KVM: MMU: large page support
[deliverable/linux.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 *
8 * Authors:
9 * Avi Kivity <avi@qumranet.com>
10 * Yaniv Kamay <yaniv@qumranet.com>
11 *
12 * This work is licensed under the terms of the GNU GPL, version 2. See
13 * the COPYING file in the top-level directory.
14 *
15 */
16
17 #include <linux/kvm_host.h>
18 #include "irq.h"
19 #include "mmu.h"
20
21 #include <linux/clocksource.h>
22 #include <linux/kvm.h>
23 #include <linux/fs.h>
24 #include <linux/vmalloc.h>
25 #include <linux/module.h>
26 #include <linux/mman.h>
27 #include <linux/highmem.h>
28
29 #include <asm/uaccess.h>
30 #include <asm/msr.h>
31 #include <asm/desc.h>
32
33 #define MAX_IO_MSRS 256
34 #define CR0_RESERVED_BITS \
35 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
36 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
37 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
38 #define CR4_RESERVED_BITS \
39 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
40 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
41 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
42 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
43
44 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
45 /* EFER defaults:
46 * - enable syscall per default because its emulated by KVM
47 * - enable LME and LMA per default on 64 bit KVM
48 */
49 #ifdef CONFIG_X86_64
50 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
51 #else
52 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
53 #endif
54
55 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
56 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
57
58 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
59 struct kvm_cpuid_entry2 __user *entries);
60
61 struct kvm_x86_ops *kvm_x86_ops;
62
63 struct kvm_stats_debugfs_item debugfs_entries[] = {
64 { "pf_fixed", VCPU_STAT(pf_fixed) },
65 { "pf_guest", VCPU_STAT(pf_guest) },
66 { "tlb_flush", VCPU_STAT(tlb_flush) },
67 { "invlpg", VCPU_STAT(invlpg) },
68 { "exits", VCPU_STAT(exits) },
69 { "io_exits", VCPU_STAT(io_exits) },
70 { "mmio_exits", VCPU_STAT(mmio_exits) },
71 { "signal_exits", VCPU_STAT(signal_exits) },
72 { "irq_window", VCPU_STAT(irq_window_exits) },
73 { "halt_exits", VCPU_STAT(halt_exits) },
74 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
75 { "hypercalls", VCPU_STAT(hypercalls) },
76 { "request_irq", VCPU_STAT(request_irq_exits) },
77 { "irq_exits", VCPU_STAT(irq_exits) },
78 { "host_state_reload", VCPU_STAT(host_state_reload) },
79 { "efer_reload", VCPU_STAT(efer_reload) },
80 { "fpu_reload", VCPU_STAT(fpu_reload) },
81 { "insn_emulation", VCPU_STAT(insn_emulation) },
82 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
83 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
84 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
85 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
86 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
87 { "mmu_flooded", VM_STAT(mmu_flooded) },
88 { "mmu_recycled", VM_STAT(mmu_recycled) },
89 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
90 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
91 { "largepages", VM_STAT(lpages) },
92 { NULL }
93 };
94
95
96 unsigned long segment_base(u16 selector)
97 {
98 struct descriptor_table gdt;
99 struct desc_struct *d;
100 unsigned long table_base;
101 unsigned long v;
102
103 if (selector == 0)
104 return 0;
105
106 asm("sgdt %0" : "=m"(gdt));
107 table_base = gdt.base;
108
109 if (selector & 4) { /* from ldt */
110 u16 ldt_selector;
111
112 asm("sldt %0" : "=g"(ldt_selector));
113 table_base = segment_base(ldt_selector);
114 }
115 d = (struct desc_struct *)(table_base + (selector & ~7));
116 v = d->base0 | ((unsigned long)d->base1 << 16) |
117 ((unsigned long)d->base2 << 24);
118 #ifdef CONFIG_X86_64
119 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
120 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
121 #endif
122 return v;
123 }
124 EXPORT_SYMBOL_GPL(segment_base);
125
126 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
127 {
128 if (irqchip_in_kernel(vcpu->kvm))
129 return vcpu->arch.apic_base;
130 else
131 return vcpu->arch.apic_base;
132 }
133 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
134
135 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
136 {
137 /* TODO: reserve bits check */
138 if (irqchip_in_kernel(vcpu->kvm))
139 kvm_lapic_set_base(vcpu, data);
140 else
141 vcpu->arch.apic_base = data;
142 }
143 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
144
145 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
146 {
147 WARN_ON(vcpu->arch.exception.pending);
148 vcpu->arch.exception.pending = true;
149 vcpu->arch.exception.has_error_code = false;
150 vcpu->arch.exception.nr = nr;
151 }
152 EXPORT_SYMBOL_GPL(kvm_queue_exception);
153
154 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
155 u32 error_code)
156 {
157 ++vcpu->stat.pf_guest;
158 if (vcpu->arch.exception.pending && vcpu->arch.exception.nr == PF_VECTOR) {
159 printk(KERN_DEBUG "kvm: inject_page_fault:"
160 " double fault 0x%lx\n", addr);
161 vcpu->arch.exception.nr = DF_VECTOR;
162 vcpu->arch.exception.error_code = 0;
163 return;
164 }
165 vcpu->arch.cr2 = addr;
166 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
167 }
168
169 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
170 {
171 WARN_ON(vcpu->arch.exception.pending);
172 vcpu->arch.exception.pending = true;
173 vcpu->arch.exception.has_error_code = true;
174 vcpu->arch.exception.nr = nr;
175 vcpu->arch.exception.error_code = error_code;
176 }
177 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
178
179 static void __queue_exception(struct kvm_vcpu *vcpu)
180 {
181 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
182 vcpu->arch.exception.has_error_code,
183 vcpu->arch.exception.error_code);
184 }
185
186 /*
187 * Load the pae pdptrs. Return true is they are all valid.
188 */
189 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
190 {
191 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
192 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
193 int i;
194 int ret;
195 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
196
197 down_read(&vcpu->kvm->slots_lock);
198 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
199 offset * sizeof(u64), sizeof(pdpte));
200 if (ret < 0) {
201 ret = 0;
202 goto out;
203 }
204 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
205 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
206 ret = 0;
207 goto out;
208 }
209 }
210 ret = 1;
211
212 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
213 out:
214 up_read(&vcpu->kvm->slots_lock);
215
216 return ret;
217 }
218 EXPORT_SYMBOL_GPL(load_pdptrs);
219
220 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
221 {
222 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
223 bool changed = true;
224 int r;
225
226 if (is_long_mode(vcpu) || !is_pae(vcpu))
227 return false;
228
229 down_read(&vcpu->kvm->slots_lock);
230 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
231 if (r < 0)
232 goto out;
233 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
234 out:
235 up_read(&vcpu->kvm->slots_lock);
236
237 return changed;
238 }
239
240 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
241 {
242 if (cr0 & CR0_RESERVED_BITS) {
243 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
244 cr0, vcpu->arch.cr0);
245 kvm_inject_gp(vcpu, 0);
246 return;
247 }
248
249 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
250 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
251 kvm_inject_gp(vcpu, 0);
252 return;
253 }
254
255 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
256 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
257 "and a clear PE flag\n");
258 kvm_inject_gp(vcpu, 0);
259 return;
260 }
261
262 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
263 #ifdef CONFIG_X86_64
264 if ((vcpu->arch.shadow_efer & EFER_LME)) {
265 int cs_db, cs_l;
266
267 if (!is_pae(vcpu)) {
268 printk(KERN_DEBUG "set_cr0: #GP, start paging "
269 "in long mode while PAE is disabled\n");
270 kvm_inject_gp(vcpu, 0);
271 return;
272 }
273 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
274 if (cs_l) {
275 printk(KERN_DEBUG "set_cr0: #GP, start paging "
276 "in long mode while CS.L == 1\n");
277 kvm_inject_gp(vcpu, 0);
278 return;
279
280 }
281 } else
282 #endif
283 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
284 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
285 "reserved bits\n");
286 kvm_inject_gp(vcpu, 0);
287 return;
288 }
289
290 }
291
292 kvm_x86_ops->set_cr0(vcpu, cr0);
293 vcpu->arch.cr0 = cr0;
294
295 kvm_mmu_reset_context(vcpu);
296 return;
297 }
298 EXPORT_SYMBOL_GPL(set_cr0);
299
300 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
301 {
302 set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
303 }
304 EXPORT_SYMBOL_GPL(lmsw);
305
306 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
307 {
308 if (cr4 & CR4_RESERVED_BITS) {
309 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
310 kvm_inject_gp(vcpu, 0);
311 return;
312 }
313
314 if (is_long_mode(vcpu)) {
315 if (!(cr4 & X86_CR4_PAE)) {
316 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
317 "in long mode\n");
318 kvm_inject_gp(vcpu, 0);
319 return;
320 }
321 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
322 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
323 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
324 kvm_inject_gp(vcpu, 0);
325 return;
326 }
327
328 if (cr4 & X86_CR4_VMXE) {
329 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
330 kvm_inject_gp(vcpu, 0);
331 return;
332 }
333 kvm_x86_ops->set_cr4(vcpu, cr4);
334 vcpu->arch.cr4 = cr4;
335 kvm_mmu_reset_context(vcpu);
336 }
337 EXPORT_SYMBOL_GPL(set_cr4);
338
339 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
340 {
341 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
342 kvm_mmu_flush_tlb(vcpu);
343 return;
344 }
345
346 if (is_long_mode(vcpu)) {
347 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
348 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
349 kvm_inject_gp(vcpu, 0);
350 return;
351 }
352 } else {
353 if (is_pae(vcpu)) {
354 if (cr3 & CR3_PAE_RESERVED_BITS) {
355 printk(KERN_DEBUG
356 "set_cr3: #GP, reserved bits\n");
357 kvm_inject_gp(vcpu, 0);
358 return;
359 }
360 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
361 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
362 "reserved bits\n");
363 kvm_inject_gp(vcpu, 0);
364 return;
365 }
366 }
367 /*
368 * We don't check reserved bits in nonpae mode, because
369 * this isn't enforced, and VMware depends on this.
370 */
371 }
372
373 down_read(&vcpu->kvm->slots_lock);
374 /*
375 * Does the new cr3 value map to physical memory? (Note, we
376 * catch an invalid cr3 even in real-mode, because it would
377 * cause trouble later on when we turn on paging anyway.)
378 *
379 * A real CPU would silently accept an invalid cr3 and would
380 * attempt to use it - with largely undefined (and often hard
381 * to debug) behavior on the guest side.
382 */
383 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
384 kvm_inject_gp(vcpu, 0);
385 else {
386 vcpu->arch.cr3 = cr3;
387 vcpu->arch.mmu.new_cr3(vcpu);
388 }
389 up_read(&vcpu->kvm->slots_lock);
390 }
391 EXPORT_SYMBOL_GPL(set_cr3);
392
393 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
394 {
395 if (cr8 & CR8_RESERVED_BITS) {
396 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
397 kvm_inject_gp(vcpu, 0);
398 return;
399 }
400 if (irqchip_in_kernel(vcpu->kvm))
401 kvm_lapic_set_tpr(vcpu, cr8);
402 else
403 vcpu->arch.cr8 = cr8;
404 }
405 EXPORT_SYMBOL_GPL(set_cr8);
406
407 unsigned long get_cr8(struct kvm_vcpu *vcpu)
408 {
409 if (irqchip_in_kernel(vcpu->kvm))
410 return kvm_lapic_get_cr8(vcpu);
411 else
412 return vcpu->arch.cr8;
413 }
414 EXPORT_SYMBOL_GPL(get_cr8);
415
416 /*
417 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
418 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
419 *
420 * This list is modified at module load time to reflect the
421 * capabilities of the host cpu.
422 */
423 static u32 msrs_to_save[] = {
424 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
425 MSR_K6_STAR,
426 #ifdef CONFIG_X86_64
427 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
428 #endif
429 MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
430 MSR_IA32_PERF_STATUS,
431 };
432
433 static unsigned num_msrs_to_save;
434
435 static u32 emulated_msrs[] = {
436 MSR_IA32_MISC_ENABLE,
437 };
438
439 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
440 {
441 if (efer & efer_reserved_bits) {
442 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
443 efer);
444 kvm_inject_gp(vcpu, 0);
445 return;
446 }
447
448 if (is_paging(vcpu)
449 && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
450 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
451 kvm_inject_gp(vcpu, 0);
452 return;
453 }
454
455 kvm_x86_ops->set_efer(vcpu, efer);
456
457 efer &= ~EFER_LMA;
458 efer |= vcpu->arch.shadow_efer & EFER_LMA;
459
460 vcpu->arch.shadow_efer = efer;
461 }
462
463 void kvm_enable_efer_bits(u64 mask)
464 {
465 efer_reserved_bits &= ~mask;
466 }
467 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
468
469
470 /*
471 * Writes msr value into into the appropriate "register".
