Merge branch 'samsung/pinctrl' into next/drivers
[deliverable/linux.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <trace/events/kvm.h>
50
51 #define CREATE_TRACE_POINTS
52 #include "trace.h"
53
54 #include <asm/debugreg.h>
55 #include <asm/msr.h>
56 #include <asm/desc.h>
57 #include <asm/mtrr.h>
58 #include <asm/mce.h>
59 #include <asm/i387.h>
60 #include <asm/fpu-internal.h> /* Ugh! */
61 #include <asm/xcr.h>
62 #include <asm/pvclock.h>
63 #include <asm/div64.h>
64
65 #define MAX_IO_MSRS 256
66 #define KVM_MAX_MCE_BANKS 32
67 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
68
69 #define emul_to_vcpu(ctxt) \
70 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
71
72 /* EFER defaults:
73 * - enable syscall per default because its emulated by KVM
74 * - enable LME and LMA per default on 64 bit KVM
75 */
76 #ifdef CONFIG_X86_64
77 static
78 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
79 #else
80 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
81 #endif
82
83 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
84 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
85
86 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
87 static void process_nmi(struct kvm_vcpu *vcpu);
88
89 struct kvm_x86_ops *kvm_x86_ops;
90 EXPORT_SYMBOL_GPL(kvm_x86_ops);
91
92 static bool ignore_msrs = 0;
93 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
94
95 bool kvm_has_tsc_control;
96 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
97 u32 kvm_max_guest_tsc_khz;
98 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
99
100 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
101 static u32 tsc_tolerance_ppm = 250;
102 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
103
104 #define KVM_NR_SHARED_MSRS 16
105
106 struct kvm_shared_msrs_global {
107 int nr;
108 u32 msrs[KVM_NR_SHARED_MSRS];
109 };
110
111 struct kvm_shared_msrs {
112 struct user_return_notifier urn;
113 bool registered;
114 struct kvm_shared_msr_values {
115 u64 host;
116 u64 curr;
117 } values[KVM_NR_SHARED_MSRS];
118 };
119
120 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
121 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
122
123 struct kvm_stats_debugfs_item debugfs_entries[] = {
124 { "pf_fixed", VCPU_STAT(pf_fixed) },
125 { "pf_guest", VCPU_STAT(pf_guest) },
126 { "tlb_flush", VCPU_STAT(tlb_flush) },
127 { "invlpg", VCPU_STAT(invlpg) },
128 { "exits", VCPU_STAT(exits) },
129 { "io_exits", VCPU_STAT(io_exits) },
130 { "mmio_exits", VCPU_STAT(mmio_exits) },
131 { "signal_exits", VCPU_STAT(signal_exits) },
132 { "irq_window", VCPU_STAT(irq_window_exits) },
133 { "nmi_window", VCPU_STAT(nmi_window_exits) },
134 { "halt_exits", VCPU_STAT(halt_exits) },
135 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
136 { "hypercalls", VCPU_STAT(hypercalls) },
137 { "request_irq", VCPU_STAT(request_irq_exits) },
138 { "irq_exits", VCPU_STAT(irq_exits) },
139 { "host_state_reload", VCPU_STAT(host_state_reload) },
140 { "efer_reload", VCPU_STAT(efer_reload) },
141 { "fpu_reload", VCPU_STAT(fpu_reload) },
142 { "insn_emulation", VCPU_STAT(insn_emulation) },
143 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
144 { "irq_injections", VCPU_STAT(irq_injections) },
145 { "nmi_injections", VCPU_STAT(nmi_injections) },
146 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
147 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
148 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
149 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
150 { "mmu_flooded", VM_STAT(mmu_flooded) },
151 { "mmu_recycled", VM_STAT(mmu_recycled) },
152 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
153 { "mmu_unsync", VM_STAT(mmu_unsync) },
154 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
155 { "largepages", VM_STAT(lpages) },
156 { NULL }
157 };
158
159 u64 __read_mostly host_xcr0;
160
161 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
162
163 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
164 {
165 int i;
166 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
167 vcpu->arch.apf.gfns[i] = ~0;
168 }
169
170 static void kvm_on_user_return(struct user_return_notifier *urn)
171 {
172 unsigned slot;
173 struct kvm_shared_msrs *locals
174 = container_of(urn, struct kvm_shared_msrs, urn);
175 struct kvm_shared_msr_values *values;
176
177 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
178 values = &locals->values[slot];
179 if (values->host != values->curr) {
180 wrmsrl(shared_msrs_global.msrs[slot], values->host);
181 values->curr = values->host;
182 }
183 }
184 locals->registered = false;
185 user_return_notifier_unregister(urn);
186 }
187
188 static void shared_msr_update(unsigned slot, u32 msr)
189 {
190 struct kvm_shared_msrs *smsr;
191 u64 value;
192
193 smsr = &__get_cpu_var(shared_msrs);
194 /* only read, and nobody should modify it at this time,
195 * so don't need lock */
196 if (slot >= shared_msrs_global.nr) {
197 printk(KERN_ERR "kvm: invalid MSR slot!");
198 return;
199 }
200 rdmsrl_safe(msr, &value);
201 smsr->values[slot].host = value;
202 smsr->values[slot].curr = value;
203 }
204
205 void kvm_define_shared_msr(unsigned slot, u32 msr)
206 {
207 if (slot >= shared_msrs_global.nr)
208 shared_msrs_global.nr = slot + 1;
209 shared_msrs_global.msrs[slot] = msr;
210 /* we need ensured the shared_msr_global have been updated */
211 smp_wmb();
212 }
213 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
214
215 static void kvm_shared_msr_cpu_online(void)
216 {
217 unsigned i;
218
219 for (i = 0; i < shared_msrs_global.nr; ++i)
220 shared_msr_update(i, shared_msrs_global.msrs[i]);
221 }
222
223 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
224 {
225 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
226
227 if (((value ^ smsr->values[slot].curr) & mask) == 0)
228 return;
229 smsr->values[slot].curr = value;
230 wrmsrl(shared_msrs_global.msrs[slot], value);
231 if (!smsr->registered) {
232 smsr->urn.on_user_return = kvm_on_user_return;
233 user_return_notifier_register(&smsr->urn);
234 smsr->registered = true;
235 }
236 }
237 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
238
239 static void drop_user_return_notifiers(void *ignore)
240 {
241 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
242
243 if (smsr->registered)
244 kvm_on_user_return(&smsr->urn);
245 }
246
247 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
248 {
249 if (irqchip_in_kernel(vcpu->kvm))
250 return vcpu->arch.apic_base;
251 else
252 return vcpu->arch.apic_base;
253 }
254 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
255
256 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
257 {
258 /* TODO: reserve bits check */
259 if (irqchip_in_kernel(vcpu->kvm))
260 kvm_lapic_set_base(vcpu, data);
261 else
262 vcpu->arch.apic_base = data;
263 }
264 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
265
266 #define EXCPT_BENIGN 0
267 #define EXCPT_CONTRIBUTORY 1
268 #define EXCPT_PF 2
269
270 static int exception_class(int vector)
271 {
272 switch (vector) {
273 case PF_VECTOR:
274 return EXCPT_PF;
275 case DE_VECTOR:
276 case TS_VECTOR:
277 case NP_VECTOR:
278 case SS_VECTOR:
279 case GP_VECTOR:
280 return EXCPT_CONTRIBUTORY;
281 default:
282 break;
283 }
284 return EXCPT_BENIGN;
285 }
286
287 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
288 unsigned nr, bool has_error, u32 error_code,
289 bool reinject)
290 {
291 u32 prev_nr;
292 int class1, class2;
293
294 kvm_make_request(KVM_REQ_EVENT, vcpu);
295
296 if (!vcpu->arch.exception.pending) {
297 queue:
298 vcpu->arch.exception.pending = true;
299 vcpu->arch.exception.has_error_code = has_error;
300 vcpu->arch.exception.nr = nr;
301 vcpu->arch.exception.error_code = error_code;
302 vcpu->arch.exception.reinject = reinject;
303 return;
304 }
305
306 /* to check exception */
307 prev_nr = vcpu->arch.exception.nr;
308 if (prev_nr == DF_VECTOR) {
309 /* triple fault -> shutdown */
310 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
311 return;
312 }
313 class1 = exception_class(prev_nr);
314 class2 = exception_class(nr);
315 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
316 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
317 /* generate double fault per SDM Table 5-5 */
318 vcpu->arch.exception.pending = true;
319 vcpu->arch.exception.has_error_code = true;
320 vcpu->arch.exception.nr = DF_VECTOR;
321 vcpu->arch.exception.error_code = 0;
322 } else
323 /* replace previous exception with a new one in a hope
324 that instruction re-execution will regenerate lost
325 exception */
326 goto queue;
327 }
328
329 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
330 {
331 kvm_multiple_exception(vcpu, nr, false, 0, false);
332 }
333 EXPORT_SYMBOL_GPL(kvm_queue_exception);
334
335 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
336 {
337 kvm_multiple_exception(vcpu, nr, false, 0, true);
338 }
339 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
340
341 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
342 {
343 if (err)
344 kvm_inject_gp(vcpu, 0);
345 else
346 kvm_x86_ops->skip_emulated_instruction(vcpu);
347 }
348 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
349
350 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
351 {
352 ++vcpu->stat.pf_guest;
353 vcpu->arch.cr2 = fault->address;
354 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
355 }
356 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
357
358 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
359 {
360 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
361 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
362 else
363 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
364 }
365
366 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
367 {
368 atomic_inc(&vcpu->arch.nmi_queued);
369 kvm_make_request(KVM_REQ_NMI, vcpu);
370 }
371 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
372
373 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
374 {
375 kvm_multiple_exception(vcpu, nr, true, error_code, false);
376 }
377 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
378
379 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
380 {
381 kvm_multiple_exception(vcpu, nr, true, error_code, true);
382 }
383 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
384
385 /*
386 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
387 * a #GP and return false.
388 */
389 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
390 {
391 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
392 return true;
393 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
394 return false;
395 }
396 EXPORT_SYMBOL_GPL(kvm_require_cpl);
397
398 /*
399 * This function will be used to read from the physical memory of the currently
400 * running guest. The difference to kvm_read_guest_page is that this function
401 * can read from guest physical or from the guest's guest physical memory.
402 */
403 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
404 gfn_t ngfn, void *data, int offset, int len,
405 u32 access)
406 {
407 gfn_t real_gfn;
408 gpa_t ngpa;
409
410 ngpa = gfn_to_gpa(ngfn);
411 real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
412 if (real_gfn == UNMAPPED_GVA)
413 return -EFAULT;
414
415 real_gfn = gpa_to_gfn(real_gfn);
416
417 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
418 }
419 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
420
421 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
422 void *data, int offset, int len, u32 access)
423 {
424 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
425 data, offset, len, access);
426 }
427
428 /*
429 * Load the pae pdptrs. Return true is they are all valid.
430 */
431 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
432 {
433 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
434 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
435 int i;
436 int ret;
437 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
438
439 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
440 offset * sizeof(u64), sizeof(pdpte),
441 PFERR_USER_MASK|PFERR_WRITE_MASK);
442 if (ret < 0) {
443 ret = 0;
444 goto out;
445 }
446 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
447 if (is_present_gpte(pdpte[i]) &&
448 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
449 ret = 0;
450 goto out;
451 }
452 }
453 ret = 1;
454
455 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
456 __set_bit(VCPU_EXREG_PDPTR,
457 (unsigned long *)&vcpu->arch.regs_avail);
458 __set_bit(VCPU_EXREG_PDPTR,
459 (unsigned long *)&vcpu->arch.regs_dirty);
460 out:
461
462 return ret;
463 }
464 EXPORT_SYMBOL_GPL(load_pdptrs);
465
466 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
467 {
468 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
469 bool changed = true;
470 int offset;
471 gfn_t gfn;
472 int r;
473
474 if (is_long_mode(vcpu) || !is_pae(vcpu))
475 return false;
476
477 if (!test_bit(VCPU_EXREG_PDPTR,
478 (unsigned long *)&vcpu->arch.regs_avail))
479 return true;
480
481 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
482 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
483 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
484 PFERR_USER_MASK | PFERR_WRITE_MASK);
485 if (r < 0)
486 goto out;
487 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
488 out:
489
490 return changed;
491 }
492
493 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
494 {
495 unsigned long old_cr0 = kvm_read_cr0(vcpu);
496 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
497 X86_CR0_CD | X86_CR0_NW;
498
499 cr0 |= X86_CR0_ET;
500
501 #ifdef CONFIG_X86_64
502 if (cr0 & 0xffffffff00000000UL)
503 return 1;
504 #endif
505
506 cr0 &= ~CR0_RESERVED_BITS;
507
508 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
509 return 1;
510
511 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
512 return 1;
513
514 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
515 #ifdef CONFIG_X86_64
516 if ((vcpu->arch.efer & EFER_LME)) {
517 int cs_db, cs_l;
518
519 if (!is_pae(vcpu))
520 return 1;
521 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
522 if (cs_l)
523 return 1;
524 } else
525 #endif
526 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
527 kvm_read_cr3(vcpu)))
528 return 1;
529 }
530
531 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
532 return 1;
533
534 kvm_x86_ops->set_cr0(vcpu, cr0);
535
536 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
537 kvm_clear_async_pf_completion_queue(vcpu);
538 kvm_async_pf_hash_reset(vcpu);
539 }
540
541 if ((cr0 ^ old_cr0) & update_bits)
542 kvm_mmu_reset_context(vcpu);
543 return 0;
544 }
545 EXPORT_SYMBOL_GPL(kvm_set_cr0);
546
547 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
548 {
549 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
550 }
551 EXPORT_SYMBOL_GPL(kvm_lmsw);
552
553 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
554 {
555 u64 xcr0;
556
557 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
558 if (index != XCR_XFEATURE_ENABLED_MASK)
559 return 1;
560 xcr0 = xcr;
561 if (kvm_x86_ops->get_cpl(vcpu) != 0)
562 return 1;
563 if (!(xcr0 & XSTATE_FP))
564 return 1;
565 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
566 return 1;
567 if (xcr0 & ~host_xcr0)
568 return 1;
569 vcpu->arch.xcr0 = xcr0;
570 vcpu->guest_xcr0_loaded = 0;
571 return 0;
572 }
573
574 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
575 {
576 if (__kvm_set_xcr(vcpu, index, xcr)) {
577 kvm_inject_gp(vcpu, 0);
578 return 1;
579 }
580 return 0;
581 }
582 EXPORT_SYMBOL_GPL(kvm_set_xcr);
583
584 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
585 {
586 unsigned long old_cr4 = kvm_read_cr4(vcpu);
587 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
588 X86_CR4_PAE | X86_CR4_SMEP;
589 if (cr4 & CR4_RESERVED_BITS)
590 return 1;
591
592 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
593 return 1;
594
595 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
596 return 1;
597
598 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
599 return 1;
600
601 if (is_long_mode(vcpu)) {
602 if (!(cr4 & X86_CR4_PAE))
603 return 1;
604 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
605 && ((cr4 ^ old_cr4) & pdptr_bits)
606 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
607 kvm_read_cr3(vcpu)))
608 return 1;
609
610 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
611 if (!guest_cpuid_has_pcid(vcpu))
612 return 1;
613
614 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
615 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
616 return 1;
617 }
618
619 if (kvm_x86_ops->set_cr4(vcpu, cr4))
620 return 1;
621
622 if (((cr4 ^ old_cr4) & pdptr_bits) ||
623 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
624 kvm_mmu_reset_context(vcpu);
625
626 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
627 kvm_update_cpuid(vcpu);
628
629 return 0;
630 }
631 EXPORT_SYMBOL_GPL(kvm_set_cr4);
632
633 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
634 {
635 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
636 kvm_mmu_sync_roots(vcpu);
637 kvm_mmu_flush_tlb(vcpu);
638 return 0;
639 }
640
641 if (is_long_mode(vcpu)) {
642 if (kvm_read_cr4(vcpu) & X86_CR4_PCIDE) {
643 if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
644 return 1;
645 } else
646 if (cr3 & CR3_L_MODE_RESERVED_BITS)
647 return 1;
648 } else {
649 if (is_pae(vcpu)) {
650 if (cr3 & CR3_PAE_RESERVED_BITS)
651 return 1;
652 if (is_paging(vcpu) &&
653 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
654 return 1;
655 }
656 /*
657 * We don't check reserved bits in nonpae mode, because
658 * this isn't enforced, and VMware depends on this.
659 */
660 }
661
662 /*
663 * Does the new cr3 value map to physical memory? (Note, we
664 * catch an invalid cr3 even in real-mode, because it would
665 * cause trouble later on when we turn on paging anyway.)
666 *
667 * A real CPU would silently accept an invalid cr3 and would
668 * attempt to use it - with largely undefined (and often hard
669 * to debug) behavior on the guest side.
670 */
671 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
672 return 1;
673 vcpu->arch.cr3 = cr3;
674 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
675 vcpu->arch.mmu.new_cr3(vcpu);
676 return 0;
677 }
678 EXPORT_SYMBOL_GPL(kvm_set_cr3);
679
680 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
681 {
682 if (cr8 & CR8_RESERVED_BITS)
683 return 1;
684 if (irqchip_in_kernel(vcpu->kvm))
685 kvm_lapic_set_tpr(vcpu, cr8);
686 else
687 vcpu->arch.cr8 = cr8;
688 return 0;
689 }
690 EXPORT_SYMBOL_GPL(kvm_set_cr8);
691
692 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
693 {
694 if (irqchip_in_kernel(vcpu->kvm))
695 return kvm_lapic_get_cr8(vcpu);
696 else
697 return vcpu->arch.cr8;
698 }
699 EXPORT_SYMBOL_GPL(kvm_get_cr8);
700
701 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
702 {
703 switch (dr) {
704 case 0 ... 3:
705 vcpu->arch.db[dr] = val;
706 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
707 vcpu->arch.eff_db[dr] = val;
708 break;
709 case 4:
710 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
711 return 1; /* #UD */
712 /* fall through */
713 case 6:
714 if (val & 0xffffffff00000000ULL)
715 return -1; /* #GP */
716 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
717 break;
718 case 5:
719 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
720 return 1; /* #UD */
721 /* fall through */
722 default: /* 7 */
723 if (val & 0xffffffff00000000ULL)
724 return -1; /* #GP */
725 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
726 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
727 kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
728 vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
729 }
730 break;
731 }
732
733 return 0;
734 }
735
736 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
737 {
738 int res;
739
740 res = __kvm_set_dr(vcpu, dr, val);
741 if (res > 0)
742 kvm_queue_exception(vcpu, UD_VECTOR);
743 else if (res < 0)
744 kvm_inject_gp(vcpu, 0);
745
746 return res;
747 }
748 EXPORT_SYMBOL_GPL(kvm_set_dr);
749
750 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
751 {
752 switch (dr) {
753 case 0 ... 3:
754 *val = vcpu->arch.db[dr];
755 break;
756 case 4:
757 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
758 return 1;
759 /* fall through */
760 case 6:
761 *val = vcpu->arch.dr6;
762 break;
763 case 5:
764 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
765 return 1;
766 /* fall through */
767 default: /* 7 */
768 *val = vcpu->arch.dr7;
769 break;
770 }
771
772 return 0;
773 }
774
775 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
776 {
777 if (_kvm_get_dr(vcpu, dr, val)) {
778 kvm_queue_exception(vcpu, UD_VECTOR);
779 return 1;
780 }
781 return 0;
782 }
783 EXPORT_SYMBOL_GPL(kvm_get_dr);
784
785 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
786 {
787 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
788 u64 data;
789 int err;
790
791 err = kvm_pmu_read_pmc(vcpu, ecx, &data);
792 if (err)
793 return err;
794 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
795 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
796 return err;
797 }
798 EXPORT_SYMBOL_GPL(kvm_rdpmc);
799
800 /*
801 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
802 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
803 *
804 * This list is modified at module load time to reflect the
805 * capabilities of the host cpu. This capabilities test skips MSRs that are
806 * kvm-specific. Those are put in the beginning of the list.
807 */
808
809 #define KVM_SAVE_MSRS_BEGIN 10
810 static u32 msrs_to_save[] = {
811 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
812 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
813 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
814 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
815 MSR_KVM_PV_EOI_EN,
816 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
817 MSR_STAR,
818 #ifdef CONFIG_X86_64
819 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
820 #endif
821 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
822 };
823
824 static unsigned num_msrs_to_save;
825
826 static u32 emulated_msrs[] = {
827 MSR_IA32_TSCDEADLINE,
828 MSR_IA32_MISC_ENABLE,
829 MSR_IA32_MCG_STATUS,
830 MSR_IA32_MCG_CTL,
831 };
832
833 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
834 {
835 u64 old_efer = vcpu->arch.efer;
836
837 if (efer & efer_reserved_bits)
838 return 1;
839
840 if (is_paging(vcpu)
841 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
842 return 1;
843
844 if (efer & EFER_FFXSR) {
845 struct kvm_cpuid_entry2 *feat;
846
847 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
848 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
849 return 1;
850 }
851
852 if (efer & EFER_SVME) {
853 struct kvm_cpuid_entry2 *feat;
854
855 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
856 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
857 return 1;
858 }
859
860 efer &= ~EFER_LMA;
861 efer |= vcpu->arch.efer & EFER_LMA;
862
863 kvm_x86_ops->set_efer(vcpu, efer);
864
865 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
866
867 /* Update reserved bits */
868 if ((efer ^ old_efer) & EFER_NX)
869 kvm_mmu_reset_context(vcpu);
870
871 return 0;
872 }
873
874 void kvm_enable_efer_bits(u64 mask)
875 {
876 efer_reserved_bits &= ~mask;
877 }
878 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
879
880
881 /*
882 * Writes msr value into into the appropriate "register".
883 * Returns 0 on success, non-0 otherwise.
884 * Assumes vcpu_load() was already called.
885 */
886 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
887 {
888 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
889 }
890
891 /*
892 * Adapt set_msr() to msr_io()'s calling convention
893 */
894 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
895 {
896 return kvm_set_msr(vcpu, index, *data);
897 }
898
899 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
900 {
901 int version;
902 int r;
903 struct pvclock_wall_clock wc;
904 struct timespec boot;
905
906 if (!wall_clock)
907 return;
908
909 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
910 if (r)
911 return;
912
913 if (version & 1)
914 ++version; /* first time write, random junk */
915
916 ++version;
917
918 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
919
920 /*
921 * The guest calculates current wall clock time by adding
922 * system time (updated by kvm_guest_time_update below) to the
923 * wall clock specified here. guest system time equals host
924 * system time for us, thus we must fill in host boot time here.
