KVM: fix load_guest_segment_descriptor() to return X86EMUL_*
[deliverable/linux.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Amit Shah <amit.shah@qumranet.com>
14 * Ben-Ami Yassour <benami@il.ibm.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
28
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40 #include <linux/user-return-notifier.h>
41 #include <linux/srcu.h>
42 #include <trace/events/kvm.h>
43 #undef TRACE_INCLUDE_FILE
44 #define CREATE_TRACE_POINTS
45 #include "trace.h"
46
47 #include <asm/debugreg.h>
48 #include <asm/uaccess.h>
49 #include <asm/msr.h>
50 #include <asm/desc.h>
51 #include <asm/mtrr.h>
52 #include <asm/mce.h>
53
54 #define MAX_IO_MSRS 256
55 #define CR0_RESERVED_BITS \
56 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
57 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
58 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
59 #define CR4_RESERVED_BITS \
60 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
61 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
62 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
63 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
64
65 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
66
67 #define KVM_MAX_MCE_BANKS 32
68 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
69
70 /* EFER defaults:
71 * - enable syscall per default because its emulated by KVM
72 * - enable LME and LMA per default on 64 bit KVM
73 */
74 #ifdef CONFIG_X86_64
75 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
76 #else
77 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
78 #endif
79
80 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
81 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
82
83 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
84 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
85 struct kvm_cpuid_entry2 __user *entries);
86
87 struct kvm_x86_ops *kvm_x86_ops;
88 EXPORT_SYMBOL_GPL(kvm_x86_ops);
89
90 int ignore_msrs = 0;
91 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
92
93 #define KVM_NR_SHARED_MSRS 16
94
95 struct kvm_shared_msrs_global {
96 int nr;
97 u32 msrs[KVM_NR_SHARED_MSRS];
98 };
99
100 struct kvm_shared_msrs {
101 struct user_return_notifier urn;
102 bool registered;
103 struct kvm_shared_msr_values {
104 u64 host;
105 u64 curr;
106 } values[KVM_NR_SHARED_MSRS];
107 };
108
109 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
110 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
111
112 struct kvm_stats_debugfs_item debugfs_entries[] = {
113 { "pf_fixed", VCPU_STAT(pf_fixed) },
114 { "pf_guest", VCPU_STAT(pf_guest) },
115 { "tlb_flush", VCPU_STAT(tlb_flush) },
116 { "invlpg", VCPU_STAT(invlpg) },
117 { "exits", VCPU_STAT(exits) },
118 { "io_exits", VCPU_STAT(io_exits) },
119 { "mmio_exits", VCPU_STAT(mmio_exits) },
120 { "signal_exits", VCPU_STAT(signal_exits) },
121 { "irq_window", VCPU_STAT(irq_window_exits) },
122 { "nmi_window", VCPU_STAT(nmi_window_exits) },
123 { "halt_exits", VCPU_STAT(halt_exits) },
124 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
125 { "hypercalls", VCPU_STAT(hypercalls) },
126 { "request_irq", VCPU_STAT(request_irq_exits) },
127 { "irq_exits", VCPU_STAT(irq_exits) },
128 { "host_state_reload", VCPU_STAT(host_state_reload) },
129 { "efer_reload", VCPU_STAT(efer_reload) },
130 { "fpu_reload", VCPU_STAT(fpu_reload) },
131 { "insn_emulation", VCPU_STAT(insn_emulation) },
132 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
133 { "irq_injections", VCPU_STAT(irq_injections) },
134 { "nmi_injections", VCPU_STAT(nmi_injections) },
135 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
136 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
137 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
138 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
139 { "mmu_flooded", VM_STAT(mmu_flooded) },
140 { "mmu_recycled", VM_STAT(mmu_recycled) },
141 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
142 { "mmu_unsync", VM_STAT(mmu_unsync) },
143 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
144 { "largepages", VM_STAT(lpages) },
145 { NULL }
146 };
147
148 static void kvm_on_user_return(struct user_return_notifier *urn)
149 {
150 unsigned slot;
151 struct kvm_shared_msrs *locals
152 = container_of(urn, struct kvm_shared_msrs, urn);
153 struct kvm_shared_msr_values *values;
154
155 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
156 values = &locals->values[slot];
157 if (values->host != values->curr) {
158 wrmsrl(shared_msrs_global.msrs[slot], values->host);
159 values->curr = values->host;
160 }
161 }
162 locals->registered = false;
163 user_return_notifier_unregister(urn);
164 }
165
166 static void shared_msr_update(unsigned slot, u32 msr)
167 {
168 struct kvm_shared_msrs *smsr;
169 u64 value;
170
171 smsr = &__get_cpu_var(shared_msrs);
172 /* only read, and nobody should modify it at this time,
173 * so don't need lock */
174 if (slot >= shared_msrs_global.nr) {
175 printk(KERN_ERR "kvm: invalid MSR slot!");
176 return;
177 }
178 rdmsrl_safe(msr, &value);
179 smsr->values[slot].host = value;
180 smsr->values[slot].curr = value;
181 }
182
183 void kvm_define_shared_msr(unsigned slot, u32 msr)
184 {
185 if (slot >= shared_msrs_global.nr)
186 shared_msrs_global.nr = slot + 1;
187 shared_msrs_global.msrs[slot] = msr;
188 /* we need ensured the shared_msr_global have been updated */
189 smp_wmb();
190 }
191 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
192
193 static void kvm_shared_msr_cpu_online(void)
194 {
195 unsigned i;
196
197 for (i = 0; i < shared_msrs_global.nr; ++i)
198 shared_msr_update(i, shared_msrs_global.msrs[i]);
199 }
200
201 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
202 {
203 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
204
205 if (((value ^ smsr->values[slot].curr) & mask) == 0)
206 return;
207 smsr->values[slot].curr = value;
208 wrmsrl(shared_msrs_global.msrs[slot], value);
209 if (!smsr->registered) {
210 smsr->urn.on_user_return = kvm_on_user_return;
211 user_return_notifier_register(&smsr->urn);
212 smsr->registered = true;
213 }
214 }
215 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
216
217 static void drop_user_return_notifiers(void *ignore)
218 {
219 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
220
221 if (smsr->registered)
222 kvm_on_user_return(&smsr->urn);
223 }
224
225 unsigned long segment_base(u16 selector)
226 {
227 struct descriptor_table gdt;
228 struct desc_struct *d;
229 unsigned long table_base;
230 unsigned long v;
231
232 if (selector == 0)
233 return 0;
234
235 kvm_get_gdt(&gdt);
236 table_base = gdt.base;
237
238 if (selector & 4) { /* from ldt */
239 u16 ldt_selector = kvm_read_ldt();
240
241 table_base = segment_base(ldt_selector);
242 }
243 d = (struct desc_struct *)(table_base + (selector & ~7));
244 v = get_desc_base(d);
245 #ifdef CONFIG_X86_64
246 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
247 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
248 #endif
249 return v;
250 }
251 EXPORT_SYMBOL_GPL(segment_base);
252
253 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
254 {
255 if (irqchip_in_kernel(vcpu->kvm))
256 return vcpu->arch.apic_base;
257 else
258 return vcpu->arch.apic_base;
259 }
260 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
261
262 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
263 {
264 /* TODO: reserve bits check */
265 if (irqchip_in_kernel(vcpu->kvm))
266 kvm_lapic_set_base(vcpu, data);
267 else
268 vcpu->arch.apic_base = data;
269 }
270 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
271
272 #define EXCPT_BENIGN 0
273 #define EXCPT_CONTRIBUTORY 1
274 #define EXCPT_PF 2
275
276 static int exception_class(int vector)
277 {
278 switch (vector) {
279 case PF_VECTOR:
280 return EXCPT_PF;
281 case DE_VECTOR:
282 case TS_VECTOR:
283 case NP_VECTOR:
284 case SS_VECTOR:
285 case GP_VECTOR:
286 return EXCPT_CONTRIBUTORY;
287 default:
288 break;
289 }
290 return EXCPT_BENIGN;
291 }
292
293 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
294 unsigned nr, bool has_error, u32 error_code)
295 {
296 u32 prev_nr;
297 int class1, class2;
298
299 if (!vcpu->arch.exception.pending) {
300 queue:
301 vcpu->arch.exception.pending = true;
302 vcpu->arch.exception.has_error_code = has_error;
303 vcpu->arch.exception.nr = nr;
304 vcpu->arch.exception.error_code = error_code;
305 return;
306 }
307
308 /* to check exception */
309 prev_nr = vcpu->arch.exception.nr;
310 if (prev_nr == DF_VECTOR) {
311 /* triple fault -> shutdown */
312 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
313 return;
314 }
315 class1 = exception_class(prev_nr);
316 class2 = exception_class(nr);
317 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
318 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
319 /* generate double fault per SDM Table 5-5 */
320 vcpu->arch.exception.pending = true;
321 vcpu->arch.exception.has_error_code = true;
322 vcpu->arch.exception.nr = DF_VECTOR;
323 vcpu->arch.exception.error_code = 0;
324 } else
325 /* replace previous exception with a new one in a hope
326 that instruction re-execution will regenerate lost
327 exception */
328 goto queue;
329 }
330
331 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
332 {
333 kvm_multiple_exception(vcpu, nr, false, 0);
334 }
335 EXPORT_SYMBOL_GPL(kvm_queue_exception);
336
337 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
338 u32 error_code)
339 {
340 ++vcpu->stat.pf_guest;
341 vcpu->arch.cr2 = addr;
342 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
343 }
344
345 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
346 {
347 vcpu->arch.nmi_pending = 1;
348 }
349 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
350
351 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
352 {
353 kvm_multiple_exception(vcpu, nr, true, error_code);
354 }
355 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
356
357 /*
358 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
359 * a #GP and return false.
360 */
361 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
362 {
363 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
364 return true;
365 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
366 return false;
367 }
368 EXPORT_SYMBOL_GPL(kvm_require_cpl);
369
370 /*
371 * Load the pae pdptrs. Return true is they are all valid.
372 */
373 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
374 {
375 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
376 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
377 int i;
378 int ret;
379 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
380
381 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
382 offset * sizeof(u64), sizeof(pdpte));
383 if (ret < 0) {
384 ret = 0;
385 goto out;
386 }
387 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
388 if (is_present_gpte(pdpte[i]) &&
389 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
390 ret = 0;
391 goto out;
392 }
393 }
394 ret = 1;
395
396 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
397 __set_bit(VCPU_EXREG_PDPTR,
398 (unsigned long *)&vcpu->arch.regs_avail);
399 __set_bit(VCPU_EXREG_PDPTR,
400 (unsigned long *)&vcpu->arch.regs_dirty);
401 out:
402
403 return ret;
404 }
405 EXPORT_SYMBOL_GPL(load_pdptrs);
406
407 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
408 {
409 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
410 bool changed = true;
411 int r;
412
413 if (is_long_mode(vcpu) || !is_pae(vcpu))
414 return false;
415
416 if (!test_bit(VCPU_EXREG_PDPTR,
417 (unsigned long *)&vcpu->arch.regs_avail))
418 return true;
419
420 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
421 if (r < 0)
422 goto out;
423 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
424 out:
425
426 return changed;
427 }
428
429 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
430 {
431 cr0 |= X86_CR0_ET;
432
433 #ifdef CONFIG_X86_64
434 if (cr0 & 0xffffffff00000000UL) {
435 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
436 cr0, kvm_read_cr0(vcpu));
437 kvm_inject_gp(vcpu, 0);
438 return;
439 }
440 #endif
441
442 cr0 &= ~CR0_RESERVED_BITS;
443
444 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
445 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
446 kvm_inject_gp(vcpu, 0);
447 return;
448 }
449
450 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
451 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
452 "and a clear PE flag\n");
453 kvm_inject_gp(vcpu, 0);
454 return;
455 }
456
457 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
458 #ifdef CONFIG_X86_64
459 if ((vcpu->arch.efer & EFER_LME)) {
460 int cs_db, cs_l;
461
462 if (!is_pae(vcpu)) {
463 printk(KERN_DEBUG "set_cr0: #GP, start paging "
464 "in long mode while PAE is disabled\n");
465 kvm_inject_gp(vcpu, 0);
466 return;
467 }
468 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
469 if (cs_l) {
470 printk(KERN_DEBUG "set_cr0: #GP, start paging "
471 "in long mode while CS.L == 1\n");
472 kvm_inject_gp(vcpu, 0);
473 return;
474
475 }
476 } else
477 #endif
478 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
479 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
480 "reserved bits\n");
481 kvm_inject_gp(vcpu, 0);
482 return;
483 }
484
485 }
486
487 kvm_x86_ops->set_cr0(vcpu, cr0);
488 vcpu->arch.cr0 = cr0;
489
490 kvm_mmu_reset_context(vcpu);
491 return;
492 }
493 EXPORT_SYMBOL_GPL(kvm_set_cr0);
494
495 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
496 {
497 kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0ful) | (msw & 0x0f));
498 }
499 EXPORT_SYMBOL_GPL(kvm_lmsw);
500
501 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
502 {
503 unsigned long old_cr4 = kvm_read_cr4(vcpu);
504 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
505
506 if (cr4 & CR4_RESERVED_BITS) {
507 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
508 kvm_inject_gp(vcpu, 0);
509 return;
510 }
511
512 if (is_long_mode(vcpu)) {
513 if (!(cr4 & X86_CR4_PAE)) {
514 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
515 "in long mode\n");
516 kvm_inject_gp(vcpu, 0);
517 return;
518 }
519 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
520 && ((cr4 ^ old_cr4) & pdptr_bits)
521 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
522 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
523 kvm_inject_gp(vcpu, 0);
524 return;
525 }
526
527 if (cr4 & X86_CR4_VMXE) {
528 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
529 kvm_inject_gp(vcpu, 0);
530 return;
531 }
532 kvm_x86_ops->set_cr4(vcpu, cr4);
533 vcpu->arch.cr4 = cr4;
534 vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
535 kvm_mmu_reset_context(vcpu);
536 }
537 EXPORT_SYMBOL_GPL(kvm_set_cr4);
538
539 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
540 {
541 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
542 kvm_mmu_sync_roots(vcpu);
543 kvm_mmu_flush_tlb(vcpu);
544 return;
545 }
546
547 if (is_long_mode(vcpu)) {
548 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
549 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
550 kvm_inject_gp(vcpu, 0);
551 return;
552 }
553 } else {
554 if (is_pae(vcpu)) {
555 if (cr3 & CR3_PAE_RESERVED_BITS) {
556 printk(KERN_DEBUG
557 "set_cr3: #GP, reserved bits\n");
558 kvm_inject_gp(vcpu, 0);
559 return;
560 }
561 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
562 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
563 "reserved bits\n");
564 kvm_inject_gp(vcpu, 0);
565 return;
566 }
567 }
568 /*
569 * We don't check reserved bits in nonpae mode, because
570 * this isn't enforced, and VMware depends on this.
571 */
572 }
573
574 /*
575 * Does the new cr3 value map to physical memory? (Note, we
576 * catch an invalid cr3 even in real-mode, because it would
577 * cause trouble later on when we turn on paging anyway.)
578 *
579 * A real CPU would silently accept an invalid cr3 and would
580 * attempt to use it - with largely undefined (and often hard
581 * to debug) behavior on the guest side.
582 */
583 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
584 kvm_inject_gp(vcpu, 0);
585 else {
586 vcpu->arch.cr3 = cr3;
587 vcpu->arch.mmu.new_cr3(vcpu);
588 }
589 }
590 EXPORT_SYMBOL_GPL(kvm_set_cr3);
591
592 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
593 {
594 if (cr8 & CR8_RESERVED_BITS) {
595 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
596 kvm_inject_gp(vcpu, 0);
597 return;
598 }
599 if (irqchip_in_kernel(vcpu->kvm))
600 kvm_lapic_set_tpr(vcpu, cr8);
601 else
602 vcpu->arch.cr8 = cr8;
603 }
604 EXPORT_SYMBOL_GPL(kvm_set_cr8);
605
606 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
607 {
608 if (irqchip_in_kernel(vcpu->kvm))
609 return kvm_lapic_get_cr8(vcpu);
610 else
611 return vcpu->arch.cr8;
612 }
613 EXPORT_SYMBOL_GPL(kvm_get_cr8);
614
615 static inline u32 bit(int bitno)
616 {
617 return 1 << (bitno & 31);
618 }
619
620 /*
621 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
622 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
623 *
624 * This list is modified at module load time to reflect the
625 * capabilities of the host cpu. This capabilities test skips MSRs that are
626 * kvm-specific. Those are put in the beginning of the list.
627 */
628
629 #define KVM_SAVE_MSRS_BEGIN 5
630 static u32 msrs_to_save[] = {
631 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
632 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
633 HV_X64_MSR_APIC_ASSIST_PAGE,
634 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
635 MSR_K6_STAR,
636 #ifdef CONFIG_X86_64
637 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
638 #endif
639 MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
640 };
641
642 static unsigned num_msrs_to_save;
643
644 static u32 emulated_msrs[] = {
645 MSR_IA32_MISC_ENABLE,
646 };
647
648 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
649 {
650 if (efer & efer_reserved_bits) {
651 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
652 efer);
653 kvm_inject_gp(vcpu, 0);
654 return;
655 }
656
657 if (is_paging(vcpu)
658 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) {
659 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
660 kvm_inject_gp(vcpu, 0);
661 return;
662 }
663
664 if (efer & EFER_FFXSR) {
665 struct kvm_cpuid_entry2 *feat;
666
667 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
668 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
669 printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
670 kvm_inject_gp(vcpu, 0);
671 return;
672 }
673 }
674
675 if (efer & EFER_SVME) {
676 struct kvm_cpuid_entry2 *feat;
677
678 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
679 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
680 printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
681 kvm_inject_gp(vcpu, 0);
682 return;
683 }
684 }
685
686 kvm_x86_ops->set_efer(vcpu, efer);
687
688 efer &= ~EFER_LMA;
689 efer |= vcpu->arch.efer & EFER_LMA;
690
691 vcpu->arch.efer = efer;
692
693 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
694 kvm_mmu_reset_context(vcpu);
695 }
696
697 void kvm_enable_efer_bits(u64 mask)
698 {
699 efer_reserved_bits &= ~mask;
700 }
701 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
702
703
704 /*
705 * Writes msr value into into the appropriate "register".
706 * Returns 0 on success, non-0 otherwise.
707 * Assumes vcpu_load() was already called.
708 */
709 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
710 {
711 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
712 }
713
714 /*
715 * Adapt set_msr() to msr_io()'s calling convention
716 */
717 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
718 {
719 return kvm_set_msr(vcpu, index, *data);
720 }
721
722 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
723 {
724 static int version;
725 struct pvclock_wall_clock wc;
726 struct timespec boot;
727
728 if (!wall_clock)
729 return;
730
731 version++;
732
733 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
734
735 /*
736 * The guest calculates current wall clock time by adding
737 * system time (updated by kvm_write_guest_time below) to the
738 * wall clock specified here. guest system time equals host
739 * system time for us, thus we must fill in host boot time here.
