ftrace: avoid modifying kprobe'd records
[deliverable/linux.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 *
8 * Authors:
9 * Avi Kivity <avi@qumranet.com>
10 * Yaniv Kamay <yaniv@qumranet.com>
11 *
12 * This work is licensed under the terms of the GNU GPL, version 2. See
13 * the COPYING file in the top-level directory.
14 *
15 */
16
17 #include <linux/kvm_host.h>
18 #include "irq.h"
19 #include "mmu.h"
20 #include "i8254.h"
21 #include "tss.h"
22
23 #include <linux/clocksource.h>
24 #include <linux/kvm.h>
25 #include <linux/fs.h>
26 #include <linux/vmalloc.h>
27 #include <linux/module.h>
28 #include <linux/mman.h>
29 #include <linux/highmem.h>
30
31 #include <asm/uaccess.h>
32 #include <asm/msr.h>
33 #include <asm/desc.h>
34
35 #define MAX_IO_MSRS 256
36 #define CR0_RESERVED_BITS \
37 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
38 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
39 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
40 #define CR4_RESERVED_BITS \
41 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
42 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
43 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
44 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
45
46 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
47 /* EFER defaults:
48 * - enable syscall per default because its emulated by KVM
49 * - enable LME and LMA per default on 64 bit KVM
50 */
51 #ifdef CONFIG_X86_64
52 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
53 #else
54 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
55 #endif
56
57 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
58 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
59
60 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
61 struct kvm_cpuid_entry2 __user *entries);
62
63 struct kvm_x86_ops *kvm_x86_ops;
64
65 struct kvm_stats_debugfs_item debugfs_entries[] = {
66 { "pf_fixed", VCPU_STAT(pf_fixed) },
67 { "pf_guest", VCPU_STAT(pf_guest) },
68 { "tlb_flush", VCPU_STAT(tlb_flush) },
69 { "invlpg", VCPU_STAT(invlpg) },
70 { "exits", VCPU_STAT(exits) },
71 { "io_exits", VCPU_STAT(io_exits) },
72 { "mmio_exits", VCPU_STAT(mmio_exits) },
73 { "signal_exits", VCPU_STAT(signal_exits) },
74 { "irq_window", VCPU_STAT(irq_window_exits) },
75 { "halt_exits", VCPU_STAT(halt_exits) },
76 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
77 { "hypercalls", VCPU_STAT(hypercalls) },
78 { "request_irq", VCPU_STAT(request_irq_exits) },
79 { "irq_exits", VCPU_STAT(irq_exits) },
80 { "host_state_reload", VCPU_STAT(host_state_reload) },
81 { "efer_reload", VCPU_STAT(efer_reload) },
82 { "fpu_reload", VCPU_STAT(fpu_reload) },
83 { "insn_emulation", VCPU_STAT(insn_emulation) },
84 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
85 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
86 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
87 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
88 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
89 { "mmu_flooded", VM_STAT(mmu_flooded) },
90 { "mmu_recycled", VM_STAT(mmu_recycled) },
91 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
92 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
93 { "largepages", VM_STAT(lpages) },
94 { NULL }
95 };
96
97
98 unsigned long segment_base(u16 selector)
99 {
100 struct descriptor_table gdt;
101 struct desc_struct *d;
102 unsigned long table_base;
103 unsigned long v;
104
105 if (selector == 0)
106 return 0;
107
108 asm("sgdt %0" : "=m"(gdt));
109 table_base = gdt.base;
110
111 if (selector & 4) { /* from ldt */
112 u16 ldt_selector;
113
114 asm("sldt %0" : "=g"(ldt_selector));
115 table_base = segment_base(ldt_selector);
116 }
117 d = (struct desc_struct *)(table_base + (selector & ~7));
118 v = d->base0 | ((unsigned long)d->base1 << 16) |
119 ((unsigned long)d->base2 << 24);
120 #ifdef CONFIG_X86_64
121 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
122 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
123 #endif
124 return v;
125 }
126 EXPORT_SYMBOL_GPL(segment_base);
127
128 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
129 {
130 if (irqchip_in_kernel(vcpu->kvm))
131 return vcpu->arch.apic_base;
132 else
133 return vcpu->arch.apic_base;
134 }
135 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
136
137 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
138 {
139 /* TODO: reserve bits check */
140 if (irqchip_in_kernel(vcpu->kvm))
141 kvm_lapic_set_base(vcpu, data);
142 else
143 vcpu->arch.apic_base = data;
144 }
145 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
146
147 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
148 {
149 WARN_ON(vcpu->arch.exception.pending);
150 vcpu->arch.exception.pending = true;
151 vcpu->arch.exception.has_error_code = false;
152 vcpu->arch.exception.nr = nr;
153 }
154 EXPORT_SYMBOL_GPL(kvm_queue_exception);
155
156 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
157 u32 error_code)
158 {
159 ++vcpu->stat.pf_guest;
160 if (vcpu->arch.exception.pending) {
161 if (vcpu->arch.exception.nr == PF_VECTOR) {
162 printk(KERN_DEBUG "kvm: inject_page_fault:"
163 " double fault 0x%lx\n", addr);
164 vcpu->arch.exception.nr = DF_VECTOR;
165 vcpu->arch.exception.error_code = 0;
166 } else if (vcpu->arch.exception.nr == DF_VECTOR) {
167 /* triple fault -> shutdown */
168 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
169 }
170 return;
171 }
172 vcpu->arch.cr2 = addr;
173 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
174 }
175
176 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
177 {
178 WARN_ON(vcpu->arch.exception.pending);
179 vcpu->arch.exception.pending = true;
180 vcpu->arch.exception.has_error_code = true;
181 vcpu->arch.exception.nr = nr;
182 vcpu->arch.exception.error_code = error_code;
183 }
184 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
185
186 static void __queue_exception(struct kvm_vcpu *vcpu)
187 {
188 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
189 vcpu->arch.exception.has_error_code,
190 vcpu->arch.exception.error_code);
191 }
192
193 /*
194 * Load the pae pdptrs. Return true is they are all valid.
195 */
196 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
197 {
198 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
199 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
200 int i;
201 int ret;
202 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
203
204 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
205 offset * sizeof(u64), sizeof(pdpte));
206 if (ret < 0) {
207 ret = 0;
208 goto out;
209 }
210 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
211 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
212 ret = 0;
213 goto out;
214 }
215 }
216 ret = 1;
217
218 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
219 out:
220
221 return ret;
222 }
223 EXPORT_SYMBOL_GPL(load_pdptrs);
224
225 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
226 {
227 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
228 bool changed = true;
229 int r;
230
231 if (is_long_mode(vcpu) || !is_pae(vcpu))
232 return false;
233
234 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
235 if (r < 0)
236 goto out;
237 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
238 out:
239
240 return changed;
241 }
242
243 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
244 {
245 if (cr0 & CR0_RESERVED_BITS) {
246 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
247 cr0, vcpu->arch.cr0);
248 kvm_inject_gp(vcpu, 0);
249 return;
250 }
251
252 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
253 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
254 kvm_inject_gp(vcpu, 0);
255 return;
256 }
257
258 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
259 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
260 "and a clear PE flag\n");
261 kvm_inject_gp(vcpu, 0);
262 return;
263 }
264
265 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
266 #ifdef CONFIG_X86_64
267 if ((vcpu->arch.shadow_efer & EFER_LME)) {
268 int cs_db, cs_l;
269
270 if (!is_pae(vcpu)) {
271 printk(KERN_DEBUG "set_cr0: #GP, start paging "
272 "in long mode while PAE is disabled\n");
273 kvm_inject_gp(vcpu, 0);
274 return;
275 }
276 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
277 if (cs_l) {
278 printk(KERN_DEBUG "set_cr0: #GP, start paging "
279 "in long mode while CS.L == 1\n");
280 kvm_inject_gp(vcpu, 0);
281 return;
282
283 }
284 } else
285 #endif
286 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
287 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
288 "reserved bits\n");
289 kvm_inject_gp(vcpu, 0);
290 return;
291 }
292
293 }
294
295 kvm_x86_ops->set_cr0(vcpu, cr0);
296 vcpu->arch.cr0 = cr0;
297
298 kvm_mmu_reset_context(vcpu);
299 return;
300 }
301 EXPORT_SYMBOL_GPL(kvm_set_cr0);
302
303 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
304 {
305 kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
306 KVMTRACE_1D(LMSW, vcpu,
307 (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
308 handler);
309 }
310 EXPORT_SYMBOL_GPL(kvm_lmsw);
311
312 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
313 {
314 if (cr4 & CR4_RESERVED_BITS) {
315 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
316 kvm_inject_gp(vcpu, 0);
317 return;
318 }
319
320 if (is_long_mode(vcpu)) {
321 if (!(cr4 & X86_CR4_PAE)) {
322 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
323 "in long mode\n");
324 kvm_inject_gp(vcpu, 0);
325 return;
326 }
327 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
328 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
329 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
330 kvm_inject_gp(vcpu, 0);
331 return;
332 }
333
334 if (cr4 & X86_CR4_VMXE) {
335 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
336 kvm_inject_gp(vcpu, 0);
337 return;
338 }
339 kvm_x86_ops->set_cr4(vcpu, cr4);
340 vcpu->arch.cr4 = cr4;
341 kvm_mmu_reset_context(vcpu);
342 }
343 EXPORT_SYMBOL_GPL(kvm_set_cr4);
344
345 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
346 {
347 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
348 kvm_mmu_flush_tlb(vcpu);
349 return;
350 }
351
352 if (is_long_mode(vcpu)) {
353 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
354 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
355 kvm_inject_gp(vcpu, 0);
356 return;
357 }
358 } else {
359 if (is_pae(vcpu)) {
360 if (cr3 & CR3_PAE_RESERVED_BITS) {
361 printk(KERN_DEBUG
362 "set_cr3: #GP, reserved bits\n");
363 kvm_inject_gp(vcpu, 0);
364 return;
365 }
366 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
367 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
368 "reserved bits\n");
369 kvm_inject_gp(vcpu, 0);
370 return;
371 }
372 }
373 /*
374 * We don't check reserved bits in nonpae mode, because
375 * this isn't enforced, and VMware depends on this.
376 */
377 }
378
379 /*
380 * Does the new cr3 value map to physical memory? (Note, we
381 * catch an invalid cr3 even in real-mode, because it would
382 * cause trouble later on when we turn on paging anyway.)
383 *
384 * A real CPU would silently accept an invalid cr3 and would
385 * attempt to use it - with largely undefined (and often hard
386 * to debug) behavior on the guest side.
387 */
388 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
389 kvm_inject_gp(vcpu, 0);
390 else {
391 vcpu->arch.cr3 = cr3;
392 vcpu->arch.mmu.new_cr3(vcpu);
393 }
394 }
395 EXPORT_SYMBOL_GPL(kvm_set_cr3);
396
397 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
398 {
399 if (cr8 & CR8_RESERVED_BITS) {
400 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
401 kvm_inject_gp(vcpu, 0);
402 return;
403 }
404 if (irqchip_in_kernel(vcpu->kvm))
405 kvm_lapic_set_tpr(vcpu, cr8);
406 else
407 vcpu->arch.cr8 = cr8;
408 }
409 EXPORT_SYMBOL_GPL(kvm_set_cr8);
410
411 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
412 {
413 if (irqchip_in_kernel(vcpu->kvm))
414 return kvm_lapic_get_cr8(vcpu);
415 else
416 return vcpu->arch.cr8;
417 }
418 EXPORT_SYMBOL_GPL(kvm_get_cr8);
419
420 /*
421 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
422 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
423 *
424 * This list is modified at module load time to reflect the
425 * capabilities of the host cpu.
426 */
427 static u32 msrs_to_save[] = {
428 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
429 MSR_K6_STAR,
430 #ifdef CONFIG_X86_64
431 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
432 #endif
433 MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
434 MSR_IA32_PERF_STATUS,
435 };
436
437 static unsigned num_msrs_to_save;
438
439 static u32 emulated_msrs[] = {
440 MSR_IA32_MISC_ENABLE,
441 };
442
443 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
444 {
445 if (efer & efer_reserved_bits) {
446 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
447 efer);
448 kvm_inject_gp(vcpu, 0);
449 return;
450 }
451
452 if (is_paging(vcpu)
453 && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
454 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
455 kvm_inject_gp(vcpu, 0);
456 return;
457 }
458
459 kvm_x86_ops->set_efer(vcpu, efer);
460
461 efer &= ~EFER_LMA;
462 efer |= vcpu->arch.shadow_efer & EFER_LMA;
463
464 vcpu->arch.shadow_efer = efer;
465 }
466
467 void kvm_enable_efer_bits(u64 mask)
468 {
469 efer_reserved_bits &= ~mask;
470 }
471 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
472
473
474 /*
475 * Writes msr value into into the appropriate "register".
476 * Returns 0 on success, non-0 otherwise.
477 * Assumes vcpu_load() was already called.
