vmx->nested.apic_access_page) /* shouldn't happen */
7997 nested_release_page(vmx->nested.apic_access_page);
7998 vmx->nested.apic_access_page =
7999 nested_get_page(vcpu, vmcs12->apic_access_addr);
8000 }
8001
8002 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
8003 /* TODO: Also verify bits beyond physical address width are 0 */
8004 if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr))
8005 return false;
8006
8007 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
8008 nested_release_page(vmx->nested.virtual_apic_page);
8009 vmx->nested.virtual_apic_page =
8010 nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
8011
8012 /*
8013 * Failing the vm entry is _not_ what the processor does
8014 * but it's basically the only possibility we have.
8015 * We could still enter the guest if CR8 load exits are
8016 * enabled, CR8 store exits are enabled, and virtualize APIC
8017 * access is disabled; in this case the processor would never
8018 * use the TPR shadow and we could simply clear the bit from
8019 * the execution control. But such a configuration is useless,
8020 * so let's keep the code simple.
8021 */
8022 if (!vmx->nested.virtual_apic_page)
8023 return false;
8024 }
8025
8026 return true;
8027 }
8028
8029 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
8030 {
8031 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
8032 struct vcpu_vmx *vmx = to_vmx(vcpu);
8033
8034 if (vcpu->arch.virtual_tsc_khz == 0)
8035 return;
8036
8037 /* Make sure short timeouts reliably trigger an immediate vmexit.
8038 * hrtimer_start does not guarantee this. */
8039 if (preemption_timeout <= 1) {
8040 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
8041 return;
8042 }
8043
8044 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
8045 preemption_timeout *= 1000000;
8046 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
8047 hrtimer_start(&vmx->nested.preemption_timer,
8048 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
8049 }
8050
8051 /*
8052 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
8053 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
8054 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
8055 * guest in a way that will both be appropriate to L1's requests, and our
8056 * needs. In addition to modifying the active vmcs (which is vmcs02), this
8057 * function also has additional necessary side-effects, like setting various
8058 * vcpu->arch fields.
8059 */
8060 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8061 {
8062 struct vcpu_vmx *vmx = to_vmx(vcpu);
8063 u32 exec_control;
8064
8065 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
8066 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
8067 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
8068 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
8069 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
8070 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
8071 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
8072 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
8073 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
8074 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
8075 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
8076 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
8077 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
8078 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
8079 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
8080 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
8081 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
8082 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
8083 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
8084 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
8085 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
8086 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
8087 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
8088 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
8089 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
8090 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
8091 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
8092 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
8093 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
8094 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
8095 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
8096 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
8097 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
8098 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
8099 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
8100 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
8101
8102 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
8103 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
8104 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
8105 } else {
8106 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
8107 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
8108 }
8109 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
8110 vmcs12->vm_entry_intr_info_field);
8111 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
8112 vmcs12->vm_entry_exception_error_code);
8113 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
8114 vmcs12->vm_entry_instruction_len);
8115 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
8116 vmcs12->guest_interruptibility_info);
8117 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
8118 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
8119 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
8120 vmcs12->guest_pending_dbg_exceptions);
8121 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
8122 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
8123
8124 vmcs_write64(VMCS_LINK_POINTER, -1ull);
8125
8126 exec_control = vmcs12->pin_based_vm_exec_control;
8127 exec_control |= vmcs_config.pin_based_exec_ctrl;
8128 exec_control &= ~(PIN_BASED_VMX_PREEMPTION_TIMER |
8129 PIN_BASED_POSTED_INTR);
8130 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
8131
8132 vmx->nested.preemption_timer_expired = false;
8133 if (nested_cpu_has_preemption_timer(vmcs12))
8134 vmx_start_preemption_timer(vcpu);
8135
8136 /*
8137 * Whether page-faults are trapped is determined by a combination of
8138 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
8139 * If enable_ept, L0 doesn't care about page faults and we should
8140 * set all of these to L1's desires. However, if !enable_ept, L0 does
8141 * care about (at least some) page faults, and because it is not easy
8142 * (if at all possible?) to merge L0 and L1's desires, we simply ask
8143 * to exit on each and every L2 page fault. This is done by setting
8144 * MASK=MATCH=0 and (see below) EB.PF=1.
8145 * Note that below we don't need special code to set EB.PF beyond the
8146 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
8147 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
8148 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
8149 *
8150 * A problem with this approach (when !enable_ept) is that L1 may be
8151 * injected with more page faults than it asked for. This could have
8152 * caused problems, but in practice existing hypervisors don't care.
8153 * To fix this, we will need to emulate the PFEC checking (on the L1
8154 * page tables), using walk_addr(), when injecting PFs to L1.
8155 */
8156 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
8157 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
8158 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
8159 enable_ept ? vmcs12->page_fault_error_code_match : 0);
8160
8161 if (cpu_has_secondary_exec_ctrls()) {
8162 exec_control = vmx_secondary_exec_control(vmx);
8163 if (!vmx->rdtscp_enabled)
8164 exec_control &= ~SECONDARY_EXEC_RDTSCP;
8165 /* Take the following fields only from vmcs12 */
8166 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
8167 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
8168 SECONDARY_EXEC_APIC_REGISTER_VIRT);
8169 if (nested_cpu_has(vmcs12,
8170 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
8171 exec_control |= vmcs12->secondary_vm_exec_control;
8172
8173 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
8174 /*
8175 * If translation failed, no matter: This feature asks
8176 * to exit when accessing the given address, and if it
8177 * can never be accessed, this feature won't do
8178 * anything anyway.