740 */
741 getboottime(&boot);
742
743 wc.sec = boot.tv_sec;
744 wc.nsec = boot.tv_nsec;
745 wc.version = version;
746
747 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
748
749 version++;
750 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
751 }
752
753 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
754 {
755 uint32_t quotient, remainder;
756
757 /* Don't try to replace with do_div(), this one calculates
758 * "(dividend << 32) / divisor" */
759 __asm__ ( "divl %4"
760 : "=a" (quotient), "=d" (remainder)
761 : "0" (0), "1" (dividend), "r" (divisor) );
762 return quotient;
763 }
764
765 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
766 {
767 uint64_t nsecs = 1000000000LL;
768 int32_t shift = 0;
769 uint64_t tps64;
770 uint32_t tps32;
771
772 tps64 = tsc_khz * 1000LL;
773 while (tps64 > nsecs*2) {
774 tps64 >>= 1;
775 shift--;
776 }
777
778 tps32 = (uint32_t)tps64;
779 while (tps32 <= (uint32_t)nsecs) {
780 tps32 <<= 1;
781 shift++;
782 }
783
784 hv_clock->tsc_shift = shift;
785 hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
786
787 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
788 __func__, tsc_khz, hv_clock->tsc_shift,
789 hv_clock->tsc_to_system_mul);
790 }
791
792 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
793
794 static void kvm_write_guest_time(struct kvm_vcpu *v)
795 {
796 struct timespec ts;
797 unsigned long flags;
798 struct kvm_vcpu_arch *vcpu = &v->arch;
799 void *shared_kaddr;
800 unsigned long this_tsc_khz;
801
802 if ((!vcpu->time_page))
803 return;
804
805 this_tsc_khz = get_cpu_var(cpu_tsc_khz);
806 if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
807 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
808 vcpu->hv_clock_tsc_khz = this_tsc_khz;
809 }
810 put_cpu_var(cpu_tsc_khz);
811
812 /* Keep irq disabled to prevent changes to the clock */
813 local_irq_save(flags);
814 kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
815 ktime_get_ts(&ts);
816 monotonic_to_bootbased(&ts);
817 local_irq_restore(flags);
818
819 /* With all the info we got, fill in the values */
820
821 vcpu->hv_clock.system_time = ts.tv_nsec +
822 (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
823
824 /*
825 * The interface expects us to write an even number signaling that the
826 * update is finished. Since the guest won't see the intermediate
827 * state, we just increase by 2 at the end.
828 */
829 vcpu->hv_clock.version += 2;
830
831 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
832
833 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
834 sizeof(vcpu->hv_clock));
835
836 kunmap_atomic(shared_kaddr, KM_USER0);
837
838 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
839 }
840
841 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
842 {
843 struct kvm_vcpu_arch *vcpu = &v->arch;
844
845 if (!vcpu->time_page)
846 return 0;
847 set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
848 return 1;
849 }
850
851 static bool msr_mtrr_valid(unsigned msr)
852 {
853 switch (msr) {
854 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
855 case MSR_MTRRfix64K_00000:
856 case MSR_MTRRfix16K_80000:
857 case MSR_MTRRfix16K_A0000:
858 case MSR_MTRRfix4K_C0000:
859 case MSR_MTRRfix4K_C8000:
860 case MSR_MTRRfix4K_D0000:
861 case MSR_MTRRfix4K_D8000:
862 case MSR_MTRRfix4K_E0000:
863 case MSR_MTRRfix4K_E8000:
864 case MSR_MTRRfix4K_F0000:
865 case MSR_MTRRfix4K_F8000:
866 case MSR_MTRRdefType:
867 case MSR_IA32_CR_PAT:
868 return true;
869 case 0x2f8:
870 return true;
871 }
872 return false;
873 }
874
875 static bool valid_pat_type(unsigned t)
876 {
877 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
878 }
879
880 static bool valid_mtrr_type(unsigned t)
881 {
882 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
883 }
884
885 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
886 {
887 int i;
888
889 if (!msr_mtrr_valid(msr))
890 return false;
891
892 if (msr == MSR_IA32_CR_PAT) {
893 for (i = 0; i < 8; i++)
894 if (!valid_pat_type((data >> (i * 8)) & 0xff))
895 return false;
896 return true;
897 } else if (msr == MSR_MTRRdefType) {
898 if (data & ~0xcff)
899 return false;
900 return valid_mtrr_type(data & 0xff);
901 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
902 for (i = 0; i < 8 ; i++)
903 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
904 return false;
905 return true;
906 }
907
908 /* variable MTRRs */
909 return valid_mtrr_type(data & 0xff);
910 }
911
912 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
913 {
914 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
915
916 if (!mtrr_valid(vcpu, msr, data))
917 return 1;
918
919 if (msr == MSR_MTRRdefType) {
920 vcpu->arch.mtrr_state.def_type = data;
921 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
922 } else if (msr == MSR_MTRRfix64K_00000)
923 p[0] = data;
924 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
925 p[1 + msr - MSR_MTRRfix16K_80000] = data;
926 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
927 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
928 else if (msr == MSR_IA32_CR_PAT)
929 vcpu->arch.pat = data;
930 else { /* Variable MTRRs */
931 int idx, is_mtrr_mask;
932 u64 *pt;
933
934 idx = (msr - 0x200) / 2;
935 is_mtrr_mask = msr - 0x200 - 2 * idx;
936 if (!is_mtrr_mask)
937 pt =
938 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
939 else
940 pt =
941 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
942 *pt = data;
943 }
944
945 kvm_mmu_reset_context(vcpu);
946 return 0;
947 }
948
949 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
950 {
951 u64 mcg_cap = vcpu->arch.mcg_cap;
952 unsigned bank_num = mcg_cap & 0xff;
953
954 switch (msr) {
955 case MSR_IA32_MCG_STATUS:
956 vcpu->arch.mcg_status = data;
957 break;
958 case MSR_IA32_MCG_CTL:
959 if (!(mcg_cap & MCG_CTL_P))
960 return 1;
961 if (data != 0 && data != ~(u64)0)
962 return -1;
963 vcpu->arch.mcg_ctl = data;
964 break;
965 default:
966 if (msr >= MSR_IA32_MC0_CTL &&
967 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
968 u32 offset = msr - MSR_IA32_MC0_CTL;
969 /* only 0 or all 1s can be written to IA32_MCi_CTL */
970 if ((offset & 0x3) == 0 &&
971 data != 0 && data != ~(u64)0)
972 return -1;
973 vcpu->arch.mce_banks[offset] = data;
974 break;
975 }
976 return 1;
977 }
978 return 0;
979 }
980
981 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
982 {
983 struct kvm *kvm = vcpu->kvm;
984 int lm = is_long_mode(vcpu);
985 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
986 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
987 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
988 : kvm->arch.xen_hvm_config.blob_size_32;
989 u32 page_num = data & ~PAGE_MASK;
990 u64 page_addr = data & PAGE_MASK;
991 u8 *page;
992 int r;
993
994 r = -E2BIG;
995 if (page_num >= blob_size)
996 goto out;
997 r = -ENOMEM;
998 page = kzalloc(PAGE_SIZE, GFP_KERNEL);
999 if (!page)
1000 goto out;
1001 r = -EFAULT;
1002 if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1003 goto out_free;
1004 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1005 goto out_free;
1006 r = 0;
1007 out_free:
1008 kfree(page);
1009 out:
1010 return r;
1011 }
1012
1013 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1014 {
1015 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1016 }
1017
1018 static bool kvm_hv_msr_partition_wide(u32 msr)
1019 {
1020 bool r = false;
1021 switch (msr) {
1022 case HV_X64_MSR_GUEST_OS_ID:
1023 case HV_X64_MSR_HYPERCALL:
1024 r = true;
1025 break;
1026 }
1027
1028 return r;
1029 }
1030
1031 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1032 {
1033 struct kvm *kvm = vcpu->kvm;
1034
1035 switch (msr) {
1036 case HV_X64_MSR_GUEST_OS_ID:
1037 kvm->arch.hv_guest_os_id = data;
1038 /* setting guest os id to zero disables hypercall page */
1039 if (!kvm->arch.hv_guest_os_id)
1040 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1041 break;
1042 case HV_X64_MSR_HYPERCALL: {
1043 u64 gfn;
1044 unsigned long addr;
1045 u8 instructions[4];
1046
1047 /* if guest os id is not set hypercall should remain disabled */
1048 if (!kvm->arch.hv_guest_os_id)
1049 break;
1050 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1051 kvm->arch.hv_hypercall = data;
1052 break;
1053 }
1054 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1055 addr = gfn_to_hva(kvm, gfn);
1056 if (kvm_is_error_hva(addr))
1057 return 1;
1058 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1059 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1060 if (copy_to_user((void __user *)addr, instructions, 4))
1061 return 1;
1062 kvm->arch.hv_hypercall = data;
1063 break;
1064 }
1065 default:
1066 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1067 "data 0x%llx\n", msr, data);
1068 return 1;
1069 }
1070 return 0;
1071 }
1072
1073 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1074 {
1075 switch (msr) {
1076 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1077 unsigned long addr;
1078
1079 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1080 vcpu->arch.hv_vapic = data;
1081 break;
1082 }
1083 addr = gfn_to_hva(vcpu->kvm, data >>
1084 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1085 if (kvm_is_error_hva(addr))
1086 return 1;
1087 if (clear_user((void __user *)addr, PAGE_SIZE))
1088 return 1;
1089 vcpu->arch.hv_vapic = data;
1090 break;
1091 }
1092 case HV_X64_MSR_EOI:
1093 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1094 case HV_X64_MSR_ICR:
1095 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1096 case HV_X64_MSR_TPR:
1097 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1098 default:
1099 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1100 "data 0x%llx\n", msr, data);
1101 return 1;
1102 }
1103
1104 return 0;
1105 }
1106
1107 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1108 {
1109 switch (msr) {
1110 case MSR_EFER:
1111 set_efer(vcpu, data);
1112 break;
1113 case MSR_K7_HWCR:
1114 data &= ~(u64)0x40; /* ignore flush filter disable */
1115 if (data != 0) {
1116 pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1117 data);
1118 return 1;
1119 }
1120 break;
1121 case MSR_FAM10H_MMIO_CONF_BASE:
1122 if (data != 0) {
1123 pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1124 "0x%llx\n", data);
1125 return 1;
1126 }
1127 break;
1128 case MSR_AMD64_NB_CFG:
1129 break;
1130 case MSR_IA32_DEBUGCTLMSR:
1131 if (!data) {
1132 /* We support the non-activated case already */
1133 break;
1134 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1135 /* Values other than LBR and BTF are vendor-specific,
1136 thus reserved and should throw a #GP */
1137 return 1;
1138 }
1139 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1140 __func__, data);
1141 break;
1142 case MSR_IA32_UCODE_REV:
1143 case MSR_IA32_UCODE_WRITE:
1144 case MSR_VM_HSAVE_PA:
1145 case MSR_AMD64_PATCH_LOADER:
1146 break;
1147 case 0x200 ... 0x2ff:
1148 return set_msr_mtrr(vcpu, msr, data);
1149 case MSR_IA32_APICBASE:
1150 kvm_set_apic_base(vcpu, data);
1151 break;
1152 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1153 return kvm_x2apic_msr_write(vcpu, msr, data);
1154 case MSR_IA32_MISC_ENABLE:
1155 vcpu->arch.ia32_misc_enable_msr = data;
1156 break;
1157 case MSR_KVM_WALL_CLOCK:
1158 vcpu->kvm->arch.wall_clock = data;
1159 kvm_write_wall_clock(vcpu->kvm, data);
1160 break;
1161 case MSR_KVM_SYSTEM_TIME: {
1162 if (vcpu->arch.time_page) {
1163 kvm_release_page_dirty(vcpu->arch.time_page);
1164 vcpu->arch.time_page = NULL;
1165 }
1166
1167 vcpu->arch.time = data;
1168
1169 /* we verify if the enable bit is set... */
1170 if (!(data & 1))
1171 break;
1172
1173 /* ...but clean it before doing the actual write */
1174 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1175
1176 vcpu->arch.time_page =
1177 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1178
1179 if (is_error_page(vcpu->arch.time_page)) {
1180 kvm_release_page_clean(vcpu->arch.time_page);
1181 vcpu->arch.time_page = NULL;
1182 }
1183
1184 kvm_request_guest_time_update(vcpu);
1185 break;
1186 }
1187 case MSR_IA32_MCG_CTL:
1188 case MSR_IA32_MCG_STATUS:
1189 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1190 return set_msr_mce(vcpu, msr, data);
1191
1192 /* Performance counters are not protected by a CPUID bit,
1193 * so we should check all of them in the generic path for the sake of
1194 * cross vendor migration.
1195 * Writing a zero into the event select MSRs disables them,
1196 * which we perfectly emulate ;-). Any other value should be at least
1197 * reported, some guests depend on them.
1198 */
1199 case MSR_P6_EVNTSEL0:
1200 case MSR_P6_EVNTSEL1:
1201 case MSR_K7_EVNTSEL0:
1202 case MSR_K7_EVNTSEL1:
1203 case MSR_K7_EVNTSEL2:
1204 case MSR_K7_EVNTSEL3:
1205 if (data != 0)
1206 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1207 "0x%x data 0x%llx\n", msr, data);
1208 break;
1209 /* at least RHEL 4 unconditionally writes to the perfctr registers,
1210 * so we ignore writes to make it happy.
1211 */
1212 case MSR_P6_PERFCTR0:
1213 case MSR_P6_PERFCTR1:
1214 case MSR_K7_PERFCTR0:
1215 case MSR_K7_PERFCTR1:
1216 case MSR_K7_PERFCTR2:
1217 case MSR_K7_PERFCTR3:
1218 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1219 "0x%x data 0x%llx\n", msr, data);
1220 break;
1221 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1222 if (kvm_hv_msr_partition_wide(msr)) {
1223 int r;
1224 mutex_lock(&vcpu->kvm->lock);
1225 r = set_msr_hyperv_pw(vcpu, msr, data);
1226 mutex_unlock(&vcpu->kvm->lock);
1227 return r;
1228 } else
1229 return set_msr_hyperv(vcpu, msr, data);
1230 break;
1231 default:
1232 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1233 return xen_hvm_config(vcpu, data);
1234 if (!ignore_msrs) {
1235 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1236 msr, data);
1237 return 1;
1238 } else {
1239 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1240 msr, data);
1241 break;
1242 }
1243 }
1244 return 0;
1245 }
1246 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1247
1248
1249 /*
1250 * Reads an msr value (of 'msr_index') into 'pdata'.
1251 * Returns 0 on success, non-0 otherwise.
1252 * Assumes vcpu_load() was already called.
1253 */
1254 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1255 {
1256 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1257 }
1258
1259 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1260 {
1261 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1262
1263 if (!msr_mtrr_valid(msr))
1264 return 1;
1265
1266 if (msr == MSR_MTRRdefType)
1267 *pdata = vcpu->arch.mtrr_state.def_type +
1268 (vcpu->arch.mtrr_state.enabled << 10);
1269 else if (msr == MSR_MTRRfix64K_00000)
1270 *pdata = p[0];
1271 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1272 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1273 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1274 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1275 else if (msr == MSR_IA32_CR_PAT)
1276 *pdata = vcpu->arch.pat;
1277 else { /* Variable MTRRs */
1278 int idx, is_mtrr_mask;
1279 u64 *pt;
1280
1281 idx = (msr - 0x200) / 2;
1282 is_mtrr_mask = msr - 0x200 - 2 * idx;
1283 if (!is_mtrr_mask)
1284 pt =
1285 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1286 else
1287 pt =
1288 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1289 *pdata = *pt;
1290 }
1291
1292 return 0;
1293 }
1294
1295 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1296 {
1297 u64 data;
1298 u64 mcg_cap = vcpu->arch.mcg_cap;
1299 unsigned bank_num = mcg_cap & 0xff;
1300
1301 switch (msr) {
1302 case MSR_IA32_P5_MC_ADDR:
1303 case MSR_IA32_P5_MC_TYPE:
1304 data = 0;
1305 break;
1306 case MSR_IA32_MCG_CAP:
1307 data = vcpu->arch.mcg_cap;
1308 break;
1309 case MSR_IA32_MCG_CTL:
1310 if (!(mcg_cap & MCG_CTL_P))
1311 return 1;
1312 data = vcpu->arch.mcg_ctl;
1313 break;
1314 case MSR_IA32_MCG_STATUS:
1315 data = vcpu->arch.mcg_status;
1316 break;
1317 default:
1318 if (msr >= MSR_IA32_MC0_CTL &&
1319 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1320 u32 offset = msr - MSR_IA32_MC0_CTL;
1321 data = vcpu->arch.mce_banks[offset];
1322 break;
1323 }
1324 return 1;
1325 }
1326 *pdata = data;
1327 return 0;
1328 }
1329
1330 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1331 {
1332 u64 data = 0;
1333 struct kvm *kvm = vcpu->kvm;
1334
1335 switch (msr) {
1336 case HV_X64_MSR_GUEST_OS_ID:
1337 data = kvm->arch.hv_guest_os_id;
1338 break;
1339 case HV_X64_MSR_HYPERCALL:
1340 data = kvm->arch.hv_hypercall;
1341 break;
1342 default:
1343 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1344 return 1;
1345 }
1346
1347 *pdata = data;
1348 return 0;
1349 }
1350
1351 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1352 {
1353 u64 data = 0;
1354
1355 switch (msr) {
1356 case HV_X64_MSR_VP_INDEX: {
1357 int r;
1358 struct kvm_vcpu *v;
1359 kvm_for_each_vcpu(r, v, vcpu->kvm)
1360 if (v == vcpu)
1361 data = r;
1362 break;
1363 }
1364 case HV_X64_MSR_EOI:
1365 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1366 case HV_X64_MSR_ICR:
1367 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1368 case HV_X64_MSR_TPR:
1369 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1370 default:
1371 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1372 return 1;
1373 }
1374 *pdata = data;
1375 return 0;
1376 }
1377
1378 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1379 {
1380 u64 data;
1381
1382 switch (msr) {
1383 case MSR_IA32_PLATFORM_ID:
1384 case MSR_IA32_UCODE_REV:
1385 case MSR_IA32_EBL_CR_POWERON:
1386 case MSR_IA32_DEBUGCTLMSR:
1387 case MSR_IA32_LASTBRANCHFROMIP:
1388 case MSR_IA32_LASTBRANCHTOIP:
1389 case MSR_IA32_LASTINTFROMIP:
1390 case MSR_IA32_LASTINTTOIP:
1391 case MSR_K8_SYSCFG:
1392 case MSR_K7_HWCR:
1393 case MSR_VM_HSAVE_PA:
1394 case MSR_P6_PERFCTR0:
1395 case MSR_P6_PERFCTR1:
1396 case MSR_P6_EVNTSEL0:
1397 case MSR_P6_EVNTSEL1:
1398 case MSR_K7_EVNTSEL0:
1399 case MSR_K7_PERFCTR0:
1400 case MSR_K8_INT_PENDING_MSG:
1401 case MSR_AMD64_NB_CFG:
1402 case MSR_FAM10H_MMIO_CONF_BASE:
1403 data = 0;
1404 break;
1405 case MSR_MTRRcap:
1406 data = 0x500 | KVM_NR_VAR_MTRR;
1407 break;
1408 case 0x200 ... 0x2ff:
1409 return get_msr_mtrr(vcpu, msr, pdata);
1410 case 0xcd: /* fsb frequency */
1411 data = 3;
1412 break;
1413 case MSR_IA32_APICBASE:
1414 data = kvm_get_apic_base(vcpu);
1415 break;
1416 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1417 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1418 break;
1419 case MSR_IA32_MISC_ENABLE:
1420 data = vcpu->arch.ia32_misc_enable_msr;
1421 break;
1422 case MSR_IA32_PERF_STATUS:
1423 /* TSC increment by tick */
1424 data = 1000ULL;
1425 /* CPU multiplier */
1426 data |= (((uint64_t)4ULL) << 40);
1427 break;
1428 case MSR_EFER:
1429 data = vcpu->arch.efer;
1430 break;
1431 case MSR_KVM_WALL_CLOCK:
1432 data = vcpu->kvm->arch.wall_clock;
1433 break;
1434 case MSR_KVM_SYSTEM_TIME:
1435 data = vcpu->arch.time;
1436 break;
1437 case MSR_IA32_P5_MC_ADDR:
1438 case MSR_IA32_P5_MC_TYPE:
1439 case MSR_IA32_MCG_CAP:
1440 case MSR_IA32_MCG_CTL:
1441 case MSR_IA32_MCG_STATUS:
1442 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1443 return get_msr_mce(vcpu, msr, pdata);
1444 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1445 if (kvm_hv_msr_partition_wide(msr)) {
1446 int r;
1447 mutex_lock(&vcpu->kvm->lock);
1448 r = get_msr_hyperv_pw(vcpu, msr, pdata);
1449 mutex_unlock(&vcpu->kvm->lock);
1450 return r;
1451 } else
1452 return get_msr_hyperv(vcpu, msr, pdata);
1453 break;
1454 default:
1455 if (!ignore_msrs) {
1456 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1457 return 1;
1458 } else {
1459 pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1460 data = 0;
1461 }
1462 break;
1463 }
1464 *pdata = data;
1465 return 0;
1466 }
1467 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1468
1469 /*
1470 * Read or write a bunch of msrs. All parameters are kernel addresses.