478 */
479 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
480 {
481 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
482 }
483
484 /*
485 * Adapt set_msr() to msr_io()'s calling convention
486 */
487 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
488 {
489 return kvm_set_msr(vcpu, index, *data);
490 }
491
492 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
493 {
494 static int version;
495 struct kvm_wall_clock wc;
496 struct timespec wc_ts;
497
498 if (!wall_clock)
499 return;
500
501 version++;
502
503 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
504
505 wc_ts = current_kernel_time();
506 wc.wc_sec = wc_ts.tv_sec;
507 wc.wc_nsec = wc_ts.tv_nsec;
508 wc.wc_version = version;
509
510 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
511
512 version++;
513 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
514 }
515
516 static void kvm_write_guest_time(struct kvm_vcpu *v)
517 {
518 struct timespec ts;
519 unsigned long flags;
520 struct kvm_vcpu_arch *vcpu = &v->arch;
521 void *shared_kaddr;
522
523 if ((!vcpu->time_page))
524 return;
525
526 /* Keep irq disabled to prevent changes to the clock */
527 local_irq_save(flags);
528 kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
529 &vcpu->hv_clock.tsc_timestamp);
530 ktime_get_ts(&ts);
531 local_irq_restore(flags);
532
533 /* With all the info we got, fill in the values */
534
535 vcpu->hv_clock.system_time = ts.tv_nsec +
536 (NSEC_PER_SEC * (u64)ts.tv_sec);
537 /*
538 * The interface expects us to write an even number signaling that the
539 * update is finished. Since the guest won't see the intermediate
540 * state, we just write "2" at the end
541 */
542 vcpu->hv_clock.version = 2;
543
544 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
545
546 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
547 sizeof(vcpu->hv_clock));
548
549 kunmap_atomic(shared_kaddr, KM_USER0);
550
551 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
552 }
553
554
555 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
556 {
557 switch (msr) {
558 case MSR_EFER:
559 set_efer(vcpu, data);
560 break;
561 case MSR_IA32_MC0_STATUS:
562 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
563 __func__, data);
564 break;
565 case MSR_IA32_MCG_STATUS:
566 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
567 __func__, data);
568 break;
569 case MSR_IA32_MCG_CTL:
570 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
571 __func__, data);
572 break;
573 case MSR_IA32_UCODE_REV:
574 case MSR_IA32_UCODE_WRITE:
575 case 0x200 ... 0x2ff: /* MTRRs */
576 break;
577 case MSR_IA32_APICBASE:
578 kvm_set_apic_base(vcpu, data);
579 break;
580 case MSR_IA32_MISC_ENABLE:
581 vcpu->arch.ia32_misc_enable_msr = data;
582 break;
583 case MSR_KVM_WALL_CLOCK:
584 vcpu->kvm->arch.wall_clock = data;
585 kvm_write_wall_clock(vcpu->kvm, data);
586 break;
587 case MSR_KVM_SYSTEM_TIME: {
588 if (vcpu->arch.time_page) {
589 kvm_release_page_dirty(vcpu->arch.time_page);
590 vcpu->arch.time_page = NULL;
591 }
592
593 vcpu->arch.time = data;
594
595 /* we verify if the enable bit is set... */
596 if (!(data & 1))
597 break;
598
599 /* ...but clean it before doing the actual write */
600 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
601
602 vcpu->arch.hv_clock.tsc_to_system_mul =
603 clocksource_khz2mult(tsc_khz, 22);
604 vcpu->arch.hv_clock.tsc_shift = 22;
605
606 down_read(&current->mm->mmap_sem);
607 vcpu->arch.time_page =
608 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
609 up_read(&current->mm->mmap_sem);
610
611 if (is_error_page(vcpu->arch.time_page)) {
612 kvm_release_page_clean(vcpu->arch.time_page);
613 vcpu->arch.time_page = NULL;
614 }
615
616 kvm_write_guest_time(vcpu);
617 break;
618 }
619 default:
620 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
621 return 1;
622 }
623 return 0;
624 }
625 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
626
627
628 /*
629 * Reads an msr value (of 'msr_index') into 'pdata'.
630 * Returns 0 on success, non-0 otherwise.
631 * Assumes vcpu_load() was already called.
632 */
633 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
634 {
635 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
636 }
637
638 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
639 {
640 u64 data;
641
642 switch (msr) {
643 case 0xc0010010: /* SYSCFG */
644 case 0xc0010015: /* HWCR */
645 case MSR_IA32_PLATFORM_ID:
646 case MSR_IA32_P5_MC_ADDR:
647 case MSR_IA32_P5_MC_TYPE:
648 case MSR_IA32_MC0_CTL:
649 case MSR_IA32_MCG_STATUS:
650 case MSR_IA32_MCG_CAP:
651 case MSR_IA32_MCG_CTL:
652 case MSR_IA32_MC0_MISC:
653 case MSR_IA32_MC0_MISC+4:
654 case MSR_IA32_MC0_MISC+8:
655 case MSR_IA32_MC0_MISC+12:
656 case MSR_IA32_MC0_MISC+16:
657 case MSR_IA32_UCODE_REV:
658 case MSR_IA32_EBL_CR_POWERON:
659 /* MTRR registers */
660 case 0xfe:
661 case 0x200 ... 0x2ff:
662 data = 0;
663 break;
664 case 0xcd: /* fsb frequency */
665 data = 3;
666 break;
667 case MSR_IA32_APICBASE:
668 data = kvm_get_apic_base(vcpu);
669 break;
670 case MSR_IA32_MISC_ENABLE:
671 data = vcpu->arch.ia32_misc_enable_msr;
672 break;
673 case MSR_IA32_PERF_STATUS:
674 /* TSC increment by tick */
675 data = 1000ULL;
676 /* CPU multiplier */
677 data |= (((uint64_t)4ULL) << 40);
678 break;
679 case MSR_EFER:
680 data = vcpu->arch.shadow_efer;
681 break;
682 case MSR_KVM_WALL_CLOCK:
683 data = vcpu->kvm->arch.wall_clock;
684 break;
685 case MSR_KVM_SYSTEM_TIME:
686 data = vcpu->arch.time;
687 break;
688 default:
689 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
690 return 1;
691 }
692 *pdata = data;
693 return 0;
694 }
695 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
696
697 /*
698 * Read or write a bunch of msrs. All parameters are kernel addresses.
699 *
700 * @return number of msrs set successfully.
701 */
702 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
703 struct kvm_msr_entry *entries,
704 int (*do_msr)(struct kvm_vcpu *vcpu,
705 unsigned index, u64 *data))
706 {
707 int i;
708
709 vcpu_load(vcpu);
710
711 down_read(&vcpu->kvm->slots_lock);
712 for (i = 0; i < msrs->nmsrs; ++i)
713 if (do_msr(vcpu, entries[i].index, &entries[i].data))
714 break;
715 up_read(&vcpu->kvm->slots_lock);
716
717 vcpu_put(vcpu);
718
719 return i;
720 }
721
722 /*
723 * Read or write a bunch of msrs. Parameters are user addresses.
724 *
725 * @return number of msrs set successfully.
726 */
727 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
728 int (*do_msr)(struct kvm_vcpu *vcpu,
729 unsigned index, u64 *data),
730 int writeback)
731 {
732 struct kvm_msrs msrs;
733 struct kvm_msr_entry *entries;
734 int r, n;
735 unsigned size;
736
737 r = -EFAULT;
738 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
739 goto out;
740
741 r = -E2BIG;
742 if (msrs.nmsrs >= MAX_IO_MSRS)
743 goto out;
744
745 r = -ENOMEM;
746 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
747 entries = vmalloc(size);
748 if (!entries)
749 goto out;
750
751 r = -EFAULT;
752 if (copy_from_user(entries, user_msrs->entries, size))
753 goto out_free;
754
755 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
756 if (r < 0)
757 goto out_free;
758
759 r = -EFAULT;
760 if (writeback && copy_to_user(user_msrs->entries, entries, size))
761 goto out_free;
762
763 r = n;
764
765 out_free:
766 vfree(entries);
767 out:
768 return r;
769 }
770
771 /*
772 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
773 * cached on it.
774 */
775 void decache_vcpus_on_cpu(int cpu)
776 {
777 struct kvm *vm;
778 struct kvm_vcpu *vcpu;
779 int i;
780
781 spin_lock(&kvm_lock);
782 list_for_each_entry(vm, &vm_list, vm_list)
783 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
784 vcpu = vm->vcpus[i];
785 if (!vcpu)
786 continue;
787 /*
788 * If the vcpu is locked, then it is running on some
789 * other cpu and therefore it is not cached on the
790 * cpu in question.
791 *
792 * If it's not locked, check the last cpu it executed
793 * on.
794 */
795 if (mutex_trylock(&vcpu->mutex)) {
796 if (vcpu->cpu == cpu) {
797 kvm_x86_ops->vcpu_decache(vcpu);
798 vcpu->cpu = -1;
799 }
800 mutex_unlock(&vcpu->mutex);
801 }
802 }
803 spin_unlock(&kvm_lock);
804 }
805
806 int kvm_dev_ioctl_check_extension(long ext)
807 {
808 int r;
809
810 switch (ext) {
811 case KVM_CAP_IRQCHIP:
812 case KVM_CAP_HLT:
813 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
814 case KVM_CAP_USER_MEMORY:
815 case KVM_CAP_SET_TSS_ADDR:
816 case KVM_CAP_EXT_CPUID:
817 case KVM_CAP_CLOCKSOURCE:
818 case KVM_CAP_PIT:
819 case KVM_CAP_NOP_IO_DELAY:
820 case KVM_CAP_MP_STATE:
821 r = 1;
822 break;
823 case KVM_CAP_VAPIC:
824 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
825 break;
826 case KVM_CAP_NR_VCPUS:
827 r = KVM_MAX_VCPUS;
828 break;
829 case KVM_CAP_NR_MEMSLOTS:
830 r = KVM_MEMORY_SLOTS;
831 break;
832 case KVM_CAP_PV_MMU:
833 r = !tdp_enabled;
834 break;
835 default:
836 r = 0;
837 break;
838 }
839 return r;
840
841 }
842
843 long kvm_arch_dev_ioctl(struct file *filp,
844 unsigned int ioctl, unsigned long arg)
845 {
846 void __user *argp = (void __user *)arg;
847 long r;
848
849 switch (ioctl) {
850 case KVM_GET_MSR_INDEX_LIST: {
851 struct kvm_msr_list __user *user_msr_list = argp;
852 struct kvm_msr_list msr_list;
853 unsigned n;
854
855 r = -EFAULT;
856 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
857 goto out;
858 n = msr_list.nmsrs;
859 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
860 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
861 goto out;
862 r = -E2BIG;
863 if (n < num_msrs_to_save)
864 goto out;
865 r = -EFAULT;
866 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
867 num_msrs_to_save * sizeof(u32)))
868 goto out;
869 if (copy_to_user(user_msr_list->indices
870 + num_msrs_to_save * sizeof(u32),
871 &emulated_msrs,
872 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
873 goto out;
874 r = 0;
875 break;
876 }
877 case KVM_GET_SUPPORTED_CPUID: {
878 struct kvm_cpuid2 __user *cpuid_arg = argp;
879 struct kvm_cpuid2 cpuid;
880
881 r = -EFAULT;
882 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
883 goto out;
884 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
885 cpuid_arg->entries);
886 if (r)
887 goto out;
888
889 r = -EFAULT;
890 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
891 goto out;
892 r = 0;
893 break;
894 }
895 default:
896 r = -EINVAL;
897 }
898 out:
899 return r;
900 }
901
902 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
903 {
904 kvm_x86_ops->vcpu_load(vcpu, cpu);
905 kvm_write_guest_time(vcpu);
906 }
907
908 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
909 {
910 kvm_x86_ops->vcpu_put(vcpu);
911 kvm_put_guest_fpu(vcpu);
912 }
913
914 static int is_efer_nx(void)
915 {
916 u64 efer;
917
918 rdmsrl(MSR_EFER, efer);
919 return efer & EFER_NX;
920 }
921
922 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
923 {
924 int i;
925 struct kvm_cpuid_entry2 *e, *entry;
926
927 entry = NULL;
928 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
929 e = &vcpu->arch.cpuid_entries[i];
930 if (e->function == 0x80000001) {
931 entry = e;
932 break;
933 }
934 }
935 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
936 entry->edx &= ~(1 << 20);
937 printk(KERN_INFO "kvm: guest NX capability removed\n");
938 }
939 }
940
941 /* when an old userspace process fills a new kernel module */
942 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
943 struct kvm_cpuid *cpuid,
944 struct kvm_cpuid_entry __user *entries)
945 {
946 int r, i;
947 struct kvm_cpuid_entry *cpuid_entries;
948
949 r = -E2BIG;
950 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
951 goto out;
952 r = -ENOMEM;
953 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
954 if (!cpuid_entries)
955 goto out;
956 r = -EFAULT;
957 if (copy_from_user(cpuid_entries, entries,
958 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
959 goto out_free;
960 for (i = 0; i < cpuid->nent; i++) {
961 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
962 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
963 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
964 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
965 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
966 vcpu->arch.cpuid_entries[i].index = 0;
967 vcpu->arch.cpuid_entries[i].flags = 0;
968 vcpu->arch.cpuid_entries[i].padding[0] = 0;
969 vcpu->arch.cpuid_entries[i].padding[1] = 0;
970 vcpu->arch.cpuid_entries[i].padding[2] = 0;
971 }
972 vcpu->arch.cpuid_nent = cpuid->nent;
973 cpuid_fix_nx_cap(vcpu);
974 r = 0;
975
976 out_free:
977 vfree(cpuid_entries);
978 out:
979 return r;
980 }
981
982 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
983 struct kvm_cpuid2 *cpuid,
984 struct kvm_cpuid_entry2 __user *entries)
985 {
986 int r;
987
988 r = -E2BIG;
989 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
990 goto out;
991 r = -EFAULT;
992 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
993 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
994 goto out;
995 vcpu->arch.cpuid_nent = cpuid->nent;
996 return 0;
997
998 out:
999 return r;
1000 }
1001
1002 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1003 struct kvm_cpuid2 *cpuid,
1004 struct kvm_cpuid_entry2 __user *entries)
1005 {
1006 int r;
1007
1008 r = -E2BIG;
1009 if (cpuid->nent < vcpu->arch.cpuid_nent)
1010 goto out;
1011 r = -EFAULT;
1012 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1013 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1014 goto out;
1015 return 0;
1016
1017 out:
1018 cpuid->nent = vcpu->arch.cpuid_nent;
1019 return r;
1020 }
1021
1022 static inline u32 bit(int bitno)
1023 {
1024 return 1 << (bitno & 31);
1025 }
1026
1027 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1028 u32 index)
1029 {
1030 entry->function = function;
1031 entry->index = index;
1032 cpuid_count(entry->function, entry->index,
1033 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1034 entry->flags = 0;
1035 }
1036
1037 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1038 u32 index, int *nent, int maxnent)
1039 {
1040 const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
1041 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1042 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1043 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1044 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1045 bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
1046 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1047 bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
1048 bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
1049 bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
1050 const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
1051 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1052 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1053 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1054 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1055 bit(X86_FEATURE_PGE) |
1056 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1057 bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
1058 bit(X86_FEATURE_SYSCALL) |
1059 (bit(X86_FEATURE_NX) && is_efer_nx()) |
1060 #ifdef CONFIG_X86_64
1061 bit(X86_FEATURE_LM) |
1062 #endif
1063 bit(X86_FEATURE_MMXEXT) |
1064 bit(X86_FEATURE_3DNOWEXT) |
1065 bit(X86_FEATURE_3DNOW);
1066 const u32 kvm_supported_word3_x86_features =
1067 bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
1068 const u32 kvm_supported_word6_x86_features =
1069 bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);
1070
1071 /* all func 2 cpuid_count() should be called on the same cpu */
1072 get_cpu();
1073 do_cpuid_1_ent(entry, function, index);
1074 ++*nent;
1075
1076 switch (function) {
1077 case 0:
1078 entry->eax = min(entry->eax, (u32)0xb);
1079 break;
1080 case 1:
1081 entry->edx &= kvm_supported_word0_x86_features;
1082 entry->ecx &= kvm_supported_word3_x86_features;
1083 break;
1084 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1085 * may return different values. This forces us to get_cpu() before
1086 * issuing the first command, and also to emulate this annoying behavior
1087 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1088 case 2: {