8179 */
8180 if (!vmx->nested.apic_access_page)
8181 exec_control &=
8182 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8183 else
8184 vmcs_write64(APIC_ACCESS_ADDR,
8185 page_to_phys(vmx->nested.apic_access_page));
8186 } else if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm)) {
8187 exec_control |=
8188 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8189 kvm_vcpu_reload_apic_access_page(vcpu);
8190 }
8191
8192 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
8193 }
8194
8195
8196 /*
8197 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
8198 * Some constant fields are set here by vmx_set_constant_host_state().
8199 * Other fields are different per CPU, and will be set later when
8200 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
8201 */
8202 vmx_set_constant_host_state(vmx);
8203
8204 /*
8205 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
8206 * entry, but only if the current (host) sp changed from the value
8207 * we wrote last (vmx->host_rsp). This cache is no longer relevant
8208 * if we switch vmcs, and rather than hold a separate cache per vmcs,
8209 * here we just force the write to happen on entry.
8210 */
8211 vmx->host_rsp = 0;
8212
8213 exec_control = vmx_exec_control(vmx); /* L0's desires */
8214 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
8215 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
8216 exec_control &= ~CPU_BASED_TPR_SHADOW;
8217 exec_control |= vmcs12->cpu_based_vm_exec_control;
8218
8219 if (exec_control & CPU_BASED_TPR_SHADOW) {
8220 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
8221 page_to_phys(vmx->nested.virtual_apic_page));
8222 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
8223 }
8224
8225 /*
8226 * Merging of IO and MSR bitmaps not currently supported.
8227 * Rather, exit every time.
8228 */
8229 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
8230 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
8231 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
8232
8233 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
8234
8235 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
8236 * bitwise-or of what L1 wants to trap for L2, and what we want to
8237 * trap. Note that CR0.TS also needs updating - we do this later.
8238 */
8239 update_exception_bitmap(vcpu);
8240 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
8241 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
8242
8243 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
8244 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
8245 * bits are further modified by vmx_set_efer() below.
8246 */
8247 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
8248
8249 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
8250 * emulated by vmx_set_efer(), below.
8251 */
8252 vm_entry_controls_init(vmx,
8253 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
8254 ~VM_ENTRY_IA32E_MODE) |
8255 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
8256
8257 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
8258 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
8259 vcpu->arch.pat = vmcs12->guest_ia32_pat;
8260 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
8261 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
8262
8263
8264 set_cr4_guest_host_mask(vmx);
8265
8266 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
8267 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
8268
8269 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
8270 vmcs_write64(TSC_OFFSET,
8271 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
8272 else
8273 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
8274
8275 if (enable_vpid) {
8276 /*
8277 * Trivially support vpid by letting L2s share their parent
8278 * L1's vpid. TODO: move to a more elaborate solution, giving
8279 * each L2 its own vpid and exposing the vpid feature to L1.
8280 */
8281 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
8282 vmx_flush_tlb(vcpu);
8283 }
8284
8285 if (nested_cpu_has_ept(vmcs12)) {
8286 kvm_mmu_unload(vcpu);
8287 nested_ept_init_mmu_context(vcpu);
8288 }
8289
8290 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
8291 vcpu->arch.efer = vmcs12->guest_ia32_efer;
8292 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
8293 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
8294 else
8295 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
8296 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
8297 vmx_set_efer(vcpu, vcpu->arch.efer);
8298
8299 /*
8300 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
8301 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
8302 * The CR0_READ_SHADOW is what L2 should have expected to read given
8303 * the specifications by L1; It's not enough to take
8304 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
8305 * have more bits than L1 expected.
8306 */
8307 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
8308 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
8309
8310 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
8311 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
8312
8313 /* shadow page tables on either EPT or shadow page tables */
8314 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
8315 kvm_mmu_reset_context(vcpu);
8316
8317 if (!enable_ept)
8318 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
8319
8320 /*
8321 * L1 may access the L2's PDPTR, so save them to construct vmcs12
8322 */
8323 if (enable_ept) {
8324 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
8325 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
8326 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
8327 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
8328 }
8329
8330 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
8331 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
8332 }
8333
8334 /*
8335 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
8336 * for running an L2 nested guest.
8337 */
8338 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
8339 {
8340 struct vmcs12 *vmcs12;
8341 struct vcpu_vmx *vmx = to_vmx(vcpu);
8342 int cpu;
8343 struct loaded_vmcs *vmcs02;
8344 bool ia32e;
8345
8346 if (!nested_vmx_check_permission(vcpu) ||
8347 !nested_vmx_check_vmcs12(vcpu))
8348 return 1;
8349
8350 skip_emulated_instruction(vcpu);
8351 vmcs12 = get_vmcs12(vcpu);
8352
8353 if (enable_shadow_vmcs)
8354 copy_shadow_to_vmcs12(vmx);
8355
8356 /*
8357 * The nested entry process starts with enforcing various prerequisites
8358 * on vmcs12 as required by the Intel SDM, and act appropriately when
8359 * they fail: As the SDM explains, some conditions should cause the
8360 * instruction to fail, while others will cause the instruction to seem
8361 * to succeed, but return an EXIT_REASON_INVALID_STATE.
