KVM: Rename vcpu->shadow_efer to efer
[deliverable/linux.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Amit Shah <amit.shah@qumranet.com>
14 * Ben-Ami Yassour <benami@il.ibm.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
28
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40 #include <linux/user-return-notifier.h>
41 #include <linux/srcu.h>
42 #include <trace/events/kvm.h>
43 #undef TRACE_INCLUDE_FILE
44 #define CREATE_TRACE_POINTS
45 #include "trace.h"
46
47 #include <asm/debugreg.h>
48 #include <asm/uaccess.h>
49 #include <asm/msr.h>
50 #include <asm/desc.h>
51 #include <asm/mtrr.h>
52 #include <asm/mce.h>
53
54 #define MAX_IO_MSRS 256
55 #define CR0_RESERVED_BITS \
56 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
57 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
58 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
59 #define CR4_RESERVED_BITS \
60 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
61 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
62 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
63 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
64
65 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
66
67 #define KVM_MAX_MCE_BANKS 32
68 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
69
70 /* EFER defaults:
71 * - enable syscall per default because its emulated by KVM
72 * - enable LME and LMA per default on 64 bit KVM
73 */
74 #ifdef CONFIG_X86_64
75 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
76 #else
77 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
78 #endif
79
80 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
81 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
82
83 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
84 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
85 struct kvm_cpuid_entry2 __user *entries);
86
87 struct kvm_x86_ops *kvm_x86_ops;
88 EXPORT_SYMBOL_GPL(kvm_x86_ops);
89
90 int ignore_msrs = 0;
91 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
92
93 #define KVM_NR_SHARED_MSRS 16
94
95 struct kvm_shared_msrs_global {
96 int nr;
97 u32 msrs[KVM_NR_SHARED_MSRS];
98 };
99
100 struct kvm_shared_msrs {
101 struct user_return_notifier urn;
102 bool registered;
103 struct kvm_shared_msr_values {
104 u64 host;
105 u64 curr;
106 } values[KVM_NR_SHARED_MSRS];
107 };
108
109 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
110 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
111
112 struct kvm_stats_debugfs_item debugfs_entries[] = {
113 { "pf_fixed", VCPU_STAT(pf_fixed) },
114 { "pf_guest", VCPU_STAT(pf_guest) },
115 { "tlb_flush", VCPU_STAT(tlb_flush) },
116 { "invlpg", VCPU_STAT(invlpg) },
117 { "exits", VCPU_STAT(exits) },
118 { "io_exits", VCPU_STAT(io_exits) },
119 { "mmio_exits", VCPU_STAT(mmio_exits) },
120 { "signal_exits", VCPU_STAT(signal_exits) },
121 { "irq_window", VCPU_STAT(irq_window_exits) },
122 { "nmi_window", VCPU_STAT(nmi_window_exits) },
123 { "halt_exits", VCPU_STAT(halt_exits) },
124 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
125 { "hypercalls", VCPU_STAT(hypercalls) },
126 { "request_irq", VCPU_STAT(request_irq_exits) },
127 { "irq_exits", VCPU_STAT(irq_exits) },
128 { "host_state_reload", VCPU_STAT(host_state_reload) },
129 { "efer_reload", VCPU_STAT(efer_reload) },
130 { "fpu_reload", VCPU_STAT(fpu_reload) },
131 { "insn_emulation", VCPU_STAT(insn_emulation) },
132 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
133 { "irq_injections", VCPU_STAT(irq_injections) },
134 { "nmi_injections", VCPU_STAT(nmi_injections) },
135 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
136 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
137 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
138 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
139 { "mmu_flooded", VM_STAT(mmu_flooded) },
140 { "mmu_recycled", VM_STAT(mmu_recycled) },
141 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
142 { "mmu_unsync", VM_STAT(mmu_unsync) },
143 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
144 { "largepages", VM_STAT(lpages) },
145 { NULL }
146 };
147
148 static void kvm_on_user_return(struct user_return_notifier *urn)
149 {
150 unsigned slot;
151 struct kvm_shared_msrs *locals
152 = container_of(urn, struct kvm_shared_msrs, urn);
153 struct kvm_shared_msr_values *values;
154
155 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
156 values = &locals->values[slot];
157 if (values->host != values->curr) {
158 wrmsrl(shared_msrs_global.msrs[slot], values->host);
159 values->curr = values->host;
160 }
161 }
162 locals->registered = false;
163 user_return_notifier_unregister(urn);
164 }
165
166 static void shared_msr_update(unsigned slot, u32 msr)
167 {
168 struct kvm_shared_msrs *smsr;
169 u64 value;
170
171 smsr = &__get_cpu_var(shared_msrs);
172 /* only read, and nobody should modify it at this time,
173 * so don't need lock */
174 if (slot >= shared_msrs_global.nr) {
175 printk(KERN_ERR "kvm: invalid MSR slot!");