1089 int t, times = entry->eax & 0xff;
1090
1091 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1092 for (t = 1; t < times && *nent < maxnent; ++t) {
1093 do_cpuid_1_ent(&entry[t], function, 0);
1094 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1095 ++*nent;
1096 }
1097 break;
1098 }
1099 /* function 4 and 0xb have additional index. */
1100 case 4: {
1101 int i, cache_type;
1102
1103 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1104 /* read more entries until cache_type is zero */
1105 for (i = 1; *nent < maxnent; ++i) {
1106 cache_type = entry[i - 1].eax & 0x1f;
1107 if (!cache_type)
1108 break;
1109 do_cpuid_1_ent(&entry[i], function, i);
1110 entry[i].flags |=
1111 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1112 ++*nent;
1113 }
1114 break;
1115 }
1116 case 0xb: {
1117 int i, level_type;
1118
1119 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1120 /* read more entries until level_type is zero */
1121 for (i = 1; *nent < maxnent; ++i) {
1122 level_type = entry[i - 1].ecx & 0xff;
1123 if (!level_type)
1124 break;
1125 do_cpuid_1_ent(&entry[i], function, i);
1126 entry[i].flags |=
1127 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1128 ++*nent;
1129 }
1130 break;
1131 }
1132 case 0x80000000:
1133 entry->eax = min(entry->eax, 0x8000001a);
1134 break;
1135 case 0x80000001:
1136 entry->edx &= kvm_supported_word1_x86_features;
1137 entry->ecx &= kvm_supported_word6_x86_features;
1138 break;
1139 }
1140 put_cpu();
1141 }
1142
1143 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1144 struct kvm_cpuid_entry2 __user *entries)
1145 {
1146 struct kvm_cpuid_entry2 *cpuid_entries;
1147 int limit, nent = 0, r = -E2BIG;
1148 u32 func;
1149
1150 if (cpuid->nent < 1)
1151 goto out;
1152 r = -ENOMEM;
1153 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1154 if (!cpuid_entries)
1155 goto out;
1156
1157 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1158 limit = cpuid_entries[0].eax;
1159 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1160 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1161 &nent, cpuid->nent);
1162 r = -E2BIG;
1163 if (nent >= cpuid->nent)
1164 goto out_free;
1165
1166 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1167 limit = cpuid_entries[nent - 1].eax;
1168 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1169 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1170 &nent, cpuid->nent);
1171 r = -EFAULT;
1172 if (copy_to_user(entries, cpuid_entries,
1173 nent * sizeof(struct kvm_cpuid_entry2)))
1174 goto out_free;
1175 cpuid->nent = nent;
1176 r = 0;
1177
1178 out_free:
1179 vfree(cpuid_entries);
1180 out:
1181 return r;
1182 }
1183
1184 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1185 struct kvm_lapic_state *s)
1186 {
1187 vcpu_load(vcpu);
1188 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1189 vcpu_put(vcpu);
1190
1191 return 0;
1192 }
1193
1194 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1195 struct kvm_lapic_state *s)
1196 {
1197 vcpu_load(vcpu);
1198 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1199 kvm_apic_post_state_restore(vcpu);
1200 vcpu_put(vcpu);
1201
1202 return 0;
1203 }
1204
1205 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1206 struct kvm_interrupt *irq)
1207 {
1208 if (irq->irq < 0 || irq->irq >= 256)
1209 return -EINVAL;
1210 if (irqchip_in_kernel(vcpu->kvm))
1211 return -ENXIO;
1212 vcpu_load(vcpu);
1213
1214 set_bit(irq->irq, vcpu->arch.irq_pending);
1215 set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1216
1217 vcpu_put(vcpu);
1218
1219 return 0;
1220 }
1221
1222 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1223 struct kvm_tpr_access_ctl *tac)
1224 {
1225 if (tac->flags)
1226 return -EINVAL;
1227 vcpu->arch.tpr_access_reporting = !!tac->enabled;
1228 return 0;
1229 }
1230
1231 long kvm_arch_vcpu_ioctl(struct file *filp,
1232 unsigned int ioctl, unsigned long arg)
1233 {
1234 struct kvm_vcpu *vcpu = filp->private_data;
1235 void __user *argp = (void __user *)arg;
1236 int r;
1237
1238 switch (ioctl) {
1239 case KVM_GET_LAPIC: {
1240 struct kvm_lapic_state lapic;
1241
1242 memset(&lapic, 0, sizeof lapic);
1243 r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
1244 if (r)
1245 goto out;
1246 r = -EFAULT;
1247 if (copy_to_user(argp, &lapic, sizeof lapic))
1248 goto out;
1249 r = 0;
1250 break;
1251 }
1252 case KVM_SET_LAPIC: {
1253 struct kvm_lapic_state lapic;
1254
1255 r = -EFAULT;
1256 if (copy_from_user(&lapic, argp, sizeof lapic))
1257 goto out;
1258 r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
1259 if (r)
1260 goto out;
1261 r = 0;
1262 break;
1263 }
1264 case KVM_INTERRUPT: {
1265 struct kvm_interrupt irq;
1266
1267 r = -EFAULT;
1268 if (copy_from_user(&irq, argp, sizeof irq))
1269 goto out;
1270 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1271 if (r)
1272 goto out;
1273 r = 0;
1274 break;
1275 }
1276 case KVM_SET_CPUID: {
1277 struct kvm_cpuid __user *cpuid_arg = argp;
1278 struct kvm_cpuid cpuid;
1279
1280 r = -EFAULT;
1281 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1282 goto out;
1283 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1284 if (r)
1285 goto out;
1286 break;
1287 }
1288 case KVM_SET_CPUID2: {
1289 struct kvm_cpuid2 __user *cpuid_arg = argp;
1290 struct kvm_cpuid2 cpuid;
1291
1292 r = -EFAULT;
1293 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1294 goto out;
1295 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1296 cpuid_arg->entries);
1297 if (r)
1298 goto out;
1299 break;
1300 }
1301 case KVM_GET_CPUID2: {
1302 struct kvm_cpuid2 __user *cpuid_arg = argp;
1303 struct kvm_cpuid2 cpuid;
1304
1305 r = -EFAULT;
1306 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1307 goto out;
1308 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1309 cpuid_arg->entries);
1310 if (r)
1311 goto out;
1312 r = -EFAULT;
1313 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1314 goto out;
1315 r = 0;
1316 break;
1317 }
1318 case KVM_GET_MSRS:
1319 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1320 break;
1321 case KVM_SET_MSRS:
1322 r = msr_io(vcpu, argp, do_set_msr, 0);
1323 break;
1324 case KVM_TPR_ACCESS_REPORTING: {
1325 struct kvm_tpr_access_ctl tac;
1326
1327 r = -EFAULT;
1328 if (copy_from_user(&tac, argp, sizeof tac))
1329 goto out;
1330 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1331 if (r)
1332 goto out;
1333 r = -EFAULT;
1334 if (copy_to_user(argp, &tac, sizeof tac))
1335 goto out;
1336 r = 0;
1337 break;
1338 };
1339 case KVM_SET_VAPIC_ADDR: {
1340 struct kvm_vapic_addr va;
1341
1342 r = -EINVAL;
1343 if (!irqchip_in_kernel(vcpu->kvm))
1344 goto out;
1345 r = -EFAULT;
1346 if (copy_from_user(&va, argp, sizeof va))
1347 goto out;
1348 r = 0;
1349 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1350 break;
1351 }
1352 default:
1353 r = -EINVAL;
1354 }
1355 out:
1356 return r;
1357 }
1358
1359 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1360 {
1361 int ret;
1362
1363 if (addr > (unsigned int)(-3 * PAGE_SIZE))
1364 return -1;
1365 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1366 return ret;
1367 }
1368
1369 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1370 u32 kvm_nr_mmu_pages)
1371 {
1372 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1373 return -EINVAL;
1374
1375 down_write(&kvm->slots_lock);
1376
1377 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1378 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1379
1380 up_write(&kvm->slots_lock);
1381 return 0;
1382 }
1383
1384 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1385 {
1386 return kvm->arch.n_alloc_mmu_pages;
1387 }
1388
1389 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1390 {
1391 int i;
1392 struct kvm_mem_alias *alias;
1393
1394 for (i = 0; i < kvm->arch.naliases; ++i) {
1395 alias = &kvm->arch.aliases[i];
1396 if (gfn >= alias->base_gfn
1397 && gfn < alias->base_gfn + alias->npages)
1398 return alias->target_gfn + gfn - alias->base_gfn;
1399 }
1400 return gfn;
1401 }
1402
1403 /*
1404 * Set a new alias region. Aliases map a portion of physical memory into
1405 * another portion. This is useful for memory windows, for example the PC
1406 * VGA region.
1407 */
1408 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1409 struct kvm_memory_alias *alias)
1410 {
1411 int r, n;
1412 struct kvm_mem_alias *p;
1413
1414 r = -EINVAL;
1415 /* General sanity checks */
1416 if (alias->memory_size & (PAGE_SIZE - 1))
1417 goto out;
1418 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1419 goto out;
1420 if (alias->slot >= KVM_ALIAS_SLOTS)
1421 goto out;
1422 if (alias->guest_phys_addr + alias->memory_size
1423 < alias->guest_phys_addr)
1424 goto out;
1425 if (alias->target_phys_addr + alias->memory_size
1426 < alias->target_phys_addr)
1427 goto out;
1428
1429 down_write(&kvm->slots_lock);
1430
1431 p = &kvm->arch.aliases[alias->slot];
1432 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1433 p->npages = alias->memory_size >> PAGE_SHIFT;
1434 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1435
1436 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1437 if (kvm->arch.aliases[n - 1].npages)
1438 break;
1439 kvm->arch.naliases = n;
1440
1441 kvm_mmu_zap_all(kvm);
1442
1443 up_write(&kvm->slots_lock);
1444
1445 return 0;
1446
1447 out:
1448 return r;
1449 }
1450
1451 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1452 {
1453 int r;
1454
1455 r = 0;
1456 switch (chip->chip_id) {
1457 case KVM_IRQCHIP_PIC_MASTER:
1458 memcpy(&chip->chip.pic,
1459 &pic_irqchip(kvm)->pics[0],
1460 sizeof(struct kvm_pic_state));
1461 break;
1462 case KVM_IRQCHIP_PIC_SLAVE:
1463 memcpy(&chip->chip.pic,
1464 &pic_irqchip(kvm)->pics[1],
1465 sizeof(struct kvm_pic_state));
1466 break;
1467 case KVM_IRQCHIP_IOAPIC:
1468 memcpy(&chip->chip.ioapic,
1469 ioapic_irqchip(kvm),
1470 sizeof(struct kvm_ioapic_state));
1471 break;
1472 default:
1473 r = -EINVAL;
1474 break;
1475 }
1476 return r;
1477 }
1478
1479 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1480 {
1481 int r;
1482
1483 r = 0;
1484 switch (chip->chip_id) {
1485 case KVM_IRQCHIP_PIC_MASTER:
1486 memcpy(&pic_irqchip(kvm)->pics[0],
1487 &chip->chip.pic,
1488 sizeof(struct kvm_pic_state));
1489 break;
1490 case KVM_IRQCHIP_PIC_SLAVE:
1491 memcpy(&pic_irqchip(kvm)->pics[1],
1492 &chip->chip.pic,
1493 sizeof(struct kvm_pic_state));
1494 break;
1495 case KVM_IRQCHIP_IOAPIC:
1496 memcpy(ioapic_irqchip(kvm),
1497 &chip->chip.ioapic,
1498 sizeof(struct kvm_ioapic_state));
1499 break;
1500 default:
1501 r = -EINVAL;
1502 break;
1503 }
1504 kvm_pic_update_irq(pic_irqchip(kvm));
1505 return r;
1506 }
1507
1508 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1509 {
1510 int r = 0;
1511
1512 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
1513 return r;
1514 }
1515
1516 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1517 {
1518 int r = 0;
1519
1520 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
1521 kvm_pit_load_count(kvm, 0, ps->channels[0].count);
1522 return r;
1523 }
1524
1525 /*
1526 * Get (and clear) the dirty memory log for a memory slot.
1527 */
1528 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1529 struct kvm_dirty_log *log)
1530 {
1531 int r;
1532 int n;
1533 struct kvm_memory_slot *memslot;
1534 int is_dirty = 0;
1535
1536 down_write(&kvm->slots_lock);
1537
1538 r = kvm_get_dirty_log(kvm, log, &is_dirty);
1539 if (r)
1540 goto out;
1541
1542 /* If nothing is dirty, don't bother messing with page tables. */
1543 if (is_dirty) {
1544 kvm_mmu_slot_remove_write_access(kvm, log->slot);
1545 kvm_flush_remote_tlbs(kvm);
1546 memslot = &kvm->memslots[log->slot];
1547 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1548 memset(memslot->dirty_bitmap, 0, n);
1549 }
1550 r = 0;
1551 out:
1552 up_write(&kvm->slots_lock);
1553 return r;
1554 }
1555
1556 long kvm_arch_vm_ioctl(struct file *filp,
1557 unsigned int ioctl, unsigned long arg)
1558 {
1559 struct kvm *kvm = filp->private_data;
1560 void __user *argp = (void __user *)arg;
1561 int r = -EINVAL;
1562
1563 switch (ioctl) {
1564 case KVM_SET_TSS_ADDR:
1565 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
1566 if (r < 0)
1567 goto out;
1568 break;
1569 case KVM_SET_MEMORY_REGION: {
1570 struct kvm_memory_region kvm_mem;
1571 struct kvm_userspace_memory_region kvm_userspace_mem;
1572
1573 r = -EFAULT;
1574 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
1575 goto out;
1576 kvm_userspace_mem.slot = kvm_mem.slot;
1577 kvm_userspace_mem.flags = kvm_mem.flags;
1578 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
1579 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
1580 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
1581 if (r)
1582 goto out;
1583 break;
1584 }
1585 case KVM_SET_NR_MMU_PAGES:
1586 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
1587 if (r)
1588 goto out;
1589 break;
1590 case KVM_GET_NR_MMU_PAGES:
1591 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
1592 break;
1593 case KVM_SET_MEMORY_ALIAS: {
1594 struct kvm_memory_alias alias;
1595
1596 r = -EFAULT;
1597 if (copy_from_user(&alias, argp, sizeof alias))
1598 goto out;
1599 r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
1600 if (r)
1601 goto out;
1602 break;
1603 }
1604 case KVM_CREATE_IRQCHIP:
1605 r = -ENOMEM;
1606 kvm->arch.vpic = kvm_create_pic(kvm);
1607 if (kvm->arch.vpic) {
1608 r = kvm_ioapic_init(kvm);
1609 if (r) {
1610 kfree(kvm->arch.vpic);
1611 kvm->arch.vpic = NULL;
1612 goto out;
1613 }
1614 } else
1615 goto out;
1616 break;
1617 case KVM_CREATE_PIT:
1618 r = -ENOMEM;
1619 kvm->arch.vpit = kvm_create_pit(kvm);
1620 if (kvm->arch.vpit)
1621 r = 0;
1622 break;
1623 case KVM_IRQ_LINE: {
1624 struct kvm_irq_level irq_event;
1625
1626 r = -EFAULT;
1627 if (copy_from_user(&irq_event, argp, sizeof irq_event))
1628 goto out;
1629 if (irqchip_in_kernel(kvm)) {
1630 mutex_lock(&kvm->lock);
1631 if (irq_event.irq < 16)
1632 kvm_pic_set_irq(pic_irqchip(kvm),
1633 irq_event.irq,
1634 irq_event.level);
1635 kvm_ioapic_set_irq(kvm->arch.vioapic,
1636 irq_event.irq,
1637 irq_event.level);
1638 mutex_unlock(&kvm->lock);
1639 r = 0;
1640 }
1641 break;
1642 }
1643 case KVM_GET_IRQCHIP: {
1644 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1645 struct kvm_irqchip chip;
1646
1647 r = -EFAULT;
1648 if (copy_from_user(&chip, argp, sizeof chip))
1649 goto out;
1650 r = -ENXIO;
1651 if (!irqchip_in_kernel(kvm))
1652 goto out;
1653 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
1654 if (r)
1655 goto out;
1656 r = -EFAULT;
1657 if (copy_to_user(argp, &chip, sizeof chip))
1658 goto out;
1659 r = 0;
1660 break;
1661 }
1662 case KVM_SET_IRQCHIP: {
1663 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1664 struct kvm_irqchip chip;
1665
1666 r = -EFAULT;
1667 if (copy_from_user(&chip, argp, sizeof chip))
1668 goto out;
1669 r = -ENXIO;
1670 if (!irqchip_in_kernel(kvm))
1671 goto out;
1672 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
1673 if (r)
1674 goto out;
1675 r = 0;
1676 break;
1677 }
1678 case KVM_GET_PIT: {
1679 struct kvm_pit_state ps;
1680 r = -EFAULT;
1681 if (copy_from_user(&ps, argp, sizeof ps))
1682 goto out;
1683 r = -ENXIO;
1684 if (!kvm->arch.vpit)
1685 goto out;
1686 r = kvm_vm_ioctl_get_pit(kvm, &ps);
1687 if (r)
1688 goto out;
1689 r = -EFAULT;
1690 if (copy_to_user(argp, &ps, sizeof ps))
1691 goto out;
1692 r = 0;
1693 break;
1694 }
1695 case KVM_SET_PIT: {
1696 struct kvm_pit_state ps;
1697 r = -EFAULT;
1698 if (copy_from_user(&ps, argp, sizeof ps))
1699 goto out;
1700 r = -ENXIO;
1701 if (!kvm->arch.vpit)
1702 goto out;
1703 r = kvm_vm_ioctl_set_pit(kvm, &ps);
1704 if (r)
1705 goto out;
1706 r = 0;
1707 break;
1708 }
1709 default:
1710 ;
1711 }
1712 out:
1713 return r;
1714 }
1715
1716 static void kvm_init_msr_list(void)
1717 {
1718 u32 dummy[2];
1719 unsigned i, j;
1720
1721 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
1722 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
1723 continue;
1724 if (j < i)
1725 msrs_to_save[j] = msrs_to_save[i];
1726 j++;
1727 }
1728 num_msrs_to_save = j;
1729 }
1730
1731 /*
1732 * Only apic need an MMIO device hook, so shortcut now..