8362 * To speed up the normal (success) code path, we should avoid checking
8363 * for misconfigurations which will anyway be caught by the processor
8364 * when using the merged vmcs02.
8365 */
8366 if (vmcs12->launch_state == launch) {
8367 nested_vmx_failValid(vcpu,
8368 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
8369 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
8370 return 1;
8371 }
8372
8373 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
8374 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
8375 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8376 return 1;
8377 }
8378
8379 if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
8380 !PAGE_ALIGNED(vmcs12->msr_bitmap)) {
8381 /*TODO: Also verify bits beyond physical address width are 0*/
8382 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8383 return 1;
8384 }
8385
8386 if (!nested_get_vmcs12_pages(vcpu, vmcs12)) {
8387 /*TODO: Also verify bits beyond physical address width are 0*/
8388 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8389 return 1;
8390 }
8391
8392 if (vmcs12->vm_entry_msr_load_count > 0 ||
8393 vmcs12->vm_exit_msr_load_count > 0 ||
8394 vmcs12->vm_exit_msr_store_count > 0) {
8395 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
8396 __func__);
8397 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8398 return 1;
8399 }
8400
8401 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
8402 nested_vmx_true_procbased_ctls_low,
8403 nested_vmx_procbased_ctls_high) ||
8404 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
8405 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
8406 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
8407 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
8408 !vmx_control_verify(vmcs12->vm_exit_controls,
8409 nested_vmx_true_exit_ctls_low,
8410 nested_vmx_exit_ctls_high) ||
8411 !vmx_control_verify(vmcs12->vm_entry_controls,
8412 nested_vmx_true_entry_ctls_low,
8413 nested_vmx_entry_ctls_high))
8414 {
8415 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8416 return 1;
8417 }
8418
8419 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
8420 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
8421 nested_vmx_failValid(vcpu,
8422 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
8423 return 1;
8424 }
8425
8426 if (!nested_cr0_valid(vmcs12, vmcs12->guest_cr0) ||
8427 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
8428 nested_vmx_entry_failure(vcpu, vmcs12,
8429 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8430 return 1;
8431 }
8432 if (vmcs12->vmcs_link_pointer != -1ull) {
8433 nested_vmx_entry_failure(vcpu, vmcs12,
8434 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
8435 return 1;
8436 }
8437
8438 /*
8439 * If the load IA32_EFER VM-entry control is 1, the following checks
8440 * are performed on the field for the IA32_EFER MSR:
8441 * - Bits reserved in the IA32_EFER MSR must be 0.
8442 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
8443 * the IA-32e mode guest VM-exit control. It must also be identical
8444 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
8445 * CR0.PG) is 1.
8446 */
8447 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
8448 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
8449 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
8450 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
8451 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
8452 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
8453 nested_vmx_entry_failure(vcpu, vmcs12,
8454 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8455 return 1;
8456 }
8457 }
8458
8459 /*
8460 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
8461 * IA32_EFER MSR must be 0 in the field for that register. In addition,
8462 * the values of the LMA and LME bits in the field must each be that of
8463 * the host address-space size VM-exit control.
8464 */
8465 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
8466 ia32e = (vmcs12->vm_exit_controls &
8467 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
8468 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
8469 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
8470 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
8471 nested_vmx_entry_failure(vcpu, vmcs12,
8472 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8473 return 1;
8474 }
8475 }
8476
8477 /*
8478 * We're finally done with prerequisite checking, and can start with
8479 * the nested entry.
8480 */
8481
8482 vmcs02 = nested_get_current_vmcs02(vmx);
8483 if (!vmcs02)
8484 return -ENOMEM;
8485
8486 enter_guest_mode(vcpu);
8487
8488 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
8489
8490 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
8491 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
8492
8493 cpu = get_cpu();
8494 vmx->loaded_vmcs = vmcs02;
8495 vmx_vcpu_put(vcpu);
8496 vmx_vcpu_load(vcpu, cpu);
8497 vcpu->cpu = cpu;
8498 put_cpu();
8499
8500 vmx_segment_cache_clear(vmx);
8501
8502 vmcs12->launch_state = 1;
8503
8504 prepare_vmcs02(vcpu, vmcs12);
8505
8506 if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
8507 return kvm_emulate_halt(vcpu);
8508
8509 vmx->nested.nested_run_pending = 1;
8510
8511 /*
8512 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
8513 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
8514 * returned as far as L1 is concerned. It will only return (and set
8515 * the success flag) when L2 exits (see nested_vmx_vmexit()).
8516 */
8517 return 1;
8518 }
8519
8520 /*
8521 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
8522 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
8523 * This function returns the new value we should put in vmcs12.guest_cr0.