176 return;
177 }
178 rdmsrl_safe(msr, &value);
179 smsr->values[slot].host = value;
180 smsr->values[slot].curr = value;
181 }
182
183 void kvm_define_shared_msr(unsigned slot, u32 msr)
184 {
185 if (slot >= shared_msrs_global.nr)
186 shared_msrs_global.nr = slot + 1;
187 shared_msrs_global.msrs[slot] = msr;
188 /* we need ensured the shared_msr_global have been updated */
189 smp_wmb();
190 }
191 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
192
193 static void kvm_shared_msr_cpu_online(void)
194 {
195 unsigned i;
196
197 for (i = 0; i < shared_msrs_global.nr; ++i)
198 shared_msr_update(i, shared_msrs_global.msrs[i]);
199 }
200
201 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
202 {
203 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
204
205 if (((value ^ smsr->values[slot].curr) & mask) == 0)
206 return;
207 smsr->values[slot].curr = value;
208 wrmsrl(shared_msrs_global.msrs[slot], value);
209 if (!smsr->registered) {
210 smsr->urn.on_user_return = kvm_on_user_return;
211 user_return_notifier_register(&smsr->urn);
212 smsr->registered = true;
213 }
214 }
215 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
216
217 static void drop_user_return_notifiers(void *ignore)
218 {
219 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
220
221 if (smsr->registered)
222 kvm_on_user_return(&smsr->urn);
223 }
224
225 unsigned long segment_base(u16 selector)
226 {
227 struct descriptor_table gdt;
228 struct desc_struct *d;
229 unsigned long table_base;
230 unsigned long v;
231
232 if (selector == 0)
233 return 0;
234
235 kvm_get_gdt(&gdt);
236 table_base = gdt.base;
237
238 if (selector & 4) { /* from ldt */
239 u16 ldt_selector = kvm_read_ldt();
240
241 table_base = segment_base(ldt_selector);
242 }
243 d = (struct desc_struct *)(table_base + (selector & ~7));
244 v = get_desc_base(d);
245 #ifdef CONFIG_X86_64
246 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
247 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
248 #endif
249 return v;
250 }
251 EXPORT_SYMBOL_GPL(segment_base);
252
253 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
254 {
255 if (irqchip_in_kernel(vcpu->kvm))
256 return vcpu->arch.apic_base;
257 else
258 return vcpu->arch.apic_base;
259 }
260 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
261
262 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
263 {
264 /* TODO: reserve bits check */
265 if (irqchip_in_kernel(vcpu->kvm))
266 kvm_lapic_set_base(vcpu, data);
267 else
268 vcpu->arch.apic_base = data;
269 }
270 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
271
272 #define EXCPT_BENIGN 0
273 #define EXCPT_CONTRIBUTORY 1
274 #define EXCPT_PF 2
275
276 static int exception_class(int vector)
277 {
278 switch (vector) {
279 case PF_VECTOR:
280 return EXCPT_PF;
281 case DE_VECTOR:
282 case TS_VECTOR:
283 case NP_VECTOR:
284 case SS_VECTOR:
285 case GP_VECTOR:
286 return EXCPT_CONTRIBUTORY;
287 default:
288 break;
289 }
290 return EXCPT_BENIGN;
291 }
292
293 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
294 unsigned nr, bool has_error, u32 error_code)
295 {
296 u32 prev_nr;
297 int class1, class2;
298
299 if (!vcpu->arch.exception.pending) {
300 queue:
301 vcpu->arch.exception.pending = true;
302 vcpu->arch.exception.has_error_code = has_error;
303 vcpu->arch.exception.nr = nr;
304 vcpu->arch.exception.error_code = error_code;
305 return;
306 }
307
308 /* to check exception */
309 prev_nr = vcpu->arch.exception.nr;
310 if (prev_nr == DF_VECTOR) {
311 /* triple fault -> shutdown */
312 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
313 return;
314 }
315 class1 = exception_class(prev_nr);
316 class2 = exception_class(nr);
317 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
318 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
319 /* generate double fault per SDM Table 5-5 */
320 vcpu->arch.exception.pending = true;
321 vcpu->arch.exception.has_error_code = true;
322 vcpu->arch.exception.nr = DF_VECTOR;
323 vcpu->arch.exception.error_code = 0;
324 } else
325 /* replace previous exception with a new one in a hope
326 that instruction re-execution will regenerate lost
327 exception */
328 goto queue;
329 }
330
331 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
332 {
333 kvm_multiple_exception(vcpu, nr, false, 0);
334 }
335 EXPORT_SYMBOL_GPL(kvm_queue_exception);
336
337 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
338 u32 error_code)
339 {
340 ++vcpu->stat.pf_guest;
341 vcpu->arch.cr2 = addr;
342 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
343 }
344
345 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
346 {
347 vcpu->arch.nmi_pending = 1;
348 }
349 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
350
351 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
352 {
353 kvm_multiple_exception(vcpu, nr, true, error_code);
354 }
355 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
356
357 /*
358 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
359 * a #GP and return false.