1733 */
1734 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
1735 gpa_t addr)
1736 {
1737 struct kvm_io_device *dev;
1738
1739 if (vcpu->arch.apic) {
1740 dev = &vcpu->arch.apic->dev;
1741 if (dev->in_range(dev, addr))
1742 return dev;
1743 }
1744 return NULL;
1745 }
1746
1747
1748 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1749 gpa_t addr)
1750 {
1751 struct kvm_io_device *dev;
1752
1753 dev = vcpu_find_pervcpu_dev(vcpu, addr);
1754 if (dev == NULL)
1755 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
1756 return dev;
1757 }
1758
1759 int emulator_read_std(unsigned long addr,
1760 void *val,
1761 unsigned int bytes,
1762 struct kvm_vcpu *vcpu)
1763 {
1764 void *data = val;
1765 int r = X86EMUL_CONTINUE;
1766
1767 while (bytes) {
1768 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1769 unsigned offset = addr & (PAGE_SIZE-1);
1770 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
1771 int ret;
1772
1773 if (gpa == UNMAPPED_GVA) {
1774 r = X86EMUL_PROPAGATE_FAULT;
1775 goto out;
1776 }
1777 ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
1778 if (ret < 0) {
1779 r = X86EMUL_UNHANDLEABLE;
1780 goto out;
1781 }
1782
1783 bytes -= tocopy;
1784 data += tocopy;
1785 addr += tocopy;
1786 }
1787 out:
1788 return r;
1789 }
1790 EXPORT_SYMBOL_GPL(emulator_read_std);
1791
1792 static int emulator_read_emulated(unsigned long addr,
1793 void *val,
1794 unsigned int bytes,
1795 struct kvm_vcpu *vcpu)
1796 {
1797 struct kvm_io_device *mmio_dev;
1798 gpa_t gpa;
1799
1800 if (vcpu->mmio_read_completed) {
1801 memcpy(val, vcpu->mmio_data, bytes);
1802 vcpu->mmio_read_completed = 0;
1803 return X86EMUL_CONTINUE;
1804 }
1805
1806 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1807
1808 /* For APIC access vmexit */
1809 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1810 goto mmio;
1811
1812 if (emulator_read_std(addr, val, bytes, vcpu)
1813 == X86EMUL_CONTINUE)
1814 return X86EMUL_CONTINUE;
1815 if (gpa == UNMAPPED_GVA)
1816 return X86EMUL_PROPAGATE_FAULT;
1817
1818 mmio:
1819 /*
1820 * Is this MMIO handled locally?
1821 */
1822 mutex_lock(&vcpu->kvm->lock);
1823 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1824 if (mmio_dev) {
1825 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1826 mutex_unlock(&vcpu->kvm->lock);
1827 return X86EMUL_CONTINUE;
1828 }
1829 mutex_unlock(&vcpu->kvm->lock);
1830
1831 vcpu->mmio_needed = 1;
1832 vcpu->mmio_phys_addr = gpa;
1833 vcpu->mmio_size = bytes;
1834 vcpu->mmio_is_write = 0;
1835
1836 return X86EMUL_UNHANDLEABLE;
1837 }
1838
1839 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1840 const void *val, int bytes)
1841 {
1842 int ret;
1843
1844 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
1845 if (ret < 0)
1846 return 0;
1847 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
1848 return 1;
1849 }
1850
1851 static int emulator_write_emulated_onepage(unsigned long addr,
1852 const void *val,
1853 unsigned int bytes,
1854 struct kvm_vcpu *vcpu)
1855 {
1856 struct kvm_io_device *mmio_dev;
1857 gpa_t gpa;
1858
1859 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1860
1861 if (gpa == UNMAPPED_GVA) {
1862 kvm_inject_page_fault(vcpu, addr, 2);
1863 return X86EMUL_PROPAGATE_FAULT;
1864 }
1865
1866 /* For APIC access vmexit */
1867 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1868 goto mmio;
1869
1870 if (emulator_write_phys(vcpu, gpa, val, bytes))
1871 return X86EMUL_CONTINUE;
1872
1873 mmio:
1874 /*
1875 * Is this MMIO handled locally?
1876 */
1877 mutex_lock(&vcpu->kvm->lock);
1878 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1879 if (mmio_dev) {
1880 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1881 mutex_unlock(&vcpu->kvm->lock);
1882 return X86EMUL_CONTINUE;
1883 }
1884 mutex_unlock(&vcpu->kvm->lock);
1885
1886 vcpu->mmio_needed = 1;
1887 vcpu->mmio_phys_addr = gpa;
1888 vcpu->mmio_size = bytes;
1889 vcpu->mmio_is_write = 1;
1890 memcpy(vcpu->mmio_data, val, bytes);
1891
1892 return X86EMUL_CONTINUE;
1893 }
1894
1895 int emulator_write_emulated(unsigned long addr,
1896 const void *val,
1897 unsigned int bytes,
1898 struct kvm_vcpu *vcpu)
1899 {
1900 /* Crossing a page boundary? */
1901 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
1902 int rc, now;
1903
1904 now = -addr & ~PAGE_MASK;
1905 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
1906 if (rc != X86EMUL_CONTINUE)
1907 return rc;
1908 addr += now;
1909 val += now;
1910 bytes -= now;
1911 }
1912 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
1913 }
1914 EXPORT_SYMBOL_GPL(emulator_write_emulated);
1915
1916 static int emulator_cmpxchg_emulated(unsigned long addr,
1917 const void *old,
1918 const void *new,
1919 unsigned int bytes,
1920 struct kvm_vcpu *vcpu)
1921 {
1922 static int reported;
1923
1924 if (!reported) {
1925 reported = 1;
1926 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1927 }
1928 #ifndef CONFIG_X86_64
1929 /* guests cmpxchg8b have to be emulated atomically */
1930 if (bytes == 8) {
1931 gpa_t gpa;
1932 struct page *page;
1933 char *kaddr;
1934 u64 val;
1935
1936 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1937
1938 if (gpa == UNMAPPED_GVA ||
1939 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1940 goto emul_write;
1941
1942 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
1943 goto emul_write;
1944
1945 val = *(u64 *)new;
1946
1947 down_read(&current->mm->mmap_sem);
1948 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1949 up_read(&current->mm->mmap_sem);
1950
1951 kaddr = kmap_atomic(page, KM_USER0);
1952 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
1953 kunmap_atomic(kaddr, KM_USER0);
1954 kvm_release_page_dirty(page);
1955 }
1956 emul_write:
1957 #endif
1958
1959 return emulator_write_emulated(addr, new, bytes, vcpu);
1960 }
1961
1962 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
1963 {
1964 return kvm_x86_ops->get_segment_base(vcpu, seg);
1965 }
1966
1967 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1968 {
1969 return X86EMUL_CONTINUE;
1970 }
1971
1972 int emulate_clts(struct kvm_vcpu *vcpu)
1973 {
1974 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
1975 return X86EMUL_CONTINUE;
1976 }
1977
1978 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
1979 {
1980 struct kvm_vcpu *vcpu = ctxt->vcpu;
1981
1982 switch (dr) {
1983 case 0 ... 3:
1984 *dest = kvm_x86_ops->get_dr(vcpu, dr);
1985 return X86EMUL_CONTINUE;
1986 default:
1987 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
1988 return X86EMUL_UNHANDLEABLE;
1989 }
1990 }
1991
1992 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1993 {
1994 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1995 int exception;
1996
1997 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1998 if (exception) {
1999 /* FIXME: better handling */
2000 return X86EMUL_UNHANDLEABLE;
2001 }
2002 return X86EMUL_CONTINUE;
2003 }
2004
2005 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2006 {
2007 static int reported;
2008 u8 opcodes[4];
2009 unsigned long rip = vcpu->arch.rip;
2010 unsigned long rip_linear;
2011
2012 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2013
2014 if (reported)
2015 return;
2016
2017 emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
2018
2019 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2020 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2021 reported = 1;
2022 }
2023 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2024
2025 static struct x86_emulate_ops emulate_ops = {
2026 .read_std = emulator_read_std,
2027 .read_emulated = emulator_read_emulated,
2028 .write_emulated = emulator_write_emulated,
2029 .cmpxchg_emulated = emulator_cmpxchg_emulated,
2030 };
2031
2032 int emulate_instruction(struct kvm_vcpu *vcpu,
2033 struct kvm_run *run,
2034 unsigned long cr2,
2035 u16 error_code,
2036 int emulation_type)
2037 {
2038 int r;
2039 struct decode_cache *c;
2040
2041 vcpu->arch.mmio_fault_cr2 = cr2;
2042 kvm_x86_ops->cache_regs(vcpu);
2043
2044 vcpu->mmio_is_write = 0;
2045 vcpu->arch.pio.string = 0;
2046
2047 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2048 int cs_db, cs_l;
2049 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2050
2051 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2052 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2053 vcpu->arch.emulate_ctxt.mode =
2054 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2055 ? X86EMUL_MODE_REAL : cs_l
2056 ? X86EMUL_MODE_PROT64 : cs_db
2057 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2058
2059 if (vcpu->arch.emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
2060 vcpu->arch.emulate_ctxt.cs_base = 0;
2061 vcpu->arch.emulate_ctxt.ds_base = 0;
2062 vcpu->arch.emulate_ctxt.es_base = 0;
2063 vcpu->arch.emulate_ctxt.ss_base = 0;
2064 } else {
2065 vcpu->arch.emulate_ctxt.cs_base =
2066 get_segment_base(vcpu, VCPU_SREG_CS);
2067 vcpu->arch.emulate_ctxt.ds_base =
2068 get_segment_base(vcpu, VCPU_SREG_DS);
2069 vcpu->arch.emulate_ctxt.es_base =
2070 get_segment_base(vcpu, VCPU_SREG_ES);
2071 vcpu->arch.emulate_ctxt.ss_base =
2072 get_segment_base(vcpu, VCPU_SREG_SS);
2073 }
2074
2075 vcpu->arch.emulate_ctxt.gs_base =
2076 get_segment_base(vcpu, VCPU_SREG_GS);
2077 vcpu->arch.emulate_ctxt.fs_base =
2078 get_segment_base(vcpu, VCPU_SREG_FS);
2079
2080 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2081
2082 /* Reject the instructions other than VMCALL/VMMCALL when
2083 * try to emulate invalid opcode */
2084 c = &vcpu->arch.emulate_ctxt.decode;
2085 if ((emulation_type & EMULTYPE_TRAP_UD) &&
2086 (!(c->twobyte && c->b == 0x01 &&
2087 (c->modrm_reg == 0 || c->modrm_reg == 3) &&
2088 c->modrm_mod == 3 && c->modrm_rm == 1)))
2089 return EMULATE_FAIL;
2090
2091 ++vcpu->stat.insn_emulation;
2092 if (r) {
2093 ++vcpu->stat.insn_emulation_fail;
2094 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2095 return EMULATE_DONE;
2096 return EMULATE_FAIL;
2097 }
2098 }
2099
2100 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2101
2102 if (vcpu->arch.pio.string)
2103 return EMULATE_DO_MMIO;
2104
2105 if ((r || vcpu->mmio_is_write) && run) {
2106 run->exit_reason = KVM_EXIT_MMIO;
2107 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2108 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2109 run->mmio.len = vcpu->mmio_size;
2110 run->mmio.is_write = vcpu->mmio_is_write;
2111 }
2112
2113 if (r) {
2114 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2115 return EMULATE_DONE;
2116 if (!vcpu->mmio_needed) {
2117 kvm_report_emulation_failure(vcpu, "mmio");
2118 return EMULATE_FAIL;
2119 }
2120 return EMULATE_DO_MMIO;
2121 }
2122
2123 kvm_x86_ops->decache_regs(vcpu);
2124 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2125
2126 if (vcpu->mmio_is_write) {
2127 vcpu->mmio_needed = 0;
2128 return EMULATE_DO_MMIO;
2129 }
2130
2131 return EMULATE_DONE;
2132 }
2133 EXPORT_SYMBOL_GPL(emulate_instruction);
2134
2135 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
2136 {
2137 int i;
2138
2139 for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
2140 if (vcpu->arch.pio.guest_pages[i]) {
2141 kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
2142 vcpu->arch.pio.guest_pages[i] = NULL;
2143 }
2144 }
2145
2146 static int pio_copy_data(struct kvm_vcpu *vcpu)
2147 {
2148 void *p = vcpu->arch.pio_data;
2149 void *q;
2150 unsigned bytes;
2151 int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
2152
2153 q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
2154 PAGE_KERNEL);
2155 if (!q) {
2156 free_pio_guest_pages(vcpu);
2157 return -ENOMEM;
2158 }
2159 q += vcpu->arch.pio.guest_page_offset;
2160 bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2161 if (vcpu->arch.pio.in)
2162 memcpy(q, p, bytes);
2163 else
2164 memcpy(p, q, bytes);
2165 q -= vcpu->arch.pio.guest_page_offset;
2166 vunmap(q);
2167 free_pio_guest_pages(vcpu);
2168 return 0;
2169 }
2170
2171 int complete_pio(struct kvm_vcpu *vcpu)
2172 {
2173 struct kvm_pio_request *io = &vcpu->arch.pio;
2174 long delta;
2175 int r;
2176
2177 kvm_x86_ops->cache_regs(vcpu);
2178
2179 if (!io->string) {
2180 if (io->in)
2181 memcpy(&vcpu->arch.regs[VCPU_REGS_RAX], vcpu->arch.pio_data,
2182 io->size);
2183 } else {
2184 if (io->in) {
2185 r = pio_copy_data(vcpu);
2186 if (r) {
2187 kvm_x86_ops->cache_regs(vcpu);
2188 return r;
2189 }
2190 }
2191
2192 delta = 1;
2193 if (io->rep) {
2194 delta *= io->cur_count;
2195 /*
2196 * The size of the register should really depend on
2197 * current address size.