8524 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
8525 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
8526 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
8527 * didn't trap the bit, because if L1 did, so would L0).
8528 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
8529 * been modified by L2, and L1 knows it. So just leave the old value of
8530 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
8531 * isn't relevant, because if L0 traps this bit it can set it to anything.
8532 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
8533 * changed these bits, and therefore they need to be updated, but L0
8534 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
8535 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
8536 */
8537 static inline unsigned long
8538 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8539 {
8540 return
8541 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
8542 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
8543 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
8544 vcpu->arch.cr0_guest_owned_bits));
8545 }
8546
8547 static inline unsigned long
8548 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8549 {
8550 return
8551 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
8552 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
8553 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
8554 vcpu->arch.cr4_guest_owned_bits));
8555 }
8556
8557 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
8558 struct vmcs12 *vmcs12)
8559 {
8560 u32 idt_vectoring;
8561 unsigned int nr;
8562
8563 if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
8564 nr = vcpu->arch.exception.nr;
8565 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
8566
8567 if (kvm_exception_is_soft(nr)) {
8568 vmcs12->vm_exit_instruction_len =
8569 vcpu->arch.event_exit_inst_len;
8570 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
8571 } else
8572 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
8573
8574 if (vcpu->arch.exception.has_error_code) {
8575 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
8576 vmcs12->idt_vectoring_error_code =
8577 vcpu->arch.exception.error_code;
8578 }
8579
8580 vmcs12->idt_vectoring_info_field = idt_vectoring;
8581 } else if (vcpu->arch.nmi_injected) {
8582 vmcs12->idt_vectoring_info_field =
8583 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
8584 } else if (vcpu->arch.interrupt.pending) {
8585 nr = vcpu->arch.interrupt.nr;
8586 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
8587
8588 if (vcpu->arch.interrupt.soft) {
8589 idt_vectoring |= INTR_TYPE_SOFT_INTR;
8590 vmcs12->vm_entry_instruction_len =
8591 vcpu->arch.event_exit_inst_len;
8592 } else
8593 idt_vectoring |= INTR_TYPE_EXT_INTR;
8594
8595 vmcs12->idt_vectoring_info_field = idt_vectoring;
8596 }
8597 }
8598
8599 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
8600 {
8601 struct vcpu_vmx *vmx = to_vmx(vcpu);
8602
8603 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
8604 vmx->nested.preemption_timer_expired) {
8605 if (vmx->nested.nested_run_pending)
8606 return -EBUSY;
8607 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
8608 return 0;
8609 }
8610
8611 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
8612 if (vmx->nested.nested_run_pending ||
8613 vcpu->arch.interrupt.pending)
8614 return -EBUSY;
8615 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
8616 NMI_VECTOR | INTR_TYPE_NMI_INTR |
8617 INTR_INFO_VALID_MASK, 0);
8618 /*
8619 * The NMI-triggered VM exit counts as injection:
8620 * clear this one and block further NMIs.
8621 */
8622 vcpu->arch.nmi_pending = 0;
8623 vmx_set_nmi_mask(vcpu, true);
8624 return 0;
8625 }
8626
8627 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
8628 nested_exit_on_intr(vcpu)) {
8629 if (vmx->nested.nested_run_pending)
8630 return -EBUSY;
8631 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
8632 }
8633
8634 return 0;
8635 }
8636
8637 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
8638 {
8639 ktime_t remaining =
8640 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
8641 u64 value;
8642
8643 if (ktime_to_ns(remaining) <= 0)
8644 return 0;
8645
8646 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
8647 do_div(value, 1000000);
8648 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
8649 }
8650
8651 /*
8652 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
8653 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
8654 * and this function updates it to reflect the changes to the guest state while
8655 * L2 was running (and perhaps made some exits which were handled directly by L0
8656 * without going back to L1), and to reflect the exit reason.
8657 * Note that we do not have to copy here all VMCS fields, just those that
8658 * could have changed by the L2 guest or the exit - i.e., the guest-state and
8659 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
8660 * which already writes to vmcs12 directly.
8661 */
8662 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
8663 u32 exit_reason, u32 exit_intr_info,
8664 unsigned long exit_qualification)
8665 {
8666 /* update guest state fields: */
8667 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
8668 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
8669
8670 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
8671 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
8672 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
8673
8674 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
8675 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
8676 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
8677 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
8678 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
8679 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
8680 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
8681 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
8682 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
8683 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
8684 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
8685 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
8686 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
8687 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
8688 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
8689 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
8690 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
8691 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
8692 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
8693 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
8694 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
8695 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
8696 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
8697 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
8698 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
8699 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
8700 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
8701 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
8702 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
8703 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
8704 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
8705 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
8706 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
8707 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
8708 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
8709 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
8710
8711 vmcs12->guest_interruptibility_info =
8712 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
8713 vmcs12->guest_pending_dbg_exceptions =
8714 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
8715 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
8716 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
8717 else
8718 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
8719
8720 if (nested_cpu_has_preemption_timer(vmcs12)) {
8721 if (vmcs12->vm_exit_controls &
8722 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
8723 vmcs12->vmx_preemption_timer_value =
8724 vmx_get_preemption_timer_value(vcpu);
8725 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
8726 }
8727
8728 /*
8729 * In some cases (usually, nested EPT), L2 is allowed to change its
8730 * own CR3 without exiting. If it has changed it, we must keep it.