472 * Returns 0 on success, non-0 otherwise.
473 * Assumes vcpu_load() was already called.
474 */
475 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
476 {
477 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
478 }
479
480 /*
481 * Adapt set_msr() to msr_io()'s calling convention
482 */
483 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
484 {
485 return kvm_set_msr(vcpu, index, *data);
486 }
487
488 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
489 {
490 static int version;
491 struct kvm_wall_clock wc;
492 struct timespec wc_ts;
493
494 if (!wall_clock)
495 return;
496
497 version++;
498
499 down_read(&kvm->slots_lock);
500 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
501
502 wc_ts = current_kernel_time();
503 wc.wc_sec = wc_ts.tv_sec;
504 wc.wc_nsec = wc_ts.tv_nsec;
505 wc.wc_version = version;
506
507 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
508
509 version++;
510 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
511 up_read(&kvm->slots_lock);
512 }
513
514 static void kvm_write_guest_time(struct kvm_vcpu *v)
515 {
516 struct timespec ts;
517 unsigned long flags;
518 struct kvm_vcpu_arch *vcpu = &v->arch;
519 void *shared_kaddr;
520
521 if ((!vcpu->time_page))
522 return;
523
524 /* Keep irq disabled to prevent changes to the clock */
525 local_irq_save(flags);
526 kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
527 &vcpu->hv_clock.tsc_timestamp);
528 ktime_get_ts(&ts);
529 local_irq_restore(flags);
530
531 /* With all the info we got, fill in the values */
532
533 vcpu->hv_clock.system_time = ts.tv_nsec +
534 (NSEC_PER_SEC * (u64)ts.tv_sec);
535 /*
536 * The interface expects us to write an even number signaling that the
537 * update is finished. Since the guest won't see the intermediate
538 * state, we just write "2" at the end
539 */
540 vcpu->hv_clock.version = 2;
541
542 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
543
544 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
545 sizeof(vcpu->hv_clock));
546
547 kunmap_atomic(shared_kaddr, KM_USER0);
548
549 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
550 }
551
552
553 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
554 {
555 switch (msr) {
556 case MSR_EFER:
557 set_efer(vcpu, data);
558 break;
559 case MSR_IA32_MC0_STATUS:
560 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
561 __FUNCTION__, data);
562 break;
563 case MSR_IA32_MCG_STATUS:
564 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
565 __FUNCTION__, data);
566 break;
567 case MSR_IA32_MCG_CTL:
568 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
569 __FUNCTION__, data);
570 break;
571 case MSR_IA32_UCODE_REV:
572 case MSR_IA32_UCODE_WRITE:
573 case 0x200 ... 0x2ff: /* MTRRs */
574 break;
575 case MSR_IA32_APICBASE:
576 kvm_set_apic_base(vcpu, data);
577 break;
578 case MSR_IA32_MISC_ENABLE:
579 vcpu->arch.ia32_misc_enable_msr = data;
580 break;
581 case MSR_KVM_WALL_CLOCK:
582 vcpu->kvm->arch.wall_clock = data;
583 kvm_write_wall_clock(vcpu->kvm, data);
584 break;
585 case MSR_KVM_SYSTEM_TIME: {
586 if (vcpu->arch.time_page) {
587 kvm_release_page_dirty(vcpu->arch.time_page);
588 vcpu->arch.time_page = NULL;
589 }
590
591 vcpu->arch.time = data;
592
593 /* we verify if the enable bit is set... */
594 if (!(data & 1))
595 break;
596
597 /* ...but clean it before doing the actual write */
598 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
599
600 vcpu->arch.hv_clock.tsc_to_system_mul =
601 clocksource_khz2mult(tsc_khz, 22);
602 vcpu->arch.hv_clock.tsc_shift = 22;
603
604 down_read(&current->mm->mmap_sem);
605 down_read(&vcpu->kvm->slots_lock);
606 vcpu->arch.time_page =
607 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
608 up_read(&vcpu->kvm->slots_lock);
609 up_read(&current->mm->mmap_sem);
610
611 if (is_error_page(vcpu->arch.time_page)) {
612 kvm_release_page_clean(vcpu->arch.time_page);
613 vcpu->arch.time_page = NULL;
614 }
615
616 kvm_write_guest_time(vcpu);
617 break;
618 }
619 default:
620 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
621 return 1;
622 }
623 return 0;
624 }
625 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
626
627
628 /*
629 * Reads an msr value (of 'msr_index') into 'pdata'.
630 * Returns 0 on success, non-0 otherwise.
631 * Assumes vcpu_load() was already called.
632 */
633 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
634 {
635 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
636 }
637
638 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
639 {
640 u64 data;
641
642 switch (msr) {
643 case 0xc0010010: /* SYSCFG */
644 case 0xc0010015: /* HWCR */
645 case MSR_IA32_PLATFORM_ID:
646 case MSR_IA32_P5_MC_ADDR:
647 case MSR_IA32_P5_MC_TYPE:
648 case MSR_IA32_MC0_CTL:
649 case MSR_IA32_MCG_STATUS:
650 case MSR_IA32_MCG_CAP:
651 case MSR_IA32_MCG_CTL:
652 case MSR_IA32_MC0_MISC:
653 case MSR_IA32_MC0_MISC+4:
654 case MSR_IA32_MC0_MISC+8:
655 case MSR_IA32_MC0_MISC+12:
656 case MSR_IA32_MC0_MISC+16:
657 case MSR_IA32_UCODE_REV:
658 case MSR_IA32_EBL_CR_POWERON:
659 /* MTRR registers */
660 case 0xfe:
661 case 0x200 ... 0x2ff:
662 data = 0;
663 break;
664 case 0xcd: /* fsb frequency */
665 data = 3;
666 break;
667 case MSR_IA32_APICBASE:
668 data = kvm_get_apic_base(vcpu);
669 break;
670 case MSR_IA32_MISC_ENABLE:
671 data = vcpu->arch.ia32_misc_enable_msr;
672 break;
673 case MSR_IA32_PERF_STATUS:
674 /* TSC increment by tick */
675 data = 1000ULL;
676 /* CPU multiplier */
677 data |= (((uint64_t)4ULL) << 40);
678 break;
679 case MSR_EFER:
680 data = vcpu->arch.shadow_efer;
681 break;
682 case MSR_KVM_WALL_CLOCK:
683 data = vcpu->kvm->arch.wall_clock;
684 break;
685 case MSR_KVM_SYSTEM_TIME:
686 data = vcpu->arch.time;
687 break;
688 default:
689 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
690 return 1;
691 }
692 *pdata = data;
693 return 0;
694 }
695 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
696
697 /*
698 * Read or write a bunch of msrs. All parameters are kernel addresses.
699 *
700 * @return number of msrs set successfully.
701 */
702 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
703 struct kvm_msr_entry *entries,
704 int (*do_msr)(struct kvm_vcpu *vcpu,
705 unsigned index, u64 *data))
706 {
707 int i;
708
709 vcpu_load(vcpu);
710
711 for (i = 0; i < msrs->nmsrs; ++i)
712 if (do_msr(vcpu, entries[i].index, &entries[i].data))
713 break;
714
715 vcpu_put(vcpu);
716
717 return i;
718 }
719
720 /*
721 * Read or write a bunch of msrs. Parameters are user addresses.
722 *
723 * @return number of msrs set successfully.
724 */
725 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
726 int (*do_msr)(struct kvm_vcpu *vcpu,
727 unsigned index, u64 *data),
728 int writeback)
729 {
730 struct kvm_msrs msrs;
731 struct kvm_msr_entry *entries;
732 int r, n;
733 unsigned size;
734
735 r = -EFAULT;
736 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
737 goto out;
738
739 r = -E2BIG;
740 if (msrs.nmsrs >= MAX_IO_MSRS)
741 goto out;
742
743 r = -ENOMEM;
744 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
745 entries = vmalloc(size);
746 if (!entries)
747 goto out;
748
749 r = -EFAULT;
750 if (copy_from_user(entries, user_msrs->entries, size))
751 goto out_free;
752
753 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
754 if (r < 0)
755 goto out_free;
756
757 r = -EFAULT;
758 if (writeback && copy_to_user(user_msrs->entries, entries, size))
759 goto out_free;
760
761 r = n;
762
763 out_free:
764 vfree(entries);
765 out:
766 return r;
767 }
768
769 /*
770 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
771 * cached on it.
772 */
773 void decache_vcpus_on_cpu(int cpu)
774 {
775 struct kvm *vm;
776 struct kvm_vcpu *vcpu;
777 int i;
778
779 spin_lock(&kvm_lock);
780 list_for_each_entry(vm, &vm_list, vm_list)
781 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
782 vcpu = vm->vcpus[i];
783 if (!vcpu)
784 continue;
785 /*
786 * If the vcpu is locked, then it is running on some
787 * other cpu and therefore it is not cached on the
788 * cpu in question.
789 *
790 * If it's not locked, check the last cpu it executed
791 * on.