360 */
361 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
362 {
363 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
364 return true;
365 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
366 return false;
367 }
368 EXPORT_SYMBOL_GPL(kvm_require_cpl);
369
370 /*
371 * Load the pae pdptrs. Return true is they are all valid.
372 */
373 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
374 {
375 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
376 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
377 int i;
378 int ret;
379 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
380
381 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
382 offset * sizeof(u64), sizeof(pdpte));
383 if (ret < 0) {
384 ret = 0;
385 goto out;
386 }
387 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
388 if (is_present_gpte(pdpte[i]) &&
389 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
390 ret = 0;
391 goto out;
392 }
393 }
394 ret = 1;
395
396 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
397 __set_bit(VCPU_EXREG_PDPTR,
398 (unsigned long *)&vcpu->arch.regs_avail);
399 __set_bit(VCPU_EXREG_PDPTR,
400 (unsigned long *)&vcpu->arch.regs_dirty);
401 out:
402
403 return ret;
404 }
405 EXPORT_SYMBOL_GPL(load_pdptrs);
406
407 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
408 {
409 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
410 bool changed = true;
411 int r;
412
413 if (is_long_mode(vcpu) || !is_pae(vcpu))
414 return false;
415
416 if (!test_bit(VCPU_EXREG_PDPTR,
417 (unsigned long *)&vcpu->arch.regs_avail))
418 return true;
419
420 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
421 if (r < 0)
422 goto out;
423 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
424 out:
425
426 return changed;
427 }
428
429 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
430 {
431 cr0 |= X86_CR0_ET;
432
433 #ifdef CONFIG_X86_64
434 if (cr0 & 0xffffffff00000000UL) {
435 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
436 cr0, kvm_read_cr0(vcpu));
437 kvm_inject_gp(vcpu, 0);
438 return;
439 }
440 #endif
441
442 cr0 &= ~CR0_RESERVED_BITS;
443
444 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
445 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
446 kvm_inject_gp(vcpu, 0);
447 return;
448 }
449
450 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
451 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
452 "and a clear PE flag\n");
453 kvm_inject_gp(vcpu, 0);
454 return;
455 }
456
457 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
458 #ifdef CONFIG_X86_64
459 if ((vcpu->arch.efer & EFER_LME)) {
460 int cs_db, cs_l;
461
462 if (!is_pae(vcpu)) {
463 printk(KERN_DEBUG "set_cr0: #GP, start paging "
464 "in long mode while PAE is disabled\n");
465 kvm_inject_gp(vcpu, 0);
466 return;
467 }
468 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
469 if (cs_l) {
470 printk(KERN_DEBUG "set_cr0: #GP, start paging "
471 "in long mode while CS.L == 1\n");
472 kvm_inject_gp(vcpu, 0);
473 return;
474
475 }
476 } else
477 #endif
478 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
479 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
480 "reserved bits\n");
481 kvm_inject_gp(vcpu, 0);
482 return;
483 }
484
485 }
486
487 kvm_x86_ops->set_cr0(vcpu, cr0);
488 vcpu->arch.cr0 = cr0;
489
490 kvm_mmu_reset_context(vcpu);
491 return;
492 }
493 EXPORT_SYMBOL_GPL(kvm_set_cr0);
494
495 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
496 {
497 kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0ful) | (msw & 0x0f));
498 }
499 EXPORT_SYMBOL_GPL(kvm_lmsw);
500
501 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
502 {
503 unsigned long old_cr4 = kvm_read_cr4(vcpu);
504 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
505
506 if (cr4 & CR4_RESERVED_BITS) {
507 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
508 kvm_inject_gp(vcpu, 0);
509 return;
510 }
511
512 if (is_long_mode(vcpu)) {
513 if (!(cr4 & X86_CR4_PAE)) {
514 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
515 "in long mode\n");
516 kvm_inject_gp(vcpu, 0);
517 return;
518 }
519 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
520 && ((cr4 ^ old_cr4) & pdptr_bits)
521 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
522 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
523 kvm_inject_gp(vcpu, 0);
524 return;
525 }
526
527 if (cr4 & X86_CR4_VMXE) {
528 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
529 kvm_inject_gp(vcpu, 0);
530 return;
531 }
532 kvm_x86_ops->set_cr4(vcpu, cr4);
533 vcpu->arch.cr4 = cr4;
534 vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
535 kvm_mmu_reset_context(vcpu);
536 }
537 EXPORT_SYMBOL_GPL(kvm_set_cr4);
538
539 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
540 {
541 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
542 kvm_mmu_sync_roots(vcpu);
543 kvm_mmu_flush_tlb(vcpu);
544 return;
545 }
546
547 if (is_long_mode(vcpu)) {
548 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
549 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
550 kvm_inject_gp(vcpu, 0);
551 return;
552 }
553 } else {
554 if (is_pae(vcpu)) {
555 if (cr3 & CR3_PAE_RESERVED_BITS) {
556 printk(KERN_DEBUG
557 "set_cr3: #GP, reserved bits\n");
558 kvm_inject_gp(vcpu, 0);
559 return;
560 }
561 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
562 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
563 "reserved bits\n");
564 kvm_inject_gp(vcpu, 0);
565 return;
566 }
567 }
568 /*
569 * We don't check reserved bits in nonpae mode, because
570 * this isn't enforced, and VMware depends on this.