8731 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
8732 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
8733 *
8734 * Additionally, restore L2's PDPTR to vmcs12.
8735 */
8736 if (enable_ept) {
8737 vmcs12->guest_cr3 = vmcs_read64(GUEST_CR3);
8738 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
8739 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
8740 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
8741 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
8742 }
8743
8744 vmcs12->vm_entry_controls =
8745 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
8746 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
8747
8748 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
8749 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
8750 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
8751 }
8752
8753 /* TODO: These cannot have changed unless we have MSR bitmaps and
8754 * the relevant bit asks not to trap the change */
8755 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
8756 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
8757 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
8758 vmcs12->guest_ia32_efer = vcpu->arch.efer;
8759 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
8760 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
8761 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
8762 if (vmx_mpx_supported())
8763 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
8764
8765 /* update exit information fields: */
8766
8767 vmcs12->vm_exit_reason = exit_reason;
8768 vmcs12->exit_qualification = exit_qualification;
8769
8770 vmcs12->vm_exit_intr_info = exit_intr_info;
8771 if ((vmcs12->vm_exit_intr_info &
8772 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
8773 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
8774 vmcs12->vm_exit_intr_error_code =
8775 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
8776 vmcs12->idt_vectoring_info_field = 0;
8777 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
8778 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
8779
8780 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
8781 /* vm_entry_intr_info_field is cleared on exit. Emulate this
8782 * instead of reading the real value. */
8783 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
8784
8785 /*
8786 * Transfer the event that L0 or L1 may wanted to inject into
8787 * L2 to IDT_VECTORING_INFO_FIELD.
8788 */
8789 vmcs12_save_pending_event(vcpu, vmcs12);
8790 }
8791
8792 /*
8793 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
8794 * preserved above and would only end up incorrectly in L1.
8795 */
8796 vcpu->arch.nmi_injected = false;
8797 kvm_clear_exception_queue(vcpu);
8798 kvm_clear_interrupt_queue(vcpu);
8799 }
8800
8801 /*
8802 * A part of what we need to when the nested L2 guest exits and we want to
8803 * run its L1 parent, is to reset L1's guest state to the host state specified
8804 * in vmcs12.
8805 * This function is to be called not only on normal nested exit, but also on
8806 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
8807 * Failures During or After Loading Guest State").
8808 * This function should be called when the active VMCS is L1's (vmcs01).
8809 */
8810 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
8811 struct vmcs12 *vmcs12)
8812 {
8813 struct kvm_segment seg;
8814
8815 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
8816 vcpu->arch.efer = vmcs12->host_ia32_efer;
8817 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
8818 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
8819 else
8820 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
8821 vmx_set_efer(vcpu, vcpu->arch.efer);
8822
8823 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
8824 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
8825 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
8826 /*
8827 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
8828 * actually changed, because it depends on the current state of
8829 * fpu_active (which may have changed).
8830 * Note that vmx_set_cr0 refers to efer set above.
8831 */
8832 vmx_set_cr0(vcpu, vmcs12->host_cr0);
8833 /*
8834 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
8835 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
8836 * but we also need to update cr0_guest_host_mask and exception_bitmap.
8837 */
8838 update_exception_bitmap(vcpu);
8839 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
8840 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
8841
8842 /*
8843 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
8844 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
8845 */
8846 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
8847 kvm_set_cr4(vcpu, vmcs12->host_cr4);
8848
8849 nested_ept_uninit_mmu_context(vcpu);
8850
8851 kvm_set_cr3(vcpu, vmcs12->host_cr3);
8852 kvm_mmu_reset_context(vcpu);
8853
8854 if (!enable_ept)
8855 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
8856
8857 if (enable_vpid) {
8858 /*
8859 * Trivially support vpid by letting L2s share their parent
8860 * L1's vpid. TODO: move to a more elaborate solution, giving
8861 * each L2 its own vpid and exposing the vpid feature to L1.