792 */
793 if (mutex_trylock(&vcpu->mutex)) {
794 if (vcpu->cpu == cpu) {
795 kvm_x86_ops->vcpu_decache(vcpu);
796 vcpu->cpu = -1;
797 }
798 mutex_unlock(&vcpu->mutex);
799 }
800 }
801 spin_unlock(&kvm_lock);
802 }
803
804 int kvm_dev_ioctl_check_extension(long ext)
805 {
806 int r;
807
808 switch (ext) {
809 case KVM_CAP_IRQCHIP:
810 case KVM_CAP_HLT:
811 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
812 case KVM_CAP_USER_MEMORY:
813 case KVM_CAP_SET_TSS_ADDR:
814 case KVM_CAP_EXT_CPUID:
815 case KVM_CAP_CLOCKSOURCE:
816 r = 1;
817 break;
818 case KVM_CAP_VAPIC:
819 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
820 break;
821 case KVM_CAP_NR_VCPUS:
822 r = KVM_MAX_VCPUS;
823 break;
824 case KVM_CAP_NR_MEMSLOTS:
825 r = KVM_MEMORY_SLOTS;
826 break;
827 default:
828 r = 0;
829 break;
830 }
831 return r;
832
833 }
834
835 long kvm_arch_dev_ioctl(struct file *filp,
836 unsigned int ioctl, unsigned long arg)
837 {
838 void __user *argp = (void __user *)arg;
839 long r;
840
841 switch (ioctl) {
842 case KVM_GET_MSR_INDEX_LIST: {
843 struct kvm_msr_list __user *user_msr_list = argp;
844 struct kvm_msr_list msr_list;
845 unsigned n;
846
847 r = -EFAULT;
848 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
849 goto out;
850 n = msr_list.nmsrs;
851 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
852 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
853 goto out;
854 r = -E2BIG;
855 if (n < num_msrs_to_save)
856 goto out;
857 r = -EFAULT;
858 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
859 num_msrs_to_save * sizeof(u32)))
860 goto out;
861 if (copy_to_user(user_msr_list->indices
862 + num_msrs_to_save * sizeof(u32),
863 &emulated_msrs,
864 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
865 goto out;
866 r = 0;
867 break;
868 }
869 case KVM_GET_SUPPORTED_CPUID: {
870 struct kvm_cpuid2 __user *cpuid_arg = argp;
871 struct kvm_cpuid2 cpuid;
872
873 r = -EFAULT;
874 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
875 goto out;
876 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
877 cpuid_arg->entries);
878 if (r)
879 goto out;
880
881 r = -EFAULT;
882 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
883 goto out;
884 r = 0;
885 break;
886 }
887 default:
888 r = -EINVAL;
889 }
890 out:
891 return r;
892 }
893
894 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
895 {
896 kvm_x86_ops->vcpu_load(vcpu, cpu);
897 kvm_write_guest_time(vcpu);
898 }
899
900 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
901 {
902 kvm_x86_ops->vcpu_put(vcpu);
903 kvm_put_guest_fpu(vcpu);
904 }
905
906 static int is_efer_nx(void)
907 {
908 u64 efer;
909
910 rdmsrl(MSR_EFER, efer);
911 return efer & EFER_NX;
912 }
913
914 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
915 {
916 int i;
917 struct kvm_cpuid_entry2 *e, *entry;
918
919 entry = NULL;
920 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
921 e = &vcpu->arch.cpuid_entries[i];
922 if (e->function == 0x80000001) {
923 entry = e;
924 break;
925 }
926 }
927 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
928 entry->edx &= ~(1 << 20);
929 printk(KERN_INFO "kvm: guest NX capability removed\n");
930 }
931 }
932
933 /* when an old userspace process fills a new kernel module */
934 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
935 struct kvm_cpuid *cpuid,
936 struct kvm_cpuid_entry __user *entries)
937 {
938 int r, i;
939 struct kvm_cpuid_entry *cpuid_entries;
940
941 r = -E2BIG;
942 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
943 goto out;
944 r = -ENOMEM;
945 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
946 if (!cpuid_entries)
947 goto out;
948 r = -EFAULT;
949 if (copy_from_user(cpuid_entries, entries,
950 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
951 goto out_free;
952 for (i = 0; i < cpuid->nent; i++) {
953 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
954 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
955 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
956 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
957 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
958 vcpu->arch.cpuid_entries[i].index = 0;
959 vcpu->arch.cpuid_entries[i].flags = 0;
960 vcpu->arch.cpuid_entries[i].padding[0] = 0;
961 vcpu->arch.cpuid_entries[i].padding[1] = 0;
962 vcpu->arch.cpuid_entries[i].padding[2] = 0;
963 }
964 vcpu->arch.cpuid_nent = cpuid->nent;
965 cpuid_fix_nx_cap(vcpu);
966 r = 0;
967
968 out_free:
969 vfree(cpuid_entries);
970 out:
971 return r;
972 }
973
974 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
975 struct kvm_cpuid2 *cpuid,
976 struct kvm_cpuid_entry2 __user *entries)
977 {
978 int r;
979
980 r = -E2BIG;
981 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
982 goto out;
983 r = -EFAULT;
984 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
985 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
986 goto out;
987 vcpu->arch.cpuid_nent = cpuid->nent;
988 return 0;
989
990 out:
991 return r;
992 }
993
994 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
995 struct kvm_cpuid2 *cpuid,
996 struct kvm_cpuid_entry2 __user *entries)
997 {
998 int r;
999
1000 r = -E2BIG;
1001 if (cpuid->nent < vcpu->arch.cpuid_nent)
1002 goto out;
1003 r = -EFAULT;
1004 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1005 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1006 goto out;
1007 return 0;
1008
1009 out:
1010 cpuid->nent = vcpu->arch.cpuid_nent;
1011 return r;
1012 }
1013
1014 static inline u32 bit(int bitno)
1015 {
1016 return 1 << (bitno & 31);
1017 }
1018
1019 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1020 u32 index)
1021 {
1022 entry->function = function;
1023 entry->index = index;
1024 cpuid_count(entry->function, entry->index,
1025 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1026 entry->flags = 0;
1027 }
1028
1029 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1030 u32 index, int *nent, int maxnent)
1031 {
1032 const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
1033 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1034 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1035 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1036 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1037 bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
1038 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1039 bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
1040 bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
1041 bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
1042 const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
1043 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1044 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1045 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1046 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1047 bit(X86_FEATURE_PGE) |
1048 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1049 bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
1050 bit(X86_FEATURE_SYSCALL) |
1051 (bit(X86_FEATURE_NX) && is_efer_nx()) |
1052 #ifdef CONFIG_X86_64
1053 bit(X86_FEATURE_LM) |
1054 #endif
1055 bit(X86_FEATURE_MMXEXT) |
1056 bit(X86_FEATURE_3DNOWEXT) |
1057 bit(X86_FEATURE_3DNOW);
1058 const u32 kvm_supported_word3_x86_features =
1059 bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
1060 const u32 kvm_supported_word6_x86_features =
1061 bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);
1062
1063 /* all func 2 cpuid_count() should be called on the same cpu */
1064 get_cpu();
1065 do_cpuid_1_ent(entry, function, index);
1066 ++*nent;
1067
1068 switch (function) {
1069 case 0:
1070 entry->eax = min(entry->eax, (u32)0xb);
1071 break;
1072 case 1:
1073 entry->edx &= kvm_supported_word0_x86_features;
1074 entry->ecx &= kvm_supported_word3_x86_features;
1075 break;
1076 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1077 * may return different values. This forces us to get_cpu() before
1078 * issuing the first command, and also to emulate this annoying behavior
1079 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1080 case 2: {
1081 int t, times = entry->eax & 0xff;
1082
1083 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1084 for (t = 1; t < times && *nent < maxnent; ++t) {
1085 do_cpuid_1_ent(&entry[t], function, 0);
1086 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1087 ++*nent;
1088 }
1089 break;
1090 }
1091 /* function 4 and 0xb have additional index. */
1092 case 4: {
1093 int i, cache_type;
1094
1095 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1096 /* read more entries until cache_type is zero */
1097 for (i = 1; *nent < maxnent; ++i) {
1098 cache_type = entry[i - 1].eax & 0x1f;
1099 if (!cache_type)
1100 break;
1101 do_cpuid_1_ent(&entry[i], function, i);
1102 entry[i].flags |=
1103 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1104 ++*nent;
1105 }
1106 break;
1107 }
1108 case 0xb: {
1109 int i, level_type;
1110
1111 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1112 /* read more entries until level_type is zero */
1113 for (i = 1; *nent < maxnent; ++i) {
1114 level_type = entry[i - 1].ecx & 0xff;
1115 if (!level_type)
1116 break;
1117 do_cpuid_1_ent(&entry[i], function, i);
1118 entry[i].flags |=
1119 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1120 ++*nent;
1121 }
1122 break;
1123 }
1124 case 0x80000000:
1125 entry->eax = min(entry->eax, 0x8000001a);
1126 break;
1127 case 0x80000001:
1128 entry->edx &= kvm_supported_word1_x86_features;
1129 entry->ecx &= kvm_supported_word6_x86_features;
1130 break;
1131 }
1132 put_cpu();
1133 }
1134
1135 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1136 struct kvm_cpuid_entry2 __user *entries)
1137 {
1138 struct kvm_cpuid_entry2 *cpuid_entries;
1139 int limit, nent = 0, r = -E2BIG;
1140 u32 func;
1141
1142 if (cpuid->nent < 1)
1143 goto out;
1144 r = -ENOMEM;
1145 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1146 if (!cpuid_entries)
1147 goto out;
1148
1149 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1150 limit = cpuid_entries[0].eax;
1151 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1152 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1153 &nent, cpuid->nent);
1154 r = -E2BIG;
1155 if (nent >= cpuid->nent)
1156 goto out_free;
1157
1158 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1159 limit = cpuid_entries[nent - 1].eax;
1160 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1161 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1162 &nent, cpuid->nent);
1163 r = -EFAULT;
1164 if (copy_to_user(entries, cpuid_entries,
1165 nent * sizeof(struct kvm_cpuid_entry2)))
1166 goto out_free;
1167 cpuid->nent = nent;
1168 r = 0;
1169
1170 out_free:
1171 vfree(cpuid_entries);
1172 out:
1173 return r;
1174 }
1175
1176 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1177 struct kvm_lapic_state *s)
1178 {
1179 vcpu_load(vcpu);
1180 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1181 vcpu_put(vcpu);
1182
1183 return 0;
1184 }
1185
1186 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1187 struct kvm_lapic_state *s)
1188 {
1189 vcpu_load(vcpu);
1190 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1191 kvm_apic_post_state_restore(vcpu);
1192 vcpu_put(vcpu);
1193
1194 return 0;
1195 }
1196
1197 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1198 struct kvm_interrupt *irq)
1199 {
1200 if (irq->irq < 0 || irq->irq >= 256)
1201 return -EINVAL;
1202 if (irqchip_in_kernel(vcpu->kvm))
1203 return -ENXIO;
1204 vcpu_load(vcpu);
1205
1206 set_bit(irq->irq, vcpu->arch.irq_pending);
1207 set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1208
1209 vcpu_put(vcpu);
1210
1211 return 0;
1212 }
1213
1214 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1215 struct kvm_tpr_access_ctl *tac)
1216 {
1217 if (tac->flags)
1218 return -EINVAL;
1219 vcpu->arch.tpr_access_reporting = !!tac->enabled;
1220 return 0;
1221 }
1222
1223 long kvm_arch_vcpu_ioctl(struct file *filp,
1224 unsigned int ioctl, unsigned long arg)
1225 {
1226 struct kvm_vcpu *vcpu = filp->private_data;
1227 void __user *argp = (void __user *)arg;
1228 int r;
1229
1230 switch (ioctl) {
1231 case KVM_GET_LAPIC: {
1232 struct kvm_lapic_state lapic;
1233
1234 memset(&lapic, 0, sizeof lapic);
1235 r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
1236 if (r)
1237 goto out;
1238 r = -EFAULT;
1239 if (copy_to_user(argp, &lapic, sizeof lapic))
1240 goto out;
1241 r = 0;
1242 break;
1243 }
1244 case KVM_SET_LAPIC: {
1245 struct kvm_lapic_state lapic;
1246
1247 r = -EFAULT;
1248 if (copy_from_user(&lapic, argp, sizeof lapic))
1249 goto out;
1250 r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
1251 if (r)
1252 goto out;
1253 r = 0;
1254 break;
1255 }
1256 case KVM_INTERRUPT: {
1257 struct kvm_interrupt irq;
1258
1259 r = -EFAULT;
1260 if (copy_from_user(&irq, argp, sizeof irq))
1261 goto out;
1262 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1263 if (r)
1264 goto out;
1265 r = 0;
1266 break;
1267 }
1268 case KVM_SET_CPUID: {
1269 struct kvm_cpuid __user *cpuid_arg = argp;
1270 struct kvm_cpuid cpuid;
1271
1272 r = -EFAULT;
1273 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1274 goto out;
1275 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1276 if (r)
1277 goto out;
1278 break;
1279 }
1280 case KVM_SET_CPUID2: {
1281 struct kvm_cpuid2 __user *cpuid_arg = argp;
1282 struct kvm_cpuid2 cpuid;
1283
1284 r = -EFAULT;
1285 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1286 goto out;
1287 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1288 cpuid_arg->entries);
1289 if (r)
1290 goto out;
1291 break;
1292 }
1293 case KVM_GET_CPUID2: {
1294 struct kvm_cpuid2 __user *cpuid_arg = argp;
1295 struct kvm_cpuid2 cpuid;
1296
1297 r = -EFAULT;
1298 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1299 goto out;
1300 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1301 cpuid_arg->entries);
1302 if (r)
1303 goto out;
1304 r = -EFAULT;
1305 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1306 goto out;
1307 r = 0;
1308 break;
1309 }
1310 case KVM_GET_MSRS:
1311 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1312 break;
1313 case KVM_SET_MSRS:
1314 r = msr_io(vcpu, argp, do_set_msr, 0);
1315 break;
1316 case KVM_TPR_ACCESS_REPORTING: {
1317 struct kvm_tpr_access_ctl tac;
1318
1319 r = -EFAULT;
1320 if (copy_from_user(&tac, argp, sizeof tac))
1321 goto out;
1322 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1323 if (r)
1324 goto out;
1325 r = -EFAULT;
1326 if (copy_to_user(argp, &tac, sizeof tac))
1327 goto out;
1328 r = 0;
1329 break;
1330 };
1331 case KVM_SET_VAPIC_ADDR: {
1332 struct kvm_vapic_addr va;
1333
1334 r = -EINVAL;
1335 if (!irqchip_in_kernel(vcpu->kvm))
1336 goto out;
1337 r = -EFAULT;
1338 if (copy_from_user(&va, argp, sizeof va))
1339 goto out;
1340 r = 0;
1341 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1342 break;
1343 }
1344 default:
1345 r = -EINVAL;
1346 }
1347 out:
1348 return r;
1349 }
1350
1351 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1352 {
1353 int ret;
1354
1355 if (addr > (unsigned int)(-3 * PAGE_SIZE))
1356 return -1;
1357 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1358 return ret;
1359 }
1360
1361 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1362 u32 kvm_nr_mmu_pages)
1363 {
1364 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1365 return -EINVAL;
1366
1367 down_write(&kvm->slots_lock);
1368
1369 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1370 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1371
1372 up_write(&kvm->slots_lock);
1373 return 0;
1374 }
1375
1376 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1377 {
1378 return kvm->arch.n_alloc_mmu_pages;
1379 }
1380
1381 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1382 {
1383 int i;
1384 struct kvm_mem_alias *alias;
1385
1386 for (i = 0; i < kvm->arch.naliases; ++i) {
1387 alias = &kvm->arch.aliases[i];
1388 if (gfn >= alias->base_gfn
1389 && gfn < alias->base_gfn + alias->npages)
1390 return alias->target_gfn + gfn - alias->base_gfn;
1391 }
1392 return gfn;
1393 }
1394
1395 /*
1396 * Set a new alias region. Aliases map a portion of physical memory into
1397 * another portion. This is useful for memory windows, for example the PC
1398 * VGA region.