571 */
572 }
573
574 /*
575 * Does the new cr3 value map to physical memory? (Note, we
576 * catch an invalid cr3 even in real-mode, because it would
577 * cause trouble later on when we turn on paging anyway.)
578 *
579 * A real CPU would silently accept an invalid cr3 and would
580 * attempt to use it - with largely undefined (and often hard
581 * to debug) behavior on the guest side.
582 */
583 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
584 kvm_inject_gp(vcpu, 0);
585 else {
586 vcpu->arch.cr3 = cr3;
587 vcpu->arch.mmu.new_cr3(vcpu);
588 }
589 }
590 EXPORT_SYMBOL_GPL(kvm_set_cr3);
591
592 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
593 {
594 if (cr8 & CR8_RESERVED_BITS) {
595 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
596 kvm_inject_gp(vcpu, 0);
597 return;
598 }
599 if (irqchip_in_kernel(vcpu->kvm))
600 kvm_lapic_set_tpr(vcpu, cr8);
601 else
602 vcpu->arch.cr8 = cr8;
603 }
604 EXPORT_SYMBOL_GPL(kvm_set_cr8);
605
606 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
607 {
608 if (irqchip_in_kernel(vcpu->kvm))
609 return kvm_lapic_get_cr8(vcpu);
610 else
611 return vcpu->arch.cr8;
612 }
613 EXPORT_SYMBOL_GPL(kvm_get_cr8);
614
615 static inline u32 bit(int bitno)
616 {
617 return 1 << (bitno & 31);
618 }
619
620 /*
621 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
622 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
623 *
624 * This list is modified at module load time to reflect the
625 * capabilities of the host cpu. This capabilities test skips MSRs that are
626 * kvm-specific. Those are put in the beginning of the list.
627 */
628
629 #define KVM_SAVE_MSRS_BEGIN 5
630 static u32 msrs_to_save[] = {
631 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
632 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
633 HV_X64_MSR_APIC_ASSIST_PAGE,
634 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
635 MSR_K6_STAR,
636 #ifdef CONFIG_X86_64
637 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
638 #endif
639 MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
640 };
641
642 static unsigned num_msrs_to_save;
643
644 static u32 emulated_msrs[] = {
645 MSR_IA32_MISC_ENABLE,
646 };
647
648 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
649 {
650 if (efer & efer_reserved_bits) {
651 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
652 efer);
653 kvm_inject_gp(vcpu, 0);
654 return;
655 }
656
657 if (is_paging(vcpu)
658 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) {
659 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
660 kvm_inject_gp(vcpu, 0);
661 return;
662 }
663
664 if (efer & EFER_FFXSR) {
665 struct kvm_cpuid_entry2 *feat;
666
667 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
668 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
669 printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
670 kvm_inject_gp(vcpu, 0);
671 return;
672 }
673 }
674
675 if (efer & EFER_SVME) {
676 struct kvm_cpuid_entry2 *feat;
677
678 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
679 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
680 printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
681 kvm_inject_gp(vcpu, 0);
682 return;
683 }
684 }
685
686 kvm_x86_ops->set_efer(vcpu, efer);
687
688 efer &= ~EFER_LMA;
689 efer |= vcpu->arch.efer & EFER_LMA;
690
691 vcpu->arch.efer = efer;
692
693 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
694 kvm_mmu_reset_context(vcpu);
695 }
696
697 void kvm_enable_efer_bits(u64 mask)
698 {
699 efer_reserved_bits &= ~mask;
700 }
701 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
702
703
704 /*
705 * Writes msr value into into the appropriate "register".