925 */
926 getboottime(&boot);
927
928 if (kvm->arch.kvmclock_offset) {
929 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
930 boot = timespec_sub(boot, ts);
931 }
932 wc.sec = boot.tv_sec;
933 wc.nsec = boot.tv_nsec;
934 wc.version = version;
935
936 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
937
938 version++;
939 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
940 }
941
942 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
943 {
944 uint32_t quotient, remainder;
945
946 /* Don't try to replace with do_div(), this one calculates
947 * "(dividend << 32) / divisor" */
948 __asm__ ( "divl %4"
949 : "=a" (quotient), "=d" (remainder)
950 : "0" (0), "1" (dividend), "r" (divisor) );
951 return quotient;
952 }
953
954 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
955 s8 *pshift, u32 *pmultiplier)
956 {
957 uint64_t scaled64;
958 int32_t shift = 0;
959 uint64_t tps64;
960 uint32_t tps32;
961
962 tps64 = base_khz * 1000LL;
963 scaled64 = scaled_khz * 1000LL;
964 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
965 tps64 >>= 1;
966 shift--;
967 }
968
969 tps32 = (uint32_t)tps64;
970 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
971 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
972 scaled64 >>= 1;
973 else
974 tps32 <<= 1;
975 shift++;
976 }
977
978 *pshift = shift;
979 *pmultiplier = div_frac(scaled64, tps32);
980
981 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
982 __func__, base_khz, scaled_khz, shift, *pmultiplier);
983 }
984
985 static inline u64 get_kernel_ns(void)
986 {
987 struct timespec ts;
988
989 WARN_ON(preemptible());
990 ktime_get_ts(&ts);
991 monotonic_to_bootbased(&ts);
992 return timespec_to_ns(&ts);
993 }
994
995 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
996 unsigned long max_tsc_khz;
997
998 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
999 {
1000 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1001 vcpu->arch.virtual_tsc_shift);
1002 }
1003
1004 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1005 {
1006 u64 v = (u64)khz * (1000000 + ppm);
1007 do_div(v, 1000000);
1008 return v;
1009 }
1010
1011 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1012 {
1013 u32 thresh_lo, thresh_hi;
1014 int use_scaling = 0;
1015
1016 /* Compute a scale to convert nanoseconds in TSC cycles */
1017 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1018 &vcpu->arch.virtual_tsc_shift,
1019 &vcpu->arch.virtual_tsc_mult);
1020 vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1021
1022 /*
1023 * Compute the variation in TSC rate which is acceptable
1024 * within the range of tolerance and decide if the
1025 * rate being applied is within that bounds of the hardware
1026 * rate. If so, no scaling or compensation need be done.
1027 */
1028 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1029 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1030 if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1031 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1032 use_scaling = 1;
1033 }
1034 kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1035 }
1036
1037 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1038 {
1039 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1040 vcpu->arch.virtual_tsc_mult,
1041 vcpu->arch.virtual_tsc_shift);
1042 tsc += vcpu->arch.this_tsc_write;
1043 return tsc;
1044 }
1045
1046 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1047 {
1048 struct kvm *kvm = vcpu->kvm;
1049 u64 offset, ns, elapsed;
1050 unsigned long flags;
1051 s64 usdiff;
1052
1053 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1054 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1055 ns = get_kernel_ns();
1056 elapsed = ns - kvm->arch.last_tsc_nsec;
1057
1058 /* n.b - signed multiplication and division required */
1059 usdiff = data - kvm->arch.last_tsc_write;
1060 #ifdef CONFIG_X86_64
1061 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1062 #else
1063 /* do_div() only does unsigned */
1064 asm("idivl %2; xor %%edx, %%edx"
1065 : "=A"(usdiff)
1066 : "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz));
1067 #endif
1068 do_div(elapsed, 1000);
1069 usdiff -= elapsed;
1070 if (usdiff < 0)
1071 usdiff = -usdiff;
1072
1073 /*
1074 * Special case: TSC write with a small delta (1 second) of virtual
1075 * cycle time against real time is interpreted as an attempt to
1076 * synchronize the CPU.
1077 *
1078 * For a reliable TSC, we can match TSC offsets, and for an unstable
1079 * TSC, we add elapsed time in this computation. We could let the
1080 * compensation code attempt to catch up if we fall behind, but
1081 * it's better to try to match offsets from the beginning.
1082 */
1083 if (usdiff < USEC_PER_SEC &&
1084 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1085 if (!check_tsc_unstable()) {
1086 offset = kvm->arch.cur_tsc_offset;
1087 pr_debug("kvm: matched tsc offset for %llu\n", data);
1088 } else {
1089 u64 delta = nsec_to_cycles(vcpu, elapsed);
1090 data += delta;
1091 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1092 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1093 }
1094 } else {
1095 /*
1096 * We split periods of matched TSC writes into generations.
1097 * For each generation, we track the original measured
1098 * nanosecond time, offset, and write, so if TSCs are in
1099 * sync, we can match exact offset, and if not, we can match
1100 * exact software computaion in compute_guest_tsc()
1101 *
1102 * These values are tracked in kvm->arch.cur_xxx variables.
1103 */
1104 kvm->arch.cur_tsc_generation++;
1105 kvm->arch.cur_tsc_nsec = ns;
1106 kvm->arch.cur_tsc_write = data;
1107 kvm->arch.cur_tsc_offset = offset;
1108 pr_debug("kvm: new tsc generation %u, clock %llu\n",
1109 kvm->arch.cur_tsc_generation, data);
1110 }
1111
1112 /*
1113 * We also track th most recent recorded KHZ, write and time to
1114 * allow the matching interval to be extended at each write.
1115 */
1116 kvm->arch.last_tsc_nsec = ns;
1117 kvm->arch.last_tsc_write = data;
1118 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1119
1120 /* Reset of TSC must disable overshoot protection below */
1121 vcpu->arch.hv_clock.tsc_timestamp = 0;
1122 vcpu->arch.last_guest_tsc = data;
1123
1124 /* Keep track of which generation this VCPU has synchronized to */
1125 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1126 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1127 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1128
1129 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1130 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1131 }
1132
1133 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1134
1135 static int kvm_guest_time_update(struct kvm_vcpu *v)
1136 {
1137 unsigned long flags;
1138 struct kvm_vcpu_arch *vcpu = &v->arch;
1139 void *shared_kaddr;
1140 unsigned long this_tsc_khz;
1141 s64 kernel_ns, max_kernel_ns;
1142 u64 tsc_timestamp;
1143
1144 /* Keep irq disabled to prevent changes to the clock */
1145 local_irq_save(flags);
1146 tsc_timestamp = kvm_x86_ops->read_l1_tsc(v);
1147 kernel_ns = get_kernel_ns();
1148 this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1149 if (unlikely(this_tsc_khz == 0)) {
1150 local_irq_restore(flags);
1151 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1152 return 1;
1153 }
1154
1155 /*
1156 * We may have to catch up the TSC to match elapsed wall clock
1157 * time for two reasons, even if kvmclock is used.
1158 * 1) CPU could have been running below the maximum TSC rate
1159 * 2) Broken TSC compensation resets the base at each VCPU
1160 * entry to avoid unknown leaps of TSC even when running
1161 * again on the same CPU. This may cause apparent elapsed
1162 * time to disappear, and the guest to stand still or run
1163 * very slowly.
1164 */
1165 if (vcpu->tsc_catchup) {
1166 u64 tsc = compute_guest_tsc(v, kernel_ns);
1167 if (tsc > tsc_timestamp) {
1168 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1169 tsc_timestamp = tsc;
1170 }
1171 }
1172
1173 local_irq_restore(flags);
1174
1175 if (!vcpu->time_page)
1176 return 0;
1177
1178 /*
1179 * Time as measured by the TSC may go backwards when resetting the base
1180 * tsc_timestamp. The reason for this is that the TSC resolution is
1181 * higher than the resolution of the other clock scales. Thus, many
1182 * possible measurments of the TSC correspond to one measurement of any
1183 * other clock, and so a spread of values is possible. This is not a
1184 * problem for the computation of the nanosecond clock; with TSC rates
1185 * around 1GHZ, there can only be a few cycles which correspond to one
1186 * nanosecond value, and any path through this code will inevitably
1187 * take longer than that. However, with the kernel_ns value itself,
1188 * the precision may be much lower, down to HZ granularity. If the
1189 * first sampling of TSC against kernel_ns ends in the low part of the
1190 * range, and the second in the high end of the range, we can get:
1191 *
1192 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1193 *
1194 * As the sampling errors potentially range in the thousands of cycles,
1195 * it is possible such a time value has already been observed by the
1196 * guest. To protect against this, we must compute the system time as
1197 * observed by the guest and ensure the new system time is greater.
1198 */
1199 max_kernel_ns = 0;
1200 if (vcpu->hv_clock.tsc_timestamp) {
1201 max_kernel_ns = vcpu->last_guest_tsc -
1202 vcpu->hv_clock.tsc_timestamp;
1203 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1204 vcpu->hv_clock.tsc_to_system_mul,
1205 vcpu->hv_clock.tsc_shift);
1206 max_kernel_ns += vcpu->last_kernel_ns;
1207 }
1208
1209 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1210 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1211 &vcpu->hv_clock.tsc_shift,
1212 &vcpu->hv_clock.tsc_to_system_mul);
1213 vcpu->hw_tsc_khz = this_tsc_khz;
1214 }
1215
1216 if (max_kernel_ns > kernel_ns)
1217 kernel_ns = max_kernel_ns;
1218
1219 /* With all the info we got, fill in the values */
1220 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1221 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1222 vcpu->last_kernel_ns = kernel_ns;
1223 vcpu->last_guest_tsc = tsc_timestamp;
1224 vcpu->hv_clock.flags = 0;
1225
1226 /*
1227 * The interface expects us to write an even number signaling that the
1228 * update is finished. Since the guest won't see the intermediate
1229 * state, we just increase by 2 at the end.
1230 */
1231 vcpu->hv_clock.version += 2;
1232
1233 shared_kaddr = kmap_atomic(vcpu->time_page);
1234
1235 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1236 sizeof(vcpu->hv_clock));
1237
1238 kunmap_atomic(shared_kaddr);
1239
1240 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1241 return 0;
1242 }
1243
1244 static bool msr_mtrr_valid(unsigned msr)
1245 {
1246 switch (msr) {
1247 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1248 case MSR_MTRRfix64K_00000:
1249 case MSR_MTRRfix16K_80000:
1250 case MSR_MTRRfix16K_A0000:
1251 case MSR_MTRRfix4K_C0000:
1252 case MSR_MTRRfix4K_C8000:
1253 case MSR_MTRRfix4K_D0000:
1254 case MSR_MTRRfix4K_D8000:
1255 case MSR_MTRRfix4K_E0000:
1256 case MSR_MTRRfix4K_E8000:
1257 case MSR_MTRRfix4K_F0000:
1258 case MSR_MTRRfix4K_F8000:
1259 case MSR_MTRRdefType:
1260 case MSR_IA32_CR_PAT:
1261 return true;
1262 case 0x2f8:
1263 return true;
1264 }
1265 return false;
1266 }
1267
1268 static bool valid_pat_type(unsigned t)
1269 {
1270 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1271 }
1272
1273 static bool valid_mtrr_type(unsigned t)
1274 {
1275 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1276 }
1277
1278 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1279 {
1280 int i;
1281
1282 if (!msr_mtrr_valid(msr))
1283 return false;
1284
1285 if (msr == MSR_IA32_CR_PAT) {
1286 for (i = 0; i < 8; i++)
1287 if (!valid_pat_type((data >> (i * 8)) & 0xff))
1288 return false;
1289 return true;
1290 } else if (msr == MSR_MTRRdefType) {
1291 if (data & ~0xcff)
1292 return false;
1293 return valid_mtrr_type(data & 0xff);
1294 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1295 for (i = 0; i < 8 ; i++)
1296 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1297 return false;
1298 return true;
1299 }
1300
1301 /* variable MTRRs */
1302 return valid_mtrr_type(data & 0xff);
1303 }
1304
1305 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1306 {
1307 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1308
1309 if (!mtrr_valid(vcpu, msr, data))
1310 return 1;
1311
1312 if (msr == MSR_MTRRdefType) {
1313 vcpu->arch.mtrr_state.def_type = data;
1314 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1315 } else if (msr == MSR_MTRRfix64K_00000)
1316 p[0] = data;
1317 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1318 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1319 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1320 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1321 else if (msr == MSR_IA32_CR_PAT)
1322 vcpu->arch.pat = data;
1323 else { /* Variable MTRRs */
1324 int idx, is_mtrr_mask;
1325 u64 *pt;
1326
1327 idx = (msr - 0x200) / 2;
1328 is_mtrr_mask = msr - 0x200 - 2 * idx;
1329 if (!is_mtrr_mask)
1330 pt =
1331 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1332 else
1333 pt =
1334 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1335 *pt = data;
1336 }
1337
1338 kvm_mmu_reset_context(vcpu);
1339 return 0;
1340 }
1341
1342 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1343 {
1344 u64 mcg_cap = vcpu->arch.mcg_cap;
1345 unsigned bank_num = mcg_cap & 0xff;
1346
1347 switch (msr) {
1348 case MSR_IA32_MCG_STATUS:
1349 vcpu->arch.mcg_status = data;
1350 break;
1351 case MSR_IA32_MCG_CTL:
1352 if (!(mcg_cap & MCG_CTL_P))
1353 return 1;
1354 if (data != 0 && data != ~(u64)0)
1355 return -1;
1356 vcpu->arch.mcg_ctl = data;
1357 break;
1358 default:
1359 if (msr >= MSR_IA32_MC0_CTL &&
1360 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1361 u32 offset = msr - MSR_IA32_MC0_CTL;
1362 /* only 0 or all 1s can be written to IA32_MCi_CTL
1363 * some Linux kernels though clear bit 10 in bank 4 to
1364 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1365 * this to avoid an uncatched #GP in the guest
1366 */
1367 if ((offset & 0x3) == 0 &&
1368 data != 0 && (data | (1 << 10)) != ~(u64)0)
1369 return -1;
1370 vcpu->arch.mce_banks[offset] = data;
1371 break;
1372 }
1373 return 1;
1374 }
1375 return 0;
1376 }
1377
1378 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1379 {
1380 struct kvm *kvm = vcpu->kvm;
1381 int lm = is_long_mode(vcpu);
1382 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1383 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1384 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1385 : kvm->arch.xen_hvm_config.blob_size_32;
1386 u32 page_num = data & ~PAGE_MASK;
1387 u64 page_addr = data & PAGE_MASK;
1388 u8 *page;
1389 int r;
1390
1391 r = -E2BIG;
1392 if (page_num >= blob_size)
1393 goto out;
1394 r = -ENOMEM;
1395 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1396 if (IS_ERR(page)) {
1397 r = PTR_ERR(page);
1398 goto out;
1399 }
1400 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1401 goto out_free;
1402 r = 0;
1403 out_free:
1404 kfree(page);
1405 out:
1406 return r;
1407 }
1408
1409 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1410 {
1411 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1412 }
1413
1414 static bool kvm_hv_msr_partition_wide(u32 msr)
1415 {
1416 bool r = false;
1417 switch (msr) {
1418 case HV_X64_MSR_GUEST_OS_ID:
1419 case HV_X64_MSR_HYPERCALL:
1420 r = true;
1421 break;
1422 }
1423
1424 return r;
1425 }
1426
1427 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1428 {
1429 struct kvm *kvm = vcpu->kvm;
1430
1431 switch (msr) {
1432 case HV_X64_MSR_GUEST_OS_ID:
1433 kvm->arch.hv_guest_os_id = data;
1434 /* setting guest os id to zero disables hypercall page */
1435 if (!kvm->arch.hv_guest_os_id)
1436 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1437 break;
1438 case HV_X64_MSR_HYPERCALL: {
1439 u64 gfn;
1440 unsigned long addr;
1441 u8 instructions[4];
1442
1443 /* if guest os id is not set hypercall should remain disabled */
1444 if (!kvm->arch.hv_guest_os_id)
1445 break;
1446 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1447 kvm->arch.hv_hypercall = data;
1448 break;
1449 }
1450 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1451 addr = gfn_to_hva(kvm, gfn);
1452 if (kvm_is_error_hva(addr))
1453 return 1;
1454 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1455 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1456 if (__copy_to_user((void __user *)addr, instructions, 4))
1457 return 1;
1458 kvm->arch.hv_hypercall = data;
1459 break;
1460 }
1461 default:
1462 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1463 "data 0x%llx\n", msr, data);
1464 return 1;
1465 }
1466 return 0;
1467 }
1468
1469 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1470 {
1471 switch (msr) {
1472 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1473 unsigned long addr;
1474
1475 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1476 vcpu->arch.hv_vapic = data;
1477 break;
1478 }
1479 addr = gfn_to_hva(vcpu->kvm, data >>
1480 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1481 if (kvm_is_error_hva(addr))
1482 return 1;
1483 if (__clear_user((void __user *)addr, PAGE_SIZE))
1484 return 1;
1485 vcpu->arch.hv_vapic = data;
1486 break;
1487 }
1488 case HV_X64_MSR_EOI:
1489 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1490 case HV_X64_MSR_ICR:
1491 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1492 case HV_X64_MSR_TPR:
1493 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1494 default:
1495 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1496 "data 0x%llx\n", msr, data);
1497 return 1;
1498 }
1499
1500 return 0;
1501 }
1502
1503 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1504 {
1505 gpa_t gpa = data & ~0x3f;
1506
1507 /* Bits 2:5 are resrved, Should be zero */
1508 if (data & 0x3c)
1509 return 1;
1510
1511 vcpu->arch.apf.msr_val = data;
1512
1513 if (!(data & KVM_ASYNC_PF_ENABLED)) {
1514 kvm_clear_async_pf_completion_queue(vcpu);
1515 kvm_async_pf_hash_reset(vcpu);
1516 return 0;
1517 }
1518
1519 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1520 return 1;
1521
1522 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1523 kvm_async_pf_wakeup_all(vcpu);
1524 return 0;
1525 }
1526
1527 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1528 {
1529 if (vcpu->arch.time_page) {
1530 kvm_release_page_dirty(vcpu->arch.time_page);
1531 vcpu->arch.time_page = NULL;
1532 }
1533 }
1534
1535 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1536 {
1537 u64 delta;
1538
1539 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1540 return;
1541
1542 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1543 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1544 vcpu->arch.st.accum_steal = delta;
1545 }
1546
1547 static void record_steal_time(struct kvm_vcpu *vcpu)
1548 {
1549 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1550 return;
1551
1552 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1553 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1554 return;
1555
1556 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1557 vcpu->arch.st.steal.version += 2;
1558 vcpu->arch.st.accum_steal = 0;
1559
1560 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1561 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1562 }
1563
1564 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1565 {
1566 bool pr = false;
1567
1568 switch (msr) {
1569 case MSR_EFER:
1570 return set_efer(vcpu, data);
1571 case MSR_K7_HWCR:
1572 data &= ~(u64)0x40; /* ignore flush filter disable */
1573 data &= ~(u64)0x100; /* ignore ignne emulation enable */
1574 data &= ~(u64)0x8; /* ignore TLB cache disable */
1575 if (data != 0) {
1576 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1577 data);
1578 return 1;
1579 }
1580 break;
1581 case MSR_FAM10H_MMIO_CONF_BASE:
1582 if (data != 0) {
1583 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1584 "0x%llx\n", data);
1585 return 1;
1586 }
1587 break;
1588 case MSR_AMD64_NB_CFG:
1589 break;
1590 case MSR_IA32_DEBUGCTLMSR:
1591 if (!data) {
1592 /* We support the non-activated case already */
1593 break;
1594 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1595 /* Values other than LBR and BTF are vendor-specific,
1596 thus reserved and should throw a #GP */
1597 return 1;
1598 }
1599 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1600 __func__, data);
1601 break;
1602 case MSR_IA32_UCODE_REV:
1603 case MSR_IA32_UCODE_WRITE:
1604 case MSR_VM_HSAVE_PA:
1605 case MSR_AMD64_PATCH_LOADER:
1606 break;
1607 case 0x200 ... 0x2ff:
1608 return set_msr_mtrr(vcpu, msr, data);
1609 case MSR_IA32_APICBASE:
1610 kvm_set_apic_base(vcpu, data);
1611 break;
1612 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1613 return kvm_x2apic_msr_write(vcpu, msr, data);
1614 case MSR_IA32_TSCDEADLINE:
1615 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1616 break;
1617 case MSR_IA32_MISC_ENABLE:
1618 vcpu->arch.ia32_misc_enable_msr = data;
1619 break;
1620 case MSR_KVM_WALL_CLOCK_NEW:
1621 case MSR_KVM_WALL_CLOCK:
1622 vcpu->kvm->arch.wall_clock = data;
1623 kvm_write_wall_clock(vcpu->kvm, data);
1624 break;
1625 case MSR_KVM_SYSTEM_TIME_NEW:
1626 case MSR_KVM_SYSTEM_TIME: {
1627 kvmclock_reset(vcpu);
1628
1629 vcpu->arch.time = data;
1630 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1631
1632 /* we verify if the enable bit is set... */
1633 if (!(data & 1))
1634 break;
1635
1636 /* ...but clean it before doing the actual write */
1637 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1638
1639 vcpu->arch.time_page =
1640 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1641
1642 if (is_error_page(vcpu->arch.time_page)) {
1643 kvm_release_page_clean(vcpu->arch.time_page);
1644 vcpu->arch.time_page = NULL;
1645 }
1646 break;
1647 }
1648 case MSR_KVM_ASYNC_PF_EN:
1649 if (kvm_pv_enable_async_pf(vcpu, data))
1650 return 1;
1651 break;
1652 case MSR_KVM_STEAL_TIME:
1653
1654 if (unlikely(!sched_info_on()))
1655 return 1;
1656
1657 if (data & KVM_STEAL_RESERVED_MASK)
1658 return 1;
1659
1660 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
1661 data & KVM_STEAL_VALID_BITS))
1662 return 1;
1663
1664 vcpu->arch.st.msr_val = data;
1665
1666 if (!(data & KVM_MSR_ENABLED))
1667 break;
1668
1669 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1670
1671 preempt_disable();
1672 accumulate_steal_time(vcpu);
1673 preempt_enable();
1674
1675 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
1676
1677 break;
1678 case MSR_KVM_PV_EOI_EN:
1679 if (kvm_lapic_enable_pv_eoi(vcpu, data))
1680 return 1;
1681 break;
1682
1683 case MSR_IA32_MCG_CTL:
1684 case MSR_IA32_MCG_STATUS:
1685 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1686 return set_msr_mce(vcpu, msr, data);
1687
1688 /* Performance counters are not protected by a CPUID bit,
1689 * so we should check all of them in the generic path for the sake of
1690 * cross vendor migration.
1691 * Writing a zero into the event select MSRs disables them,
1692 * which we perfectly emulate ;-). Any other value should be at least
1693 * reported, some guests depend on them.
1694 */
1695 case MSR_K7_EVNTSEL0:
1696 case MSR_K7_EVNTSEL1:
1697 case MSR_K7_EVNTSEL2:
1698 case MSR_K7_EVNTSEL3:
1699 if (data != 0)
1700 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1701 "0x%x data 0x%llx\n", msr, data);
1702 break;
1703 /* at least RHEL 4 unconditionally writes to the perfctr registers,
1704 * so we ignore writes to make it happy.