1399 */
1400 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1401 struct kvm_memory_alias *alias)
1402 {
1403 int r, n;
1404 struct kvm_mem_alias *p;
1405
1406 r = -EINVAL;
1407 /* General sanity checks */
1408 if (alias->memory_size & (PAGE_SIZE - 1))
1409 goto out;
1410 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1411 goto out;
1412 if (alias->slot >= KVM_ALIAS_SLOTS)
1413 goto out;
1414 if (alias->guest_phys_addr + alias->memory_size
1415 < alias->guest_phys_addr)
1416 goto out;
1417 if (alias->target_phys_addr + alias->memory_size
1418 < alias->target_phys_addr)
1419 goto out;
1420
1421 down_write(&kvm->slots_lock);
1422
1423 p = &kvm->arch.aliases[alias->slot];
1424 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1425 p->npages = alias->memory_size >> PAGE_SHIFT;
1426 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1427
1428 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1429 if (kvm->arch.aliases[n - 1].npages)
1430 break;
1431 kvm->arch.naliases = n;
1432
1433 kvm_mmu_zap_all(kvm);
1434
1435 up_write(&kvm->slots_lock);
1436
1437 return 0;
1438
1439 out:
1440 return r;
1441 }
1442
1443 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1444 {
1445 int r;
1446
1447 r = 0;
1448 switch (chip->chip_id) {
1449 case KVM_IRQCHIP_PIC_MASTER:
1450 memcpy(&chip->chip.pic,
1451 &pic_irqchip(kvm)->pics[0],
1452 sizeof(struct kvm_pic_state));
1453 break;
1454 case KVM_IRQCHIP_PIC_SLAVE:
1455 memcpy(&chip->chip.pic,
1456 &pic_irqchip(kvm)->pics[1],
1457 sizeof(struct kvm_pic_state));
1458 break;
1459 case KVM_IRQCHIP_IOAPIC:
1460 memcpy(&chip->chip.ioapic,
1461 ioapic_irqchip(kvm),
1462 sizeof(struct kvm_ioapic_state));
1463 break;
1464 default:
1465 r = -EINVAL;
1466 break;
1467 }
1468 return r;
1469 }
1470
1471 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1472 {
1473 int r;
1474
1475 r = 0;
1476 switch (chip->chip_id) {
1477 case KVM_IRQCHIP_PIC_MASTER:
1478 memcpy(&pic_irqchip(kvm)->pics[0],
1479 &chip->chip.pic,
1480 sizeof(struct kvm_pic_state));
1481 break;
1482 case KVM_IRQCHIP_PIC_SLAVE:
1483 memcpy(&pic_irqchip(kvm)->pics[1],
1484 &chip->chip.pic,
1485 sizeof(struct kvm_pic_state));
1486 break;
1487 case KVM_IRQCHIP_IOAPIC:
1488 memcpy(ioapic_irqchip(kvm),
1489 &chip->chip.ioapic,
1490 sizeof(struct kvm_ioapic_state));
1491 break;
1492 default:
1493 r = -EINVAL;
1494 break;
1495 }
1496 kvm_pic_update_irq(pic_irqchip(kvm));
1497 return r;
1498 }
1499
1500 /*
1501 * Get (and clear) the dirty memory log for a memory slot.
1502 */
1503 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1504 struct kvm_dirty_log *log)
1505 {
1506 int r;
1507 int n;
1508 struct kvm_memory_slot *memslot;
1509 int is_dirty = 0;
1510
1511 down_write(&kvm->slots_lock);
1512
1513 r = kvm_get_dirty_log(kvm, log, &is_dirty);
1514 if (r)
1515 goto out;
1516
1517 /* If nothing is dirty, don't bother messing with page tables. */
1518 if (is_dirty) {
1519 kvm_mmu_slot_remove_write_access(kvm, log->slot);
1520 kvm_flush_remote_tlbs(kvm);
1521 memslot = &kvm->memslots[log->slot];
1522 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1523 memset(memslot->dirty_bitmap, 0, n);
1524 }
1525 r = 0;
1526 out:
1527 up_write(&kvm->slots_lock);
1528 return r;
1529 }
1530
1531 long kvm_arch_vm_ioctl(struct file *filp,
1532 unsigned int ioctl, unsigned long arg)
1533 {
1534 struct kvm *kvm = filp->private_data;
1535 void __user *argp = (void __user *)arg;
1536 int r = -EINVAL;
1537
1538 switch (ioctl) {
1539 case KVM_SET_TSS_ADDR:
1540 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
1541 if (r < 0)
1542 goto out;
1543 break;
1544 case KVM_SET_MEMORY_REGION: {
1545 struct kvm_memory_region kvm_mem;
1546 struct kvm_userspace_memory_region kvm_userspace_mem;
1547
1548 r = -EFAULT;
1549 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
1550 goto out;
1551 kvm_userspace_mem.slot = kvm_mem.slot;
1552 kvm_userspace_mem.flags = kvm_mem.flags;
1553 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
1554 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
1555 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
1556 if (r)
1557 goto out;
1558 break;
1559 }
1560 case KVM_SET_NR_MMU_PAGES:
1561 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
1562 if (r)
1563 goto out;
1564 break;
1565 case KVM_GET_NR_MMU_PAGES:
1566 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
1567 break;
1568 case KVM_SET_MEMORY_ALIAS: {
1569 struct kvm_memory_alias alias;
1570
1571 r = -EFAULT;
1572 if (copy_from_user(&alias, argp, sizeof alias))
1573 goto out;
1574 r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
1575 if (r)
1576 goto out;
1577 break;
1578 }
1579 case KVM_CREATE_IRQCHIP:
1580 r = -ENOMEM;
1581 kvm->arch.vpic = kvm_create_pic(kvm);
1582 if (kvm->arch.vpic) {
1583 r = kvm_ioapic_init(kvm);
1584 if (r) {
1585 kfree(kvm->arch.vpic);
1586 kvm->arch.vpic = NULL;
1587 goto out;
1588 }
1589 } else
1590 goto out;
1591 break;
1592 case KVM_IRQ_LINE: {
1593 struct kvm_irq_level irq_event;
1594
1595 r = -EFAULT;
1596 if (copy_from_user(&irq_event, argp, sizeof irq_event))
1597 goto out;
1598 if (irqchip_in_kernel(kvm)) {
1599 mutex_lock(&kvm->lock);
1600 if (irq_event.irq < 16)
1601 kvm_pic_set_irq(pic_irqchip(kvm),
1602 irq_event.irq,
1603 irq_event.level);
1604 kvm_ioapic_set_irq(kvm->arch.vioapic,
1605 irq_event.irq,
1606 irq_event.level);
1607 mutex_unlock(&kvm->lock);
1608 r = 0;
1609 }
1610 break;
1611 }
1612 case KVM_GET_IRQCHIP: {
1613 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1614 struct kvm_irqchip chip;
1615
1616 r = -EFAULT;
1617 if (copy_from_user(&chip, argp, sizeof chip))
1618 goto out;
1619 r = -ENXIO;
1620 if (!irqchip_in_kernel(kvm))
1621 goto out;
1622 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
1623 if (r)
1624 goto out;
1625 r = -EFAULT;
1626 if (copy_to_user(argp, &chip, sizeof chip))
1627 goto out;
1628 r = 0;
1629 break;
1630 }
1631 case KVM_SET_IRQCHIP: {
1632 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1633 struct kvm_irqchip chip;
1634
1635 r = -EFAULT;
1636 if (copy_from_user(&chip, argp, sizeof chip))
1637 goto out;
1638 r = -ENXIO;
1639 if (!irqchip_in_kernel(kvm))
1640 goto out;
1641 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
1642 if (r)
1643 goto out;
1644 r = 0;
1645 break;
1646 }
1647 default:
1648 ;
1649 }
1650 out:
1651 return r;
1652 }
1653
1654 static void kvm_init_msr_list(void)
1655 {
1656 u32 dummy[2];
1657 unsigned i, j;
1658
1659 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
1660 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
1661 continue;
1662 if (j < i)
1663 msrs_to_save[j] = msrs_to_save[i];
1664 j++;
1665 }
1666 num_msrs_to_save = j;
1667 }
1668
1669 /*
1670 * Only apic need an MMIO device hook, so shortcut now..
1671 */
1672 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
1673 gpa_t addr)
1674 {
1675 struct kvm_io_device *dev;
1676
1677 if (vcpu->arch.apic) {
1678 dev = &vcpu->arch.apic->dev;
1679 if (dev->in_range(dev, addr))
1680 return dev;
1681 }
1682 return NULL;
1683 }
1684
1685
1686 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1687 gpa_t addr)
1688 {
1689 struct kvm_io_device *dev;
1690
1691 dev = vcpu_find_pervcpu_dev(vcpu, addr);
1692 if (dev == NULL)
1693 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
1694 return dev;
1695 }
1696
1697 int emulator_read_std(unsigned long addr,
1698 void *val,
1699 unsigned int bytes,
1700 struct kvm_vcpu *vcpu)
1701 {
1702 void *data = val;
1703 int r = X86EMUL_CONTINUE;
1704
1705 down_read(&vcpu->kvm->slots_lock);
1706 while (bytes) {
1707 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1708 unsigned offset = addr & (PAGE_SIZE-1);
1709 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
1710 int ret;
1711
1712 if (gpa == UNMAPPED_GVA) {
1713 r = X86EMUL_PROPAGATE_FAULT;
1714 goto out;
1715 }
1716 ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
1717 if (ret < 0) {
1718 r = X86EMUL_UNHANDLEABLE;
1719 goto out;
1720 }
1721
1722 bytes -= tocopy;
1723 data += tocopy;
1724 addr += tocopy;
1725 }
1726 out:
1727 up_read(&vcpu->kvm->slots_lock);
1728 return r;
1729 }
1730 EXPORT_SYMBOL_GPL(emulator_read_std);
1731
1732 static int emulator_read_emulated(unsigned long addr,
1733 void *val,
1734 unsigned int bytes,
1735 struct kvm_vcpu *vcpu)
1736 {
1737 struct kvm_io_device *mmio_dev;
1738 gpa_t gpa;
1739
1740 if (vcpu->mmio_read_completed) {
1741 memcpy(val, vcpu->mmio_data, bytes);
1742 vcpu->mmio_read_completed = 0;
1743 return X86EMUL_CONTINUE;
1744 }
1745
1746 down_read(&vcpu->kvm->slots_lock);
1747 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1748 up_read(&vcpu->kvm->slots_lock);
1749
1750 /* For APIC access vmexit */
1751 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1752 goto mmio;
1753
1754 if (emulator_read_std(addr, val, bytes, vcpu)
1755 == X86EMUL_CONTINUE)
1756 return X86EMUL_CONTINUE;
1757 if (gpa == UNMAPPED_GVA)
1758 return X86EMUL_PROPAGATE_FAULT;
1759
1760 mmio:
1761 /*
1762 * Is this MMIO handled locally?
1763 */
1764 mutex_lock(&vcpu->kvm->lock);
1765 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1766 if (mmio_dev) {
1767 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1768 mutex_unlock(&vcpu->kvm->lock);
1769 return X86EMUL_CONTINUE;
1770 }
1771 mutex_unlock(&vcpu->kvm->lock);
1772
1773 vcpu->mmio_needed = 1;
1774 vcpu->mmio_phys_addr = gpa;
1775 vcpu->mmio_size = bytes;
1776 vcpu->mmio_is_write = 0;
1777
1778 return X86EMUL_UNHANDLEABLE;
1779 }
1780
1781 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1782 const void *val, int bytes)
1783 {
1784 int ret;
1785
1786 down_read(&vcpu->kvm->slots_lock);
1787 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
1788 if (ret < 0) {
1789 up_read(&vcpu->kvm->slots_lock);
1790 return 0;
1791 }
1792 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
1793 up_read(&vcpu->kvm->slots_lock);
1794 return 1;
1795 }
1796
1797 static int emulator_write_emulated_onepage(unsigned long addr,
1798 const void *val,
1799 unsigned int bytes,
1800 struct kvm_vcpu *vcpu)
1801 {
1802 struct kvm_io_device *mmio_dev;
1803 gpa_t gpa;
1804
1805 down_read(&vcpu->kvm->slots_lock);
1806 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1807 up_read(&vcpu->kvm->slots_lock);
1808
1809 if (gpa == UNMAPPED_GVA) {
1810 kvm_inject_page_fault(vcpu, addr, 2);
1811 return X86EMUL_PROPAGATE_FAULT;
1812 }
1813
1814 /* For APIC access vmexit */
1815 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1816 goto mmio;
1817
1818 if (emulator_write_phys(vcpu, gpa, val, bytes))
1819 return X86EMUL_CONTINUE;
1820
1821 mmio:
1822 /*
1823 * Is this MMIO handled locally?