8862 */
8863 vmx_flush_tlb(vcpu);
8864 }
8865
8866
8867 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
8868 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
8869 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
8870 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
8871 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
8872
8873 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
8874 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
8875 vmcs_write64(GUEST_BNDCFGS, 0);
8876
8877 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
8878 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
8879 vcpu->arch.pat = vmcs12->host_ia32_pat;
8880 }
8881 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8882 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
8883 vmcs12->host_ia32_perf_global_ctrl);
8884
8885 /* Set L1 segment info according to Intel SDM
8886 27.5.2 Loading Host Segment and Descriptor-Table Registers */
8887 seg = (struct kvm_segment) {
8888 .base = 0,
8889 .limit = 0xFFFFFFFF,
8890 .selector = vmcs12->host_cs_selector,
8891 .type = 11,
8892 .present = 1,
8893 .s = 1,
8894 .g = 1
8895 };
8896 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
8897 seg.l = 1;
8898 else
8899 seg.db = 1;
8900 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
8901 seg = (struct kvm_segment) {
8902 .base = 0,
8903 .limit = 0xFFFFFFFF,
8904 .type = 3,
8905 .present = 1,
8906 .s = 1,
8907 .db = 1,
8908 .g = 1
8909 };
8910 seg.selector = vmcs12->host_ds_selector;
8911 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
8912 seg.selector = vmcs12->host_es_selector;
8913 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
8914 seg.selector = vmcs12->host_ss_selector;
8915 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
8916 seg.selector = vmcs12->host_fs_selector;
8917 seg.base = vmcs12->host_fs_base;
8918 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
8919 seg.selector = vmcs12->host_gs_selector;
8920 seg.base = vmcs12->host_gs_base;
8921 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
8922 seg = (struct kvm_segment) {
8923 .base = vmcs12->host_tr_base,
8924 .limit = 0x67,
8925 .selector = vmcs12->host_tr_selector,
8926 .type = 11,
8927 .present = 1
8928 };
8929 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
8930
8931 kvm_set_dr(vcpu, 7, 0x400);
8932 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
8933 }
8934
8935 /*
8936 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
8937 * and modify vmcs12 to make it see what it would expect to see there if
8938 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
8939 */
8940 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
8941 u32 exit_intr_info,
8942 unsigned long exit_qualification)
8943 {
8944 struct vcpu_vmx *vmx = to_vmx(vcpu);
8945 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8946
8947 /* trying to cancel vmlaunch/vmresume is a bug */
8948 WARN_ON_ONCE(vmx->nested.nested_run_pending);
8949
8950 leave_guest_mode(vcpu);
8951 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
8952 exit_qualification);
8953
8954 vmx_load_vmcs01(vcpu);
8955
8956 if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
8957 && nested_exit_intr_ack_set(vcpu)) {
8958 int irq = kvm_cpu_get_interrupt(vcpu);
8959 WARN_ON(irq < 0);
8960 vmcs12->vm_exit_intr_info = irq |
8961 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
8962 }
8963
8964 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
8965 vmcs12->exit_qualification,
8966 vmcs12->idt_vectoring_info_field,
8967 vmcs12->vm_exit_intr_info,
8968 vmcs12->vm_exit_intr_error_code,
8969 KVM_ISA_VMX);
8970
8971 vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS));
8972 vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS));
8973 vmx_segment_cache_clear(vmx);
8974
8975 /* if no vmcs02 cache requested, remove the one we used */
8976 if (VMCS02_POOL_SIZE == 0)
8977 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
8978
8979 load_vmcs12_host_state(vcpu, vmcs12);
8980
8981 /* Update TSC_OFFSET if TSC was changed while L2 ran */
8982 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
8983
8984 /* This is needed for same reason as it was needed in prepare_vmcs02 */
8985 vmx->host_rsp = 0;
8986
8987 /* Unpin physical memory we referred to in vmcs02 */
8988 if (vmx->nested.apic_access_page) {
8989 nested_release_page(vmx->nested.apic_access_page);
8990 vmx->nested.apic_access_page = NULL;
8991 }
8992 if (vmx->nested.virtual_apic_page) {
8993 nested_release_page(vmx->nested.virtual_apic_page);
8994 vmx->nested.virtual_apic_page = NULL;
8995 }
8996
8997 /*
8998 * We are now running in L2, mmu_notifier will force to reload the
8999 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
9000 */
9001 kvm_vcpu_reload_apic_access_page(vcpu);
9002
9003 /*
9004 * Exiting from L2 to L1, we're now back to L1 which thinks it just
9005 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
9006 * success or failure flag accordingly.
9007 */
9008 if (unlikely(vmx->fail)) {
9009 vmx->fail = 0;
9010 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
9011 } else
9012 nested_vmx_succeed(vcpu);
9013 if (enable_shadow_vmcs)
9014 vmx->nested.sync_shadow_vmcs = true;
9015
9016 /* in case we halted in L2 */
9017 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9018 }
9019
9020 /*
9021 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
9022 */
9023 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
9024 {
9025 if (is_guest_mode(vcpu))
9026 nested_vmx_vmexit(vcpu, -1, 0, 0);
9027 free_nested(to_vmx(vcpu));
9028 }
9029
9030 /*
9031 * L1's failure to enter L2 is a subset of a normal exit, as explained in
9032 * 23.7 "VM-entry failures during or after loading guest state" (this also
9033 * lists the acceptable exit-reason and exit-qualification parameters).