1705 */
1706 case MSR_K7_PERFCTR0:
1707 case MSR_K7_PERFCTR1:
1708 case MSR_K7_PERFCTR2:
1709 case MSR_K7_PERFCTR3:
1710 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1711 "0x%x data 0x%llx\n", msr, data);
1712 break;
1713 case MSR_P6_PERFCTR0:
1714 case MSR_P6_PERFCTR1:
1715 pr = true;
1716 case MSR_P6_EVNTSEL0:
1717 case MSR_P6_EVNTSEL1:
1718 if (kvm_pmu_msr(vcpu, msr))
1719 return kvm_pmu_set_msr(vcpu, msr, data);
1720
1721 if (pr || data != 0)
1722 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
1723 "0x%x data 0x%llx\n", msr, data);
1724 break;
1725 case MSR_K7_CLK_CTL:
1726 /*
1727 * Ignore all writes to this no longer documented MSR.
1728 * Writes are only relevant for old K7 processors,
1729 * all pre-dating SVM, but a recommended workaround from
1730 * AMD for these chips. It is possible to speicify the
1731 * affected processor models on the command line, hence
1732 * the need to ignore the workaround.
1733 */
1734 break;
1735 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1736 if (kvm_hv_msr_partition_wide(msr)) {
1737 int r;
1738 mutex_lock(&vcpu->kvm->lock);
1739 r = set_msr_hyperv_pw(vcpu, msr, data);
1740 mutex_unlock(&vcpu->kvm->lock);
1741 return r;
1742 } else
1743 return set_msr_hyperv(vcpu, msr, data);
1744 break;
1745 case MSR_IA32_BBL_CR_CTL3:
1746 /* Drop writes to this legacy MSR -- see rdmsr
1747 * counterpart for further detail.
1748 */
1749 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
1750 break;
1751 case MSR_AMD64_OSVW_ID_LENGTH:
1752 if (!guest_cpuid_has_osvw(vcpu))
1753 return 1;
1754 vcpu->arch.osvw.length = data;
1755 break;
1756 case MSR_AMD64_OSVW_STATUS:
1757 if (!guest_cpuid_has_osvw(vcpu))
1758 return 1;
1759 vcpu->arch.osvw.status = data;
1760 break;
1761 default:
1762 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1763 return xen_hvm_config(vcpu, data);
1764 if (kvm_pmu_msr(vcpu, msr))
1765 return kvm_pmu_set_msr(vcpu, msr, data);
1766 if (!ignore_msrs) {
1767 vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1768 msr, data);
1769 return 1;
1770 } else {
1771 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1772 msr, data);
1773 break;
1774 }
1775 }
1776 return 0;
1777 }
1778 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1779
1780
1781 /*
1782 * Reads an msr value (of 'msr_index') into 'pdata'.
1783 * Returns 0 on success, non-0 otherwise.
1784 * Assumes vcpu_load() was already called.
1785 */
1786 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1787 {
1788 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1789 }
1790
1791 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1792 {
1793 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1794
1795 if (!msr_mtrr_valid(msr))
1796 return 1;
1797
1798 if (msr == MSR_MTRRdefType)
1799 *pdata = vcpu->arch.mtrr_state.def_type +
1800 (vcpu->arch.mtrr_state.enabled << 10);
1801 else if (msr == MSR_MTRRfix64K_00000)
1802 *pdata = p[0];
1803 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1804 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1805 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1806 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1807 else if (msr == MSR_IA32_CR_PAT)
1808 *pdata = vcpu->arch.pat;
1809 else { /* Variable MTRRs */
1810 int idx, is_mtrr_mask;
1811 u64 *pt;
1812
1813 idx = (msr - 0x200) / 2;
1814 is_mtrr_mask = msr - 0x200 - 2 * idx;
1815 if (!is_mtrr_mask)
1816 pt =
1817 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1818 else
1819 pt =
1820 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1821 *pdata = *pt;
1822 }
1823
1824 return 0;
1825 }
1826
1827 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1828 {
1829 u64 data;
1830 u64 mcg_cap = vcpu->arch.mcg_cap;
1831 unsigned bank_num = mcg_cap & 0xff;
1832
1833 switch (msr) {
1834 case MSR_IA32_P5_MC_ADDR:
1835 case MSR_IA32_P5_MC_TYPE:
1836 data = 0;
1837 break;
1838 case MSR_IA32_MCG_CAP:
1839 data = vcpu->arch.mcg_cap;
1840 break;
1841 case MSR_IA32_MCG_CTL:
1842 if (!(mcg_cap & MCG_CTL_P))
1843 return 1;
1844 data = vcpu->arch.mcg_ctl;
1845 break;
1846 case MSR_IA32_MCG_STATUS:
1847 data = vcpu->arch.mcg_status;
1848 break;
1849 default:
1850 if (msr >= MSR_IA32_MC0_CTL &&
1851 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1852 u32 offset = msr - MSR_IA32_MC0_CTL;
1853 data = vcpu->arch.mce_banks[offset];
1854 break;
1855 }
1856 return 1;
1857 }
1858 *pdata = data;
1859 return 0;
1860 }
1861
1862 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1863 {
1864 u64 data = 0;
1865 struct kvm *kvm = vcpu->kvm;
1866
1867 switch (msr) {
1868 case HV_X64_MSR_GUEST_OS_ID:
1869 data = kvm->arch.hv_guest_os_id;
1870 break;
1871 case HV_X64_MSR_HYPERCALL:
1872 data = kvm->arch.hv_hypercall;
1873 break;
1874 default:
1875 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1876 return 1;
1877 }
1878
1879 *pdata = data;
1880 return 0;
1881 }
1882
1883 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1884 {
1885 u64 data = 0;
1886
1887 switch (msr) {
1888 case HV_X64_MSR_VP_INDEX: {
1889 int r;
1890 struct kvm_vcpu *v;
1891 kvm_for_each_vcpu(r, v, vcpu->kvm)
1892 if (v == vcpu)
1893 data = r;
1894 break;
1895 }
1896 case HV_X64_MSR_EOI:
1897 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1898 case HV_X64_MSR_ICR:
1899 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1900 case HV_X64_MSR_TPR:
1901 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1902 case HV_X64_MSR_APIC_ASSIST_PAGE:
1903 data = vcpu->arch.hv_vapic;
1904 break;
1905 default:
1906 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1907 return 1;
1908 }
1909 *pdata = data;
1910 return 0;
1911 }
1912
1913 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1914 {
1915 u64 data;
1916
1917 switch (msr) {
1918 case MSR_IA32_PLATFORM_ID:
1919 case MSR_IA32_EBL_CR_POWERON:
1920 case MSR_IA32_DEBUGCTLMSR:
1921 case MSR_IA32_LASTBRANCHFROMIP:
1922 case MSR_IA32_LASTBRANCHTOIP:
1923 case MSR_IA32_LASTINTFROMIP:
1924 case MSR_IA32_LASTINTTOIP:
1925 case MSR_K8_SYSCFG:
1926 case MSR_K7_HWCR:
1927 case MSR_VM_HSAVE_PA:
1928 case MSR_K7_EVNTSEL0:
1929 case MSR_K7_PERFCTR0:
1930 case MSR_K8_INT_PENDING_MSG:
1931 case MSR_AMD64_NB_CFG:
1932 case MSR_FAM10H_MMIO_CONF_BASE:
1933 data = 0;
1934 break;
1935 case MSR_P6_PERFCTR0:
1936 case MSR_P6_PERFCTR1:
1937 case MSR_P6_EVNTSEL0:
1938 case MSR_P6_EVNTSEL1:
1939 if (kvm_pmu_msr(vcpu, msr))
1940 return kvm_pmu_get_msr(vcpu, msr, pdata);
1941 data = 0;
1942 break;
1943 case MSR_IA32_UCODE_REV:
1944 data = 0x100000000ULL;
1945 break;
1946 case MSR_MTRRcap:
1947 data = 0x500 | KVM_NR_VAR_MTRR;
1948 break;
1949 case 0x200 ... 0x2ff:
1950 return get_msr_mtrr(vcpu, msr, pdata);
1951 case 0xcd: /* fsb frequency */
1952 data = 3;
1953 break;
1954 /*
1955 * MSR_EBC_FREQUENCY_ID
1956 * Conservative value valid for even the basic CPU models.
1957 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1958 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1959 * and 266MHz for model 3, or 4. Set Core Clock
1960 * Frequency to System Bus Frequency Ratio to 1 (bits
1961 * 31:24) even though these are only valid for CPU
1962 * models > 2, however guests may end up dividing or
1963 * multiplying by zero otherwise.
1964 */
1965 case MSR_EBC_FREQUENCY_ID:
1966 data = 1 << 24;
1967 break;
1968 case MSR_IA32_APICBASE:
1969 data = kvm_get_apic_base(vcpu);
1970 break;
1971 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1972 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1973 break;
1974 case MSR_IA32_TSCDEADLINE:
1975 data = kvm_get_lapic_tscdeadline_msr(vcpu);
1976 break;
1977 case MSR_IA32_MISC_ENABLE:
1978 data = vcpu->arch.ia32_misc_enable_msr;
1979 break;
1980 case MSR_IA32_PERF_STATUS:
1981 /* TSC increment by tick */
1982 data = 1000ULL;
1983 /* CPU multiplier */
1984 data |= (((uint64_t)4ULL) << 40);
1985 break;
1986 case MSR_EFER:
1987 data = vcpu->arch.efer;
1988 break;
1989 case MSR_KVM_WALL_CLOCK:
1990 case MSR_KVM_WALL_CLOCK_NEW:
1991 data = vcpu->kvm->arch.wall_clock;
1992 break;
1993 case MSR_KVM_SYSTEM_TIME:
1994 case MSR_KVM_SYSTEM_TIME_NEW:
1995 data = vcpu->arch.time;
1996 break;
1997 case MSR_KVM_ASYNC_PF_EN:
1998 data = vcpu->arch.apf.msr_val;
1999 break;
2000 case MSR_KVM_STEAL_TIME:
2001 data = vcpu->arch.st.msr_val;
2002 break;
2003 case MSR_KVM_PV_EOI_EN:
2004 data = vcpu->arch.pv_eoi.msr_val;
2005 break;
2006 case MSR_IA32_P5_MC_ADDR:
2007 case MSR_IA32_P5_MC_TYPE:
2008 case MSR_IA32_MCG_CAP:
2009 case MSR_IA32_MCG_CTL:
2010 case MSR_IA32_MCG_STATUS:
2011 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2012 return get_msr_mce(vcpu, msr, pdata);
2013 case MSR_K7_CLK_CTL:
2014 /*
2015 * Provide expected ramp-up count for K7. All other
2016 * are set to zero, indicating minimum divisors for
2017 * every field.
2018 *
2019 * This prevents guest kernels on AMD host with CPU
2020 * type 6, model 8 and higher from exploding due to
2021 * the rdmsr failing.
2022 */
2023 data = 0x20000000;
2024 break;
2025 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2026 if (kvm_hv_msr_partition_wide(msr)) {
2027 int r;
2028 mutex_lock(&vcpu->kvm->lock);
2029 r = get_msr_hyperv_pw(vcpu, msr, pdata);
2030 mutex_unlock(&vcpu->kvm->lock);
2031 return r;
2032 } else
2033 return get_msr_hyperv(vcpu, msr, pdata);
2034 break;
2035 case MSR_IA32_BBL_CR_CTL3:
2036 /* This legacy MSR exists but isn't fully documented in current
2037 * silicon. It is however accessed by winxp in very narrow
2038 * scenarios where it sets bit #19, itself documented as
2039 * a "reserved" bit. Best effort attempt to source coherent
2040 * read data here should the balance of the register be
2041 * interpreted by the guest:
2042 *
2043 * L2 cache control register 3: 64GB range, 256KB size,
2044 * enabled, latency 0x1, configured
2045 */
2046 data = 0xbe702111;
2047 break;
2048 case MSR_AMD64_OSVW_ID_LENGTH:
2049 if (!guest_cpuid_has_osvw(vcpu))
2050 return 1;
2051 data = vcpu->arch.osvw.length;
2052 break;
2053 case MSR_AMD64_OSVW_STATUS:
2054 if (!guest_cpuid_has_osvw(vcpu))
2055 return 1;
2056 data = vcpu->arch.osvw.status;
2057 break;
2058 default:
2059 if (kvm_pmu_msr(vcpu, msr))
2060 return kvm_pmu_get_msr(vcpu, msr, pdata);
2061 if (!ignore_msrs) {
2062 vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2063 return 1;
2064 } else {
2065 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2066 data = 0;
2067 }
2068 break;
2069 }
2070 *pdata = data;
2071 return 0;
2072 }
2073 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2074
2075 /*
2076 * Read or write a bunch of msrs. All parameters are kernel addresses.
2077 *
2078 * @return number of msrs set successfully.
2079 */
2080 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2081 struct kvm_msr_entry *entries,
2082 int (*do_msr)(struct kvm_vcpu *vcpu,
2083 unsigned index, u64 *data))
2084 {
2085 int i, idx;
2086
2087 idx = srcu_read_lock(&vcpu->kvm->srcu);
2088 for (i = 0; i < msrs->nmsrs; ++i)
2089 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2090 break;
2091 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2092
2093 return i;
2094 }
2095
2096 /*
2097 * Read or write a bunch of msrs. Parameters are user addresses.
2098 *
2099 * @return number of msrs set successfully.
2100 */
2101 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2102 int (*do_msr)(struct kvm_vcpu *vcpu,
2103 unsigned index, u64 *data),
2104 int writeback)
2105 {
2106 struct kvm_msrs msrs;
2107 struct kvm_msr_entry *entries;
2108 int r, n;
2109 unsigned size;
2110
2111 r = -EFAULT;
2112 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2113 goto out;
2114
2115 r = -E2BIG;
2116 if (msrs.nmsrs >= MAX_IO_MSRS)
2117 goto out;
2118
2119 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2120 entries = memdup_user(user_msrs->entries, size);
2121 if (IS_ERR(entries)) {
2122 r = PTR_ERR(entries);
2123 goto out;
2124 }
2125
2126 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2127 if (r < 0)
2128 goto out_free;
2129
2130 r = -EFAULT;
2131 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2132 goto out_free;
2133
2134 r = n;
2135
2136 out_free:
2137 kfree(entries);
2138 out:
2139 return r;
2140 }
2141
2142 int kvm_dev_ioctl_check_extension(long ext)
2143 {
2144 int r;
2145
2146 switch (ext) {
2147 case KVM_CAP_IRQCHIP:
2148 case KVM_CAP_HLT:
2149 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2150 case KVM_CAP_SET_TSS_ADDR:
2151 case KVM_CAP_EXT_CPUID:
2152 case KVM_CAP_CLOCKSOURCE:
2153 case KVM_CAP_PIT:
2154 case KVM_CAP_NOP_IO_DELAY:
2155 case KVM_CAP_MP_STATE:
2156 case KVM_CAP_SYNC_MMU:
2157 case KVM_CAP_USER_NMI:
2158 case KVM_CAP_REINJECT_CONTROL:
2159 case KVM_CAP_IRQ_INJECT_STATUS:
2160 case KVM_CAP_ASSIGN_DEV_IRQ:
2161 case KVM_CAP_IRQFD:
2162 case KVM_CAP_IOEVENTFD:
2163 case KVM_CAP_PIT2:
2164 case KVM_CAP_PIT_STATE2:
2165 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2166 case KVM_CAP_XEN_HVM:
2167 case KVM_CAP_ADJUST_CLOCK:
2168 case KVM_CAP_VCPU_EVENTS:
2169 case KVM_CAP_HYPERV:
2170 case KVM_CAP_HYPERV_VAPIC:
2171 case KVM_CAP_HYPERV_SPIN:
2172 case KVM_CAP_PCI_SEGMENT:
2173 case KVM_CAP_DEBUGREGS:
2174 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2175 case KVM_CAP_XSAVE:
2176 case KVM_CAP_ASYNC_PF:
2177 case KVM_CAP_GET_TSC_KHZ:
2178 case KVM_CAP_PCI_2_3:
2179 case KVM_CAP_KVMCLOCK_CTRL:
2180 r = 1;
2181 break;
2182 case KVM_CAP_COALESCED_MMIO:
2183 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2184 break;
2185 case KVM_CAP_VAPIC:
2186 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2187 break;
2188 case KVM_CAP_NR_VCPUS:
2189 r = KVM_SOFT_MAX_VCPUS;
2190 break;
2191 case KVM_CAP_MAX_VCPUS:
2192 r = KVM_MAX_VCPUS;
2193 break;
2194 case KVM_CAP_NR_MEMSLOTS:
2195 r = KVM_MEMORY_SLOTS;
2196 break;
2197 case KVM_CAP_PV_MMU: /* obsolete */
2198 r = 0;
2199 break;
2200 case KVM_CAP_IOMMU:
2201 r = iommu_present(&pci_bus_type);
2202 break;
2203 case KVM_CAP_MCE:
2204 r = KVM_MAX_MCE_BANKS;
2205 break;
2206 case KVM_CAP_XCRS:
2207 r = cpu_has_xsave;
2208 break;
2209 case KVM_CAP_TSC_CONTROL:
2210 r = kvm_has_tsc_control;
2211 break;
2212 case KVM_CAP_TSC_DEADLINE_TIMER:
2213 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2214 break;
2215 default:
2216 r = 0;
2217 break;
2218 }
2219 return r;
2220
2221 }
2222
2223 long kvm_arch_dev_ioctl(struct file *filp,
2224 unsigned int ioctl, unsigned long arg)
2225 {
2226 void __user *argp = (void __user *)arg;
2227 long r;
2228
2229 switch (ioctl) {
2230 case KVM_GET_MSR_INDEX_LIST: {
2231 struct kvm_msr_list __user *user_msr_list = argp;
2232 struct kvm_msr_list msr_list;
2233 unsigned n;
2234
2235 r = -EFAULT;
2236 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2237 goto out;
2238 n = msr_list.nmsrs;
2239 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2240 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2241 goto out;
2242 r = -E2BIG;
2243 if (n < msr_list.nmsrs)
2244 goto out;
2245 r = -EFAULT;
2246 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2247 num_msrs_to_save * sizeof(u32)))
2248 goto out;
2249 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2250 &emulated_msrs,
2251 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2252 goto out;
2253 r = 0;
2254 break;
2255 }
2256 case KVM_GET_SUPPORTED_CPUID: {
2257 struct kvm_cpuid2 __user *cpuid_arg = argp;
2258 struct kvm_cpuid2 cpuid;
2259
2260 r = -EFAULT;
2261 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2262 goto out;
2263 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2264 cpuid_arg->entries);
2265 if (r)
2266 goto out;
2267
2268 r = -EFAULT;
2269 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2270 goto out;
2271 r = 0;
2272 break;
2273 }
2274 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2275 u64 mce_cap;
2276
2277 mce_cap = KVM_MCE_CAP_SUPPORTED;
2278 r = -EFAULT;
2279 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2280 goto out;
2281 r = 0;
2282 break;
2283 }
2284 default:
2285 r = -EINVAL;
2286 }
2287 out:
2288 return r;
2289 }
2290
2291 static void wbinvd_ipi(void *garbage)
2292 {
2293 wbinvd();
2294 }
2295
2296 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2297 {
2298 return vcpu->kvm->arch.iommu_domain &&
2299 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2300 }
2301
2302 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2303 {
2304 /* Address WBINVD may be executed by guest */
2305 if (need_emulate_wbinvd(vcpu)) {
2306 if (kvm_x86_ops->has_wbinvd_exit())
2307 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2308 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2309 smp_call_function_single(vcpu->cpu,
2310 wbinvd_ipi, NULL, 1);
2311 }
2312
2313 kvm_x86_ops->vcpu_load(vcpu, cpu);
2314
2315 /* Apply any externally detected TSC adjustments (due to suspend) */
2316 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2317 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2318 vcpu->arch.tsc_offset_adjustment = 0;
2319 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2320 }
2321
2322 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2323 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2324 native_read_tsc() - vcpu->arch.last_host_tsc;
2325 if (tsc_delta < 0)
2326 mark_tsc_unstable("KVM discovered backwards TSC");
2327 if (check_tsc_unstable()) {
2328 u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2329 vcpu->arch.last_guest_tsc);
2330 kvm_x86_ops->write_tsc_offset(vcpu, offset);
2331 vcpu->arch.tsc_catchup = 1;
2332 }
2333 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2334 if (vcpu->cpu != cpu)
2335 kvm_migrate_timers(vcpu);
2336 vcpu->cpu = cpu;
2337 }
2338
2339 accumulate_steal_time(vcpu);
2340 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2341 }
2342
2343 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2344 {
2345 kvm_x86_ops->vcpu_put(vcpu);
2346 kvm_put_guest_fpu(vcpu);
2347 vcpu->arch.last_host_tsc = native_read_tsc();
2348 }
2349
2350 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2351 struct kvm_lapic_state *s)
2352 {
2353 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2354
2355 return 0;
2356 }
2357
2358 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2359 struct kvm_lapic_state *s)
2360 {
2361 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2362 kvm_apic_post_state_restore(vcpu);
2363 update_cr8_intercept(vcpu);
2364
2365 return 0;
2366 }
2367
2368 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2369 struct kvm_interrupt *irq)
2370 {
2371 if (irq->irq < 0 || irq->irq >= 256)
2372 return -EINVAL;
2373 if (irqchip_in_kernel(vcpu->kvm))
2374 return -ENXIO;
2375
2376 kvm_queue_interrupt(vcpu, irq->irq, false);
2377 kvm_make_request(KVM_REQ_EVENT, vcpu);
2378
2379 return 0;
2380 }
2381
2382 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2383 {
2384 kvm_inject_nmi(vcpu);
2385
2386 return 0;
2387 }
2388
2389 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2390 struct kvm_tpr_access_ctl *tac)
2391 {
2392 if (tac->flags)
2393 return -EINVAL;
2394 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2395 return 0;
2396 }
2397
2398 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2399 u64 mcg_cap)
2400 {
2401 int r;
2402 unsigned bank_num = mcg_cap & 0xff, bank;
2403
2404 r = -EINVAL;
2405 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2406 goto out;
2407 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2408 goto out;
2409 r = 0;
2410 vcpu->arch.mcg_cap = mcg_cap;
2411 /* Init IA32_MCG_CTL to all 1s */
2412 if (mcg_cap & MCG_CTL_P)
2413 vcpu->arch.mcg_ctl = ~(u64)0;
2414 /* Init IA32_MCi_CTL to all 1s */
2415 for (bank = 0; bank < bank_num; bank++)
2416 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2417 out:
2418 return r;
2419 }
2420
2421 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2422 struct kvm_x86_mce *mce)
2423 {
2424 u64 mcg_cap = vcpu->arch.mcg_cap;
2425 unsigned bank_num = mcg_cap & 0xff;
2426 u64 *banks = vcpu->arch.mce_banks;
2427
2428 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2429 return -EINVAL;
2430 /*
2431 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2432 * reporting is disabled
2433 */
2434 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2435 vcpu->arch.mcg_ctl != ~(u64)0)
2436 return 0;
2437 banks += 4 * mce->bank;
2438 /*
2439 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2440 * reporting is disabled for the bank
2441 */
2442 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2443 return 0;
2444 if (mce->status & MCI_STATUS_UC) {
2445 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2446 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2447 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2448 return 0;
2449 }
2450 if (banks[1] & MCI_STATUS_VAL)
2451 mce->status |= MCI_STATUS_OVER;
2452 banks[2] = mce->addr;
2453 banks[3] = mce->misc;
2454 vcpu->arch.mcg_status = mce->mcg_status;
2455 banks[1] = mce->status;
2456 kvm_queue_exception(vcpu, MC_VECTOR);
2457 } else if (!(banks[1] & MCI_STATUS_VAL)
2458 || !(banks[1] & MCI_STATUS_UC)) {
2459 if (banks[1] & MCI_STATUS_VAL)
2460 mce->status |= MCI_STATUS_OVER;
2461 banks[2] = mce->addr;
2462 banks[3] = mce->misc;
2463 banks[1] = mce->status;
2464 } else
2465 banks[1] |= MCI_STATUS_OVER;
2466 return 0;
2467 }
2468
2469 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2470 struct kvm_vcpu_events *events)
2471 {
2472 process_nmi(vcpu);
2473 events->exception.injected =
2474 vcpu->arch.exception.pending &&
2475 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2476 events->exception.nr = vcpu->arch.exception.nr;
2477 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2478 events->exception.pad = 0;
2479 events->exception.error_code = vcpu->arch.exception.error_code;
2480
2481 events->interrupt.injected =
2482 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2483 events->interrupt.nr = vcpu->arch.interrupt.nr;
2484 events->interrupt.soft = 0;
2485 events->interrupt.shadow =
2486 kvm_x86_ops->get_interrupt_shadow(vcpu,
2487 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2488
2489 events->nmi.injected = vcpu->arch.nmi_injected;
2490 events->nmi.pending = vcpu->arch.nmi_pending != 0;
2491 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2492 events->nmi.pad = 0;
2493
2494 events->sipi_vector = vcpu->arch.sipi_vector;
2495
2496 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2497 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2498 | KVM_VCPUEVENT_VALID_SHADOW);
2499 memset(&events->reserved, 0, sizeof(events->reserved));
2500 }
2501
2502 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2503 struct kvm_vcpu_events *events)
2504 {
2505 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2506 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2507 | KVM_VCPUEVENT_VALID_SHADOW))
2508 return -EINVAL;
2509
2510 process_nmi(vcpu);
2511 vcpu->arch.exception.pending = events->exception.injected;
2512 vcpu->arch.exception.nr = events->exception.nr;
2513 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2514 vcpu->arch.exception.error_code = events->exception.error_code;
2515
2516 vcpu->arch.interrupt.pending = events->interrupt.injected;
2517 vcpu->arch.interrupt.nr = events->interrupt.nr;
2518 vcpu->arch.interrupt.soft = events->interrupt.soft;
2519 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2520 kvm_x86_ops->set_interrupt_shadow(vcpu,
2521 events->interrupt.shadow);
2522
2523 vcpu->arch.nmi_injected = events->nmi.injected;
2524 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2525 vcpu->arch.nmi_pending = events->nmi.pending;
2526 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2527
2528 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2529 vcpu->arch.sipi_vector = events->sipi_vector;
2530
2531 kvm_make_request(KVM_REQ_EVENT, vcpu);
2532
2533 return 0;
2534 }
2535
2536 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2537 struct kvm_debugregs *dbgregs)
2538 {
2539 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2540 dbgregs->dr6 = vcpu->arch.dr6;
2541 dbgregs->dr7 = vcpu->arch.dr7;
2542 dbgregs->flags = 0;
2543 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2544 }
2545
2546 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2547 struct kvm_debugregs *dbgregs)
2548 {
2549 if (dbgregs->flags)
2550 return -EINVAL;
2551
2552 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2553 vcpu->arch.dr6 = dbgregs->dr6;
2554 vcpu->arch.dr7 = dbgregs->dr7;
2555
2556 return 0;
2557 }
2558
2559 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2560 struct kvm_xsave *guest_xsave)
2561 {
2562 if (cpu_has_xsave)
2563 memcpy(guest_xsave->region,
2564 &vcpu->arch.guest_fpu.state->xsave,
2565 xstate_size);
2566 else {
2567 memcpy(guest_xsave->region,
2568 &vcpu->arch.guest_fpu.state->fxsave,
2569 sizeof(struct i387_fxsave_struct));
2570 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2571 XSTATE_FPSSE;
2572 }
2573 }
2574
2575 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2576 struct kvm_xsave *guest_xsave)
2577 {
2578 u64 xstate_bv =
2579 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2580
2581 if (cpu_has_xsave)
2582 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2583 guest_xsave->region, xstate_size);
2584 else {
2585 if (xstate_bv & ~XSTATE_FPSSE)
2586 return -EINVAL;
2587 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2588 guest_xsave->region, sizeof(struct i387_fxsave_struct));
2589 }
2590 return 0;
2591 }
2592
2593 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2594 struct kvm_xcrs *guest_xcrs)
2595 {
2596 if (!cpu_has_xsave) {
2597 guest_xcrs->nr_xcrs = 0;
2598 return;
2599 }
2600
2601 guest_xcrs->nr_xcrs = 1;
2602 guest_xcrs->flags = 0;
2603 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2604 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2605 }
2606
2607 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2608 struct kvm_xcrs *guest_xcrs)
2609 {
2610 int i, r = 0;
2611
2612 if (!cpu_has_xsave)
2613 return -EINVAL;
2614
2615 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2616 return -EINVAL;
2617
2618 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2619 /* Only support XCR0 currently */
2620 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2621 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2622 guest_xcrs->xcrs[0].value);
2623 break;
2624 }
2625 if (r)
2626 r = -EINVAL;
2627 return r;
2628 }
2629
2630 /*
2631 * kvm_set_guest_paused() indicates to the guest kernel that it has been
2632 * stopped by the hypervisor. This function will be called from the host only.