1824 */
1825 mutex_lock(&vcpu->kvm->lock);
1826 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1827 if (mmio_dev) {
1828 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1829 mutex_unlock(&vcpu->kvm->lock);
1830 return X86EMUL_CONTINUE;
1831 }
1832 mutex_unlock(&vcpu->kvm->lock);
1833
1834 vcpu->mmio_needed = 1;
1835 vcpu->mmio_phys_addr = gpa;
1836 vcpu->mmio_size = bytes;
1837 vcpu->mmio_is_write = 1;
1838 memcpy(vcpu->mmio_data, val, bytes);
1839
1840 return X86EMUL_CONTINUE;
1841 }
1842
1843 int emulator_write_emulated(unsigned long addr,
1844 const void *val,
1845 unsigned int bytes,
1846 struct kvm_vcpu *vcpu)
1847 {
1848 /* Crossing a page boundary? */
1849 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
1850 int rc, now;
1851
1852 now = -addr & ~PAGE_MASK;
1853 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
1854 if (rc != X86EMUL_CONTINUE)
1855 return rc;
1856 addr += now;
1857 val += now;
1858 bytes -= now;
1859 }
1860 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
1861 }
1862 EXPORT_SYMBOL_GPL(emulator_write_emulated);
1863
1864 static int emulator_cmpxchg_emulated(unsigned long addr,
1865 const void *old,
1866 const void *new,
1867 unsigned int bytes,
1868 struct kvm_vcpu *vcpu)
1869 {
1870 static int reported;
1871
1872 if (!reported) {
1873 reported = 1;
1874 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1875 }
1876 #ifndef CONFIG_X86_64
1877 /* guests cmpxchg8b have to be emulated atomically */
1878 if (bytes == 8) {
1879 gpa_t gpa;
1880 struct page *page;
1881 char *kaddr;
1882 u64 val;
1883
1884 down_read(&vcpu->kvm->slots_lock);
1885 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1886
1887 if (gpa == UNMAPPED_GVA ||
1888 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1889 goto emul_write;
1890
1891 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
1892 goto emul_write;
1893
1894 val = *(u64 *)new;
1895
1896 down_read(&current->mm->mmap_sem);
1897 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1898 up_read(&current->mm->mmap_sem);
1899
1900 kaddr = kmap_atomic(page, KM_USER0);
1901 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
1902 kunmap_atomic(kaddr, KM_USER0);
1903 kvm_release_page_dirty(page);
1904 emul_write:
1905 up_read(&vcpu->kvm->slots_lock);
1906 }
1907 #endif
1908
1909 return emulator_write_emulated(addr, new, bytes, vcpu);
1910 }
1911
1912 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
1913 {
1914 return kvm_x86_ops->get_segment_base(vcpu, seg);
1915 }
1916
1917 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1918 {
1919 return X86EMUL_CONTINUE;
1920 }
1921
1922 int emulate_clts(struct kvm_vcpu *vcpu)
1923 {
1924 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
1925 return X86EMUL_CONTINUE;
1926 }
1927
1928 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
1929 {
1930 struct kvm_vcpu *vcpu = ctxt->vcpu;
1931
1932 switch (dr) {
1933 case 0 ... 3:
1934 *dest = kvm_x86_ops->get_dr(vcpu, dr);
1935 return X86EMUL_CONTINUE;
1936 default:
1937 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
1938 return X86EMUL_UNHANDLEABLE;
1939 }
1940 }
1941
1942 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1943 {
1944 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1945 int exception;
1946
1947 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1948 if (exception) {
1949 /* FIXME: better handling */
1950 return X86EMUL_UNHANDLEABLE;
1951 }
1952 return X86EMUL_CONTINUE;
1953 }
1954
1955 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
1956 {
1957 static int reported;
1958 u8 opcodes[4];
1959 unsigned long rip = vcpu->arch.rip;
1960 unsigned long rip_linear;
1961
1962 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
1963
1964 if (reported)
1965 return;
1966
1967 emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
1968
1969 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
1970 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1971 reported = 1;
1972 }
1973 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
1974
1975 static struct x86_emulate_ops emulate_ops = {
1976 .read_std = emulator_read_std,
1977 .read_emulated = emulator_read_emulated,
1978 .write_emulated = emulator_write_emulated,
1979 .cmpxchg_emulated = emulator_cmpxchg_emulated,
1980 };
1981
1982 int emulate_instruction(struct kvm_vcpu *vcpu,
1983 struct kvm_run *run,
1984 unsigned long cr2,
1985 u16 error_code,
1986 int emulation_type)
1987 {
1988 int r;
1989 struct decode_cache *c;
1990
1991 vcpu->arch.mmio_fault_cr2 = cr2;
1992 kvm_x86_ops->cache_regs(vcpu);
1993
1994 vcpu->mmio_is_write = 0;
1995 vcpu->arch.pio.string = 0;
1996
1997 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
1998 int cs_db, cs_l;
1999 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2000
2001 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2002 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2003 vcpu->arch.emulate_ctxt.mode =
2004 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2005 ? X86EMUL_MODE_REAL : cs_l
2006 ? X86EMUL_MODE_PROT64 : cs_db
2007 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2008
2009 if (vcpu->arch.emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
2010 vcpu->arch.emulate_ctxt.cs_base = 0;
2011 vcpu->arch.emulate_ctxt.ds_base = 0;
2012 vcpu->arch.emulate_ctxt.es_base = 0;
2013 vcpu->arch.emulate_ctxt.ss_base = 0;
2014 } else {
2015 vcpu->arch.emulate_ctxt.cs_base =
2016 get_segment_base(vcpu, VCPU_SREG_CS);
2017 vcpu->arch.emulate_ctxt.ds_base =
2018 get_segment_base(vcpu, VCPU_SREG_DS);
2019 vcpu->arch.emulate_ctxt.es_base =
2020 get_segment_base(vcpu, VCPU_SREG_ES);
2021 vcpu->arch.emulate_ctxt.ss_base =
2022 get_segment_base(vcpu, VCPU_SREG_SS);
2023 }
2024
2025 vcpu->arch.emulate_ctxt.gs_base =
2026 get_segment_base(vcpu, VCPU_SREG_GS);
2027 vcpu->arch.emulate_ctxt.fs_base =
2028 get_segment_base(vcpu, VCPU_SREG_FS);
2029
2030 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2031
2032 /* Reject the instructions other than VMCALL/VMMCALL when
2033 * try to emulate invalid opcode */
2034 c = &vcpu->arch.emulate_ctxt.decode;
2035 if ((emulation_type & EMULTYPE_TRAP_UD) &&
2036 (!(c->twobyte && c->b == 0x01 &&
2037 (c->modrm_reg == 0 || c->modrm_reg == 3) &&
2038 c->modrm_mod == 3 && c->modrm_rm == 1)))
2039 return EMULATE_FAIL;
2040
2041 ++vcpu->stat.insn_emulation;
2042 if (r) {
2043 ++vcpu->stat.insn_emulation_fail;
2044 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2045 return EMULATE_DONE;
2046 return EMULATE_FAIL;
2047 }
2048 }
2049
2050 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2051
2052 if (vcpu->arch.pio.string)
2053 return EMULATE_DO_MMIO;
2054
2055 if ((r || vcpu->mmio_is_write) && run) {
2056 run->exit_reason = KVM_EXIT_MMIO;
2057 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2058 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2059 run->mmio.len = vcpu->mmio_size;
2060 run->mmio.is_write = vcpu->mmio_is_write;
2061 }
2062
2063 if (r) {
2064 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2065 return EMULATE_DONE;
2066 if (!vcpu->mmio_needed) {
2067 kvm_report_emulation_failure(vcpu, "mmio");
2068 return EMULATE_FAIL;
2069 }
2070 return EMULATE_DO_MMIO;
2071 }
2072
2073 kvm_x86_ops->decache_regs(vcpu);
2074 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2075
2076 if (vcpu->mmio_is_write) {
2077 vcpu->mmio_needed = 0;
2078 return EMULATE_DO_MMIO;
2079 }
2080
2081 return EMULATE_DONE;
2082 }
2083 EXPORT_SYMBOL_GPL(emulate_instruction);
2084
2085 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
2086 {
2087 int i;
2088
2089 for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
2090 if (vcpu->arch.pio.guest_pages[i]) {
2091 kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
2092 vcpu->arch.pio.guest_pages[i] = NULL;
2093 }
2094 }
2095
2096 static int pio_copy_data(struct kvm_vcpu *vcpu)
2097 {
2098 void *p = vcpu->arch.pio_data;
2099 void *q;
2100 unsigned bytes;
2101 int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
2102
2103 q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
2104 PAGE_KERNEL);
2105 if (!q) {
2106 free_pio_guest_pages(vcpu);
2107 return -ENOMEM;
2108 }
2109 q += vcpu->arch.pio.guest_page_offset;
2110 bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2111 if (vcpu->arch.pio.in)
2112 memcpy(q, p, bytes);
2113 else
2114 memcpy(p, q, bytes);
2115 q -= vcpu->arch.pio.guest_page_offset;
2116 vunmap(q);
2117 free_pio_guest_pages(vcpu);
2118 return 0;
2119 }
2120
2121 int complete_pio(struct kvm_vcpu *vcpu)
2122 {
2123 struct kvm_pio_request *io = &vcpu->arch.pio;
2124 long delta;
2125 int r;
2126
2127 kvm_x86_ops->cache_regs(vcpu);
2128
2129 if (!io->string) {
2130 if (io->in)
2131 memcpy(&vcpu->arch.regs[VCPU_REGS_RAX], vcpu->arch.pio_data,
2132 io->size);
2133 } else {
2134 if (io->in) {
2135 r = pio_copy_data(vcpu);
2136 if (r) {
2137 kvm_x86_ops->cache_regs(vcpu);
2138 return r;
2139 }
2140 }
2141
2142 delta = 1;
2143 if (io->rep) {
2144 delta *= io->cur_count;
2145 /*
2146 * The size of the register should really depend on
2147 * current address size.
2148 */
2149 vcpu->arch.regs[VCPU_REGS_RCX] -= delta;
2150 }
2151 if (io->down)
2152 delta = -delta;
2153 delta *= io->size;
2154 if (io->in)
2155 vcpu->arch.regs[VCPU_REGS_RDI] += delta;
2156 else
2157 vcpu->arch.regs[VCPU_REGS_RSI] += delta;
2158 }
2159
2160 kvm_x86_ops->decache_regs(vcpu);
2161
2162 io->count -= io->cur_count;
2163 io->cur_count = 0;
2164
2165 return 0;
2166 }
2167
2168 static void kernel_pio(struct kvm_io_device *pio_dev,
2169 struct kvm_vcpu *vcpu,
2170 void *pd)
2171 {
2172 /* TODO: String I/O for in kernel device */
2173
2174 mutex_lock(&vcpu->kvm->lock);
2175 if (vcpu->arch.pio.in)
2176 kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
2177 vcpu->arch.pio.size,
2178 pd);
2179 else
2180 kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
2181 vcpu->arch.pio.size,
2182 pd);
2183 mutex_unlock(&vcpu->kvm->lock);
2184 }
2185
2186 static void pio_string_write(struct kvm_io_device *pio_dev,
2187 struct kvm_vcpu *vcpu)
2188 {
2189 struct kvm_pio_request *io = &vcpu->arch.pio;
2190 void *pd = vcpu->arch.pio_data;
2191 int i;
2192
2193 mutex_lock(&vcpu->kvm->lock);
2194 for (i = 0; i < io->cur_count; i++) {
2195 kvm_iodevice_write(pio_dev, io->port,
2196 io->size,
2197 pd);
2198 pd += io->size;
2199 }
2200 mutex_unlock(&vcpu->kvm->lock);
2201 }
2202
2203 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2204 gpa_t addr)
2205 {
2206 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
2207 }
2208
2209 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2210 int size, unsigned port)
2211 {
2212 struct kvm_io_device *pio_dev;
2213
2214 vcpu->run->exit_reason = KVM_EXIT_IO;
2215 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2216 vcpu->run->io.size = vcpu->arch.pio.size = size;
2217 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2218 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2219 vcpu->run->io.port = vcpu->arch.pio.port = port;
2220 vcpu->arch.pio.in = in;
2221 vcpu->arch.pio.string = 0;
2222 vcpu->arch.pio.down = 0;
2223 vcpu->arch.pio.guest_page_offset = 0;
2224 vcpu->arch.pio.rep = 0;
2225
2226 kvm_x86_ops->cache_regs(vcpu);
2227 memcpy(vcpu->arch.pio_data, &vcpu->arch.regs[VCPU_REGS_RAX], 4);
2228 kvm_x86_ops->decache_regs(vcpu);
2229
2230 kvm_x86_ops->skip_emulated_instruction(vcpu);
2231
2232 pio_dev = vcpu_find_pio_dev(vcpu, port);
2233 if (pio_dev) {
2234 kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2235 complete_pio(vcpu);
2236 return 1;
2237 }
2238 return 0;
2239 }
2240 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2241
2242 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2243 int size, unsigned long count, int down,
2244 gva_t address, int rep, unsigned port)
2245 {
2246 unsigned now, in_page;
2247 int i, ret = 0;
2248 int nr_pages = 1;
2249 struct page *page;
2250 struct kvm_io_device *pio_dev;
2251
2252 vcpu->run->exit_reason = KVM_EXIT_IO;
2253 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2254 vcpu->run->io.size = vcpu->arch.pio.size = size;
2255 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2256 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2257 vcpu->run->io.port = vcpu->arch.pio.port = port;
2258 vcpu->arch.pio.in = in;
2259 vcpu->arch.pio.string = 1;
2260 vcpu->arch.pio.down = down;
2261 vcpu->arch.pio.guest_page_offset = offset_in_page(address);
2262 vcpu->arch.pio.rep = rep;
2263
2264 if (!count) {
2265 kvm_x86_ops->skip_emulated_instruction(vcpu);
2266 return 1;
2267 }
2268
2269 if (!down)
2270 in_page = PAGE_SIZE - offset_in_page(address);
2271 else
2272 in_page = offset_in_page(address) + size;
2273 now = min(count, (unsigned long)in_page / size);
2274 if (!now) {
2275 /*
2276 * String I/O straddles page boundary. Pin two guest pages
2277 * so that we satisfy atomicity constraints. Do just one
2278 * transaction to avoid complexity.