2198 */
2199 vcpu->arch.regs[VCPU_REGS_RCX] -= delta;
2200 }
2201 if (io->down)
2202 delta = -delta;
2203 delta *= io->size;
2204 if (io->in)
2205 vcpu->arch.regs[VCPU_REGS_RDI] += delta;
2206 else
2207 vcpu->arch.regs[VCPU_REGS_RSI] += delta;
2208 }
2209
2210 kvm_x86_ops->decache_regs(vcpu);
2211
2212 io->count -= io->cur_count;
2213 io->cur_count = 0;
2214
2215 return 0;
2216 }
2217
2218 static void kernel_pio(struct kvm_io_device *pio_dev,
2219 struct kvm_vcpu *vcpu,
2220 void *pd)
2221 {
2222 /* TODO: String I/O for in kernel device */
2223
2224 mutex_lock(&vcpu->kvm->lock);
2225 if (vcpu->arch.pio.in)
2226 kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
2227 vcpu->arch.pio.size,
2228 pd);
2229 else
2230 kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
2231 vcpu->arch.pio.size,
2232 pd);
2233 mutex_unlock(&vcpu->kvm->lock);
2234 }
2235
2236 static void pio_string_write(struct kvm_io_device *pio_dev,
2237 struct kvm_vcpu *vcpu)
2238 {
2239 struct kvm_pio_request *io = &vcpu->arch.pio;
2240 void *pd = vcpu->arch.pio_data;
2241 int i;
2242
2243 mutex_lock(&vcpu->kvm->lock);
2244 for (i = 0; i < io->cur_count; i++) {
2245 kvm_iodevice_write(pio_dev, io->port,
2246 io->size,
2247 pd);
2248 pd += io->size;
2249 }
2250 mutex_unlock(&vcpu->kvm->lock);
2251 }
2252
2253 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2254 gpa_t addr)
2255 {
2256 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
2257 }
2258
2259 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2260 int size, unsigned port)
2261 {
2262 struct kvm_io_device *pio_dev;
2263
2264 vcpu->run->exit_reason = KVM_EXIT_IO;
2265 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2266 vcpu->run->io.size = vcpu->arch.pio.size = size;
2267 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2268 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2269 vcpu->run->io.port = vcpu->arch.pio.port = port;
2270 vcpu->arch.pio.in = in;
2271 vcpu->arch.pio.string = 0;
2272 vcpu->arch.pio.down = 0;
2273 vcpu->arch.pio.guest_page_offset = 0;
2274 vcpu->arch.pio.rep = 0;
2275
2276 if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2277 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2278 handler);
2279 else
2280 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2281 handler);
2282
2283 kvm_x86_ops->cache_regs(vcpu);
2284 memcpy(vcpu->arch.pio_data, &vcpu->arch.regs[VCPU_REGS_RAX], 4);
2285 kvm_x86_ops->decache_regs(vcpu);
2286
2287 kvm_x86_ops->skip_emulated_instruction(vcpu);
2288
2289 pio_dev = vcpu_find_pio_dev(vcpu, port);
2290 if (pio_dev) {
2291 kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2292 complete_pio(vcpu);
2293 return 1;
2294 }
2295 return 0;
2296 }
2297 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2298
2299 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2300 int size, unsigned long count, int down,
2301 gva_t address, int rep, unsigned port)
2302 {
2303 unsigned now, in_page;
2304 int i, ret = 0;
2305 int nr_pages = 1;
2306 struct page *page;
2307 struct kvm_io_device *pio_dev;
2308
2309 vcpu->run->exit_reason = KVM_EXIT_IO;
2310 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2311 vcpu->run->io.size = vcpu->arch.pio.size = size;
2312 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2313 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2314 vcpu->run->io.port = vcpu->arch.pio.port = port;
2315 vcpu->arch.pio.in = in;
2316 vcpu->arch.pio.string = 1;
2317 vcpu->arch.pio.down = down;
2318 vcpu->arch.pio.guest_page_offset = offset_in_page(address);
2319 vcpu->arch.pio.rep = rep;
2320
2321 if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2322 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2323 handler);
2324 else
2325 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2326 handler);
2327
2328 if (!count) {
2329 kvm_x86_ops->skip_emulated_instruction(vcpu);
2330 return 1;
2331 }
2332
2333 if (!down)
2334 in_page = PAGE_SIZE - offset_in_page(address);
2335 else
2336 in_page = offset_in_page(address) + size;
2337 now = min(count, (unsigned long)in_page / size);
2338 if (!now) {
2339 /*
2340 * String I/O straddles page boundary. Pin two guest pages
2341 * so that we satisfy atomicity constraints. Do just one
2342 * transaction to avoid complexity.
2343 */
2344 nr_pages = 2;
2345 now = 1;
2346 }
2347 if (down) {
2348 /*
2349 * String I/O in reverse. Yuck. Kill the guest, fix later.
2350 */
2351 pr_unimpl(vcpu, "guest string pio down\n");
2352 kvm_inject_gp(vcpu, 0);
2353 return 1;
2354 }
2355 vcpu->run->io.count = now;
2356 vcpu->arch.pio.cur_count = now;
2357
2358 if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2359 kvm_x86_ops->skip_emulated_instruction(vcpu);
2360
2361 for (i = 0; i < nr_pages; ++i) {
2362 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
2363 vcpu->arch.pio.guest_pages[i] = page;
2364 if (!page) {
2365 kvm_inject_gp(vcpu, 0);
2366 free_pio_guest_pages(vcpu);
2367 return 1;
2368 }
2369 }
2370
2371 pio_dev = vcpu_find_pio_dev(vcpu, port);
2372 if (!vcpu->arch.pio.in) {
2373 /* string PIO write */
2374 ret = pio_copy_data(vcpu);
2375 if (ret >= 0 && pio_dev) {
2376 pio_string_write(pio_dev, vcpu);
2377 complete_pio(vcpu);
2378 if (vcpu->arch.pio.count == 0)
2379 ret = 1;
2380 }
2381 } else if (pio_dev)
2382 pr_unimpl(vcpu, "no string pio read support yet, "
2383 "port %x size %d count %ld\n",
2384 port, size, count);
2385
2386 return ret;
2387 }
2388 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2389
2390 int kvm_arch_init(void *opaque)
2391 {
2392 int r;
2393 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
2394
2395 if (kvm_x86_ops) {
2396 printk(KERN_ERR "kvm: already loaded the other module\n");
2397 r = -EEXIST;
2398 goto out;
2399 }
2400
2401 if (!ops->cpu_has_kvm_support()) {
2402 printk(KERN_ERR "kvm: no hardware support\n");
2403 r = -EOPNOTSUPP;
2404 goto out;
2405 }
2406 if (ops->disabled_by_bios()) {
2407 printk(KERN_ERR "kvm: disabled by bios\n");
2408 r = -EOPNOTSUPP;
2409 goto out;
2410 }
2411
2412 r = kvm_mmu_module_init();
2413 if (r)
2414 goto out;
2415
2416 kvm_init_msr_list();
2417
2418 kvm_x86_ops = ops;
2419 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2420 kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
2421 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
2422 PT_DIRTY_MASK, PT64_NX_MASK, 0);
2423 return 0;
2424
2425 out:
2426 return r;
2427 }
2428
2429 void kvm_arch_exit(void)
2430 {
2431 kvm_x86_ops = NULL;
2432 kvm_mmu_module_exit();
2433 }
2434
2435 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
2436 {
2437 ++vcpu->stat.halt_exits;
2438 KVMTRACE_0D(HLT, vcpu, handler);
2439 if (irqchip_in_kernel(vcpu->kvm)) {
2440 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
2441 up_read(&vcpu->kvm->slots_lock);
2442 kvm_vcpu_block(vcpu);
2443 down_read(&vcpu->kvm->slots_lock);
2444 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
2445 return -EINTR;
2446 return 1;
2447 } else {
2448 vcpu->run->exit_reason = KVM_EXIT_HLT;
2449 return 0;
2450 }
2451 }
2452 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
2453
2454 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
2455 unsigned long a1)
2456 {
2457 if (is_long_mode(vcpu))
2458 return a0;
2459 else
2460 return a0 | ((gpa_t)a1 << 32);
2461 }
2462
2463 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
2464 {
2465 unsigned long nr, a0, a1, a2, a3, ret;
2466 int r = 1;
2467
2468 kvm_x86_ops->cache_regs(vcpu);
2469
2470 nr = vcpu->arch.regs[VCPU_REGS_RAX];
2471 a0 = vcpu->arch.regs[VCPU_REGS_RBX];
2472 a1 = vcpu->arch.regs[VCPU_REGS_RCX];
2473 a2 = vcpu->arch.regs[VCPU_REGS_RDX];
2474 a3 = vcpu->arch.regs[VCPU_REGS_RSI];
2475
2476 KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
2477
2478 if (!is_long_mode(vcpu)) {
2479 nr &= 0xFFFFFFFF;
2480 a0 &= 0xFFFFFFFF;
2481 a1 &= 0xFFFFFFFF;
2482 a2 &= 0xFFFFFFFF;
2483 a3 &= 0xFFFFFFFF;
2484 }
2485
2486 switch (nr) {
2487 case KVM_HC_VAPIC_POLL_IRQ:
2488 ret = 0;
2489 break;
2490 case KVM_HC_MMU_OP:
2491 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
2492 break;
2493 default:
2494 ret = -KVM_ENOSYS;
2495 break;
2496 }
2497 vcpu->arch.regs[VCPU_REGS_RAX] = ret;
2498 kvm_x86_ops->decache_regs(vcpu);
2499 ++vcpu->stat.hypercalls;
2500 return r;
2501 }
2502 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
2503
2504 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
2505 {
2506 char instruction[3];
2507 int ret = 0;
2508
2509
2510 /*
2511 * Blow out the MMU to ensure that no other VCPU has an active mapping
2512 * to ensure that the updated hypercall appears atomically across all
2513 * VCPUs.
2514 */
2515 kvm_mmu_zap_all(vcpu->kvm);
2516
2517 kvm_x86_ops->cache_regs(vcpu);
2518 kvm_x86_ops->patch_hypercall(vcpu, instruction);
2519 if (emulator_write_emulated(vcpu->arch.rip, instruction, 3, vcpu)
2520 != X86EMUL_CONTINUE)
2521 ret = -EFAULT;
2522
2523 return ret;
2524 }
2525
2526 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
2527 {
2528 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
2529 }
2530
2531 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2532 {
2533 struct descriptor_table dt = { limit, base };
2534
2535 kvm_x86_ops->set_gdt(vcpu, &dt);
2536 }
2537
2538 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2539 {
2540 struct descriptor_table dt = { limit, base };
2541
2542 kvm_x86_ops->set_idt(vcpu, &dt);
2543 }
2544
2545 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
2546 unsigned long *rflags)
2547 {
2548 kvm_lmsw(vcpu, msw);
2549 *rflags = kvm_x86_ops->get_rflags(vcpu);
2550 }
2551
2552 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
2553 {
2554 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2555 switch (cr) {
2556 case 0:
2557 return vcpu->arch.cr0;
2558 case 2:
2559 return vcpu->arch.cr2;
2560 case 3:
2561 return vcpu->arch.cr3;
2562 case 4:
2563 return vcpu->arch.cr4;
2564 case 8:
2565 return kvm_get_cr8(vcpu);
2566 default:
2567 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2568 return 0;
2569 }
2570 }
2571
2572 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
2573 unsigned long *rflags)
2574 {
2575 switch (cr) {
2576 case 0:
2577 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2578 *rflags = kvm_x86_ops->get_rflags(vcpu);
2579 break;
2580 case 2:
2581 vcpu->arch.cr2 = val;
2582 break;
2583 case 3:
2584 kvm_set_cr3(vcpu, val);
2585 break;
2586 case 4:
2587 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2588 break;
2589 case 8:
2590 kvm_set_cr8(vcpu, val & 0xfUL);
2591 break;
2592 default:
2593 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2594 }
2595 }
2596
2597 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
2598 {
2599 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
2600 int j, nent = vcpu->arch.cpuid_nent;
2601
2602 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
2603 /* when no next entry is found, the current entry[i] is reselected */
2604 for (j = i + 1; j == i; j = (j + 1) % nent) {
2605 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2606 if (ej->function == e->function) {
2607 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2608 return j;
2609 }
2610 }
2611 return 0; /* silence gcc, even though control never reaches here */
2612 }
2613
2614 /* find an entry with matching function, matching index (if needed), and that
2615 * should be read next (if it's stateful) */
2616 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
2617 u32 function, u32 index)
2618 {
2619 if (e->function != function)
2620 return 0;
2621 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
2622 return 0;
2623 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
2624 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
2625 return 0;
2626 return 1;
2627 }
2628
2629 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
2630 {
2631 int i;
2632 u32 function, index;
2633 struct kvm_cpuid_entry2 *e, *best;
2634
2635 kvm_x86_ops->cache_regs(vcpu);
2636 function = vcpu->arch.regs[VCPU_REGS_RAX];
2637 index = vcpu->arch.regs[VCPU_REGS_RCX];
2638 vcpu->arch.regs[VCPU_REGS_RAX] = 0;
2639 vcpu->arch.regs[VCPU_REGS_RBX] = 0;
2640 vcpu->arch.regs[VCPU_REGS_RCX] = 0;
2641 vcpu->arch.regs[VCPU_REGS_RDX] = 0;
2642 best = NULL;
2643 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2644 e = &vcpu->arch.cpuid_entries[i];
2645 if (is_matching_cpuid_entry(e, function, index)) {
2646 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
2647 move_to_next_stateful_cpuid_entry(vcpu, i);
2648 best = e;
2649 break;
2650 }
2651 /*
2652 * Both basic or both extended?