2633 * EINVAL is returned when the host attempts to set the flag for a guest that
2634 * does not support pv clocks.
2635 */
2636 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
2637 {
2638 struct pvclock_vcpu_time_info *src = &vcpu->arch.hv_clock;
2639 if (!vcpu->arch.time_page)
2640 return -EINVAL;
2641 src->flags |= PVCLOCK_GUEST_STOPPED;
2642 mark_page_dirty(vcpu->kvm, vcpu->arch.time >> PAGE_SHIFT);
2643 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2644 return 0;
2645 }
2646
2647 long kvm_arch_vcpu_ioctl(struct file *filp,
2648 unsigned int ioctl, unsigned long arg)
2649 {
2650 struct kvm_vcpu *vcpu = filp->private_data;
2651 void __user *argp = (void __user *)arg;
2652 int r;
2653 union {
2654 struct kvm_lapic_state *lapic;
2655 struct kvm_xsave *xsave;
2656 struct kvm_xcrs *xcrs;
2657 void *buffer;
2658 } u;
2659
2660 u.buffer = NULL;
2661 switch (ioctl) {
2662 case KVM_GET_LAPIC: {
2663 r = -EINVAL;
2664 if (!vcpu->arch.apic)
2665 goto out;
2666 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2667
2668 r = -ENOMEM;
2669 if (!u.lapic)
2670 goto out;
2671 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2672 if (r)
2673 goto out;
2674 r = -EFAULT;
2675 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2676 goto out;
2677 r = 0;
2678 break;
2679 }
2680 case KVM_SET_LAPIC: {
2681 r = -EINVAL;
2682 if (!vcpu->arch.apic)
2683 goto out;
2684 u.lapic = memdup_user(argp, sizeof(*u.lapic));
2685 if (IS_ERR(u.lapic)) {
2686 r = PTR_ERR(u.lapic);
2687 goto out;
2688 }
2689
2690 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2691 if (r)
2692 goto out;
2693 r = 0;
2694 break;
2695 }
2696 case KVM_INTERRUPT: {
2697 struct kvm_interrupt irq;
2698
2699 r = -EFAULT;
2700 if (copy_from_user(&irq, argp, sizeof irq))
2701 goto out;
2702 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2703 if (r)
2704 goto out;
2705 r = 0;
2706 break;
2707 }
2708 case KVM_NMI: {
2709 r = kvm_vcpu_ioctl_nmi(vcpu);
2710 if (r)
2711 goto out;
2712 r = 0;
2713 break;
2714 }
2715 case KVM_SET_CPUID: {
2716 struct kvm_cpuid __user *cpuid_arg = argp;
2717 struct kvm_cpuid cpuid;
2718
2719 r = -EFAULT;
2720 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2721 goto out;
2722 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2723 if (r)
2724 goto out;
2725 break;
2726 }
2727 case KVM_SET_CPUID2: {
2728 struct kvm_cpuid2 __user *cpuid_arg = argp;
2729 struct kvm_cpuid2 cpuid;
2730
2731 r = -EFAULT;
2732 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2733 goto out;
2734 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2735 cpuid_arg->entries);
2736 if (r)
2737 goto out;
2738 break;
2739 }
2740 case KVM_GET_CPUID2: {
2741 struct kvm_cpuid2 __user *cpuid_arg = argp;
2742 struct kvm_cpuid2 cpuid;
2743
2744 r = -EFAULT;
2745 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2746 goto out;
2747 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2748 cpuid_arg->entries);
2749 if (r)
2750 goto out;
2751 r = -EFAULT;
2752 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2753 goto out;
2754 r = 0;
2755 break;
2756 }
2757 case KVM_GET_MSRS:
2758 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2759 break;
2760 case KVM_SET_MSRS:
2761 r = msr_io(vcpu, argp, do_set_msr, 0);
2762 break;
2763 case KVM_TPR_ACCESS_REPORTING: {
2764 struct kvm_tpr_access_ctl tac;
2765
2766 r = -EFAULT;
2767 if (copy_from_user(&tac, argp, sizeof tac))
2768 goto out;
2769 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2770 if (r)
2771 goto out;
2772 r = -EFAULT;
2773 if (copy_to_user(argp, &tac, sizeof tac))
2774 goto out;
2775 r = 0;
2776 break;
2777 };
2778 case KVM_SET_VAPIC_ADDR: {
2779 struct kvm_vapic_addr va;
2780
2781 r = -EINVAL;
2782 if (!irqchip_in_kernel(vcpu->kvm))
2783 goto out;
2784 r = -EFAULT;
2785 if (copy_from_user(&va, argp, sizeof va))
2786 goto out;
2787 r = 0;
2788 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2789 break;
2790 }
2791 case KVM_X86_SETUP_MCE: {
2792 u64 mcg_cap;
2793
2794 r = -EFAULT;
2795 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2796 goto out;
2797 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2798 break;
2799 }
2800 case KVM_X86_SET_MCE: {
2801 struct kvm_x86_mce mce;
2802
2803 r = -EFAULT;
2804 if (copy_from_user(&mce, argp, sizeof mce))
2805 goto out;
2806 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2807 break;
2808 }
2809 case KVM_GET_VCPU_EVENTS: {
2810 struct kvm_vcpu_events events;
2811
2812 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2813
2814 r = -EFAULT;
2815 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2816 break;
2817 r = 0;
2818 break;
2819 }
2820 case KVM_SET_VCPU_EVENTS: {
2821 struct kvm_vcpu_events events;
2822
2823 r = -EFAULT;
2824 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2825 break;
2826
2827 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2828 break;
2829 }
2830 case KVM_GET_DEBUGREGS: {
2831 struct kvm_debugregs dbgregs;
2832
2833 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2834
2835 r = -EFAULT;
2836 if (copy_to_user(argp, &dbgregs,
2837 sizeof(struct kvm_debugregs)))
2838 break;
2839 r = 0;
2840 break;
2841 }
2842 case KVM_SET_DEBUGREGS: {
2843 struct kvm_debugregs dbgregs;
2844
2845 r = -EFAULT;
2846 if (copy_from_user(&dbgregs, argp,
2847 sizeof(struct kvm_debugregs)))
2848 break;
2849
2850 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2851 break;
2852 }
2853 case KVM_GET_XSAVE: {
2854 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2855 r = -ENOMEM;
2856 if (!u.xsave)
2857 break;
2858
2859 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2860
2861 r = -EFAULT;
2862 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2863 break;
2864 r = 0;
2865 break;
2866 }
2867 case KVM_SET_XSAVE: {
2868 u.xsave = memdup_user(argp, sizeof(*u.xsave));
2869 if (IS_ERR(u.xsave)) {
2870 r = PTR_ERR(u.xsave);
2871 goto out;
2872 }
2873
2874 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2875 break;
2876 }
2877 case KVM_GET_XCRS: {
2878 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2879 r = -ENOMEM;
2880 if (!u.xcrs)
2881 break;
2882
2883 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
2884
2885 r = -EFAULT;
2886 if (copy_to_user(argp, u.xcrs,
2887 sizeof(struct kvm_xcrs)))
2888 break;
2889 r = 0;
2890 break;
2891 }
2892 case KVM_SET_XCRS: {
2893 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
2894 if (IS_ERR(u.xcrs)) {
2895 r = PTR_ERR(u.xcrs);
2896 goto out;
2897 }
2898
2899 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
2900 break;
2901 }
2902 case KVM_SET_TSC_KHZ: {
2903 u32 user_tsc_khz;
2904
2905 r = -EINVAL;
2906 user_tsc_khz = (u32)arg;
2907
2908 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
2909 goto out;
2910
2911 if (user_tsc_khz == 0)
2912 user_tsc_khz = tsc_khz;
2913
2914 kvm_set_tsc_khz(vcpu, user_tsc_khz);
2915
2916 r = 0;
2917 goto out;
2918 }
2919 case KVM_GET_TSC_KHZ: {
2920 r = vcpu->arch.virtual_tsc_khz;
2921 goto out;
2922 }
2923 case KVM_KVMCLOCK_CTRL: {
2924 r = kvm_set_guest_paused(vcpu);
2925 goto out;
2926 }
2927 default:
2928 r = -EINVAL;
2929 }
2930 out:
2931 kfree(u.buffer);
2932 return r;
2933 }
2934
2935 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2936 {
2937 return VM_FAULT_SIGBUS;
2938 }
2939
2940 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2941 {
2942 int ret;
2943
2944 if (addr > (unsigned int)(-3 * PAGE_SIZE))
2945 return -1;
2946 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2947 return ret;
2948 }
2949
2950 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2951 u64 ident_addr)
2952 {
2953 kvm->arch.ept_identity_map_addr = ident_addr;
2954 return 0;
2955 }
2956
2957 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2958 u32 kvm_nr_mmu_pages)
2959 {
2960 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2961 return -EINVAL;
2962
2963 mutex_lock(&kvm->slots_lock);
2964 spin_lock(&kvm->mmu_lock);
2965
2966 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2967 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2968
2969 spin_unlock(&kvm->mmu_lock);
2970 mutex_unlock(&kvm->slots_lock);
2971 return 0;
2972 }
2973
2974 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2975 {
2976 return kvm->arch.n_max_mmu_pages;
2977 }
2978
2979 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2980 {
2981 int r;
2982
2983 r = 0;
2984 switch (chip->chip_id) {
2985 case KVM_IRQCHIP_PIC_MASTER:
2986 memcpy(&chip->chip.pic,
2987 &pic_irqchip(kvm)->pics[0],
2988 sizeof(struct kvm_pic_state));
2989 break;
2990 case KVM_IRQCHIP_PIC_SLAVE:
2991 memcpy(&chip->chip.pic,
2992 &pic_irqchip(kvm)->pics[1],
2993 sizeof(struct kvm_pic_state));
2994 break;
2995 case KVM_IRQCHIP_IOAPIC:
2996 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2997 break;
2998 default:
2999 r = -EINVAL;
3000 break;
3001 }
3002 return r;
3003 }
3004
3005 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3006 {
3007 int r;
3008
3009 r = 0;
3010 switch (chip->chip_id) {
3011 case KVM_IRQCHIP_PIC_MASTER:
3012 spin_lock(&pic_irqchip(kvm)->lock);
3013 memcpy(&pic_irqchip(kvm)->pics[0],
3014 &chip->chip.pic,
3015 sizeof(struct kvm_pic_state));
3016 spin_unlock(&pic_irqchip(kvm)->lock);
3017 break;
3018 case KVM_IRQCHIP_PIC_SLAVE:
3019 spin_lock(&pic_irqchip(kvm)->lock);
3020 memcpy(&pic_irqchip(kvm)->pics[1],
3021 &chip->chip.pic,
3022 sizeof(struct kvm_pic_state));
3023 spin_unlock(&pic_irqchip(kvm)->lock);
3024 break;
3025 case KVM_IRQCHIP_IOAPIC:
3026 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3027 break;
3028 default:
3029 r = -EINVAL;
3030 break;
3031 }
3032 kvm_pic_update_irq(pic_irqchip(kvm));
3033 return r;
3034 }
3035
3036 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3037 {
3038 int r = 0;
3039
3040 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3041 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3042 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3043 return r;
3044 }
3045
3046 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3047 {
3048 int r = 0;
3049
3050 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3051 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3052 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3053 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3054 return r;
3055 }
3056
3057 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3058 {
3059 int r = 0;
3060
3061 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3062 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3063 sizeof(ps->channels));
3064 ps->flags = kvm->arch.vpit->pit_state.flags;
3065 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3066 memset(&ps->reserved, 0, sizeof(ps->reserved));
3067 return r;
3068 }
3069
3070 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3071 {
3072 int r = 0, start = 0;
3073 u32 prev_legacy, cur_legacy;
3074 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3075 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3076 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3077 if (!prev_legacy && cur_legacy)
3078 start = 1;
3079 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3080 sizeof(kvm->arch.vpit->pit_state.channels));
3081 kvm->arch.vpit->pit_state.flags = ps->flags;
3082 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3083 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3084 return r;
3085 }
3086
3087 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3088 struct kvm_reinject_control *control)
3089 {
3090 if (!kvm->arch.vpit)
3091 return -ENXIO;
3092 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3093 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
3094 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3095 return 0;
3096 }
3097
3098 /**
3099 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3100 * @kvm: kvm instance
3101 * @log: slot id and address to which we copy the log
3102 *
3103 * We need to keep it in mind that VCPU threads can write to the bitmap
3104 * concurrently. So, to avoid losing data, we keep the following order for
3105 * each bit:
3106 *
3107 * 1. Take a snapshot of the bit and clear it if needed.
3108 * 2. Write protect the corresponding page.
3109 * 3. Flush TLB's if needed.
3110 * 4. Copy the snapshot to the userspace.
3111 *
3112 * Between 2 and 3, the guest may write to the page using the remaining TLB
3113 * entry. This is not a problem because the page will be reported dirty at
3114 * step 4 using the snapshot taken before and step 3 ensures that successive
3115 * writes will be logged for the next call.
3116 */
3117 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3118 {
3119 int r;
3120 struct kvm_memory_slot *memslot;
3121 unsigned long n, i;
3122 unsigned long *dirty_bitmap;
3123 unsigned long *dirty_bitmap_buffer;
3124 bool is_dirty = false;
3125
3126 mutex_lock(&kvm->slots_lock);
3127
3128 r = -EINVAL;
3129 if (log->slot >= KVM_MEMORY_SLOTS)
3130 goto out;
3131
3132 memslot = id_to_memslot(kvm->memslots, log->slot);
3133
3134 dirty_bitmap = memslot->dirty_bitmap;
3135 r = -ENOENT;
3136 if (!dirty_bitmap)
3137 goto out;
3138
3139 n = kvm_dirty_bitmap_bytes(memslot);
3140
3141 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3142 memset(dirty_bitmap_buffer, 0, n);
3143
3144 spin_lock(&kvm->mmu_lock);
3145
3146 for (i = 0; i < n / sizeof(long); i++) {
3147 unsigned long mask;
3148 gfn_t offset;
3149
3150 if (!dirty_bitmap[i])
3151 continue;
3152
3153 is_dirty = true;
3154
3155 mask = xchg(&dirty_bitmap[i], 0);
3156 dirty_bitmap_buffer[i] = mask;
3157
3158 offset = i * BITS_PER_LONG;
3159 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3160 }
3161 if (is_dirty)
3162 kvm_flush_remote_tlbs(kvm);
3163
3164 spin_unlock(&kvm->mmu_lock);
3165
3166 r = -EFAULT;
3167 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3168 goto out;
3169
3170 r = 0;
3171 out:
3172 mutex_unlock(&kvm->slots_lock);
3173 return r;
3174 }
3175
3176 long kvm_arch_vm_ioctl(struct file *filp,
3177 unsigned int ioctl, unsigned long arg)
3178 {
3179 struct kvm *kvm = filp->private_data;
3180 void __user *argp = (void __user *)arg;
3181 int r = -ENOTTY;
3182 /*
3183 * This union makes it completely explicit to gcc-3.x
3184 * that these two variables' stack usage should be
3185 * combined, not added together.
