KVM: Provide current eip as part of emulator context.
[deliverable/linux.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Amit Shah <amit.shah@qumranet.com>
14 * Ben-Ami Yassour <benami@il.ibm.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
28
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40 #include <linux/user-return-notifier.h>
41 #include <linux/srcu.h>
42 #include <linux/slab.h>
43 #include <trace/events/kvm.h>
44
45 #define CREATE_TRACE_POINTS
46 #include "trace.h"
47
48 #include <asm/debugreg.h>
49 #include <asm/uaccess.h>
50 #include <asm/msr.h>
51 #include <asm/desc.h>
52 #include <asm/mtrr.h>
53 #include <asm/mce.h>
54
55 #define MAX_IO_MSRS 256
56 #define CR0_RESERVED_BITS \
57 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
58 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
59 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
60 #define CR4_RESERVED_BITS \
61 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
62 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
63 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
64 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
65
66 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
67
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
70
71 /* EFER defaults:
72 * - enable syscall per default because its emulated by KVM
73 * - enable LME and LMA per default on 64 bit KVM
74 */
75 #ifdef CONFIG_X86_64
76 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
77 #else
78 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
79 #endif
80
81 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
82 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
83
84 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
85 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
86 struct kvm_cpuid_entry2 __user *entries);
87
88 struct kvm_x86_ops *kvm_x86_ops;
89 EXPORT_SYMBOL_GPL(kvm_x86_ops);
90
91 int ignore_msrs = 0;
92 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
93
94 #define KVM_NR_SHARED_MSRS 16
95
96 struct kvm_shared_msrs_global {
97 int nr;
98 u32 msrs[KVM_NR_SHARED_MSRS];
99 };
100
101 struct kvm_shared_msrs {
102 struct user_return_notifier urn;
103 bool registered;
104 struct kvm_shared_msr_values {
105 u64 host;
106 u64 curr;
107 } values[KVM_NR_SHARED_MSRS];
108 };
109
110 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
111 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
112
113 struct kvm_stats_debugfs_item debugfs_entries[] = {
114 { "pf_fixed", VCPU_STAT(pf_fixed) },
115 { "pf_guest", VCPU_STAT(pf_guest) },
116 { "tlb_flush", VCPU_STAT(tlb_flush) },
117 { "invlpg", VCPU_STAT(invlpg) },
118 { "exits", VCPU_STAT(exits) },
119 { "io_exits", VCPU_STAT(io_exits) },
120 { "mmio_exits", VCPU_STAT(mmio_exits) },
121 { "signal_exits", VCPU_STAT(signal_exits) },
122 { "irq_window", VCPU_STAT(irq_window_exits) },
123 { "nmi_window", VCPU_STAT(nmi_window_exits) },
124 { "halt_exits", VCPU_STAT(halt_exits) },
125 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
126 { "hypercalls", VCPU_STAT(hypercalls) },
127 { "request_irq", VCPU_STAT(request_irq_exits) },
128 { "irq_exits", VCPU_STAT(irq_exits) },
129 { "host_state_reload", VCPU_STAT(host_state_reload) },
130 { "efer_reload", VCPU_STAT(efer_reload) },
131 { "fpu_reload", VCPU_STAT(fpu_reload) },
132 { "insn_emulation", VCPU_STAT(insn_emulation) },
133 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
134 { "irq_injections", VCPU_STAT(irq_injections) },
135 { "nmi_injections", VCPU_STAT(nmi_injections) },
136 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
137 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
138 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
139 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
140 { "mmu_flooded", VM_STAT(mmu_flooded) },
141 { "mmu_recycled", VM_STAT(mmu_recycled) },
142 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
143 { "mmu_unsync", VM_STAT(mmu_unsync) },
144 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
145 { "largepages", VM_STAT(lpages) },
146 { NULL }
147 };
148
149 static void kvm_on_user_return(struct user_return_notifier *urn)
150 {
151 unsigned slot;
152 struct kvm_shared_msrs *locals
153 = container_of(urn, struct kvm_shared_msrs, urn);
154 struct kvm_shared_msr_values *values;
155
156 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
157 values = &locals->values[slot];
158 if (values->host != values->curr) {
159 wrmsrl(shared_msrs_global.msrs[slot], values->host);
160 values->curr = values->host;
161 }
162 }
163 locals->registered = false;
164 user_return_notifier_unregister(urn);
165 }
166
167 static void shared_msr_update(unsigned slot, u32 msr)
168 {
169 struct kvm_shared_msrs *smsr;
170 u64 value;
171
172 smsr = &__get_cpu_var(shared_msrs);
173 /* only read, and nobody should modify it at this time,
174 * so don't need lock */
175 if (slot >= shared_msrs_global.nr) {
176 printk(KERN_ERR "kvm: invalid MSR slot!");
177 return;
178 }
179 rdmsrl_safe(msr, &value);
180 smsr->values[slot].host = value;
181 smsr->values[slot].curr = value;
182 }
183
184 void kvm_define_shared_msr(unsigned slot, u32 msr)
185 {
186 if (slot >= shared_msrs_global.nr)
187 shared_msrs_global.nr = slot + 1;
188 shared_msrs_global.msrs[slot] = msr;
189 /* we need ensured the shared_msr_global have been updated */
190 smp_wmb();
191 }
192 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
193
194 static void kvm_shared_msr_cpu_online(void)
195 {
196 unsigned i;
197
198 for (i = 0; i < shared_msrs_global.nr; ++i)
199 shared_msr_update(i, shared_msrs_global.msrs[i]);
200 }
201
202 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
203 {
204 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
205
206 if (((value ^ smsr->values[slot].curr) & mask) == 0)
207 return;
208 smsr->values[slot].curr = value;
209 wrmsrl(shared_msrs_global.msrs[slot], value);
210 if (!smsr->registered) {
211 smsr->urn.on_user_return = kvm_on_user_return;
212 user_return_notifier_register(&smsr->urn);
213 smsr->registered = true;
214 }
215 }
216 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
217
218 static void drop_user_return_notifiers(void *ignore)
219 {
220 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
221
222 if (smsr->registered)
223 kvm_on_user_return(&smsr->urn);
224 }
225
226 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
227 {
228 if (irqchip_in_kernel(vcpu->kvm))
229 return vcpu->arch.apic_base;
230 else
231 return vcpu->arch.apic_base;
232 }
233 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
234
235 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
236 {
237 /* TODO: reserve bits check */
238 if (irqchip_in_kernel(vcpu->kvm))
239 kvm_lapic_set_base(vcpu, data);
240 else
241 vcpu->arch.apic_base = data;
242 }
243 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
244
245 #define EXCPT_BENIGN 0
246 #define EXCPT_CONTRIBUTORY 1
247 #define EXCPT_PF 2
248
249 static int exception_class(int vector)
250 {
251 switch (vector) {
252 case PF_VECTOR:
253 return EXCPT_PF;
254 case DE_VECTOR:
255 case TS_VECTOR:
256 case NP_VECTOR:
257 case SS_VECTOR:
258 case GP_VECTOR:
259 return EXCPT_CONTRIBUTORY;
260 default:
261 break;
262 }
263 return EXCPT_BENIGN;
264 }
265
266 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
267 unsigned nr, bool has_error, u32 error_code)
268 {
269 u32 prev_nr;
270 int class1, class2;
271
272 if (!vcpu->arch.exception.pending) {
273 queue:
274 vcpu->arch.exception.pending = true;
275 vcpu->arch.exception.has_error_code = has_error;
276 vcpu->arch.exception.nr = nr;
277 vcpu->arch.exception.error_code = error_code;
278 return;
279 }
280
281 /* to check exception */
282 prev_nr = vcpu->arch.exception.nr;
283 if (prev_nr == DF_VECTOR) {
284 /* triple fault -> shutdown */
285 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
286 return;
287 }
288 class1 = exception_class(prev_nr);
289 class2 = exception_class(nr);
290 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
291 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
292 /* generate double fault per SDM Table 5-5 */
293 vcpu->arch.exception.pending = true;
294 vcpu->arch.exception.has_error_code = true;
295 vcpu->arch.exception.nr = DF_VECTOR;
296 vcpu->arch.exception.error_code = 0;
297 } else
298 /* replace previous exception with a new one in a hope
299 that instruction re-execution will regenerate lost
300 exception */
301 goto queue;
302 }
303
304 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
305 {
306 kvm_multiple_exception(vcpu, nr, false, 0);
307 }
308 EXPORT_SYMBOL_GPL(kvm_queue_exception);
309
310 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
311 u32 error_code)
312 {
313 ++vcpu->stat.pf_guest;
314 vcpu->arch.cr2 = addr;
315 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
316 }
317
318 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
319 {
320 vcpu->arch.nmi_pending = 1;
321 }
322 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
323
324 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
325 {
326 kvm_multiple_exception(vcpu, nr, true, error_code);
327 }
328 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
329
330 /*
331 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
332 * a #GP and return false.
333 */
334 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
335 {
336 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
337 return true;
338 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
339 return false;
340 }
341 EXPORT_SYMBOL_GPL(kvm_require_cpl);
342
343 /*
344 * Load the pae pdptrs. Return true is they are all valid.
345 */
346 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
347 {
348 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
349 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
350 int i;
351 int ret;
352 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
353
354 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
355 offset * sizeof(u64), sizeof(pdpte));
356 if (ret < 0) {
357 ret = 0;
358 goto out;
359 }
360 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
361 if (is_present_gpte(pdpte[i]) &&
362 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
363 ret = 0;
364 goto out;
365 }
366 }
367 ret = 1;
368
369 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
370 __set_bit(VCPU_EXREG_PDPTR,
371 (unsigned long *)&vcpu->arch.regs_avail);
372 __set_bit(VCPU_EXREG_PDPTR,
373 (unsigned long *)&vcpu->arch.regs_dirty);
374 out:
375
376 return ret;
377 }
378 EXPORT_SYMBOL_GPL(load_pdptrs);
379
380 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
381 {
382 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
383 bool changed = true;
384 int r;
385
386 if (is_long_mode(vcpu) || !is_pae(vcpu))
387 return false;
388
389 if (!test_bit(VCPU_EXREG_PDPTR,
390 (unsigned long *)&vcpu->arch.regs_avail))
391 return true;
392
393 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
394 if (r < 0)
395 goto out;
396 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
397 out:
398
399 return changed;
400 }
401
402 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
403 {
404 cr0 |= X86_CR0_ET;
405
406 #ifdef CONFIG_X86_64
407 if (cr0 & 0xffffffff00000000UL) {
408 kvm_inject_gp(vcpu, 0);
409 return;
410 }
411 #endif
412
413 cr0 &= ~CR0_RESERVED_BITS;
414
415 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
416 kvm_inject_gp(vcpu, 0);
417 return;
418 }
419
420 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
421 kvm_inject_gp(vcpu, 0);
422 return;
423 }
424
425 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
426 #ifdef CONFIG_X86_64
427 if ((vcpu->arch.efer & EFER_LME)) {
428 int cs_db, cs_l;
429
430 if (!is_pae(vcpu)) {
431 kvm_inject_gp(vcpu, 0);
432 return;
433 }
434 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
435 if (cs_l) {
436 kvm_inject_gp(vcpu, 0);
437 return;
438
439 }
440 } else
441 #endif
442 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
443 kvm_inject_gp(vcpu, 0);
444 return;
445 }
446
447 }
448
449 kvm_x86_ops->set_cr0(vcpu, cr0);
450
451 kvm_mmu_reset_context(vcpu);
452 return;
453 }
454 EXPORT_SYMBOL_GPL(kvm_set_cr0);
455
456 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
457 {
458 kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0ful) | (msw & 0x0f));
459 }
460 EXPORT_SYMBOL_GPL(kvm_lmsw);
461
462 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
463 {
464 unsigned long old_cr4 = kvm_read_cr4(vcpu);
465 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
466
467 if (cr4 & CR4_RESERVED_BITS) {
468 kvm_inject_gp(vcpu, 0);
469 return;
470 }
471
472 if (is_long_mode(vcpu)) {
473 if (!(cr4 & X86_CR4_PAE)) {
474 kvm_inject_gp(vcpu, 0);
475 return;
476 }
477 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
478 && ((cr4 ^ old_cr4) & pdptr_bits)
479 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
480 kvm_inject_gp(vcpu, 0);
481 return;
482 }
483
484 if (cr4 & X86_CR4_VMXE) {
485 kvm_inject_gp(vcpu, 0);
486 return;
487 }
488 kvm_x86_ops->set_cr4(vcpu, cr4);
489 vcpu->arch.cr4 = cr4;
490 vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
491 kvm_mmu_reset_context(vcpu);
492 }
493 EXPORT_SYMBOL_GPL(kvm_set_cr4);
494
495 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
496 {
497 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
498 kvm_mmu_sync_roots(vcpu);
499 kvm_mmu_flush_tlb(vcpu);
500 return;
501 }
502
503 if (is_long_mode(vcpu)) {
504 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
505 kvm_inject_gp(vcpu, 0);
506 return;
507 }
508 } else {
509 if (is_pae(vcpu)) {
510 if (cr3 & CR3_PAE_RESERVED_BITS) {
511 kvm_inject_gp(vcpu, 0);
512 return;
513 }
514 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
515 kvm_inject_gp(vcpu, 0);
516 return;
517 }
518 }
519 /*
520 * We don't check reserved bits in nonpae mode, because
521 * this isn't enforced, and VMware depends on this.
522 */
523 }
524
525 /*
526 * Does the new cr3 value map to physical memory? (Note, we
527 * catch an invalid cr3 even in real-mode, because it would
528 * cause trouble later on when we turn on paging anyway.)
529 *
530 * A real CPU would silently accept an invalid cr3 and would
531 * attempt to use it - with largely undefined (and often hard
532 * to debug) behavior on the guest side.
533 */
534 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
535 kvm_inject_gp(vcpu, 0);
536 else {
537 vcpu->arch.cr3 = cr3;
538 vcpu->arch.mmu.new_cr3(vcpu);
539 }
540 }
541 EXPORT_SYMBOL_GPL(kvm_set_cr3);
542
543 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
544 {
545 if (cr8 & CR8_RESERVED_BITS) {
546 kvm_inject_gp(vcpu, 0);
547 return;
548 }
549 if (irqchip_in_kernel(vcpu->kvm))
550 kvm_lapic_set_tpr(vcpu, cr8);
551 else
552 vcpu->arch.cr8 = cr8;
553 }
554 EXPORT_SYMBOL_GPL(kvm_set_cr8);
555
556 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
557 {
558 if (irqchip_in_kernel(vcpu->kvm))
559 return kvm_lapic_get_cr8(vcpu);
560 else
561 return vcpu->arch.cr8;
562 }
563 EXPORT_SYMBOL_GPL(kvm_get_cr8);
564
565 static inline u32 bit(int bitno)
566 {
567 return 1 << (bitno & 31);
568 }
569
570 /*
571 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
572 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
573 *
574 * This list is modified at module load time to reflect the
575 * capabilities of the host cpu. This capabilities test skips MSRs that are
576 * kvm-specific. Those are put in the beginning of the list.
577 */
578
579 #define KVM_SAVE_MSRS_BEGIN 5
580 static u32 msrs_to_save[] = {
581 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
582 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
583 HV_X64_MSR_APIC_ASSIST_PAGE,
584 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
585 MSR_K6_STAR,
586 #ifdef CONFIG_X86_64
587 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
588 #endif
589 MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
590 };
591
592 static unsigned num_msrs_to_save;
593
594 static u32 emulated_msrs[] = {
595 MSR_IA32_MISC_ENABLE,
596 };
597
598 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
599 {
600 if (efer & efer_reserved_bits) {
601 kvm_inject_gp(vcpu, 0);
602 return;
603 }
604
605 if (is_paging(vcpu)
606 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) {
607 kvm_inject_gp(vcpu, 0);
608 return;
609 }
610
611 if (efer & EFER_FFXSR) {
612 struct kvm_cpuid_entry2 *feat;
613
614 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
615 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
616 kvm_inject_gp(vcpu, 0);
617 return;
618 }
619 }
620
621 if (efer & EFER_SVME) {
622 struct kvm_cpuid_entry2 *feat;
623
624 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
625 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
626 kvm_inject_gp(vcpu, 0);
627 return;
628 }
629 }
630
631 kvm_x86_ops->set_efer(vcpu, efer);
632
633 efer &= ~EFER_LMA;
634 efer |= vcpu->arch.efer & EFER_LMA;
635
636 vcpu->arch.efer = efer;
637
638 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
639 kvm_mmu_reset_context(vcpu);
640 }
641
642 void kvm_enable_efer_bits(u64 mask)
643 {
644 efer_reserved_bits &= ~mask;
645 }
646 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
647
648
649 /*
650 * Writes msr value into into the appropriate "register".
651 * Returns 0 on success, non-0 otherwise.
652 * Assumes vcpu_load() was already called.
653 */
654 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
655 {
656 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
657 }
658
659 /*
660 * Adapt set_msr() to msr_io()'s calling convention
661 */
662 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
663 {
664 return kvm_set_msr(vcpu, index, *data);
665 }
666
667 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
668 {
669 static int version;
670 struct pvclock_wall_clock wc;
671 struct timespec boot;
672
673 if (!wall_clock)
674 return;
675
676 version++;
677
678 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
679
680 /*
681 * The guest calculates current wall clock time by adding
682 * system time (updated by kvm_write_guest_time below) to the
683 * wall clock specified here. guest system time equals host
684 * system time for us, thus we must fill in host boot time here.
685 */
686 getboottime(&boot);
687
688 wc.sec = boot.tv_sec;
689 wc.nsec = boot.tv_nsec;
690 wc.version = version;
691
692 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
693
694 version++;
695 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
696 }
697
698 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
699 {
700 uint32_t quotient, remainder;
701
702 /* Don't try to replace with do_div(), this one calculates
703 * "(dividend << 32) / divisor" */
704 __asm__ ( "divl %4"
705 : "=a" (quotient), "=d" (remainder)
706 : "0" (0), "1" (dividend), "r" (divisor) );
707 return quotient;
708 }
709
710 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
711 {
712 uint64_t nsecs = 1000000000LL;
713 int32_t shift = 0;
714 uint64_t tps64;
715 uint32_t tps32;
716
717 tps64 = tsc_khz * 1000LL;
718 while (tps64 > nsecs*2) {
719 tps64 >>= 1;
720 shift--;
721 }
722
723 tps32 = (uint32_t)tps64;
724 while (tps32 <= (uint32_t)nsecs) {
725 tps32 <<= 1;
726 shift++;
727 }
728
729 hv_clock->tsc_shift = shift;
730 hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
731
732 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
733 __func__, tsc_khz, hv_clock->tsc_shift,
734 hv_clock->tsc_to_system_mul);
735 }
736
737 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
738
739 static void kvm_write_guest_time(struct kvm_vcpu *v)
740 {
741 struct timespec ts;
742 unsigned long flags;
743 struct kvm_vcpu_arch *vcpu = &v->arch;
744 void *shared_kaddr;
745 unsigned long this_tsc_khz;
746
747 if ((!vcpu->time_page))
748 return;
749
750 this_tsc_khz = get_cpu_var(cpu_tsc_khz);
751 if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
752 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
753 vcpu->hv_clock_tsc_khz = this_tsc_khz;
754 }
755 put_cpu_var(cpu_tsc_khz);
756
757 /* Keep irq disabled to prevent changes to the clock */
758 local_irq_save(flags);
759 kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
760 ktime_get_ts(&ts);
761 monotonic_to_bootbased(&ts);
762 local_irq_restore(flags);
763
764 /* With all the info we got, fill in the values */
765
766 vcpu->hv_clock.system_time = ts.tv_nsec +
767 (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
768
769 /*
770 * The interface expects us to write an even number signaling that the
771 * update is finished. Since the guest won't see the intermediate
772 * state, we just increase by 2 at the end.