2653 */
2654 if (((e->function ^ function) & 0x80000000) == 0)
2655 if (!best || e->function > best->function)
2656 best = e;
2657 }
2658 if (best) {
2659 vcpu->arch.regs[VCPU_REGS_RAX] = best->eax;
2660 vcpu->arch.regs[VCPU_REGS_RBX] = best->ebx;
2661 vcpu->arch.regs[VCPU_REGS_RCX] = best->ecx;
2662 vcpu->arch.regs[VCPU_REGS_RDX] = best->edx;
2663 }
2664 kvm_x86_ops->decache_regs(vcpu);
2665 kvm_x86_ops->skip_emulated_instruction(vcpu);
2666 KVMTRACE_5D(CPUID, vcpu, function,
2667 (u32)vcpu->arch.regs[VCPU_REGS_RAX],
2668 (u32)vcpu->arch.regs[VCPU_REGS_RBX],
2669 (u32)vcpu->arch.regs[VCPU_REGS_RCX],
2670 (u32)vcpu->arch.regs[VCPU_REGS_RDX], handler);
2671 }
2672 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
2673
2674 /*
2675 * Check if userspace requested an interrupt window, and that the
2676 * interrupt window is open.
2677 *
2678 * No need to exit to userspace if we already have an interrupt queued.
2679 */
2680 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
2681 struct kvm_run *kvm_run)
2682 {
2683 return (!vcpu->arch.irq_summary &&
2684 kvm_run->request_interrupt_window &&
2685 vcpu->arch.interrupt_window_open &&
2686 (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
2687 }
2688
2689 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
2690 struct kvm_run *kvm_run)
2691 {
2692 kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
2693 kvm_run->cr8 = kvm_get_cr8(vcpu);
2694 kvm_run->apic_base = kvm_get_apic_base(vcpu);
2695 if (irqchip_in_kernel(vcpu->kvm))
2696 kvm_run->ready_for_interrupt_injection = 1;
2697 else
2698 kvm_run->ready_for_interrupt_injection =
2699 (vcpu->arch.interrupt_window_open &&
2700 vcpu->arch.irq_summary == 0);
2701 }
2702
2703 static void vapic_enter(struct kvm_vcpu *vcpu)
2704 {
2705 struct kvm_lapic *apic = vcpu->arch.apic;
2706 struct page *page;
2707
2708 if (!apic || !apic->vapic_addr)
2709 return;
2710
2711 down_read(&current->mm->mmap_sem);
2712 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2713 up_read(&current->mm->mmap_sem);
2714
2715 vcpu->arch.apic->vapic_page = page;
2716 }
2717
2718 static void vapic_exit(struct kvm_vcpu *vcpu)
2719 {
2720 struct kvm_lapic *apic = vcpu->arch.apic;
2721
2722 if (!apic || !apic->vapic_addr)
2723 return;
2724
2725 kvm_release_page_dirty(apic->vapic_page);
2726 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2727 }
2728
2729 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2730 {
2731 int r;
2732
2733 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
2734 pr_debug("vcpu %d received sipi with vector # %x\n",
2735 vcpu->vcpu_id, vcpu->arch.sipi_vector);
2736 kvm_lapic_reset(vcpu);
2737 r = kvm_x86_ops->vcpu_reset(vcpu);
2738 if (r)
2739 return r;
2740 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
2741 }
2742
2743 down_read(&vcpu->kvm->slots_lock);
2744 vapic_enter(vcpu);
2745
2746 preempted:
2747 if (vcpu->guest_debug.enabled)
2748 kvm_x86_ops->guest_debug_pre(vcpu);
2749
2750 again:
2751 if (vcpu->requests)
2752 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
2753 kvm_mmu_unload(vcpu);
2754
2755 r = kvm_mmu_reload(vcpu);
2756 if (unlikely(r))
2757 goto out;
2758
2759 if (vcpu->requests) {
2760 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
2761 __kvm_migrate_timers(vcpu);
2762 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
2763 &vcpu->requests)) {
2764 kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
2765 r = 0;
2766 goto out;
2767 }
2768 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
2769 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2770 r = 0;
2771 goto out;
2772 }
2773 }
2774
2775 kvm_inject_pending_timer_irqs(vcpu);
2776
2777 preempt_disable();
2778
2779 kvm_x86_ops->prepare_guest_switch(vcpu);
2780 kvm_load_guest_fpu(vcpu);
2781
2782 local_irq_disable();
2783
2784 if (need_resched()) {
2785 local_irq_enable();
2786 preempt_enable();
2787 r = 1;
2788 goto out;
2789 }
2790
2791 if (vcpu->requests)
2792 if (test_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests)) {
2793 local_irq_enable();
2794 preempt_enable();
2795 r = 1;
2796 goto out;
2797 }
2798
2799 if (signal_pending(current)) {
2800 local_irq_enable();
2801 preempt_enable();
2802 r = -EINTR;
2803 kvm_run->exit_reason = KVM_EXIT_INTR;
2804 ++vcpu->stat.signal_exits;
2805 goto out;
2806 }
2807
2808 vcpu->guest_mode = 1;
2809 /*
2810 * Make sure that guest_mode assignment won't happen after
2811 * testing the pending IRQ vector bitmap.
2812 */
2813 smp_wmb();
2814
2815 if (vcpu->arch.exception.pending)
2816 __queue_exception(vcpu);
2817 else if (irqchip_in_kernel(vcpu->kvm))
2818 kvm_x86_ops->inject_pending_irq(vcpu);
2819 else
2820 kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
2821
2822 kvm_lapic_sync_to_vapic(vcpu);
2823
2824 up_read(&vcpu->kvm->slots_lock);
2825
2826 kvm_guest_enter();
2827
2828 if (vcpu->requests)
2829 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
2830 kvm_x86_ops->tlb_flush(vcpu);
2831
2832 KVMTRACE_0D(VMENTRY, vcpu, entryexit);
2833 kvm_x86_ops->run(vcpu, kvm_run);
2834
2835 vcpu->guest_mode = 0;
2836 local_irq_enable();
2837
2838 ++vcpu->stat.exits;
2839
2840 /*
2841 * We must have an instruction between local_irq_enable() and
2842 * kvm_guest_exit(), so the timer interrupt isn't delayed by
2843 * the interrupt shadow. The stat.exits increment will do nicely.
2844 * But we need to prevent reordering, hence this barrier():
2845 */
2846 barrier();
2847
2848 kvm_guest_exit();
2849
2850 preempt_enable();
2851
2852 down_read(&vcpu->kvm->slots_lock);
2853
2854 /*
2855 * Profile KVM exit RIPs:
2856 */
2857 if (unlikely(prof_on == KVM_PROFILING)) {
2858 kvm_x86_ops->cache_regs(vcpu);
2859 profile_hit(KVM_PROFILING, (void *)vcpu->arch.rip);
2860 }
2861
2862 if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
2863 vcpu->arch.exception.pending = false;
2864
2865 kvm_lapic_sync_from_vapic(vcpu);
2866
2867 r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
2868
2869 if (r > 0) {
2870 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
2871 r = -EINTR;
2872 kvm_run->exit_reason = KVM_EXIT_INTR;
2873 ++vcpu->stat.request_irq_exits;
2874 goto out;
2875 }
2876 if (!need_resched())
2877 goto again;
2878 }
2879
2880 out:
2881 up_read(&vcpu->kvm->slots_lock);
2882 if (r > 0) {
2883 kvm_resched(vcpu);
2884 down_read(&vcpu->kvm->slots_lock);
2885 goto preempted;
2886 }
2887
2888 post_kvm_run_save(vcpu, kvm_run);
2889
2890 down_read(&vcpu->kvm->slots_lock);
2891 vapic_exit(vcpu);
2892 up_read(&vcpu->kvm->slots_lock);
2893
2894 return r;
2895 }
2896
2897 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2898 {
2899 int r;
2900 sigset_t sigsaved;
2901
2902 vcpu_load(vcpu);
2903
2904 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
2905 kvm_vcpu_block(vcpu);
2906 vcpu_put(vcpu);
2907 return -EAGAIN;
2908 }
2909
2910 if (vcpu->sigset_active)
2911 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
2912
2913 /* re-sync apic's tpr */
2914 if (!irqchip_in_kernel(vcpu->kvm))
2915 kvm_set_cr8(vcpu, kvm_run->cr8);
2916
2917 if (vcpu->arch.pio.cur_count) {
2918 r = complete_pio(vcpu);
2919 if (r)
2920 goto out;
2921 }
2922 #if CONFIG_HAS_IOMEM
2923 if (vcpu->mmio_needed) {
2924 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
2925 vcpu->mmio_read_completed = 1;
2926 vcpu->mmio_needed = 0;
2927
2928 down_read(&vcpu->kvm->slots_lock);
2929 r = emulate_instruction(vcpu, kvm_run,
2930 vcpu->arch.mmio_fault_cr2, 0,
2931 EMULTYPE_NO_DECODE);
2932 up_read(&vcpu->kvm->slots_lock);
2933 if (r == EMULATE_DO_MMIO) {
2934 /*
2935 * Read-modify-write. Back to userspace.
2936 */
2937 r = 0;
2938 goto out;
2939 }
2940 }
2941 #endif
2942 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
2943 kvm_x86_ops->cache_regs(vcpu);
2944 vcpu->arch.regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
2945 kvm_x86_ops->decache_regs(vcpu);
2946 }
2947
2948 r = __vcpu_run(vcpu, kvm_run);
2949
2950 out:
2951 if (vcpu->sigset_active)
2952 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2953
2954 vcpu_put(vcpu);
2955 return r;
2956 }
2957
2958 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
2959 {
2960 vcpu_load(vcpu);
2961
2962 kvm_x86_ops->cache_regs(vcpu);
2963
2964 regs->rax = vcpu->arch.regs[VCPU_REGS_RAX];
2965 regs->rbx = vcpu->arch.regs[VCPU_REGS_RBX];
2966 regs->rcx = vcpu->arch.regs[VCPU_REGS_RCX];
2967 regs->rdx = vcpu->arch.regs[VCPU_REGS_RDX];
2968 regs->rsi = vcpu->arch.regs[VCPU_REGS_RSI];
2969 regs->rdi = vcpu->arch.regs[VCPU_REGS_RDI];
2970 regs->rsp = vcpu->arch.regs[VCPU_REGS_RSP];
2971 regs->rbp = vcpu->arch.regs[VCPU_REGS_RBP];
2972 #ifdef CONFIG_X86_64
2973 regs->r8 = vcpu->arch.regs[VCPU_REGS_R8];
2974 regs->r9 = vcpu->arch.regs[VCPU_REGS_R9];
2975 regs->r10 = vcpu->arch.regs[VCPU_REGS_R10];
2976 regs->r11 = vcpu->arch.regs[VCPU_REGS_R11];
2977 regs->r12 = vcpu->arch.regs[VCPU_REGS_R12];
2978 regs->r13 = vcpu->arch.regs[VCPU_REGS_R13];
2979 regs->r14 = vcpu->arch.regs[VCPU_REGS_R14];
2980 regs->r15 = vcpu->arch.regs[VCPU_REGS_R15];
2981 #endif
2982
2983 regs->rip = vcpu->arch.rip;
2984 regs->rflags = kvm_x86_ops->get_rflags(vcpu);
2985
2986 /*
2987 * Don't leak debug flags in case they were set for guest debugging
2988 */
2989 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
2990 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
2991
2992 vcpu_put(vcpu);
2993
2994 return 0;
2995 }
2996
2997 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
2998 {
2999 vcpu_load(vcpu);
3000
3001 vcpu->arch.regs[VCPU_REGS_RAX] = regs->rax;
3002 vcpu->arch.regs[VCPU_REGS_RBX] = regs->rbx;
3003 vcpu->arch.regs[VCPU_REGS_RCX] = regs->rcx;
3004 vcpu->arch.regs[VCPU_REGS_RDX] = regs->rdx;
3005 vcpu->arch.regs[VCPU_REGS_RSI] = regs->rsi;
3006 vcpu->arch.regs[VCPU_REGS_RDI] = regs->rdi;
3007 vcpu->arch.regs[VCPU_REGS_RSP] = regs->rsp;
3008 vcpu->arch.regs[VCPU_REGS_RBP] = regs->rbp;
3009 #ifdef CONFIG_X86_64
3010 vcpu->arch.regs[VCPU_REGS_R8] = regs->r8;
3011 vcpu->arch.regs[VCPU_REGS_R9] = regs->r9;
3012 vcpu->arch.regs[VCPU_REGS_R10] = regs->r10;
3013 vcpu->arch.regs[VCPU_REGS_R11] = regs->r11;
3014 vcpu->arch.regs[VCPU_REGS_R12] = regs->r12;
3015 vcpu->arch.regs[VCPU_REGS_R13] = regs->r13;
3016 vcpu->arch.regs[VCPU_REGS_R14] = regs->r14;
3017 vcpu->arch.regs[VCPU_REGS_R15] = regs->r15;
3018 #endif
3019
3020 vcpu->arch.rip = regs->rip;
3021 kvm_x86_ops->set_rflags(vcpu, regs->rflags);
3022
3023 kvm_x86_ops->decache_regs(vcpu);
3024
3025 vcpu->arch.exception.pending = false;
3026
3027 vcpu_put(vcpu);
3028
3029 return 0;
3030 }
3031
3032 static void get_segment(struct kvm_vcpu *vcpu,
3033 struct kvm_segment *var, int seg)
3034 {
3035 kvm_x86_ops->get_segment(vcpu, var, seg);
3036 }
3037
3038 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3039 {
3040 struct kvm_segment cs;
3041
3042 get_segment(vcpu, &cs, VCPU_SREG_CS);
3043 *db = cs.db;
3044 *l = cs.l;
3045 }
3046 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3047
3048 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3049 struct kvm_sregs *sregs)
3050 {
3051 struct descriptor_table dt;
3052 int pending_vec;
3053
3054 vcpu_load(vcpu);
3055
3056 get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3057 get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3058 get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3059 get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3060 get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3061 get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3062
3063 get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3064 get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3065
3066 kvm_x86_ops->get_idt(vcpu, &dt);
3067 sregs->idt.limit = dt.limit;
3068 sregs->idt.base = dt.base;
3069 kvm_x86_ops->get_gdt(vcpu, &dt);
3070 sregs->gdt.limit = dt.limit;
3071 sregs->gdt.base = dt.base;
3072
3073 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3074 sregs->cr0 = vcpu->arch.cr0;
3075 sregs->cr2 = vcpu->arch.cr2;
3076 sregs->cr3 = vcpu->arch.cr3;
3077 sregs->cr4 = vcpu->arch.cr4;
3078 sregs->cr8 = kvm_get_cr8(vcpu);
3079 sregs->efer = vcpu->arch.shadow_efer;
3080 sregs->apic_base = kvm_get_apic_base(vcpu);
3081
3082 if (irqchip_in_kernel(vcpu->kvm)) {
3083 memset(sregs->interrupt_bitmap, 0,
3084 sizeof sregs->interrupt_bitmap);
3085 pending_vec = kvm_x86_ops->get_irq(vcpu);
3086 if (pending_vec >= 0)
3087 set_bit(pending_vec,
3088 (unsigned long *)sregs->interrupt_bitmap);
3089 } else
3090 memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
3091 sizeof sregs->interrupt_bitmap);
3092
3093 vcpu_put(vcpu);
3094
3095 return 0;
3096 }
3097
3098 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3099 struct kvm_mp_state *mp_state)
3100 {
3101 vcpu_load(vcpu);
3102 mp_state->mp_state = vcpu->arch.mp_state;
3103 vcpu_put(vcpu);
3104 return 0;
3105 }
3106
3107 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3108 struct kvm_mp_state *mp_state)
3109 {
3110 vcpu_load(vcpu);
3111 vcpu->arch.mp_state = mp_state->mp_state;
3112 vcpu_put(vcpu);
3113 return 0;
3114 }
3115
3116 static void set_segment(struct kvm_vcpu *vcpu,
3117 struct kvm_segment *var, int seg)
3118 {
3119 kvm_x86_ops->set_segment(vcpu, var, seg);
3120 }
3121
3122 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
3123 struct kvm_segment *kvm_desct)
3124 {
3125 kvm_desct->base = seg_desc->base0;
3126 kvm_desct->base |= seg_desc->base1 << 16;
3127 kvm_desct->base |= seg_desc->base2 << 24;
3128 kvm_desct->limit = seg_desc->limit0;
3129 kvm_desct->limit |= seg_desc->limit << 16;
3130 kvm_desct->selector = selector;
3131 kvm_desct->type = seg_desc->type;
3132 kvm_desct->present = seg_desc->p;
3133 kvm_desct->dpl = seg_desc->dpl;
3134 kvm_desct->db = seg_desc->d;
3135 kvm_desct->s = seg_desc->s;
3136 kvm_desct->l = seg_desc->l;
3137 kvm_desct->g = seg_desc->g;
3138 kvm_desct->avl = seg_desc->avl;
3139 if (!selector)
3140 kvm_desct->unusable = 1;
3141 else
3142 kvm_desct->unusable = 0;
3143 kvm_desct->padding = 0;
3144 }
3145
3146 static void get_segment_descritptor_dtable(struct kvm_vcpu *vcpu,
3147 u16 selector,
3148 struct descriptor_table *dtable)
3149 {
3150 if (selector & 1 << 2) {
3151 struct kvm_segment kvm_seg;
3152
3153 get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
3154
3155 if (kvm_seg.unusable)
3156 dtable->limit = 0;
3157 else
3158 dtable->limit = kvm_seg.limit;
3159 dtable->base = kvm_seg.base;
3160 }
3161 else
3162 kvm_x86_ops->get_gdt(vcpu, dtable);
3163 }
3164
3165 /* allowed just for 8 bytes segments */