2279 */
2280 nr_pages = 2;
2281 now = 1;
2282 }
2283 if (down) {
2284 /*
2285 * String I/O in reverse. Yuck. Kill the guest, fix later.
2286 */
2287 pr_unimpl(vcpu, "guest string pio down\n");
2288 kvm_inject_gp(vcpu, 0);
2289 return 1;
2290 }
2291 vcpu->run->io.count = now;
2292 vcpu->arch.pio.cur_count = now;
2293
2294 if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2295 kvm_x86_ops->skip_emulated_instruction(vcpu);
2296
2297 for (i = 0; i < nr_pages; ++i) {
2298 down_read(&vcpu->kvm->slots_lock);
2299 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
2300 vcpu->arch.pio.guest_pages[i] = page;
2301 up_read(&vcpu->kvm->slots_lock);
2302 if (!page) {
2303 kvm_inject_gp(vcpu, 0);
2304 free_pio_guest_pages(vcpu);
2305 return 1;
2306 }
2307 }
2308
2309 pio_dev = vcpu_find_pio_dev(vcpu, port);
2310 if (!vcpu->arch.pio.in) {
2311 /* string PIO write */
2312 ret = pio_copy_data(vcpu);
2313 if (ret >= 0 && pio_dev) {
2314 pio_string_write(pio_dev, vcpu);
2315 complete_pio(vcpu);
2316 if (vcpu->arch.pio.count == 0)
2317 ret = 1;
2318 }
2319 } else if (pio_dev)
2320 pr_unimpl(vcpu, "no string pio read support yet, "
2321 "port %x size %d count %ld\n",
2322 port, size, count);
2323
2324 return ret;
2325 }
2326 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2327
2328 int kvm_arch_init(void *opaque)
2329 {
2330 int r;
2331 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
2332
2333 if (kvm_x86_ops) {
2334 printk(KERN_ERR "kvm: already loaded the other module\n");
2335 r = -EEXIST;
2336 goto out;
2337 }
2338
2339 if (!ops->cpu_has_kvm_support()) {
2340 printk(KERN_ERR "kvm: no hardware support\n");
2341 r = -EOPNOTSUPP;
2342 goto out;
2343 }
2344 if (ops->disabled_by_bios()) {
2345 printk(KERN_ERR "kvm: disabled by bios\n");
2346 r = -EOPNOTSUPP;
2347 goto out;
2348 }
2349
2350 r = kvm_mmu_module_init();
2351 if (r)
2352 goto out;
2353
2354 kvm_init_msr_list();
2355
2356 kvm_x86_ops = ops;
2357 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2358 return 0;
2359
2360 out:
2361 return r;
2362 }
2363
2364 void kvm_arch_exit(void)
2365 {
2366 kvm_x86_ops = NULL;
2367 kvm_mmu_module_exit();
2368 }
2369
2370 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
2371 {
2372 ++vcpu->stat.halt_exits;
2373 if (irqchip_in_kernel(vcpu->kvm)) {
2374 vcpu->arch.mp_state = VCPU_MP_STATE_HALTED;
2375 kvm_vcpu_block(vcpu);
2376 if (vcpu->arch.mp_state != VCPU_MP_STATE_RUNNABLE)
2377 return -EINTR;
2378 return 1;
2379 } else {
2380 vcpu->run->exit_reason = KVM_EXIT_HLT;
2381 return 0;
2382 }
2383 }
2384 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
2385
2386 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
2387 {
2388 unsigned long nr, a0, a1, a2, a3, ret;
2389
2390 kvm_x86_ops->cache_regs(vcpu);
2391
2392 nr = vcpu->arch.regs[VCPU_REGS_RAX];
2393 a0 = vcpu->arch.regs[VCPU_REGS_RBX];
2394 a1 = vcpu->arch.regs[VCPU_REGS_RCX];
2395 a2 = vcpu->arch.regs[VCPU_REGS_RDX];
2396 a3 = vcpu->arch.regs[VCPU_REGS_RSI];
2397
2398 if (!is_long_mode(vcpu)) {
2399 nr &= 0xFFFFFFFF;
2400 a0 &= 0xFFFFFFFF;
2401 a1 &= 0xFFFFFFFF;
2402 a2 &= 0xFFFFFFFF;
2403 a3 &= 0xFFFFFFFF;
2404 }
2405
2406 switch (nr) {
2407 case KVM_HC_VAPIC_POLL_IRQ:
2408 ret = 0;
2409 break;
2410 default:
2411 ret = -KVM_ENOSYS;
2412 break;
2413 }
2414 vcpu->arch.regs[VCPU_REGS_RAX] = ret;
2415 kvm_x86_ops->decache_regs(vcpu);
2416 ++vcpu->stat.hypercalls;
2417 return 0;
2418 }
2419 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
2420
2421 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
2422 {
2423 char instruction[3];
2424 int ret = 0;
2425
2426
2427 /*
2428 * Blow out the MMU to ensure that no other VCPU has an active mapping
2429 * to ensure that the updated hypercall appears atomically across all
2430 * VCPUs.
2431 */
2432 kvm_mmu_zap_all(vcpu->kvm);
2433
2434 kvm_x86_ops->cache_regs(vcpu);
2435 kvm_x86_ops->patch_hypercall(vcpu, instruction);
2436 if (emulator_write_emulated(vcpu->arch.rip, instruction, 3, vcpu)
2437 != X86EMUL_CONTINUE)
2438 ret = -EFAULT;
2439
2440 return ret;
2441 }
2442
2443 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
2444 {
2445 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
2446 }
2447
2448 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2449 {
2450 struct descriptor_table dt = { limit, base };
2451
2452 kvm_x86_ops->set_gdt(vcpu, &dt);
2453 }
2454
2455 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2456 {
2457 struct descriptor_table dt = { limit, base };
2458
2459 kvm_x86_ops->set_idt(vcpu, &dt);
2460 }
2461
2462 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
2463 unsigned long *rflags)
2464 {
2465 lmsw(vcpu, msw);
2466 *rflags = kvm_x86_ops->get_rflags(vcpu);
2467 }
2468
2469 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
2470 {
2471 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2472 switch (cr) {
2473 case 0:
2474 return vcpu->arch.cr0;
2475 case 2:
2476 return vcpu->arch.cr2;
2477 case 3:
2478 return vcpu->arch.cr3;
2479 case 4:
2480 return vcpu->arch.cr4;
2481 case 8:
2482 return get_cr8(vcpu);
2483 default:
2484 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
2485 return 0;
2486 }
2487 }
2488
2489 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
2490 unsigned long *rflags)
2491 {
2492 switch (cr) {
2493 case 0:
2494 set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2495 *rflags = kvm_x86_ops->get_rflags(vcpu);
2496 break;
2497 case 2:
2498 vcpu->arch.cr2 = val;
2499 break;
2500 case 3:
2501 set_cr3(vcpu, val);
2502 break;
2503 case 4:
2504 set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2505 break;
2506 case 8:
2507 set_cr8(vcpu, val & 0xfUL);
2508 break;
2509 default:
2510 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
2511 }
2512 }
2513
2514 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
2515 {
2516 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
2517 int j, nent = vcpu->arch.cpuid_nent;
2518
2519 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
2520 /* when no next entry is found, the current entry[i] is reselected */
2521 for (j = i + 1; j == i; j = (j + 1) % nent) {
2522 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2523 if (ej->function == e->function) {
2524 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2525 return j;
2526 }
2527 }
2528 return 0; /* silence gcc, even though control never reaches here */
2529 }
2530
2531 /* find an entry with matching function, matching index (if needed), and that
2532 * should be read next (if it's stateful) */
2533 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
2534 u32 function, u32 index)
2535 {
2536 if (e->function != function)
2537 return 0;
2538 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
2539 return 0;
2540 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
2541 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
2542 return 0;
2543 return 1;
2544 }
2545
2546 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
2547 {
2548 int i;
2549 u32 function, index;
2550 struct kvm_cpuid_entry2 *e, *best;
2551
2552 kvm_x86_ops->cache_regs(vcpu);
2553 function = vcpu->arch.regs[VCPU_REGS_RAX];
2554 index = vcpu->arch.regs[VCPU_REGS_RCX];
2555 vcpu->arch.regs[VCPU_REGS_RAX] = 0;
2556 vcpu->arch.regs[VCPU_REGS_RBX] = 0;
2557 vcpu->arch.regs[VCPU_REGS_RCX] = 0;
2558 vcpu->arch.regs[VCPU_REGS_RDX] = 0;
2559 best = NULL;
2560 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2561 e = &vcpu->arch.cpuid_entries[i];
2562 if (is_matching_cpuid_entry(e, function, index)) {
2563 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
2564 move_to_next_stateful_cpuid_entry(vcpu, i);
2565 best = e;
2566 break;
2567 }
2568 /*
2569 * Both basic or both extended?
2570 */
2571 if (((e->function ^ function) & 0x80000000) == 0)
2572 if (!best || e->function > best->function)
2573 best = e;
2574 }
2575 if (best) {
2576 vcpu->arch.regs[VCPU_REGS_RAX] = best->eax;
2577 vcpu->arch.regs[VCPU_REGS_RBX] = best->ebx;
2578 vcpu->arch.regs[VCPU_REGS_RCX] = best->ecx;
2579 vcpu->arch.regs[VCPU_REGS_RDX] = best->edx;
2580 }
2581 kvm_x86_ops->decache_regs(vcpu);
2582 kvm_x86_ops->skip_emulated_instruction(vcpu);
2583 }
2584 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
2585
2586 /*
2587 * Check if userspace requested an interrupt window, and that the
2588 * interrupt window is open.
2589 *
2590 * No need to exit to userspace if we already have an interrupt queued.