1471 *
1472 * @return number of msrs set successfully.
1473 */
1474 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1475 struct kvm_msr_entry *entries,
1476 int (*do_msr)(struct kvm_vcpu *vcpu,
1477 unsigned index, u64 *data))
1478 {
1479 int i, idx;
1480
1481 vcpu_load(vcpu);
1482
1483 idx = srcu_read_lock(&vcpu->kvm->srcu);
1484 for (i = 0; i < msrs->nmsrs; ++i)
1485 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1486 break;
1487 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1488
1489 vcpu_put(vcpu);
1490
1491 return i;
1492 }
1493
1494 /*
1495 * Read or write a bunch of msrs. Parameters are user addresses.
1496 *
1497 * @return number of msrs set successfully.
1498 */
1499 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1500 int (*do_msr)(struct kvm_vcpu *vcpu,
1501 unsigned index, u64 *data),
1502 int writeback)
1503 {
1504 struct kvm_msrs msrs;
1505 struct kvm_msr_entry *entries;
1506 int r, n;
1507 unsigned size;
1508
1509 r = -EFAULT;
1510 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1511 goto out;
1512
1513 r = -E2BIG;
1514 if (msrs.nmsrs >= MAX_IO_MSRS)
1515 goto out;
1516
1517 r = -ENOMEM;
1518 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1519 entries = vmalloc(size);
1520 if (!entries)
1521 goto out;
1522
1523 r = -EFAULT;
1524 if (copy_from_user(entries, user_msrs->entries, size))
1525 goto out_free;
1526
1527 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1528 if (r < 0)
1529 goto out_free;
1530
1531 r = -EFAULT;
1532 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1533 goto out_free;
1534
1535 r = n;
1536
1537 out_free:
1538 vfree(entries);
1539 out:
1540 return r;
1541 }
1542
1543 int kvm_dev_ioctl_check_extension(long ext)
1544 {
1545 int r;
1546
1547 switch (ext) {
1548 case KVM_CAP_IRQCHIP:
1549 case KVM_CAP_HLT:
1550 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1551 case KVM_CAP_SET_TSS_ADDR:
1552 case KVM_CAP_EXT_CPUID:
1553 case KVM_CAP_CLOCKSOURCE:
1554 case KVM_CAP_PIT:
1555 case KVM_CAP_NOP_IO_DELAY:
1556 case KVM_CAP_MP_STATE:
1557 case KVM_CAP_SYNC_MMU:
1558 case KVM_CAP_REINJECT_CONTROL:
1559 case KVM_CAP_IRQ_INJECT_STATUS:
1560 case KVM_CAP_ASSIGN_DEV_IRQ:
1561 case KVM_CAP_IRQFD:
1562 case KVM_CAP_IOEVENTFD:
1563 case KVM_CAP_PIT2:
1564 case KVM_CAP_PIT_STATE2:
1565 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1566 case KVM_CAP_XEN_HVM:
1567 case KVM_CAP_ADJUST_CLOCK:
1568 case KVM_CAP_VCPU_EVENTS:
1569 case KVM_CAP_HYPERV:
1570 case KVM_CAP_HYPERV_VAPIC:
1571 case KVM_CAP_HYPERV_SPIN:
1572 case KVM_CAP_PCI_SEGMENT:
1573 r = 1;
1574 break;
1575 case KVM_CAP_COALESCED_MMIO:
1576 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1577 break;
1578 case KVM_CAP_VAPIC:
1579 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1580 break;
1581 case KVM_CAP_NR_VCPUS:
1582 r = KVM_MAX_VCPUS;
1583 break;
1584 case KVM_CAP_NR_MEMSLOTS:
1585 r = KVM_MEMORY_SLOTS;
1586 break;
1587 case KVM_CAP_PV_MMU: /* obsolete */
1588 r = 0;
1589 break;
1590 case KVM_CAP_IOMMU:
1591 r = iommu_found();
1592 break;
1593 case KVM_CAP_MCE:
1594 r = KVM_MAX_MCE_BANKS;
1595 break;
1596 default:
1597 r = 0;
1598 break;
1599 }
1600 return r;
1601
1602 }
1603
1604 long kvm_arch_dev_ioctl(struct file *filp,
1605 unsigned int ioctl, unsigned long arg)
1606 {
1607 void __user *argp = (void __user *)arg;
1608 long r;
1609
1610 switch (ioctl) {
1611 case KVM_GET_MSR_INDEX_LIST: {
1612 struct kvm_msr_list __user *user_msr_list = argp;
1613 struct kvm_msr_list msr_list;
1614 unsigned n;
1615
1616 r = -EFAULT;
1617 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1618 goto out;
1619 n = msr_list.nmsrs;
1620 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1621 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1622 goto out;
1623 r = -E2BIG;
1624 if (n < msr_list.nmsrs)
1625 goto out;
1626 r = -EFAULT;
1627 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1628 num_msrs_to_save * sizeof(u32)))
1629 goto out;
1630 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1631 &emulated_msrs,
1632 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1633 goto out;
1634 r = 0;
1635 break;
1636 }
1637 case KVM_GET_SUPPORTED_CPUID: {
1638 struct kvm_cpuid2 __user *cpuid_arg = argp;
1639 struct kvm_cpuid2 cpuid;
1640
1641 r = -EFAULT;
1642 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1643 goto out;
1644 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1645 cpuid_arg->entries);
1646 if (r)
1647 goto out;
1648
1649 r = -EFAULT;
1650 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1651 goto out;
1652 r = 0;
1653 break;
1654 }
1655 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1656 u64 mce_cap;
1657
1658 mce_cap = KVM_MCE_CAP_SUPPORTED;
1659 r = -EFAULT;
1660 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1661 goto out;
1662 r = 0;
1663 break;
1664 }
1665 default:
1666 r = -EINVAL;
1667 }
1668 out:
1669 return r;
1670 }
1671
1672 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1673 {
1674 kvm_x86_ops->vcpu_load(vcpu, cpu);
1675 if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) {
1676 unsigned long khz = cpufreq_quick_get(cpu);
1677 if (!khz)
1678 khz = tsc_khz;
1679 per_cpu(cpu_tsc_khz, cpu) = khz;
1680 }
1681 kvm_request_guest_time_update(vcpu);
1682 }
1683
1684 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1685 {
1686 kvm_put_guest_fpu(vcpu);
1687 kvm_x86_ops->vcpu_put(vcpu);
1688 }
1689
1690 static int is_efer_nx(void)
1691 {
1692 unsigned long long efer = 0;
1693
1694 rdmsrl_safe(MSR_EFER, &efer);
1695 return efer & EFER_NX;
1696 }
1697
1698 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1699 {
1700 int i;
1701 struct kvm_cpuid_entry2 *e, *entry;
1702
1703 entry = NULL;
1704 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1705 e = &vcpu->arch.cpuid_entries[i];
1706 if (e->function == 0x80000001) {
1707 entry = e;
1708 break;
1709 }
1710 }
1711 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1712 entry->edx &= ~(1 << 20);
1713 printk(KERN_INFO "kvm: guest NX capability removed\n");
1714 }
1715 }
1716
1717 /* when an old userspace process fills a new kernel module */
1718 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1719 struct kvm_cpuid *cpuid,
1720 struct kvm_cpuid_entry __user *entries)
1721 {
1722 int r, i;
1723 struct kvm_cpuid_entry *cpuid_entries;
1724
1725 r = -E2BIG;
1726 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1727 goto out;
1728 r = -ENOMEM;
1729 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1730 if (!cpuid_entries)
1731 goto out;
1732 r = -EFAULT;
1733 if (copy_from_user(cpuid_entries, entries,
1734 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1735 goto out_free;
1736 for (i = 0; i < cpuid->nent; i++) {
1737 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1738 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1739 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1740 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1741 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1742 vcpu->arch.cpuid_entries[i].index = 0;
1743 vcpu->arch.cpuid_entries[i].flags = 0;
1744 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1745 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1746 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1747 }
1748 vcpu->arch.cpuid_nent = cpuid->nent;
1749 cpuid_fix_nx_cap(vcpu);
1750 r = 0;
1751 kvm_apic_set_version(vcpu);
1752 kvm_x86_ops->cpuid_update(vcpu);
1753
1754 out_free:
1755 vfree(cpuid_entries);
1756 out:
1757 return r;
1758 }
1759
1760 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1761 struct kvm_cpuid2 *cpuid,
1762 struct kvm_cpuid_entry2 __user *entries)
1763 {
1764 int r;
1765
1766 r = -E2BIG;
1767 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1768 goto out;
1769 r = -EFAULT;
1770 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1771 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1772 goto out;
1773 vcpu->arch.cpuid_nent = cpuid->nent;
1774 kvm_apic_set_version(vcpu);
1775 kvm_x86_ops->cpuid_update(vcpu);
1776 return 0;
1777
1778 out:
1779 return r;
1780 }
1781
1782 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1783 struct kvm_cpuid2 *cpuid,
1784 struct kvm_cpuid_entry2 __user *entries)
1785 {
1786 int r;
1787
1788 r = -E2BIG;
1789 if (cpuid->nent < vcpu->arch.cpuid_nent)
1790 goto out;
1791 r = -EFAULT;
1792 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1793 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1794 goto out;
1795 return 0;
1796
1797 out:
1798 cpuid->nent = vcpu->arch.cpuid_nent;
1799 return r;
1800 }
1801
1802 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1803 u32 index)
1804 {
1805 entry->function = function;
1806 entry->index = index;
1807 cpuid_count(entry->function, entry->index,
1808 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1809 entry->flags = 0;
1810 }
1811
1812 #define F(x) bit(X86_FEATURE_##x)
1813
1814 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1815 u32 index, int *nent, int maxnent)
1816 {
1817 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
1818 #ifdef CONFIG_X86_64
1819 unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
1820 ? F(GBPAGES) : 0;
1821 unsigned f_lm = F(LM);
1822 #else
1823 unsigned f_gbpages = 0;
1824 unsigned f_lm = 0;
1825 #endif
1826 unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
1827
1828 /* cpuid 1.edx */
1829 const u32 kvm_supported_word0_x86_features =
1830 F(FPU) | F(VME) | F(DE) | F(PSE) |
1831 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1832 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
1833 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1834 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
1835 0 /* Reserved, DS, ACPI */ | F(MMX) |
1836 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
1837 0 /* HTT, TM, Reserved, PBE */;
1838 /* cpuid 0x80000001.edx */
1839 const u32 kvm_supported_word1_x86_features =
1840 F(FPU) | F(VME) | F(DE) | F(PSE) |
1841 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1842 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
1843 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1844 F(PAT) | F(PSE36) | 0 /* Reserved */ |
1845 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
1846 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
1847 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
1848 /* cpuid 1.ecx */
1849 const u32 kvm_supported_word4_x86_features =
1850 F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
1851 0 /* DS-CPL, VMX, SMX, EST */ |
1852 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1853 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
1854 0 /* Reserved, DCA */ | F(XMM4_1) |
1855 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
1856 0 /* Reserved, XSAVE, OSXSAVE */;
1857 /* cpuid 0x80000001.ecx */
1858 const u32 kvm_supported_word6_x86_features =
1859 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
1860 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
1861 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
1862 0 /* SKINIT */ | 0 /* WDT */;
1863
1864 /* all calls to cpuid_count() should be made on the same cpu */
1865 get_cpu();
1866 do_cpuid_1_ent(entry, function, index);
1867 ++*nent;
1868
1869 switch (function) {
1870 case 0:
1871 entry->eax = min(entry->eax, (u32)0xb);
1872 break;
1873 case 1:
1874 entry->edx &= kvm_supported_word0_x86_features;
1875 entry->ecx &= kvm_supported_word4_x86_features;
1876 /* we support x2apic emulation even if host does not support
1877 * it since we emulate x2apic in software */
1878 entry->ecx |= F(X2APIC);
1879 break;
1880 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1881 * may return different values. This forces us to get_cpu() before
1882 * issuing the first command, and also to emulate this annoying behavior
1883 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1884 case 2: {
1885 int t, times = entry->eax & 0xff;
1886
1887 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1888 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1889 for (t = 1; t < times && *nent < maxnent; ++t) {
1890 do_cpuid_1_ent(&entry[t], function, 0);
1891 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1892 ++*nent;
1893 }
1894 break;
1895 }
1896 /* function 4 and 0xb have additional index. */
1897 case 4: {
1898 int i, cache_type;
1899
1900 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1901 /* read more entries until cache_type is zero */
1902 for (i = 1; *nent < maxnent; ++i) {
1903 cache_type = entry[i - 1].eax & 0x1f;
1904 if (!cache_type)
1905 break;
1906 do_cpuid_1_ent(&entry[i], function, i);
1907 entry[i].flags |=
1908 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1909 ++*nent;
1910 }
1911 break;
1912 }
1913 case 0xb: {
1914 int i, level_type;
1915
1916 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1917 /* read more entries until level_type is zero */
1918 for (i = 1; *nent < maxnent; ++i) {
1919 level_type = entry[i - 1].ecx & 0xff00;
1920 if (!level_type)
1921 break;
1922 do_cpuid_1_ent(&entry[i], function, i);
1923 entry[i].flags |=
1924 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1925 ++*nent;
1926 }
1927 break;
1928 }
1929 case 0x80000000:
1930 entry->eax = min(entry->eax, 0x8000001a);
1931 break;
1932 case 0x80000001:
1933 entry->edx &= kvm_supported_word1_x86_features;
1934 entry->ecx &= kvm_supported_word6_x86_features;
1935 break;
1936 }
1937 put_cpu();
1938 }
1939
1940 #undef F
1941
1942 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1943 struct kvm_cpuid_entry2 __user *entries)
1944 {
1945 struct kvm_cpuid_entry2 *cpuid_entries;
1946 int limit, nent = 0, r = -E2BIG;
1947 u32 func;
1948
1949 if (cpuid->nent < 1)
1950 goto out;
1951 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1952 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1953 r = -ENOMEM;
1954 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1955 if (!cpuid_entries)
1956 goto out;
1957
1958 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1959 limit = cpuid_entries[0].eax;
1960 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1961 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1962 &nent, cpuid->nent);
1963 r = -E2BIG;
1964 if (nent >= cpuid->nent)
1965 goto out_free;
1966
1967 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1968 limit = cpuid_entries[nent - 1].eax;
1969 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1970 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1971 &nent, cpuid->nent);
1972 r = -E2BIG;
1973 if (nent >= cpuid->nent)
1974 goto out_free;
1975
1976 r = -EFAULT;
1977 if (copy_to_user(entries, cpuid_entries,
1978 nent * sizeof(struct kvm_cpuid_entry2)))
1979 goto out_free;
1980 cpuid->nent = nent;
1981 r = 0;
1982
1983 out_free:
1984 vfree(cpuid_entries);
1985 out:
1986 return r;
1987 }
1988
1989 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1990 struct kvm_lapic_state *s)
1991 {
1992 vcpu_load(vcpu);
1993 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1994 vcpu_put(vcpu);
1995
1996 return 0;
1997 }
1998
1999 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2000 struct kvm_lapic_state *s)
2001 {
2002 vcpu_load(vcpu);
2003 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2004 kvm_apic_post_state_restore(vcpu);
2005 update_cr8_intercept(vcpu);
2006 vcpu_put(vcpu);
2007
2008 return 0;
2009 }
2010
2011 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2012 struct kvm_interrupt *irq)
2013 {
2014 if (irq->irq < 0 || irq->irq >= 256)
2015 return -EINVAL;
2016 if (irqchip_in_kernel(vcpu->kvm))
2017 return -ENXIO;
2018 vcpu_load(vcpu);
2019
2020 kvm_queue_interrupt(vcpu, irq->irq, false);
2021
2022 vcpu_put(vcpu);
2023
2024 return 0;
2025 }
2026
2027 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2028 {
2029 vcpu_load(vcpu);
2030 kvm_inject_nmi(vcpu);
2031 vcpu_put(vcpu);
2032
2033 return 0;
2034 }
2035
2036 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2037 struct kvm_tpr_access_ctl *tac)
2038 {
2039 if (tac->flags)
2040 return -EINVAL;
2041 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2042 return 0;
2043 }
2044
2045 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2046 u64 mcg_cap)
2047 {
2048 int r;
2049 unsigned bank_num = mcg_cap & 0xff, bank;
2050
2051 r = -EINVAL;
2052 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2053 goto out;
2054 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2055 goto out;
2056 r = 0;
2057 vcpu->arch.mcg_cap = mcg_cap;
2058 /* Init IA32_MCG_CTL to all 1s */
2059 if (mcg_cap & MCG_CTL_P)
2060 vcpu->arch.mcg_ctl = ~(u64)0;
2061 /* Init IA32_MCi_CTL to all 1s */
2062 for (bank = 0; bank < bank_num; bank++)
2063 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2064 out:
2065 return r;
2066 }
2067
2068 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2069 struct kvm_x86_mce *mce)
2070 {
2071 u64 mcg_cap = vcpu->arch.mcg_cap;
2072 unsigned bank_num = mcg_cap & 0xff;
2073 u64 *banks = vcpu->arch.mce_banks;
2074
2075 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2076 return -EINVAL;
2077 /*
2078 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2079 * reporting is disabled
2080 */
2081 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2082 vcpu->arch.mcg_ctl != ~(u64)0)
2083 return 0;
2084 banks += 4 * mce->bank;
2085 /*