3186 */
3187 union {
3188 struct kvm_pit_state ps;
3189 struct kvm_pit_state2 ps2;
3190 struct kvm_pit_config pit_config;
3191 } u;
3192
3193 switch (ioctl) {
3194 case KVM_SET_TSS_ADDR:
3195 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3196 if (r < 0)
3197 goto out;
3198 break;
3199 case KVM_SET_IDENTITY_MAP_ADDR: {
3200 u64 ident_addr;
3201
3202 r = -EFAULT;
3203 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3204 goto out;
3205 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3206 if (r < 0)
3207 goto out;
3208 break;
3209 }
3210 case KVM_SET_NR_MMU_PAGES:
3211 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3212 if (r)
3213 goto out;
3214 break;
3215 case KVM_GET_NR_MMU_PAGES:
3216 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3217 break;
3218 case KVM_CREATE_IRQCHIP: {
3219 struct kvm_pic *vpic;
3220
3221 mutex_lock(&kvm->lock);
3222 r = -EEXIST;
3223 if (kvm->arch.vpic)
3224 goto create_irqchip_unlock;
3225 r = -EINVAL;
3226 if (atomic_read(&kvm->online_vcpus))
3227 goto create_irqchip_unlock;
3228 r = -ENOMEM;
3229 vpic = kvm_create_pic(kvm);
3230 if (vpic) {
3231 r = kvm_ioapic_init(kvm);
3232 if (r) {
3233 mutex_lock(&kvm->slots_lock);
3234 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3235 &vpic->dev_master);
3236 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3237 &vpic->dev_slave);
3238 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3239 &vpic->dev_eclr);
3240 mutex_unlock(&kvm->slots_lock);
3241 kfree(vpic);
3242 goto create_irqchip_unlock;
3243 }
3244 } else
3245 goto create_irqchip_unlock;
3246 smp_wmb();
3247 kvm->arch.vpic = vpic;
3248 smp_wmb();
3249 r = kvm_setup_default_irq_routing(kvm);
3250 if (r) {
3251 mutex_lock(&kvm->slots_lock);
3252 mutex_lock(&kvm->irq_lock);
3253 kvm_ioapic_destroy(kvm);
3254 kvm_destroy_pic(kvm);
3255 mutex_unlock(&kvm->irq_lock);
3256 mutex_unlock(&kvm->slots_lock);
3257 }
3258 create_irqchip_unlock:
3259 mutex_unlock(&kvm->lock);
3260 break;
3261 }
3262 case KVM_CREATE_PIT:
3263 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3264 goto create_pit;
3265 case KVM_CREATE_PIT2:
3266 r = -EFAULT;
3267 if (copy_from_user(&u.pit_config, argp,
3268 sizeof(struct kvm_pit_config)))
3269 goto out;
3270 create_pit:
3271 mutex_lock(&kvm->slots_lock);
3272 r = -EEXIST;
3273 if (kvm->arch.vpit)
3274 goto create_pit_unlock;
3275 r = -ENOMEM;
3276 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3277 if (kvm->arch.vpit)
3278 r = 0;
3279 create_pit_unlock:
3280 mutex_unlock(&kvm->slots_lock);
3281 break;
3282 case KVM_IRQ_LINE_STATUS:
3283 case KVM_IRQ_LINE: {
3284 struct kvm_irq_level irq_event;
3285
3286 r = -EFAULT;
3287 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3288 goto out;
3289 r = -ENXIO;
3290 if (irqchip_in_kernel(kvm)) {
3291 __s32 status;
3292 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3293 irq_event.irq, irq_event.level);
3294 if (ioctl == KVM_IRQ_LINE_STATUS) {
3295 r = -EFAULT;
3296 irq_event.status = status;
3297 if (copy_to_user(argp, &irq_event,
3298 sizeof irq_event))
3299 goto out;
3300 }
3301 r = 0;
3302 }
3303 break;
3304 }
3305 case KVM_GET_IRQCHIP: {
3306 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3307 struct kvm_irqchip *chip;
3308
3309 chip = memdup_user(argp, sizeof(*chip));
3310 if (IS_ERR(chip)) {
3311 r = PTR_ERR(chip);
3312 goto out;
3313 }
3314
3315 r = -ENXIO;
3316 if (!irqchip_in_kernel(kvm))
3317 goto get_irqchip_out;
3318 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3319 if (r)
3320 goto get_irqchip_out;
3321 r = -EFAULT;
3322 if (copy_to_user(argp, chip, sizeof *chip))
3323 goto get_irqchip_out;
3324 r = 0;
3325 get_irqchip_out:
3326 kfree(chip);
3327 if (r)
3328 goto out;
3329 break;
3330 }
3331 case KVM_SET_IRQCHIP: {
3332 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3333 struct kvm_irqchip *chip;
3334
3335 chip = memdup_user(argp, sizeof(*chip));
3336 if (IS_ERR(chip)) {
3337 r = PTR_ERR(chip);
3338 goto out;
3339 }
3340
3341 r = -ENXIO;
3342 if (!irqchip_in_kernel(kvm))
3343 goto set_irqchip_out;
3344 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3345 if (r)
3346 goto set_irqchip_out;
3347 r = 0;
3348 set_irqchip_out:
3349 kfree(chip);
3350 if (r)
3351 goto out;
3352 break;
3353 }
3354 case KVM_GET_PIT: {
3355 r = -EFAULT;
3356 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3357 goto out;
3358 r = -ENXIO;
3359 if (!kvm->arch.vpit)
3360 goto out;
3361 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3362 if (r)
3363 goto out;
3364 r = -EFAULT;
3365 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3366 goto out;
3367 r = 0;
3368 break;
3369 }
3370 case KVM_SET_PIT: {
3371 r = -EFAULT;
3372 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3373 goto out;
3374 r = -ENXIO;
3375 if (!kvm->arch.vpit)
3376 goto out;
3377 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3378 if (r)
3379 goto out;
3380 r = 0;
3381 break;
3382 }
3383 case KVM_GET_PIT2: {
3384 r = -ENXIO;
3385 if (!kvm->arch.vpit)
3386 goto out;
3387 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3388 if (r)
3389 goto out;
3390 r = -EFAULT;
3391 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3392 goto out;
3393 r = 0;
3394 break;
3395 }
3396 case KVM_SET_PIT2: {
3397 r = -EFAULT;
3398 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3399 goto out;
3400 r = -ENXIO;
3401 if (!kvm->arch.vpit)
3402 goto out;
3403 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3404 if (r)
3405 goto out;
3406 r = 0;
3407 break;
3408 }
3409 case KVM_REINJECT_CONTROL: {
3410 struct kvm_reinject_control control;
3411 r = -EFAULT;
3412 if (copy_from_user(&control, argp, sizeof(control)))
3413 goto out;
3414 r = kvm_vm_ioctl_reinject(kvm, &control);
3415 if (r)
3416 goto out;
3417 r = 0;
3418 break;
3419 }
3420 case KVM_XEN_HVM_CONFIG: {
3421 r = -EFAULT;
3422 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3423 sizeof(struct kvm_xen_hvm_config)))
3424 goto out;
3425 r = -EINVAL;
3426 if (kvm->arch.xen_hvm_config.flags)
3427 goto out;
3428 r = 0;
3429 break;
3430 }
3431 case KVM_SET_CLOCK: {
3432 struct kvm_clock_data user_ns;
3433 u64 now_ns;
3434 s64 delta;
3435
3436 r = -EFAULT;
3437 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3438 goto out;
3439
3440 r = -EINVAL;
3441 if (user_ns.flags)
3442 goto out;
3443
3444 r = 0;
3445 local_irq_disable();
3446 now_ns = get_kernel_ns();
3447 delta = user_ns.clock - now_ns;
3448 local_irq_enable();
3449 kvm->arch.kvmclock_offset = delta;
3450 break;
3451 }
3452 case KVM_GET_CLOCK: {
3453 struct kvm_clock_data user_ns;
3454 u64 now_ns;
3455
3456 local_irq_disable();
3457 now_ns = get_kernel_ns();
3458 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3459 local_irq_enable();
3460 user_ns.flags = 0;
3461 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3462
3463 r = -EFAULT;
3464 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3465 goto out;
3466 r = 0;
3467 break;
3468 }
3469
3470 default:
3471 ;
3472 }
3473 out:
3474 return r;
3475 }
3476
3477 static void kvm_init_msr_list(void)
3478 {
3479 u32 dummy[2];
3480 unsigned i, j;
3481
3482 /* skip the first msrs in the list. KVM-specific */
3483 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3484 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3485 continue;
3486 if (j < i)
3487 msrs_to_save[j] = msrs_to_save[i];
3488 j++;
3489 }
3490 num_msrs_to_save = j;
3491 }
3492
3493 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3494 const void *v)
3495 {
3496 int handled = 0;
3497 int n;
3498
3499 do {
3500 n = min(len, 8);
3501 if (!(vcpu->arch.apic &&
3502 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3503 && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3504 break;
3505 handled += n;
3506 addr += n;
3507 len -= n;
3508 v += n;
3509 } while (len);
3510
3511 return handled;
3512 }
3513
3514 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3515 {
3516 int handled = 0;
3517 int n;
3518
3519 do {
3520 n = min(len, 8);
3521 if (!(vcpu->arch.apic &&
3522 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3523 && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3524 break;
3525 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3526 handled += n;
3527 addr += n;
3528 len -= n;
3529 v += n;
3530 } while (len);
3531
3532 return handled;
3533 }
3534
3535 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3536 struct kvm_segment *var, int seg)
3537 {
3538 kvm_x86_ops->set_segment(vcpu, var, seg);
3539 }
3540
3541 void kvm_get_segment(struct kvm_vcpu *vcpu,
3542 struct kvm_segment *var, int seg)
3543 {
3544 kvm_x86_ops->get_segment(vcpu, var, seg);
3545 }
3546
3547 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3548 {
3549 gpa_t t_gpa;
3550 struct x86_exception exception;
3551
3552 BUG_ON(!mmu_is_nested(vcpu));
3553
3554 /* NPT walks are always user-walks */
3555 access |= PFERR_USER_MASK;
3556 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3557
3558 return t_gpa;
3559 }
3560
3561 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3562 struct x86_exception *exception)
3563 {
3564 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3565 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3566 }
3567
3568 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3569 struct x86_exception *exception)
3570 {
3571 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3572 access |= PFERR_FETCH_MASK;
3573 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3574 }
3575
3576 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3577 struct x86_exception *exception)
3578 {
3579 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3580 access |= PFERR_WRITE_MASK;
3581 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3582 }
3583
3584 /* uses this to access any guest's mapped memory without checking CPL */
3585 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3586 struct x86_exception *exception)
3587 {
3588 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3589 }
3590
3591 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3592 struct kvm_vcpu *vcpu, u32 access,
3593 struct x86_exception *exception)
3594 {
3595 void *data = val;
3596 int r = X86EMUL_CONTINUE;
3597
3598 while (bytes) {
3599 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3600 exception);
3601 unsigned offset = addr & (PAGE_SIZE-1);
3602 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3603 int ret;
3604
3605 if (gpa == UNMAPPED_GVA)
3606 return X86EMUL_PROPAGATE_FAULT;
3607 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3608 if (ret < 0) {
3609 r = X86EMUL_IO_NEEDED;
3610 goto out;
3611 }
3612
3613 bytes -= toread;
3614 data += toread;
3615 addr += toread;
3616 }
3617 out:
3618 return r;
3619 }
3620
3621 /* used for instruction fetching */
3622 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3623 gva_t addr, void *val, unsigned int bytes,
3624 struct x86_exception *exception)
3625 {
3626 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3627 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3628
3629 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3630 access | PFERR_FETCH_MASK,
3631 exception);
3632 }
3633
3634 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3635 gva_t addr, void *val, unsigned int bytes,
3636 struct x86_exception *exception)
3637 {
3638 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3639 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3640
3641 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3642 exception);
3643 }
3644 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
3645
3646 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3647 gva_t addr, void *val, unsigned int bytes,
3648 struct x86_exception *exception)
3649 {
3650 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3651 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3652 }
3653
3654 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3655 gva_t addr, void *val,
3656 unsigned int bytes,
3657 struct x86_exception *exception)
3658 {
3659 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3660 void *data = val;
3661 int r = X86EMUL_CONTINUE;
3662
3663 while (bytes) {
3664 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3665 PFERR_WRITE_MASK,
3666 exception);
3667 unsigned offset = addr & (PAGE_SIZE-1);
3668 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3669 int ret;
3670
3671 if (gpa == UNMAPPED_GVA)
3672 return X86EMUL_PROPAGATE_FAULT;
3673 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3674 if (ret < 0) {
3675 r = X86EMUL_IO_NEEDED;
3676 goto out;
3677 }
3678
3679 bytes -= towrite;
3680 data += towrite;
3681 addr += towrite;
3682 }
3683 out:
3684 return r;
3685 }
3686 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
3687
3688 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
3689 gpa_t *gpa, struct x86_exception *exception,
3690 bool write)
3691 {
3692 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3693
3694 if (vcpu_match_mmio_gva(vcpu, gva) &&
3695 check_write_user_access(vcpu, write, access,
3696 vcpu->arch.access)) {
3697 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
3698 (gva & (PAGE_SIZE - 1));
3699 trace_vcpu_match_mmio(gva, *gpa, write, false);
3700 return 1;
3701 }
3702
3703 if (write)
3704 access |= PFERR_WRITE_MASK;
3705
3706 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3707
3708 if (*gpa == UNMAPPED_GVA)
3709 return -1;
3710
3711 /* For APIC access vmexit */
3712 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3713 return 1;
3714
3715 if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
3716 trace_vcpu_match_mmio(gva, *gpa, write, true);
3717 return 1;
3718 }
3719
3720 return 0;
3721 }
3722
3723 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3724 const void *val, int bytes)
3725 {
3726 int ret;
3727
3728 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3729 if (ret < 0)
3730 return 0;
3731 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
3732 return 1;
3733 }
3734
3735 struct read_write_emulator_ops {
3736 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
3737 int bytes);
3738 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
3739 void *val, int bytes);
3740 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
3741 int bytes, void *val);
3742 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
3743 void *val, int bytes);
3744 bool write;
3745 };
3746
3747 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
3748 {
3749 if (vcpu->mmio_read_completed) {
3750 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3751 vcpu->mmio_fragments[0].gpa, *(u64 *)val);
3752 vcpu->mmio_read_completed = 0;
3753 return 1;
3754 }
3755
3756 return 0;
3757 }
3758
3759 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
3760 void *val, int bytes)
3761 {
3762 return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
3763 }
3764
3765 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
3766 void *val, int bytes)
3767 {
3768 return emulator_write_phys(vcpu, gpa, val, bytes);
3769 }
3770
3771 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
3772 {
3773 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3774 return vcpu_mmio_write(vcpu, gpa, bytes, val);
3775 }
3776
3777 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
3778 void *val, int bytes)
3779 {
3780 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3781 return X86EMUL_IO_NEEDED;
3782 }
3783
3784 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
3785 void *val, int bytes)
3786 {
3787 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
3788
3789 memcpy(vcpu->run->mmio.data, frag->data, frag->len);
3790 return X86EMUL_CONTINUE;
3791 }
3792
3793 static struct read_write_emulator_ops read_emultor = {
3794 .read_write_prepare = read_prepare,
3795 .read_write_emulate = read_emulate,
3796 .read_write_mmio = vcpu_mmio_read,
3797 .read_write_exit_mmio = read_exit_mmio,
3798 };
3799
3800 static struct read_write_emulator_ops write_emultor = {
3801 .read_write_emulate = write_emulate,
3802 .read_write_mmio = write_mmio,
3803 .read_write_exit_mmio = write_exit_mmio,
3804 .write = true,
3805 };
3806
3807 static int emulator_read_write_onepage(unsigned long addr, void *val,
3808 unsigned int bytes,
3809 struct x86_exception *exception,
3810 struct kvm_vcpu *vcpu,
3811 struct read_write_emulator_ops *ops)
3812 {
3813 gpa_t gpa;
3814 int handled, ret;
3815 bool write = ops->write;
3816 struct kvm_mmio_fragment *frag;
3817
3818 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
3819
3820 if (ret < 0)
3821 return X86EMUL_PROPAGATE_FAULT;
3822
3823 /* For APIC access vmexit */
3824 if (ret)
3825 goto mmio;
3826
3827 if (ops->read_write_emulate(vcpu, gpa, val, bytes))
3828 return X86EMUL_CONTINUE;
3829
3830 mmio:
3831 /*
3832 * Is this MMIO handled locally?
3833 */
3834 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
3835 if (handled == bytes)
3836 return X86EMUL_CONTINUE;
3837
3838 gpa += handled;
3839 bytes -= handled;
3840 val += handled;
3841
3842 while (bytes) {
3843 unsigned now = min(bytes, 8U);
3844
3845 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
3846 frag->gpa = gpa;
3847 frag->data = val;
3848 frag->len = now;
3849
3850 gpa += now;
3851 val += now;
3852 bytes -= now;
3853 }
3854 return X86EMUL_CONTINUE;
3855 }
3856
3857 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
3858 void *val, unsigned int bytes,
3859 struct x86_exception *exception,
3860 struct read_write_emulator_ops *ops)
3861 {
3862 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3863 gpa_t gpa;
3864 int rc;
3865
3866 if (ops->read_write_prepare &&
3867 ops->read_write_prepare(vcpu, val, bytes))
3868 return X86EMUL_CONTINUE;
3869
3870 vcpu->mmio_nr_fragments = 0;
3871
3872 /* Crossing a page boundary? */
3873 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3874 int now;
3875
3876 now = -addr & ~PAGE_MASK;
3877 rc = emulator_read_write_onepage(addr, val, now, exception,
3878 vcpu, ops);
3879
3880 if (rc != X86EMUL_CONTINUE)
3881 return rc;
3882 addr += now;
3883 val += now;
3884 bytes -= now;
3885 }
3886
3887 rc = emulator_read_write_onepage(addr, val, bytes, exception,
3888 vcpu, ops);
3889 if (rc != X86EMUL_CONTINUE)
3890 return rc;
3891
3892 if (!vcpu->mmio_nr_fragments)
3893 return rc;
3894
3895 gpa = vcpu->mmio_fragments[0].gpa;
3896
3897 vcpu->mmio_needed = 1;
3898 vcpu->mmio_cur_fragment = 0;
3899
3900 vcpu->run->mmio.len = vcpu->mmio_fragments[0].len;
3901 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
3902 vcpu->run->exit_reason = KVM_EXIT_MMIO;
3903 vcpu->run->mmio.phys_addr = gpa;
3904
3905 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
3906 }
3907
3908 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
3909 unsigned long addr,
3910 void *val,
3911 unsigned int bytes,
3912 struct x86_exception *exception)
3913 {
3914 return emulator_read_write(ctxt, addr, val, bytes,
3915 exception, &read_emultor);
3916 }
3917
3918 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
3919 unsigned long addr,
3920 const void *val,
3921 unsigned int bytes,
3922 struct x86_exception *exception)
3923 {
3924 return emulator_read_write(ctxt, addr, (void *)val, bytes,
3925 exception, &write_emultor);
3926 }
3927
3928 #define CMPXCHG_TYPE(t, ptr, old, new) \
3929 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3930
3931 #ifdef CONFIG_X86_64
3932 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3933 #else
3934 # define CMPXCHG64(ptr, old, new) \
3935 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3936 #endif
3937
3938 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
3939 unsigned long addr,
3940 const void *old,
3941 const void *new,
3942 unsigned int bytes,
3943 struct x86_exception *exception)
3944 {
3945 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3946 gpa_t gpa;
3947 struct page *page;
3948 char *kaddr;
3949 bool exchanged;
3950
3951 /* guests cmpxchg8b have to be emulated atomically */
3952 if (bytes > 8 || (bytes & (bytes - 1)))
3953 goto emul_write;
3954
3955 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3956
3957 if (gpa == UNMAPPED_GVA ||
3958 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3959 goto emul_write;
3960
3961 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3962 goto emul_write;
3963
3964 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3965 if (is_error_page(page)) {
3966 kvm_release_page_clean(page);
3967 goto emul_write;
3968 }
3969
3970 kaddr = kmap_atomic(page);
3971 kaddr += offset_in_page(gpa);
3972 switch (bytes) {
3973 case 1:
3974 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3975 break;
3976 case 2:
3977 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3978 break;
3979 case 4:
3980 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3981 break;
3982 case 8:
3983 exchanged = CMPXCHG64(kaddr, old, new);
3984 break;
3985 default:
3986 BUG();
3987 }
3988 kunmap_atomic(kaddr);
3989 kvm_release_page_dirty(page);
3990
3991 if (!exchanged)
3992 return X86EMUL_CMPXCHG_FAILED;
3993
3994 kvm_mmu_pte_write(vcpu, gpa, new, bytes);
3995
3996 return X86EMUL_CONTINUE;
3997
3998 emul_write:
3999 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4000
4001 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4002 }
4003
4004 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4005 {
4006 /* TODO: String I/O for in kernel device */
4007 int r;
4008
4009 if (vcpu->arch.pio.in)
4010 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4011 vcpu->arch.pio.size, pd);
4012 else
4013 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4014 vcpu->arch.pio.port, vcpu->arch.pio.size,
4015 pd);
4016 return r;
4017 }
4018
4019 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4020 unsigned short port, void *val,
4021 unsigned int count, bool in)
4022 {
4023 trace_kvm_pio(!in, port, size, count);
4024
4025 vcpu->arch.pio.port = port;
4026 vcpu->arch.pio.in = in;
4027 vcpu->arch.pio.count = count;
4028 vcpu->arch.pio.size = size;
4029
4030 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4031 vcpu->arch.pio.count = 0;
4032 return 1;
4033 }
4034
4035 vcpu->run->exit_reason = KVM_EXIT_IO;
4036 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4037 vcpu->run->io.size = size;
4038 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4039 vcpu->run->io.count = count;
4040 vcpu->run->io.port = port;
4041
4042 return 0;
4043 }
4044
4045 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4046 int size, unsigned short port, void *val,
4047 unsigned int count)
4048 {
4049 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4050 int ret;
4051
4052 if (vcpu->arch.pio.count)
4053 goto data_avail;
4054
4055 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4056 if (ret) {
4057 data_avail:
4058 memcpy(val, vcpu->arch.pio_data, size * count);
4059 vcpu->arch.pio.count = 0;
4060 return 1;
4061 }
4062
4063 return 0;
4064 }
4065
4066 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4067 int size, unsigned short port,
4068 const void *val, unsigned int count)
4069 {
4070 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4071
4072 memcpy(vcpu->arch.pio_data, val, size * count);
4073 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4074 }
4075
4076 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4077 {
4078 return kvm_x86_ops->get_segment_base(vcpu, seg);
4079 }
4080
4081 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4082 {
4083 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4084 }
4085
4086 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4087 {
4088 if (!need_emulate_wbinvd(vcpu))
4089 return X86EMUL_CONTINUE;
4090
4091 if (kvm_x86_ops->has_wbinvd_exit()) {
4092 int cpu = get_cpu();
4093
4094 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4095 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4096 wbinvd_ipi, NULL, 1);
4097 put_cpu();
4098 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4099 } else
4100 wbinvd();
4101 return X86EMUL_CONTINUE;
4102 }
4103 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4104
4105 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4106 {
4107 kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4108 }
4109
4110 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4111 {
4112 return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4113 }
4114
4115 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4116 {
4117
4118 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4119 }
4120
4121 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4122 {
4123 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4124 }
4125
4126 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4127 {
4128 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4129 unsigned long value;
4130
4131 switch (cr) {
4132 case 0:
4133 value = kvm_read_cr0(vcpu);
4134 break;
4135 case 2:
4136 value = vcpu->arch.cr2;
4137 break;
4138 case 3:
4139 value = kvm_read_cr3(vcpu);
4140 break;
4141 case 4:
4142 value = kvm_read_cr4(vcpu);
4143 break;
4144 case 8:
4145 value = kvm_get_cr8(vcpu);
4146 break;
4147 default:
4148 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4149 return 0;
4150 }
4151
4152 return value;
4153 }
4154
4155 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4156 {
4157 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4158 int res = 0;
4159
4160 switch (cr) {
4161 case 0:
4162 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4163 break;
4164 case 2:
4165 vcpu->arch.cr2 = val;
4166 break;
4167 case 3:
4168 res = kvm_set_cr3(vcpu, val);
4169 break;
4170 case 4:
4171 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4172 break;
4173 case 8:
4174 res = kvm_set_cr8(vcpu, val);
4175 break;
4176 default:
4177 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4178 res = -1;
4179 }
4180
4181 return res;
4182 }
4183
4184 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4185 {
4186 kvm_set_rflags(emul_to_vcpu(ctxt), val);
4187 }
4188
4189 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4190 {
4191 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4192 }
4193
4194 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4195 {
4196 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4197 }
4198
4199 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4200 {
4201 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4202 }
4203
4204 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4205 {
4206 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4207 }
4208
4209 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4210 {
4211 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4212 }
4213
4214 static unsigned long emulator_get_cached_segment_base(
4215 struct x86_emulate_ctxt *ctxt, int seg)
4216 {
4217 return get_segment_base(emul_to_vcpu(ctxt), seg);
4218 }
4219
4220 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4221 struct desc_struct *desc, u32 *base3,
4222 int seg)
4223 {
4224 struct kvm_segment var;
4225
4226 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4227 *selector = var.selector;
4228
4229 if (var.unusable)
4230 return false;
4231
4232 if (var.g)
4233 var.limit >>= 12;
4234 set_desc_limit(desc, var.limit);
4235 set_desc_base(desc, (unsigned long)var.base);
4236 #ifdef CONFIG_X86_64
4237 if (base3)
4238 *base3 = var.base >> 32;
4239 #endif
4240 desc->type = var.type;
4241 desc->s = var.s;
4242 desc->dpl = var.dpl;
4243 desc->p = var.present;
4244 desc->avl = var.avl;
4245 desc->l = var.l;
4246 desc->d = var.db;
4247 desc->g = var.g;
4248
4249 return true;
4250 }
4251
4252 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4253 struct desc_struct *desc, u32 base3,
4254 int seg)
4255 {
4256 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4257 struct kvm_segment var;
4258
4259 var.selector = selector;
4260 var.base = get_desc_base(desc);
4261 #ifdef CONFIG_X86_64
4262 var.base |= ((u64)base3) << 32;
4263 #endif
4264 var.limit = get_desc_limit(desc);
4265 if (desc->g)
4266 var.limit = (var.limit << 12) | 0xfff;
4267 var.type = desc->type;
4268 var.present = desc->p;
4269 var.dpl = desc->dpl;
4270 var.db = desc->d;
4271 var.s = desc->s;
4272 var.l = desc->l;
4273 var.g = desc->g;
4274 var.avl = desc->avl;
4275 var.present = desc->p;
4276 var.unusable = !var.present;
4277 var.padding = 0;
4278
4279 kvm_set_segment(vcpu, &var, seg);
4280 return;
4281 }
4282
4283 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4284 u32 msr_index, u64 *pdata)
4285 {
4286 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4287 }
4288
4289 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4290 u32 msr_index, u64 data)
4291 {
4292 return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
4293 }
4294
4295 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4296 u32 pmc, u64 *pdata)
4297 {
4298 return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4299 }
4300
4301 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4302 {
4303 emul_to_vcpu(ctxt)->arch.halt_request = 1;
4304 }
4305
4306 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4307 {
4308 preempt_disable();
4309 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4310 /*
4311 * CR0.TS may reference the host fpu state, not the guest fpu state,
4312 * so it may be clear at this point.