706 * Returns 0 on success, non-0 otherwise.
707 * Assumes vcpu_load() was already called.
708 */
709 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
710 {
711 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
712 }
713
714 /*
715 * Adapt set_msr() to msr_io()'s calling convention
716 */
717 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
718 {
719 return kvm_set_msr(vcpu, index, *data);
720 }
721
722 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
723 {
724 static int version;
725 struct pvclock_wall_clock wc;
726 struct timespec boot;
727
728 if (!wall_clock)
729 return;
730
731 version++;
732
733 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
734
735 /*
736 * The guest calculates current wall clock time by adding
737 * system time (updated by kvm_write_guest_time below) to the
738 * wall clock specified here. guest system time equals host
739 * system time for us, thus we must fill in host boot time here.
740 */
741 getboottime(&boot);
742
743 wc.sec = boot.tv_sec;
744 wc.nsec = boot.tv_nsec;
745 wc.version = version;
746
747 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
748
749 version++;
750 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
751 }
752
753 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
754 {
755 uint32_t quotient, remainder;
756
757 /* Don't try to replace with do_div(), this one calculates
758 * "(dividend << 32) / divisor" */
759 __asm__ ( "divl %4"
760 : "=a" (quotient), "=d" (remainder)
761 : "0" (0), "1" (dividend), "r" (divisor) );
762 return quotient;
763 }
764
765 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
766 {
767 uint64_t nsecs = 1000000000LL;
768 int32_t shift = 0;
769 uint64_t tps64;
770 uint32_t tps32;
771
772 tps64 = tsc_khz * 1000LL;
773 while (tps64 > nsecs*2) {
774 tps64 >>= 1;
775 shift--;
776 }
777
778 tps32 = (uint32_t)tps64;
779 while (tps32 <= (uint32_t)nsecs) {
780 tps32 <<= 1;
781 shift++;
782 }
783
784 hv_clock->tsc_shift = shift;
785 hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
786
787 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
788 __func__, tsc_khz, hv_clock->tsc_shift,
789 hv_clock->tsc_to_system_mul);
790 }
791
792 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
793
794 static void kvm_write_guest_time(struct kvm_vcpu *v)
795 {
796 struct timespec ts;
797 unsigned long flags;
798 struct kvm_vcpu_arch *vcpu = &v->arch;
799 void *shared_kaddr;
800 unsigned long this_tsc_khz;
801
802 if ((!vcpu->time_page))
803 return;
804
805 this_tsc_khz = get_cpu_var(cpu_tsc_khz);
806 if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
807 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
808 vcpu->hv_clock_tsc_khz = this_tsc_khz;
809 }
810 put_cpu_var(cpu_tsc_khz);
811
812 /* Keep irq disabled to prevent changes to the clock */
813 local_irq_save(flags);
814 kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
815 ktime_get_ts(&ts);
816 monotonic_to_bootbased(&ts);
817 local_irq_restore(flags);
818
819 /* With all the info we got, fill in the values */
820
821 vcpu->hv_clock.system_time = ts.tv_nsec +
822 (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
823
824 /*
825 * The interface expects us to write an even number signaling that the
826 * update is finished. Since the guest won't see the intermediate
827 * state, we just increase by 2 at the end.