2086 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2087 * reporting is disabled for the bank
2088 */
2089 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2090 return 0;
2091 if (mce->status & MCI_STATUS_UC) {
2092 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2093 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2094 printk(KERN_DEBUG "kvm: set_mce: "
2095 "injects mce exception while "
2096 "previous one is in progress!\n");
2097 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
2098 return 0;
2099 }
2100 if (banks[1] & MCI_STATUS_VAL)
2101 mce->status |= MCI_STATUS_OVER;
2102 banks[2] = mce->addr;
2103 banks[3] = mce->misc;
2104 vcpu->arch.mcg_status = mce->mcg_status;
2105 banks[1] = mce->status;
2106 kvm_queue_exception(vcpu, MC_VECTOR);
2107 } else if (!(banks[1] & MCI_STATUS_VAL)
2108 || !(banks[1] & MCI_STATUS_UC)) {
2109 if (banks[1] & MCI_STATUS_VAL)
2110 mce->status |= MCI_STATUS_OVER;
2111 banks[2] = mce->addr;
2112 banks[3] = mce->misc;
2113 banks[1] = mce->status;
2114 } else
2115 banks[1] |= MCI_STATUS_OVER;
2116 return 0;
2117 }
2118
2119 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2120 struct kvm_vcpu_events *events)
2121 {
2122 vcpu_load(vcpu);
2123
2124 events->exception.injected = vcpu->arch.exception.pending;
2125 events->exception.nr = vcpu->arch.exception.nr;
2126 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2127 events->exception.error_code = vcpu->arch.exception.error_code;
2128
2129 events->interrupt.injected = vcpu->arch.interrupt.pending;
2130 events->interrupt.nr = vcpu->arch.interrupt.nr;
2131 events->interrupt.soft = vcpu->arch.interrupt.soft;
2132
2133 events->nmi.injected = vcpu->arch.nmi_injected;
2134 events->nmi.pending = vcpu->arch.nmi_pending;
2135 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2136
2137 events->sipi_vector = vcpu->arch.sipi_vector;
2138
2139 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2140 | KVM_VCPUEVENT_VALID_SIPI_VECTOR);
2141
2142 vcpu_put(vcpu);
2143 }
2144
2145 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2146 struct kvm_vcpu_events *events)
2147 {
2148 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2149 | KVM_VCPUEVENT_VALID_SIPI_VECTOR))
2150 return -EINVAL;
2151
2152 vcpu_load(vcpu);
2153
2154 vcpu->arch.exception.pending = events->exception.injected;
2155 vcpu->arch.exception.nr = events->exception.nr;
2156 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2157 vcpu->arch.exception.error_code = events->exception.error_code;
2158
2159 vcpu->arch.interrupt.pending = events->interrupt.injected;
2160 vcpu->arch.interrupt.nr = events->interrupt.nr;
2161 vcpu->arch.interrupt.soft = events->interrupt.soft;
2162 if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
2163 kvm_pic_clear_isr_ack(vcpu->kvm);
2164
2165 vcpu->arch.nmi_injected = events->nmi.injected;
2166 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2167 vcpu->arch.nmi_pending = events->nmi.pending;
2168 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2169
2170 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2171 vcpu->arch.sipi_vector = events->sipi_vector;
2172
2173 vcpu_put(vcpu);
2174
2175 return 0;
2176 }
2177
2178 long kvm_arch_vcpu_ioctl(struct file *filp,
2179 unsigned int ioctl, unsigned long arg)
2180 {
2181 struct kvm_vcpu *vcpu = filp->private_data;
2182 void __user *argp = (void __user *)arg;
2183 int r;
2184 struct kvm_lapic_state *lapic = NULL;
2185
2186 switch (ioctl) {
2187 case KVM_GET_LAPIC: {
2188 r = -EINVAL;
2189 if (!vcpu->arch.apic)
2190 goto out;
2191 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2192
2193 r = -ENOMEM;
2194 if (!lapic)
2195 goto out;
2196 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
2197 if (r)
2198 goto out;
2199 r = -EFAULT;
2200 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
2201 goto out;
2202 r = 0;
2203 break;
2204 }
2205 case KVM_SET_LAPIC: {
2206 r = -EINVAL;
2207 if (!vcpu->arch.apic)
2208 goto out;
2209 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2210 r = -ENOMEM;
2211 if (!lapic)
2212 goto out;
2213 r = -EFAULT;
2214 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
2215 goto out;
2216 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
2217 if (r)
2218 goto out;
2219 r = 0;
2220 break;
2221 }
2222 case KVM_INTERRUPT: {
2223 struct kvm_interrupt irq;
2224
2225 r = -EFAULT;
2226 if (copy_from_user(&irq, argp, sizeof irq))
2227 goto out;
2228 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2229 if (r)
2230 goto out;
2231 r = 0;
2232 break;
2233 }
2234 case KVM_NMI: {
2235 r = kvm_vcpu_ioctl_nmi(vcpu);
2236 if (r)
2237 goto out;
2238 r = 0;
2239 break;
2240 }
2241 case KVM_SET_CPUID: {
2242 struct kvm_cpuid __user *cpuid_arg = argp;
2243 struct kvm_cpuid cpuid;
2244
2245 r = -EFAULT;
2246 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2247 goto out;
2248 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2249 if (r)
2250 goto out;
2251 break;
2252 }
2253 case KVM_SET_CPUID2: {
2254 struct kvm_cpuid2 __user *cpuid_arg = argp;
2255 struct kvm_cpuid2 cpuid;
2256
2257 r = -EFAULT;
2258 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2259 goto out;
2260 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2261 cpuid_arg->entries);
2262 if (r)
2263 goto out;
2264 break;
2265 }
2266 case KVM_GET_CPUID2: {
2267 struct kvm_cpuid2 __user *cpuid_arg = argp;
2268 struct kvm_cpuid2 cpuid;
2269
2270 r = -EFAULT;
2271 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2272 goto out;
2273 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2274 cpuid_arg->entries);
2275 if (r)
2276 goto out;
2277 r = -EFAULT;
2278 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2279 goto out;
2280 r = 0;
2281 break;
2282 }
2283 case KVM_GET_MSRS:
2284 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2285 break;
2286 case KVM_SET_MSRS:
2287 r = msr_io(vcpu, argp, do_set_msr, 0);
2288 break;
2289 case KVM_TPR_ACCESS_REPORTING: {
2290 struct kvm_tpr_access_ctl tac;
2291
2292 r = -EFAULT;
2293 if (copy_from_user(&tac, argp, sizeof tac))
2294 goto out;
2295 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2296 if (r)
2297 goto out;
2298 r = -EFAULT;
2299 if (copy_to_user(argp, &tac, sizeof tac))
2300 goto out;
2301 r = 0;
2302 break;
2303 };
2304 case KVM_SET_VAPIC_ADDR: {
2305 struct kvm_vapic_addr va;
2306
2307 r = -EINVAL;
2308 if (!irqchip_in_kernel(vcpu->kvm))
2309 goto out;
2310 r = -EFAULT;
2311 if (copy_from_user(&va, argp, sizeof va))
2312 goto out;
2313 r = 0;
2314 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2315 break;
2316 }
2317 case KVM_X86_SETUP_MCE: {
2318 u64 mcg_cap;
2319
2320 r = -EFAULT;
2321 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2322 goto out;
2323 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2324 break;
2325 }
2326 case KVM_X86_SET_MCE: {
2327 struct kvm_x86_mce mce;
2328
2329 r = -EFAULT;
2330 if (copy_from_user(&mce, argp, sizeof mce))
2331 goto out;
2332 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2333 break;
2334 }
2335 case KVM_GET_VCPU_EVENTS: {
2336 struct kvm_vcpu_events events;
2337
2338 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2339
2340 r = -EFAULT;
2341 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2342 break;
2343 r = 0;
2344 break;
2345 }
2346 case KVM_SET_VCPU_EVENTS: {
2347 struct kvm_vcpu_events events;
2348
2349 r = -EFAULT;
2350 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2351 break;
2352
2353 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2354 break;
2355 }
2356 default:
2357 r = -EINVAL;
2358 }
2359 out:
2360 kfree(lapic);
2361 return r;
2362 }
2363
2364 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2365 {
2366 int ret;
2367
2368 if (addr > (unsigned int)(-3 * PAGE_SIZE))
2369 return -1;
2370 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2371 return ret;
2372 }
2373
2374 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2375 u64 ident_addr)
2376 {
2377 kvm->arch.ept_identity_map_addr = ident_addr;
2378 return 0;
2379 }
2380
2381 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2382 u32 kvm_nr_mmu_pages)
2383 {
2384 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2385 return -EINVAL;
2386
2387 mutex_lock(&kvm->slots_lock);
2388 spin_lock(&kvm->mmu_lock);
2389
2390 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2391 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2392
2393 spin_unlock(&kvm->mmu_lock);
2394 mutex_unlock(&kvm->slots_lock);
2395 return 0;
2396 }
2397
2398 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2399 {
2400 return kvm->arch.n_alloc_mmu_pages;
2401 }
2402
2403 gfn_t unalias_gfn_instantiation(struct kvm *kvm, gfn_t gfn)
2404 {
2405 int i;
2406 struct kvm_mem_alias *alias;
2407 struct kvm_mem_aliases *aliases;
2408
2409 aliases = rcu_dereference(kvm->arch.aliases);
2410
2411 for (i = 0; i < aliases->naliases; ++i) {
2412 alias = &aliases->aliases[i];
2413 if (alias->flags & KVM_ALIAS_INVALID)
2414 continue;
2415 if (gfn >= alias->base_gfn
2416 && gfn < alias->base_gfn + alias->npages)
2417 return alias->target_gfn + gfn - alias->base_gfn;
2418 }
2419 return gfn;
2420 }
2421
2422 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
2423 {
2424 int i;
2425 struct kvm_mem_alias *alias;
2426 struct kvm_mem_aliases *aliases;
2427
2428 aliases = rcu_dereference(kvm->arch.aliases);
2429
2430 for (i = 0; i < aliases->naliases; ++i) {
2431 alias = &aliases->aliases[i];
2432 if (gfn >= alias->base_gfn
2433 && gfn < alias->base_gfn + alias->npages)
2434 return alias->target_gfn + gfn - alias->base_gfn;
2435 }
2436 return gfn;
2437 }
2438
2439 /*
2440 * Set a new alias region. Aliases map a portion of physical memory into
2441 * another portion. This is useful for memory windows, for example the PC
2442 * VGA region.
2443 */
2444 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
2445 struct kvm_memory_alias *alias)
2446 {
2447 int r, n;
2448 struct kvm_mem_alias *p;
2449 struct kvm_mem_aliases *aliases, *old_aliases;
2450
2451 r = -EINVAL;
2452 /* General sanity checks */
2453 if (alias->memory_size & (PAGE_SIZE - 1))
2454 goto out;
2455 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
2456 goto out;
2457 if (alias->slot >= KVM_ALIAS_SLOTS)
2458 goto out;
2459 if (alias->guest_phys_addr + alias->memory_size
2460 < alias->guest_phys_addr)
2461 goto out;
2462 if (alias->target_phys_addr + alias->memory_size
2463 < alias->target_phys_addr)
2464 goto out;
2465
2466 r = -ENOMEM;
2467 aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
2468 if (!aliases)
2469 goto out;
2470
2471 mutex_lock(&kvm->slots_lock);
2472
2473 /* invalidate any gfn reference in case of deletion/shrinking */
2474 memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
2475 aliases->aliases[alias->slot].flags |= KVM_ALIAS_INVALID;
2476 old_aliases = kvm->arch.aliases;
2477 rcu_assign_pointer(kvm->arch.aliases, aliases);
2478 synchronize_srcu_expedited(&kvm->srcu);
2479 kvm_mmu_zap_all(kvm);
2480 kfree(old_aliases);
2481
2482 r = -ENOMEM;
2483 aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
2484 if (!aliases)
2485 goto out_unlock;
2486
2487 memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
2488
2489 p = &aliases->aliases[alias->slot];
2490 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
2491 p->npages = alias->memory_size >> PAGE_SHIFT;
2492 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
2493 p->flags &= ~(KVM_ALIAS_INVALID);
2494
2495 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
2496 if (aliases->aliases[n - 1].npages)
2497 break;
2498 aliases->naliases = n;
2499
2500 old_aliases = kvm->arch.aliases;
2501 rcu_assign_pointer(kvm->arch.aliases, aliases);
2502 synchronize_srcu_expedited(&kvm->srcu);
2503 kfree(old_aliases);
2504 r = 0;
2505
2506 out_unlock:
2507 mutex_unlock(&kvm->slots_lock);
2508 out:
2509 return r;
2510 }
2511
2512 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2513 {
2514 int r;
2515
2516 r = 0;
2517 switch (chip->chip_id) {
2518 case KVM_IRQCHIP_PIC_MASTER:
2519 memcpy(&chip->chip.pic,
2520 &pic_irqchip(kvm)->pics[0],
2521 sizeof(struct kvm_pic_state));
2522 break;
2523 case KVM_IRQCHIP_PIC_SLAVE:
2524 memcpy(&chip->chip.pic,
2525 &pic_irqchip(kvm)->pics[1],
2526 sizeof(struct kvm_pic_state));
2527 break;
2528 case KVM_IRQCHIP_IOAPIC:
2529 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2530 break;
2531 default:
2532 r = -EINVAL;
2533 break;
2534 }
2535 return r;
2536 }
2537
2538 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2539 {
2540 int r;
2541
2542 r = 0;
2543 switch (chip->chip_id) {
2544 case KVM_IRQCHIP_PIC_MASTER:
2545 spin_lock(&pic_irqchip(kvm)->lock);
2546 memcpy(&pic_irqchip(kvm)->pics[0],
2547 &chip->chip.pic,
2548 sizeof(struct kvm_pic_state));
2549 spin_unlock(&pic_irqchip(kvm)->lock);
2550 break;
2551 case KVM_IRQCHIP_PIC_SLAVE:
2552 spin_lock(&pic_irqchip(kvm)->lock);
2553 memcpy(&pic_irqchip(kvm)->pics[1],
2554 &chip->chip.pic,
2555 sizeof(struct kvm_pic_state));
2556 spin_unlock(&pic_irqchip(kvm)->lock);
2557 break;
2558 case KVM_IRQCHIP_IOAPIC:
2559 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
2560 break;
2561 default:
2562 r = -EINVAL;
2563 break;
2564 }
2565 kvm_pic_update_irq(pic_irqchip(kvm));
2566 return r;
2567 }
2568
2569 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2570 {
2571 int r = 0;
2572
2573 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2574 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2575 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2576 return r;
2577 }
2578
2579 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2580 {
2581 int r = 0;
2582
2583 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2584 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2585 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2586 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2587 return r;
2588 }
2589
2590 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2591 {
2592 int r = 0;
2593
2594 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2595 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2596 sizeof(ps->channels));
2597 ps->flags = kvm->arch.vpit->pit_state.flags;
2598 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2599 return r;
2600 }
2601
2602 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2603 {
2604 int r = 0, start = 0;
2605 u32 prev_legacy, cur_legacy;
2606 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2607 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2608 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2609 if (!prev_legacy && cur_legacy)
2610 start = 1;
2611 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2612 sizeof(kvm->arch.vpit->pit_state.channels));
2613 kvm->arch.vpit->pit_state.flags = ps->flags;
2614 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2615 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2616 return r;
2617 }
2618
2619 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2620 struct kvm_reinject_control *control)
2621 {
2622 if (!kvm->arch.vpit)
2623 return -ENXIO;
2624 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2625 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2626 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2627 return 0;
2628 }
2629
2630 /*
2631 * Get (and clear) the dirty memory log for a memory slot.
2632 */
2633 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2634 struct kvm_dirty_log *log)
2635 {
2636 int r, n, i;
2637 struct kvm_memory_slot *memslot;
2638 unsigned long is_dirty = 0;
2639 unsigned long *dirty_bitmap = NULL;
2640
2641 mutex_lock(&kvm->slots_lock);
2642
2643 r = -EINVAL;
2644 if (log->slot >= KVM_MEMORY_SLOTS)
2645 goto out;
2646
2647 memslot = &kvm->memslots->memslots[log->slot];
2648 r = -ENOENT;
2649 if (!memslot->dirty_bitmap)
2650 goto out;
2651
2652 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
2653
2654 r = -ENOMEM;
2655 dirty_bitmap = vmalloc(n);
2656 if (!dirty_bitmap)
2657 goto out;
2658 memset(dirty_bitmap, 0, n);
2659
2660 for (i = 0; !is_dirty && i < n/sizeof(long); i++)
2661 is_dirty = memslot->dirty_bitmap[i];
2662
2663 /* If nothing is dirty, don't bother messing with page tables. */
2664 if (is_dirty) {
2665 struct kvm_memslots *slots, *old_slots;
2666
2667 spin_lock(&kvm->mmu_lock);
2668 kvm_mmu_slot_remove_write_access(kvm, log->slot);
2669 spin_unlock(&kvm->mmu_lock);
2670
2671 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
2672 if (!slots)
2673 goto out_free;
2674
2675 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
2676 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
2677
2678 old_slots = kvm->memslots;
2679 rcu_assign_pointer(kvm->memslots, slots);
2680 synchronize_srcu_expedited(&kvm->srcu);
2681 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
2682 kfree(old_slots);
2683 }
2684
2685 r = 0;
2686 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
2687 r = -EFAULT;
2688 out_free:
2689 vfree(dirty_bitmap);
2690 out:
2691 mutex_unlock(&kvm->slots_lock);
2692 return r;
2693 }
2694
2695 long kvm_arch_vm_ioctl(struct file *filp,
2696 unsigned int ioctl, unsigned long arg)
2697 {
2698 struct kvm *kvm = filp->private_data;
2699 void __user *argp = (void __user *)arg;
2700 int r = -ENOTTY;
2701 /*
2702 * This union makes it completely explicit to gcc-3.x
2703 * that these two variables' stack usage should be
2704 * combined, not added together.