2591 */
2592 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
2593 struct kvm_run *kvm_run)
2594 {
2595 return (!vcpu->arch.irq_summary &&
2596 kvm_run->request_interrupt_window &&
2597 vcpu->arch.interrupt_window_open &&
2598 (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
2599 }
2600
2601 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
2602 struct kvm_run *kvm_run)
2603 {
2604 kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
2605 kvm_run->cr8 = get_cr8(vcpu);
2606 kvm_run->apic_base = kvm_get_apic_base(vcpu);
2607 if (irqchip_in_kernel(vcpu->kvm))
2608 kvm_run->ready_for_interrupt_injection = 1;
2609 else
2610 kvm_run->ready_for_interrupt_injection =
2611 (vcpu->arch.interrupt_window_open &&
2612 vcpu->arch.irq_summary == 0);
2613 }
2614
2615 static void vapic_enter(struct kvm_vcpu *vcpu)
2616 {
2617 struct kvm_lapic *apic = vcpu->arch.apic;
2618 struct page *page;
2619
2620 if (!apic || !apic->vapic_addr)
2621 return;
2622
2623 down_read(&current->mm->mmap_sem);
2624 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2625 up_read(&current->mm->mmap_sem);
2626
2627 vcpu->arch.apic->vapic_page = page;
2628 }
2629
2630 static void vapic_exit(struct kvm_vcpu *vcpu)
2631 {
2632 struct kvm_lapic *apic = vcpu->arch.apic;
2633
2634 if (!apic || !apic->vapic_addr)
2635 return;
2636
2637 kvm_release_page_dirty(apic->vapic_page);
2638 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2639 }
2640
2641 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2642 {
2643 int r;
2644
2645 if (unlikely(vcpu->arch.mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
2646 pr_debug("vcpu %d received sipi with vector # %x\n",
2647 vcpu->vcpu_id, vcpu->arch.sipi_vector);
2648 kvm_lapic_reset(vcpu);
2649 r = kvm_x86_ops->vcpu_reset(vcpu);
2650 if (r)
2651 return r;
2652 vcpu->arch.mp_state = VCPU_MP_STATE_RUNNABLE;
2653 }
2654
2655 vapic_enter(vcpu);
2656
2657 preempted:
2658 if (vcpu->guest_debug.enabled)
2659 kvm_x86_ops->guest_debug_pre(vcpu);
2660
2661 again:
2662 if (vcpu->requests)
2663 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
2664 kvm_mmu_unload(vcpu);
2665
2666 r = kvm_mmu_reload(vcpu);
2667 if (unlikely(r))
2668 goto out;
2669
2670 if (vcpu->requests) {
2671 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
2672 __kvm_migrate_apic_timer(vcpu);
2673 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
2674 &vcpu->requests)) {
2675 kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
2676 r = 0;
2677 goto out;
2678 }
2679 }
2680
2681 kvm_inject_pending_timer_irqs(vcpu);
2682
2683 preempt_disable();
2684
2685 kvm_x86_ops->prepare_guest_switch(vcpu);
2686 kvm_load_guest_fpu(vcpu);
2687
2688 local_irq_disable();
2689
2690 if (need_resched()) {
2691 local_irq_enable();
2692 preempt_enable();
2693 r = 1;
2694 goto out;
2695 }
2696
2697 if (vcpu->requests)
2698 if (test_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests)) {
2699 local_irq_enable();
2700 preempt_enable();
2701 r = 1;
2702 goto out;
2703 }
2704
2705 if (signal_pending(current)) {
2706 local_irq_enable();
2707 preempt_enable();
2708 r = -EINTR;
2709 kvm_run->exit_reason = KVM_EXIT_INTR;
2710 ++vcpu->stat.signal_exits;
2711 goto out;
2712 }
2713
2714 if (vcpu->arch.exception.pending)
2715 __queue_exception(vcpu);
2716 else if (irqchip_in_kernel(vcpu->kvm))
2717 kvm_x86_ops->inject_pending_irq(vcpu);
2718 else
2719 kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
2720
2721 kvm_lapic_sync_to_vapic(vcpu);
2722
2723 vcpu->guest_mode = 1;
2724 kvm_guest_enter();
2725
2726 if (vcpu->requests)
2727 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
2728 kvm_x86_ops->tlb_flush(vcpu);
2729
2730 kvm_x86_ops->run(vcpu, kvm_run);
2731
2732 vcpu->guest_mode = 0;
2733 local_irq_enable();
2734
2735 ++vcpu->stat.exits;
2736
2737 /*
2738 * We must have an instruction between local_irq_enable() and
2739 * kvm_guest_exit(), so the timer interrupt isn't delayed by
2740 * the interrupt shadow. The stat.exits increment will do nicely.
2741 * But we need to prevent reordering, hence this barrier():
2742 */
2743 barrier();
2744
2745 kvm_guest_exit();
2746
2747 preempt_enable();
2748
2749 /*
2750 * Profile KVM exit RIPs:
2751 */
2752 if (unlikely(prof_on == KVM_PROFILING)) {
2753 kvm_x86_ops->cache_regs(vcpu);
2754 profile_hit(KVM_PROFILING, (void *)vcpu->arch.rip);
2755 }
2756
2757 if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
2758 vcpu->arch.exception.pending = false;
2759
2760 kvm_lapic_sync_from_vapic(vcpu);
2761
2762 r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
2763
2764 if (r > 0) {
2765 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
2766 r = -EINTR;
2767 kvm_run->exit_reason = KVM_EXIT_INTR;
2768 ++vcpu->stat.request_irq_exits;
2769 goto out;
2770 }
2771 if (!need_resched())
2772 goto again;
2773 }
2774
2775 out:
2776 if (r > 0) {
2777 kvm_resched(vcpu);
2778 goto preempted;
2779 }
2780
2781 post_kvm_run_save(vcpu, kvm_run);
2782
2783 vapic_exit(vcpu);
2784
2785 return r;
2786 }
2787
2788 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2789 {
2790 int r;
2791 sigset_t sigsaved;
2792
2793 vcpu_load(vcpu);
2794
2795 if (unlikely(vcpu->arch.mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
2796 kvm_vcpu_block(vcpu);
2797 vcpu_put(vcpu);
2798 return -EAGAIN;
2799 }
2800
2801 if (vcpu->sigset_active)
2802 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
2803
2804 /* re-sync apic's tpr */
2805 if (!irqchip_in_kernel(vcpu->kvm))
2806 set_cr8(vcpu, kvm_run->cr8);
2807
2808 if (vcpu->arch.pio.cur_count) {
2809 r = complete_pio(vcpu);
2810 if (r)
2811 goto out;
2812 }
2813 #if CONFIG_HAS_IOMEM
2814 if (vcpu->mmio_needed) {
2815 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
2816 vcpu->mmio_read_completed = 1;
2817 vcpu->mmio_needed = 0;
2818 r = emulate_instruction(vcpu, kvm_run,
2819 vcpu->arch.mmio_fault_cr2, 0,
2820 EMULTYPE_NO_DECODE);
2821 if (r == EMULATE_DO_MMIO) {
2822 /*
2823 * Read-modify-write. Back to userspace.
2824 */
2825 r = 0;
2826 goto out;
2827 }
2828 }
2829 #endif
2830 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
2831 kvm_x86_ops->cache_regs(vcpu);
2832 vcpu->arch.regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
2833 kvm_x86_ops->decache_regs(vcpu);
2834 }
2835
2836 r = __vcpu_run(vcpu, kvm_run);
2837
2838 out:
2839 if (vcpu->sigset_active)
2840 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2841
2842 vcpu_put(vcpu);
2843 return r;
2844 }
2845
2846 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
2847 {
2848 vcpu_load(vcpu);
2849
2850 kvm_x86_ops->cache_regs(vcpu);
2851
2852 regs->rax = vcpu->arch.regs[VCPU_REGS_RAX];
2853 regs->rbx = vcpu->arch.regs[VCPU_REGS_RBX];
2854 regs->rcx = vcpu->arch.regs[VCPU_REGS_RCX];
2855 regs->rdx = vcpu->arch.regs[VCPU_REGS_RDX];
2856 regs->rsi = vcpu->arch.regs[VCPU_REGS_RSI];
2857 regs->rdi = vcpu->arch.regs[VCPU_REGS_RDI];
2858 regs->rsp = vcpu->arch.regs[VCPU_REGS_RSP];
2859 regs->rbp = vcpu->arch.regs[VCPU_REGS_RBP];
2860 #ifdef CONFIG_X86_64
2861 regs->r8 = vcpu->arch.regs[VCPU_REGS_R8];
2862 regs->r9 = vcpu->arch.regs[VCPU_REGS_R9];
2863 regs->r10 = vcpu->arch.regs[VCPU_REGS_R10];
2864 regs->r11 = vcpu->arch.regs[VCPU_REGS_R11];
2865 regs->r12 = vcpu->arch.regs[VCPU_REGS_R12];
2866 regs->r13 = vcpu->arch.regs[VCPU_REGS_R13];
2867 regs->r14 = vcpu->arch.regs[VCPU_REGS_R14];
2868 regs->r15 = vcpu->arch.regs[VCPU_REGS_R15];
2869 #endif
2870
2871 regs->rip = vcpu->arch.rip;
2872 regs->rflags = kvm_x86_ops->get_rflags(vcpu);
2873
2874 /*
2875 * Don't leak debug flags in case they were set for guest debugging
2876 */
2877 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
2878 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
2879
2880 vcpu_put(vcpu);
2881
2882 return 0;
2883 }
2884
2885 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
2886 {
2887 vcpu_load(vcpu);
2888
2889 vcpu->arch.regs[VCPU_REGS_RAX] = regs->rax;
2890 vcpu->arch.regs[VCPU_REGS_RBX] = regs->rbx;
2891 vcpu->arch.regs[VCPU_REGS_RCX] = regs->rcx;
2892 vcpu->arch.regs[VCPU_REGS_RDX] = regs->rdx;
2893 vcpu->arch.regs[VCPU_REGS_RSI] = regs->rsi;
2894 vcpu->arch.regs[VCPU_REGS_RDI] = regs->rdi;
2895 vcpu->arch.regs[VCPU_REGS_RSP] = regs->rsp;
2896 vcpu->arch.regs[VCPU_REGS_RBP] = regs->rbp;
2897 #ifdef CONFIG_X86_64
2898 vcpu->arch.regs[VCPU_REGS_R8] = regs->r8;
2899 vcpu->arch.regs[VCPU_REGS_R9] = regs->r9;
2900 vcpu->arch.regs[VCPU_REGS_R10] = regs->r10;
2901 vcpu->arch.regs[VCPU_REGS_R11] = regs->r11;
2902 vcpu->arch.regs[VCPU_REGS_R12] = regs->r12;
2903 vcpu->arch.regs[VCPU_REGS_R13] = regs->r13;
2904 vcpu->arch.regs[VCPU_REGS_R14] = regs->r14;
2905 vcpu->arch.regs[VCPU_REGS_R15] = regs->r15;
2906 #endif
2907
2908 vcpu->arch.rip = regs->rip;
2909 kvm_x86_ops->set_rflags(vcpu, regs->rflags);
2910
2911 kvm_x86_ops->decache_regs(vcpu);
2912
2913 vcpu_put(vcpu);
2914
2915 return 0;
2916 }
2917
2918 static void get_segment(struct kvm_vcpu *vcpu,
2919 struct kvm_segment *var, int seg)
2920 {
2921 kvm_x86_ops->get_segment(vcpu, var, seg);
2922 }
2923
2924 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
2925 {
2926 struct kvm_segment cs;
2927
2928 get_segment(vcpu, &cs, VCPU_SREG_CS);
2929 *db = cs.db;
2930 *l = cs.l;
2931 }
2932 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
2933
2934 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
2935 struct kvm_sregs *sregs)
2936 {
2937 struct descriptor_table dt;
2938 int pending_vec;
2939
2940 vcpu_load(vcpu);
2941
2942 get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2943 get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2944 get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2945 get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2946 get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2947 get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2948
2949 get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2950 get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2951
2952 kvm_x86_ops->get_idt(vcpu, &dt);
2953 sregs->idt.limit = dt.limit;
2954 sregs->idt.base = dt.base;
2955 kvm_x86_ops->get_gdt(vcpu, &dt);
2956 sregs->gdt.limit = dt.limit;
2957 sregs->gdt.base = dt.base;
2958
2959 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2960 sregs->cr0 = vcpu->arch.cr0;
2961 sregs->cr2 = vcpu->arch.cr2;
2962 sregs->cr3 = vcpu->arch.cr3;
2963 sregs->cr4 = vcpu->arch.cr4;
2964 sregs->cr8 = get_cr8(vcpu);
2965 sregs->efer = vcpu->arch.shadow_efer;
2966 sregs->apic_base = kvm_get_apic_base(vcpu);
2967
2968 if (irqchip_in_kernel(vcpu->kvm)) {
2969 memset(sregs->interrupt_bitmap, 0,
2970 sizeof sregs->interrupt_bitmap);
2971 pending_vec = kvm_x86_ops->get_irq(vcpu);
2972 if (pending_vec >= 0)
2973 set_bit(pending_vec,
2974 (unsigned long *)sregs->interrupt_bitmap);
2975 } else
2976 memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
2977 sizeof sregs->interrupt_bitmap);
2978
2979 vcpu_put(vcpu);
2980
2981 return 0;
2982 }
2983
2984 static void set_segment(struct kvm_vcpu *vcpu,
2985 struct kvm_segment *var, int seg)
2986 {
2987 kvm_x86_ops->set_segment(vcpu, var, seg);
2988 }
2989
2990 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
2991 struct kvm_sregs *sregs)
2992 {
2993 int mmu_reset_needed = 0;
2994 int i, pending_vec, max_bits;
2995 struct descriptor_table dt;
2996
2997 vcpu_load(vcpu);
2998
2999 dt.limit = sregs->idt.limit;
3000 dt.base = sregs->idt.base;
3001 kvm_x86_ops->set_idt(vcpu, &dt);
3002 dt.limit = sregs->gdt.limit;
3003 dt.base = sregs->gdt.base;
3004 kvm_x86_ops->set_gdt(vcpu, &dt);
3005
3006 vcpu->arch.cr2 = sregs->cr2;
3007 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
3008 vcpu->arch.cr3 = sregs->cr3;
3009
3010 set_cr8(vcpu, sregs->cr8);
3011
3012 mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
3013 kvm_x86_ops->set_efer(vcpu, sregs->efer);
3014 kvm_set_apic_base(vcpu, sregs->apic_base);
3015
3016 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3017
3018 mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
3019 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
3020 vcpu->arch.cr0 = sregs->cr0;
3021
3022 mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
3023 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
3024 if (!is_long_mode(vcpu) && is_pae(vcpu))
3025 load_pdptrs(vcpu, vcpu->arch.cr3);
3026
3027 if (mmu_reset_needed)
3028 kvm_mmu_reset_context(vcpu);
3029
3030 if (!irqchip_in_kernel(vcpu->kvm)) {
3031 memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
3032 sizeof vcpu->arch.irq_pending);
3033 vcpu->arch.irq_summary = 0;
3034 for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
3035 if (vcpu->arch.irq_pending[i])
3036 __set_bit(i, &vcpu->arch.irq_summary);
3037 } else {
3038 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
3039 pending_vec = find_first_bit(
3040 (const unsigned long *)sregs->interrupt_bitmap,
3041 max_bits);
3042 /* Only pending external irq is handled here */
3043 if (pending_vec < max_bits) {
3044 kvm_x86_ops->set_irq(vcpu, pending_vec);
3045 pr_debug("Set back pending irq %d\n",
3046 pending_vec);
3047 }
3048 }
3049
3050 set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3051 set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3052 set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3053 set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3054 set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3055 set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3056
3057 set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3058 set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3059
3060 vcpu_put(vcpu);
3061
3062 return 0;
3063 }
3064
3065 int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
3066 struct kvm_debug_guest *dbg)
3067 {
3068 int r;
3069
3070 vcpu_load(vcpu);
3071
3072 r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
3073
3074 vcpu_put(vcpu);
3075
3076 return r;
3077 }
3078
3079 /*
3080 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
3081 * we have asm/x86/processor.h
3082 */
3083 struct fxsave {
3084 u16 cwd;
3085 u16 swd;
3086 u16 twd;
3087 u16 fop;
3088 u64 rip;
3089 u64 rdp;
3090 u32 mxcsr;
3091 u32 mxcsr_mask;
3092 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
3093 #ifdef CONFIG_X86_64
3094 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
3095 #else
3096 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
3097 #endif
3098 };
3099
3100 /*
3101 * Translate a guest virtual address to a guest physical address.