828 */
829 vcpu->hv_clock.version += 2;
830
831 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
832
833 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
834 sizeof(vcpu->hv_clock));
835
836 kunmap_atomic(shared_kaddr, KM_USER0);
837
838 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
839 }
840
841 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
842 {
843 struct kvm_vcpu_arch *vcpu = &v->arch;
844
845 if (!vcpu->time_page)
846 return 0;
847 set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
848 return 1;
849 }
850
851 static bool msr_mtrr_valid(unsigned msr)
852 {
853 switch (msr) {
854 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
855 case MSR_MTRRfix64K_00000:
856 case MSR_MTRRfix16K_80000:
857 case MSR_MTRRfix16K_A0000:
858 case MSR_MTRRfix4K_C0000:
859 case MSR_MTRRfix4K_C8000:
860 case MSR_MTRRfix4K_D0000:
861 case MSR_MTRRfix4K_D8000:
862 case MSR_MTRRfix4K_E0000:
863 case MSR_MTRRfix4K_E8000:
864 case MSR_MTRRfix4K_F0000:
865 case MSR_MTRRfix4K_F8000:
866 case MSR_MTRRdefType:
867 case MSR_IA32_CR_PAT:
868 return true;
869 case 0x2f8:
870 return true;
871 }
872 return false;
873 }
874
875 static bool valid_pat_type(unsigned t)
876 {
877 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
878 }
879
880 static bool valid_mtrr_type(unsigned t)
881 {
882 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
883 }
884
885 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
886 {
887 int i;
888
889 if (!msr_mtrr_valid(msr))
890 return false;
891
892 if (msr == MSR_IA32_CR_PAT) {
893 for (i = 0; i < 8; i++)
894 if (!valid_pat_type((data >> (i * 8)) & 0xff))
895 return false;
896 return true;
897 } else if (msr == MSR_MTRRdefType) {
898 if (data & ~0xcff)
899 return false;
900 return valid_mtrr_type(data & 0xff);
901 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
902 for (i = 0; i < 8 ; i++)
903 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
904 return false;
905 return true;
906 }
907
908 /* variable MTRRs */
909 return valid_mtrr_type(data & 0xff);
910 }
911
912 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
913 {
914 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
915
916 if (!mtrr_valid(vcpu, msr, data))
917 return 1;
918
919 if (msr == MSR_MTRRdefType) {
920 vcpu->arch.mtrr_state.def_type = data;
921 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
922 } else if (msr == MSR_MTRRfix64K_00000)
923 p[0] = data;
924 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
925 p[1 + msr - MSR_MTRRfix16K_80000] = data;
926 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
927 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
928 else if (msr == MSR_IA32_CR_PAT)
929 vcpu->arch.pat = data;
930 else { /* Variable MTRRs */
931 int idx, is_mtrr_mask;
932 u64 *pt;
933
934 idx = (msr - 0x200) / 2;
935 is_mtrr_mask = msr - 0x200 - 2 * idx;
936 if (!is_mtrr_mask)
937 pt =
938 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
939 else
940 pt =
941 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
942 *pt = data;
943 }
944
945 kvm_mmu_reset_context(vcpu);
946 return 0;
947 }
948
949 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
950 {
951 u64 mcg_cap = vcpu->arch.mcg_cap;
952 unsigned bank_num = mcg_cap & 0xff;
953
954 switch (msr) {
955 case MSR_IA32_MCG_STATUS:
956 vcpu->arch.mcg_status = data;
957 break;
958 case MSR_IA32_MCG_CTL:
959 if (!(mcg_cap & MCG_CTL_P))
960 return 1;
961 if (data != 0 && data != ~(u64)0)
962 return -1;
963 vcpu->arch.mcg_ctl = data;
964 break;
965 default:
966 if (msr >= MSR_IA32_MC0_CTL &&
967 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
968 u32 offset = msr - MSR_IA32_MC0_CTL;
969 /* only 0 or all 1s can be written to IA32_MCi_CTL */
970 if ((offset & 0x3) == 0 &&
971 data != 0 && data != ~(u64)0)
972 return -1;
973 vcpu->arch.mce_banks[offset] = data;
974 break;
975 }
976 return 1;
977 }
978 return 0;
979 }
980
981 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
982 {
983 struct kvm *kvm = vcpu->kvm;
984 int lm = is_long_mode(vcpu);
985 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
986 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
987 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
988 : kvm->arch.xen_hvm_config.blob_size_32;
989 u32 page_num = data & ~PAGE_MASK;
990 u64 page_addr = data & PAGE_MASK;
991 u8 *page;
992 int r;
993
994 r = -E2BIG;
995 if (page_num >= blob_size)
996 goto out;
997 r = -ENOMEM;
998 page = kzalloc(PAGE_SIZE, GFP_KERNEL);
999 if (!page)
1000 goto out;
1001 r = -EFAULT;
1002 if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1003 goto out_free;
1004 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1005 goto out_free;
1006 r = 0;
1007 out_free:
1008 kfree(page);
1009 out:
1010 return r;
1011 }
1012
1013 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1014 {
1015 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1016 }
1017
1018 static bool kvm_hv_msr_partition_wide(u32 msr)
1019 {