2705 */
2706 union {
2707 struct kvm_pit_state ps;
2708 struct kvm_pit_state2 ps2;
2709 struct kvm_memory_alias alias;
2710 struct kvm_pit_config pit_config;
2711 } u;
2712
2713 switch (ioctl) {
2714 case KVM_SET_TSS_ADDR:
2715 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
2716 if (r < 0)
2717 goto out;
2718 break;
2719 case KVM_SET_IDENTITY_MAP_ADDR: {
2720 u64 ident_addr;
2721
2722 r = -EFAULT;
2723 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
2724 goto out;
2725 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
2726 if (r < 0)
2727 goto out;
2728 break;
2729 }
2730 case KVM_SET_MEMORY_REGION: {
2731 struct kvm_memory_region kvm_mem;
2732 struct kvm_userspace_memory_region kvm_userspace_mem;
2733
2734 r = -EFAULT;
2735 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2736 goto out;
2737 kvm_userspace_mem.slot = kvm_mem.slot;
2738 kvm_userspace_mem.flags = kvm_mem.flags;
2739 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
2740 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
2741 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
2742 if (r)
2743 goto out;
2744 break;
2745 }
2746 case KVM_SET_NR_MMU_PAGES:
2747 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
2748 if (r)
2749 goto out;
2750 break;
2751 case KVM_GET_NR_MMU_PAGES:
2752 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
2753 break;
2754 case KVM_SET_MEMORY_ALIAS:
2755 r = -EFAULT;
2756 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
2757 goto out;
2758 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
2759 if (r)
2760 goto out;
2761 break;
2762 case KVM_CREATE_IRQCHIP: {
2763 struct kvm_pic *vpic;
2764
2765 mutex_lock(&kvm->lock);
2766 r = -EEXIST;
2767 if (kvm->arch.vpic)
2768 goto create_irqchip_unlock;
2769 r = -ENOMEM;
2770 vpic = kvm_create_pic(kvm);
2771 if (vpic) {
2772 r = kvm_ioapic_init(kvm);
2773 if (r) {
2774 kfree(vpic);
2775 goto create_irqchip_unlock;
2776 }
2777 } else
2778 goto create_irqchip_unlock;
2779 smp_wmb();
2780 kvm->arch.vpic = vpic;
2781 smp_wmb();
2782 r = kvm_setup_default_irq_routing(kvm);
2783 if (r) {
2784 mutex_lock(&kvm->irq_lock);
2785 kfree(kvm->arch.vpic);
2786 kfree(kvm->arch.vioapic);
2787 kvm->arch.vpic = NULL;
2788 kvm->arch.vioapic = NULL;
2789 mutex_unlock(&kvm->irq_lock);
2790 }
2791 create_irqchip_unlock:
2792 mutex_unlock(&kvm->lock);
2793 break;
2794 }
2795 case KVM_CREATE_PIT:
2796 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
2797 goto create_pit;
2798 case KVM_CREATE_PIT2:
2799 r = -EFAULT;
2800 if (copy_from_user(&u.pit_config, argp,
2801 sizeof(struct kvm_pit_config)))
2802 goto out;
2803 create_pit:
2804 mutex_lock(&kvm->slots_lock);
2805 r = -EEXIST;
2806 if (kvm->arch.vpit)
2807 goto create_pit_unlock;
2808 r = -ENOMEM;
2809 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
2810 if (kvm->arch.vpit)
2811 r = 0;
2812 create_pit_unlock:
2813 mutex_unlock(&kvm->slots_lock);
2814 break;
2815 case KVM_IRQ_LINE_STATUS:
2816 case KVM_IRQ_LINE: {
2817 struct kvm_irq_level irq_event;
2818
2819 r = -EFAULT;
2820 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2821 goto out;
2822 if (irqchip_in_kernel(kvm)) {
2823 __s32 status;
2824 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2825 irq_event.irq, irq_event.level);
2826 if (ioctl == KVM_IRQ_LINE_STATUS) {
2827 irq_event.status = status;
2828 if (copy_to_user(argp, &irq_event,
2829 sizeof irq_event))
2830 goto out;
2831 }
2832 r = 0;
2833 }
2834 break;
2835 }
2836 case KVM_GET_IRQCHIP: {
2837 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2838 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2839
2840 r = -ENOMEM;
2841 if (!chip)
2842 goto out;
2843 r = -EFAULT;
2844 if (copy_from_user(chip, argp, sizeof *chip))
2845 goto get_irqchip_out;
2846 r = -ENXIO;
2847 if (!irqchip_in_kernel(kvm))
2848 goto get_irqchip_out;
2849 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
2850 if (r)
2851 goto get_irqchip_out;
2852 r = -EFAULT;
2853 if (copy_to_user(argp, chip, sizeof *chip))
2854 goto get_irqchip_out;
2855 r = 0;
2856 get_irqchip_out:
2857 kfree(chip);
2858 if (r)
2859 goto out;
2860 break;
2861 }
2862 case KVM_SET_IRQCHIP: {
2863 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2864 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2865
2866 r = -ENOMEM;
2867 if (!chip)
2868 goto out;
2869 r = -EFAULT;
2870 if (copy_from_user(chip, argp, sizeof *chip))
2871 goto set_irqchip_out;
2872 r = -ENXIO;
2873 if (!irqchip_in_kernel(kvm))
2874 goto set_irqchip_out;
2875 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
2876 if (r)
2877 goto set_irqchip_out;
2878 r = 0;
2879 set_irqchip_out:
2880 kfree(chip);
2881 if (r)
2882 goto out;
2883 break;
2884 }
2885 case KVM_GET_PIT: {
2886 r = -EFAULT;
2887 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
2888 goto out;
2889 r = -ENXIO;
2890 if (!kvm->arch.vpit)
2891 goto out;
2892 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
2893 if (r)
2894 goto out;
2895 r = -EFAULT;
2896 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
2897 goto out;
2898 r = 0;
2899 break;
2900 }
2901 case KVM_SET_PIT: {
2902 r = -EFAULT;
2903 if (copy_from_user(&u.ps, argp, sizeof u.ps))
2904 goto out;
2905 r = -ENXIO;
2906 if (!kvm->arch.vpit)
2907 goto out;
2908 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
2909 if (r)
2910 goto out;
2911 r = 0;
2912 break;
2913 }
2914 case KVM_GET_PIT2: {
2915 r = -ENXIO;
2916 if (!kvm->arch.vpit)
2917 goto out;
2918 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
2919 if (r)
2920 goto out;
2921 r = -EFAULT;
2922 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
2923 goto out;
2924 r = 0;
2925 break;
2926 }
2927 case KVM_SET_PIT2: {
2928 r = -EFAULT;
2929 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
2930 goto out;
2931 r = -ENXIO;
2932 if (!kvm->arch.vpit)
2933 goto out;
2934 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
2935 if (r)
2936 goto out;
2937 r = 0;
2938 break;
2939 }
2940 case KVM_REINJECT_CONTROL: {
2941 struct kvm_reinject_control control;
2942 r = -EFAULT;
2943 if (copy_from_user(&control, argp, sizeof(control)))
2944 goto out;
2945 r = kvm_vm_ioctl_reinject(kvm, &control);
2946 if (r)
2947 goto out;
2948 r = 0;
2949 break;
2950 }
2951 case KVM_XEN_HVM_CONFIG: {
2952 r = -EFAULT;
2953 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
2954 sizeof(struct kvm_xen_hvm_config)))
2955 goto out;
2956 r = -EINVAL;
2957 if (kvm->arch.xen_hvm_config.flags)
2958 goto out;
2959 r = 0;
2960 break;
2961 }
2962 case KVM_SET_CLOCK: {
2963 struct timespec now;
2964 struct kvm_clock_data user_ns;
2965 u64 now_ns;
2966 s64 delta;
2967
2968 r = -EFAULT;
2969 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
2970 goto out;
2971
2972 r = -EINVAL;
2973 if (user_ns.flags)
2974 goto out;
2975
2976 r = 0;
2977 ktime_get_ts(&now);
2978 now_ns = timespec_to_ns(&now);
2979 delta = user_ns.clock - now_ns;
2980 kvm->arch.kvmclock_offset = delta;
2981 break;
2982 }
2983 case KVM_GET_CLOCK: {
2984 struct timespec now;
2985 struct kvm_clock_data user_ns;
2986 u64 now_ns;
2987
2988 ktime_get_ts(&now);
2989 now_ns = timespec_to_ns(&now);
2990 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
2991 user_ns.flags = 0;
2992
2993 r = -EFAULT;
2994 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
2995 goto out;
2996 r = 0;
2997 break;
2998 }
2999
3000 default:
3001 ;
3002 }
3003 out:
3004 return r;
3005 }
3006
3007 static void kvm_init_msr_list(void)
3008 {
3009 u32 dummy[2];
3010 unsigned i, j;
3011
3012 /* skip the first msrs in the list. KVM-specific */
3013 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3014 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3015 continue;
3016 if (j < i)
3017 msrs_to_save[j] = msrs_to_save[i];
3018 j++;
3019 }
3020 num_msrs_to_save = j;
3021 }
3022
3023 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3024 const void *v)
3025 {
3026 if (vcpu->arch.apic &&
3027 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
3028 return 0;
3029
3030 return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3031 }
3032
3033 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3034 {
3035 if (vcpu->arch.apic &&
3036 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
3037 return 0;
3038
3039 return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3040 }
3041
3042 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
3043 struct kvm_vcpu *vcpu)
3044 {
3045 void *data = val;
3046 int r = X86EMUL_CONTINUE;
3047
3048 while (bytes) {
3049 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
3050 unsigned offset = addr & (PAGE_SIZE-1);
3051 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3052 int ret;
3053
3054 if (gpa == UNMAPPED_GVA) {
3055 r = X86EMUL_PROPAGATE_FAULT;
3056 goto out;
3057 }
3058 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3059 if (ret < 0) {
3060 r = X86EMUL_UNHANDLEABLE;
3061 goto out;
3062 }
3063
3064 bytes -= toread;
3065 data += toread;
3066 addr += toread;
3067 }
3068 out:
3069 return r;
3070 }
3071
3072 static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
3073 struct kvm_vcpu *vcpu)
3074 {
3075 void *data = val;
3076 int r = X86EMUL_CONTINUE;
3077
3078 while (bytes) {
3079 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
3080 unsigned offset = addr & (PAGE_SIZE-1);
3081 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3082 int ret;
3083
3084 if (gpa == UNMAPPED_GVA) {
3085 r = X86EMUL_PROPAGATE_FAULT;
3086 goto out;
3087 }
3088 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3089 if (ret < 0) {
3090 r = X86EMUL_UNHANDLEABLE;
3091 goto out;
3092 }
3093
3094 bytes -= towrite;
3095 data += towrite;
3096 addr += towrite;
3097 }
3098 out:
3099 return r;
3100 }
3101
3102
3103 static int emulator_read_emulated(unsigned long addr,
3104 void *val,
3105 unsigned int bytes,
3106 struct kvm_vcpu *vcpu)
3107 {
3108 gpa_t gpa;
3109
3110 if (vcpu->mmio_read_completed) {
3111 memcpy(val, vcpu->mmio_data, bytes);
3112 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3113 vcpu->mmio_phys_addr, *(u64 *)val);
3114 vcpu->mmio_read_completed = 0;
3115 return X86EMUL_CONTINUE;
3116 }
3117
3118 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
3119
3120 /* For APIC access vmexit */
3121 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3122 goto mmio;
3123
3124 if (kvm_read_guest_virt(addr, val, bytes, vcpu)
3125 == X86EMUL_CONTINUE)
3126 return X86EMUL_CONTINUE;
3127 if (gpa == UNMAPPED_GVA)
3128 return X86EMUL_PROPAGATE_FAULT;
3129
3130 mmio:
3131 /*
3132 * Is this MMIO handled locally?
3133 */
3134 if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
3135 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
3136 return X86EMUL_CONTINUE;
3137 }
3138
3139 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3140
3141 vcpu->mmio_needed = 1;
3142 vcpu->mmio_phys_addr = gpa;
3143 vcpu->mmio_size = bytes;
3144 vcpu->mmio_is_write = 0;
3145
3146 return X86EMUL_UNHANDLEABLE;
3147 }
3148
3149 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3150 const void *val, int bytes)
3151 {
3152 int ret;
3153
3154 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3155 if (ret < 0)
3156 return 0;
3157 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3158 return 1;
3159 }
3160
3161 static int emulator_write_emulated_onepage(unsigned long addr,
3162 const void *val,
3163 unsigned int bytes,
3164 struct kvm_vcpu *vcpu)
3165 {
3166 gpa_t gpa;
3167
3168 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
3169
3170 if (gpa == UNMAPPED_GVA) {
3171 kvm_inject_page_fault(vcpu, addr, 2);
3172 return X86EMUL_PROPAGATE_FAULT;
3173 }
3174
3175 /* For APIC access vmexit */
3176 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3177 goto mmio;
3178
3179 if (emulator_write_phys(vcpu, gpa, val, bytes))
3180 return X86EMUL_CONTINUE;
3181
3182 mmio:
3183 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3184 /*
3185 * Is this MMIO handled locally?
3186 */
3187 if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
3188 return X86EMUL_CONTINUE;
3189
3190 vcpu->mmio_needed = 1;
3191 vcpu->mmio_phys_addr = gpa;
3192 vcpu->mmio_size = bytes;
3193 vcpu->mmio_is_write = 1;
3194 memcpy(vcpu->mmio_data, val, bytes);
3195
3196 return X86EMUL_CONTINUE;
3197 }
3198
3199 int emulator_write_emulated(unsigned long addr,
3200 const void *val,
3201 unsigned int bytes,
3202 struct kvm_vcpu *vcpu)
3203 {
3204 /* Crossing a page boundary? */
3205 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3206 int rc, now;
3207
3208 now = -addr & ~PAGE_MASK;
3209 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
3210 if (rc != X86EMUL_CONTINUE)
3211 return rc;
3212 addr += now;
3213 val += now;
3214 bytes -= now;
3215 }
3216 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
3217 }
3218 EXPORT_SYMBOL_GPL(emulator_write_emulated);
3219
3220 static int emulator_cmpxchg_emulated(unsigned long addr,
3221 const void *old,
3222 const void *new,
3223 unsigned int bytes,
3224 struct kvm_vcpu *vcpu)
3225 {
3226 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3227 #ifndef CONFIG_X86_64
3228 /* guests cmpxchg8b have to be emulated atomically */
3229 if (bytes == 8) {
3230 gpa_t gpa;
3231 struct page *page;
3232 char *kaddr;
3233 u64 val;
3234
3235 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
3236
3237 if (gpa == UNMAPPED_GVA ||
3238 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3239 goto emul_write;
3240
3241 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3242 goto emul_write;
3243
3244 val = *(u64 *)new;
3245
3246 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3247
3248 kaddr = kmap_atomic(page, KM_USER0);
3249 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
3250 kunmap_atomic(kaddr, KM_USER0);
3251 kvm_release_page_dirty(page);
3252 }
3253 emul_write:
3254 #endif
3255
3256 return emulator_write_emulated(addr, new, bytes, vcpu);
3257 }
3258
3259 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
3260 {
3261 return kvm_x86_ops->get_segment_base(vcpu, seg);
3262 }
3263
3264 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
3265 {
3266 kvm_mmu_invlpg(vcpu, address);
3267 return X86EMUL_CONTINUE;
3268 }
3269
3270 int emulate_clts(struct kvm_vcpu *vcpu)
3271 {
3272 kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3273 kvm_x86_ops->fpu_activate(vcpu);
3274 return X86EMUL_CONTINUE;
3275 }
3276
3277 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
3278 {
3279 return kvm_x86_ops->get_dr(ctxt->vcpu, dr, dest);
3280 }
3281
3282 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
3283 {
3284 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
3285
3286 return kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask);
3287 }
3288
3289 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
3290 {
3291 u8 opcodes[4];
3292 unsigned long rip = kvm_rip_read(vcpu);
3293 unsigned long rip_linear;
3294
3295 if (!printk_ratelimit())
3296 return;
3297
3298 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
3299
3300 kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
3301
3302 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
3303 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
3304 }
3305 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
3306
3307 static struct x86_emulate_ops emulate_ops = {
3308 .read_std = kvm_read_guest_virt,
3309 .read_emulated = emulator_read_emulated,
3310 .write_emulated = emulator_write_emulated,
3311 .cmpxchg_emulated = emulator_cmpxchg_emulated,
3312 };
3313
3314 static void cache_all_regs(struct kvm_vcpu *vcpu)
3315 {
3316 kvm_register_read(vcpu, VCPU_REGS_RAX);
3317 kvm_register_read(vcpu, VCPU_REGS_RSP);
3318 kvm_register_read(vcpu, VCPU_REGS_RIP);
3319 vcpu->arch.regs_dirty = ~0;
3320 }
3321
3322 int emulate_instruction(struct kvm_vcpu *vcpu,
3323 unsigned long cr2,
3324 u16 error_code,
3325 int emulation_type)
3326 {
3327 int r, shadow_mask;
3328 struct decode_cache *c;
3329 struct kvm_run *run = vcpu->run;
3330
3331 kvm_clear_exception_queue(vcpu);
3332 vcpu->arch.mmio_fault_cr2 = cr2;
3333 /*
3334 * TODO: fix emulate.c to use guest_read/write_register
3335 * instead of direct ->regs accesses, can save hundred cycles
3336 * on Intel for instructions that don't read/change RSP, for
3337 * for example.
3338 */
3339 cache_all_regs(vcpu);
3340
3341 vcpu->mmio_is_write = 0;
3342 vcpu->arch.pio.string = 0;
3343
3344 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
3345 int cs_db, cs_l;
3346 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
3347
3348 vcpu->arch.emulate_ctxt.vcpu = vcpu;
3349 vcpu->arch.emulate_ctxt.eflags = kvm_get_rflags(vcpu);
3350 vcpu->arch.emulate_ctxt.mode =
3351 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
3352 ? X86EMUL_MODE_REAL : cs_l
3353 ? X86EMUL_MODE_PROT64 : cs_db
3354 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
3355
3356 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
3357
3358 /* Only allow emulation of specific instructions on #UD
3359 * (namely VMMCALL, sysenter, sysexit, syscall)*/
3360 c = &vcpu->arch.emulate_ctxt.decode;
3361 if (emulation_type & EMULTYPE_TRAP_UD) {
3362 if (!c->twobyte)
3363 return EMULATE_FAIL;
3364 switch (c->b) {
3365 case 0x01: /* VMMCALL */
3366 if (c->modrm_mod != 3 || c->modrm_rm != 1)
3367 return EMULATE_FAIL;
3368 break;
3369 case 0x34: /* sysenter */
3370 case 0x35: /* sysexit */
3371 if (c->modrm_mod != 0 || c->modrm_rm != 0)
3372 return EMULATE_FAIL;
3373 break;
3374 case 0x05: /* syscall */
3375 if (c->modrm_mod != 0 || c->modrm_rm != 0)
3376 return EMULATE_FAIL;
3377 break;
3378 default:
3379 return EMULATE_FAIL;
3380 }
3381
3382 if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
3383 return EMULATE_FAIL;
3384 }
3385
3386 ++vcpu->stat.insn_emulation;
3387 if (r) {
3388 ++vcpu->stat.insn_emulation_fail;
3389 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
3390 return EMULATE_DONE;
3391 return EMULATE_FAIL;
3392 }
3393 }
3394
3395 if (emulation_type & EMULTYPE_SKIP) {
3396 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
3397 return EMULATE_DONE;
3398 }
3399
3400 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
3401 shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
3402
3403 if (r == 0)
3404 kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
3405
3406 if (vcpu->arch.pio.string)
3407 return EMULATE_DO_MMIO;
3408
3409 if ((r || vcpu->mmio_is_write) && run) {
3410 run->exit_reason = KVM_EXIT_MMIO;
3411 run->mmio.phys_addr = vcpu->mmio_phys_addr;
3412 memcpy(run->mmio.data, vcpu->mmio_data, 8);
3413 run->mmio.len = vcpu->mmio_size;
3414 run->mmio.is_write = vcpu->mmio_is_write;
3415 }
3416
3417 if (r) {
3418 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
3419 return EMULATE_DONE;
3420 if (!vcpu->mmio_needed) {
3421 kvm_report_emulation_failure(vcpu, "mmio");
3422 return EMULATE_FAIL;
3423 }
3424 return EMULATE_DO_MMIO;
3425 }
3426
3427 kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
3428
3429 if (vcpu->mmio_is_write) {
3430 vcpu->mmio_needed = 0;
3431 return EMULATE_DO_MMIO;
3432 }
3433
3434 return EMULATE_DONE;
3435 }
3436 EXPORT_SYMBOL_GPL(emulate_instruction);
3437
3438 static int pio_copy_data(struct kvm_vcpu *vcpu)
3439 {
3440 void *p = vcpu->arch.pio_data;
3441 gva_t q = vcpu->arch.pio.guest_gva;
3442 unsigned bytes;
3443 int ret;
3444
3445 bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
3446 if (vcpu->arch.pio.in)
3447 ret = kvm_write_guest_virt(q, p, bytes, vcpu);
3448 else
3449 ret = kvm_read_guest_virt(q, p, bytes, vcpu);
3450 return ret;
3451 }
3452
3453 int complete_pio(struct kvm_vcpu *vcpu)
3454 {
3455 struct kvm_pio_request *io = &vcpu->arch.pio;
3456 long delta;
3457 int r;
3458 unsigned long val;
3459
3460 if (!io->string) {
3461 if (io->in) {
3462 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
3463 memcpy(&val, vcpu->arch.pio_data, io->size);
3464 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
3465 }
3466 } else {
3467 if (io->in) {
3468 r = pio_copy_data(vcpu);
3469 if (r)
3470 return r;
3471 }
3472
3473 delta = 1;
3474 if (io->rep) {
3475 delta *= io->cur_count;
3476 /*
3477 * The size of the register should really depend on
3478 * current address size.