4313 */
4314 clts();
4315 }
4316
4317 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4318 {
4319 preempt_enable();
4320 }
4321
4322 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4323 struct x86_instruction_info *info,
4324 enum x86_intercept_stage stage)
4325 {
4326 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4327 }
4328
4329 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4330 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4331 {
4332 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4333 }
4334
4335 static struct x86_emulate_ops emulate_ops = {
4336 .read_std = kvm_read_guest_virt_system,
4337 .write_std = kvm_write_guest_virt_system,
4338 .fetch = kvm_fetch_guest_virt,
4339 .read_emulated = emulator_read_emulated,
4340 .write_emulated = emulator_write_emulated,
4341 .cmpxchg_emulated = emulator_cmpxchg_emulated,
4342 .invlpg = emulator_invlpg,
4343 .pio_in_emulated = emulator_pio_in_emulated,
4344 .pio_out_emulated = emulator_pio_out_emulated,
4345 .get_segment = emulator_get_segment,
4346 .set_segment = emulator_set_segment,
4347 .get_cached_segment_base = emulator_get_cached_segment_base,
4348 .get_gdt = emulator_get_gdt,
4349 .get_idt = emulator_get_idt,
4350 .set_gdt = emulator_set_gdt,
4351 .set_idt = emulator_set_idt,
4352 .get_cr = emulator_get_cr,
4353 .set_cr = emulator_set_cr,
4354 .set_rflags = emulator_set_rflags,
4355 .cpl = emulator_get_cpl,
4356 .get_dr = emulator_get_dr,
4357 .set_dr = emulator_set_dr,
4358 .set_msr = emulator_set_msr,
4359 .get_msr = emulator_get_msr,
4360 .read_pmc = emulator_read_pmc,
4361 .halt = emulator_halt,
4362 .wbinvd = emulator_wbinvd,
4363 .fix_hypercall = emulator_fix_hypercall,
4364 .get_fpu = emulator_get_fpu,
4365 .put_fpu = emulator_put_fpu,
4366 .intercept = emulator_intercept,
4367 .get_cpuid = emulator_get_cpuid,
4368 };
4369
4370 static void cache_all_regs(struct kvm_vcpu *vcpu)
4371 {
4372 kvm_register_read(vcpu, VCPU_REGS_RAX);
4373 kvm_register_read(vcpu, VCPU_REGS_RSP);
4374 kvm_register_read(vcpu, VCPU_REGS_RIP);
4375 vcpu->arch.regs_dirty = ~0;
4376 }
4377
4378 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4379 {
4380 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4381 /*
4382 * an sti; sti; sequence only disable interrupts for the first
4383 * instruction. So, if the last instruction, be it emulated or
4384 * not, left the system with the INT_STI flag enabled, it
4385 * means that the last instruction is an sti. We should not
4386 * leave the flag on in this case. The same goes for mov ss
4387 */
4388 if (!(int_shadow & mask))
4389 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4390 }
4391
4392 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4393 {
4394 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4395 if (ctxt->exception.vector == PF_VECTOR)
4396 kvm_propagate_fault(vcpu, &ctxt->exception);
4397 else if (ctxt->exception.error_code_valid)
4398 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4399 ctxt->exception.error_code);
4400 else
4401 kvm_queue_exception(vcpu, ctxt->exception.vector);
4402 }
4403
4404 static void init_decode_cache(struct x86_emulate_ctxt *ctxt,
4405 const unsigned long *regs)
4406 {
4407 memset(&ctxt->twobyte, 0,
4408 (void *)&ctxt->regs - (void *)&ctxt->twobyte);
4409 memcpy(ctxt->regs, regs, sizeof(ctxt->regs));
4410
4411 ctxt->fetch.start = 0;
4412 ctxt->fetch.end = 0;
4413 ctxt->io_read.pos = 0;
4414 ctxt->io_read.end = 0;
4415 ctxt->mem_read.pos = 0;
4416 ctxt->mem_read.end = 0;
4417 }
4418
4419 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4420 {
4421 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4422 int cs_db, cs_l;
4423
4424 /*
4425 * TODO: fix emulate.c to use guest_read/write_register
4426 * instead of direct ->regs accesses, can save hundred cycles
4427 * on Intel for instructions that don't read/change RSP, for
4428 * for example.
4429 */
4430 cache_all_regs(vcpu);
4431
4432 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4433
4434 ctxt->eflags = kvm_get_rflags(vcpu);
4435 ctxt->eip = kvm_rip_read(vcpu);
4436 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4437 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
4438 cs_l ? X86EMUL_MODE_PROT64 :
4439 cs_db ? X86EMUL_MODE_PROT32 :
4440 X86EMUL_MODE_PROT16;
4441 ctxt->guest_mode = is_guest_mode(vcpu);
4442
4443 init_decode_cache(ctxt, vcpu->arch.regs);
4444 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4445 }
4446
4447 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4448 {
4449 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4450 int ret;
4451
4452 init_emulate_ctxt(vcpu);
4453
4454 ctxt->op_bytes = 2;
4455 ctxt->ad_bytes = 2;
4456 ctxt->_eip = ctxt->eip + inc_eip;
4457 ret = emulate_int_real(ctxt, irq);
4458
4459 if (ret != X86EMUL_CONTINUE)
4460 return EMULATE_FAIL;
4461
4462 ctxt->eip = ctxt->_eip;
4463 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
4464 kvm_rip_write(vcpu, ctxt->eip);
4465 kvm_set_rflags(vcpu, ctxt->eflags);
4466
4467 if (irq == NMI_VECTOR)
4468 vcpu->arch.nmi_pending = 0;
4469 else
4470 vcpu->arch.interrupt.pending = false;
4471
4472 return EMULATE_DONE;
4473 }
4474 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4475
4476 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4477 {
4478 int r = EMULATE_DONE;
4479
4480 ++vcpu->stat.insn_emulation_fail;
4481 trace_kvm_emulate_insn_failed(vcpu);
4482 if (!is_guest_mode(vcpu)) {
4483 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4484 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4485 vcpu->run->internal.ndata = 0;
4486 r = EMULATE_FAIL;
4487 }
4488 kvm_queue_exception(vcpu, UD_VECTOR);
4489
4490 return r;
4491 }
4492
4493 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4494 {
4495 gpa_t gpa;
4496
4497 if (tdp_enabled)
4498 return false;
4499
4500 /*
4501 * if emulation was due to access to shadowed page table
4502 * and it failed try to unshadow page and re-entetr the
4503 * guest to let CPU execute the instruction.
4504 */
4505 if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4506 return true;
4507
4508 gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4509
4510 if (gpa == UNMAPPED_GVA)
4511 return true; /* let cpu generate fault */
4512
4513 if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4514 return true;
4515
4516 return false;
4517 }
4518
4519 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4520 unsigned long cr2, int emulation_type)
4521 {
4522 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4523 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4524
4525 last_retry_eip = vcpu->arch.last_retry_eip;
4526 last_retry_addr = vcpu->arch.last_retry_addr;
4527
4528 /*
4529 * If the emulation is caused by #PF and it is non-page_table
4530 * writing instruction, it means the VM-EXIT is caused by shadow
4531 * page protected, we can zap the shadow page and retry this
4532 * instruction directly.
4533 *
4534 * Note: if the guest uses a non-page-table modifying instruction
4535 * on the PDE that points to the instruction, then we will unmap
4536 * the instruction and go to an infinite loop. So, we cache the
4537 * last retried eip and the last fault address, if we meet the eip
4538 * and the address again, we can break out of the potential infinite
4539 * loop.
4540 */
4541 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4542
4543 if (!(emulation_type & EMULTYPE_RETRY))
4544 return false;
4545
4546 if (x86_page_table_writing_insn(ctxt))
4547 return false;
4548
4549 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4550 return false;
4551
4552 vcpu->arch.last_retry_eip = ctxt->eip;
4553 vcpu->arch.last_retry_addr = cr2;
4554
4555 if (!vcpu->arch.mmu.direct_map)
4556 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4557
4558 kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4559
4560 return true;
4561 }
4562
4563 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4564 unsigned long cr2,
4565 int emulation_type,
4566 void *insn,
4567 int insn_len)
4568 {
4569 int r;
4570 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4571 bool writeback = true;
4572
4573 kvm_clear_exception_queue(vcpu);
4574
4575 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4576 init_emulate_ctxt(vcpu);
4577 ctxt->interruptibility = 0;
4578 ctxt->have_exception = false;
4579 ctxt->perm_ok = false;
4580
4581 ctxt->only_vendor_specific_insn
4582 = emulation_type & EMULTYPE_TRAP_UD;
4583
4584 r = x86_decode_insn(ctxt, insn, insn_len);
4585
4586 trace_kvm_emulate_insn_start(vcpu);
4587 ++vcpu->stat.insn_emulation;
4588 if (r != EMULATION_OK) {
4589 if (emulation_type & EMULTYPE_TRAP_UD)
4590 return EMULATE_FAIL;
4591 if (reexecute_instruction(vcpu, cr2))
4592 return EMULATE_DONE;
4593 if (emulation_type & EMULTYPE_SKIP)
4594 return EMULATE_FAIL;
4595 return handle_emulation_failure(vcpu);
4596 }
4597 }
4598
4599 if (emulation_type & EMULTYPE_SKIP) {
4600 kvm_rip_write(vcpu, ctxt->_eip);
4601 return EMULATE_DONE;
4602 }
4603
4604 if (retry_instruction(ctxt, cr2, emulation_type))
4605 return EMULATE_DONE;
4606
4607 /* this is needed for vmware backdoor interface to work since it
4608 changes registers values during IO operation */
4609 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4610 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4611 memcpy(ctxt->regs, vcpu->arch.regs, sizeof ctxt->regs);
4612 }
4613
4614 restart:
4615 r = x86_emulate_insn(ctxt);
4616
4617 if (r == EMULATION_INTERCEPTED)
4618 return EMULATE_DONE;
4619
4620 if (r == EMULATION_FAILED) {
4621 if (reexecute_instruction(vcpu, cr2))
4622 return EMULATE_DONE;
4623
4624 return handle_emulation_failure(vcpu);
4625 }
4626
4627 if (ctxt->have_exception) {
4628 inject_emulated_exception(vcpu);
4629 r = EMULATE_DONE;
4630 } else if (vcpu->arch.pio.count) {
4631 if (!vcpu->arch.pio.in)
4632 vcpu->arch.pio.count = 0;
4633 else
4634 writeback = false;
4635 r = EMULATE_DO_MMIO;
4636 } else if (vcpu->mmio_needed) {
4637 if (!vcpu->mmio_is_write)
4638 writeback = false;
4639 r = EMULATE_DO_MMIO;
4640 } else if (r == EMULATION_RESTART)
4641 goto restart;
4642 else
4643 r = EMULATE_DONE;
4644
4645 if (writeback) {
4646 toggle_interruptibility(vcpu, ctxt->interruptibility);
4647 kvm_set_rflags(vcpu, ctxt->eflags);
4648 kvm_make_request(KVM_REQ_EVENT, vcpu);
4649 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
4650 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
4651 kvm_rip_write(vcpu, ctxt->eip);
4652 } else
4653 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
4654
4655 return r;
4656 }
4657 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4658
4659 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4660 {
4661 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4662 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
4663 size, port, &val, 1);
4664 /* do not return to emulator after return from userspace */
4665 vcpu->arch.pio.count = 0;
4666 return ret;
4667 }
4668 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4669
4670 static void tsc_bad(void *info)
4671 {
4672 __this_cpu_write(cpu_tsc_khz, 0);
4673 }
4674
4675 static void tsc_khz_changed(void *data)
4676 {
4677 struct cpufreq_freqs *freq = data;
4678 unsigned long khz = 0;
4679
4680 if (data)
4681 khz = freq->new;
4682 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4683 khz = cpufreq_quick_get(raw_smp_processor_id());
4684 if (!khz)
4685 khz = tsc_khz;
4686 __this_cpu_write(cpu_tsc_khz, khz);
4687 }
4688
4689 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4690 void *data)
4691 {
4692 struct cpufreq_freqs *freq = data;
4693 struct kvm *kvm;
4694 struct kvm_vcpu *vcpu;
4695 int i, send_ipi = 0;
4696
4697 /*
4698 * We allow guests to temporarily run on slowing clocks,
4699 * provided we notify them after, or to run on accelerating
4700 * clocks, provided we notify them before. Thus time never
4701 * goes backwards.
4702 *
4703 * However, we have a problem. We can't atomically update
4704 * the frequency of a given CPU from this function; it is
4705 * merely a notifier, which can be called from any CPU.
4706 * Changing the TSC frequency at arbitrary points in time
4707 * requires a recomputation of local variables related to
4708 * the TSC for each VCPU. We must flag these local variables
4709 * to be updated and be sure the update takes place with the
4710 * new frequency before any guests proceed.
4711 *
4712 * Unfortunately, the combination of hotplug CPU and frequency
4713 * change creates an intractable locking scenario; the order
4714 * of when these callouts happen is undefined with respect to
4715 * CPU hotplug, and they can race with each other. As such,
4716 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4717 * undefined; you can actually have a CPU frequency change take
4718 * place in between the computation of X and the setting of the
4719 * variable. To protect against this problem, all updates of
4720 * the per_cpu tsc_khz variable are done in an interrupt
4721 * protected IPI, and all callers wishing to update the value
4722 * must wait for a synchronous IPI to complete (which is trivial
4723 * if the caller is on the CPU already). This establishes the
4724 * necessary total order on variable updates.
4725 *
4726 * Note that because a guest time update may take place
4727 * anytime after the setting of the VCPU's request bit, the
4728 * correct TSC value must be set before the request. However,
4729 * to ensure the update actually makes it to any guest which
4730 * starts running in hardware virtualization between the set
4731 * and the acquisition of the spinlock, we must also ping the
4732 * CPU after setting the request bit.
4733 *
4734 */
4735
4736 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4737 return 0;
4738 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4739 return 0;
4740
4741 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4742
4743 raw_spin_lock(&kvm_lock);
4744 list_for_each_entry(kvm, &vm_list, vm_list) {
4745 kvm_for_each_vcpu(i, vcpu, kvm) {
4746 if (vcpu->cpu != freq->cpu)
4747 continue;
4748 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4749 if (vcpu->cpu != smp_processor_id())
4750 send_ipi = 1;
4751 }
4752 }
4753 raw_spin_unlock(&kvm_lock);
4754
4755 if (freq->old < freq->new && send_ipi) {
4756 /*
4757 * We upscale the frequency. Must make the guest
4758 * doesn't see old kvmclock values while running with
4759 * the new frequency, otherwise we risk the guest sees
4760 * time go backwards.
4761 *
4762 * In case we update the frequency for another cpu
4763 * (which might be in guest context) send an interrupt
4764 * to kick the cpu out of guest context. Next time
4765 * guest context is entered kvmclock will be updated,
4766 * so the guest will not see stale values.
4767 */
4768 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4769 }
4770 return 0;
4771 }
4772
4773 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4774 .notifier_call = kvmclock_cpufreq_notifier
4775 };
4776
4777 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4778 unsigned long action, void *hcpu)
4779 {
4780 unsigned int cpu = (unsigned long)hcpu;
4781
4782 switch (action) {
4783 case CPU_ONLINE:
4784 case CPU_DOWN_FAILED:
4785 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4786 break;
4787 case CPU_DOWN_PREPARE:
4788 smp_call_function_single(cpu, tsc_bad, NULL, 1);
4789 break;
4790 }
4791 return NOTIFY_OK;
4792 }
4793
4794 static struct notifier_block kvmclock_cpu_notifier_block = {
4795 .notifier_call = kvmclock_cpu_notifier,
4796 .priority = -INT_MAX
4797 };
4798
4799 static void kvm_timer_init(void)
4800 {
4801 int cpu;
4802
4803 max_tsc_khz = tsc_khz;
4804 register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4805 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4806 #ifdef CONFIG_CPU_FREQ
4807 struct cpufreq_policy policy;
4808 memset(&policy, 0, sizeof(policy));
4809 cpu = get_cpu();
4810 cpufreq_get_policy(&policy, cpu);
4811 if (policy.cpuinfo.max_freq)
4812 max_tsc_khz = policy.cpuinfo.max_freq;
4813 put_cpu();
4814 #endif
4815 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4816 CPUFREQ_TRANSITION_NOTIFIER);
4817 }
4818 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
4819 for_each_online_cpu(cpu)
4820 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4821 }
4822
4823 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4824
4825 int kvm_is_in_guest(void)
4826 {
4827 return __this_cpu_read(current_vcpu) != NULL;
4828 }
4829
4830 static int kvm_is_user_mode(void)
4831 {
4832 int user_mode = 3;
4833
4834 if (__this_cpu_read(current_vcpu))
4835 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
4836
4837 return user_mode != 0;
4838 }
4839
4840 static unsigned long kvm_get_guest_ip(void)
4841 {
4842 unsigned long ip = 0;
4843
4844 if (__this_cpu_read(current_vcpu))
4845 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
4846
4847 return ip;
4848 }
4849
4850 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4851 .is_in_guest = kvm_is_in_guest,
4852 .is_user_mode = kvm_is_user_mode,
4853 .get_guest_ip = kvm_get_guest_ip,
4854 };
4855
4856 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4857 {
4858 __this_cpu_write(current_vcpu, vcpu);
4859 }
4860 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4861
4862 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4863 {
4864 __this_cpu_write(current_vcpu, NULL);
4865 }
4866 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4867
4868 static void kvm_set_mmio_spte_mask(void)
4869 {
4870 u64 mask;
4871 int maxphyaddr = boot_cpu_data.x86_phys_bits;
4872
4873 /*
4874 * Set the reserved bits and the present bit of an paging-structure
4875 * entry to generate page fault with PFER.RSV = 1.
4876 */
4877 mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
4878 mask |= 1ull;
4879
4880 #ifdef CONFIG_X86_64
4881 /*
4882 * If reserved bit is not supported, clear the present bit to disable
4883 * mmio page fault.
4884 */
4885 if (maxphyaddr == 52)
4886 mask &= ~1ull;
4887 #endif
4888
4889 kvm_mmu_set_mmio_spte_mask(mask);
4890 }
4891
4892 int kvm_arch_init(void *opaque)
4893 {
4894 int r;
4895 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4896
4897 if (kvm_x86_ops) {
4898 printk(KERN_ERR "kvm: already loaded the other module\n");
4899 r = -EEXIST;
4900 goto out;
4901 }
4902
4903 if (!ops->cpu_has_kvm_support()) {
4904 printk(KERN_ERR "kvm: no hardware support\n");
4905 r = -EOPNOTSUPP;
4906 goto out;
4907 }
4908 if (ops->disabled_by_bios()) {
4909 printk(KERN_ERR "kvm: disabled by bios\n");
4910 r = -EOPNOTSUPP;
4911 goto out;
4912 }
4913
4914 r = kvm_mmu_module_init();
4915 if (r)
4916 goto out;
4917
4918 kvm_set_mmio_spte_mask();
4919 kvm_init_msr_list();
4920
4921 kvm_x86_ops = ops;
4922 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4923 PT_DIRTY_MASK, PT64_NX_MASK, 0);
4924
4925 kvm_timer_init();
4926
4927 perf_register_guest_info_callbacks(&kvm_guest_cbs);
4928
4929 if (cpu_has_xsave)
4930 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4931
4932 return 0;
4933
4934 out:
4935 return r;
4936 }
4937
4938 void kvm_arch_exit(void)
4939 {
4940 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4941
4942 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4943 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4944 CPUFREQ_TRANSITION_NOTIFIER);
4945 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4946 kvm_x86_ops = NULL;
4947 kvm_mmu_module_exit();
4948 }
4949
4950 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4951 {
4952 ++vcpu->stat.halt_exits;
4953 if (irqchip_in_kernel(vcpu->kvm)) {
4954 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4955 return 1;
4956 } else {
4957 vcpu->run->exit_reason = KVM_EXIT_HLT;
4958 return 0;
4959 }
4960 }
4961 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4962
4963 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4964 {
4965 u64 param, ingpa, outgpa, ret;
4966 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4967 bool fast, longmode;
4968 int cs_db, cs_l;
4969
4970 /*
4971 * hypercall generates UD from non zero cpl and real mode
4972 * per HYPER-V spec
4973 */
4974 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4975 kvm_queue_exception(vcpu, UD_VECTOR);
4976 return 0;
4977 }
4978
4979 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4980 longmode = is_long_mode(vcpu) && cs_l == 1;
4981
4982 if (!longmode) {
4983 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4984 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4985 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4986 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4987 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4988 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4989 }
4990 #ifdef CONFIG_X86_64
4991 else {
4992 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4993 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4994 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4995 }
4996 #endif
4997
4998 code = param & 0xffff;
4999 fast = (param >> 16) & 0x1;
5000 rep_cnt = (param >> 32) & 0xfff;
5001 rep_idx = (param >> 48) & 0xfff;
5002
5003 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5004
5005 switch (code) {
5006 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5007 kvm_vcpu_on_spin(vcpu);
5008 break;
5009 default:
5010 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5011 break;
5012 }
5013
5014 ret = res | (((u64)rep_done & 0xfff) << 32);
5015 if (longmode) {
5016 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5017 } else {
5018 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5019 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5020 }
5021
5022 return 1;
5023 }
5024
5025 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5026 {
5027 unsigned long nr, a0, a1, a2, a3, ret;
5028 int r = 1;
5029
5030 if (kvm_hv_hypercall_enabled(vcpu->kvm))
5031 return kvm_hv_hypercall(vcpu);
5032
5033 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5034 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5035 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5036 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5037 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5038
5039 trace_kvm_hypercall(nr, a0, a1, a2, a3);
5040
5041 if (!is_long_mode(vcpu)) {
5042 nr &= 0xFFFFFFFF;
5043 a0 &= 0xFFFFFFFF;
5044 a1 &= 0xFFFFFFFF;
5045 a2 &= 0xFFFFFFFF;
5046 a3 &= 0xFFFFFFFF;
5047 }
5048
5049 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5050 ret = -KVM_EPERM;
5051 goto out;
5052 }
5053
5054 switch (nr) {
5055 case KVM_HC_VAPIC_POLL_IRQ:
5056 ret = 0;
5057 break;
5058 default:
5059 ret = -KVM_ENOSYS;
5060 break;
5061 }
5062 out:
5063 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5064 ++vcpu->stat.hypercalls;
5065 return r;
5066 }
5067 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5068
5069 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5070 {
5071 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5072 char instruction[3];
5073 unsigned long rip = kvm_rip_read(vcpu);
5074
5075 /*
5076 * Blow out the MMU to ensure that no other VCPU has an active mapping
5077 * to ensure that the updated hypercall appears atomically across all
5078 * VCPUs.