9034 * It should only be called before L2 actually succeeded to run, and when
9035 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
9036 */
9037 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
9038 struct vmcs12 *vmcs12,
9039 u32 reason, unsigned long qualification)
9040 {
9041 load_vmcs12_host_state(vcpu, vmcs12);
9042 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
9043 vmcs12->exit_qualification = qualification;
9044 nested_vmx_succeed(vcpu);
9045 if (enable_shadow_vmcs)
9046 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
9047 }
9048
9049 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
9050 struct x86_instruction_info *info,
9051 enum x86_intercept_stage stage)
9052 {
9053 return X86EMUL_CONTINUE;
9054 }
9055
9056 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
9057 {
9058 if (ple_gap)
9059 shrink_ple_window(vcpu);
9060 }
9061
9062 static struct kvm_x86_ops vmx_x86_ops = {
9063 .cpu_has_kvm_support = cpu_has_kvm_support,
9064 .disabled_by_bios = vmx_disabled_by_bios,
9065 .hardware_setup = hardware_setup,
9066 .hardware_unsetup = hardware_unsetup,
9067 .check_processor_compatibility = vmx_check_processor_compat,
9068 .hardware_enable = hardware_enable,
9069 .hardware_disable = hardware_disable,
9070 .cpu_has_accelerated_tpr = report_flexpriority,
9071
9072 .vcpu_create = vmx_create_vcpu,
9073 .vcpu_free = vmx_free_vcpu,
9074 .vcpu_reset = vmx_vcpu_reset,
9075
9076 .prepare_guest_switch = vmx_save_host_state,
9077 .vcpu_load = vmx_vcpu_load,
9078 .vcpu_put = vmx_vcpu_put,
9079
9080 .update_db_bp_intercept = update_exception_bitmap,
9081 .get_msr = vmx_get_msr,
9082 .set_msr = vmx_set_msr,
9083 .get_segment_base = vmx_get_segment_base,
9084 .get_segment = vmx_get_segment,
9085 .set_segment = vmx_set_segment,
9086 .get_cpl = vmx_get_cpl,
9087 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
9088 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
9089 .decache_cr3 = vmx_decache_cr3,
9090 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
9091 .set_cr0 = vmx_set_cr0,
9092 .set_cr3 = vmx_set_cr3,
9093 .set_cr4 = vmx_set_cr4,
9094 .set_efer = vmx_set_efer,
9095 .get_idt = vmx_get_idt,
9096 .set_idt = vmx_set_idt,
9097 .get_gdt = vmx_get_gdt,
9098 .set_gdt = vmx_set_gdt,
9099 .get_dr6 = vmx_get_dr6,
9100 .set_dr6 = vmx_set_dr6,
9101 .set_dr7 = vmx_set_dr7,
9102 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
9103 .cache_reg = vmx_cache_reg,
9104 .get_rflags = vmx_get_rflags,
9105 .set_rflags = vmx_set_rflags,
9106 .fpu_deactivate = vmx_fpu_deactivate,
9107
9108 .tlb_flush = vmx_flush_tlb,
9109
9110 .run = vmx_vcpu_run,
9111 .handle_exit = vmx_handle_exit,
9112 .skip_emulated_instruction = skip_emulated_instruction,
9113 .set_interrupt_shadow = vmx_set_interrupt_shadow,
9114 .get_interrupt_shadow = vmx_get_interrupt_shadow,
9115 .patch_hypercall = vmx_patch_hypercall,
9116 .set_irq = vmx_inject_irq,
9117 .set_nmi = vmx_inject_nmi,
9118 .queue_exception = vmx_queue_exception,
9119 .cancel_injection = vmx_cancel_injection,
9120 .interrupt_allowed = vmx_interrupt_allowed,
9121 .nmi_allowed = vmx_nmi_allowed,
9122 .get_nmi_mask = vmx_get_nmi_mask,
9123 .set_nmi_mask = vmx_set_nmi_mask,
9124 .enable_nmi_window = enable_nmi_window,
9125 .enable_irq_window = enable_irq_window,
9126 .update_cr8_intercept = update_cr8_intercept,
9127 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
9128 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
9129 .vm_has_apicv = vmx_vm_has_apicv,
9130 .load_eoi_exitmap = vmx_load_eoi_exitmap,
9131 .hwapic_irr_update = vmx_hwapic_irr_update,
9132 .hwapic_isr_update = vmx_hwapic_isr_update,
9133 .sync_pir_to_irr = vmx_sync_pir_to_irr,
9134 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
9135
9136 .set_tss_addr = vmx_set_tss_addr,
9137 .get_tdp_level = get_ept_level,
9138 .get_mt_mask = vmx_get_mt_mask,
9139
9140 .get_exit_info = vmx_get_exit_info,
9141
9142 .get_lpage_level = vmx_get_lpage_level,
9143
9144 .cpuid_update = vmx_cpuid_update,
9145
9146 .rdtscp_supported = vmx_rdtscp_supported,
9147 .invpcid_supported = vmx_invpcid_supported,
9148
9149 .set_supported_cpuid = vmx_set_supported_cpuid,
9150
9151 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
9152
9153 .set_tsc_khz = vmx_set_tsc_khz,
9154 .read_tsc_offset = vmx_read_tsc_offset,
9155 .write_tsc_offset = vmx_write_tsc_offset,
9156 .adjust_tsc_offset = vmx_adjust_tsc_offset,
9157 .compute_tsc_offset = vmx_compute_tsc_offset,
9158 .read_l1_tsc = vmx_read_l1_tsc,
9159
9160 .set_tdp_cr3 = vmx_set_cr3,
9161
9162 .check_intercept = vmx_check_intercept,
9163 .handle_external_intr = vmx_handle_external_intr,
9164 .mpx_supported = vmx_mpx_supported,
9165
9166 .check_nested_events = vmx_check_nested_events,
9167
9168 .sched_in = vmx_sched_in,
9169 };
9170
9171 static int __init vmx_init(void)
9172 {
9173 int r, i, msr;
9174
9175 rdmsrl_safe(MSR_EFER, &host_efer);