3479 */
3480 val = kvm_register_read(vcpu, VCPU_REGS_RCX);
3481 val -= delta;
3482 kvm_register_write(vcpu, VCPU_REGS_RCX, val);
3483 }
3484 if (io->down)
3485 delta = -delta;
3486 delta *= io->size;
3487 if (io->in) {
3488 val = kvm_register_read(vcpu, VCPU_REGS_RDI);
3489 val += delta;
3490 kvm_register_write(vcpu, VCPU_REGS_RDI, val);
3491 } else {
3492 val = kvm_register_read(vcpu, VCPU_REGS_RSI);
3493 val += delta;
3494 kvm_register_write(vcpu, VCPU_REGS_RSI, val);
3495 }
3496 }
3497
3498 io->count -= io->cur_count;
3499 io->cur_count = 0;
3500
3501 return 0;
3502 }
3503
3504 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3505 {
3506 /* TODO: String I/O for in kernel device */
3507 int r;
3508
3509 if (vcpu->arch.pio.in)
3510 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3511 vcpu->arch.pio.size, pd);
3512 else
3513 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3514 vcpu->arch.pio.port, vcpu->arch.pio.size,
3515 pd);
3516 return r;
3517 }
3518
3519 static int pio_string_write(struct kvm_vcpu *vcpu)
3520 {
3521 struct kvm_pio_request *io = &vcpu->arch.pio;
3522 void *pd = vcpu->arch.pio_data;
3523 int i, r = 0;
3524
3525 for (i = 0; i < io->cur_count; i++) {
3526 if (kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3527 io->port, io->size, pd)) {
3528 r = -EOPNOTSUPP;
3529 break;
3530 }
3531 pd += io->size;
3532 }
3533 return r;
3534 }
3535
3536 int kvm_emulate_pio(struct kvm_vcpu *vcpu, int in, int size, unsigned port)
3537 {
3538 unsigned long val;
3539
3540 vcpu->run->exit_reason = KVM_EXIT_IO;
3541 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3542 vcpu->run->io.size = vcpu->arch.pio.size = size;
3543 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3544 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
3545 vcpu->run->io.port = vcpu->arch.pio.port = port;
3546 vcpu->arch.pio.in = in;
3547 vcpu->arch.pio.string = 0;
3548 vcpu->arch.pio.down = 0;
3549 vcpu->arch.pio.rep = 0;
3550
3551 trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
3552 size, 1);
3553
3554 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
3555 memcpy(vcpu->arch.pio_data, &val, 4);
3556
3557 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3558 complete_pio(vcpu);
3559 return 1;
3560 }
3561 return 0;
3562 }
3563 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
3564
3565 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, int in,
3566 int size, unsigned long count, int down,
3567 gva_t address, int rep, unsigned port)
3568 {
3569 unsigned now, in_page;
3570 int ret = 0;
3571
3572 vcpu->run->exit_reason = KVM_EXIT_IO;
3573 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3574 vcpu->run->io.size = vcpu->arch.pio.size = size;
3575 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3576 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
3577 vcpu->run->io.port = vcpu->arch.pio.port = port;
3578 vcpu->arch.pio.in = in;
3579 vcpu->arch.pio.string = 1;
3580 vcpu->arch.pio.down = down;
3581 vcpu->arch.pio.rep = rep;
3582
3583 trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
3584 size, count);
3585
3586 if (!count) {
3587 kvm_x86_ops->skip_emulated_instruction(vcpu);
3588 return 1;
3589 }
3590
3591 if (!down)
3592 in_page = PAGE_SIZE - offset_in_page(address);
3593 else
3594 in_page = offset_in_page(address) + size;
3595 now = min(count, (unsigned long)in_page / size);
3596 if (!now)
3597 now = 1;
3598 if (down) {
3599 /*
3600 * String I/O in reverse. Yuck. Kill the guest, fix later.
3601 */
3602 pr_unimpl(vcpu, "guest string pio down\n");
3603 kvm_inject_gp(vcpu, 0);
3604 return 1;
3605 }
3606 vcpu->run->io.count = now;
3607 vcpu->arch.pio.cur_count = now;
3608
3609 if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
3610 kvm_x86_ops->skip_emulated_instruction(vcpu);
3611
3612 vcpu->arch.pio.guest_gva = address;
3613
3614 if (!vcpu->arch.pio.in) {
3615 /* string PIO write */
3616 ret = pio_copy_data(vcpu);
3617 if (ret == X86EMUL_PROPAGATE_FAULT) {
3618 kvm_inject_gp(vcpu, 0);
3619 return 1;
3620 }
3621 if (ret == 0 && !pio_string_write(vcpu)) {
3622 complete_pio(vcpu);
3623 if (vcpu->arch.pio.count == 0)
3624 ret = 1;
3625 }
3626 }
3627 /* no string PIO read support yet */
3628
3629 return ret;
3630 }
3631 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
3632
3633 static void bounce_off(void *info)
3634 {
3635 /* nothing */
3636 }
3637
3638 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
3639 void *data)
3640 {
3641 struct cpufreq_freqs *freq = data;
3642 struct kvm *kvm;
3643 struct kvm_vcpu *vcpu;
3644 int i, send_ipi = 0;
3645
3646 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
3647 return 0;
3648 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
3649 return 0;
3650 per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
3651
3652 spin_lock(&kvm_lock);
3653 list_for_each_entry(kvm, &vm_list, vm_list) {
3654 kvm_for_each_vcpu(i, vcpu, kvm) {
3655 if (vcpu->cpu != freq->cpu)
3656 continue;
3657 if (!kvm_request_guest_time_update(vcpu))
3658 continue;
3659 if (vcpu->cpu != smp_processor_id())
3660 send_ipi++;
3661 }
3662 }
3663 spin_unlock(&kvm_lock);
3664
3665 if (freq->old < freq->new && send_ipi) {
3666 /*
3667 * We upscale the frequency. Must make the guest
3668 * doesn't see old kvmclock values while running with
3669 * the new frequency, otherwise we risk the guest sees
3670 * time go backwards.
3671 *
3672 * In case we update the frequency for another cpu
3673 * (which might be in guest context) send an interrupt
3674 * to kick the cpu out of guest context. Next time
3675 * guest context is entered kvmclock will be updated,
3676 * so the guest will not see stale values.
3677 */
3678 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
3679 }
3680 return 0;
3681 }
3682
3683 static struct notifier_block kvmclock_cpufreq_notifier_block = {
3684 .notifier_call = kvmclock_cpufreq_notifier
3685 };
3686
3687 static void kvm_timer_init(void)
3688 {
3689 int cpu;
3690
3691 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
3692 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
3693 CPUFREQ_TRANSITION_NOTIFIER);
3694 for_each_online_cpu(cpu) {
3695 unsigned long khz = cpufreq_get(cpu);
3696 if (!khz)
3697 khz = tsc_khz;
3698 per_cpu(cpu_tsc_khz, cpu) = khz;
3699 }
3700 } else {
3701 for_each_possible_cpu(cpu)
3702 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
3703 }
3704 }
3705
3706 int kvm_arch_init(void *opaque)
3707 {
3708 int r;
3709 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
3710
3711 if (kvm_x86_ops) {
3712 printk(KERN_ERR "kvm: already loaded the other module\n");
3713 r = -EEXIST;
3714 goto out;
3715 }
3716
3717 if (!ops->cpu_has_kvm_support()) {
3718 printk(KERN_ERR "kvm: no hardware support\n");
3719 r = -EOPNOTSUPP;
3720 goto out;
3721 }
3722 if (ops->disabled_by_bios()) {
3723 printk(KERN_ERR "kvm: disabled by bios\n");
3724 r = -EOPNOTSUPP;
3725 goto out;
3726 }
3727
3728 r = kvm_mmu_module_init();
3729 if (r)
3730 goto out;
3731
3732 kvm_init_msr_list();
3733
3734 kvm_x86_ops = ops;
3735 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
3736 kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
3737 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
3738 PT_DIRTY_MASK, PT64_NX_MASK, 0);
3739
3740 kvm_timer_init();
3741
3742 return 0;
3743
3744 out:
3745 return r;
3746 }
3747
3748 void kvm_arch_exit(void)
3749 {
3750 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
3751 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
3752 CPUFREQ_TRANSITION_NOTIFIER);
3753 kvm_x86_ops = NULL;
3754 kvm_mmu_module_exit();
3755 }
3756
3757 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
3758 {
3759 ++vcpu->stat.halt_exits;
3760 if (irqchip_in_kernel(vcpu->kvm)) {
3761 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
3762 return 1;
3763 } else {
3764 vcpu->run->exit_reason = KVM_EXIT_HLT;
3765 return 0;
3766 }
3767 }
3768 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
3769
3770 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
3771 unsigned long a1)
3772 {
3773 if (is_long_mode(vcpu))
3774 return a0;
3775 else
3776 return a0 | ((gpa_t)a1 << 32);
3777 }
3778
3779 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
3780 {
3781 u64 param, ingpa, outgpa, ret;
3782 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
3783 bool fast, longmode;
3784 int cs_db, cs_l;
3785
3786 /*
3787 * hypercall generates UD from non zero cpl and real mode
3788 * per HYPER-V spec
3789 */
3790 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
3791 kvm_queue_exception(vcpu, UD_VECTOR);
3792 return 0;
3793 }
3794
3795 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
3796 longmode = is_long_mode(vcpu) && cs_l == 1;
3797
3798 if (!longmode) {
3799 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
3800 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
3801 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
3802 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
3803 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
3804 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
3805 }
3806 #ifdef CONFIG_X86_64
3807 else {
3808 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
3809 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
3810 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
3811 }
3812 #endif
3813
3814 code = param & 0xffff;
3815 fast = (param >> 16) & 0x1;
3816 rep_cnt = (param >> 32) & 0xfff;
3817 rep_idx = (param >> 48) & 0xfff;
3818
3819 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
3820
3821 switch (code) {
3822 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
3823 kvm_vcpu_on_spin(vcpu);
3824 break;
3825 default:
3826 res = HV_STATUS_INVALID_HYPERCALL_CODE;
3827 break;
3828 }
3829
3830 ret = res | (((u64)rep_done & 0xfff) << 32);
3831 if (longmode) {
3832 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
3833 } else {
3834 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
3835 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
3836 }
3837
3838 return 1;
3839 }
3840
3841 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
3842 {
3843 unsigned long nr, a0, a1, a2, a3, ret;
3844 int r = 1;
3845
3846 if (kvm_hv_hypercall_enabled(vcpu->kvm))
3847 return kvm_hv_hypercall(vcpu);
3848
3849 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
3850 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
3851 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
3852 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
3853 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
3854
3855 trace_kvm_hypercall(nr, a0, a1, a2, a3);
3856
3857 if (!is_long_mode(vcpu)) {
3858 nr &= 0xFFFFFFFF;
3859 a0 &= 0xFFFFFFFF;
3860 a1 &= 0xFFFFFFFF;
3861 a2 &= 0xFFFFFFFF;
3862 a3 &= 0xFFFFFFFF;
3863 }
3864
3865 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
3866 ret = -KVM_EPERM;
3867 goto out;
3868 }
3869
3870 switch (nr) {
3871 case KVM_HC_VAPIC_POLL_IRQ:
3872 ret = 0;
3873 break;
3874 case KVM_HC_MMU_OP:
3875 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
3876 break;
3877 default:
3878 ret = -KVM_ENOSYS;
3879 break;
3880 }
3881 out:
3882 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
3883 ++vcpu->stat.hypercalls;
3884 return r;
3885 }
3886 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
3887
3888 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
3889 {
3890 char instruction[3];
3891 int ret = 0;
3892 unsigned long rip = kvm_rip_read(vcpu);
3893
3894
3895 /*
3896 * Blow out the MMU to ensure that no other VCPU has an active mapping
3897 * to ensure that the updated hypercall appears atomically across all
3898 * VCPUs.
3899 */
3900 kvm_mmu_zap_all(vcpu->kvm);
3901
3902 kvm_x86_ops->patch_hypercall(vcpu, instruction);
3903 if (emulator_write_emulated(rip, instruction, 3, vcpu)
3904 != X86EMUL_CONTINUE)
3905 ret = -EFAULT;
3906
3907 return ret;
3908 }
3909
3910 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3911 {
3912 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3913 }
3914
3915 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3916 {
3917 struct descriptor_table dt = { limit, base };
3918
3919 kvm_x86_ops->set_gdt(vcpu, &dt);
3920 }
3921
3922 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3923 {
3924 struct descriptor_table dt = { limit, base };
3925
3926 kvm_x86_ops->set_idt(vcpu, &dt);
3927 }
3928
3929 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
3930 unsigned long *rflags)
3931 {
3932 kvm_lmsw(vcpu, msw);
3933 *rflags = kvm_get_rflags(vcpu);
3934 }
3935
3936 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
3937 {
3938 unsigned long value;
3939
3940 switch (cr) {
3941 case 0:
3942 value = kvm_read_cr0(vcpu);
3943 break;
3944 case 2:
3945 value = vcpu->arch.cr2;
3946 break;
3947 case 3:
3948 value = vcpu->arch.cr3;
3949 break;
3950 case 4:
3951 value = kvm_read_cr4(vcpu);
3952 break;
3953 case 8:
3954 value = kvm_get_cr8(vcpu);
3955 break;
3956 default:
3957 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3958 return 0;
3959 }
3960
3961 return value;
3962 }
3963
3964 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
3965 unsigned long *rflags)
3966 {
3967 switch (cr) {
3968 case 0:
3969 kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
3970 *rflags = kvm_get_rflags(vcpu);
3971 break;
3972 case 2:
3973 vcpu->arch.cr2 = val;
3974 break;
3975 case 3:
3976 kvm_set_cr3(vcpu, val);
3977 break;
3978 case 4:
3979 kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
3980 break;
3981 case 8:
3982 kvm_set_cr8(vcpu, val & 0xfUL);
3983 break;
3984 default:
3985 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3986 }
3987 }
3988
3989 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
3990 {
3991 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
3992 int j, nent = vcpu->arch.cpuid_nent;
3993
3994 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
3995 /* when no next entry is found, the current entry[i] is reselected */
3996 for (j = i + 1; ; j = (j + 1) % nent) {
3997 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
3998 if (ej->function == e->function) {
3999 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
4000 return j;
4001 }
4002 }
4003 return 0; /* silence gcc, even though control never reaches here */
4004 }
4005
4006 /* find an entry with matching function, matching index (if needed), and that
4007 * should be read next (if it's stateful) */
4008 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
4009 u32 function, u32 index)
4010 {
4011 if (e->function != function)
4012 return 0;
4013 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
4014 return 0;
4015 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
4016 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
4017 return 0;
4018 return 1;
4019 }
4020
4021 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
4022 u32 function, u32 index)
4023 {
4024 int i;
4025 struct kvm_cpuid_entry2 *best = NULL;
4026
4027 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
4028 struct kvm_cpuid_entry2 *e;
4029
4030 e = &vcpu->arch.cpuid_entries[i];
4031 if (is_matching_cpuid_entry(e, function, index)) {
4032 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
4033 move_to_next_stateful_cpuid_entry(vcpu, i);
4034 best = e;
4035 break;
4036 }
4037 /*
4038 * Both basic or both extended?
4039 */
4040 if (((e->function ^ function) & 0x80000000) == 0)
4041 if (!best || e->function > best->function)
4042 best = e;
4043 }
4044 return best;
4045 }
4046 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
4047
4048 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
4049 {
4050 struct kvm_cpuid_entry2 *best;
4051
4052 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
4053 if (best)
4054 return best->eax & 0xff;
4055 return 36;
4056 }
4057
4058 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
4059 {
4060 u32 function, index;
4061 struct kvm_cpuid_entry2 *best;
4062
4063 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
4064 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4065 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
4066 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
4067 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
4068 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
4069 best = kvm_find_cpuid_entry(vcpu, function, index);
4070 if (best) {
4071 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
4072 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
4073 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
4074 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
4075 }
4076 kvm_x86_ops->skip_emulated_instruction(vcpu);
4077 trace_kvm_cpuid(function,
4078 kvm_register_read(vcpu, VCPU_REGS_RAX),
4079 kvm_register_read(vcpu, VCPU_REGS_RBX),
4080 kvm_register_read(vcpu, VCPU_REGS_RCX),
4081 kvm_register_read(vcpu, VCPU_REGS_RDX));
4082 }
4083 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
4084
4085 /*
4086 * Check if userspace requested an interrupt window, and that the
4087 * interrupt window is open.
4088 *
4089 * No need to exit to userspace if we already have an interrupt queued.
4090 */
4091 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
4092 {
4093 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
4094 vcpu->run->request_interrupt_window &&
4095 kvm_arch_interrupt_allowed(vcpu));
4096 }
4097
4098 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
4099 {
4100 struct kvm_run *kvm_run = vcpu->run;
4101
4102 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
4103 kvm_run->cr8 = kvm_get_cr8(vcpu);
4104 kvm_run->apic_base = kvm_get_apic_base(vcpu);
4105 if (irqchip_in_kernel(vcpu->kvm))
4106 kvm_run->ready_for_interrupt_injection = 1;
4107 else
4108 kvm_run->ready_for_interrupt_injection =
4109 kvm_arch_interrupt_allowed(vcpu) &&
4110 !kvm_cpu_has_interrupt(vcpu) &&
4111 !kvm_event_needs_reinjection(vcpu);
4112 }
4113
4114 static void vapic_enter(struct kvm_vcpu *vcpu)
4115 {
4116 struct kvm_lapic *apic = vcpu->arch.apic;
4117 struct page *page;
4118
4119 if (!apic || !apic->vapic_addr)
4120 return;
4121
4122 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4123
4124 vcpu->arch.apic->vapic_page = page;
4125 }
4126
4127 static void vapic_exit(struct kvm_vcpu *vcpu)
4128 {
4129 struct kvm_lapic *apic = vcpu->arch.apic;
4130 int idx;
4131
4132 if (!apic || !apic->vapic_addr)
4133 return;
4134
4135 idx = srcu_read_lock(&vcpu->kvm->srcu);
4136 kvm_release_page_dirty(apic->vapic_page);
4137 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4138 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4139 }
4140
4141 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
4142 {
4143 int max_irr, tpr;
4144
4145 if (!kvm_x86_ops->update_cr8_intercept)
4146 return;
4147
4148 if (!vcpu->arch.apic)
4149 return;
4150
4151 if (!vcpu->arch.apic->vapic_addr)
4152 max_irr = kvm_lapic_find_highest_irr(vcpu);
4153 else
4154 max_irr = -1;
4155
4156 if (max_irr != -1)
4157 max_irr >>= 4;
4158
4159 tpr = kvm_lapic_get_cr8(vcpu);
4160
4161 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
4162 }
4163
4164 static void inject_pending_event(struct kvm_vcpu *vcpu)
4165 {
4166 /* try to reinject previous events if any */
4167 if (vcpu->arch.exception.pending) {
4168 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
4169 vcpu->arch.exception.has_error_code,
4170 vcpu->arch.exception.error_code);
4171 return;
4172 }
4173
4174 if (vcpu->arch.nmi_injected) {
4175 kvm_x86_ops->set_nmi(vcpu);
4176 return;
4177 }
4178
4179 if (vcpu->arch.interrupt.pending) {
4180 kvm_x86_ops->set_irq(vcpu);
4181 return;
4182 }
4183
4184 /* try to inject new event if pending */
4185 if (vcpu->arch.nmi_pending) {
4186 if (kvm_x86_ops->nmi_allowed(vcpu)) {
4187 vcpu->arch.nmi_pending = false;
4188 vcpu->arch.nmi_injected = true;
4189 kvm_x86_ops->set_nmi(vcpu);
4190 }
4191 } else if (kvm_cpu_has_interrupt(vcpu)) {
4192 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
4193 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
4194 false);
4195 kvm_x86_ops->set_irq(vcpu);
4196 }
4197 }
4198 }
4199
4200 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
4201 {
4202 int r;
4203 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
4204 vcpu->run->request_interrupt_window;
4205
4206 if (vcpu->requests)
4207 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
4208 kvm_mmu_unload(vcpu);
4209
4210 r = kvm_mmu_reload(vcpu);
4211 if (unlikely(r))
4212 goto out;
4213
4214 if (vcpu->requests) {
4215 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
4216 __kvm_migrate_timers(vcpu);
4217 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
4218 kvm_write_guest_time(vcpu);
4219 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
4220 kvm_mmu_sync_roots(vcpu);
4221 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
4222 kvm_x86_ops->tlb_flush(vcpu);
4223 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
4224 &vcpu->requests)) {
4225 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
4226 r = 0;
4227 goto out;
4228 }
4229 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
4230 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4231 r = 0;
4232 goto out;
4233 }
4234 if (test_and_clear_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests)) {
4235 vcpu->fpu_active = 0;
4236 kvm_x86_ops->fpu_deactivate(vcpu);
4237 }
4238 }
4239
4240 preempt_disable();
4241
4242 kvm_x86_ops->prepare_guest_switch(vcpu);
4243 if (vcpu->fpu_active)
4244 kvm_load_guest_fpu(vcpu);
4245
4246 local_irq_disable();
4247
4248 clear_bit(KVM_REQ_KICK, &vcpu->requests);
4249 smp_mb__after_clear_bit();
4250
4251 if (vcpu->requests || need_resched() || signal_pending(current)) {
4252 set_bit(KVM_REQ_KICK, &vcpu->requests);
4253 local_irq_enable();
4254 preempt_enable();
4255 r = 1;
4256 goto out;
4257 }
4258
4259 inject_pending_event(vcpu);
4260
4261 /* enable NMI/IRQ window open exits if needed */
4262 if (vcpu->arch.nmi_pending)
4263 kvm_x86_ops->enable_nmi_window(vcpu);
4264 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
4265 kvm_x86_ops->enable_irq_window(vcpu);
4266
4267 if (kvm_lapic_enabled(vcpu)) {
4268 update_cr8_intercept(vcpu);
4269 kvm_lapic_sync_to_vapic(vcpu);
4270 }
4271
4272 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4273
4274 kvm_guest_enter();
4275
4276 if (unlikely(vcpu->arch.switch_db_regs)) {
4277 set_debugreg(0, 7);
4278 set_debugreg(vcpu->arch.eff_db[0], 0);
4279 set_debugreg(vcpu->arch.eff_db[1], 1);
4280 set_debugreg(vcpu->arch.eff_db[2], 2);
4281 set_debugreg(vcpu->arch.eff_db[3], 3);
4282 }
4283
4284 trace_kvm_entry(vcpu->vcpu_id);
4285 kvm_x86_ops->run(vcpu);
4286
4287 /*
4288 * If the guest has used debug registers, at least dr7
4289 * will be disabled while returning to the host.