5079 */
5080 kvm_mmu_zap_all(vcpu->kvm);
5081
5082 kvm_x86_ops->patch_hypercall(vcpu, instruction);
5083
5084 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5085 }
5086
5087 /*
5088 * Check if userspace requested an interrupt window, and that the
5089 * interrupt window is open.
5090 *
5091 * No need to exit to userspace if we already have an interrupt queued.
5092 */
5093 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5094 {
5095 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5096 vcpu->run->request_interrupt_window &&
5097 kvm_arch_interrupt_allowed(vcpu));
5098 }
5099
5100 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5101 {
5102 struct kvm_run *kvm_run = vcpu->run;
5103
5104 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5105 kvm_run->cr8 = kvm_get_cr8(vcpu);
5106 kvm_run->apic_base = kvm_get_apic_base(vcpu);
5107 if (irqchip_in_kernel(vcpu->kvm))
5108 kvm_run->ready_for_interrupt_injection = 1;
5109 else
5110 kvm_run->ready_for_interrupt_injection =
5111 kvm_arch_interrupt_allowed(vcpu) &&
5112 !kvm_cpu_has_interrupt(vcpu) &&
5113 !kvm_event_needs_reinjection(vcpu);
5114 }
5115
5116 static void vapic_enter(struct kvm_vcpu *vcpu)
5117 {
5118 struct kvm_lapic *apic = vcpu->arch.apic;
5119 struct page *page;
5120
5121 if (!apic || !apic->vapic_addr)
5122 return;
5123
5124 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5125
5126 vcpu->arch.apic->vapic_page = page;
5127 }
5128
5129 static void vapic_exit(struct kvm_vcpu *vcpu)
5130 {
5131 struct kvm_lapic *apic = vcpu->arch.apic;
5132 int idx;
5133
5134 if (!apic || !apic->vapic_addr)
5135 return;
5136
5137 idx = srcu_read_lock(&vcpu->kvm->srcu);
5138 kvm_release_page_dirty(apic->vapic_page);
5139 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5140 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5141 }
5142
5143 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5144 {
5145 int max_irr, tpr;
5146
5147 if (!kvm_x86_ops->update_cr8_intercept)
5148 return;
5149
5150 if (!vcpu->arch.apic)
5151 return;
5152
5153 if (!vcpu->arch.apic->vapic_addr)
5154 max_irr = kvm_lapic_find_highest_irr(vcpu);
5155 else
5156 max_irr = -1;
5157
5158 if (max_irr != -1)
5159 max_irr >>= 4;
5160
5161 tpr = kvm_lapic_get_cr8(vcpu);
5162
5163 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5164 }
5165
5166 static void inject_pending_event(struct kvm_vcpu *vcpu)
5167 {
5168 /* try to reinject previous events if any */
5169 if (vcpu->arch.exception.pending) {
5170 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5171 vcpu->arch.exception.has_error_code,
5172 vcpu->arch.exception.error_code);
5173 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5174 vcpu->arch.exception.has_error_code,
5175 vcpu->arch.exception.error_code,
5176 vcpu->arch.exception.reinject);
5177 return;
5178 }
5179
5180 if (vcpu->arch.nmi_injected) {
5181 kvm_x86_ops->set_nmi(vcpu);
5182 return;
5183 }
5184
5185 if (vcpu->arch.interrupt.pending) {
5186 kvm_x86_ops->set_irq(vcpu);
5187 return;
5188 }
5189
5190 /* try to inject new event if pending */
5191 if (vcpu->arch.nmi_pending) {
5192 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5193 --vcpu->arch.nmi_pending;
5194 vcpu->arch.nmi_injected = true;
5195 kvm_x86_ops->set_nmi(vcpu);
5196 }
5197 } else if (kvm_cpu_has_interrupt(vcpu)) {
5198 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5199 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5200 false);
5201 kvm_x86_ops->set_irq(vcpu);
5202 }
5203 }
5204 }
5205
5206 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5207 {
5208 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5209 !vcpu->guest_xcr0_loaded) {
5210 /* kvm_set_xcr() also depends on this */
5211 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5212 vcpu->guest_xcr0_loaded = 1;
5213 }
5214 }
5215
5216 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5217 {
5218 if (vcpu->guest_xcr0_loaded) {
5219 if (vcpu->arch.xcr0 != host_xcr0)
5220 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5221 vcpu->guest_xcr0_loaded = 0;
5222 }
5223 }
5224
5225 static void process_nmi(struct kvm_vcpu *vcpu)
5226 {
5227 unsigned limit = 2;
5228
5229 /*
5230 * x86 is limited to one NMI running, and one NMI pending after it.
5231 * If an NMI is already in progress, limit further NMIs to just one.
5232 * Otherwise, allow two (and we'll inject the first one immediately).
5233 */
5234 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5235 limit = 1;
5236
5237 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5238 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5239 kvm_make_request(KVM_REQ_EVENT, vcpu);
5240 }
5241
5242 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5243 {
5244 int r;
5245 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5246 vcpu->run->request_interrupt_window;
5247 bool req_immediate_exit = 0;
5248
5249 if (vcpu->requests) {
5250 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5251 kvm_mmu_unload(vcpu);
5252 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5253 __kvm_migrate_timers(vcpu);
5254 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5255 r = kvm_guest_time_update(vcpu);
5256 if (unlikely(r))
5257 goto out;
5258 }
5259 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5260 kvm_mmu_sync_roots(vcpu);
5261 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5262 kvm_x86_ops->tlb_flush(vcpu);
5263 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5264 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5265 r = 0;
5266 goto out;
5267 }
5268 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5269 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5270 r = 0;
5271 goto out;
5272 }
5273 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5274 vcpu->fpu_active = 0;
5275 kvm_x86_ops->fpu_deactivate(vcpu);
5276 }
5277 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5278 /* Page is swapped out. Do synthetic halt */
5279 vcpu->arch.apf.halted = true;
5280 r = 1;
5281 goto out;
5282 }
5283 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5284 record_steal_time(vcpu);
5285 if (kvm_check_request(KVM_REQ_NMI, vcpu))
5286 process_nmi(vcpu);
5287 req_immediate_exit =
5288 kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
5289 if (kvm_check_request(KVM_REQ_PMU, vcpu))
5290 kvm_handle_pmu_event(vcpu);
5291 if (kvm_check_request(KVM_REQ_PMI, vcpu))
5292 kvm_deliver_pmi(vcpu);
5293 }
5294
5295 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5296 inject_pending_event(vcpu);
5297
5298 /* enable NMI/IRQ window open exits if needed */
5299 if (vcpu->arch.nmi_pending)
5300 kvm_x86_ops->enable_nmi_window(vcpu);
5301 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5302 kvm_x86_ops->enable_irq_window(vcpu);
5303
5304 if (kvm_lapic_enabled(vcpu)) {
5305 update_cr8_intercept(vcpu);
5306 kvm_lapic_sync_to_vapic(vcpu);
5307 }
5308 }
5309
5310 r = kvm_mmu_reload(vcpu);
5311 if (unlikely(r)) {
5312 goto cancel_injection;
5313 }
5314
5315 preempt_disable();
5316
5317 kvm_x86_ops->prepare_guest_switch(vcpu);
5318 if (vcpu->fpu_active)
5319 kvm_load_guest_fpu(vcpu);
5320 kvm_load_guest_xcr0(vcpu);
5321
5322 vcpu->mode = IN_GUEST_MODE;
5323
5324 /* We should set ->mode before check ->requests,
5325 * see the comment in make_all_cpus_request.
5326 */
5327 smp_mb();
5328
5329 local_irq_disable();
5330
5331 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5332 || need_resched() || signal_pending(current)) {
5333 vcpu->mode = OUTSIDE_GUEST_MODE;
5334 smp_wmb();
5335 local_irq_enable();
5336 preempt_enable();
5337 r = 1;
5338 goto cancel_injection;
5339 }
5340
5341 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5342
5343 if (req_immediate_exit)
5344 smp_send_reschedule(vcpu->cpu);
5345
5346 kvm_guest_enter();
5347
5348 if (unlikely(vcpu->arch.switch_db_regs)) {
5349 set_debugreg(0, 7);
5350 set_debugreg(vcpu->arch.eff_db[0], 0);
5351 set_debugreg(vcpu->arch.eff_db[1], 1);
5352 set_debugreg(vcpu->arch.eff_db[2], 2);
5353 set_debugreg(vcpu->arch.eff_db[3], 3);
5354 }
5355
5356 trace_kvm_entry(vcpu->vcpu_id);
5357 kvm_x86_ops->run(vcpu);
5358
5359 /*
5360 * If the guest has used debug registers, at least dr7
5361 * will be disabled while returning to the host.
5362 * If we don't have active breakpoints in the host, we don't
5363 * care about the messed up debug address registers. But if
5364 * we have some of them active, restore the old state.
5365 */
5366 if (hw_breakpoint_active())
5367 hw_breakpoint_restore();
5368
5369 vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu);
5370
5371 vcpu->mode = OUTSIDE_GUEST_MODE;
5372 smp_wmb();
5373 local_irq_enable();
5374
5375 ++vcpu->stat.exits;
5376
5377 /*
5378 * We must have an instruction between local_irq_enable() and
5379 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5380 * the interrupt shadow. The stat.exits increment will do nicely.
5381 * But we need to prevent reordering, hence this barrier():
5382 */
5383 barrier();
5384
5385 kvm_guest_exit();
5386
5387 preempt_enable();
5388
5389 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5390
5391 /*
5392 * Profile KVM exit RIPs:
5393 */
5394 if (unlikely(prof_on == KVM_PROFILING)) {
5395 unsigned long rip = kvm_rip_read(vcpu);
5396 profile_hit(KVM_PROFILING, (void *)rip);
5397 }
5398
5399 if (unlikely(vcpu->arch.tsc_always_catchup))
5400 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5401
5402 if (vcpu->arch.apic_attention)
5403 kvm_lapic_sync_from_vapic(vcpu);
5404
5405 r = kvm_x86_ops->handle_exit(vcpu);
5406 return r;
5407
5408 cancel_injection:
5409 kvm_x86_ops->cancel_injection(vcpu);
5410 if (unlikely(vcpu->arch.apic_attention))
5411 kvm_lapic_sync_from_vapic(vcpu);
5412 out:
5413 return r;
5414 }
5415
5416
5417 static int __vcpu_run(struct kvm_vcpu *vcpu)
5418 {
5419 int r;
5420 struct kvm *kvm = vcpu->kvm;
5421
5422 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5423 pr_debug("vcpu %d received sipi with vector # %x\n",
5424 vcpu->vcpu_id, vcpu->arch.sipi_vector);
5425 kvm_lapic_reset(vcpu);
5426 r = kvm_arch_vcpu_reset(vcpu);
5427 if (r)
5428 return r;
5429 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5430 }
5431
5432 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5433 vapic_enter(vcpu);
5434
5435 r = 1;
5436 while (r > 0) {
5437 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5438 !vcpu->arch.apf.halted)
5439 r = vcpu_enter_guest(vcpu);
5440 else {
5441 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5442 kvm_vcpu_block(vcpu);
5443 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5444 if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5445 {
5446 switch(vcpu->arch.mp_state) {
5447 case KVM_MP_STATE_HALTED:
5448 vcpu->arch.mp_state =
5449 KVM_MP_STATE_RUNNABLE;
5450 case KVM_MP_STATE_RUNNABLE:
5451 vcpu->arch.apf.halted = false;
5452 break;
5453 case KVM_MP_STATE_SIPI_RECEIVED:
5454 default:
5455 r = -EINTR;
5456 break;
5457 }
5458 }
5459 }
5460
5461 if (r <= 0)
5462 break;
5463
5464 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5465 if (kvm_cpu_has_pending_timer(vcpu))
5466 kvm_inject_pending_timer_irqs(vcpu);
5467
5468 if (dm_request_for_irq_injection(vcpu)) {
5469 r = -EINTR;
5470 vcpu->run->exit_reason = KVM_EXIT_INTR;
5471 ++vcpu->stat.request_irq_exits;
5472 }
5473
5474 kvm_check_async_pf_completion(vcpu);
5475
5476 if (signal_pending(current)) {
5477 r = -EINTR;
5478 vcpu->run->exit_reason = KVM_EXIT_INTR;
5479 ++vcpu->stat.signal_exits;
5480 }
5481 if (need_resched()) {
5482 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5483 kvm_resched(vcpu);
5484 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5485 }
5486 }
5487
5488 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5489
5490 vapic_exit(vcpu);
5491
5492 return r;
5493 }
5494
5495 /*
5496 * Implements the following, as a state machine:
5497 *
5498 * read:
5499 * for each fragment
5500 * write gpa, len
5501 * exit
5502 * copy data
5503 * execute insn
5504 *
5505 * write:
5506 * for each fragment
5507 * write gpa, len
5508 * copy data
5509 * exit
5510 */
5511 static int complete_mmio(struct kvm_vcpu *vcpu)
5512 {
5513 struct kvm_run *run = vcpu->run;
5514 struct kvm_mmio_fragment *frag;
5515 int r;
5516
5517 if (!(vcpu->arch.pio.count || vcpu->mmio_needed))
5518 return 1;
5519
5520 if (vcpu->mmio_needed) {
5521 /* Complete previous fragment */
5522 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment++];
5523 if (!vcpu->mmio_is_write)
5524 memcpy(frag->data, run->mmio.data, frag->len);
5525 if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
5526 vcpu->mmio_needed = 0;
5527 if (vcpu->mmio_is_write)
5528 return 1;
5529 vcpu->mmio_read_completed = 1;
5530 goto done;
5531 }
5532 /* Initiate next fragment */
5533 ++frag;
5534 run->exit_reason = KVM_EXIT_MMIO;
5535 run->mmio.phys_addr = frag->gpa;
5536 if (vcpu->mmio_is_write)
5537 memcpy(run->mmio.data, frag->data, frag->len);
5538 run->mmio.len = frag->len;
5539 run->mmio.is_write = vcpu->mmio_is_write;
5540 return 0;
5541
5542 }
5543 done:
5544 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5545 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5546 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5547 if (r != EMULATE_DONE)
5548 return 0;
5549 return 1;
5550 }
5551
5552 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5553 {
5554 int r;
5555 sigset_t sigsaved;
5556
5557 if (!tsk_used_math(current) && init_fpu(current))
5558 return -ENOMEM;
5559
5560 if (vcpu->sigset_active)
5561 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5562
5563 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5564 kvm_vcpu_block(vcpu);
5565 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5566 r = -EAGAIN;
5567 goto out;
5568 }
5569
5570 /* re-sync apic's tpr */
5571 if (!irqchip_in_kernel(vcpu->kvm)) {
5572 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5573 r = -EINVAL;
5574 goto out;
5575 }
5576 }
5577
5578 r = complete_mmio(vcpu);
5579 if (r <= 0)
5580 goto out;
5581
5582 r = __vcpu_run(vcpu);
5583
5584 out:
5585 post_kvm_run_save(vcpu);
5586 if (vcpu->sigset_active)
5587 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5588
5589 return r;
5590 }
5591
5592 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5593 {
5594 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
5595 /*
5596 * We are here if userspace calls get_regs() in the middle of
5597 * instruction emulation. Registers state needs to be copied
5598 * back from emulation context to vcpu. Usrapace shouldn't do
5599 * that usually, but some bad designed PV devices (vmware
5600 * backdoor interface) need this to work
5601 */
5602 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5603 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
5604 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5605 }
5606 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5607 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5608 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5609 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5610 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5611 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5612 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5613 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5614 #ifdef CONFIG_X86_64
5615 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5616 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5617 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5618 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5619 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5620 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5621 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5622 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5623 #endif
5624
5625 regs->rip = kvm_rip_read(vcpu);
5626 regs->rflags = kvm_get_rflags(vcpu);
5627
5628 return 0;
5629 }
5630
5631 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5632 {
5633 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
5634 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5635
5636 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5637 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5638 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5639 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5640 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5641 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5642 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5643 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5644 #ifdef CONFIG_X86_64
5645 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5646 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5647 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5648 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5649 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5650 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5651 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5652 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5653 #endif
5654
5655 kvm_rip_write(vcpu, regs->rip);
5656 kvm_set_rflags(vcpu, regs->rflags);
5657
5658 vcpu->arch.exception.pending = false;
5659
5660 kvm_make_request(KVM_REQ_EVENT, vcpu);
5661
5662 return 0;
5663 }
5664
5665 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5666 {
5667 struct kvm_segment cs;
5668
5669 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5670 *db = cs.db;
5671 *l = cs.l;
5672 }
5673 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5674
5675 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5676 struct kvm_sregs *sregs)
5677 {
5678 struct desc_ptr dt;
5679
5680 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5681 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5682 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5683 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5684 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5685 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5686
5687 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5688 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5689
5690 kvm_x86_ops->get_idt(vcpu, &dt);
5691 sregs->idt.limit = dt.size;
5692 sregs->idt.base = dt.address;
5693 kvm_x86_ops->get_gdt(vcpu, &dt);
5694 sregs->gdt.limit = dt.size;
5695 sregs->gdt.base = dt.address;
5696
5697 sregs->cr0 = kvm_read_cr0(vcpu);
5698 sregs->cr2 = vcpu->arch.cr2;
5699 sregs->cr3 = kvm_read_cr3(vcpu);
5700 sregs->cr4 = kvm_read_cr4(vcpu);
5701 sregs->cr8 = kvm_get_cr8(vcpu);
5702 sregs->efer = vcpu->arch.efer;
5703 sregs->apic_base = kvm_get_apic_base(vcpu);
5704
5705 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5706
5707 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5708 set_bit(vcpu->arch.interrupt.nr,
5709 (unsigned long *)sregs->interrupt_bitmap);
5710
5711 return 0;
5712 }
5713
5714 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5715 struct kvm_mp_state *mp_state)
5716 {
5717 mp_state->mp_state = vcpu->arch.mp_state;
5718 return 0;
5719 }
5720
5721 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5722 struct kvm_mp_state *mp_state)
5723 {
5724 vcpu->arch.mp_state = mp_state->mp_state;
5725 kvm_make_request(KVM_REQ_EVENT, vcpu);
5726 return 0;
5727 }
5728
5729 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
5730 int reason, bool has_error_code, u32 error_code)
5731 {
5732 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5733 int ret;
5734
5735 init_emulate_ctxt(vcpu);
5736
5737 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
5738 has_error_code, error_code);
5739
5740 if (ret)
5741 return EMULATE_FAIL;
5742
5743 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
5744 kvm_rip_write(vcpu, ctxt->eip);
5745 kvm_set_rflags(vcpu, ctxt->eflags);
5746 kvm_make_request(KVM_REQ_EVENT, vcpu);
5747 return EMULATE_DONE;
5748 }
5749 EXPORT_SYMBOL_GPL(kvm_task_switch);
5750
5751 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5752 struct kvm_sregs *sregs)
5753 {
5754 int mmu_reset_needed = 0;
5755 int pending_vec, max_bits, idx;
5756 struct desc_ptr dt;
5757
5758 dt.size = sregs->idt.limit;
5759 dt.address = sregs->idt.base;
5760 kvm_x86_ops->set_idt(vcpu, &dt);
5761 dt.size = sregs->gdt.limit;
5762 dt.address = sregs->gdt.base;
5763 kvm_x86_ops->set_gdt(vcpu, &dt);
5764
5765 vcpu->arch.cr2 = sregs->cr2;
5766 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
5767 vcpu->arch.cr3 = sregs->cr3;
5768 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
5769
5770 kvm_set_cr8(vcpu, sregs->cr8);
5771
5772 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5773 kvm_x86_ops->set_efer(vcpu, sregs->efer);
5774 kvm_set_apic_base(vcpu, sregs->apic_base);
5775
5776 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5777 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5778 vcpu->arch.cr0 = sregs->cr0;
5779
5780 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5781 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5782 if (sregs->cr4 & X86_CR4_OSXSAVE)
5783 kvm_update_cpuid(vcpu);
5784
5785 idx = srcu_read_lock(&vcpu->kvm->srcu);
5786 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5787 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
5788 mmu_reset_needed = 1;
5789 }
5790 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5791
5792 if (mmu_reset_needed)
5793 kvm_mmu_reset_context(vcpu);
5794
5795 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5796 pending_vec = find_first_bit(
5797 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5798 if (pending_vec < max_bits) {
5799 kvm_queue_interrupt(vcpu, pending_vec, false);
5800 pr_debug("Set back pending irq %d\n", pending_vec);
5801 }
5802
5803 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5804 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5805 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5806 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5807 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5808 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5809
5810 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5811 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5812
5813 update_cr8_intercept(vcpu);
5814
5815 /* Older userspace won't unhalt the vcpu on reset. */
5816 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5817 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5818 !is_protmode(vcpu))
5819 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5820
5821 kvm_make_request(KVM_REQ_EVENT, vcpu);
5822
5823 return 0;
5824 }
5825
5826 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5827 struct kvm_guest_debug *dbg)
5828 {
5829 unsigned long rflags;
5830 int i, r;
5831
5832 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5833 r = -EBUSY;
5834 if (vcpu->arch.exception.pending)
5835 goto out;
5836 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5837 kvm_queue_exception(vcpu, DB_VECTOR);
5838 else
5839 kvm_queue_exception(vcpu, BP_VECTOR);
5840 }
5841
5842 /*
5843 * Read rflags as long as potentially injected trace flags are still
5844 * filtered out.
5845 */
5846 rflags = kvm_get_rflags(vcpu);
5847
5848 vcpu->guest_debug = dbg->control;
5849 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5850 vcpu->guest_debug = 0;
5851
5852 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5853 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5854 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5855 vcpu->arch.switch_db_regs =
5856 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5857 } else {
5858 for (i = 0; i < KVM_NR_DB_REGS; i++)
5859 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5860 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5861 }
5862
5863 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5864 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5865 get_segment_base(vcpu, VCPU_SREG_CS);
5866
5867 /*
5868 * Trigger an rflags update that will inject or remove the trace
5869 * flags.