773 */
774 vcpu->hv_clock.version += 2;
775
776 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
777
778 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
779 sizeof(vcpu->hv_clock));
780
781 kunmap_atomic(shared_kaddr, KM_USER0);
782
783 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
784 }
785
786 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
787 {
788 struct kvm_vcpu_arch *vcpu = &v->arch;
789
790 if (!vcpu->time_page)
791 return 0;
792 set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
793 return 1;
794 }
795
796 static bool msr_mtrr_valid(unsigned msr)
797 {
798 switch (msr) {
799 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
800 case MSR_MTRRfix64K_00000:
801 case MSR_MTRRfix16K_80000:
802 case MSR_MTRRfix16K_A0000:
803 case MSR_MTRRfix4K_C0000:
804 case MSR_MTRRfix4K_C8000:
805 case MSR_MTRRfix4K_D0000:
806 case MSR_MTRRfix4K_D8000:
807 case MSR_MTRRfix4K_E0000:
808 case MSR_MTRRfix4K_E8000:
809 case MSR_MTRRfix4K_F0000:
810 case MSR_MTRRfix4K_F8000:
811 case MSR_MTRRdefType:
812 case MSR_IA32_CR_PAT:
813 return true;
814 case 0x2f8:
815 return true;
816 }
817 return false;
818 }
819
820 static bool valid_pat_type(unsigned t)
821 {
822 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
823 }
824
825 static bool valid_mtrr_type(unsigned t)
826 {
827 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
828 }
829
830 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
831 {
832 int i;
833
834 if (!msr_mtrr_valid(msr))
835 return false;
836
837 if (msr == MSR_IA32_CR_PAT) {
838 for (i = 0; i < 8; i++)
839 if (!valid_pat_type((data >> (i * 8)) & 0xff))
840 return false;
841 return true;
842 } else if (msr == MSR_MTRRdefType) {
843 if (data & ~0xcff)
844 return false;
845 return valid_mtrr_type(data & 0xff);
846 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
847 for (i = 0; i < 8 ; i++)
848 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
849 return false;
850 return true;
851 }
852
853 /* variable MTRRs */
854 return valid_mtrr_type(data & 0xff);
855 }
856
857 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
858 {
859 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
860
861 if (!mtrr_valid(vcpu, msr, data))
862 return 1;
863
864 if (msr == MSR_MTRRdefType) {
865 vcpu->arch.mtrr_state.def_type = data;
866 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
867 } else if (msr == MSR_MTRRfix64K_00000)
868 p[0] = data;
869 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
870 p[1 + msr - MSR_MTRRfix16K_80000] = data;
871 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
872 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
873 else if (msr == MSR_IA32_CR_PAT)
874 vcpu->arch.pat = data;
875 else { /* Variable MTRRs */
876 int idx, is_mtrr_mask;
877 u64 *pt;
878
879 idx = (msr - 0x200) / 2;
880 is_mtrr_mask = msr - 0x200 - 2 * idx;
881 if (!is_mtrr_mask)
882 pt =
883 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
884 else
885 pt =
886 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
887 *pt = data;
888 }
889
890 kvm_mmu_reset_context(vcpu);
891 return 0;
892 }
893
894 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
895 {
896 u64 mcg_cap = vcpu->arch.mcg_cap;
897 unsigned bank_num = mcg_cap & 0xff;
898
899 switch (msr) {
900 case MSR_IA32_MCG_STATUS:
901 vcpu->arch.mcg_status = data;
902 break;
903 case MSR_IA32_MCG_CTL:
904 if (!(mcg_cap & MCG_CTL_P))
905 return 1;
906 if (data != 0 && data != ~(u64)0)
907 return -1;
908 vcpu->arch.mcg_ctl = data;
909 break;
910 default:
911 if (msr >= MSR_IA32_MC0_CTL &&
912 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
913 u32 offset = msr - MSR_IA32_MC0_CTL;
914 /* only 0 or all 1s can be written to IA32_MCi_CTL
915 * some Linux kernels though clear bit 10 in bank 4 to
916 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
917 * this to avoid an uncatched #GP in the guest
918 */
919 if ((offset & 0x3) == 0 &&
920 data != 0 && (data | (1 << 10)) != ~(u64)0)
921 return -1;
922 vcpu->arch.mce_banks[offset] = data;
923 break;
924 }
925 return 1;
926 }
927 return 0;
928 }
929
930 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
931 {
932 struct kvm *kvm = vcpu->kvm;
933 int lm = is_long_mode(vcpu);
934 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
935 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
936 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
937 : kvm->arch.xen_hvm_config.blob_size_32;
938 u32 page_num = data & ~PAGE_MASK;
939 u64 page_addr = data & PAGE_MASK;
940 u8 *page;
941 int r;
942
943 r = -E2BIG;
944 if (page_num >= blob_size)
945 goto out;
946 r = -ENOMEM;
947 page = kzalloc(PAGE_SIZE, GFP_KERNEL);
948 if (!page)
949 goto out;
950 r = -EFAULT;
951 if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
952 goto out_free;
953 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
954 goto out_free;
955 r = 0;
956 out_free:
957 kfree(page);
958 out:
959 return r;
960 }
961
962 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
963 {
964 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
965 }
966
967 static bool kvm_hv_msr_partition_wide(u32 msr)
968 {
969 bool r = false;
970 switch (msr) {
971 case HV_X64_MSR_GUEST_OS_ID:
972 case HV_X64_MSR_HYPERCALL:
973 r = true;
974 break;
975 }
976
977 return r;
978 }
979
980 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
981 {
982 struct kvm *kvm = vcpu->kvm;
983
984 switch (msr) {
985 case HV_X64_MSR_GUEST_OS_ID:
986 kvm->arch.hv_guest_os_id = data;
987 /* setting guest os id to zero disables hypercall page */
988 if (!kvm->arch.hv_guest_os_id)
989 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
990 break;
991 case HV_X64_MSR_HYPERCALL: {
992 u64 gfn;
993 unsigned long addr;
994 u8 instructions[4];
995
996 /* if guest os id is not set hypercall should remain disabled */
997 if (!kvm->arch.hv_guest_os_id)
998 break;
999 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1000 kvm->arch.hv_hypercall = data;
1001 break;
1002 }
1003 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1004 addr = gfn_to_hva(kvm, gfn);
1005 if (kvm_is_error_hva(addr))
1006 return 1;
1007 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1008 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1009 if (copy_to_user((void __user *)addr, instructions, 4))
1010 return 1;
1011 kvm->arch.hv_hypercall = data;
1012 break;
1013 }
1014 default:
1015 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1016 "data 0x%llx\n", msr, data);
1017 return 1;
1018 }
1019 return 0;
1020 }
1021
1022 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1023 {
1024 switch (msr) {
1025 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1026 unsigned long addr;
1027
1028 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1029 vcpu->arch.hv_vapic = data;
1030 break;
1031 }
1032 addr = gfn_to_hva(vcpu->kvm, data >>
1033 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1034 if (kvm_is_error_hva(addr))
1035 return 1;
1036 if (clear_user((void __user *)addr, PAGE_SIZE))
1037 return 1;
1038 vcpu->arch.hv_vapic = data;
1039 break;
1040 }
1041 case HV_X64_MSR_EOI:
1042 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1043 case HV_X64_MSR_ICR:
1044 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1045 case HV_X64_MSR_TPR:
1046 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1047 default:
1048 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1049 "data 0x%llx\n", msr, data);
1050 return 1;
1051 }
1052
1053 return 0;
1054 }
1055
1056 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1057 {
1058 switch (msr) {
1059 case MSR_EFER:
1060 set_efer(vcpu, data);
1061 break;
1062 case MSR_K7_HWCR:
1063 data &= ~(u64)0x40; /* ignore flush filter disable */
1064 data &= ~(u64)0x100; /* ignore ignne emulation enable */
1065 if (data != 0) {
1066 pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1067 data);
1068 return 1;
1069 }
1070 break;
1071 case MSR_FAM10H_MMIO_CONF_BASE:
1072 if (data != 0) {
1073 pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1074 "0x%llx\n", data);
1075 return 1;
1076 }
1077 break;
1078 case MSR_AMD64_NB_CFG:
1079 break;
1080 case MSR_IA32_DEBUGCTLMSR:
1081 if (!data) {
1082 /* We support the non-activated case already */
1083 break;
1084 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1085 /* Values other than LBR and BTF are vendor-specific,
1086 thus reserved and should throw a #GP */
1087 return 1;
1088 }
1089 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1090 __func__, data);
1091 break;
1092 case MSR_IA32_UCODE_REV:
1093 case MSR_IA32_UCODE_WRITE:
1094 case MSR_VM_HSAVE_PA:
1095 case MSR_AMD64_PATCH_LOADER:
1096 break;
1097 case 0x200 ... 0x2ff:
1098 return set_msr_mtrr(vcpu, msr, data);
1099 case MSR_IA32_APICBASE:
1100 kvm_set_apic_base(vcpu, data);
1101 break;
1102 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1103 return kvm_x2apic_msr_write(vcpu, msr, data);
1104 case MSR_IA32_MISC_ENABLE:
1105 vcpu->arch.ia32_misc_enable_msr = data;
1106 break;
1107 case MSR_KVM_WALL_CLOCK:
1108 vcpu->kvm->arch.wall_clock = data;
1109 kvm_write_wall_clock(vcpu->kvm, data);
1110 break;
1111 case MSR_KVM_SYSTEM_TIME: {
1112 if (vcpu->arch.time_page) {
1113 kvm_release_page_dirty(vcpu->arch.time_page);
1114 vcpu->arch.time_page = NULL;
1115 }
1116
1117 vcpu->arch.time = data;
1118
1119 /* we verify if the enable bit is set... */
1120 if (!(data & 1))
1121 break;
1122
1123 /* ...but clean it before doing the actual write */
1124 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1125
1126 vcpu->arch.time_page =
1127 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1128
1129 if (is_error_page(vcpu->arch.time_page)) {
1130 kvm_release_page_clean(vcpu->arch.time_page);
1131 vcpu->arch.time_page = NULL;
1132 }
1133
1134 kvm_request_guest_time_update(vcpu);
1135 break;
1136 }
1137 case MSR_IA32_MCG_CTL:
1138 case MSR_IA32_MCG_STATUS:
1139 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1140 return set_msr_mce(vcpu, msr, data);
1141
1142 /* Performance counters are not protected by a CPUID bit,
1143 * so we should check all of them in the generic path for the sake of
1144 * cross vendor migration.
1145 * Writing a zero into the event select MSRs disables them,
1146 * which we perfectly emulate ;-). Any other value should be at least
1147 * reported, some guests depend on them.
1148 */
1149 case MSR_P6_EVNTSEL0:
1150 case MSR_P6_EVNTSEL1:
1151 case MSR_K7_EVNTSEL0:
1152 case MSR_K7_EVNTSEL1:
1153 case MSR_K7_EVNTSEL2:
1154 case MSR_K7_EVNTSEL3:
1155 if (data != 0)
1156 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1157 "0x%x data 0x%llx\n", msr, data);
1158 break;
1159 /* at least RHEL 4 unconditionally writes to the perfctr registers,
1160 * so we ignore writes to make it happy.
1161 */
1162 case MSR_P6_PERFCTR0:
1163 case MSR_P6_PERFCTR1:
1164 case MSR_K7_PERFCTR0:
1165 case MSR_K7_PERFCTR1:
1166 case MSR_K7_PERFCTR2:
1167 case MSR_K7_PERFCTR3:
1168 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1169 "0x%x data 0x%llx\n", msr, data);
1170 break;
1171 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1172 if (kvm_hv_msr_partition_wide(msr)) {
1173 int r;
1174 mutex_lock(&vcpu->kvm->lock);
1175 r = set_msr_hyperv_pw(vcpu, msr, data);
1176 mutex_unlock(&vcpu->kvm->lock);
1177 return r;
1178 } else
1179 return set_msr_hyperv(vcpu, msr, data);
1180 break;
1181 default:
1182 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1183 return xen_hvm_config(vcpu, data);
1184 if (!ignore_msrs) {
1185 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1186 msr, data);
1187 return 1;
1188 } else {
1189 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1190 msr, data);
1191 break;
1192 }
1193 }
1194 return 0;
1195 }
1196 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1197
1198
1199 /*
1200 * Reads an msr value (of 'msr_index') into 'pdata'.
1201 * Returns 0 on success, non-0 otherwise.
1202 * Assumes vcpu_load() was already called.
1203 */
1204 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1205 {
1206 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1207 }
1208
1209 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1210 {
1211 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1212
1213 if (!msr_mtrr_valid(msr))
1214 return 1;
1215
1216 if (msr == MSR_MTRRdefType)
1217 *pdata = vcpu->arch.mtrr_state.def_type +
1218 (vcpu->arch.mtrr_state.enabled << 10);
1219 else if (msr == MSR_MTRRfix64K_00000)
1220 *pdata = p[0];
1221 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1222 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1223 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1224 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1225 else if (msr == MSR_IA32_CR_PAT)
1226 *pdata = vcpu->arch.pat;
1227 else { /* Variable MTRRs */
1228 int idx, is_mtrr_mask;
1229 u64 *pt;
1230
1231 idx = (msr - 0x200) / 2;
1232 is_mtrr_mask = msr - 0x200 - 2 * idx;
1233 if (!is_mtrr_mask)
1234 pt =
1235 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1236 else
1237 pt =
1238 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1239 *pdata = *pt;
1240 }
1241
1242 return 0;
1243 }
1244
1245 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1246 {
1247 u64 data;
1248 u64 mcg_cap = vcpu->arch.mcg_cap;
1249 unsigned bank_num = mcg_cap & 0xff;
1250
1251 switch (msr) {
1252 case MSR_IA32_P5_MC_ADDR:
1253 case MSR_IA32_P5_MC_TYPE:
1254 data = 0;
1255 break;
1256 case MSR_IA32_MCG_CAP:
1257 data = vcpu->arch.mcg_cap;
1258 break;
1259 case MSR_IA32_MCG_CTL:
1260 if (!(mcg_cap & MCG_CTL_P))
1261 return 1;
1262 data = vcpu->arch.mcg_ctl;
1263 break;
1264 case MSR_IA32_MCG_STATUS:
1265 data = vcpu->arch.mcg_status;
1266 break;
1267 default:
1268 if (msr >= MSR_IA32_MC0_CTL &&
1269 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1270 u32 offset = msr - MSR_IA32_MC0_CTL;
1271 data = vcpu->arch.mce_banks[offset];
1272 break;
1273 }
1274 return 1;
1275 }
1276 *pdata = data;
1277 return 0;
1278 }
1279
1280 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1281 {
1282 u64 data = 0;
1283 struct kvm *kvm = vcpu->kvm;
1284
1285 switch (msr) {
1286 case HV_X64_MSR_GUEST_OS_ID:
1287 data = kvm->arch.hv_guest_os_id;
1288 break;
1289 case HV_X64_MSR_HYPERCALL:
1290 data = kvm->arch.hv_hypercall;
1291 break;
1292 default:
1293 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1294 return 1;
1295 }
1296
1297 *pdata = data;
1298 return 0;
1299 }
1300
1301 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1302 {
1303 u64 data = 0;
1304
1305 switch (msr) {
1306 case HV_X64_MSR_VP_INDEX: {
1307 int r;
1308 struct kvm_vcpu *v;
1309 kvm_for_each_vcpu(r, v, vcpu->kvm)
1310 if (v == vcpu)
1311 data = r;
1312 break;
1313 }
1314 case HV_X64_MSR_EOI:
1315 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1316 case HV_X64_MSR_ICR:
1317 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1318 case HV_X64_MSR_TPR:
1319 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1320 default:
1321 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1322 return 1;
1323 }
1324 *pdata = data;
1325 return 0;
1326 }
1327
1328 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1329 {
1330 u64 data;
1331
1332 switch (msr) {
1333 case MSR_IA32_PLATFORM_ID:
1334 case MSR_IA32_UCODE_REV:
1335 case MSR_IA32_EBL_CR_POWERON:
1336 case MSR_IA32_DEBUGCTLMSR:
1337 case MSR_IA32_LASTBRANCHFROMIP:
1338 case MSR_IA32_LASTBRANCHTOIP:
1339 case MSR_IA32_LASTINTFROMIP:
1340 case MSR_IA32_LASTINTTOIP:
1341 case MSR_K8_SYSCFG:
1342 case MSR_K7_HWCR:
1343 case MSR_VM_HSAVE_PA:
1344 case MSR_P6_PERFCTR0:
1345 case MSR_P6_PERFCTR1:
1346 case MSR_P6_EVNTSEL0:
1347 case MSR_P6_EVNTSEL1:
1348 case MSR_K7_EVNTSEL0:
1349 case MSR_K7_PERFCTR0:
1350 case MSR_K8_INT_PENDING_MSG:
1351 case MSR_AMD64_NB_CFG:
1352 case MSR_FAM10H_MMIO_CONF_BASE:
1353 data = 0;
1354 break;
1355 case MSR_MTRRcap:
1356 data = 0x500 | KVM_NR_VAR_MTRR;
1357 break;
1358 case 0x200 ... 0x2ff:
1359 return get_msr_mtrr(vcpu, msr, pdata);
1360 case 0xcd: /* fsb frequency */
1361 data = 3;
1362 break;
1363 case MSR_IA32_APICBASE:
1364 data = kvm_get_apic_base(vcpu);
1365 break;
1366 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1367 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1368 break;
1369 case MSR_IA32_MISC_ENABLE:
1370 data = vcpu->arch.ia32_misc_enable_msr;
1371 break;
1372 case MSR_IA32_PERF_STATUS:
1373 /* TSC increment by tick */
1374 data = 1000ULL;
1375 /* CPU multiplier */
1376 data |= (((uint64_t)4ULL) << 40);
1377 break;
1378 case MSR_EFER:
1379 data = vcpu->arch.efer;
1380 break;
1381 case MSR_KVM_WALL_CLOCK:
1382 data = vcpu->kvm->arch.wall_clock;
1383 break;
1384 case MSR_KVM_SYSTEM_TIME:
1385 data = vcpu->arch.time;
1386 break;
1387 case MSR_IA32_P5_MC_ADDR:
1388 case MSR_IA32_P5_MC_TYPE:
1389 case MSR_IA32_MCG_CAP:
1390 case MSR_IA32_MCG_CTL:
1391 case MSR_IA32_MCG_STATUS:
1392 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1393 return get_msr_mce(vcpu, msr, pdata);
1394 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1395 if (kvm_hv_msr_partition_wide(msr)) {
1396 int r;
1397 mutex_lock(&vcpu->kvm->lock);
1398 r = get_msr_hyperv_pw(vcpu, msr, pdata);
1399 mutex_unlock(&vcpu->kvm->lock);
1400 return r;
1401 } else
1402 return get_msr_hyperv(vcpu, msr, pdata);
1403 break;
1404 default:
1405 if (!ignore_msrs) {
1406 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1407 return 1;
1408 } else {
1409 pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1410 data = 0;
1411 }
1412 break;
1413 }
1414 *pdata = data;
1415 return 0;
1416 }
1417 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1418
1419 /*
1420 * Read or write a bunch of msrs. All parameters are kernel addresses.
1421 *
1422 * @return number of msrs set successfully.
1423 */
1424 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1425 struct kvm_msr_entry *entries,
1426 int (*do_msr)(struct kvm_vcpu *vcpu,
1427 unsigned index, u64 *data))
1428 {
1429 int i, idx;
1430
1431 vcpu_load(vcpu);
1432
1433 idx = srcu_read_lock(&vcpu->kvm->srcu);
1434 for (i = 0; i < msrs->nmsrs; ++i)
1435 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1436 break;
1437 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1438
1439 vcpu_put(vcpu);
1440
1441 return i;
1442 }
1443
1444 /*
1445 * Read or write a bunch of msrs. Parameters are user addresses.
1446 *
1447 * @return number of msrs set successfully.