9176
9177 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
9178 kvm_define_shared_msr(i, vmx_msr_index[i]);
9179
9180 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
9181 if (!vmx_io_bitmap_a)
9182 return -ENOMEM;
9183
9184 r = -ENOMEM;
9185
9186 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
9187 if (!vmx_io_bitmap_b)
9188 goto out;
9189
9190 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
9191 if (!vmx_msr_bitmap_legacy)
9192 goto out1;
9193
9194 vmx_msr_bitmap_legacy_x2apic =
9195 (unsigned long *)__get_free_page(GFP_KERNEL);
9196 if (!vmx_msr_bitmap_legacy_x2apic)
9197 goto out2;
9198
9199 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
9200 if (!vmx_msr_bitmap_longmode)
9201 goto out3;
9202
9203 vmx_msr_bitmap_longmode_x2apic =
9204 (unsigned long *)__get_free_page(GFP_KERNEL);
9205 if (!vmx_msr_bitmap_longmode_x2apic)
9206 goto out4;
9207 vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
9208 if (!vmx_vmread_bitmap)
9209 goto out5;
9210
9211 vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
9212 if (!vmx_vmwrite_bitmap)
9213 goto out6;
9214
9215 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
9216 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
9217
9218 /*
9219 * Allow direct access to the PC debug port (it is often used for I/O
9220 * delays, but the vmexits simply slow things down).
9221 */
9222 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
9223 clear_bit(0x80, vmx_io_bitmap_a);
9224
9225 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
9226
9227 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
9228 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
9229
9230 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
9231
9232 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
9233 __alignof__(struct vcpu_vmx), THIS_MODULE);
9234 if (r)
9235 goto out7;
9236
9237 #ifdef CONFIG_KEXEC
9238 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
9239 crash_vmclear_local_loaded_vmcss);
9240 #endif
9241
9242 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
9243 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
9244 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
9245 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
9246 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
9247 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
9248 vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
9249
9250 memcpy(vmx_msr_bitmap_legacy_x2apic,
9251 vmx_msr_bitmap_legacy, PAGE_SIZE);
9252 memcpy(vmx_msr_bitmap_longmode_x2apic,
9253 vmx_msr_bitmap_longmode, PAGE_SIZE);
9254
9255 if (enable_apicv) {
9256 for (msr = 0x800; msr <= 0x8ff; msr++)
9257 vmx_disable_intercept_msr_read_x2apic(msr);
9258
9259 /* According SDM, in x2apic mode, the whole id reg is used.
9260 * But in KVM, it only use the highest eight bits. Need to
9261 * intercept it */
9262 vmx_enable_intercept_msr_read_x2apic(0x802);
9263 /* TMCCT */
9264 vmx_enable_intercept_msr_read_x2apic(0x839);
9265 /* TPR */
9266 vmx_disable_intercept_msr_write_x2apic(0x808);
9267 /* EOI */
9268 vmx_disable_intercept_msr_write_x2apic(0x80b);
9269 /* SELF-IPI */
9270 vmx_disable_intercept_msr_write_x2apic(0x83f);
9271 }
9272
9273 if (enable_ept) {
9274 kvm_mmu_set_mask_ptes(0ull,
9275 (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
9276 (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
9277 0ull, VMX_EPT_EXECUTABLE_MASK);
9278 ept_set_mmio_spte_mask();
9279 kvm_enable_tdp();
9280 } else
9281 kvm_disable_tdp();
9282
9283 update_ple_window_actual_max();
9284
9285 return 0;
9286
9287 out7:
9288 free_page((unsigned long)vmx_vmwrite_bitmap);
9289 out6:
9290 free_page((unsigned long)vmx_vmread_bitmap);
9291 out5:
9292 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
9293 out4:
9294 free_page((unsigned long)vmx_msr_bitmap_longmode);
9295 out3:
9296 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
9297 out2:
9298 free_page((unsigned long)vmx_msr_bitmap_legacy);
9299 out1:
9300 free_page((unsigned long)vmx_io_bitmap_b);
9301 out:
9302 free_page((unsigned long)vmx_io_bitmap_a);
9303 return r;
9304 }
9305
9306 static void __exit vmx_exit(void)
9307 {
9308 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
9309 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
9310 free_page((unsigned long)vmx_msr_bitmap_legacy);
9311 free_page((unsigned long)vmx_msr_bitmap_longmode);
9312 free_page((unsigned long)vmx_io_bitmap_b);
9313 free_page((unsigned long)vmx_io_bitmap_a);
9314 free_page((unsigned long)vmx_vmwrite_bitmap);
9315 free_page((unsigned long)vmx_vmread_bitmap);
9316
9317 #ifdef CONFIG_KEXEC
9318 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
9319 synchronize_rcu();
9320 #endif
9321
9322 kvm_exit();
9323 }
9324
9325 module_init(vmx_init)
9326 module_exit(vmx_exit)
This page took 0.218759 seconds and 6 git commands to generate.