3102 */
3103 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
3104 struct kvm_translation *tr)
3105 {
3106 unsigned long vaddr = tr->linear_address;
3107 gpa_t gpa;
3108
3109 vcpu_load(vcpu);
3110 down_read(&vcpu->kvm->slots_lock);
3111 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
3112 up_read(&vcpu->kvm->slots_lock);
3113 tr->physical_address = gpa;
3114 tr->valid = gpa != UNMAPPED_GVA;
3115 tr->writeable = 1;
3116 tr->usermode = 0;
3117 vcpu_put(vcpu);
3118
3119 return 0;
3120 }
3121
3122 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
3123 {
3124 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3125
3126 vcpu_load(vcpu);
3127
3128 memcpy(fpu->fpr, fxsave->st_space, 128);
3129 fpu->fcw = fxsave->cwd;
3130 fpu->fsw = fxsave->swd;
3131 fpu->ftwx = fxsave->twd;
3132 fpu->last_opcode = fxsave->fop;
3133 fpu->last_ip = fxsave->rip;
3134 fpu->last_dp = fxsave->rdp;
3135 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
3136
3137 vcpu_put(vcpu);
3138
3139 return 0;
3140 }
3141
3142 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
3143 {
3144 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3145
3146 vcpu_load(vcpu);
3147
3148 memcpy(fxsave->st_space, fpu->fpr, 128);
3149 fxsave->cwd = fpu->fcw;
3150 fxsave->swd = fpu->fsw;
3151 fxsave->twd = fpu->ftwx;
3152 fxsave->fop = fpu->last_opcode;
3153 fxsave->rip = fpu->last_ip;
3154 fxsave->rdp = fpu->last_dp;
3155 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
3156
3157 vcpu_put(vcpu);
3158
3159 return 0;
3160 }
3161
3162 void fx_init(struct kvm_vcpu *vcpu)
3163 {
3164 unsigned after_mxcsr_mask;
3165
3166 /* Initialize guest FPU by resetting ours and saving into guest's */
3167 preempt_disable();
3168 fx_save(&vcpu->arch.host_fx_image);
3169 fpu_init();
3170 fx_save(&vcpu->arch.guest_fx_image);
3171 fx_restore(&vcpu->arch.host_fx_image);
3172 preempt_enable();
3173
3174 vcpu->arch.cr0 |= X86_CR0_ET;
3175 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
3176 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
3177 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
3178 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
3179 }
3180 EXPORT_SYMBOL_GPL(fx_init);
3181
3182 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
3183 {
3184 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
3185 return;
3186
3187 vcpu->guest_fpu_loaded = 1;
3188 fx_save(&vcpu->arch.host_fx_image);
3189 fx_restore(&vcpu->arch.guest_fx_image);
3190 }
3191 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
3192
3193 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
3194 {
3195 if (!vcpu->guest_fpu_loaded)
3196 return;
3197
3198 vcpu->guest_fpu_loaded = 0;
3199 fx_save(&vcpu->arch.guest_fx_image);
3200 fx_restore(&vcpu->arch.host_fx_image);
3201 ++vcpu->stat.fpu_reload;
3202 }
3203 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
3204
3205 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
3206 {
3207 kvm_x86_ops->vcpu_free(vcpu);
3208 }
3209
3210 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
3211 unsigned int id)
3212 {
3213 return kvm_x86_ops->vcpu_create(kvm, id);
3214 }
3215
3216 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
3217 {
3218 int r;
3219
3220 /* We do fxsave: this must be aligned. */
3221 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
3222
3223 vcpu_load(vcpu);
3224 r = kvm_arch_vcpu_reset(vcpu);
3225 if (r == 0)
3226 r = kvm_mmu_setup(vcpu);
3227 vcpu_put(vcpu);
3228 if (r < 0)
3229 goto free_vcpu;
3230
3231 return 0;
3232 free_vcpu:
3233 kvm_x86_ops->vcpu_free(vcpu);
3234 return r;
3235 }
3236
3237 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
3238 {
3239 vcpu_load(vcpu);
3240 kvm_mmu_unload(vcpu);
3241 vcpu_put(vcpu);
3242
3243 kvm_x86_ops->vcpu_free(vcpu);
3244 }
3245
3246 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
3247 {
3248 return kvm_x86_ops->vcpu_reset(vcpu);
3249 }
3250
3251 void kvm_arch_hardware_enable(void *garbage)
3252 {
3253 kvm_x86_ops->hardware_enable(garbage);
3254 }
3255
3256 void kvm_arch_hardware_disable(void *garbage)
3257 {
3258 kvm_x86_ops->hardware_disable(garbage);
3259 }
3260
3261 int kvm_arch_hardware_setup(void)
3262 {
3263 return kvm_x86_ops->hardware_setup();
3264 }
3265
3266 void kvm_arch_hardware_unsetup(void)
3267 {
3268 kvm_x86_ops->hardware_unsetup();
3269 }
3270
3271 void kvm_arch_check_processor_compat(void *rtn)
3272 {
3273 kvm_x86_ops->check_processor_compatibility(rtn);
3274 }
3275
3276 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
3277 {
3278 struct page *page;
3279 struct kvm *kvm;
3280 int r;
3281
3282 BUG_ON(vcpu->kvm == NULL);
3283 kvm = vcpu->kvm;
3284
3285 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3286 if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
3287 vcpu->arch.mp_state = VCPU_MP_STATE_RUNNABLE;
3288 else
3289 vcpu->arch.mp_state = VCPU_MP_STATE_UNINITIALIZED;
3290
3291 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3292 if (!page) {
3293 r = -ENOMEM;
3294 goto fail;
3295 }
3296 vcpu->arch.pio_data = page_address(page);
3297
3298 r = kvm_mmu_create(vcpu);
3299 if (r < 0)
3300 goto fail_free_pio_data;
3301
3302 if (irqchip_in_kernel(kvm)) {
3303 r = kvm_create_lapic(vcpu);
3304 if (r < 0)
3305 goto fail_mmu_destroy;
3306 }
3307
3308 return 0;
3309
3310 fail_mmu_destroy:
3311 kvm_mmu_destroy(vcpu);
3312 fail_free_pio_data:
3313 free_page((unsigned long)vcpu->arch.pio_data);
3314 fail:
3315 return r;
3316 }
3317
3318 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
3319 {
3320 kvm_free_lapic(vcpu);
3321 kvm_mmu_destroy(vcpu);
3322 free_page((unsigned long)vcpu->arch.pio_data);
3323 }
3324
3325 struct kvm *kvm_arch_create_vm(void)
3326 {
3327 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
3328
3329 if (!kvm)
3330 return ERR_PTR(-ENOMEM);
3331
3332 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
3333
3334 return kvm;
3335 }
3336
3337 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
3338 {
3339 vcpu_load(vcpu);
3340 kvm_mmu_unload(vcpu);
3341 vcpu_put(vcpu);
3342 }
3343
3344 static void kvm_free_vcpus(struct kvm *kvm)
3345 {
3346 unsigned int i;
3347
3348 /*
3349 * Unpin any mmu pages first.
3350 */
3351 for (i = 0; i < KVM_MAX_VCPUS; ++i)
3352 if (kvm->vcpus[i])
3353 kvm_unload_vcpu_mmu(kvm->vcpus[i]);
3354 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3355 if (kvm->vcpus[i]) {
3356 kvm_arch_vcpu_free(kvm->vcpus[i]);
3357 kvm->vcpus[i] = NULL;
3358 }
3359 }
3360
3361 }
3362
3363 void kvm_arch_destroy_vm(struct kvm *kvm)
3364 {
3365 kfree(kvm->arch.vpic);
3366 kfree(kvm->arch.vioapic);
3367 kvm_free_vcpus(kvm);
3368 kvm_free_physmem(kvm);
3369 kfree(kvm);
3370 }
3371
3372 int kvm_arch_set_memory_region(struct kvm *kvm,
3373 struct kvm_userspace_memory_region *mem,
3374 struct kvm_memory_slot old,
3375 int user_alloc)
3376 {
3377 int npages = mem->memory_size >> PAGE_SHIFT;
3378 struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
3379
3380 /*To keep backward compatibility with older userspace,
3381 *x86 needs to hanlde !user_alloc case.
3382 */
3383 if (!user_alloc) {
3384 if (npages && !old.rmap) {
3385 down_write(&current->mm->mmap_sem);
3386 memslot->userspace_addr = do_mmap(NULL, 0,
3387 npages * PAGE_SIZE,
3388 PROT_READ | PROT_WRITE,
3389 MAP_SHARED | MAP_ANONYMOUS,
3390 0);
3391 up_write(&current->mm->mmap_sem);
3392
3393 if (IS_ERR((void *)memslot->userspace_addr))
3394 return PTR_ERR((void *)memslot->userspace_addr);
3395 } else {
3396 if (!old.user_alloc && old.rmap) {
3397 int ret;
3398
3399 down_write(&current->mm->mmap_sem);
3400 ret = do_munmap(current->mm, old.userspace_addr,
3401 old.npages * PAGE_SIZE);
3402 up_write(&current->mm->mmap_sem);
3403 if (ret < 0)
3404 printk(KERN_WARNING
3405 "kvm_vm_ioctl_set_memory_region: "
3406 "failed to munmap memory\n");
3407 }
3408 }
3409 }
3410
3411 if (!kvm->arch.n_requested_mmu_pages) {
3412 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
3413 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
3414 }
3415
3416 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
3417 kvm_flush_remote_tlbs(kvm);
3418
3419 return 0;
3420 }
3421
3422 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
3423 {
3424 return vcpu->arch.mp_state == VCPU_MP_STATE_RUNNABLE
3425 || vcpu->arch.mp_state == VCPU_MP_STATE_SIPI_RECEIVED;
3426 }
3427
3428 static void vcpu_kick_intr(void *info)
3429 {
3430 #ifdef DEBUG
3431 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
3432 printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
3433 #endif
3434 }
3435
3436 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3437 {
3438 int ipi_pcpu = vcpu->cpu;
3439
3440 if (waitqueue_active(&vcpu->wq)) {
3441 wake_up_interruptible(&vcpu->wq);
3442 ++vcpu->stat.halt_wakeup;
3443 }
3444 if (vcpu->guest_mode)
3445 smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0, 0);
3446 }
This page took 0.150003 seconds and 5 git commands to generate.