1448 */
1449 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1450 int (*do_msr)(struct kvm_vcpu *vcpu,
1451 unsigned index, u64 *data),
1452 int writeback)
1453 {
1454 struct kvm_msrs msrs;
1455 struct kvm_msr_entry *entries;
1456 int r, n;
1457 unsigned size;
1458
1459 r = -EFAULT;
1460 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1461 goto out;
1462
1463 r = -E2BIG;
1464 if (msrs.nmsrs >= MAX_IO_MSRS)
1465 goto out;
1466
1467 r = -ENOMEM;
1468 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1469 entries = vmalloc(size);
1470 if (!entries)
1471 goto out;
1472
1473 r = -EFAULT;
1474 if (copy_from_user(entries, user_msrs->entries, size))
1475 goto out_free;
1476
1477 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1478 if (r < 0)
1479 goto out_free;
1480
1481 r = -EFAULT;
1482 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1483 goto out_free;
1484
1485 r = n;
1486
1487 out_free:
1488 vfree(entries);
1489 out:
1490 return r;
1491 }
1492
1493 int kvm_dev_ioctl_check_extension(long ext)
1494 {
1495 int r;
1496
1497 switch (ext) {
1498 case KVM_CAP_IRQCHIP:
1499 case KVM_CAP_HLT:
1500 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1501 case KVM_CAP_SET_TSS_ADDR:
1502 case KVM_CAP_EXT_CPUID:
1503 case KVM_CAP_CLOCKSOURCE:
1504 case KVM_CAP_PIT:
1505 case KVM_CAP_NOP_IO_DELAY:
1506 case KVM_CAP_MP_STATE:
1507 case KVM_CAP_SYNC_MMU:
1508 case KVM_CAP_REINJECT_CONTROL:
1509 case KVM_CAP_IRQ_INJECT_STATUS:
1510 case KVM_CAP_ASSIGN_DEV_IRQ:
1511 case KVM_CAP_IRQFD:
1512 case KVM_CAP_IOEVENTFD:
1513 case KVM_CAP_PIT2:
1514 case KVM_CAP_PIT_STATE2:
1515 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1516 case KVM_CAP_XEN_HVM:
1517 case KVM_CAP_ADJUST_CLOCK:
1518 case KVM_CAP_VCPU_EVENTS:
1519 case KVM_CAP_HYPERV:
1520 case KVM_CAP_HYPERV_VAPIC:
1521 case KVM_CAP_HYPERV_SPIN:
1522 case KVM_CAP_PCI_SEGMENT:
1523 case KVM_CAP_DEBUGREGS:
1524 case KVM_CAP_X86_ROBUST_SINGLESTEP:
1525 r = 1;
1526 break;
1527 case KVM_CAP_COALESCED_MMIO:
1528 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1529 break;
1530 case KVM_CAP_VAPIC:
1531 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1532 break;
1533 case KVM_CAP_NR_VCPUS:
1534 r = KVM_MAX_VCPUS;
1535 break;
1536 case KVM_CAP_NR_MEMSLOTS:
1537 r = KVM_MEMORY_SLOTS;
1538 break;
1539 case KVM_CAP_PV_MMU: /* obsolete */
1540 r = 0;
1541 break;
1542 case KVM_CAP_IOMMU:
1543 r = iommu_found();
1544 break;
1545 case KVM_CAP_MCE:
1546 r = KVM_MAX_MCE_BANKS;
1547 break;
1548 default:
1549 r = 0;
1550 break;
1551 }
1552 return r;
1553
1554 }
1555
1556 long kvm_arch_dev_ioctl(struct file *filp,
1557 unsigned int ioctl, unsigned long arg)
1558 {
1559 void __user *argp = (void __user *)arg;
1560 long r;
1561
1562 switch (ioctl) {
1563 case KVM_GET_MSR_INDEX_LIST: {
1564 struct kvm_msr_list __user *user_msr_list = argp;
1565 struct kvm_msr_list msr_list;
1566 unsigned n;
1567
1568 r = -EFAULT;
1569 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1570 goto out;
1571 n = msr_list.nmsrs;
1572 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1573 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1574 goto out;
1575 r = -E2BIG;
1576 if (n < msr_list.nmsrs)
1577 goto out;
1578 r = -EFAULT;
1579 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1580 num_msrs_to_save * sizeof(u32)))
1581 goto out;
1582 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1583 &emulated_msrs,
1584 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1585 goto out;
1586 r = 0;
1587 break;
1588 }
1589 case KVM_GET_SUPPORTED_CPUID: {
1590 struct kvm_cpuid2 __user *cpuid_arg = argp;
1591 struct kvm_cpuid2 cpuid;
1592
1593 r = -EFAULT;
1594 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1595 goto out;
1596 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1597 cpuid_arg->entries);
1598 if (r)
1599 goto out;
1600
1601 r = -EFAULT;
1602 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1603 goto out;
1604 r = 0;
1605 break;
1606 }
1607 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1608 u64 mce_cap;
1609
1610 mce_cap = KVM_MCE_CAP_SUPPORTED;
1611 r = -EFAULT;
1612 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1613 goto out;
1614 r = 0;
1615 break;
1616 }
1617 default:
1618 r = -EINVAL;
1619 }
1620 out:
1621 return r;
1622 }
1623
1624 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1625 {
1626 kvm_x86_ops->vcpu_load(vcpu, cpu);
1627 if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) {
1628 unsigned long khz = cpufreq_quick_get(cpu);
1629 if (!khz)
1630 khz = tsc_khz;
1631 per_cpu(cpu_tsc_khz, cpu) = khz;
1632 }
1633 kvm_request_guest_time_update(vcpu);
1634 }
1635
1636 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1637 {
1638 kvm_put_guest_fpu(vcpu);
1639 kvm_x86_ops->vcpu_put(vcpu);
1640 }
1641
1642 static int is_efer_nx(void)
1643 {
1644 unsigned long long efer = 0;
1645
1646 rdmsrl_safe(MSR_EFER, &efer);
1647 return efer & EFER_NX;
1648 }
1649
1650 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1651 {
1652 int i;
1653 struct kvm_cpuid_entry2 *e, *entry;
1654
1655 entry = NULL;
1656 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1657 e = &vcpu->arch.cpuid_entries[i];
1658 if (e->function == 0x80000001) {
1659 entry = e;
1660 break;
1661 }
1662 }
1663 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1664 entry->edx &= ~(1 << 20);
1665 printk(KERN_INFO "kvm: guest NX capability removed\n");
1666 }
1667 }
1668
1669 /* when an old userspace process fills a new kernel module */
1670 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1671 struct kvm_cpuid *cpuid,
1672 struct kvm_cpuid_entry __user *entries)
1673 {
1674 int r, i;
1675 struct kvm_cpuid_entry *cpuid_entries;
1676
1677 r = -E2BIG;
1678 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1679 goto out;
1680 r = -ENOMEM;
1681 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1682 if (!cpuid_entries)
1683 goto out;
1684 r = -EFAULT;
1685 if (copy_from_user(cpuid_entries, entries,
1686 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1687 goto out_free;
1688 for (i = 0; i < cpuid->nent; i++) {
1689 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1690 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1691 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1692 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1693 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1694 vcpu->arch.cpuid_entries[i].index = 0;
1695 vcpu->arch.cpuid_entries[i].flags = 0;
1696 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1697 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1698 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1699 }
1700 vcpu->arch.cpuid_nent = cpuid->nent;
1701 cpuid_fix_nx_cap(vcpu);
1702 r = 0;
1703 kvm_apic_set_version(vcpu);
1704 kvm_x86_ops->cpuid_update(vcpu);
1705
1706 out_free:
1707 vfree(cpuid_entries);
1708 out:
1709 return r;
1710 }
1711
1712 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1713 struct kvm_cpuid2 *cpuid,
1714 struct kvm_cpuid_entry2 __user *entries)
1715 {
1716 int r;
1717
1718 r = -E2BIG;
1719 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1720 goto out;
1721 r = -EFAULT;
1722 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1723 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1724 goto out;
1725 vcpu->arch.cpuid_nent = cpuid->nent;
1726 kvm_apic_set_version(vcpu);
1727 kvm_x86_ops->cpuid_update(vcpu);
1728 return 0;
1729
1730 out:
1731 return r;
1732 }
1733
1734 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1735 struct kvm_cpuid2 *cpuid,
1736 struct kvm_cpuid_entry2 __user *entries)
1737 {
1738 int r;
1739
1740 r = -E2BIG;
1741 if (cpuid->nent < vcpu->arch.cpuid_nent)
1742 goto out;
1743 r = -EFAULT;
1744 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1745 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1746 goto out;
1747 return 0;
1748
1749 out:
1750 cpuid->nent = vcpu->arch.cpuid_nent;
1751 return r;
1752 }
1753
1754 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1755 u32 index)
1756 {
1757 entry->function = function;
1758 entry->index = index;
1759 cpuid_count(entry->function, entry->index,
1760 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1761 entry->flags = 0;
1762 }
1763
1764 #define F(x) bit(X86_FEATURE_##x)
1765
1766 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1767 u32 index, int *nent, int maxnent)
1768 {
1769 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
1770 #ifdef CONFIG_X86_64
1771 unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
1772 ? F(GBPAGES) : 0;
1773 unsigned f_lm = F(LM);
1774 #else
1775 unsigned f_gbpages = 0;
1776 unsigned f_lm = 0;
1777 #endif
1778 unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
1779
1780 /* cpuid 1.edx */
1781 const u32 kvm_supported_word0_x86_features =
1782 F(FPU) | F(VME) | F(DE) | F(PSE) |
1783 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1784 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
1785 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1786 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
1787 0 /* Reserved, DS, ACPI */ | F(MMX) |
1788 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
1789 0 /* HTT, TM, Reserved, PBE */;
1790 /* cpuid 0x80000001.edx */
1791 const u32 kvm_supported_word1_x86_features =
1792 F(FPU) | F(VME) | F(DE) | F(PSE) |
1793 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1794 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
1795 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1796 F(PAT) | F(PSE36) | 0 /* Reserved */ |
1797 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
1798 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
1799 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
1800 /* cpuid 1.ecx */
1801 const u32 kvm_supported_word4_x86_features =
1802 F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
1803 0 /* DS-CPL, VMX, SMX, EST */ |
1804 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1805 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
1806 0 /* Reserved, DCA */ | F(XMM4_1) |
1807 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
1808 0 /* Reserved, XSAVE, OSXSAVE */;
1809 /* cpuid 0x80000001.ecx */
1810 const u32 kvm_supported_word6_x86_features =
1811 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
1812 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
1813 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
1814 0 /* SKINIT */ | 0 /* WDT */;
1815
1816 /* all calls to cpuid_count() should be made on the same cpu */
1817 get_cpu();
1818 do_cpuid_1_ent(entry, function, index);
1819 ++*nent;
1820
1821 switch (function) {
1822 case 0:
1823 entry->eax = min(entry->eax, (u32)0xb);
1824 break;
1825 case 1:
1826 entry->edx &= kvm_supported_word0_x86_features;
1827 entry->ecx &= kvm_supported_word4_x86_features;
1828 /* we support x2apic emulation even if host does not support
1829 * it since we emulate x2apic in software */
1830 entry->ecx |= F(X2APIC);
1831 break;
1832 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1833 * may return different values. This forces us to get_cpu() before
1834 * issuing the first command, and also to emulate this annoying behavior
1835 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1836 case 2: {
1837 int t, times = entry->eax & 0xff;
1838
1839 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1840 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1841 for (t = 1; t < times && *nent < maxnent; ++t) {
1842 do_cpuid_1_ent(&entry[t], function, 0);
1843 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1844 ++*nent;
1845 }
1846 break;
1847 }
1848 /* function 4 and 0xb have additional index. */
1849 case 4: {
1850 int i, cache_type;
1851
1852 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1853 /* read more entries until cache_type is zero */
1854 for (i = 1; *nent < maxnent; ++i) {
1855 cache_type = entry[i - 1].eax & 0x1f;
1856 if (!cache_type)
1857 break;
1858 do_cpuid_1_ent(&entry[i], function, i);
1859 entry[i].flags |=
1860 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1861 ++*nent;
1862 }
1863 break;
1864 }
1865 case 0xb: {
1866 int i, level_type;
1867
1868 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1869 /* read more entries until level_type is zero */
1870 for (i = 1; *nent < maxnent; ++i) {
1871 level_type = entry[i - 1].ecx & 0xff00;
1872 if (!level_type)
1873 break;
1874 do_cpuid_1_ent(&entry[i], function, i);
1875 entry[i].flags |=
1876 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1877 ++*nent;
1878 }
1879 break;
1880 }
1881 case 0x80000000:
1882 entry->eax = min(entry->eax, 0x8000001a);
1883 break;
1884 case 0x80000001:
1885 entry->edx &= kvm_supported_word1_x86_features;
1886 entry->ecx &= kvm_supported_word6_x86_features;
1887 break;
1888 }
1889 put_cpu();
1890 }
1891
1892 #undef F
1893
1894 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1895 struct kvm_cpuid_entry2 __user *entries)
1896 {
1897 struct kvm_cpuid_entry2 *cpuid_entries;
1898 int limit, nent = 0, r = -E2BIG;
1899 u32 func;
1900
1901 if (cpuid->nent < 1)
1902 goto out;
1903 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1904 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1905 r = -ENOMEM;
1906 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1907 if (!cpuid_entries)
1908 goto out;
1909
1910 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1911 limit = cpuid_entries[0].eax;
1912 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1913 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1914 &nent, cpuid->nent);
1915 r = -E2BIG;
1916 if (nent >= cpuid->nent)
1917 goto out_free;
1918
1919 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1920 limit = cpuid_entries[nent - 1].eax;
1921 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1922 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1923 &nent, cpuid->nent);
1924 r = -E2BIG;
1925 if (nent >= cpuid->nent)
1926 goto out_free;
1927
1928 r = -EFAULT;
1929 if (copy_to_user(entries, cpuid_entries,
1930 nent * sizeof(struct kvm_cpuid_entry2)))
1931 goto out_free;
1932 cpuid->nent = nent;
1933 r = 0;
1934
1935 out_free:
1936 vfree(cpuid_entries);
1937 out:
1938 return r;
1939 }
1940
1941 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1942 struct kvm_lapic_state *s)
1943 {
1944 vcpu_load(vcpu);
1945 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1946 vcpu_put(vcpu);
1947
1948 return 0;
1949 }
1950
1951 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1952 struct kvm_lapic_state *s)
1953 {
1954 vcpu_load(vcpu);
1955 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1956 kvm_apic_post_state_restore(vcpu);
1957 update_cr8_intercept(vcpu);
1958 vcpu_put(vcpu);
1959
1960 return 0;
1961 }
1962
1963 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1964 struct kvm_interrupt *irq)
1965 {
1966 if (irq->irq < 0 || irq->irq >= 256)
1967 return -EINVAL;
1968 if (irqchip_in_kernel(vcpu->kvm))
1969 return -ENXIO;
1970 vcpu_load(vcpu);
1971
1972 kvm_queue_interrupt(vcpu, irq->irq, false);
1973
1974 vcpu_put(vcpu);
1975
1976 return 0;
1977 }
1978
1979 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
1980 {
1981 vcpu_load(vcpu);
1982 kvm_inject_nmi(vcpu);
1983 vcpu_put(vcpu);
1984
1985 return 0;
1986 }
1987
1988 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1989 struct kvm_tpr_access_ctl *tac)
1990 {
1991 if (tac->flags)
1992 return -EINVAL;
1993 vcpu->arch.tpr_access_reporting = !!tac->enabled;
1994 return 0;
1995 }
1996
1997 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
1998 u64 mcg_cap)
1999 {
2000 int r;
2001 unsigned bank_num = mcg_cap & 0xff, bank;
2002
2003 r = -EINVAL;
2004 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2005 goto out;
2006 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2007 goto out;
2008 r = 0;
2009 vcpu->arch.mcg_cap = mcg_cap;
2010 /* Init IA32_MCG_CTL to all 1s */
2011 if (mcg_cap & MCG_CTL_P)
2012 vcpu->arch.mcg_ctl = ~(u64)0;
2013 /* Init IA32_MCi_CTL to all 1s */
2014 for (bank = 0; bank < bank_num; bank++)
2015 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2016 out:
2017 return r;
2018 }
2019
2020 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2021 struct kvm_x86_mce *mce)
2022 {
2023 u64 mcg_cap = vcpu->arch.mcg_cap;
2024 unsigned bank_num = mcg_cap & 0xff;
2025 u64 *banks = vcpu->arch.mce_banks;
2026
2027 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2028 return -EINVAL;
2029 /*
2030 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2031 * reporting is disabled
2032 */
2033 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2034 vcpu->arch.mcg_ctl != ~(u64)0)
2035 return 0;
2036 banks += 4 * mce->bank;
2037 /*
2038 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2039 * reporting is disabled for the bank
2040 */
2041 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2042 return 0;
2043 if (mce->status & MCI_STATUS_UC) {
2044 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2045 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2046 printk(KERN_DEBUG "kvm: set_mce: "
2047 "injects mce exception while "
2048 "previous one is in progress!\n");
2049 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
2050 return 0;
2051 }
2052 if (banks[1] & MCI_STATUS_VAL)
2053 mce->status |= MCI_STATUS_OVER;
2054 banks[2] = mce->addr;
2055 banks[3] = mce->misc;
2056 vcpu->arch.mcg_status = mce->mcg_status;
2057 banks[1] = mce->status;
2058 kvm_queue_exception(vcpu, MC_VECTOR);
2059 } else if (!(banks[1] & MCI_STATUS_VAL)
2060 || !(banks[1] & MCI_STATUS_UC)) {
2061 if (banks[1] & MCI_STATUS_VAL)
2062 mce->status |= MCI_STATUS_OVER;
2063 banks[2] = mce->addr;
2064 banks[3] = mce->misc;
2065 banks[1] = mce->status;
2066 } else
2067 banks[1] |= MCI_STATUS_OVER;
2068 return 0;
2069 }
2070
2071 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2072 struct kvm_vcpu_events *events)
2073 {
2074 vcpu_load(vcpu);
2075
2076 events->exception.injected =
2077 vcpu->arch.exception.pending &&
2078 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2079 events->exception.nr = vcpu->arch.exception.nr;
2080 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2081 events->exception.error_code = vcpu->arch.exception.error_code;
2082
2083 events->interrupt.injected =
2084 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2085 events->interrupt.nr = vcpu->arch.interrupt.nr;
2086 events->interrupt.soft = 0;
2087 events->interrupt.shadow =
2088 kvm_x86_ops->get_interrupt_shadow(vcpu,
2089 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2090
2091 events->nmi.injected = vcpu->arch.nmi_injected;
2092 events->nmi.pending = vcpu->arch.nmi_pending;
2093 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2094
2095 events->sipi_vector = vcpu->arch.sipi_vector;
2096
2097 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2098 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2099 | KVM_VCPUEVENT_VALID_SHADOW);
2100
2101 vcpu_put(vcpu);
2102 }
2103
2104 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2105 struct kvm_vcpu_events *events)
2106 {
2107 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2108 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2109 | KVM_VCPUEVENT_VALID_SHADOW))
2110 return -EINVAL;
2111
2112 vcpu_load(vcpu);
2113
2114 vcpu->arch.exception.pending = events->exception.injected;
2115 vcpu->arch.exception.nr = events->exception.nr;
2116 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2117 vcpu->arch.exception.error_code = events->exception.error_code;
2118
2119 vcpu->arch.interrupt.pending = events->interrupt.injected;
2120 vcpu->arch.interrupt.nr = events->interrupt.nr;
2121 vcpu->arch.interrupt.soft = events->interrupt.soft;
2122 if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
2123 kvm_pic_clear_isr_ack(vcpu->kvm);
2124 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2125 kvm_x86_ops->set_interrupt_shadow(vcpu,
2126 events->interrupt.shadow);
2127
2128 vcpu->arch.nmi_injected = events->nmi.injected;
2129 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2130 vcpu->arch.nmi_pending = events->nmi.pending;
2131 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2132
2133 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2134 vcpu->arch.sipi_vector = events->sipi_vector;
2135
2136 vcpu_put(vcpu);
2137
2138 return 0;
2139 }
2140
2141 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2142 struct kvm_debugregs *dbgregs)
2143 {
2144 vcpu_load(vcpu);
2145
2146 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2147 dbgregs->dr6 = vcpu->arch.dr6;
2148 dbgregs->dr7 = vcpu->arch.dr7;
2149 dbgregs->flags = 0;
2150
2151 vcpu_put(vcpu);
2152 }
2153
2154 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2155 struct kvm_debugregs *dbgregs)
2156 {
2157 if (dbgregs->flags)
2158 return -EINVAL;
2159
2160 vcpu_load(vcpu);
2161
2162 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2163 vcpu->arch.dr6 = dbgregs->dr6;
2164 vcpu->arch.dr7 = dbgregs->dr7;
2165
2166 vcpu_put(vcpu);
2167
2168 return 0;
2169 }
2170
2171 long kvm_arch_vcpu_ioctl(struct file *filp,
2172 unsigned int ioctl, unsigned long arg)
2173 {
2174 struct kvm_vcpu *vcpu = filp->private_data;
2175 void __user *argp = (void __user *)arg;
2176 int r;
2177 struct kvm_lapic_state *lapic = NULL;
2178
2179 switch (ioctl) {
2180 case KVM_GET_LAPIC: {
2181 r = -EINVAL;
2182 if (!vcpu->arch.apic)
2183 goto out;
2184 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2185
2186 r = -ENOMEM;
2187 if (!lapic)
2188 goto out;
2189 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
2190 if (r)
2191 goto out;
2192 r = -EFAULT;
2193 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
2194 goto out;
2195 r = 0;
2196 break;
2197 }
2198 case KVM_SET_LAPIC: {
2199 r = -EINVAL;
2200 if (!vcpu->arch.apic)
2201 goto out;
2202 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2203 r = -ENOMEM;
2204 if (!lapic)
2205 goto out;
2206 r = -EFAULT;
2207 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
2208 goto out;
2209 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
2210 if (r)
2211 goto out;
2212 r = 0;
2213 break;
2214 }
2215 case KVM_INTERRUPT: {
2216 struct kvm_interrupt irq;
2217
2218 r = -EFAULT;
2219 if (copy_from_user(&irq, argp, sizeof irq))
2220 goto out;
2221 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2222 if (r)
2223 goto out;
2224 r = 0;
2225 break;
2226 }
2227 case KVM_NMI: {
2228 r = kvm_vcpu_ioctl_nmi(vcpu);
2229 if (r)
2230 goto out;
2231 r = 0;
2232 break;
2233 }
2234 case KVM_SET_CPUID: {
2235 struct kvm_cpuid __user *cpuid_arg = argp;
2236 struct kvm_cpuid cpuid;
2237
2238 r = -EFAULT;
2239 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2240 goto out;
2241 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2242 if (r)
2243 goto out;
2244 break;
2245 }
2246 case KVM_SET_CPUID2: {
2247 struct kvm_cpuid2 __user *cpuid_arg = argp;
2248 struct kvm_cpuid2 cpuid;
2249
2250 r = -EFAULT;
2251 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2252 goto out;
2253 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2254 cpuid_arg->entries);
2255 if (r)
2256 goto out;
2257 break;
2258 }
2259 case KVM_GET_CPUID2: {
2260 struct kvm_cpuid2 __user *cpuid_arg = argp;
2261 struct kvm_cpuid2 cpuid;
2262
2263 r = -EFAULT;
2264 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2265 goto out;
2266 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2267 cpuid_arg->entries);
2268 if (r)
2269 goto out;
2270 r = -EFAULT;
2271 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2272 goto out;
2273 r = 0;
2274 break;
2275 }
2276 case KVM_GET_MSRS:
2277 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2278 break;
2279 case KVM_SET_MSRS:
2280 r = msr_io(vcpu, argp, do_set_msr, 0);
2281 break;
2282 case KVM_TPR_ACCESS_REPORTING: {
2283 struct kvm_tpr_access_ctl tac;
2284
2285 r = -EFAULT;
2286 if (copy_from_user(&tac, argp, sizeof tac))
2287 goto out;
2288 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2289 if (r)
2290 goto out;
2291 r = -EFAULT;
2292 if (copy_to_user(argp, &tac, sizeof tac))
2293 goto out;
2294 r = 0;
2295 break;
2296 };
2297 case KVM_SET_VAPIC_ADDR: {
2298 struct kvm_vapic_addr va;
2299
2300 r = -EINVAL;
2301 if (!irqchip_in_kernel(vcpu->kvm))
2302 goto out;
2303 r = -EFAULT;
2304 if (copy_from_user(&va, argp, sizeof va))
2305 goto out;
2306 r = 0;
2307 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2308 break;
2309 }
2310 case KVM_X86_SETUP_MCE: {
2311 u64 mcg_cap;
2312
2313 r = -EFAULT;
2314 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2315 goto out;
2316 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2317 break;
2318 }
2319 case KVM_X86_SET_MCE: {
2320 struct kvm_x86_mce mce;
2321
2322 r = -EFAULT;
2323 if (copy_from_user(&mce, argp, sizeof mce))
2324 goto out;
2325 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2326 break;
2327 }
2328 case KVM_GET_VCPU_EVENTS: {
2329 struct kvm_vcpu_events events;
2330
2331 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2332
2333 r = -EFAULT;
2334 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2335 break;
2336 r = 0;
2337 break;
2338 }
2339 case KVM_SET_VCPU_EVENTS: {
2340 struct kvm_vcpu_events events;
2341
2342 r = -EFAULT;
2343 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2344 break;
2345
2346 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2347 break;
2348 }
2349 case KVM_GET_DEBUGREGS: {
2350 struct kvm_debugregs dbgregs;
2351
2352 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2353
2354 r = -EFAULT;
2355 if (copy_to_user(argp, &dbgregs,
2356 sizeof(struct kvm_debugregs)))
2357 break;
2358 r = 0;
2359 break;
2360 }
2361 case KVM_SET_DEBUGREGS: {
2362 struct kvm_debugregs dbgregs;
2363
2364 r = -EFAULT;
2365 if (copy_from_user(&dbgregs, argp,
2366 sizeof(struct kvm_debugregs)))
2367 break;
2368
2369 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2370 break;
2371 }
2372 default:
2373 r = -EINVAL;
2374 }
2375 out:
2376 kfree(lapic);
2377 return r;
2378 }
2379
2380 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2381 {
2382 int ret;
2383
2384 if (addr > (unsigned int)(-3 * PAGE_SIZE))
2385 return -1;
2386 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2387 return ret;
2388 }
2389
2390 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2391 u64 ident_addr)
2392 {
2393 kvm->arch.ept_identity_map_addr = ident_addr;
2394 return 0;
2395 }
2396
2397 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2398 u32 kvm_nr_mmu_pages)
2399 {
2400 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2401 return -EINVAL;
2402
2403 mutex_lock(&kvm->slots_lock);
2404 spin_lock(&kvm->mmu_lock);
2405
2406 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2407 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2408
2409 spin_unlock(&kvm->mmu_lock);
2410 mutex_unlock(&kvm->slots_lock);
2411 return 0;
2412 }
2413
2414 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2415 {
2416 return kvm->arch.n_alloc_mmu_pages;
2417 }
2418
2419 gfn_t unalias_gfn_instantiation(struct kvm *kvm, gfn_t gfn)
2420 {
2421 int i;
2422 struct kvm_mem_alias *alias;
2423 struct kvm_mem_aliases *aliases;
2424
2425 aliases = rcu_dereference(kvm->arch.aliases);
2426
2427 for (i = 0; i < aliases->naliases; ++i) {
2428 alias = &aliases->aliases[i];
2429 if (alias->flags & KVM_ALIAS_INVALID)
2430 continue;
2431 if (gfn >= alias->base_gfn
2432 && gfn < alias->base_gfn + alias->npages)
2433 return alias->target_gfn + gfn - alias->base_gfn;
2434 }
2435 return gfn;
2436 }
2437
2438 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
2439 {
2440 int i;
2441 struct kvm_mem_alias *alias;
2442 struct kvm_mem_aliases *aliases;
2443
2444 aliases = rcu_dereference(kvm->arch.aliases);
2445
2446 for (i = 0; i < aliases->naliases; ++i) {
2447 alias = &aliases->aliases[i];
2448 if (gfn >= alias->base_gfn
2449 && gfn < alias->base_gfn + alias->npages)
2450 return alias->target_gfn + gfn - alias->base_gfn;
2451 }
2452 return gfn;
2453 }
2454
2455 /*
2456 * Set a new alias region. Aliases map a portion of physical memory into
2457 * another portion. This is useful for memory windows, for example the PC
2458 * VGA region.