1020 bool r = false;
1021 switch (msr) {
1022 case HV_X64_MSR_GUEST_OS_ID:
1023 case HV_X64_MSR_HYPERCALL:
1024 r = true;
1025 break;
1026 }
1027
1028 return r;
1029 }
1030
1031 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1032 {
1033 struct kvm *kvm = vcpu->kvm;
1034
1035 switch (msr) {
1036 case HV_X64_MSR_GUEST_OS_ID:
1037 kvm->arch.hv_guest_os_id = data;
1038 /* setting guest os id to zero disables hypercall page */
1039 if (!kvm->arch.hv_guest_os_id)
1040 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1041 break;
1042 case HV_X64_MSR_HYPERCALL: {
1043 u64 gfn;
1044 unsigned long addr;
1045 u8 instructions[4];
1046
1047 /* if guest os id is not set hypercall should remain disabled */
1048 if (!kvm->arch.hv_guest_os_id)
1049 break;
1050 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1051 kvm->arch.hv_hypercall = data;
1052 break;
1053 }
1054 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1055 addr = gfn_to_hva(kvm, gfn);
1056 if (kvm_is_error_hva(addr))
1057 return 1;
1058 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1059 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1060 if (copy_to_user((void __user *)addr, instructions, 4))
1061 return 1;
1062 kvm->arch.hv_hypercall = data;
1063 break;
1064 }
1065 default:
1066 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1067 "data 0x%llx\n", msr, data);
1068 return 1;
1069 }
1070 return 0;
1071 }
1072
1073 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1074 {
1075 switch (msr) {
1076 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1077 unsigned long addr;
1078
1079 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1080 vcpu->arch.hv_vapic = data;
1081 break;
1082 }
1083 addr = gfn_to_hva(vcpu->kvm, data >>
1084 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1085 if (kvm_is_error_hva(addr))
1086 return 1;
1087 if (clear_user((void __user *)addr, PAGE_SIZE))
1088 return 1;
1089 vcpu->arch.hv_vapic = data;
1090 break;
1091 }
1092 case HV_X64_MSR_EOI:
1093 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1094 case HV_X64_MSR_ICR:
1095 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1096 case HV_X64_MSR_TPR:
1097 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1098 default:
1099 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1100 "data 0x%llx\n", msr, data);
1101 return 1;
1102 }
1103
1104 return 0;
1105 }
1106
1107 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1108 {
1109 switch (msr) {
1110 case MSR_EFER:
1111 set_efer(vcpu, data);
1112 break;
1113 case MSR_K7_HWCR:
1114 data &= ~(u64)0x40; /* ignore flush filter disable */
1115 if (data != 0) {
1116 pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1117 data);
1118 return 1;
1119 }
1120 break;
1121 case MSR_FAM10H_MMIO_CONF_BASE:
1122 if (data != 0) {
1123 pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1124 "0x%llx\n", data);
1125 return 1;
1126 }
1127 break;
1128 case MSR_AMD64_NB_CFG:
1129 break;
1130 case MSR_IA32_DEBUGCTLMSR:
1131 if (!data) {
1132 /* We support the non-activated case already */
1133 break;
1134 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1135 /* Values other than LBR and BTF are vendor-specific,
1136 thus reserved and should throw a #GP */
1137 return 1;
1138 }
1139 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1140 __func__, data);
1141 break;
1142 case MSR_IA32_UCODE_REV:
1143 case MSR_IA32_UCODE_WRITE:
1144 case MSR_VM_HSAVE_PA:
1145 case MSR_AMD64_PATCH_LOADER:
1146 break;
1147 case 0x200 ... 0x2ff:
1148 return set_msr_mtrr(vcpu, msr, data);
1149 case MSR_IA32_APICBASE:
1150 kvm_set_apic_base(vcpu, data);
1151 break;
1152 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1153 return kvm_x2apic_msr_write(vcpu, msr, data);
1154 case MSR_IA32_MISC_ENABLE:
1155 vcpu->arch.ia32_misc_enable_msr = data;
1156 break;
1157 case MSR_KVM_WALL_CLOCK:
1158 vcpu->kvm->arch.wall_clock = data;
1159 kvm_write_wall_clock(vcpu->kvm, data);
1160 break;
1161 case MSR_KVM_SYSTEM_TIME: {
1162 if (vcpu->arch.time_page) {
1163 kvm_release_page_dirty(vcpu->arch.time_page);
1164 vcpu->arch.time_page = NULL;
1165 }
1166
1167 vcpu->arch.time = data;
1168
1169 /* we verify if the enable bit is set... */
1170 if (!(data & 1))
1171 break;
1172
1173 /* ...but clean it before doing the actual write */
1174 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1175
1176 vcpu->arch.time_page =
1177 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1178
1179 if (is_error_page(vcpu->arch.time_page)) {
1180 kvm_release_page_clean(vcpu->arch.time_page);
1181 vcpu->arch.time_page = NULL;
1182 }
1183
1184 kvm_request_guest_time_update(vcpu);
1185 break;
1186 }
1187 case MSR_IA32_MCG_CTL:
1188 case MSR_IA32_MCG_STATUS:
1189 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1190 return set_msr_mce(vcpu, msr, data);
1191
1192 /* Performance counters are not protected by a CPUID bit,
1193 * so we should check all of them in the generic path for the sake of
1194 * cross vendor migration.