4290 * If we don't have active breakpoints in the host, we don't
4291 * care about the messed up debug address registers. But if
4292 * we have some of them active, restore the old state.
4293 */
4294 if (hw_breakpoint_active())
4295 hw_breakpoint_restore();
4296
4297 set_bit(KVM_REQ_KICK, &vcpu->requests);
4298 local_irq_enable();
4299
4300 ++vcpu->stat.exits;
4301
4302 /*
4303 * We must have an instruction between local_irq_enable() and
4304 * kvm_guest_exit(), so the timer interrupt isn't delayed by
4305 * the interrupt shadow. The stat.exits increment will do nicely.
4306 * But we need to prevent reordering, hence this barrier():
4307 */
4308 barrier();
4309
4310 kvm_guest_exit();
4311
4312 preempt_enable();
4313
4314 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4315
4316 /*
4317 * Profile KVM exit RIPs:
4318 */
4319 if (unlikely(prof_on == KVM_PROFILING)) {
4320 unsigned long rip = kvm_rip_read(vcpu);
4321 profile_hit(KVM_PROFILING, (void *)rip);
4322 }
4323
4324
4325 kvm_lapic_sync_from_vapic(vcpu);
4326
4327 r = kvm_x86_ops->handle_exit(vcpu);
4328 out:
4329 return r;
4330 }
4331
4332
4333 static int __vcpu_run(struct kvm_vcpu *vcpu)
4334 {
4335 int r;
4336 struct kvm *kvm = vcpu->kvm;
4337
4338 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
4339 pr_debug("vcpu %d received sipi with vector # %x\n",
4340 vcpu->vcpu_id, vcpu->arch.sipi_vector);
4341 kvm_lapic_reset(vcpu);
4342 r = kvm_arch_vcpu_reset(vcpu);
4343 if (r)
4344 return r;
4345 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4346 }
4347
4348 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4349 vapic_enter(vcpu);
4350
4351 r = 1;
4352 while (r > 0) {
4353 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
4354 r = vcpu_enter_guest(vcpu);
4355 else {
4356 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4357 kvm_vcpu_block(vcpu);
4358 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4359 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
4360 {
4361 switch(vcpu->arch.mp_state) {
4362 case KVM_MP_STATE_HALTED:
4363 vcpu->arch.mp_state =
4364 KVM_MP_STATE_RUNNABLE;
4365 case KVM_MP_STATE_RUNNABLE:
4366 break;
4367 case KVM_MP_STATE_SIPI_RECEIVED:
4368 default:
4369 r = -EINTR;
4370 break;
4371 }
4372 }
4373 }
4374
4375 if (r <= 0)
4376 break;
4377
4378 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
4379 if (kvm_cpu_has_pending_timer(vcpu))
4380 kvm_inject_pending_timer_irqs(vcpu);
4381
4382 if (dm_request_for_irq_injection(vcpu)) {
4383 r = -EINTR;
4384 vcpu->run->exit_reason = KVM_EXIT_INTR;
4385 ++vcpu->stat.request_irq_exits;
4386 }
4387 if (signal_pending(current)) {
4388 r = -EINTR;
4389 vcpu->run->exit_reason = KVM_EXIT_INTR;
4390 ++vcpu->stat.signal_exits;
4391 }
4392 if (need_resched()) {
4393 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4394 kvm_resched(vcpu);
4395 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4396 }
4397 }
4398
4399 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4400 post_kvm_run_save(vcpu);
4401
4402 vapic_exit(vcpu);
4403
4404 return r;
4405 }
4406
4407 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
4408 {
4409 int r;
4410 sigset_t sigsaved;
4411
4412 vcpu_load(vcpu);
4413
4414 if (vcpu->sigset_active)
4415 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
4416
4417 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
4418 kvm_vcpu_block(vcpu);
4419 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
4420 r = -EAGAIN;
4421 goto out;
4422 }
4423
4424 /* re-sync apic's tpr */
4425 if (!irqchip_in_kernel(vcpu->kvm))
4426 kvm_set_cr8(vcpu, kvm_run->cr8);
4427
4428 if (vcpu->arch.pio.cur_count) {
4429 r = complete_pio(vcpu);
4430 if (r)
4431 goto out;
4432 }
4433 if (vcpu->mmio_needed) {
4434 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
4435 vcpu->mmio_read_completed = 1;
4436 vcpu->mmio_needed = 0;
4437
4438 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4439 r = emulate_instruction(vcpu, vcpu->arch.mmio_fault_cr2, 0,
4440 EMULTYPE_NO_DECODE);
4441 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4442 if (r == EMULATE_DO_MMIO) {
4443 /*
4444 * Read-modify-write. Back to userspace.
4445 */
4446 r = 0;
4447 goto out;
4448 }
4449 }
4450 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
4451 kvm_register_write(vcpu, VCPU_REGS_RAX,
4452 kvm_run->hypercall.ret);
4453
4454 r = __vcpu_run(vcpu);
4455
4456 out:
4457 if (vcpu->sigset_active)
4458 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
4459
4460 vcpu_put(vcpu);
4461 return r;
4462 }
4463
4464 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4465 {
4466 vcpu_load(vcpu);
4467
4468 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4469 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4470 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4471 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4472 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4473 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4474 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4475 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4476 #ifdef CONFIG_X86_64
4477 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
4478 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
4479 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
4480 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
4481 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
4482 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
4483 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
4484 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
4485 #endif
4486
4487 regs->rip = kvm_rip_read(vcpu);
4488 regs->rflags = kvm_get_rflags(vcpu);
4489
4490 vcpu_put(vcpu);
4491
4492 return 0;
4493 }
4494
4495 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4496 {
4497 vcpu_load(vcpu);
4498
4499 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
4500 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
4501 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
4502 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
4503 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
4504 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
4505 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
4506 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
4507 #ifdef CONFIG_X86_64
4508 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
4509 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
4510 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
4511 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
4512 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
4513 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
4514 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
4515 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
4516 #endif
4517
4518 kvm_rip_write(vcpu, regs->rip);
4519 kvm_set_rflags(vcpu, regs->rflags);
4520
4521 vcpu->arch.exception.pending = false;
4522
4523 vcpu_put(vcpu);
4524
4525 return 0;
4526 }
4527
4528 void kvm_get_segment(struct kvm_vcpu *vcpu,
4529 struct kvm_segment *var, int seg)
4530 {
4531 kvm_x86_ops->get_segment(vcpu, var, seg);
4532 }
4533
4534 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4535 {
4536 struct kvm_segment cs;
4537
4538 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
4539 *db = cs.db;
4540 *l = cs.l;
4541 }
4542 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
4543
4544 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
4545 struct kvm_sregs *sregs)
4546 {
4547 struct descriptor_table dt;
4548
4549 vcpu_load(vcpu);
4550
4551 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4552 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4553 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4554 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4555 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4556 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4557
4558 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4559 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4560
4561 kvm_x86_ops->get_idt(vcpu, &dt);
4562 sregs->idt.limit = dt.limit;
4563 sregs->idt.base = dt.base;
4564 kvm_x86_ops->get_gdt(vcpu, &dt);
4565 sregs->gdt.limit = dt.limit;
4566 sregs->gdt.base = dt.base;
4567
4568 sregs->cr0 = kvm_read_cr0(vcpu);
4569 sregs->cr2 = vcpu->arch.cr2;
4570 sregs->cr3 = vcpu->arch.cr3;
4571 sregs->cr4 = kvm_read_cr4(vcpu);
4572 sregs->cr8 = kvm_get_cr8(vcpu);
4573 sregs->efer = vcpu->arch.efer;
4574 sregs->apic_base = kvm_get_apic_base(vcpu);
4575
4576 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
4577
4578 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
4579 set_bit(vcpu->arch.interrupt.nr,
4580 (unsigned long *)sregs->interrupt_bitmap);
4581
4582 vcpu_put(vcpu);
4583
4584 return 0;
4585 }
4586
4587 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
4588 struct kvm_mp_state *mp_state)
4589 {
4590 vcpu_load(vcpu);
4591 mp_state->mp_state = vcpu->arch.mp_state;
4592 vcpu_put(vcpu);
4593 return 0;
4594 }
4595
4596 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
4597 struct kvm_mp_state *mp_state)
4598 {
4599 vcpu_load(vcpu);
4600 vcpu->arch.mp_state = mp_state->mp_state;
4601 vcpu_put(vcpu);
4602 return 0;
4603 }
4604
4605 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4606 struct kvm_segment *var, int seg)
4607 {
4608 kvm_x86_ops->set_segment(vcpu, var, seg);
4609 }
4610
4611 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
4612 struct kvm_segment *kvm_desct)
4613 {
4614 kvm_desct->base = get_desc_base(seg_desc);
4615 kvm_desct->limit = get_desc_limit(seg_desc);
4616 if (seg_desc->g) {
4617 kvm_desct->limit <<= 12;
4618 kvm_desct->limit |= 0xfff;
4619 }
4620 kvm_desct->selector = selector;
4621 kvm_desct->type = seg_desc->type;
4622 kvm_desct->present = seg_desc->p;
4623 kvm_desct->dpl = seg_desc->dpl;
4624 kvm_desct->db = seg_desc->d;
4625 kvm_desct->s = seg_desc->s;
4626 kvm_desct->l = seg_desc->l;
4627 kvm_desct->g = seg_desc->g;
4628 kvm_desct->avl = seg_desc->avl;
4629 if (!selector)
4630 kvm_desct->unusable = 1;
4631 else
4632 kvm_desct->unusable = 0;
4633 kvm_desct->padding = 0;
4634 }
4635
4636 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
4637 u16 selector,
4638 struct descriptor_table *dtable)
4639 {
4640 if (selector & 1 << 2) {
4641 struct kvm_segment kvm_seg;
4642
4643 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
4644
4645 if (kvm_seg.unusable)
4646 dtable->limit = 0;
4647 else
4648 dtable->limit = kvm_seg.limit;
4649 dtable->base = kvm_seg.base;
4650 }
4651 else
4652 kvm_x86_ops->get_gdt(vcpu, dtable);
4653 }
4654
4655 /* allowed just for 8 bytes segments */
4656 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4657 struct desc_struct *seg_desc)
4658 {
4659 struct descriptor_table dtable;
4660 u16 index = selector >> 3;
4661
4662 get_segment_descriptor_dtable(vcpu, selector, &dtable);
4663
4664 if (dtable.limit < index * 8 + 7) {
4665 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
4666 return X86EMUL_PROPAGATE_FAULT;
4667 }
4668 return kvm_read_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
4669 }
4670
4671 /* allowed just for 8 bytes segments */
4672 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4673 struct desc_struct *seg_desc)
4674 {
4675 struct descriptor_table dtable;
4676 u16 index = selector >> 3;
4677
4678 get_segment_descriptor_dtable(vcpu, selector, &dtable);
4679
4680 if (dtable.limit < index * 8 + 7)
4681 return 1;
4682 return kvm_write_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
4683 }
4684
4685 static gpa_t get_tss_base_addr(struct kvm_vcpu *vcpu,
4686 struct desc_struct *seg_desc)
4687 {
4688 u32 base_addr = get_desc_base(seg_desc);
4689
4690 return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
4691 }
4692
4693 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
4694 {
4695 struct kvm_segment kvm_seg;
4696
4697 kvm_get_segment(vcpu, &kvm_seg, seg);
4698 return kvm_seg.selector;
4699 }
4700
4701 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
4702 {
4703 struct kvm_segment segvar = {
4704 .base = selector << 4,
4705 .limit = 0xffff,
4706 .selector = selector,
4707 .type = 3,
4708 .present = 1,
4709 .dpl = 3,
4710 .db = 0,
4711 .s = 1,
4712 .l = 0,
4713 .g = 0,
4714 .avl = 0,
4715 .unusable = 0,
4716 };
4717 kvm_x86_ops->set_segment(vcpu, &segvar, seg);
4718 return 0;
4719 }
4720
4721 static int is_vm86_segment(struct kvm_vcpu *vcpu, int seg)
4722 {
4723 return (seg != VCPU_SREG_LDTR) &&
4724 (seg != VCPU_SREG_TR) &&
4725 (kvm_get_rflags(vcpu) & X86_EFLAGS_VM);
4726 }
4727
4728 static void kvm_check_segment_descriptor(struct kvm_vcpu *vcpu, int seg,
4729 u16 selector)
4730 {
4731 /* NULL selector is not valid for CS and SS */
4732 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
4733 if (!selector)
4734 kvm_queue_exception_e(vcpu, TS_VECTOR, selector >> 3);
4735 }
4736
4737 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4738 int type_bits, int seg)
4739 {
4740 struct kvm_segment kvm_seg;
4741 struct desc_struct seg_desc;
4742
4743 if (is_vm86_segment(vcpu, seg) || !is_protmode(vcpu))
4744 return kvm_load_realmode_segment(vcpu, selector, seg);
4745
4746 if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
4747 return 1;
4748 seg_desct_to_kvm_desct(&seg_desc, selector, &kvm_seg);
4749
4750 kvm_check_segment_descriptor(vcpu, seg, selector);
4751 kvm_seg.type |= type_bits;
4752
4753 if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
4754 seg != VCPU_SREG_LDTR)
4755 if (!kvm_seg.s)
4756 kvm_seg.unusable = 1;
4757
4758 kvm_set_segment(vcpu, &kvm_seg, seg);
4759 if (selector && !kvm_seg.unusable && kvm_seg.s) {
4760 /* mark segment as accessed */
4761 seg_desc.type |= 1;
4762 save_guest_segment_descriptor(vcpu, selector, &seg_desc);
4763 }
4764 return 0;
4765 }
4766
4767 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
4768 struct tss_segment_32 *tss)
4769 {
4770 tss->cr3 = vcpu->arch.cr3;
4771 tss->eip = kvm_rip_read(vcpu);
4772 tss->eflags = kvm_get_rflags(vcpu);
4773 tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4774 tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4775 tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4776 tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4777 tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4778 tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4779 tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4780 tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4781 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4782 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4783 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4784 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4785 tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
4786 tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
4787 tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4788 }
4789
4790 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
4791 struct tss_segment_32 *tss)
4792 {
4793 kvm_set_cr3(vcpu, tss->cr3);
4794
4795 kvm_rip_write(vcpu, tss->eip);
4796 kvm_set_rflags(vcpu, tss->eflags | 2);
4797
4798 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
4799 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
4800 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
4801 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
4802 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
4803 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
4804 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
4805 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
4806
4807 if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
4808 return 1;
4809
4810 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4811 return 1;
4812
4813 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4814 return 1;
4815
4816 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4817 return 1;
4818
4819 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4820 return 1;
4821
4822 if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
4823 return 1;
4824
4825 if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
4826 return 1;
4827 return 0;
4828 }
4829
4830 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
4831 struct tss_segment_16 *tss)
4832 {
4833 tss->ip = kvm_rip_read(vcpu);
4834 tss->flag = kvm_get_rflags(vcpu);
4835 tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4836 tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4837 tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4838 tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4839 tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4840 tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4841 tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
4842 tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
4843
4844 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4845 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4846 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4847 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4848 tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4849 }
4850
4851 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
4852 struct tss_segment_16 *tss)
4853 {
4854 kvm_rip_write(vcpu, tss->ip);
4855 kvm_set_rflags(vcpu, tss->flag | 2);
4856 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
4857 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
4858 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
4859 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
4860 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
4861 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
4862 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
4863 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
4864
4865 if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
4866 return 1;
4867
4868 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4869 return 1;
4870
4871 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4872 return 1;
4873
4874 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4875 return 1;
4876
4877 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4878 return 1;
4879 return 0;
4880 }
4881
4882 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
4883 u16 old_tss_sel, u32 old_tss_base,
4884 struct desc_struct *nseg_desc)
4885 {
4886 struct tss_segment_16 tss_segment_16;
4887 int ret = 0;
4888
4889 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4890 sizeof tss_segment_16))
4891 goto out;
4892
4893 save_state_to_tss16(vcpu, &tss_segment_16);
4894
4895 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4896 sizeof tss_segment_16))
4897 goto out;
4898
4899 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4900 &tss_segment_16, sizeof tss_segment_16))
4901 goto out;
4902
4903 if (old_tss_sel != 0xffff) {
4904 tss_segment_16.prev_task_link = old_tss_sel;
4905
4906 if (kvm_write_guest(vcpu->kvm,
4907 get_tss_base_addr(vcpu, nseg_desc),
4908 &tss_segment_16.prev_task_link,
4909 sizeof tss_segment_16.prev_task_link))
4910 goto out;
4911 }
4912
4913 if (load_state_from_tss16(vcpu, &tss_segment_16))
4914 goto out;
4915
4916 ret = 1;
4917 out:
4918 return ret;
4919 }
4920
4921 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
4922 u16 old_tss_sel, u32 old_tss_base,
4923 struct desc_struct *nseg_desc)
4924 {
4925 struct tss_segment_32 tss_segment_32;
4926 int ret = 0;
4927
4928 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4929 sizeof tss_segment_32))
4930 goto out;
4931
4932 save_state_to_tss32(vcpu, &tss_segment_32);
4933
4934 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4935 sizeof tss_segment_32))
4936 goto out;
4937
4938 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4939 &tss_segment_32, sizeof tss_segment_32))
4940 goto out;
4941
4942 if (old_tss_sel != 0xffff) {
4943 tss_segment_32.prev_task_link = old_tss_sel;
4944
4945 if (kvm_write_guest(vcpu->kvm,
4946 get_tss_base_addr(vcpu, nseg_desc),
4947 &tss_segment_32.prev_task_link,
4948 sizeof tss_segment_32.prev_task_link))
4949 goto out;
4950 }
4951
4952 if (load_state_from_tss32(vcpu, &tss_segment_32))
4953 goto out;
4954
4955 ret = 1;
4956 out:
4957 return ret;
4958 }
4959
4960 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
4961 {
4962 struct kvm_segment tr_seg;
4963 struct desc_struct cseg_desc;
4964 struct desc_struct nseg_desc;
4965 int ret = 0;
4966 u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
4967 u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
4968
4969 old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
4970
4971 /* FIXME: Handle errors. Failure to read either TSS or their
4972 * descriptors should generate a pagefault.