2459 */
2460 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
2461 struct kvm_memory_alias *alias)
2462 {
2463 int r, n;
2464 struct kvm_mem_alias *p;
2465 struct kvm_mem_aliases *aliases, *old_aliases;
2466
2467 r = -EINVAL;
2468 /* General sanity checks */
2469 if (alias->memory_size & (PAGE_SIZE - 1))
2470 goto out;
2471 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
2472 goto out;
2473 if (alias->slot >= KVM_ALIAS_SLOTS)
2474 goto out;
2475 if (alias->guest_phys_addr + alias->memory_size
2476 < alias->guest_phys_addr)
2477 goto out;
2478 if (alias->target_phys_addr + alias->memory_size
2479 < alias->target_phys_addr)
2480 goto out;
2481
2482 r = -ENOMEM;
2483 aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
2484 if (!aliases)
2485 goto out;
2486
2487 mutex_lock(&kvm->slots_lock);
2488
2489 /* invalidate any gfn reference in case of deletion/shrinking */
2490 memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
2491 aliases->aliases[alias->slot].flags |= KVM_ALIAS_INVALID;
2492 old_aliases = kvm->arch.aliases;
2493 rcu_assign_pointer(kvm->arch.aliases, aliases);
2494 synchronize_srcu_expedited(&kvm->srcu);
2495 kvm_mmu_zap_all(kvm);
2496 kfree(old_aliases);
2497
2498 r = -ENOMEM;
2499 aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
2500 if (!aliases)
2501 goto out_unlock;
2502
2503 memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
2504
2505 p = &aliases->aliases[alias->slot];
2506 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
2507 p->npages = alias->memory_size >> PAGE_SHIFT;
2508 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
2509 p->flags &= ~(KVM_ALIAS_INVALID);
2510
2511 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
2512 if (aliases->aliases[n - 1].npages)
2513 break;
2514 aliases->naliases = n;
2515
2516 old_aliases = kvm->arch.aliases;
2517 rcu_assign_pointer(kvm->arch.aliases, aliases);
2518 synchronize_srcu_expedited(&kvm->srcu);
2519 kfree(old_aliases);
2520 r = 0;
2521
2522 out_unlock:
2523 mutex_unlock(&kvm->slots_lock);
2524 out:
2525 return r;
2526 }
2527
2528 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2529 {
2530 int r;
2531
2532 r = 0;
2533 switch (chip->chip_id) {
2534 case KVM_IRQCHIP_PIC_MASTER:
2535 memcpy(&chip->chip.pic,
2536 &pic_irqchip(kvm)->pics[0],
2537 sizeof(struct kvm_pic_state));
2538 break;
2539 case KVM_IRQCHIP_PIC_SLAVE:
2540 memcpy(&chip->chip.pic,
2541 &pic_irqchip(kvm)->pics[1],
2542 sizeof(struct kvm_pic_state));
2543 break;
2544 case KVM_IRQCHIP_IOAPIC:
2545 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2546 break;
2547 default:
2548 r = -EINVAL;
2549 break;
2550 }
2551 return r;
2552 }
2553
2554 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2555 {
2556 int r;
2557
2558 r = 0;
2559 switch (chip->chip_id) {
2560 case KVM_IRQCHIP_PIC_MASTER:
2561 raw_spin_lock(&pic_irqchip(kvm)->lock);
2562 memcpy(&pic_irqchip(kvm)->pics[0],
2563 &chip->chip.pic,
2564 sizeof(struct kvm_pic_state));
2565 raw_spin_unlock(&pic_irqchip(kvm)->lock);
2566 break;
2567 case KVM_IRQCHIP_PIC_SLAVE:
2568 raw_spin_lock(&pic_irqchip(kvm)->lock);
2569 memcpy(&pic_irqchip(kvm)->pics[1],
2570 &chip->chip.pic,
2571 sizeof(struct kvm_pic_state));
2572 raw_spin_unlock(&pic_irqchip(kvm)->lock);
2573 break;
2574 case KVM_IRQCHIP_IOAPIC:
2575 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
2576 break;
2577 default:
2578 r = -EINVAL;
2579 break;
2580 }
2581 kvm_pic_update_irq(pic_irqchip(kvm));
2582 return r;
2583 }
2584
2585 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2586 {
2587 int r = 0;
2588
2589 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2590 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2591 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2592 return r;
2593 }
2594
2595 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2596 {
2597 int r = 0;
2598
2599 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2600 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2601 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2602 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2603 return r;
2604 }
2605
2606 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2607 {
2608 int r = 0;
2609
2610 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2611 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2612 sizeof(ps->channels));
2613 ps->flags = kvm->arch.vpit->pit_state.flags;
2614 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2615 return r;
2616 }
2617
2618 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2619 {
2620 int r = 0, start = 0;
2621 u32 prev_legacy, cur_legacy;
2622 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2623 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2624 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2625 if (!prev_legacy && cur_legacy)
2626 start = 1;
2627 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2628 sizeof(kvm->arch.vpit->pit_state.channels));
2629 kvm->arch.vpit->pit_state.flags = ps->flags;
2630 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2631 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2632 return r;
2633 }
2634
2635 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2636 struct kvm_reinject_control *control)
2637 {
2638 if (!kvm->arch.vpit)
2639 return -ENXIO;
2640 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2641 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2642 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2643 return 0;
2644 }
2645
2646 /*
2647 * Get (and clear) the dirty memory log for a memory slot.
2648 */
2649 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2650 struct kvm_dirty_log *log)
2651 {
2652 int r, i;
2653 struct kvm_memory_slot *memslot;
2654 unsigned long n;
2655 unsigned long is_dirty = 0;
2656 unsigned long *dirty_bitmap = NULL;
2657
2658 mutex_lock(&kvm->slots_lock);
2659
2660 r = -EINVAL;
2661 if (log->slot >= KVM_MEMORY_SLOTS)
2662 goto out;
2663
2664 memslot = &kvm->memslots->memslots[log->slot];
2665 r = -ENOENT;
2666 if (!memslot->dirty_bitmap)
2667 goto out;
2668
2669 n = kvm_dirty_bitmap_bytes(memslot);
2670
2671 r = -ENOMEM;
2672 dirty_bitmap = vmalloc(n);
2673 if (!dirty_bitmap)
2674 goto out;
2675 memset(dirty_bitmap, 0, n);
2676
2677 for (i = 0; !is_dirty && i < n/sizeof(long); i++)
2678 is_dirty = memslot->dirty_bitmap[i];
2679
2680 /* If nothing is dirty, don't bother messing with page tables. */
2681 if (is_dirty) {
2682 struct kvm_memslots *slots, *old_slots;
2683
2684 spin_lock(&kvm->mmu_lock);
2685 kvm_mmu_slot_remove_write_access(kvm, log->slot);
2686 spin_unlock(&kvm->mmu_lock);
2687
2688 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
2689 if (!slots)
2690 goto out_free;
2691
2692 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
2693 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
2694
2695 old_slots = kvm->memslots;
2696 rcu_assign_pointer(kvm->memslots, slots);
2697 synchronize_srcu_expedited(&kvm->srcu);
2698 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
2699 kfree(old_slots);
2700 }
2701
2702 r = 0;
2703 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
2704 r = -EFAULT;
2705 out_free:
2706 vfree(dirty_bitmap);
2707 out:
2708 mutex_unlock(&kvm->slots_lock);
2709 return r;
2710 }
2711
2712 long kvm_arch_vm_ioctl(struct file *filp,
2713 unsigned int ioctl, unsigned long arg)
2714 {
2715 struct kvm *kvm = filp->private_data;
2716 void __user *argp = (void __user *)arg;
2717 int r = -ENOTTY;
2718 /*
2719 * This union makes it completely explicit to gcc-3.x
2720 * that these two variables' stack usage should be
2721 * combined, not added together.
2722 */
2723 union {
2724 struct kvm_pit_state ps;
2725 struct kvm_pit_state2 ps2;
2726 struct kvm_memory_alias alias;
2727 struct kvm_pit_config pit_config;
2728 } u;
2729
2730 switch (ioctl) {
2731 case KVM_SET_TSS_ADDR:
2732 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
2733 if (r < 0)
2734 goto out;
2735 break;
2736 case KVM_SET_IDENTITY_MAP_ADDR: {
2737 u64 ident_addr;
2738
2739 r = -EFAULT;
2740 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
2741 goto out;
2742 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
2743 if (r < 0)
2744 goto out;
2745 break;
2746 }
2747 case KVM_SET_MEMORY_REGION: {
2748 struct kvm_memory_region kvm_mem;
2749 struct kvm_userspace_memory_region kvm_userspace_mem;
2750
2751 r = -EFAULT;
2752 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2753 goto out;
2754 kvm_userspace_mem.slot = kvm_mem.slot;
2755 kvm_userspace_mem.flags = kvm_mem.flags;
2756 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
2757 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
2758 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
2759 if (r)
2760 goto out;
2761 break;
2762 }
2763 case KVM_SET_NR_MMU_PAGES:
2764 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
2765 if (r)
2766 goto out;
2767 break;
2768 case KVM_GET_NR_MMU_PAGES:
2769 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
2770 break;
2771 case KVM_SET_MEMORY_ALIAS:
2772 r = -EFAULT;
2773 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
2774 goto out;
2775 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
2776 if (r)
2777 goto out;
2778 break;
2779 case KVM_CREATE_IRQCHIP: {
2780 struct kvm_pic *vpic;
2781
2782 mutex_lock(&kvm->lock);
2783 r = -EEXIST;
2784 if (kvm->arch.vpic)
2785 goto create_irqchip_unlock;
2786 r = -ENOMEM;
2787 vpic = kvm_create_pic(kvm);
2788 if (vpic) {
2789 r = kvm_ioapic_init(kvm);
2790 if (r) {
2791 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
2792 &vpic->dev);
2793 kfree(vpic);
2794 goto create_irqchip_unlock;
2795 }
2796 } else
2797 goto create_irqchip_unlock;
2798 smp_wmb();
2799 kvm->arch.vpic = vpic;
2800 smp_wmb();
2801 r = kvm_setup_default_irq_routing(kvm);
2802 if (r) {
2803 mutex_lock(&kvm->irq_lock);
2804 kvm_ioapic_destroy(kvm);
2805 kvm_destroy_pic(kvm);
2806 mutex_unlock(&kvm->irq_lock);
2807 }
2808 create_irqchip_unlock:
2809 mutex_unlock(&kvm->lock);
2810 break;
2811 }
2812 case KVM_CREATE_PIT:
2813 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
2814 goto create_pit;
2815 case KVM_CREATE_PIT2:
2816 r = -EFAULT;
2817 if (copy_from_user(&u.pit_config, argp,
2818 sizeof(struct kvm_pit_config)))
2819 goto out;
2820 create_pit:
2821 mutex_lock(&kvm->slots_lock);
2822 r = -EEXIST;
2823 if (kvm->arch.vpit)
2824 goto create_pit_unlock;
2825 r = -ENOMEM;
2826 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
2827 if (kvm->arch.vpit)
2828 r = 0;
2829 create_pit_unlock:
2830 mutex_unlock(&kvm->slots_lock);
2831 break;
2832 case KVM_IRQ_LINE_STATUS:
2833 case KVM_IRQ_LINE: {
2834 struct kvm_irq_level irq_event;
2835
2836 r = -EFAULT;
2837 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2838 goto out;
2839 r = -ENXIO;
2840 if (irqchip_in_kernel(kvm)) {
2841 __s32 status;
2842 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2843 irq_event.irq, irq_event.level);
2844 if (ioctl == KVM_IRQ_LINE_STATUS) {
2845 r = -EFAULT;
2846 irq_event.status = status;
2847 if (copy_to_user(argp, &irq_event,
2848 sizeof irq_event))
2849 goto out;
2850 }
2851 r = 0;
2852 }
2853 break;
2854 }
2855 case KVM_GET_IRQCHIP: {
2856 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2857 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2858
2859 r = -ENOMEM;
2860 if (!chip)
2861 goto out;
2862 r = -EFAULT;
2863 if (copy_from_user(chip, argp, sizeof *chip))
2864 goto get_irqchip_out;
2865 r = -ENXIO;
2866 if (!irqchip_in_kernel(kvm))
2867 goto get_irqchip_out;
2868 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
2869 if (r)
2870 goto get_irqchip_out;
2871 r = -EFAULT;
2872 if (copy_to_user(argp, chip, sizeof *chip))
2873 goto get_irqchip_out;
2874 r = 0;
2875 get_irqchip_out:
2876 kfree(chip);
2877 if (r)
2878 goto out;
2879 break;
2880 }
2881 case KVM_SET_IRQCHIP: {
2882 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2883 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2884
2885 r = -ENOMEM;
2886 if (!chip)
2887 goto out;
2888 r = -EFAULT;
2889 if (copy_from_user(chip, argp, sizeof *chip))
2890 goto set_irqchip_out;
2891 r = -ENXIO;
2892 if (!irqchip_in_kernel(kvm))
2893 goto set_irqchip_out;
2894 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
2895 if (r)
2896 goto set_irqchip_out;
2897 r = 0;
2898 set_irqchip_out:
2899 kfree(chip);
2900 if (r)
2901 goto out;
2902 break;
2903 }
2904 case KVM_GET_PIT: {
2905 r = -EFAULT;
2906 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
2907 goto out;
2908 r = -ENXIO;
2909 if (!kvm->arch.vpit)
2910 goto out;
2911 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
2912 if (r)
2913 goto out;
2914 r = -EFAULT;
2915 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
2916 goto out;
2917 r = 0;
2918 break;
2919 }
2920 case KVM_SET_PIT: {
2921 r = -EFAULT;
2922 if (copy_from_user(&u.ps, argp, sizeof u.ps))
2923 goto out;
2924 r = -ENXIO;
2925 if (!kvm->arch.vpit)
2926 goto out;
2927 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
2928 if (r)
2929 goto out;
2930 r = 0;
2931 break;
2932 }
2933 case KVM_GET_PIT2: {
2934 r = -ENXIO;
2935 if (!kvm->arch.vpit)
2936 goto out;
2937 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
2938 if (r)
2939 goto out;
2940 r = -EFAULT;
2941 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
2942 goto out;
2943 r = 0;
2944 break;
2945 }
2946 case KVM_SET_PIT2: {
2947 r = -EFAULT;
2948 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
2949 goto out;
2950 r = -ENXIO;
2951 if (!kvm->arch.vpit)
2952 goto out;
2953 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
2954 if (r)
2955 goto out;
2956 r = 0;
2957 break;
2958 }
2959 case KVM_REINJECT_CONTROL: {
2960 struct kvm_reinject_control control;
2961 r = -EFAULT;
2962 if (copy_from_user(&control, argp, sizeof(control)))
2963 goto out;
2964 r = kvm_vm_ioctl_reinject(kvm, &control);
2965 if (r)
2966 goto out;
2967 r = 0;
2968 break;
2969 }
2970 case KVM_XEN_HVM_CONFIG: {
2971 r = -EFAULT;
2972 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
2973 sizeof(struct kvm_xen_hvm_config)))
2974 goto out;
2975 r = -EINVAL;
2976 if (kvm->arch.xen_hvm_config.flags)
2977 goto out;
2978 r = 0;
2979 break;
2980 }
2981 case KVM_SET_CLOCK: {
2982 struct timespec now;
2983 struct kvm_clock_data user_ns;
2984 u64 now_ns;
2985 s64 delta;
2986
2987 r = -EFAULT;
2988 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
2989 goto out;
2990
2991 r = -EINVAL;
2992 if (user_ns.flags)
2993 goto out;
2994
2995 r = 0;
2996 ktime_get_ts(&now);
2997 now_ns = timespec_to_ns(&now);
2998 delta = user_ns.clock - now_ns;
2999 kvm->arch.kvmclock_offset = delta;
3000 break;
3001 }
3002 case KVM_GET_CLOCK: {
3003 struct timespec now;
3004 struct kvm_clock_data user_ns;
3005 u64 now_ns;
3006
3007 ktime_get_ts(&now);
3008 now_ns = timespec_to_ns(&now);
3009 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3010 user_ns.flags = 0;
3011
3012 r = -EFAULT;
3013 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3014 goto out;
3015 r = 0;
3016 break;
3017 }
3018
3019 default:
3020 ;
3021 }
3022 out:
3023 return r;
3024 }
3025
3026 static void kvm_init_msr_list(void)
3027 {
3028 u32 dummy[2];
3029 unsigned i, j;
3030
3031 /* skip the first msrs in the list. KVM-specific */
3032 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3033 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3034 continue;
3035 if (j < i)
3036 msrs_to_save[j] = msrs_to_save[i];
3037 j++;
3038 }
3039 num_msrs_to_save = j;
3040 }
3041
3042 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3043 const void *v)
3044 {
3045 if (vcpu->arch.apic &&
3046 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
3047 return 0;
3048
3049 return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3050 }
3051
3052 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3053 {
3054 if (vcpu->arch.apic &&
3055 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
3056 return 0;
3057
3058 return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3059 }
3060
3061 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3062 {
3063 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3064 return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3065 }
3066
3067 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3068 {
3069 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3070 access |= PFERR_FETCH_MASK;
3071 return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3072 }
3073
3074 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3075 {
3076 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3077 access |= PFERR_WRITE_MASK;
3078 return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3079 }
3080
3081 /* uses this to access any guest's mapped memory without checking CPL */
3082 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3083 {
3084 return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, 0, error);
3085 }
3086
3087 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3088 struct kvm_vcpu *vcpu, u32 access,
3089 u32 *error)
3090 {
3091 void *data = val;
3092 int r = X86EMUL_CONTINUE;
3093
3094 while (bytes) {
3095 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr, access, error);
3096 unsigned offset = addr & (PAGE_SIZE-1);
3097 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3098 int ret;
3099
3100 if (gpa == UNMAPPED_GVA) {
3101 r = X86EMUL_PROPAGATE_FAULT;
3102 goto out;
3103 }
3104 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3105 if (ret < 0) {
3106 r = X86EMUL_UNHANDLEABLE;
3107 goto out;
3108 }
3109
3110 bytes -= toread;
3111 data += toread;
3112 addr += toread;
3113 }
3114 out:
3115 return r;
3116 }
3117
3118 /* used for instruction fetching */
3119 static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
3120 struct kvm_vcpu *vcpu, u32 *error)
3121 {
3122 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3123 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3124 access | PFERR_FETCH_MASK, error);
3125 }
3126
3127 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
3128 struct kvm_vcpu *vcpu, u32 *error)
3129 {
3130 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3131 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3132 error);
3133 }
3134
3135 static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
3136 struct kvm_vcpu *vcpu, u32 *error)
3137 {
3138 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
3139 }
3140
3141 static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
3142 struct kvm_vcpu *vcpu, u32 *error)
3143 {
3144 void *data = val;
3145 int r = X86EMUL_CONTINUE;
3146
3147 while (bytes) {
3148 gpa_t gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, error);
3149 unsigned offset = addr & (PAGE_SIZE-1);
3150 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3151 int ret;
3152
3153 if (gpa == UNMAPPED_GVA) {
3154 r = X86EMUL_PROPAGATE_FAULT;
3155 goto out;
3156 }
3157 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3158 if (ret < 0) {
3159 r = X86EMUL_UNHANDLEABLE;
3160 goto out;
3161 }
3162
3163 bytes -= towrite;
3164 data += towrite;
3165 addr += towrite;
3166 }
3167 out:
3168 return r;
3169 }
3170
3171
3172 static int emulator_read_emulated(unsigned long addr,
3173 void *val,
3174 unsigned int bytes,
3175 struct kvm_vcpu *vcpu)
3176 {
3177 gpa_t gpa;
3178 u32 error_code;
3179
3180 if (vcpu->mmio_read_completed) {
3181 memcpy(val, vcpu->mmio_data, bytes);
3182 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3183 vcpu->mmio_phys_addr, *(u64 *)val);
3184 vcpu->mmio_read_completed = 0;
3185 return X86EMUL_CONTINUE;
3186 }
3187
3188 gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, &error_code);
3189
3190 if (gpa == UNMAPPED_GVA) {
3191 kvm_inject_page_fault(vcpu, addr, error_code);
3192 return X86EMUL_PROPAGATE_FAULT;
3193 }
3194
3195 /* For APIC access vmexit */
3196 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3197 goto mmio;
3198
3199 if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
3200 == X86EMUL_CONTINUE)
3201 return X86EMUL_CONTINUE;
3202
3203 mmio:
3204 /*
3205 * Is this MMIO handled locally?