3166 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3167 struct desc_struct *seg_desc)
3168 {
3169 struct descriptor_table dtable;
3170 u16 index = selector >> 3;
3171
3172 get_segment_descritptor_dtable(vcpu, selector, &dtable);
3173
3174 if (dtable.limit < index * 8 + 7) {
3175 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
3176 return 1;
3177 }
3178 return kvm_read_guest(vcpu->kvm, dtable.base + index * 8, seg_desc, 8);
3179 }
3180
3181 /* allowed just for 8 bytes segments */
3182 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3183 struct desc_struct *seg_desc)
3184 {
3185 struct descriptor_table dtable;
3186 u16 index = selector >> 3;
3187
3188 get_segment_descritptor_dtable(vcpu, selector, &dtable);
3189
3190 if (dtable.limit < index * 8 + 7)
3191 return 1;
3192 return kvm_write_guest(vcpu->kvm, dtable.base + index * 8, seg_desc, 8);
3193 }
3194
3195 static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
3196 struct desc_struct *seg_desc)
3197 {
3198 u32 base_addr;
3199
3200 base_addr = seg_desc->base0;
3201 base_addr |= (seg_desc->base1 << 16);
3202 base_addr |= (seg_desc->base2 << 24);
3203
3204 return base_addr;
3205 }
3206
3207 static int load_tss_segment32(struct kvm_vcpu *vcpu,
3208 struct desc_struct *seg_desc,
3209 struct tss_segment_32 *tss)
3210 {
3211 u32 base_addr;
3212
3213 base_addr = get_tss_base_addr(vcpu, seg_desc);
3214
3215 return kvm_read_guest(vcpu->kvm, base_addr, tss,
3216 sizeof(struct tss_segment_32));
3217 }
3218
3219 static int save_tss_segment32(struct kvm_vcpu *vcpu,
3220 struct desc_struct *seg_desc,
3221 struct tss_segment_32 *tss)
3222 {
3223 u32 base_addr;
3224
3225 base_addr = get_tss_base_addr(vcpu, seg_desc);
3226
3227 return kvm_write_guest(vcpu->kvm, base_addr, tss,
3228 sizeof(struct tss_segment_32));
3229 }
3230
3231 static int load_tss_segment16(struct kvm_vcpu *vcpu,
3232 struct desc_struct *seg_desc,
3233 struct tss_segment_16 *tss)
3234 {
3235 u32 base_addr;
3236
3237 base_addr = get_tss_base_addr(vcpu, seg_desc);
3238
3239 return kvm_read_guest(vcpu->kvm, base_addr, tss,
3240 sizeof(struct tss_segment_16));
3241 }
3242
3243 static int save_tss_segment16(struct kvm_vcpu *vcpu,
3244 struct desc_struct *seg_desc,
3245 struct tss_segment_16 *tss)
3246 {
3247 u32 base_addr;
3248
3249 base_addr = get_tss_base_addr(vcpu, seg_desc);
3250
3251 return kvm_write_guest(vcpu->kvm, base_addr, tss,
3252 sizeof(struct tss_segment_16));
3253 }
3254
3255 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
3256 {
3257 struct kvm_segment kvm_seg;
3258
3259 get_segment(vcpu, &kvm_seg, seg);
3260 return kvm_seg.selector;
3261 }
3262
3263 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
3264 u16 selector,
3265 struct kvm_segment *kvm_seg)
3266 {
3267 struct desc_struct seg_desc;
3268
3269 if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
3270 return 1;
3271 seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
3272 return 0;
3273 }
3274
3275 static int load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3276 int type_bits, int seg)
3277 {
3278 struct kvm_segment kvm_seg;
3279
3280 if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
3281 return 1;
3282 kvm_seg.type |= type_bits;
3283
3284 if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
3285 seg != VCPU_SREG_LDTR)
3286 if (!kvm_seg.s)
3287 kvm_seg.unusable = 1;
3288
3289 set_segment(vcpu, &kvm_seg, seg);
3290 return 0;
3291 }
3292
3293 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
3294 struct tss_segment_32 *tss)
3295 {
3296 tss->cr3 = vcpu->arch.cr3;
3297 tss->eip = vcpu->arch.rip;
3298 tss->eflags = kvm_x86_ops->get_rflags(vcpu);
3299 tss->eax = vcpu->arch.regs[VCPU_REGS_RAX];
3300 tss->ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3301 tss->edx = vcpu->arch.regs[VCPU_REGS_RDX];
3302 tss->ebx = vcpu->arch.regs[VCPU_REGS_RBX];
3303 tss->esp = vcpu->arch.regs[VCPU_REGS_RSP];
3304 tss->ebp = vcpu->arch.regs[VCPU_REGS_RBP];
3305 tss->esi = vcpu->arch.regs[VCPU_REGS_RSI];
3306 tss->edi = vcpu->arch.regs[VCPU_REGS_RDI];
3307
3308 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3309 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3310 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3311 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3312 tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
3313 tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
3314 tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3315 tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3316 }
3317
3318 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
3319 struct tss_segment_32 *tss)
3320 {
3321 kvm_set_cr3(vcpu, tss->cr3);
3322
3323 vcpu->arch.rip = tss->eip;
3324 kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
3325
3326 vcpu->arch.regs[VCPU_REGS_RAX] = tss->eax;
3327 vcpu->arch.regs[VCPU_REGS_RCX] = tss->ecx;
3328 vcpu->arch.regs[VCPU_REGS_RDX] = tss->edx;
3329 vcpu->arch.regs[VCPU_REGS_RBX] = tss->ebx;
3330 vcpu->arch.regs[VCPU_REGS_RSP] = tss->esp;
3331 vcpu->arch.regs[VCPU_REGS_RBP] = tss->ebp;
3332 vcpu->arch.regs[VCPU_REGS_RSI] = tss->esi;
3333 vcpu->arch.regs[VCPU_REGS_RDI] = tss->edi;
3334
3335 if (load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
3336 return 1;
3337
3338 if (load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3339 return 1;
3340
3341 if (load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3342 return 1;
3343
3344 if (load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3345 return 1;
3346
3347 if (load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3348 return 1;
3349
3350 if (load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
3351 return 1;
3352
3353 if (load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
3354 return 1;
3355 return 0;
3356 }
3357
3358 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
3359 struct tss_segment_16 *tss)
3360 {
3361 tss->ip = vcpu->arch.rip;
3362 tss->flag = kvm_x86_ops->get_rflags(vcpu);
3363 tss->ax = vcpu->arch.regs[VCPU_REGS_RAX];
3364 tss->cx = vcpu->arch.regs[VCPU_REGS_RCX];
3365 tss->dx = vcpu->arch.regs[VCPU_REGS_RDX];
3366 tss->bx = vcpu->arch.regs[VCPU_REGS_RBX];
3367 tss->sp = vcpu->arch.regs[VCPU_REGS_RSP];
3368 tss->bp = vcpu->arch.regs[VCPU_REGS_RBP];
3369 tss->si = vcpu->arch.regs[VCPU_REGS_RSI];
3370 tss->di = vcpu->arch.regs[VCPU_REGS_RDI];
3371
3372 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3373 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3374 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3375 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3376 tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3377 tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3378 }
3379
3380 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
3381 struct tss_segment_16 *tss)
3382 {
3383 vcpu->arch.rip = tss->ip;
3384 kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
3385 vcpu->arch.regs[VCPU_REGS_RAX] = tss->ax;
3386 vcpu->arch.regs[VCPU_REGS_RCX] = tss->cx;
3387 vcpu->arch.regs[VCPU_REGS_RDX] = tss->dx;
3388 vcpu->arch.regs[VCPU_REGS_RBX] = tss->bx;
3389 vcpu->arch.regs[VCPU_REGS_RSP] = tss->sp;
3390 vcpu->arch.regs[VCPU_REGS_RBP] = tss->bp;
3391 vcpu->arch.regs[VCPU_REGS_RSI] = tss->si;
3392 vcpu->arch.regs[VCPU_REGS_RDI] = tss->di;
3393
3394 if (load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
3395 return 1;
3396
3397 if (load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3398 return 1;
3399
3400 if (load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3401 return 1;
3402
3403 if (load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3404 return 1;
3405
3406 if (load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3407 return 1;
3408 return 0;
3409 }
3410
3411 int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
3412 struct desc_struct *cseg_desc,
3413 struct desc_struct *nseg_desc)
3414 {
3415 struct tss_segment_16 tss_segment_16;
3416 int ret = 0;
3417
3418 if (load_tss_segment16(vcpu, cseg_desc, &tss_segment_16))
3419 goto out;
3420
3421 save_state_to_tss16(vcpu, &tss_segment_16);
3422 save_tss_segment16(vcpu, cseg_desc, &tss_segment_16);
3423
3424 if (load_tss_segment16(vcpu, nseg_desc, &tss_segment_16))
3425 goto out;
3426 if (load_state_from_tss16(vcpu, &tss_segment_16))
3427 goto out;
3428
3429 ret = 1;
3430 out:
3431 return ret;
3432 }
3433
3434 int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
3435 struct desc_struct *cseg_desc,
3436 struct desc_struct *nseg_desc)
3437 {
3438 struct tss_segment_32 tss_segment_32;
3439 int ret = 0;
3440
3441 if (load_tss_segment32(vcpu, cseg_desc, &tss_segment_32))
3442 goto out;
3443
3444 save_state_to_tss32(vcpu, &tss_segment_32);
3445 save_tss_segment32(vcpu, cseg_desc, &tss_segment_32);
3446
3447 if (load_tss_segment32(vcpu, nseg_desc, &tss_segment_32))
3448 goto out;
3449 if (load_state_from_tss32(vcpu, &tss_segment_32))
3450 goto out;
3451
3452 ret = 1;
3453 out:
3454 return ret;
3455 }
3456
3457 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
3458 {
3459 struct kvm_segment tr_seg;
3460 struct desc_struct cseg_desc;
3461 struct desc_struct nseg_desc;
3462 int ret = 0;
3463
3464 get_segment(vcpu, &tr_seg, VCPU_SREG_TR);
3465
3466 if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
3467 goto out;
3468
3469 if (load_guest_segment_descriptor(vcpu, tr_seg.selector, &cseg_desc))
3470 goto out;
3471
3472
3473 if (reason != TASK_SWITCH_IRET) {
3474 int cpl;
3475
3476 cpl = kvm_x86_ops->get_cpl(vcpu);
3477 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
3478 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
3479 return 1;
3480 }
3481 }
3482
3483 if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
3484 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
3485 return 1;
3486 }
3487
3488 if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
3489 cseg_desc.type &= ~(1 << 1); //clear the B flag
3490 save_guest_segment_descriptor(vcpu, tr_seg.selector,
3491 &cseg_desc);
3492 }
3493
3494 if (reason == TASK_SWITCH_IRET) {
3495 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3496 kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
3497 }
3498
3499 kvm_x86_ops->skip_emulated_instruction(vcpu);
3500 kvm_x86_ops->cache_regs(vcpu);
3501
3502 if (nseg_desc.type & 8)
3503 ret = kvm_task_switch_32(vcpu, tss_selector, &cseg_desc,
3504 &nseg_desc);
3505 else
3506 ret = kvm_task_switch_16(vcpu, tss_selector, &cseg_desc,
3507 &nseg_desc);
3508
3509 if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
3510 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3511 kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
3512 }
3513
3514 if (reason != TASK_SWITCH_IRET) {
3515 nseg_desc.type |= (1 << 1);
3516 save_guest_segment_descriptor(vcpu, tss_selector,
3517 &nseg_desc);
3518 }
3519
3520 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
3521 seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
3522 tr_seg.type = 11;
3523 set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
3524 out:
3525 kvm_x86_ops->decache_regs(vcpu);
3526 return ret;
3527 }
3528 EXPORT_SYMBOL_GPL(kvm_task_switch);
3529
3530 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
3531 struct kvm_sregs *sregs)
3532 {
3533 int mmu_reset_needed = 0;
3534 int i, pending_vec, max_bits;
3535 struct descriptor_table dt;
3536
3537 vcpu_load(vcpu);
3538
3539 dt.limit = sregs->idt.limit;
3540 dt.base = sregs->idt.base;
3541 kvm_x86_ops->set_idt(vcpu, &dt);
3542 dt.limit = sregs->gdt.limit;
3543 dt.base = sregs->gdt.base;
3544 kvm_x86_ops->set_gdt(vcpu, &dt);
3545
3546 vcpu->arch.cr2 = sregs->cr2;
3547 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
3548 vcpu->arch.cr3 = sregs->cr3;
3549
3550 kvm_set_cr8(vcpu, sregs->cr8);
3551
3552 mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
3553 kvm_x86_ops->set_efer(vcpu, sregs->efer);
3554 kvm_set_apic_base(vcpu, sregs->apic_base);
3555
3556 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3557
3558 mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
3559 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
3560 vcpu->arch.cr0 = sregs->cr0;
3561
3562 mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
3563 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
3564 if (!is_long_mode(vcpu) && is_pae(vcpu))
3565 load_pdptrs(vcpu, vcpu->arch.cr3);
3566
3567 if (mmu_reset_needed)
3568 kvm_mmu_reset_context(vcpu);
3569
3570 if (!irqchip_in_kernel(vcpu->kvm)) {
3571 memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
3572 sizeof vcpu->arch.irq_pending);
3573 vcpu->arch.irq_summary = 0;
3574 for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
3575 if (vcpu->arch.irq_pending[i])
3576 __set_bit(i, &vcpu->arch.irq_summary);
3577 } else {
3578 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
3579 pending_vec = find_first_bit(
3580 (const unsigned long *)sregs->interrupt_bitmap,
3581 max_bits);
3582 /* Only pending external irq is handled here */
3583 if (pending_vec < max_bits) {
3584 kvm_x86_ops->set_irq(vcpu, pending_vec);
3585 pr_debug("Set back pending irq %d\n",
3586 pending_vec);
3587 }
3588 }
3589
3590 set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3591 set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3592 set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3593 set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3594 set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3595 set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3596
3597 set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3598 set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3599
3600 vcpu_put(vcpu);
3601
3602 return 0;
3603 }
3604
3605 int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
3606 struct kvm_debug_guest *dbg)
3607 {
3608 int r;
3609
3610 vcpu_load(vcpu);
3611
3612 r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
3613
3614 vcpu_put(vcpu);
3615
3616 return r;
3617 }
3618
3619 /*
3620 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
3621 * we have asm/x86/processor.h
3622 */
3623 struct fxsave {
3624 u16 cwd;
3625 u16 swd;
3626 u16 twd;
3627 u16 fop;
3628 u64 rip;
3629 u64 rdp;
3630 u32 mxcsr;
3631 u32 mxcsr_mask;
3632 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
3633 #ifdef CONFIG_X86_64
3634 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
3635 #else
3636 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
3637 #endif
3638 };
3639
3640 /*
3641 * Translate a guest virtual address to a guest physical address.