4973 */
4974 if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
4975 goto out;
4976
4977 if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
4978 goto out;
4979
4980 if (reason != TASK_SWITCH_IRET) {
4981 int cpl;
4982
4983 cpl = kvm_x86_ops->get_cpl(vcpu);
4984 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
4985 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4986 return 1;
4987 }
4988 }
4989
4990 if (!nseg_desc.p || get_desc_limit(&nseg_desc) < 0x67) {
4991 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
4992 return 1;
4993 }
4994
4995 if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
4996 cseg_desc.type &= ~(1 << 1); //clear the B flag
4997 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
4998 }
4999
5000 if (reason == TASK_SWITCH_IRET) {
5001 u32 eflags = kvm_get_rflags(vcpu);
5002 kvm_set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
5003 }
5004
5005 /* set back link to prev task only if NT bit is set in eflags
5006 note that old_tss_sel is not used afetr this point */
5007 if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
5008 old_tss_sel = 0xffff;
5009
5010 if (nseg_desc.type & 8)
5011 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
5012 old_tss_base, &nseg_desc);
5013 else
5014 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
5015 old_tss_base, &nseg_desc);
5016
5017 if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
5018 u32 eflags = kvm_get_rflags(vcpu);
5019 kvm_set_rflags(vcpu, eflags | X86_EFLAGS_NT);
5020 }
5021
5022 if (reason != TASK_SWITCH_IRET) {
5023 nseg_desc.type |= (1 << 1);
5024 save_guest_segment_descriptor(vcpu, tss_selector,
5025 &nseg_desc);
5026 }
5027
5028 kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0(vcpu) | X86_CR0_TS);
5029 seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
5030 tr_seg.type = 11;
5031 kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
5032 out:
5033 return ret;
5034 }
5035 EXPORT_SYMBOL_GPL(kvm_task_switch);
5036
5037 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5038 struct kvm_sregs *sregs)
5039 {
5040 int mmu_reset_needed = 0;
5041 int pending_vec, max_bits;
5042 struct descriptor_table dt;
5043
5044 vcpu_load(vcpu);
5045
5046 dt.limit = sregs->idt.limit;
5047 dt.base = sregs->idt.base;
5048 kvm_x86_ops->set_idt(vcpu, &dt);
5049 dt.limit = sregs->gdt.limit;
5050 dt.base = sregs->gdt.base;
5051 kvm_x86_ops->set_gdt(vcpu, &dt);
5052
5053 vcpu->arch.cr2 = sregs->cr2;
5054 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
5055 vcpu->arch.cr3 = sregs->cr3;
5056
5057 kvm_set_cr8(vcpu, sregs->cr8);
5058
5059 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5060 kvm_x86_ops->set_efer(vcpu, sregs->efer);
5061 kvm_set_apic_base(vcpu, sregs->apic_base);
5062
5063 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5064 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5065 vcpu->arch.cr0 = sregs->cr0;
5066
5067 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5068 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5069 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5070 load_pdptrs(vcpu, vcpu->arch.cr3);
5071 mmu_reset_needed = 1;
5072 }
5073
5074 if (mmu_reset_needed)
5075 kvm_mmu_reset_context(vcpu);
5076
5077 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5078 pending_vec = find_first_bit(
5079 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5080 if (pending_vec < max_bits) {
5081 kvm_queue_interrupt(vcpu, pending_vec, false);
5082 pr_debug("Set back pending irq %d\n", pending_vec);
5083 if (irqchip_in_kernel(vcpu->kvm))
5084 kvm_pic_clear_isr_ack(vcpu->kvm);
5085 }
5086
5087 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5088 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5089 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5090 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5091 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5092 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5093
5094 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5095 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5096
5097 update_cr8_intercept(vcpu);
5098
5099 /* Older userspace won't unhalt the vcpu on reset. */
5100 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5101 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5102 !is_protmode(vcpu))
5103 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5104
5105 vcpu_put(vcpu);
5106
5107 return 0;
5108 }
5109
5110 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5111 struct kvm_guest_debug *dbg)
5112 {
5113 unsigned long rflags;
5114 int i, r;
5115
5116 vcpu_load(vcpu);
5117
5118 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5119 r = -EBUSY;
5120 if (vcpu->arch.exception.pending)
5121 goto unlock_out;
5122 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5123 kvm_queue_exception(vcpu, DB_VECTOR);
5124 else
5125 kvm_queue_exception(vcpu, BP_VECTOR);
5126 }
5127
5128 /*
5129 * Read rflags as long as potentially injected trace flags are still
5130 * filtered out.
5131 */
5132 rflags = kvm_get_rflags(vcpu);
5133
5134 vcpu->guest_debug = dbg->control;
5135 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5136 vcpu->guest_debug = 0;
5137
5138 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5139 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5140 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5141 vcpu->arch.switch_db_regs =
5142 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5143 } else {
5144 for (i = 0; i < KVM_NR_DB_REGS; i++)
5145 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5146 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5147 }
5148
5149 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5150 vcpu->arch.singlestep_cs =
5151 get_segment_selector(vcpu, VCPU_SREG_CS);
5152 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu);
5153 }
5154
5155 /*
5156 * Trigger an rflags update that will inject or remove the trace
5157 * flags.
5158 */
5159 kvm_set_rflags(vcpu, rflags);
5160
5161 kvm_x86_ops->set_guest_debug(vcpu, dbg);
5162
5163 r = 0;
5164
5165 unlock_out:
5166 vcpu_put(vcpu);
5167
5168 return r;
5169 }
5170
5171 /*
5172 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
5173 * we have asm/x86/processor.h
5174 */
5175 struct fxsave {
5176 u16 cwd;
5177 u16 swd;
5178 u16 twd;
5179 u16 fop;
5180 u64 rip;
5181 u64 rdp;
5182 u32 mxcsr;
5183 u32 mxcsr_mask;
5184 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
5185 #ifdef CONFIG_X86_64
5186 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
5187 #else
5188 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
5189 #endif
5190 };
5191
5192 /*
5193 * Translate a guest virtual address to a guest physical address.
5194 */
5195 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5196 struct kvm_translation *tr)
5197 {
5198 unsigned long vaddr = tr->linear_address;
5199 gpa_t gpa;
5200 int idx;
5201
5202 vcpu_load(vcpu);
5203 idx = srcu_read_lock(&vcpu->kvm->srcu);
5204 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
5205 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5206 tr->physical_address = gpa;
5207 tr->valid = gpa != UNMAPPED_GVA;
5208 tr->writeable = 1;
5209 tr->usermode = 0;
5210 vcpu_put(vcpu);
5211
5212 return 0;
5213 }
5214
5215 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5216 {
5217 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
5218
5219 vcpu_load(vcpu);
5220
5221 memcpy(fpu->fpr, fxsave->st_space, 128);
5222 fpu->fcw = fxsave->cwd;
5223 fpu->fsw = fxsave->swd;
5224 fpu->ftwx = fxsave->twd;
5225 fpu->last_opcode = fxsave->fop;
5226 fpu->last_ip = fxsave->rip;
5227 fpu->last_dp = fxsave->rdp;
5228 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5229
5230 vcpu_put(vcpu);
5231
5232 return 0;
5233 }
5234
5235 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5236 {
5237 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
5238
5239 vcpu_load(vcpu);
5240
5241 memcpy(fxsave->st_space, fpu->fpr, 128);
5242 fxsave->cwd = fpu->fcw;
5243 fxsave->swd = fpu->fsw;
5244 fxsave->twd = fpu->ftwx;
5245 fxsave->fop = fpu->last_opcode;
5246 fxsave->rip = fpu->last_ip;
5247 fxsave->rdp = fpu->last_dp;
5248 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5249
5250 vcpu_put(vcpu);
5251
5252 return 0;
5253 }
5254
5255 void fx_init(struct kvm_vcpu *vcpu)
5256 {
5257 unsigned after_mxcsr_mask;
5258
5259 /*
5260 * Touch the fpu the first time in non atomic context as if
5261 * this is the first fpu instruction the exception handler
5262 * will fire before the instruction returns and it'll have to
5263 * allocate ram with GFP_KERNEL.
5264 */
5265 if (!used_math())
5266 kvm_fx_save(&vcpu->arch.host_fx_image);
5267
5268 /* Initialize guest FPU by resetting ours and saving into guest's */
5269 preempt_disable();
5270 kvm_fx_save(&vcpu->arch.host_fx_image);
5271 kvm_fx_finit();
5272 kvm_fx_save(&vcpu->arch.guest_fx_image);
5273 kvm_fx_restore(&vcpu->arch.host_fx_image);
5274 preempt_enable();
5275
5276 vcpu->arch.cr0 |= X86_CR0_ET;
5277 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
5278 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
5279 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
5280 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
5281 }
5282 EXPORT_SYMBOL_GPL(fx_init);
5283
5284 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5285 {
5286 if (vcpu->guest_fpu_loaded)
5287 return;
5288
5289 vcpu->guest_fpu_loaded = 1;
5290 kvm_fx_save(&vcpu->arch.host_fx_image);
5291 kvm_fx_restore(&vcpu->arch.guest_fx_image);
5292 trace_kvm_fpu(1);
5293 }
5294
5295 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5296 {
5297 if (!vcpu->guest_fpu_loaded)
5298 return;
5299
5300 vcpu->guest_fpu_loaded = 0;
5301 kvm_fx_save(&vcpu->arch.guest_fx_image);
5302 kvm_fx_restore(&vcpu->arch.host_fx_image);
5303 ++vcpu->stat.fpu_reload;
5304 set_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests);
5305 trace_kvm_fpu(0);
5306 }
5307
5308 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5309 {
5310 if (vcpu->arch.time_page) {
5311 kvm_release_page_dirty(vcpu->arch.time_page);
5312 vcpu->arch.time_page = NULL;
5313 }
5314
5315 kvm_x86_ops->vcpu_free(vcpu);
5316 }
5317
5318 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5319 unsigned int id)
5320 {
5321 return kvm_x86_ops->vcpu_create(kvm, id);
5322 }
5323
5324 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5325 {
5326 int r;
5327
5328 /* We do fxsave: this must be aligned. */
5329 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
5330
5331 vcpu->arch.mtrr_state.have_fixed = 1;
5332 vcpu_load(vcpu);
5333 r = kvm_arch_vcpu_reset(vcpu);
5334 if (r == 0)
5335 r = kvm_mmu_setup(vcpu);
5336 vcpu_put(vcpu);
5337 if (r < 0)
5338 goto free_vcpu;
5339
5340 return 0;
5341 free_vcpu:
5342 kvm_x86_ops->vcpu_free(vcpu);
5343 return r;
5344 }
5345
5346 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5347 {
5348 vcpu_load(vcpu);
5349 kvm_mmu_unload(vcpu);
5350 vcpu_put(vcpu);
5351
5352 kvm_x86_ops->vcpu_free(vcpu);
5353 }
5354
5355 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5356 {
5357 vcpu->arch.nmi_pending = false;
5358 vcpu->arch.nmi_injected = false;
5359
5360 vcpu->arch.switch_db_regs = 0;
5361 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5362 vcpu->arch.dr6 = DR6_FIXED_1;
5363 vcpu->arch.dr7 = DR7_FIXED_1;
5364
5365 return kvm_x86_ops->vcpu_reset(vcpu);
5366 }
5367
5368 int kvm_arch_hardware_enable(void *garbage)
5369 {
5370 /*
5371 * Since this may be called from a hotplug notifcation,
5372 * we can't get the CPU frequency directly.
5373 */
5374 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5375 int cpu = raw_smp_processor_id();
5376 per_cpu(cpu_tsc_khz, cpu) = 0;
5377 }
5378
5379 kvm_shared_msr_cpu_online();
5380
5381 return kvm_x86_ops->hardware_enable(garbage);
5382 }
5383
5384 void kvm_arch_hardware_disable(void *garbage)
5385 {
5386 kvm_x86_ops->hardware_disable(garbage);
5387 drop_user_return_notifiers(garbage);
5388 }
5389
5390 int kvm_arch_hardware_setup(void)
5391 {
5392 return kvm_x86_ops->hardware_setup();
5393 }
5394
5395 void kvm_arch_hardware_unsetup(void)
5396 {
5397 kvm_x86_ops->hardware_unsetup();
5398 }
5399
5400 void kvm_arch_check_processor_compat(void *rtn)
5401 {
5402 kvm_x86_ops->check_processor_compatibility(rtn);
5403 }
5404
5405 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5406 {
5407 struct page *page;
5408 struct kvm *kvm;
5409 int r;
5410
5411 BUG_ON(vcpu->kvm == NULL);
5412 kvm = vcpu->kvm;
5413
5414 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5415 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5416 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5417 else
5418 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5419
5420 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5421 if (!page) {
5422 r = -ENOMEM;
5423 goto fail;
5424 }
5425 vcpu->arch.pio_data = page_address(page);
5426
5427 r = kvm_mmu_create(vcpu);
5428 if (r < 0)
5429 goto fail_free_pio_data;
5430
5431 if (irqchip_in_kernel(kvm)) {
5432 r = kvm_create_lapic(vcpu);
5433 if (r < 0)
5434 goto fail_mmu_destroy;
5435 }
5436
5437 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5438 GFP_KERNEL);
5439 if (!vcpu->arch.mce_banks) {
5440 r = -ENOMEM;
5441 goto fail_free_lapic;
5442 }
5443 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5444
5445 return 0;
5446 fail_free_lapic:
5447 kvm_free_lapic(vcpu);
5448 fail_mmu_destroy:
5449 kvm_mmu_destroy(vcpu);
5450 fail_free_pio_data:
5451 free_page((unsigned long)vcpu->arch.pio_data);
5452 fail:
5453 return r;
5454 }
5455
5456 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
5457 {
5458 int idx;
5459
5460 kfree(vcpu->arch.mce_banks);
5461 kvm_free_lapic(vcpu);
5462 idx = srcu_read_lock(&vcpu->kvm->srcu);
5463 kvm_mmu_destroy(vcpu);
5464 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5465 free_page((unsigned long)vcpu->arch.pio_data);
5466 }
5467
5468 struct kvm *kvm_arch_create_vm(void)
5469 {
5470 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
5471
5472 if (!kvm)
5473 return ERR_PTR(-ENOMEM);
5474
5475 kvm->arch.aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
5476 if (!kvm->arch.aliases) {
5477 kfree(kvm);
5478 return ERR_PTR(-ENOMEM);
5479 }
5480
5481 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5482 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
5483
5484 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5485 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
5486
5487 rdtscll(kvm->arch.vm_init_tsc);
5488
5489 return kvm;
5490 }
5491
5492 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
5493 {
5494 vcpu_load(vcpu);
5495 kvm_mmu_unload(vcpu);
5496 vcpu_put(vcpu);
5497 }
5498
5499 static void kvm_free_vcpus(struct kvm *kvm)
5500 {
5501 unsigned int i;
5502 struct kvm_vcpu *vcpu;
5503
5504 /*
5505 * Unpin any mmu pages first.
5506 */
5507 kvm_for_each_vcpu(i, vcpu, kvm)
5508 kvm_unload_vcpu_mmu(vcpu);
5509 kvm_for_each_vcpu(i, vcpu, kvm)
5510 kvm_arch_vcpu_free(vcpu);
5511
5512 mutex_lock(&kvm->lock);
5513 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
5514 kvm->vcpus[i] = NULL;
5515
5516 atomic_set(&kvm->online_vcpus, 0);
5517 mutex_unlock(&kvm->lock);
5518 }
5519
5520 void kvm_arch_sync_events(struct kvm *kvm)
5521 {
5522 kvm_free_all_assigned_devices(kvm);
5523 }
5524
5525 void kvm_arch_destroy_vm(struct kvm *kvm)
5526 {
5527 kvm_iommu_unmap_guest(kvm);
5528 kvm_free_pit(kvm);
5529 kfree(kvm->arch.vpic);
5530 kfree(kvm->arch.vioapic);
5531 kvm_free_vcpus(kvm);
5532 kvm_free_physmem(kvm);
5533 if (kvm->arch.apic_access_page)
5534 put_page(kvm->arch.apic_access_page);
5535 if (kvm->arch.ept_identity_pagetable)
5536 put_page(kvm->arch.ept_identity_pagetable);
5537 cleanup_srcu_struct(&kvm->srcu);
5538 kfree(kvm->arch.aliases);
5539 kfree(kvm);
5540 }
5541
5542 int kvm_arch_prepare_memory_region(struct kvm *kvm,
5543 struct kvm_memory_slot *memslot,
5544 struct kvm_memory_slot old,
5545 struct kvm_userspace_memory_region *mem,
5546 int user_alloc)
5547 {
5548 int npages = memslot->npages;
5549
5550 /*To keep backward compatibility with older userspace,
5551 *x86 needs to hanlde !user_alloc case.
5552 */
5553 if (!user_alloc) {
5554 if (npages && !old.rmap) {
5555 unsigned long userspace_addr;
5556
5557 down_write(&current->mm->mmap_sem);
5558 userspace_addr = do_mmap(NULL, 0,
5559 npages * PAGE_SIZE,
5560 PROT_READ | PROT_WRITE,
5561 MAP_PRIVATE | MAP_ANONYMOUS,
5562 0);
5563 up_write(&current->mm->mmap_sem);
5564
5565 if (IS_ERR((void *)userspace_addr))
5566 return PTR_ERR((void *)userspace_addr);
5567
5568 memslot->userspace_addr = userspace_addr;
5569 }
5570 }
5571
5572
5573 return 0;
5574 }
5575
5576 void kvm_arch_commit_memory_region(struct kvm *kvm,
5577 struct kvm_userspace_memory_region *mem,
5578 struct kvm_memory_slot old,
5579 int user_alloc)
5580 {
5581
5582 int npages = mem->memory_size >> PAGE_SHIFT;
5583
5584 if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
5585 int ret;
5586
5587 down_write(&current->mm->mmap_sem);
5588 ret = do_munmap(current->mm, old.userspace_addr,
5589 old.npages * PAGE_SIZE);
5590 up_write(&current->mm->mmap_sem);
5591 if (ret < 0)
5592 printk(KERN_WARNING
5593 "kvm_vm_ioctl_set_memory_region: "
5594 "failed to munmap memory\n");
5595 }
5596
5597 spin_lock(&kvm->mmu_lock);
5598 if (!kvm->arch.n_requested_mmu_pages) {
5599 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
5600 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
5601 }
5602
5603 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
5604 spin_unlock(&kvm->mmu_lock);
5605 }
5606
5607 void kvm_arch_flush_shadow(struct kvm *kvm)
5608 {
5609 kvm_mmu_zap_all(kvm);
5610 kvm_reload_remote_mmus(kvm);
5611 }
5612
5613 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
5614 {
5615 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
5616 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
5617 || vcpu->arch.nmi_pending ||
5618 (kvm_arch_interrupt_allowed(vcpu) &&
5619 kvm_cpu_has_interrupt(vcpu));
5620 }
5621
5622 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
5623 {
5624 int me;
5625 int cpu = vcpu->cpu;
5626
5627 if (waitqueue_active(&vcpu->wq)) {
5628 wake_up_interruptible(&vcpu->wq);
5629 ++vcpu->stat.halt_wakeup;
5630 }
5631
5632 me = get_cpu();
5633 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
5634 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
5635 smp_send_reschedule(cpu);
5636 put_cpu();
5637 }
5638
5639 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
5640 {
5641 return kvm_x86_ops->interrupt_allowed(vcpu);
5642 }
5643
5644 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
5645 {
5646 unsigned long rflags;
5647
5648 rflags = kvm_x86_ops->get_rflags(vcpu);
5649 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5650 rflags &= ~(unsigned long)(X86_EFLAGS_TF | X86_EFLAGS_RF);
5651 return rflags;
5652 }
5653 EXPORT_SYMBOL_GPL(kvm_get_rflags);
5654
5655 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
5656 {
5657 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
5658 vcpu->arch.singlestep_cs ==
5659 get_segment_selector(vcpu, VCPU_SREG_CS) &&
5660 vcpu->arch.singlestep_rip == kvm_rip_read(vcpu))
5661 rflags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
5662 kvm_x86_ops->set_rflags(vcpu, rflags);
5663 }
5664 EXPORT_SYMBOL_GPL(kvm_set_rflags);
5665
5666 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
5667 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
5668 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
5669 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
5670 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
5671 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
5672 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
5673 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
5674 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
5675 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
5676 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
This page took 0.184807 seconds and 5 git commands to generate.