3206 */
3207 if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
3208 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
3209 return X86EMUL_CONTINUE;
3210 }
3211
3212 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3213
3214 vcpu->mmio_needed = 1;
3215 vcpu->mmio_phys_addr = gpa;
3216 vcpu->mmio_size = bytes;
3217 vcpu->mmio_is_write = 0;
3218
3219 return X86EMUL_UNHANDLEABLE;
3220 }
3221
3222 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3223 const void *val, int bytes)
3224 {
3225 int ret;
3226
3227 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3228 if (ret < 0)
3229 return 0;
3230 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3231 return 1;
3232 }
3233
3234 static int emulator_write_emulated_onepage(unsigned long addr,
3235 const void *val,
3236 unsigned int bytes,
3237 struct kvm_vcpu *vcpu,
3238 bool mmu_only)
3239 {
3240 gpa_t gpa;
3241 u32 error_code;
3242
3243 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, &error_code);
3244
3245 if (gpa == UNMAPPED_GVA) {
3246 kvm_inject_page_fault(vcpu, addr, error_code);
3247 return X86EMUL_PROPAGATE_FAULT;
3248 }
3249
3250 /* For APIC access vmexit */
3251 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3252 goto mmio;
3253
3254 if (mmu_only) {
3255 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3256 return X86EMUL_CONTINUE;
3257 }
3258 if (emulator_write_phys(vcpu, gpa, val, bytes))
3259 return X86EMUL_CONTINUE;
3260
3261 mmio:
3262 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3263 /*
3264 * Is this MMIO handled locally?
3265 */
3266 if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
3267 return X86EMUL_CONTINUE;
3268
3269 vcpu->mmio_needed = 1;
3270 vcpu->mmio_phys_addr = gpa;
3271 vcpu->mmio_size = bytes;
3272 vcpu->mmio_is_write = 1;
3273 memcpy(vcpu->mmio_data, val, bytes);
3274
3275 return X86EMUL_CONTINUE;
3276 }
3277
3278 int __emulator_write_emulated(unsigned long addr,
3279 const void *val,
3280 unsigned int bytes,
3281 struct kvm_vcpu *vcpu,
3282 bool mmu_only)
3283 {
3284 /* Crossing a page boundary? */
3285 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3286 int rc, now;
3287
3288 now = -addr & ~PAGE_MASK;
3289 rc = emulator_write_emulated_onepage(addr, val, now, vcpu,
3290 mmu_only);
3291 if (rc != X86EMUL_CONTINUE)
3292 return rc;
3293 addr += now;
3294 val += now;
3295 bytes -= now;
3296 }
3297 return emulator_write_emulated_onepage(addr, val, bytes, vcpu,
3298 mmu_only);
3299 }
3300
3301 int emulator_write_emulated(unsigned long addr,
3302 const void *val,
3303 unsigned int bytes,
3304 struct kvm_vcpu *vcpu)
3305 {
3306 return __emulator_write_emulated(addr, val, bytes, vcpu, false);
3307 }
3308 EXPORT_SYMBOL_GPL(emulator_write_emulated);
3309
3310 #define CMPXCHG_TYPE(t, ptr, old, new) \
3311 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3312
3313 #ifdef CONFIG_X86_64
3314 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3315 #else
3316 # define CMPXCHG64(ptr, old, new) \
3317 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u *)(new)) == *(u64 *)(old))
3318 #endif
3319
3320 static int emulator_cmpxchg_emulated(unsigned long addr,
3321 const void *old,
3322 const void *new,
3323 unsigned int bytes,
3324 struct kvm_vcpu *vcpu)
3325 {
3326 gpa_t gpa;
3327 struct page *page;
3328 char *kaddr;
3329 bool exchanged;
3330
3331 /* guests cmpxchg8b have to be emulated atomically */
3332 if (bytes > 8 || (bytes & (bytes - 1)))
3333 goto emul_write;
3334
3335 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3336
3337 if (gpa == UNMAPPED_GVA ||
3338 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3339 goto emul_write;
3340
3341 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3342 goto emul_write;
3343
3344 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3345
3346 kaddr = kmap_atomic(page, KM_USER0);
3347 kaddr += offset_in_page(gpa);
3348 switch (bytes) {
3349 case 1:
3350 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3351 break;
3352 case 2:
3353 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3354 break;
3355 case 4:
3356 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3357 break;
3358 case 8:
3359 exchanged = CMPXCHG64(kaddr, old, new);
3360 break;
3361 default:
3362 BUG();
3363 }
3364 kunmap_atomic(kaddr, KM_USER0);
3365 kvm_release_page_dirty(page);
3366
3367 if (!exchanged)
3368 return X86EMUL_CMPXCHG_FAILED;
3369
3370 return __emulator_write_emulated(addr, new, bytes, vcpu, true);
3371
3372 emul_write:
3373 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3374
3375 return emulator_write_emulated(addr, new, bytes, vcpu);
3376 }
3377
3378 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
3379 {
3380 return kvm_x86_ops->get_segment_base(vcpu, seg);
3381 }
3382
3383 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
3384 {
3385 kvm_mmu_invlpg(vcpu, address);
3386 return X86EMUL_CONTINUE;
3387 }
3388
3389 int emulate_clts(struct kvm_vcpu *vcpu)
3390 {
3391 kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3392 kvm_x86_ops->fpu_activate(vcpu);
3393 return X86EMUL_CONTINUE;
3394 }
3395
3396 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
3397 {
3398 return kvm_x86_ops->get_dr(ctxt->vcpu, dr, dest);
3399 }
3400
3401 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
3402 {
3403 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
3404
3405 return kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask);
3406 }
3407
3408 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
3409 {
3410 u8 opcodes[4];
3411 unsigned long rip = kvm_rip_read(vcpu);
3412 unsigned long rip_linear;
3413
3414 if (!printk_ratelimit())
3415 return;
3416
3417 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
3418
3419 kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu, NULL);
3420
3421 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
3422 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
3423 }
3424 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
3425
3426 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3427 {
3428 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3429 }
3430
3431 static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
3432 {
3433 unsigned long value;
3434
3435 switch (cr) {
3436 case 0:
3437 value = kvm_read_cr0(vcpu);
3438 break;
3439 case 2:
3440 value = vcpu->arch.cr2;
3441 break;
3442 case 3:
3443 value = vcpu->arch.cr3;
3444 break;
3445 case 4:
3446 value = kvm_read_cr4(vcpu);
3447 break;
3448 case 8:
3449 value = kvm_get_cr8(vcpu);
3450 break;
3451 default:
3452 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3453 return 0;
3454 }
3455
3456 return value;
3457 }
3458
3459 static void emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
3460 {
3461 switch (cr) {
3462 case 0:
3463 kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
3464 break;
3465 case 2:
3466 vcpu->arch.cr2 = val;
3467 break;
3468 case 3:
3469 kvm_set_cr3(vcpu, val);
3470 break;
3471 case 4:
3472 kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
3473 break;
3474 case 8:
3475 kvm_set_cr8(vcpu, val & 0xfUL);
3476 break;
3477 default:
3478 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3479 }
3480 }
3481
3482 static int emulator_get_cpl(struct kvm_vcpu *vcpu)
3483 {
3484 return kvm_x86_ops->get_cpl(vcpu);
3485 }
3486
3487 static struct x86_emulate_ops emulate_ops = {
3488 .read_std = kvm_read_guest_virt_system,
3489 .fetch = kvm_fetch_guest_virt,
3490 .read_emulated = emulator_read_emulated,
3491 .write_emulated = emulator_write_emulated,
3492 .cmpxchg_emulated = emulator_cmpxchg_emulated,
3493 .get_cr = emulator_get_cr,
3494 .set_cr = emulator_set_cr,
3495 .cpl = emulator_get_cpl,
3496 };
3497
3498 static void cache_all_regs(struct kvm_vcpu *vcpu)
3499 {
3500 kvm_register_read(vcpu, VCPU_REGS_RAX);
3501 kvm_register_read(vcpu, VCPU_REGS_RSP);
3502 kvm_register_read(vcpu, VCPU_REGS_RIP);
3503 vcpu->arch.regs_dirty = ~0;
3504 }
3505
3506 int emulate_instruction(struct kvm_vcpu *vcpu,
3507 unsigned long cr2,
3508 u16 error_code,
3509 int emulation_type)
3510 {
3511 int r, shadow_mask;
3512 struct decode_cache *c;
3513 struct kvm_run *run = vcpu->run;
3514
3515 kvm_clear_exception_queue(vcpu);
3516 vcpu->arch.mmio_fault_cr2 = cr2;
3517 /*
3518 * TODO: fix emulate.c to use guest_read/write_register
3519 * instead of direct ->regs accesses, can save hundred cycles
3520 * on Intel for instructions that don't read/change RSP, for
3521 * for example.
3522 */
3523 cache_all_regs(vcpu);
3524
3525 vcpu->mmio_is_write = 0;
3526 vcpu->arch.pio.string = 0;
3527
3528 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
3529 int cs_db, cs_l;
3530 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
3531
3532 vcpu->arch.emulate_ctxt.vcpu = vcpu;
3533 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
3534 vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
3535 vcpu->arch.emulate_ctxt.mode =
3536 (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
3537 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
3538 ? X86EMUL_MODE_VM86 : cs_l
3539 ? X86EMUL_MODE_PROT64 : cs_db
3540 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
3541
3542 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
3543
3544 /* Only allow emulation of specific instructions on #UD
3545 * (namely VMMCALL, sysenter, sysexit, syscall)*/
3546 c = &vcpu->arch.emulate_ctxt.decode;
3547 if (emulation_type & EMULTYPE_TRAP_UD) {
3548 if (!c->twobyte)
3549 return EMULATE_FAIL;
3550 switch (c->b) {
3551 case 0x01: /* VMMCALL */
3552 if (c->modrm_mod != 3 || c->modrm_rm != 1)
3553 return EMULATE_FAIL;
3554 break;
3555 case 0x34: /* sysenter */
3556 case 0x35: /* sysexit */
3557 if (c->modrm_mod != 0 || c->modrm_rm != 0)
3558 return EMULATE_FAIL;
3559 break;
3560 case 0x05: /* syscall */
3561 if (c->modrm_mod != 0 || c->modrm_rm != 0)
3562 return EMULATE_FAIL;
3563 break;
3564 default:
3565 return EMULATE_FAIL;
3566 }
3567
3568 if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
3569 return EMULATE_FAIL;
3570 }
3571
3572 ++vcpu->stat.insn_emulation;
3573 if (r) {
3574 ++vcpu->stat.insn_emulation_fail;
3575 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
3576 return EMULATE_DONE;
3577 return EMULATE_FAIL;
3578 }
3579 }
3580
3581 if (emulation_type & EMULTYPE_SKIP) {
3582 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
3583 return EMULATE_DONE;
3584 }
3585
3586 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
3587 shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
3588
3589 if (r == 0)
3590 kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
3591
3592 if (vcpu->arch.pio.string)
3593 return EMULATE_DO_MMIO;
3594
3595 if (r || vcpu->mmio_is_write) {
3596 run->exit_reason = KVM_EXIT_MMIO;
3597 run->mmio.phys_addr = vcpu->mmio_phys_addr;
3598 memcpy(run->mmio.data, vcpu->mmio_data, 8);
3599 run->mmio.len = vcpu->mmio_size;
3600 run->mmio.is_write = vcpu->mmio_is_write;
3601 }
3602
3603 if (r) {
3604 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
3605 return EMULATE_DONE;
3606 if (!vcpu->mmio_needed) {
3607 kvm_report_emulation_failure(vcpu, "mmio");
3608 return EMULATE_FAIL;
3609 }
3610 return EMULATE_DO_MMIO;
3611 }
3612
3613 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
3614
3615 if (vcpu->mmio_is_write) {
3616 vcpu->mmio_needed = 0;
3617 return EMULATE_DO_MMIO;
3618 }
3619
3620 return EMULATE_DONE;
3621 }
3622 EXPORT_SYMBOL_GPL(emulate_instruction);
3623
3624 static int pio_copy_data(struct kvm_vcpu *vcpu)
3625 {
3626 void *p = vcpu->arch.pio_data;
3627 gva_t q = vcpu->arch.pio.guest_gva;
3628 unsigned bytes;
3629 int ret;
3630 u32 error_code;
3631
3632 bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
3633 if (vcpu->arch.pio.in)
3634 ret = kvm_write_guest_virt(q, p, bytes, vcpu, &error_code);
3635 else
3636 ret = kvm_read_guest_virt(q, p, bytes, vcpu, &error_code);
3637
3638 if (ret == X86EMUL_PROPAGATE_FAULT)
3639 kvm_inject_page_fault(vcpu, q, error_code);
3640
3641 return ret;
3642 }
3643
3644 int complete_pio(struct kvm_vcpu *vcpu)
3645 {
3646 struct kvm_pio_request *io = &vcpu->arch.pio;
3647 long delta;
3648 int r;
3649 unsigned long val;
3650
3651 if (!io->string) {
3652 if (io->in) {
3653 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
3654 memcpy(&val, vcpu->arch.pio_data, io->size);
3655 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
3656 }
3657 } else {
3658 if (io->in) {
3659 r = pio_copy_data(vcpu);
3660 if (r)
3661 goto out;
3662 }
3663
3664 delta = 1;
3665 if (io->rep) {
3666 delta *= io->cur_count;
3667 /*
3668 * The size of the register should really depend on
3669 * current address size.
3670 */
3671 val = kvm_register_read(vcpu, VCPU_REGS_RCX);
3672 val -= delta;
3673 kvm_register_write(vcpu, VCPU_REGS_RCX, val);
3674 }
3675 if (io->down)
3676 delta = -delta;
3677 delta *= io->size;
3678 if (io->in) {
3679 val = kvm_register_read(vcpu, VCPU_REGS_RDI);
3680 val += delta;
3681 kvm_register_write(vcpu, VCPU_REGS_RDI, val);
3682 } else {
3683 val = kvm_register_read(vcpu, VCPU_REGS_RSI);
3684 val += delta;
3685 kvm_register_write(vcpu, VCPU_REGS_RSI, val);
3686 }
3687 }
3688 out:
3689 io->count -= io->cur_count;
3690 io->cur_count = 0;
3691
3692 return 0;
3693 }
3694
3695 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3696 {
3697 /* TODO: String I/O for in kernel device */
3698 int r;
3699
3700 if (vcpu->arch.pio.in)
3701 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3702 vcpu->arch.pio.size, pd);
3703 else
3704 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3705 vcpu->arch.pio.port, vcpu->arch.pio.size,
3706 pd);
3707 return r;
3708 }
3709
3710 static int pio_string_write(struct kvm_vcpu *vcpu)
3711 {
3712 struct kvm_pio_request *io = &vcpu->arch.pio;
3713 void *pd = vcpu->arch.pio_data;
3714 int i, r = 0;
3715
3716 for (i = 0; i < io->cur_count; i++) {
3717 if (kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3718 io->port, io->size, pd)) {
3719 r = -EOPNOTSUPP;
3720 break;
3721 }
3722 pd += io->size;
3723 }
3724 return r;
3725 }
3726
3727 int kvm_emulate_pio(struct kvm_vcpu *vcpu, int in, int size, unsigned port)
3728 {
3729 unsigned long val;
3730
3731 trace_kvm_pio(!in, port, size, 1);
3732
3733 vcpu->run->exit_reason = KVM_EXIT_IO;
3734 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3735 vcpu->run->io.size = vcpu->arch.pio.size = size;
3736 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3737 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
3738 vcpu->run->io.port = vcpu->arch.pio.port = port;
3739 vcpu->arch.pio.in = in;
3740 vcpu->arch.pio.string = 0;
3741 vcpu->arch.pio.down = 0;
3742 vcpu->arch.pio.rep = 0;
3743
3744 if (!vcpu->arch.pio.in) {
3745 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
3746 memcpy(vcpu->arch.pio_data, &val, 4);
3747 }
3748
3749 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3750 complete_pio(vcpu);
3751 return 1;
3752 }
3753 return 0;
3754 }
3755 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
3756
3757 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, int in,
3758 int size, unsigned long count, int down,
3759 gva_t address, int rep, unsigned port)
3760 {
3761 unsigned now, in_page;
3762 int ret = 0;
3763
3764 trace_kvm_pio(!in, port, size, count);
3765
3766 vcpu->run->exit_reason = KVM_EXIT_IO;
3767 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3768 vcpu->run->io.size = vcpu->arch.pio.size = size;
3769 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3770 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
3771 vcpu->run->io.port = vcpu->arch.pio.port = port;
3772 vcpu->arch.pio.in = in;
3773 vcpu->arch.pio.string = 1;
3774 vcpu->arch.pio.down = down;
3775 vcpu->arch.pio.rep = rep;
3776
3777 if (!count) {
3778 kvm_x86_ops->skip_emulated_instruction(vcpu);
3779 return 1;
3780 }
3781
3782 if (!down)
3783 in_page = PAGE_SIZE - offset_in_page(address);
3784 else
3785 in_page = offset_in_page(address) + size;
3786 now = min(count, (unsigned long)in_page / size);
3787 if (!now)
3788 now = 1;
3789 if (down) {
3790 /*
3791 * String I/O in reverse. Yuck. Kill the guest, fix later.