5870 */
5871 kvm_set_rflags(vcpu, rflags);
5872
5873 kvm_x86_ops->set_guest_debug(vcpu, dbg);
5874
5875 r = 0;
5876
5877 out:
5878
5879 return r;
5880 }
5881
5882 /*
5883 * Translate a guest virtual address to a guest physical address.
5884 */
5885 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5886 struct kvm_translation *tr)
5887 {
5888 unsigned long vaddr = tr->linear_address;
5889 gpa_t gpa;
5890 int idx;
5891
5892 idx = srcu_read_lock(&vcpu->kvm->srcu);
5893 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5894 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5895 tr->physical_address = gpa;
5896 tr->valid = gpa != UNMAPPED_GVA;
5897 tr->writeable = 1;
5898 tr->usermode = 0;
5899
5900 return 0;
5901 }
5902
5903 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5904 {
5905 struct i387_fxsave_struct *fxsave =
5906 &vcpu->arch.guest_fpu.state->fxsave;
5907
5908 memcpy(fpu->fpr, fxsave->st_space, 128);
5909 fpu->fcw = fxsave->cwd;
5910 fpu->fsw = fxsave->swd;
5911 fpu->ftwx = fxsave->twd;
5912 fpu->last_opcode = fxsave->fop;
5913 fpu->last_ip = fxsave->rip;
5914 fpu->last_dp = fxsave->rdp;
5915 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5916
5917 return 0;
5918 }
5919
5920 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5921 {
5922 struct i387_fxsave_struct *fxsave =
5923 &vcpu->arch.guest_fpu.state->fxsave;
5924
5925 memcpy(fxsave->st_space, fpu->fpr, 128);
5926 fxsave->cwd = fpu->fcw;
5927 fxsave->swd = fpu->fsw;
5928 fxsave->twd = fpu->ftwx;
5929 fxsave->fop = fpu->last_opcode;
5930 fxsave->rip = fpu->last_ip;
5931 fxsave->rdp = fpu->last_dp;
5932 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5933
5934 return 0;
5935 }
5936
5937 int fx_init(struct kvm_vcpu *vcpu)
5938 {
5939 int err;
5940
5941 err = fpu_alloc(&vcpu->arch.guest_fpu);
5942 if (err)
5943 return err;
5944
5945 fpu_finit(&vcpu->arch.guest_fpu);
5946
5947 /*
5948 * Ensure guest xcr0 is valid for loading
5949 */
5950 vcpu->arch.xcr0 = XSTATE_FP;
5951
5952 vcpu->arch.cr0 |= X86_CR0_ET;
5953
5954 return 0;
5955 }
5956 EXPORT_SYMBOL_GPL(fx_init);
5957
5958 static void fx_free(struct kvm_vcpu *vcpu)
5959 {
5960 fpu_free(&vcpu->arch.guest_fpu);
5961 }
5962
5963 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5964 {
5965 if (vcpu->guest_fpu_loaded)
5966 return;
5967
5968 /*
5969 * Restore all possible states in the guest,
5970 * and assume host would use all available bits.
5971 * Guest xcr0 would be loaded later.
5972 */
5973 kvm_put_guest_xcr0(vcpu);
5974 vcpu->guest_fpu_loaded = 1;
5975 unlazy_fpu(current);
5976 fpu_restore_checking(&vcpu->arch.guest_fpu);
5977 trace_kvm_fpu(1);
5978 }
5979
5980 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5981 {
5982 kvm_put_guest_xcr0(vcpu);
5983
5984 if (!vcpu->guest_fpu_loaded)
5985 return;
5986
5987 vcpu->guest_fpu_loaded = 0;
5988 fpu_save_init(&vcpu->arch.guest_fpu);
5989 ++vcpu->stat.fpu_reload;
5990 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
5991 trace_kvm_fpu(0);
5992 }
5993
5994 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5995 {
5996 kvmclock_reset(vcpu);
5997
5998 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
5999 fx_free(vcpu);
6000 kvm_x86_ops->vcpu_free(vcpu);
6001 }
6002
6003 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6004 unsigned int id)
6005 {
6006 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6007 printk_once(KERN_WARNING
6008 "kvm: SMP vm created on host with unstable TSC; "
6009 "guest TSC will not be reliable\n");
6010 return kvm_x86_ops->vcpu_create(kvm, id);
6011 }
6012
6013 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6014 {
6015 int r;
6016
6017 vcpu->arch.mtrr_state.have_fixed = 1;
6018 vcpu_load(vcpu);
6019 r = kvm_arch_vcpu_reset(vcpu);
6020 if (r == 0)
6021 r = kvm_mmu_setup(vcpu);
6022 vcpu_put(vcpu);
6023
6024 return r;
6025 }
6026
6027 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6028 {
6029 vcpu->arch.apf.msr_val = 0;
6030
6031 vcpu_load(vcpu);
6032 kvm_mmu_unload(vcpu);
6033 vcpu_put(vcpu);
6034
6035 fx_free(vcpu);
6036 kvm_x86_ops->vcpu_free(vcpu);
6037 }
6038
6039 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
6040 {
6041 atomic_set(&vcpu->arch.nmi_queued, 0);
6042 vcpu->arch.nmi_pending = 0;
6043 vcpu->arch.nmi_injected = false;
6044
6045 vcpu->arch.switch_db_regs = 0;
6046 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6047 vcpu->arch.dr6 = DR6_FIXED_1;
6048 vcpu->arch.dr7 = DR7_FIXED_1;
6049
6050 kvm_make_request(KVM_REQ_EVENT, vcpu);
6051 vcpu->arch.apf.msr_val = 0;
6052 vcpu->arch.st.msr_val = 0;
6053
6054 kvmclock_reset(vcpu);
6055
6056 kvm_clear_async_pf_completion_queue(vcpu);
6057 kvm_async_pf_hash_reset(vcpu);
6058 vcpu->arch.apf.halted = false;
6059
6060 kvm_pmu_reset(vcpu);
6061
6062 return kvm_x86_ops->vcpu_reset(vcpu);
6063 }
6064
6065 int kvm_arch_hardware_enable(void *garbage)
6066 {
6067 struct kvm *kvm;
6068 struct kvm_vcpu *vcpu;
6069 int i;
6070 int ret;
6071 u64 local_tsc;
6072 u64 max_tsc = 0;
6073 bool stable, backwards_tsc = false;
6074
6075 kvm_shared_msr_cpu_online();
6076 ret = kvm_x86_ops->hardware_enable(garbage);
6077 if (ret != 0)
6078 return ret;
6079
6080 local_tsc = native_read_tsc();
6081 stable = !check_tsc_unstable();
6082 list_for_each_entry(kvm, &vm_list, vm_list) {
6083 kvm_for_each_vcpu(i, vcpu, kvm) {
6084 if (!stable && vcpu->cpu == smp_processor_id())
6085 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6086 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6087 backwards_tsc = true;
6088 if (vcpu->arch.last_host_tsc > max_tsc)
6089 max_tsc = vcpu->arch.last_host_tsc;
6090 }
6091 }
6092 }
6093
6094 /*
6095 * Sometimes, even reliable TSCs go backwards. This happens on
6096 * platforms that reset TSC during suspend or hibernate actions, but
6097 * maintain synchronization. We must compensate. Fortunately, we can
6098 * detect that condition here, which happens early in CPU bringup,
6099 * before any KVM threads can be running. Unfortunately, we can't
6100 * bring the TSCs fully up to date with real time, as we aren't yet far
6101 * enough into CPU bringup that we know how much real time has actually
6102 * elapsed; our helper function, get_kernel_ns() will be using boot
6103 * variables that haven't been updated yet.
6104 *
6105 * So we simply find the maximum observed TSC above, then record the
6106 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
6107 * the adjustment will be applied. Note that we accumulate
6108 * adjustments, in case multiple suspend cycles happen before some VCPU
6109 * gets a chance to run again. In the event that no KVM threads get a
6110 * chance to run, we will miss the entire elapsed period, as we'll have
6111 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6112 * loose cycle time. This isn't too big a deal, since the loss will be
6113 * uniform across all VCPUs (not to mention the scenario is extremely
6114 * unlikely). It is possible that a second hibernate recovery happens
6115 * much faster than a first, causing the observed TSC here to be
6116 * smaller; this would require additional padding adjustment, which is
6117 * why we set last_host_tsc to the local tsc observed here.
6118 *
6119 * N.B. - this code below runs only on platforms with reliable TSC,
6120 * as that is the only way backwards_tsc is set above. Also note
6121 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6122 * have the same delta_cyc adjustment applied if backwards_tsc
6123 * is detected. Note further, this adjustment is only done once,
6124 * as we reset last_host_tsc on all VCPUs to stop this from being
6125 * called multiple times (one for each physical CPU bringup).
6126 *
6127 * Platforms with unnreliable TSCs don't have to deal with this, they
6128 * will be compensated by the logic in vcpu_load, which sets the TSC to
6129 * catchup mode. This will catchup all VCPUs to real time, but cannot
6130 * guarantee that they stay in perfect synchronization.
6131 */
6132 if (backwards_tsc) {
6133 u64 delta_cyc = max_tsc - local_tsc;
6134 list_for_each_entry(kvm, &vm_list, vm_list) {
6135 kvm_for_each_vcpu(i, vcpu, kvm) {
6136 vcpu->arch.tsc_offset_adjustment += delta_cyc;
6137 vcpu->arch.last_host_tsc = local_tsc;
6138 }
6139
6140 /*
6141 * We have to disable TSC offset matching.. if you were
6142 * booting a VM while issuing an S4 host suspend....
6143 * you may have some problem. Solving this issue is
6144 * left as an exercise to the reader.
6145 */
6146 kvm->arch.last_tsc_nsec = 0;
6147 kvm->arch.last_tsc_write = 0;
6148 }
6149
6150 }
6151 return 0;
6152 }
6153
6154 void kvm_arch_hardware_disable(void *garbage)
6155 {
6156 kvm_x86_ops->hardware_disable(garbage);
6157 drop_user_return_notifiers(garbage);
6158 }
6159
6160 int kvm_arch_hardware_setup(void)
6161 {
6162 return kvm_x86_ops->hardware_setup();
6163 }
6164
6165 void kvm_arch_hardware_unsetup(void)
6166 {
6167 kvm_x86_ops->hardware_unsetup();
6168 }
6169
6170 void kvm_arch_check_processor_compat(void *rtn)
6171 {
6172 kvm_x86_ops->check_processor_compatibility(rtn);
6173 }
6174
6175 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6176 {
6177 return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6178 }
6179
6180 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6181 {
6182 struct page *page;
6183 struct kvm *kvm;
6184 int r;
6185
6186 BUG_ON(vcpu->kvm == NULL);
6187 kvm = vcpu->kvm;
6188
6189 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6190 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6191 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6192 else
6193 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6194
6195 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6196 if (!page) {
6197 r = -ENOMEM;
6198 goto fail;
6199 }
6200 vcpu->arch.pio_data = page_address(page);
6201
6202 kvm_set_tsc_khz(vcpu, max_tsc_khz);
6203
6204 r = kvm_mmu_create(vcpu);
6205 if (r < 0)
6206 goto fail_free_pio_data;
6207
6208 if (irqchip_in_kernel(kvm)) {
6209 r = kvm_create_lapic(vcpu);
6210 if (r < 0)
6211 goto fail_mmu_destroy;
6212 }
6213
6214 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6215 GFP_KERNEL);
6216 if (!vcpu->arch.mce_banks) {
6217 r = -ENOMEM;
6218 goto fail_free_lapic;
6219 }
6220 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6221
6222 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
6223 goto fail_free_mce_banks;
6224
6225 kvm_async_pf_hash_reset(vcpu);
6226 kvm_pmu_init(vcpu);
6227
6228 return 0;
6229 fail_free_mce_banks:
6230 kfree(vcpu->arch.mce_banks);
6231 fail_free_lapic:
6232 kvm_free_lapic(vcpu);
6233 fail_mmu_destroy:
6234 kvm_mmu_destroy(vcpu);
6235 fail_free_pio_data:
6236 free_page((unsigned long)vcpu->arch.pio_data);
6237 fail:
6238 return r;
6239 }
6240
6241 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6242 {
6243 int idx;
6244
6245 kvm_pmu_destroy(vcpu);
6246 kfree(vcpu->arch.mce_banks);
6247 kvm_free_lapic(vcpu);
6248 idx = srcu_read_lock(&vcpu->kvm->srcu);
6249 kvm_mmu_destroy(vcpu);
6250 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6251 free_page((unsigned long)vcpu->arch.pio_data);
6252 }
6253
6254 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6255 {
6256 if (type)
6257 return -EINVAL;
6258
6259 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6260 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6261
6262 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6263 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6264
6265 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6266
6267 return 0;
6268 }
6269
6270 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6271 {
6272 vcpu_load(vcpu);
6273 kvm_mmu_unload(vcpu);
6274 vcpu_put(vcpu);
6275 }
6276
6277 static void kvm_free_vcpus(struct kvm *kvm)
6278 {
6279 unsigned int i;
6280 struct kvm_vcpu *vcpu;
6281
6282 /*
6283 * Unpin any mmu pages first.
6284 */
6285 kvm_for_each_vcpu(i, vcpu, kvm) {
6286 kvm_clear_async_pf_completion_queue(vcpu);
6287 kvm_unload_vcpu_mmu(vcpu);
6288 }
6289 kvm_for_each_vcpu(i, vcpu, kvm)
6290 kvm_arch_vcpu_free(vcpu);
6291
6292 mutex_lock(&kvm->lock);
6293 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6294 kvm->vcpus[i] = NULL;
6295
6296 atomic_set(&kvm->online_vcpus, 0);
6297 mutex_unlock(&kvm->lock);
6298 }
6299
6300 void kvm_arch_sync_events(struct kvm *kvm)
6301 {
6302 kvm_free_all_assigned_devices(kvm);
6303 kvm_free_pit(kvm);
6304 }
6305
6306 void kvm_arch_destroy_vm(struct kvm *kvm)
6307 {
6308 kvm_iommu_unmap_guest(kvm);
6309 kfree(kvm->arch.vpic);
6310 kfree(kvm->arch.vioapic);
6311 kvm_free_vcpus(kvm);
6312 if (kvm->arch.apic_access_page)
6313 put_page(kvm->arch.apic_access_page);
6314 if (kvm->arch.ept_identity_pagetable)
6315 put_page(kvm->arch.ept_identity_pagetable);
6316 }
6317
6318 void kvm_arch_free_memslot(struct kvm_memory_slot *free,
6319 struct kvm_memory_slot *dont)
6320 {
6321 int i;
6322
6323 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
6324 if (!dont || free->arch.lpage_info[i] != dont->arch.lpage_info[i]) {
6325 kvm_kvfree(free->arch.lpage_info[i]);
6326 free->arch.lpage_info[i] = NULL;
6327 }
6328 }
6329 }
6330
6331 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
6332 {
6333 int i;
6334
6335 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
6336 unsigned long ugfn;
6337 int lpages;
6338 int level = i + 2;
6339
6340 lpages = gfn_to_index(slot->base_gfn + npages - 1,
6341 slot->base_gfn, level) + 1;
6342
6343 slot->arch.lpage_info[i] =
6344 kvm_kvzalloc(lpages * sizeof(*slot->arch.lpage_info[i]));
6345 if (!slot->arch.lpage_info[i])
6346 goto out_free;
6347
6348 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
6349 slot->arch.lpage_info[i][0].write_count = 1;
6350 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
6351 slot->arch.lpage_info[i][lpages - 1].write_count = 1;
6352 ugfn = slot->userspace_addr >> PAGE_SHIFT;
6353 /*
6354 * If the gfn and userspace address are not aligned wrt each
6355 * other, or if explicitly asked to, disable large page
6356 * support for this slot
6357 */
6358 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
6359 !kvm_largepages_enabled()) {
6360 unsigned long j;
6361
6362 for (j = 0; j < lpages; ++j)
6363 slot->arch.lpage_info[i][j].write_count = 1;
6364 }
6365 }
6366
6367 return 0;
6368
6369 out_free:
6370 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
6371 kvm_kvfree(slot->arch.lpage_info[i]);
6372 slot->arch.lpage_info[i] = NULL;
6373 }
6374 return -ENOMEM;
6375 }
6376
6377 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6378 struct kvm_memory_slot *memslot,
6379 struct kvm_memory_slot old,
6380 struct kvm_userspace_memory_region *mem,
6381 int user_alloc)
6382 {
6383 int npages = memslot->npages;
6384 int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6385
6386 /* Prevent internal slot pages from being moved by fork()/COW. */
6387 if (memslot->id >= KVM_MEMORY_SLOTS)
6388 map_flags = MAP_SHARED | MAP_ANONYMOUS;
6389
6390 /*To keep backward compatibility with older userspace,
6391 *x86 needs to hanlde !user_alloc case.
6392 */
6393 if (!user_alloc) {
6394 if (npages && !old.rmap) {
6395 unsigned long userspace_addr;
6396
6397 userspace_addr = vm_mmap(NULL, 0,
6398 npages * PAGE_SIZE,
6399 PROT_READ | PROT_WRITE,
6400 map_flags,
6401 0);
6402
6403 if (IS_ERR((void *)userspace_addr))
6404 return PTR_ERR((void *)userspace_addr);
6405
6406 memslot->userspace_addr = userspace_addr;
6407 }
6408 }
6409
6410
6411 return 0;
6412 }
6413
6414 void kvm_arch_commit_memory_region(struct kvm *kvm,
6415 struct kvm_userspace_memory_region *mem,
6416 struct kvm_memory_slot old,
6417 int user_alloc)
6418 {
6419
6420 int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
6421
6422 if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
6423 int ret;
6424
6425 ret = vm_munmap(old.userspace_addr,
6426 old.npages * PAGE_SIZE);
6427 if (ret < 0)
6428 printk(KERN_WARNING
6429 "kvm_vm_ioctl_set_memory_region: "
6430 "failed to munmap memory\n");
6431 }
6432
6433 if (!kvm->arch.n_requested_mmu_pages)
6434 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6435
6436 spin_lock(&kvm->mmu_lock);
6437 if (nr_mmu_pages)
6438 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6439 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6440 spin_unlock(&kvm->mmu_lock);
6441 }
6442
6443 void kvm_arch_flush_shadow(struct kvm *kvm)
6444 {
6445 kvm_mmu_zap_all(kvm);
6446 kvm_reload_remote_mmus(kvm);
6447 }
6448
6449 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6450 {
6451 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6452 !vcpu->arch.apf.halted)
6453 || !list_empty_careful(&vcpu->async_pf.done)
6454 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6455 || atomic_read(&vcpu->arch.nmi_queued) ||
6456 (kvm_arch_interrupt_allowed(vcpu) &&
6457 kvm_cpu_has_interrupt(vcpu));
6458 }
6459
6460 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
6461 {
6462 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
6463 }
6464
6465 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6466 {
6467 return kvm_x86_ops->interrupt_allowed(vcpu);
6468 }
6469
6470 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6471 {
6472 unsigned long current_rip = kvm_rip_read(vcpu) +
6473 get_segment_base(vcpu, VCPU_SREG_CS);
6474
6475 return current_rip == linear_rip;
6476 }
6477 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6478
6479 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6480 {
6481 unsigned long rflags;
6482
6483 rflags = kvm_x86_ops->get_rflags(vcpu);
6484 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6485 rflags &= ~X86_EFLAGS_TF;
6486 return rflags;
6487 }
6488 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6489
6490 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6491 {
6492 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6493 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6494 rflags |= X86_EFLAGS_TF;
6495 kvm_x86_ops->set_rflags(vcpu, rflags);
6496 kvm_make_request(KVM_REQ_EVENT, vcpu);
6497 }
6498 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6499
6500 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6501 {
6502 int r;
6503
6504 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
6505 is_error_page(work->page))
6506 return;
6507
6508 r = kvm_mmu_reload(vcpu);
6509 if (unlikely(r))
6510 return;
6511
6512 if (!vcpu->arch.mmu.direct_map &&
6513 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
6514 return;
6515
6516 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
6517 }
6518
6519 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
6520 {
6521 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
6522 }
6523
6524 static inline u32 kvm_async_pf_next_probe(u32 key)
6525 {
6526 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
6527 }
6528
6529 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6530 {
6531 u32 key = kvm_async_pf_hash_fn(gfn);
6532
6533 while (vcpu->arch.apf.gfns[key] != ~0)
6534 key = kvm_async_pf_next_probe(key);
6535
6536 vcpu->arch.apf.gfns[key] = gfn;
6537 }
6538
6539 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
6540 {
6541 int i;
6542 u32 key = kvm_async_pf_hash_fn(gfn);
6543
6544 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
6545 (vcpu->arch.apf.gfns[key] != gfn &&
6546 vcpu->arch.apf.gfns[key] != ~0); i++)
6547 key = kvm_async_pf_next_probe(key);
6548
6549 return key;
6550 }
6551
6552 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6553 {
6554 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
6555 }
6556
6557 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6558 {
6559 u32 i, j, k;
6560
6561 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
6562 while (true) {
6563 vcpu->arch.apf.gfns[i] = ~0;
6564 do {
6565 j = kvm_async_pf_next_probe(j);
6566 if (vcpu->arch.apf.gfns[j] == ~0)
6567 return;
6568 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
6569 /*
6570 * k lies cyclically in ]i,j]
6571 * | i.k.j |
6572 * |....j i.k.| or |.k..j i...|
6573 */
6574 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
6575 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
6576 i = j;
6577 }
6578 }
6579
6580 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
6581 {
6582
6583 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
6584 sizeof(val));
6585 }
6586
6587 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
6588 struct kvm_async_pf *work)
6589 {
6590 struct x86_exception fault;
6591
6592 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
6593 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
6594
6595 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
6596 (vcpu->arch.apf.send_user_only &&
6597 kvm_x86_ops->get_cpl(vcpu) == 0))
6598 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
6599 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
6600 fault.vector = PF_VECTOR;
6601 fault.error_code_valid = true;
6602 fault.error_code = 0;
6603 fault.nested_page_fault = false;
6604 fault.address = work->arch.token;
6605 kvm_inject_page_fault(vcpu, &fault);
6606 }
6607 }
6608
6609 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
6610 struct kvm_async_pf *work)
6611 {
6612 struct x86_exception fault;
6613
6614 trace_kvm_async_pf_ready(work->arch.token, work->gva);
6615 if (is_error_page(work->page))
6616 work->arch.token = ~0; /* broadcast wakeup */
6617 else
6618 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
6619
6620 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
6621 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
6622 fault.vector = PF_VECTOR;
6623 fault.error_code_valid = true;
6624 fault.error_code = 0;
6625 fault.nested_page_fault = false;
6626 fault.address = work->arch.token;
6627 kvm_inject_page_fault(vcpu, &fault);
6628 }
6629 vcpu->arch.apf.halted = false;
6630 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6631 }
6632
6633 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
6634 {
6635 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
6636 return true;
6637 else
6638 return !kvm_event_needs_reinjection(vcpu) &&
6639 kvm_x86_ops->interrupt_allowed(vcpu);
6640 }
6641
6642 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6643 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6644 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6645 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6646 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6647 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6648 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6649 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6650 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6651 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6652 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6653 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
This page took 0.245251 seconds and 5 git commands to generate.