3642 */
3643 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
3644 struct kvm_translation *tr)
3645 {
3646 unsigned long vaddr = tr->linear_address;
3647 gpa_t gpa;
3648
3649 vcpu_load(vcpu);
3650 down_read(&vcpu->kvm->slots_lock);
3651 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
3652 up_read(&vcpu->kvm->slots_lock);
3653 tr->physical_address = gpa;
3654 tr->valid = gpa != UNMAPPED_GVA;
3655 tr->writeable = 1;
3656 tr->usermode = 0;
3657 vcpu_put(vcpu);
3658
3659 return 0;
3660 }
3661
3662 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
3663 {
3664 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3665
3666 vcpu_load(vcpu);
3667
3668 memcpy(fpu->fpr, fxsave->st_space, 128);
3669 fpu->fcw = fxsave->cwd;
3670 fpu->fsw = fxsave->swd;
3671 fpu->ftwx = fxsave->twd;
3672 fpu->last_opcode = fxsave->fop;
3673 fpu->last_ip = fxsave->rip;
3674 fpu->last_dp = fxsave->rdp;
3675 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
3676
3677 vcpu_put(vcpu);
3678
3679 return 0;
3680 }
3681
3682 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
3683 {
3684 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3685
3686 vcpu_load(vcpu);
3687
3688 memcpy(fxsave->st_space, fpu->fpr, 128);
3689 fxsave->cwd = fpu->fcw;
3690 fxsave->swd = fpu->fsw;
3691 fxsave->twd = fpu->ftwx;
3692 fxsave->fop = fpu->last_opcode;
3693 fxsave->rip = fpu->last_ip;
3694 fxsave->rdp = fpu->last_dp;
3695 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
3696
3697 vcpu_put(vcpu);
3698
3699 return 0;
3700 }
3701
3702 void fx_init(struct kvm_vcpu *vcpu)
3703 {
3704 unsigned after_mxcsr_mask;
3705
3706 /*
3707 * Touch the fpu the first time in non atomic context as if
3708 * this is the first fpu instruction the exception handler
3709 * will fire before the instruction returns and it'll have to
3710 * allocate ram with GFP_KERNEL.
3711 */
3712 if (!used_math())
3713 fx_save(&vcpu->arch.host_fx_image);
3714
3715 /* Initialize guest FPU by resetting ours and saving into guest's */
3716 preempt_disable();
3717 fx_save(&vcpu->arch.host_fx_image);
3718 fx_finit();
3719 fx_save(&vcpu->arch.guest_fx_image);
3720 fx_restore(&vcpu->arch.host_fx_image);
3721 preempt_enable();
3722
3723 vcpu->arch.cr0 |= X86_CR0_ET;
3724 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
3725 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
3726 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
3727 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
3728 }
3729 EXPORT_SYMBOL_GPL(fx_init);
3730
3731 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
3732 {
3733 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
3734 return;
3735
3736 vcpu->guest_fpu_loaded = 1;
3737 fx_save(&vcpu->arch.host_fx_image);
3738 fx_restore(&vcpu->arch.guest_fx_image);
3739 }
3740 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
3741
3742 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
3743 {
3744 if (!vcpu->guest_fpu_loaded)
3745 return;
3746
3747 vcpu->guest_fpu_loaded = 0;
3748 fx_save(&vcpu->arch.guest_fx_image);
3749 fx_restore(&vcpu->arch.host_fx_image);
3750 ++vcpu->stat.fpu_reload;
3751 }
3752 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
3753
3754 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
3755 {
3756 kvm_x86_ops->vcpu_free(vcpu);
3757 }
3758
3759 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
3760 unsigned int id)
3761 {
3762 return kvm_x86_ops->vcpu_create(kvm, id);
3763 }
3764
3765 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
3766 {
3767 int r;
3768
3769 /* We do fxsave: this must be aligned. */
3770 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
3771
3772 vcpu_load(vcpu);
3773 r = kvm_arch_vcpu_reset(vcpu);
3774 if (r == 0)
3775 r = kvm_mmu_setup(vcpu);
3776 vcpu_put(vcpu);
3777 if (r < 0)
3778 goto free_vcpu;
3779
3780 return 0;
3781 free_vcpu:
3782 kvm_x86_ops->vcpu_free(vcpu);
3783 return r;
3784 }
3785
3786 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
3787 {
3788 vcpu_load(vcpu);
3789 kvm_mmu_unload(vcpu);
3790 vcpu_put(vcpu);
3791
3792 kvm_x86_ops->vcpu_free(vcpu);
3793 }
3794
3795 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
3796 {
3797 return kvm_x86_ops->vcpu_reset(vcpu);
3798 }
3799
3800 void kvm_arch_hardware_enable(void *garbage)
3801 {
3802 kvm_x86_ops->hardware_enable(garbage);
3803 }
3804
3805 void kvm_arch_hardware_disable(void *garbage)
3806 {
3807 kvm_x86_ops->hardware_disable(garbage);
3808 }
3809
3810 int kvm_arch_hardware_setup(void)
3811 {
3812 return kvm_x86_ops->hardware_setup();
3813 }
3814
3815 void kvm_arch_hardware_unsetup(void)
3816 {
3817 kvm_x86_ops->hardware_unsetup();
3818 }
3819
3820 void kvm_arch_check_processor_compat(void *rtn)
3821 {
3822 kvm_x86_ops->check_processor_compatibility(rtn);
3823 }
3824
3825 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
3826 {
3827 struct page *page;
3828 struct kvm *kvm;
3829 int r;
3830
3831 BUG_ON(vcpu->kvm == NULL);
3832 kvm = vcpu->kvm;
3833
3834 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3835 if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
3836 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3837 else
3838 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
3839
3840 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3841 if (!page) {
3842 r = -ENOMEM;
3843 goto fail;
3844 }
3845 vcpu->arch.pio_data = page_address(page);
3846
3847 r = kvm_mmu_create(vcpu);
3848 if (r < 0)
3849 goto fail_free_pio_data;
3850
3851 if (irqchip_in_kernel(kvm)) {
3852 r = kvm_create_lapic(vcpu);
3853 if (r < 0)
3854 goto fail_mmu_destroy;
3855 }
3856
3857 return 0;
3858
3859 fail_mmu_destroy:
3860 kvm_mmu_destroy(vcpu);
3861 fail_free_pio_data:
3862 free_page((unsigned long)vcpu->arch.pio_data);
3863 fail:
3864 return r;
3865 }
3866
3867 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
3868 {
3869 kvm_free_lapic(vcpu);
3870 down_read(&vcpu->kvm->slots_lock);
3871 kvm_mmu_destroy(vcpu);
3872 up_read(&vcpu->kvm->slots_lock);
3873 free_page((unsigned long)vcpu->arch.pio_data);
3874 }
3875
3876 struct kvm *kvm_arch_create_vm(void)
3877 {
3878 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
3879
3880 if (!kvm)
3881 return ERR_PTR(-ENOMEM);
3882
3883 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
3884
3885 return kvm;
3886 }
3887
3888 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
3889 {
3890 vcpu_load(vcpu);
3891 kvm_mmu_unload(vcpu);
3892 vcpu_put(vcpu);
3893 }
3894
3895 static void kvm_free_vcpus(struct kvm *kvm)
3896 {
3897 unsigned int i;
3898
3899 /*
3900 * Unpin any mmu pages first.
3901 */
3902 for (i = 0; i < KVM_MAX_VCPUS; ++i)
3903 if (kvm->vcpus[i])
3904 kvm_unload_vcpu_mmu(kvm->vcpus[i]);
3905 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3906 if (kvm->vcpus[i]) {
3907 kvm_arch_vcpu_free(kvm->vcpus[i]);
3908 kvm->vcpus[i] = NULL;
3909 }
3910 }
3911
3912 }
3913
3914 void kvm_arch_destroy_vm(struct kvm *kvm)
3915 {
3916 kvm_free_pit(kvm);
3917 kfree(kvm->arch.vpic);
3918 kfree(kvm->arch.vioapic);
3919 kvm_free_vcpus(kvm);
3920 kvm_free_physmem(kvm);
3921 if (kvm->arch.apic_access_page)
3922 put_page(kvm->arch.apic_access_page);
3923 if (kvm->arch.ept_identity_pagetable)
3924 put_page(kvm->arch.ept_identity_pagetable);
3925 kfree(kvm);
3926 }
3927
3928 int kvm_arch_set_memory_region(struct kvm *kvm,
3929 struct kvm_userspace_memory_region *mem,
3930 struct kvm_memory_slot old,
3931 int user_alloc)
3932 {
3933 int npages = mem->memory_size >> PAGE_SHIFT;
3934 struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
3935
3936 /*To keep backward compatibility with older userspace,
3937 *x86 needs to hanlde !user_alloc case.
3938 */
3939 if (!user_alloc) {
3940 if (npages && !old.rmap) {
3941 down_write(&current->mm->mmap_sem);
3942 memslot->userspace_addr = do_mmap(NULL, 0,
3943 npages * PAGE_SIZE,
3944 PROT_READ | PROT_WRITE,
3945 MAP_SHARED | MAP_ANONYMOUS,
3946 0);
3947 up_write(&current->mm->mmap_sem);
3948
3949 if (IS_ERR((void *)memslot->userspace_addr))
3950 return PTR_ERR((void *)memslot->userspace_addr);
3951 } else {
3952 if (!old.user_alloc && old.rmap) {
3953 int ret;
3954
3955 down_write(&current->mm->mmap_sem);
3956 ret = do_munmap(current->mm, old.userspace_addr,
3957 old.npages * PAGE_SIZE);
3958 up_write(&current->mm->mmap_sem);
3959 if (ret < 0)
3960 printk(KERN_WARNING
3961 "kvm_vm_ioctl_set_memory_region: "
3962 "failed to munmap memory\n");
3963 }
3964 }
3965 }
3966
3967 if (!kvm->arch.n_requested_mmu_pages) {
3968 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
3969 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
3970 }
3971
3972 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
3973 kvm_flush_remote_tlbs(kvm);
3974
3975 return 0;
3976 }
3977
3978 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
3979 {
3980 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
3981 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED;
3982 }
3983
3984 static void vcpu_kick_intr(void *info)
3985 {
3986 #ifdef DEBUG
3987 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
3988 printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
3989 #endif
3990 }
3991
3992 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3993 {
3994 int ipi_pcpu = vcpu->cpu;
3995 int cpu = get_cpu();
3996
3997 if (waitqueue_active(&vcpu->wq)) {
3998 wake_up_interruptible(&vcpu->wq);
3999 ++vcpu->stat.halt_wakeup;
4000 }
4001 /*
4002 * We may be called synchronously with irqs disabled in guest mode,
4003 * So need not to call smp_call_function_single() in that case.
4004 */
4005 if (vcpu->guest_mode && vcpu->cpu != cpu)
4006 smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0, 0);
4007 put_cpu();
4008 }
This page took 0.167474 seconds and 5 git commands to generate.