3792 */
3793 pr_unimpl(vcpu, "guest string pio down\n");
3794 kvm_inject_gp(vcpu, 0);
3795 return 1;
3796 }
3797 vcpu->run->io.count = now;
3798 vcpu->arch.pio.cur_count = now;
3799
3800 if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
3801 kvm_x86_ops->skip_emulated_instruction(vcpu);
3802
3803 vcpu->arch.pio.guest_gva = address;
3804
3805 if (!vcpu->arch.pio.in) {
3806 /* string PIO write */
3807 ret = pio_copy_data(vcpu);
3808 if (ret == X86EMUL_PROPAGATE_FAULT)
3809 return 1;
3810 if (ret == 0 && !pio_string_write(vcpu)) {
3811 complete_pio(vcpu);
3812 if (vcpu->arch.pio.count == 0)
3813 ret = 1;
3814 }
3815 }
3816 /* no string PIO read support yet */
3817
3818 return ret;
3819 }
3820 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
3821
3822 static void bounce_off(void *info)
3823 {
3824 /* nothing */
3825 }
3826
3827 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
3828 void *data)
3829 {
3830 struct cpufreq_freqs *freq = data;
3831 struct kvm *kvm;
3832 struct kvm_vcpu *vcpu;
3833 int i, send_ipi = 0;
3834
3835 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
3836 return 0;
3837 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
3838 return 0;
3839 per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
3840
3841 spin_lock(&kvm_lock);
3842 list_for_each_entry(kvm, &vm_list, vm_list) {
3843 kvm_for_each_vcpu(i, vcpu, kvm) {
3844 if (vcpu->cpu != freq->cpu)
3845 continue;
3846 if (!kvm_request_guest_time_update(vcpu))
3847 continue;
3848 if (vcpu->cpu != smp_processor_id())
3849 send_ipi++;
3850 }
3851 }
3852 spin_unlock(&kvm_lock);
3853
3854 if (freq->old < freq->new && send_ipi) {
3855 /*
3856 * We upscale the frequency. Must make the guest
3857 * doesn't see old kvmclock values while running with
3858 * the new frequency, otherwise we risk the guest sees
3859 * time go backwards.
3860 *
3861 * In case we update the frequency for another cpu
3862 * (which might be in guest context) send an interrupt
3863 * to kick the cpu out of guest context. Next time
3864 * guest context is entered kvmclock will be updated,
3865 * so the guest will not see stale values.
3866 */
3867 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
3868 }
3869 return 0;
3870 }
3871
3872 static struct notifier_block kvmclock_cpufreq_notifier_block = {
3873 .notifier_call = kvmclock_cpufreq_notifier
3874 };
3875
3876 static void kvm_timer_init(void)
3877 {
3878 int cpu;
3879
3880 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
3881 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
3882 CPUFREQ_TRANSITION_NOTIFIER);
3883 for_each_online_cpu(cpu) {
3884 unsigned long khz = cpufreq_get(cpu);
3885 if (!khz)
3886 khz = tsc_khz;
3887 per_cpu(cpu_tsc_khz, cpu) = khz;
3888 }
3889 } else {
3890 for_each_possible_cpu(cpu)
3891 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
3892 }
3893 }
3894
3895 int kvm_arch_init(void *opaque)
3896 {
3897 int r;
3898 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
3899
3900 if (kvm_x86_ops) {
3901 printk(KERN_ERR "kvm: already loaded the other module\n");
3902 r = -EEXIST;
3903 goto out;
3904 }
3905
3906 if (!ops->cpu_has_kvm_support()) {
3907 printk(KERN_ERR "kvm: no hardware support\n");
3908 r = -EOPNOTSUPP;
3909 goto out;
3910 }
3911 if (ops->disabled_by_bios()) {
3912 printk(KERN_ERR "kvm: disabled by bios\n");
3913 r = -EOPNOTSUPP;
3914 goto out;
3915 }
3916
3917 r = kvm_mmu_module_init();
3918 if (r)
3919 goto out;
3920
3921 kvm_init_msr_list();
3922
3923 kvm_x86_ops = ops;
3924 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
3925 kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
3926 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
3927 PT_DIRTY_MASK, PT64_NX_MASK, 0);
3928
3929 kvm_timer_init();
3930
3931 return 0;
3932
3933 out:
3934 return r;
3935 }
3936
3937 void kvm_arch_exit(void)
3938 {
3939 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
3940 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
3941 CPUFREQ_TRANSITION_NOTIFIER);
3942 kvm_x86_ops = NULL;
3943 kvm_mmu_module_exit();
3944 }
3945
3946 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
3947 {
3948 ++vcpu->stat.halt_exits;
3949 if (irqchip_in_kernel(vcpu->kvm)) {
3950 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
3951 return 1;
3952 } else {
3953 vcpu->run->exit_reason = KVM_EXIT_HLT;
3954 return 0;
3955 }
3956 }
3957 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
3958
3959 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
3960 unsigned long a1)
3961 {
3962 if (is_long_mode(vcpu))
3963 return a0;
3964 else
3965 return a0 | ((gpa_t)a1 << 32);
3966 }
3967
3968 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
3969 {
3970 u64 param, ingpa, outgpa, ret;
3971 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
3972 bool fast, longmode;
3973 int cs_db, cs_l;
3974
3975 /*
3976 * hypercall generates UD from non zero cpl and real mode
3977 * per HYPER-V spec
3978 */
3979 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
3980 kvm_queue_exception(vcpu, UD_VECTOR);
3981 return 0;
3982 }
3983
3984 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
3985 longmode = is_long_mode(vcpu) && cs_l == 1;
3986
3987 if (!longmode) {
3988 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
3989 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
3990 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
3991 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
3992 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
3993 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
3994 }
3995 #ifdef CONFIG_X86_64
3996 else {
3997 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
3998 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
3999 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4000 }
4001 #endif
4002
4003 code = param & 0xffff;
4004 fast = (param >> 16) & 0x1;
4005 rep_cnt = (param >> 32) & 0xfff;
4006 rep_idx = (param >> 48) & 0xfff;
4007
4008 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4009
4010 switch (code) {
4011 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4012 kvm_vcpu_on_spin(vcpu);
4013 break;
4014 default:
4015 res = HV_STATUS_INVALID_HYPERCALL_CODE;
4016 break;
4017 }
4018
4019 ret = res | (((u64)rep_done & 0xfff) << 32);
4020 if (longmode) {
4021 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4022 } else {
4023 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
4024 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
4025 }
4026
4027 return 1;
4028 }
4029
4030 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
4031 {
4032 unsigned long nr, a0, a1, a2, a3, ret;
4033 int r = 1;
4034
4035 if (kvm_hv_hypercall_enabled(vcpu->kvm))
4036 return kvm_hv_hypercall(vcpu);
4037
4038 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
4039 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
4040 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
4041 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
4042 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
4043
4044 trace_kvm_hypercall(nr, a0, a1, a2, a3);
4045
4046 if (!is_long_mode(vcpu)) {
4047 nr &= 0xFFFFFFFF;
4048 a0 &= 0xFFFFFFFF;
4049 a1 &= 0xFFFFFFFF;
4050 a2 &= 0xFFFFFFFF;
4051 a3 &= 0xFFFFFFFF;
4052 }
4053
4054 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
4055 ret = -KVM_EPERM;
4056 goto out;
4057 }
4058
4059 switch (nr) {
4060 case KVM_HC_VAPIC_POLL_IRQ:
4061 ret = 0;
4062 break;
4063 case KVM_HC_MMU_OP:
4064 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
4065 break;
4066 default:
4067 ret = -KVM_ENOSYS;
4068 break;
4069 }
4070 out:
4071 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4072 ++vcpu->stat.hypercalls;
4073 return r;
4074 }
4075 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
4076
4077 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
4078 {
4079 char instruction[3];
4080 unsigned long rip = kvm_rip_read(vcpu);
4081
4082 /*
4083 * Blow out the MMU to ensure that no other VCPU has an active mapping
4084 * to ensure that the updated hypercall appears atomically across all
4085 * VCPUs.
4086 */
4087 kvm_mmu_zap_all(vcpu->kvm);
4088
4089 kvm_x86_ops->patch_hypercall(vcpu, instruction);
4090
4091 return __emulator_write_emulated(rip, instruction, 3, vcpu, false);
4092 }
4093
4094 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4095 {
4096 struct desc_ptr dt = { limit, base };
4097
4098 kvm_x86_ops->set_gdt(vcpu, &dt);
4099 }
4100
4101 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4102 {
4103 struct desc_ptr dt = { limit, base };
4104
4105 kvm_x86_ops->set_idt(vcpu, &dt);
4106 }
4107
4108 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
4109 {
4110 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
4111 int j, nent = vcpu->arch.cpuid_nent;
4112
4113 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
4114 /* when no next entry is found, the current entry[i] is reselected */
4115 for (j = i + 1; ; j = (j + 1) % nent) {
4116 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
4117 if (ej->function == e->function) {
4118 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
4119 return j;
4120 }
4121 }
4122 return 0; /* silence gcc, even though control never reaches here */
4123 }
4124
4125 /* find an entry with matching function, matching index (if needed), and that
4126 * should be read next (if it's stateful) */
4127 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
4128 u32 function, u32 index)
4129 {
4130 if (e->function != function)
4131 return 0;
4132 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
4133 return 0;
4134 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
4135 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
4136 return 0;
4137 return 1;
4138 }
4139
4140 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
4141 u32 function, u32 index)
4142 {
4143 int i;
4144 struct kvm_cpuid_entry2 *best = NULL;
4145
4146 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
4147 struct kvm_cpuid_entry2 *e;
4148
4149 e = &vcpu->arch.cpuid_entries[i];
4150 if (is_matching_cpuid_entry(e, function, index)) {
4151 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
4152 move_to_next_stateful_cpuid_entry(vcpu, i);
4153 best = e;
4154 break;
4155 }
4156 /*
4157 * Both basic or both extended?
4158 */
4159 if (((e->function ^ function) & 0x80000000) == 0)
4160 if (!best || e->function > best->function)
4161 best = e;
4162 }
4163 return best;
4164 }
4165 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
4166
4167 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
4168 {
4169 struct kvm_cpuid_entry2 *best;
4170
4171 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
4172 if (best)
4173 return best->eax & 0xff;
4174 return 36;
4175 }
4176
4177 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
4178 {
4179 u32 function, index;
4180 struct kvm_cpuid_entry2 *best;
4181
4182 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
4183 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4184 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
4185 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
4186 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
4187 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
4188 best = kvm_find_cpuid_entry(vcpu, function, index);
4189 if (best) {
4190 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
4191 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
4192 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
4193 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
4194 }
4195 kvm_x86_ops->skip_emulated_instruction(vcpu);
4196 trace_kvm_cpuid(function,
4197 kvm_register_read(vcpu, VCPU_REGS_RAX),
4198 kvm_register_read(vcpu, VCPU_REGS_RBX),
4199 kvm_register_read(vcpu, VCPU_REGS_RCX),
4200 kvm_register_read(vcpu, VCPU_REGS_RDX));
4201 }
4202 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
4203
4204 /*
4205 * Check if userspace requested an interrupt window, and that the
4206 * interrupt window is open.
4207 *
4208 * No need to exit to userspace if we already have an interrupt queued.
4209 */
4210 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
4211 {
4212 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
4213 vcpu->run->request_interrupt_window &&
4214 kvm_arch_interrupt_allowed(vcpu));
4215 }
4216
4217 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
4218 {
4219 struct kvm_run *kvm_run = vcpu->run;
4220
4221 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
4222 kvm_run->cr8 = kvm_get_cr8(vcpu);
4223 kvm_run->apic_base = kvm_get_apic_base(vcpu);
4224 if (irqchip_in_kernel(vcpu->kvm))
4225 kvm_run->ready_for_interrupt_injection = 1;
4226 else
4227 kvm_run->ready_for_interrupt_injection =
4228 kvm_arch_interrupt_allowed(vcpu) &&
4229 !kvm_cpu_has_interrupt(vcpu) &&
4230 !kvm_event_needs_reinjection(vcpu);
4231 }
4232
4233 static void vapic_enter(struct kvm_vcpu *vcpu)
4234 {
4235 struct kvm_lapic *apic = vcpu->arch.apic;
4236 struct page *page;
4237
4238 if (!apic || !apic->vapic_addr)
4239 return;
4240
4241 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4242
4243 vcpu->arch.apic->vapic_page = page;
4244 }
4245
4246 static void vapic_exit(struct kvm_vcpu *vcpu)
4247 {
4248 struct kvm_lapic *apic = vcpu->arch.apic;
4249 int idx;
4250
4251 if (!apic || !apic->vapic_addr)
4252 return;
4253
4254 idx = srcu_read_lock(&vcpu->kvm->srcu);
4255 kvm_release_page_dirty(apic->vapic_page);
4256 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4257 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4258 }
4259
4260 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
4261 {
4262 int max_irr, tpr;
4263
4264 if (!kvm_x86_ops->update_cr8_intercept)
4265 return;
4266
4267 if (!vcpu->arch.apic)
4268 return;
4269
4270 if (!vcpu->arch.apic->vapic_addr)
4271 max_irr = kvm_lapic_find_highest_irr(vcpu);
4272 else
4273 max_irr = -1;
4274
4275 if (max_irr != -1)
4276 max_irr >>= 4;
4277
4278 tpr = kvm_lapic_get_cr8(vcpu);
4279
4280 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
4281 }
4282
4283 static void inject_pending_event(struct kvm_vcpu *vcpu)
4284 {
4285 /* try to reinject previous events if any */
4286 if (vcpu->arch.exception.pending) {
4287 trace_kvm_inj_exception(vcpu->arch.exception.nr,
4288 vcpu->arch.exception.has_error_code,
4289 vcpu->arch.exception.error_code);
4290 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
4291 vcpu->arch.exception.has_error_code,
4292 vcpu->arch.exception.error_code);
4293 return;
4294 }
4295
4296 if (vcpu->arch.nmi_injected) {
4297 kvm_x86_ops->set_nmi(vcpu);
4298 return;
4299 }
4300
4301 if (vcpu->arch.interrupt.pending) {
4302 kvm_x86_ops->set_irq(vcpu);
4303 return;
4304 }
4305
4306 /* try to inject new event if pending */
4307 if (vcpu->arch.nmi_pending) {
4308 if (kvm_x86_ops->nmi_allowed(vcpu)) {
4309 vcpu->arch.nmi_pending = false;
4310 vcpu->arch.nmi_injected = true;
4311 kvm_x86_ops->set_nmi(vcpu);
4312 }
4313 } else if (kvm_cpu_has_interrupt(vcpu)) {
4314 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
4315 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
4316 false);
4317 kvm_x86_ops->set_irq(vcpu);
4318 }
4319 }
4320 }
4321
4322 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
4323 {
4324 int r;
4325 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
4326 vcpu->run->request_interrupt_window;
4327
4328 if (vcpu->requests)
4329 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
4330 kvm_mmu_unload(vcpu);
4331
4332 r = kvm_mmu_reload(vcpu);
4333 if (unlikely(r))
4334 goto out;
4335
4336 if (vcpu->requests) {
4337 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
4338 __kvm_migrate_timers(vcpu);
4339 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
4340 kvm_write_guest_time(vcpu);
4341 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
4342 kvm_mmu_sync_roots(vcpu);
4343 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
4344 kvm_x86_ops->tlb_flush(vcpu);
4345 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
4346 &vcpu->requests)) {
4347 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
4348 r = 0;
4349 goto out;
4350 }
4351 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
4352 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4353 r = 0;
4354 goto out;
4355 }
4356 if (test_and_clear_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests)) {
4357 vcpu->fpu_active = 0;
4358 kvm_x86_ops->fpu_deactivate(vcpu);
4359 }
4360 }
4361
4362 preempt_disable();
4363
4364 kvm_x86_ops->prepare_guest_switch(vcpu);
4365 if (vcpu->fpu_active)
4366 kvm_load_guest_fpu(vcpu);
4367
4368 local_irq_disable();
4369
4370 clear_bit(KVM_REQ_KICK, &vcpu->requests);
4371 smp_mb__after_clear_bit();
4372
4373 if (vcpu->requests || need_resched() || signal_pending(current)) {
4374 set_bit(KVM_REQ_KICK, &vcpu->requests);
4375 local_irq_enable();
4376 preempt_enable();
4377 r = 1;
4378 goto out;
4379 }
4380
4381 inject_pending_event(vcpu);
4382
4383 /* enable NMI/IRQ window open exits if needed */
4384 if (vcpu->arch.nmi_pending)
4385 kvm_x86_ops->enable_nmi_window(vcpu);
4386 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
4387 kvm_x86_ops->enable_irq_window(vcpu);
4388
4389 if (kvm_lapic_enabled(vcpu)) {
4390 update_cr8_intercept(vcpu);
4391 kvm_lapic_sync_to_vapic(vcpu);
4392 }
4393
4394 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4395
4396 kvm_guest_enter();
4397
4398 if (unlikely(vcpu->arch.switch_db_regs)) {
4399 set_debugreg(0, 7);
4400 set_debugreg(vcpu->arch.eff_db[0], 0);
4401 set_debugreg(vcpu->arch.eff_db[1], 1);
4402 set_debugreg(vcpu->arch.eff_db[2], 2);
4403 set_debugreg(vcpu->arch.eff_db[3], 3);
4404 }
4405
4406 trace_kvm_entry(vcpu->vcpu_id);
4407 kvm_x86_ops->run(vcpu);
4408
4409 /*
4410 * If the guest has used debug registers, at least dr7
4411 * will be disabled while returning to the host.
4412 * If we don't have active breakpoints in the host, we don't
4413 * care about the messed up debug address registers. But if
4414 * we have some of them active, restore the old state.
4415 */
4416 if (hw_breakpoint_active())
4417 hw_breakpoint_restore();
4418
4419 set_bit(KVM_REQ_KICK, &vcpu->requests);
4420 local_irq_enable();
4421
4422 ++vcpu->stat.exits;
4423
4424 /*
4425 * We must have an instruction between local_irq_enable() and
4426 * kvm_guest_exit(), so the timer interrupt isn't delayed by
4427 * the interrupt shadow. The stat.exits increment will do nicely.
4428 * But we need to prevent reordering, hence this barrier():
4429 */
4430 barrier();
4431
4432 kvm_guest_exit();
4433
4434 preempt_enable();
4435
4436 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4437
4438 /*
4439 * Profile KVM exit RIPs:
4440 */
4441 if (unlikely(prof_on == KVM_PROFILING)) {
4442 unsigned long rip = kvm_rip_read(vcpu);
4443 profile_hit(KVM_PROFILING, (void *)rip);
4444 }
4445
4446
4447 kvm_lapic_sync_from_vapic(vcpu);
4448
4449 r = kvm_x86_ops->handle_exit(vcpu);
4450 out:
4451 return r;
4452 }
4453
4454
4455 static int __vcpu_run(struct kvm_vcpu *vcpu)
4456 {
4457 int r;
4458 struct kvm *kvm = vcpu->kvm;
4459
4460 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
4461 pr_debug("vcpu %d received sipi with vector # %x\n",
4462 vcpu->vcpu_id, vcpu->arch.sipi_vector);
4463 kvm_lapic_reset(vcpu);
4464 r = kvm_arch_vcpu_reset(vcpu);
4465 if (r)
4466 return r;
4467 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4468 }
4469
4470 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4471 vapic_enter(vcpu);
4472
4473 r = 1;
4474 while (r > 0) {
4475 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
4476 r = vcpu_enter_guest(vcpu);
4477 else {
4478 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4479 kvm_vcpu_block(vcpu);
4480 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4481 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
4482 {
4483 switch(vcpu->arch.mp_state) {
4484 case KVM_MP_STATE_HALTED:
4485 vcpu->arch.mp_state =
4486 KVM_MP_STATE_RUNNABLE;
4487 case KVM_MP_STATE_RUNNABLE:
4488 break;
4489 case KVM_MP_STATE_SIPI_RECEIVED:
4490 default:
4491 r = -EINTR;
4492 break;
4493 }
4494 }
4495 }
4496
4497 if (r <= 0)
4498 break;
4499
4500 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
4501 if (kvm_cpu_has_pending_timer(vcpu))
4502 kvm_inject_pending_timer_irqs(vcpu);
4503
4504 if (dm_request_for_irq_injection(vcpu)) {
4505 r = -EINTR;
4506 vcpu->run->exit_reason = KVM_EXIT_INTR;
4507 ++vcpu->stat.request_irq_exits;
4508 }
4509 if (signal_pending(current)) {
4510 r = -EINTR;
4511 vcpu->run->exit_reason = KVM_EXIT_INTR;
4512 ++vcpu->stat.signal_exits;
4513 }
4514 if (need_resched()) {
4515 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4516 kvm_resched(vcpu);
4517 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4518 }
4519 }
4520
4521 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4522 post_kvm_run_save(vcpu);
4523
4524 vapic_exit(vcpu);
4525
4526 return r;
4527 }
4528
4529 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
4530 {
4531 int r;
4532 sigset_t sigsaved;
4533
4534 vcpu_load(vcpu);
4535
4536 if (vcpu->sigset_active)
4537 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
4538
4539 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
4540 kvm_vcpu_block(vcpu);
4541 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
4542 r = -EAGAIN;
4543 goto out;
4544 }
4545
4546 /* re-sync apic's tpr */
4547 if (!irqchip_in_kernel(vcpu->kvm))
4548 kvm_set_cr8(vcpu, kvm_run->cr8);
4549
4550 if (vcpu->arch.pio.cur_count) {
4551 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4552 r = complete_pio(vcpu);
4553 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4554 if (r)
4555 goto out;
4556 }
4557 if (vcpu->mmio_needed) {
4558 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
4559 vcpu->mmio_read_completed = 1;
4560 vcpu->mmio_needed = 0;
4561
4562 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4563 r = emulate_instruction(vcpu, vcpu->arch.mmio_fault_cr2, 0,
4564 EMULTYPE_NO_DECODE);
4565 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4566 if (r == EMULATE_DO_MMIO) {
4567 /*
4568 * Read-modify-write. Back to userspace.
4569 */
4570 r = 0;
4571 goto out;
4572 }
4573 }
4574 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
4575 kvm_register_write(vcpu, VCPU_REGS_RAX,
4576 kvm_run->hypercall.ret);
4577
4578 r = __vcpu_run(vcpu);
4579
4580 out:
4581 if (vcpu->sigset_active)
4582 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
4583
4584 vcpu_put(vcpu);
4585 return r;
4586 }
4587
4588 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4589 {
4590 vcpu_load(vcpu);
4591
4592 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4593 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4594 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4595 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4596 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4597 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4598 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4599 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4600 #ifdef CONFIG_X86_64
4601 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
4602 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
4603 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
4604 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
4605 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
4606 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
4607 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
4608 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
4609 #endif
4610
4611 regs->rip = kvm_rip_read(vcpu);
4612 regs->rflags = kvm_get_rflags(vcpu);
4613
4614 vcpu_put(vcpu);
4615
4616 return 0;
4617 }
4618
4619 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4620 {
4621 vcpu_load(vcpu);
4622
4623 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
4624 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
4625 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
4626 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
4627 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
4628 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
4629 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
4630 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
4631 #ifdef CONFIG_X86_64
4632 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
4633 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
4634 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
4635 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
4636 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
4637 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
4638 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
4639 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
4640 #endif
4641
4642 kvm_rip_write(vcpu, regs->rip);
4643 kvm_set_rflags(vcpu, regs->rflags);
4644
4645 vcpu->arch.exception.pending = false;
4646
4647 vcpu_put(vcpu);
4648
4649 return 0;
4650 }
4651
4652 void kvm_get_segment(struct kvm_vcpu *vcpu,
4653 struct kvm_segment *var, int seg)
4654 {
4655 kvm_x86_ops->get_segment(vcpu, var, seg);
4656 }
4657
4658 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4659 {
4660 struct kvm_segment cs;
4661
4662 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
4663 *db = cs.db;
4664 *l = cs.l;
4665 }
4666 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
4667
4668 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
4669 struct kvm_sregs *sregs)
4670 {
4671 struct desc_ptr dt;
4672
4673 vcpu_load(vcpu);
4674
4675 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4676 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4677 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4678 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4679 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4680 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4681
4682 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4683 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4684
4685 kvm_x86_ops->get_idt(vcpu, &dt);
4686 sregs->idt.limit = dt.size;
4687 sregs->idt.base = dt.address;
4688 kvm_x86_ops->get_gdt(vcpu, &dt);
4689 sregs->gdt.limit = dt.size;
4690 sregs->gdt.base = dt.address;
4691
4692 sregs->cr0 = kvm_read_cr0(vcpu);
4693 sregs->cr2 = vcpu->arch.cr2;
4694 sregs->cr3 = vcpu->arch.cr3;
4695 sregs->cr4 = kvm_read_cr4(vcpu);
4696 sregs->cr8 = kvm_get_cr8(vcpu);
4697 sregs->efer = vcpu->arch.efer;
4698 sregs->apic_base = kvm_get_apic_base(vcpu);
4699
4700 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
4701
4702 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
4703 set_bit(vcpu->arch.interrupt.nr,
4704 (unsigned long *)sregs->interrupt_bitmap);
4705
4706 vcpu_put(vcpu);
4707
4708 return 0;
4709 }
4710
4711 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
4712 struct kvm_mp_state *mp_state)
4713 {
4714 vcpu_load(vcpu);
4715 mp_state->mp_state = vcpu->arch.mp_state;
4716 vcpu_put(vcpu);
4717 return 0;
4718 }
4719
4720 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
4721 struct kvm_mp_state *mp_state)
4722 {
4723 vcpu_load(vcpu);
4724 vcpu->arch.mp_state = mp_state->mp_state;
4725 vcpu_put(vcpu);
4726 return 0;
4727 }
4728
4729 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4730 struct kvm_segment *var, int seg)
4731 {
4732 kvm_x86_ops->set_segment(vcpu, var, seg);
4733 }
4734
4735 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
4736 struct kvm_segment *kvm_desct)
4737 {
4738 kvm_desct->base = get_desc_base(seg_desc);
4739 kvm_desct->limit = get_desc_limit(seg_desc);
4740 if (seg_desc->g) {
4741 kvm_desct->limit <<= 12;
4742 kvm_desct->limit |= 0xfff;
4743 }
4744 kvm_desct->selector = selector;
4745 kvm_desct->type = seg_desc->type;
4746 kvm_desct->present = seg_desc->p;
4747 kvm_desct->dpl = seg_desc->dpl;
4748 kvm_desct->db = seg_desc->d;
4749 kvm_desct->s = seg_desc->s;
4750 kvm_desct->l = seg_desc->l;
4751 kvm_desct->g = seg_desc->g;
4752 kvm_desct->avl = seg_desc->avl;
4753 if (!selector)
4754 kvm_desct->unusable = 1;
4755 else
4756 kvm_desct->unusable = 0;
4757 kvm_desct->padding = 0;
4758 }
4759
4760 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
4761 u16 selector,
4762 struct desc_ptr *dtable)
4763 {
4764 if (selector & 1 << 2) {
4765 struct kvm_segment kvm_seg;
4766
4767 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
4768
4769 if (kvm_seg.unusable)
4770 dtable->size = 0;
4771 else
4772 dtable->size = kvm_seg.limit;
4773 dtable->address = kvm_seg.base;
4774 }
4775 else
4776 kvm_x86_ops->get_gdt(vcpu, dtable);
4777 }
4778
4779 /* allowed just for 8 bytes segments */
4780 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4781 struct desc_struct *seg_desc)
4782 {
4783 struct desc_ptr dtable;
4784 u16 index = selector >> 3;
4785 int ret;
4786 u32 err;
4787 gva_t addr;
4788
4789 get_segment_descriptor_dtable(vcpu, selector, &dtable);
4790
4791 if (dtable.size < index * 8 + 7) {
4792 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
4793 return X86EMUL_PROPAGATE_FAULT;
4794 }
4795 addr = dtable.base + index * 8;
4796 ret = kvm_read_guest_virt_system(addr, seg_desc, sizeof(*seg_desc),
4797 vcpu, &err);
4798 if (ret == X86EMUL_PROPAGATE_FAULT)
4799 kvm_inject_page_fault(vcpu, addr, err);
4800
4801 return ret;
4802 }
4803
4804 /* allowed just for 8 bytes segments */
4805 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4806 struct desc_struct *seg_desc)
4807 {
4808 struct desc_ptr dtable;
4809 u16 index = selector >> 3;
4810
4811 get_segment_descriptor_dtable(vcpu, selector, &dtable);
4812
4813 if (dtable.size < index * 8 + 7)
4814 return 1;
4815 return kvm_write_guest_virt(dtable.address + index*8, seg_desc, sizeof(*seg_desc), vcpu, NULL);
4816 }
4817
4818 static gpa_t get_tss_base_addr_write(struct kvm_vcpu *vcpu,
4819 struct desc_struct *seg_desc)
4820 {
4821 u32 base_addr = get_desc_base(seg_desc);
4822
4823 return kvm_mmu_gva_to_gpa_write(vcpu, base_addr, NULL);
4824 }
4825
4826 static gpa_t get_tss_base_addr_read(struct kvm_vcpu *vcpu,
4827 struct desc_struct *seg_desc)
4828 {
4829 u32 base_addr = get_desc_base(seg_desc);
4830
4831 return kvm_mmu_gva_to_gpa_read(vcpu, base_addr, NULL);
4832 }
4833
4834 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
4835 {
4836 struct kvm_segment kvm_seg;
4837
4838 kvm_get_segment(vcpu, &kvm_seg, seg);
4839 return kvm_seg.selector;
4840 }
4841
4842 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
4843 {
4844 struct kvm_segment segvar = {
4845 .base = selector << 4,
4846 .limit = 0xffff,
4847 .selector = selector,
4848 .type = 3,
4849 .present = 1,
4850 .dpl = 3,
4851 .db = 0,
4852 .s = 1,
4853 .l = 0,
4854 .g = 0,
4855 .avl = 0,
4856 .unusable = 0,
4857 };
4858 kvm_x86_ops->set_segment(vcpu, &segvar, seg);
4859 return X86EMUL_CONTINUE;
4860 }
4861
4862 static int is_vm86_segment(struct kvm_vcpu *vcpu, int seg)
4863 {
4864 return (seg != VCPU_SREG_LDTR) &&
4865 (seg != VCPU_SREG_TR) &&
4866 (kvm_get_rflags(vcpu) & X86_EFLAGS_VM);
4867 }
4868
4869 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg)
4870 {
4871 struct kvm_segment kvm_seg;
4872 struct desc_struct seg_desc;
4873 u8 dpl, rpl, cpl;
4874 unsigned err_vec = GP_VECTOR;
4875 u32 err_code = 0;
4876 bool null_selector = !(selector & ~0x3); /* 0000-0003 are null */
4877 int ret;
4878
4879 if (is_vm86_segment(vcpu, seg) || !is_protmode(vcpu))
4880 return kvm_load_realmode_segment(vcpu, selector, seg);
4881
4882 /* NULL selector is not valid for TR, CS and SS */
4883 if ((seg == VCPU_SREG_CS || seg == VCPU_SREG_SS || seg == VCPU_SREG_TR)
4884 && null_selector)
4885 goto exception;
4886
4887 /* TR should be in GDT only */
4888 if (seg == VCPU_SREG_TR && (selector & (1 << 2)))
4889 goto exception;
4890
4891 ret = load_guest_segment_descriptor(vcpu, selector, &seg_desc);
4892 if (ret)
4893 return ret;
4894
4895 seg_desct_to_kvm_desct(&seg_desc, selector, &kvm_seg);
4896
4897 if (null_selector) { /* for NULL selector skip all following checks */
4898 kvm_seg.unusable = 1;
4899 goto load;
4900 }
4901
4902 err_code = selector & 0xfffc;
4903 err_vec = GP_VECTOR;
4904
4905 /* can't load system descriptor into segment selecor */
4906 if (seg <= VCPU_SREG_GS && !kvm_seg.s)
4907 goto exception;
4908
4909 if (!kvm_seg.present) {
4910 err_vec = (seg == VCPU_SREG_SS) ? SS_VECTOR : NP_VECTOR;
4911 goto exception;
4912 }
4913
4914 rpl = selector & 3;
4915 dpl = kvm_seg.dpl;
4916 cpl = kvm_x86_ops->get_cpl(vcpu);
4917
4918 switch (seg) {
4919 case VCPU_SREG_SS:
4920 /*
4921 * segment is not a writable data segment or segment
4922 * selector's RPL != CPL or segment selector's RPL != CPL
4923 */
4924 if (rpl != cpl || (kvm_seg.type & 0xa) != 0x2 || dpl != cpl)
4925 goto exception;
4926 break;
4927 case VCPU_SREG_CS:
4928 if (!(kvm_seg.type & 8))
4929 goto exception;
4930
4931 if (kvm_seg.type & 4) {
4932 /* conforming */
4933 if (dpl > cpl)
4934 goto exception;
4935 } else {
4936 /* nonconforming */
4937 if (rpl > cpl || dpl != cpl)
4938 goto exception;
4939 }
4940 /* CS(RPL) <- CPL */
4941 selector = (selector & 0xfffc) | cpl;
4942 break;
4943 case VCPU_SREG_TR:
4944 if (kvm_seg.s || (kvm_seg.type != 1 && kvm_seg.type != 9))
4945 goto exception;
4946 break;
4947 case VCPU_SREG_LDTR:
4948 if (kvm_seg.s || kvm_seg.type != 2)
4949 goto exception;
4950 break;
4951 default: /* DS, ES, FS, or GS */
4952 /*
4953 * segment is not a data or readable code segment or
4954 * ((segment is a data or nonconforming code segment)
4955 * and (both RPL and CPL > DPL))
4956 */
4957 if ((kvm_seg.type & 0xa) == 0x8 ||
4958 (((kvm_seg.type & 0xc) != 0xc) && (rpl > dpl && cpl > dpl)))
4959 goto exception;
4960 break;
4961 }
4962
4963 if (!kvm_seg.unusable && kvm_seg.s) {
4964 /* mark segment as accessed */
4965 kvm_seg.type |= 1;
4966 seg_desc.type |= 1;
4967 save_guest_segment_descriptor(vcpu, selector, &seg_desc);
4968 }
4969 load:
4970 kvm_set_segment(vcpu, &kvm_seg, seg);
4971 return X86EMUL_CONTINUE;
4972 exception:
4973 kvm_queue_exception_e(vcpu, err_vec, err_code);
4974 return X86EMUL_PROPAGATE_FAULT;
4975 }
4976
4977 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
4978 struct tss_segment_32 *tss)
4979 {
4980 tss->cr3 = vcpu->arch.cr3;
4981 tss->eip = kvm_rip_read(vcpu);
4982 tss->eflags = kvm_get_rflags(vcpu);
4983 tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4984 tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4985 tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4986 tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4987 tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4988 tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4989 tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4990 tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4991 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4992 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4993 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4994 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4995 tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
4996 tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
4997 tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4998 }
4999
5000 static void kvm_load_segment_selector(struct kvm_vcpu *vcpu, u16 sel, int seg)
5001 {
5002 struct kvm_segment kvm_seg;
5003 kvm_get_segment(vcpu, &kvm_seg, seg);
5004 kvm_seg.selector = sel;
5005 kvm_set_segment(vcpu, &kvm_seg, seg);
5006 }
5007
5008 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
5009 struct tss_segment_32 *tss)
5010 {
5011 kvm_set_cr3(vcpu, tss->cr3);
5012
5013 kvm_rip_write(vcpu, tss->eip);
5014 kvm_set_rflags(vcpu, tss->eflags | 2);
5015
5016 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
5017 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
5018 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
5019 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
5020 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
5021 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
5022 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
5023 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
5024
5025 /*
5026 * SDM says that segment selectors are loaded before segment
5027 * descriptors
5028 */
5029 kvm_load_segment_selector(vcpu, tss->ldt_selector, VCPU_SREG_LDTR);
5030 kvm_load_segment_selector(vcpu, tss->es, VCPU_SREG_ES);
5031 kvm_load_segment_selector(vcpu, tss->cs, VCPU_SREG_CS);
5032 kvm_load_segment_selector(vcpu, tss->ss, VCPU_SREG_SS);
5033 kvm_load_segment_selector(vcpu, tss->ds, VCPU_SREG_DS);
5034 kvm_load_segment_selector(vcpu, tss->fs, VCPU_SREG_FS);
5035 kvm_load_segment_selector(vcpu, tss->gs, VCPU_SREG_GS);
5036
5037 /*
5038 * Now load segment descriptors. If fault happenes at this stage
5039 * it is handled in a context of new task
5040 */
5041 if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, VCPU_SREG_LDTR))
5042 return 1;
5043
5044 if (kvm_load_segment_descriptor(vcpu, tss->es, VCPU_SREG_ES))
5045 return 1;
5046
5047 if (kvm_load_segment_descriptor(vcpu, tss->cs, VCPU_SREG_CS))
5048 return 1;
5049
5050 if (kvm_load_segment_descriptor(vcpu, tss->ss, VCPU_SREG_SS))
5051 return 1;
5052
5053 if (kvm_load_segment_descriptor(vcpu, tss->ds, VCPU_SREG_DS))
5054 return 1;
5055
5056 if (kvm_load_segment_descriptor(vcpu, tss->fs, VCPU_SREG_FS))
5057 return 1;
5058
5059 if (kvm_load_segment_descriptor(vcpu, tss->gs, VCPU_SREG_GS))
5060 return 1;
5061 return 0;
5062 }
5063
5064 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
5065 struct tss_segment_16 *tss)
5066 {
5067 tss->ip = kvm_rip_read(vcpu);
5068 tss->flag = kvm_get_rflags(vcpu);
5069 tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5070 tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5071 tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5072 tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5073 tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5074 tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5075 tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
5076 tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
5077
5078 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
5079 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
5080 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
5081 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
5082 tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
5083 }
5084
5085 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
5086 struct tss_segment_16 *tss)
5087 {
5088 kvm_rip_write(vcpu, tss->ip);
5089 kvm_set_rflags(vcpu, tss->flag | 2);
5090 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
5091 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
5092 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
5093 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
5094 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
5095 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
5096 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
5097 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
5098
5099 /*
5100 * SDM says that segment selectors are loaded before segment
5101 * descriptors
5102 */
5103 kvm_load_segment_selector(vcpu, tss->ldt, VCPU_SREG_LDTR);
5104 kvm_load_segment_selector(vcpu, tss->es, VCPU_SREG_ES);
5105 kvm_load_segment_selector(vcpu, tss->cs, VCPU_SREG_CS);
5106 kvm_load_segment_selector(vcpu, tss->ss, VCPU_SREG_SS);
5107 kvm_load_segment_selector(vcpu, tss->ds, VCPU_SREG_DS);
5108
5109 /*
5110 * Now load segment descriptors. If fault happenes at this stage
5111 * it is handled in a context of new task
5112 */
5113 if (kvm_load_segment_descriptor(vcpu, tss->ldt, VCPU_SREG_LDTR))
5114 return 1;
5115
5116 if (kvm_load_segment_descriptor(vcpu, tss->es, VCPU_SREG_ES))
5117 return 1;
5118
5119 if (kvm_load_segment_descriptor(vcpu, tss->cs, VCPU_SREG_CS))
5120 return 1;
5121
5122 if (kvm_load_segment_descriptor(vcpu, tss->ss, VCPU_SREG_SS))
5123 return 1;
5124
5125 if (kvm_load_segment_descriptor(vcpu, tss->ds, VCPU_SREG_DS))
5126 return 1;
5127 return 0;
5128 }
5129
5130 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
5131 u16 old_tss_sel, u32 old_tss_base,
5132 struct desc_struct *nseg_desc)
5133 {
5134 struct tss_segment_16 tss_segment_16;
5135 int ret = 0;
5136
5137 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
5138 sizeof tss_segment_16))
5139 goto out;
5140
5141 save_state_to_tss16(vcpu, &tss_segment_16);
5142
5143 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
5144 sizeof tss_segment_16))
5145 goto out;
5146
5147 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr_read(vcpu, nseg_desc),
5148 &tss_segment_16, sizeof tss_segment_16))
5149 goto out;
5150
5151 if (old_tss_sel != 0xffff) {
5152 tss_segment_16.prev_task_link = old_tss_sel;
5153
5154 if (kvm_write_guest(vcpu->kvm,
5155 get_tss_base_addr_write(vcpu, nseg_desc),
5156 &tss_segment_16.prev_task_link,
5157 sizeof tss_segment_16.prev_task_link))
5158 goto out;
5159 }
5160
5161 if (load_state_from_tss16(vcpu, &tss_segment_16))
5162 goto out;
5163
5164 ret = 1;
5165 out:
5166 return ret;
5167 }
5168
5169 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
5170 u16 old_tss_sel, u32 old_tss_base,
5171 struct desc_struct *nseg_desc)
5172 {
5173 struct tss_segment_32 tss_segment_32;
5174 int ret = 0;
5175
5176 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
5177 sizeof tss_segment_32))
5178 goto out;
5179
5180 save_state_to_tss32(vcpu, &tss_segment_32);
5181
5182 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
5183 sizeof tss_segment_32))
5184 goto out;
5185
5186 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr_read(vcpu, nseg_desc),
5187 &tss_segment_32, sizeof tss_segment_32))
5188 goto out;
5189
5190 if (old_tss_sel != 0xffff) {
5191 tss_segment_32.prev_task_link = old_tss_sel;
5192
5193 if (kvm_write_guest(vcpu->kvm,
5194 get_tss_base_addr_write(vcpu, nseg_desc),
5195 &tss_segment_32.prev_task_link,
5196 sizeof tss_segment_32.prev_task_link))
5197 goto out;
5198 }
5199
5200 if (load_state_from_tss32(vcpu, &tss_segment_32))
5201 goto out;
5202
5203 ret = 1;
5204 out:
5205 return ret;
5206 }
5207
5208 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
5209 {
5210 struct kvm_segment tr_seg;
5211 struct desc_struct cseg_desc;
5212 struct desc_struct nseg_desc;
5213 int ret = 0;
5214 u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
5215 u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
5216 u32 desc_limit;
5217
5218 old_tss_base = kvm_mmu_gva_to_gpa_write(vcpu, old_tss_base, NULL);
5219
5220 /* FIXME: Handle errors. Failure to read either TSS or their
5221 * descriptors should generate a pagefault.
5222 */
5223 if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
5224 goto out;
5225
5226 if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
5227 goto out;
5228
5229 if (reason != TASK_SWITCH_IRET) {
5230 int cpl;
5231
5232 cpl = kvm_x86_ops->get_cpl(vcpu);
5233 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
5234 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
5235 return 1;
5236 }
5237 }
5238
5239 desc_limit = get_desc_limit(&nseg_desc);
5240 if (!nseg_desc.p ||
5241 ((desc_limit < 0x67 && (nseg_desc.type & 8)) ||
5242 desc_limit < 0x2b)) {
5243 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
5244 return 1;
5245 }
5246
5247 if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
5248 cseg_desc.type &= ~(1 << 1); //clear the B flag
5249 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
5250 }
5251
5252 if (reason == TASK_SWITCH_IRET) {
5253 u32 eflags = kvm_get_rflags(vcpu);
5254 kvm_set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
5255 }
5256
5257 /* set back link to prev task only if NT bit is set in eflags
5258 note that old_tss_sel is not used afetr this point */
5259 if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
5260 old_tss_sel = 0xffff;
5261
5262 if (nseg_desc.type & 8)
5263 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
5264 old_tss_base, &nseg_desc);
5265 else
5266 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
5267 old_tss_base, &nseg_desc);
5268
5269 if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
5270 u32 eflags = kvm_get_rflags(vcpu);
5271 kvm_set_rflags(vcpu, eflags | X86_EFLAGS_NT);
5272 }
5273
5274 if (reason != TASK_SWITCH_IRET) {
5275 nseg_desc.type |= (1 << 1);
5276 save_guest_segment_descriptor(vcpu, tss_selector,
5277 &nseg_desc);
5278 }
5279
5280 kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0(vcpu) | X86_CR0_TS);
5281 seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
5282 tr_seg.type = 11;
5283 kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
5284 out:
5285 return ret;
5286 }
5287 EXPORT_SYMBOL_GPL(kvm_task_switch);
5288
5289 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5290 struct kvm_sregs *sregs)
5291 {
5292 int mmu_reset_needed = 0;
5293 int pending_vec, max_bits;
5294 struct desc_ptr dt;
5295
5296 vcpu_load(vcpu);
5297
5298 dt.size = sregs->idt.limit;
5299 dt.address = sregs->idt.base;
5300 kvm_x86_ops->set_idt(vcpu, &dt);
5301 dt.size = sregs->gdt.limit;
5302 dt.address = sregs->gdt.base;
5303 kvm_x86_ops->set_gdt(vcpu, &dt);
5304
5305 vcpu->arch.cr2 = sregs->cr2;
5306 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
5307 vcpu->arch.cr3 = sregs->cr3;
5308
5309 kvm_set_cr8(vcpu, sregs->cr8);
5310
5311 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5312 kvm_x86_ops->set_efer(vcpu, sregs->efer);
5313 kvm_set_apic_base(vcpu, sregs->apic_base);
5314
5315 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5316 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5317 vcpu->arch.cr0 = sregs->cr0;
5318
5319 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5320 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5321 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5322 load_pdptrs(vcpu, vcpu->arch.cr3);
5323 mmu_reset_needed = 1;
5324 }
5325
5326 if (mmu_reset_needed)
5327 kvm_mmu_reset_context(vcpu);
5328
5329 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5330 pending_vec = find_first_bit(
5331 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5332 if (pending_vec < max_bits) {
5333 kvm_queue_interrupt(vcpu, pending_vec, false);
5334 pr_debug("Set back pending irq %d\n", pending_vec);
5335 if (irqchip_in_kernel(vcpu->kvm))
5336 kvm_pic_clear_isr_ack(vcpu->kvm);
5337 }
5338
5339 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5340 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5341 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5342 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5343 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5344 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5345
5346 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5347 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5348
5349 update_cr8_intercept(vcpu);
5350
5351 /* Older userspace won't unhalt the vcpu on reset. */
5352 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5353 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5354 !is_protmode(vcpu))
5355 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5356
5357 vcpu_put(vcpu);
5358
5359 return 0;
5360 }
5361
5362 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5363 struct kvm_guest_debug *dbg)
5364 {
5365 unsigned long rflags;
5366 int i, r;
5367
5368 vcpu_load(vcpu);
5369
5370 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5371 r = -EBUSY;
5372 if (vcpu->arch.exception.pending)
5373 goto unlock_out;
5374 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5375 kvm_queue_exception(vcpu, DB_VECTOR);
5376 else
5377 kvm_queue_exception(vcpu, BP_VECTOR);
5378 }
5379
5380 /*
5381 * Read rflags as long as potentially injected trace flags are still
5382 * filtered out.
5383 */
5384 rflags = kvm_get_rflags(vcpu);
5385
5386 vcpu->guest_debug = dbg->control;
5387 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5388 vcpu->guest_debug = 0;
5389
5390 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5391 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5392 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5393 vcpu->arch.switch_db_regs =
5394 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5395 } else {
5396 for (i = 0; i < KVM_NR_DB_REGS; i++)
5397 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5398 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5399 }
5400
5401 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5402 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5403 get_segment_base(vcpu, VCPU_SREG_CS);
5404
5405 /*
5406 * Trigger an rflags update that will inject or remove the trace
5407 * flags.
5408 */
5409 kvm_set_rflags(vcpu, rflags);
5410
5411 kvm_x86_ops->set_guest_debug(vcpu, dbg);
5412
5413 r = 0;
5414
5415 unlock_out:
5416 vcpu_put(vcpu);
5417
5418 return r;
5419 }
5420
5421 /*
5422 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
5423 * we have asm/x86/processor.h
5424 */
5425 struct fxsave {
5426 u16 cwd;
5427 u16 swd;
5428 u16 twd;
5429 u16 fop;
5430 u64 rip;
5431 u64 rdp;
5432 u32 mxcsr;
5433 u32 mxcsr_mask;
5434 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
5435 #ifdef CONFIG_X86_64
5436 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
5437 #else
5438 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
5439 #endif
5440 };
5441
5442 /*
5443 * Translate a guest virtual address to a guest physical address.
5444 */
5445 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5446 struct kvm_translation *tr)
5447 {
5448 unsigned long vaddr = tr->linear_address;
5449 gpa_t gpa;
5450 int idx;
5451
5452 vcpu_load(vcpu);
5453 idx = srcu_read_lock(&vcpu->kvm->srcu);
5454 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5455 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5456 tr->physical_address = gpa;
5457 tr->valid = gpa != UNMAPPED_GVA;
5458 tr->writeable = 1;
5459 tr->usermode = 0;
5460 vcpu_put(vcpu);
5461
5462 return 0;
5463 }
5464
5465 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5466 {
5467 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
5468
5469 vcpu_load(vcpu);
5470
5471 memcpy(fpu->fpr, fxsave->st_space, 128);
5472 fpu->fcw = fxsave->cwd;
5473 fpu->fsw = fxsave->swd;
5474 fpu->ftwx = fxsave->twd;
5475 fpu->last_opcode = fxsave->fop;
5476 fpu->last_ip = fxsave->rip;
5477 fpu->last_dp = fxsave->rdp;
5478 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5479
5480 vcpu_put(vcpu);
5481
5482 return 0;
5483 }
5484
5485 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5486 {
5487 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
5488
5489 vcpu_load(vcpu);
5490
5491 memcpy(fxsave->st_space, fpu->fpr, 128);
5492 fxsave->cwd = fpu->fcw;
5493 fxsave->swd = fpu->fsw;
5494 fxsave->twd = fpu->ftwx;
5495 fxsave->fop = fpu->last_opcode;
5496 fxsave->rip = fpu->last_ip;
5497 fxsave->rdp = fpu->last_dp;
5498 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5499
5500 vcpu_put(vcpu);
5501
5502 return 0;
5503 }
5504
5505 void fx_init(struct kvm_vcpu *vcpu)
5506 {
5507 unsigned after_mxcsr_mask;
5508
5509 /*
5510 * Touch the fpu the first time in non atomic context as if
5511 * this is the first fpu instruction the exception handler
5512 * will fire before the instruction returns and it'll have to
5513 * allocate ram with GFP_KERNEL.
5514 */
5515 if (!used_math())
5516 kvm_fx_save(&vcpu->arch.host_fx_image);
5517
5518 /* Initialize guest FPU by resetting ours and saving into guest's */
5519 preempt_disable();
5520 kvm_fx_save(&vcpu->arch.host_fx_image);
5521 kvm_fx_finit();
5522 kvm_fx_save(&vcpu->arch.guest_fx_image);
5523 kvm_fx_restore(&vcpu->arch.host_fx_image);
5524 preempt_enable();
5525
5526 vcpu->arch.cr0 |= X86_CR0_ET;
5527 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
5528 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
5529 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
5530 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
5531 }
5532 EXPORT_SYMBOL_GPL(fx_init);
5533
5534 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5535 {
5536 if (vcpu->guest_fpu_loaded)
5537 return;
5538
5539 vcpu->guest_fpu_loaded = 1;
5540 kvm_fx_save(&vcpu->arch.host_fx_image);
5541 kvm_fx_restore(&vcpu->arch.guest_fx_image);
5542 trace_kvm_fpu(1);
5543 }
5544
5545 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5546 {
5547 if (!vcpu->guest_fpu_loaded)
5548 return;
5549
5550 vcpu->guest_fpu_loaded = 0;
5551 kvm_fx_save(&vcpu->arch.guest_fx_image);
5552 kvm_fx_restore(&vcpu->arch.host_fx_image);
5553 ++vcpu->stat.fpu_reload;
5554 set_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests);
5555 trace_kvm_fpu(0);
5556 }
5557
5558 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5559 {
5560 if (vcpu->arch.time_page) {
5561 kvm_release_page_dirty(vcpu->arch.time_page);
5562 vcpu->arch.time_page = NULL;
5563 }
5564
5565 kvm_x86_ops->vcpu_free(vcpu);
5566 }
5567
5568 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5569 unsigned int id)
5570 {
5571 return kvm_x86_ops->vcpu_create(kvm, id);
5572 }
5573
5574 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5575 {
5576 int r;
5577
5578 /* We do fxsave: this must be aligned. */
5579 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
5580
5581 vcpu->arch.mtrr_state.have_fixed = 1;
5582 vcpu_load(vcpu);
5583 r = kvm_arch_vcpu_reset(vcpu);
5584 if (r == 0)
5585 r = kvm_mmu_setup(vcpu);
5586 vcpu_put(vcpu);
5587 if (r < 0)
5588 goto free_vcpu;
5589
5590 return 0;
5591 free_vcpu:
5592 kvm_x86_ops->vcpu_free(vcpu);
5593 return r;
5594 }
5595
5596 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5597 {
5598 vcpu_load(vcpu);
5599 kvm_mmu_unload(vcpu);
5600 vcpu_put(vcpu);
5601
5602 kvm_x86_ops->vcpu_free(vcpu);
5603 }
5604
5605 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5606 {
5607 vcpu->arch.nmi_pending = false;
5608 vcpu->arch.nmi_injected = false;
5609
5610 vcpu->arch.switch_db_regs = 0;
5611 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5612 vcpu->arch.dr6 = DR6_FIXED_1;
5613 vcpu->arch.dr7 = DR7_FIXED_1;
5614
5615 return kvm_x86_ops->vcpu_reset(vcpu);
5616 }
5617
5618 int kvm_arch_hardware_enable(void *garbage)
5619 {
5620 /*
5621 * Since this may be called from a hotplug notifcation,
5622 * we can't get the CPU frequency directly.
5623 */
5624 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5625 int cpu = raw_smp_processor_id();
5626 per_cpu(cpu_tsc_khz, cpu) = 0;
5627 }
5628
5629 kvm_shared_msr_cpu_online();
5630
5631 return kvm_x86_ops->hardware_enable(garbage);
5632 }
5633
5634 void kvm_arch_hardware_disable(void *garbage)
5635 {
5636 kvm_x86_ops->hardware_disable(garbage);
5637 drop_user_return_notifiers(garbage);
5638 }
5639
5640 int kvm_arch_hardware_setup(void)
5641 {
5642 return kvm_x86_ops->hardware_setup();
5643 }
5644
5645 void kvm_arch_hardware_unsetup(void)
5646 {
5647 kvm_x86_ops->hardware_unsetup();
5648 }
5649
5650 void kvm_arch_check_processor_compat(void *rtn)
5651 {
5652 kvm_x86_ops->check_processor_compatibility(rtn);
5653 }
5654
5655 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5656 {
5657 struct page *page;
5658 struct kvm *kvm;
5659 int r;
5660
5661 BUG_ON(vcpu->kvm == NULL);
5662 kvm = vcpu->kvm;
5663
5664 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5665 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5666 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5667 else
5668 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5669
5670 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5671 if (!page) {
5672 r = -ENOMEM;
5673 goto fail;
5674 }
5675 vcpu->arch.pio_data = page_address(page);
5676
5677 r = kvm_mmu_create(vcpu);
5678 if (r < 0)
5679 goto fail_free_pio_data;
5680
5681 if (irqchip_in_kernel(kvm)) {
5682 r = kvm_create_lapic(vcpu);
5683 if (r < 0)
5684 goto fail_mmu_destroy;
5685 }
5686
5687 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5688 GFP_KERNEL);
5689 if (!vcpu->arch.mce_banks) {
5690 r = -ENOMEM;
5691 goto fail_free_lapic;
5692 }
5693 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5694
5695 return 0;
5696 fail_free_lapic:
5697 kvm_free_lapic(vcpu);
5698 fail_mmu_destroy:
5699 kvm_mmu_destroy(vcpu);
5700 fail_free_pio_data:
5701 free_page((unsigned long)vcpu->arch.pio_data);
5702 fail:
5703 return r;
5704 }
5705
5706 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
5707 {
5708 int idx;
5709
5710 kfree(vcpu->arch.mce_banks);
5711 kvm_free_lapic(vcpu);
5712 idx = srcu_read_lock(&vcpu->kvm->srcu);
5713 kvm_mmu_destroy(vcpu);
5714 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5715 free_page((unsigned long)vcpu->arch.pio_data);
5716 }
5717
5718 struct kvm *kvm_arch_create_vm(void)
5719 {
5720 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
5721
5722 if (!kvm)
5723 return ERR_PTR(-ENOMEM);
5724
5725 kvm->arch.aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
5726 if (!kvm->arch.aliases) {
5727 kfree(kvm);
5728 return ERR_PTR(-ENOMEM);
5729 }
5730
5731 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5732 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
5733
5734 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5735 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
5736
5737 rdtscll(kvm->arch.vm_init_tsc);
5738
5739 return kvm;
5740 }
5741
5742 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
5743 {
5744 vcpu_load(vcpu);
5745 kvm_mmu_unload(vcpu);
5746 vcpu_put(vcpu);
5747 }
5748
5749 static void kvm_free_vcpus(struct kvm *kvm)
5750 {
5751 unsigned int i;
5752 struct kvm_vcpu *vcpu;
5753
5754 /*
5755 * Unpin any mmu pages first.
5756 */
5757 kvm_for_each_vcpu(i, vcpu, kvm)
5758 kvm_unload_vcpu_mmu(vcpu);
5759 kvm_for_each_vcpu(i, vcpu, kvm)
5760 kvm_arch_vcpu_free(vcpu);
5761
5762 mutex_lock(&kvm->lock);
5763 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
5764 kvm->vcpus[i] = NULL;
5765
5766 atomic_set(&kvm->online_vcpus, 0);
5767 mutex_unlock(&kvm->lock);
5768 }
5769
5770 void kvm_arch_sync_events(struct kvm *kvm)
5771 {
5772 kvm_free_all_assigned_devices(kvm);
5773 }
5774
5775 void kvm_arch_destroy_vm(struct kvm *kvm)
5776 {
5777 kvm_iommu_unmap_guest(kvm);
5778 kvm_free_pit(kvm);
5779 kfree(kvm->arch.vpic);
5780 kfree(kvm->arch.vioapic);
5781 kvm_free_vcpus(kvm);
5782 kvm_free_physmem(kvm);
5783 if (kvm->arch.apic_access_page)
5784 put_page(kvm->arch.apic_access_page);
5785 if (kvm->arch.ept_identity_pagetable)
5786 put_page(kvm->arch.ept_identity_pagetable);
5787 cleanup_srcu_struct(&kvm->srcu);
5788 kfree(kvm->arch.aliases);
5789 kfree(kvm);
5790 }
5791
5792 int kvm_arch_prepare_memory_region(struct kvm *kvm,
5793 struct kvm_memory_slot *memslot,
5794 struct kvm_memory_slot old,
5795 struct kvm_userspace_memory_region *mem,
5796 int user_alloc)
5797 {
5798 int npages = memslot->npages;
5799
5800 /*To keep backward compatibility with older userspace,
5801 *x86 needs to hanlde !user_alloc case.
5802 */
5803 if (!user_alloc) {
5804 if (npages && !old.rmap) {
5805 unsigned long userspace_addr;
5806
5807 down_write(&current->mm->mmap_sem);
5808 userspace_addr = do_mmap(NULL, 0,
5809 npages * PAGE_SIZE,
5810 PROT_READ | PROT_WRITE,
5811 MAP_PRIVATE | MAP_ANONYMOUS,
5812 0);
5813 up_write(&current->mm->mmap_sem);
5814
5815 if (IS_ERR((void *)userspace_addr))
5816 return PTR_ERR((void *)userspace_addr);
5817
5818 memslot->userspace_addr = userspace_addr;
5819 }
5820 }
5821
5822
5823 return 0;
5824 }
5825
5826 void kvm_arch_commit_memory_region(struct kvm *kvm,
5827 struct kvm_userspace_memory_region *mem,
5828 struct kvm_memory_slot old,
5829 int user_alloc)
5830 {
5831
5832 int npages = mem->memory_size >> PAGE_SHIFT;
5833
5834 if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
5835 int ret;
5836
5837 down_write(&current->mm->mmap_sem);
5838 ret = do_munmap(current->mm, old.userspace_addr,
5839 old.npages * PAGE_SIZE);
5840 up_write(&current->mm->mmap_sem);
5841 if (ret < 0)
5842 printk(KERN_WARNING
5843 "kvm_vm_ioctl_set_memory_region: "
5844 "failed to munmap memory\n");
5845 }
5846
5847 spin_lock(&kvm->mmu_lock);
5848 if (!kvm->arch.n_requested_mmu_pages) {
5849 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
5850 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
5851 }
5852
5853 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
5854 spin_unlock(&kvm->mmu_lock);
5855 }
5856
5857 void kvm_arch_flush_shadow(struct kvm *kvm)
5858 {
5859 kvm_mmu_zap_all(kvm);
5860 kvm_reload_remote_mmus(kvm);
5861 }
5862
5863 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
5864 {
5865 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
5866 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
5867 || vcpu->arch.nmi_pending ||
5868 (kvm_arch_interrupt_allowed(vcpu) &&
5869 kvm_cpu_has_interrupt(vcpu));
5870 }
5871
5872 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
5873 {
5874 int me;
5875 int cpu = vcpu->cpu;
5876
5877 if (waitqueue_active(&vcpu->wq)) {
5878 wake_up_interruptible(&vcpu->wq);
5879 ++vcpu->stat.halt_wakeup;
5880 }
5881
5882 me = get_cpu();
5883 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
5884 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
5885 smp_send_reschedule(cpu);
5886 put_cpu();
5887 }
5888
5889 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
5890 {
5891 return kvm_x86_ops->interrupt_allowed(vcpu);
5892 }
5893
5894 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
5895 {
5896 unsigned long current_rip = kvm_rip_read(vcpu) +
5897 get_segment_base(vcpu, VCPU_SREG_CS);
5898
5899 return current_rip == linear_rip;
5900 }
5901 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
5902
5903 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
5904 {
5905 unsigned long rflags;
5906
5907 rflags = kvm_x86_ops->get_rflags(vcpu);
5908 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5909 rflags &= ~X86_EFLAGS_TF;
5910 return rflags;
5911 }
5912 EXPORT_SYMBOL_GPL(kvm_get_rflags);
5913
5914 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
5915 {
5916 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
5917 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
5918 rflags |= X86_EFLAGS_TF;
5919 kvm_x86_ops->set_rflags(vcpu, rflags);
5920 }
5921 EXPORT_SYMBOL_GPL(kvm_set_rflags);
5922
5923 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
5924 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
5925 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
5926 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
5927 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
5928 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
5929 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
5930 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
5931 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
5932 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
5933 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
5934 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
This page took 0.212544 seconds and 5 git commands to generate.