1195 * Writing a zero into the event select MSRs disables them,
1196 * which we perfectly emulate ;-). Any other value should be at least
1197 * reported, some guests depend on them.
1198 */
1199 case MSR_P6_EVNTSEL0:
1200 case MSR_P6_EVNTSEL1:
1201 case MSR_K7_EVNTSEL0:
1202 case MSR_K7_EVNTSEL1:
1203 case MSR_K7_EVNTSEL2:
1204 case MSR_K7_EVNTSEL3:
1205 if (data != 0)
1206 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1207 "0x%x data 0x%llx\n", msr, data);
1208 break;
1209 /* at least RHEL 4 unconditionally writes to the perfctr registers,
1210 * so we ignore writes to make it happy.
1211 */
1212 case MSR_P6_PERFCTR0:
1213 case MSR_P6_PERFCTR1:
1214 case MSR_K7_PERFCTR0:
1215 case MSR_K7_PERFCTR1:
1216 case MSR_K7_PERFCTR2:
1217 case MSR_K7_PERFCTR3:
1218 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1219 "0x%x data 0x%llx\n", msr, data);
1220 break;
1221 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1222 if (kvm_hv_msr_partition_wide(msr)) {
1223 int r;
1224 mutex_lock(&vcpu->kvm->lock);
1225 r = set_msr_hyperv_pw(vcpu, msr, data);
1226 mutex_unlock(&vcpu->kvm->lock);
1227 return r;
1228 } else
1229 return set_msr_hyperv(vcpu, msr, data);
1230 break;
1231 default:
1232 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1233 return xen_hvm_config(vcpu, data);
1234 if (!ignore_msrs) {
1235 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1236 msr, data);
1237 return 1;
1238 } else {
1239 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1240 msr, data);
1241 break;
1242 }
1243 }
1244 return 0;
1245 }
1246 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1247
1248
1249 /*
1250 * Reads an msr value (of 'msr_index') into 'pdata'.
1251 * Returns 0 on success, non-0 otherwise.
1252 * Assumes vcpu_load() was already called.
1253 */
1254 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1255 {
1256 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1257 }
1258
1259 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1260 {
1261 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1262
1263 if (!msr_mtrr_valid(msr))
1264 return 1;
1265
1266 if (msr == MSR_MTRRdefType)
1267 *pdata = vcpu->arch.mtrr_state.def_type +
1268 (vcpu->arch.mtrr_state.enabled << 10);
1269 else if (msr == MSR_MTRRfix64K_00000)
1270 *pdata = p[0];
1271 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1272 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1273 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1274 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1275 else if (msr == MSR_IA32_CR_PAT)
1276 *pdata = vcpu->arch.pat;
1277 else { /* Variable MTRRs */
1278 int idx, is_mtrr_mask;
1279 u64 *pt;
1280
1281 idx = (msr - 0x200) / 2;
1282 is_mtrr_mask = msr - 0x200 - 2 * idx;
1283 if (!is_mtrr_mask)
1284 pt =
1285 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1286 else
1287 pt =
1288 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1289 *pdata = *pt;
1290 }
1291
1292 return 0;
1293 }
1294
1295 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1296 {
1297 u64 data;
1298 u64 mcg_cap = vcpu->arch.mcg_cap;
1299 unsigned bank_num = mcg_cap & 0xff;
1300
1301 switch (msr) {
1302 case MSR_IA32_P5_MC_ADDR:
1303 case MSR_IA32_P5_MC_TYPE:
1304 data = 0;
1305 break;
1306 case MSR_IA32_MCG_CAP:
1307 data = vcpu->arch.mcg_cap;
1308 break;
1309 case MSR_IA32_MCG_CTL:
1310 if (!(mcg_cap & MCG_CTL_P))
1311 return 1;
1312 data = vcpu->arch.mcg_ctl;
1313 break;
1314 case MSR_IA32_MCG_STATUS:
1315 data = vcpu->arch.mcg_status;
1316 break;
1317 default:
1318 if (msr >= MSR_IA32_MC0_CTL &&
1319 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1320 u32 offset = msr - MSR_IA32_MC0_CTL;
1321 data = vcpu->arch.mce_banks[offset];
1322 break;
1323 }
1324 return 1;
1325 }
1326 *pdata = data;
1327 return 0;
1328 }
1329
1330 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1331 {
1332 u64 data = 0;
1333 struct kvm *kvm = vcpu->kvm;
1334
1335 switch (msr) {
1336 case HV_X64_MSR_GUEST_OS_ID:
1337 data = kvm->arch.hv_guest_os_id;
1338 break;
1339 case HV_X64_MSR_HYPERCALL:
1340 data = kvm->arch.hv_hypercall;
1341 break;
1342 default:
1343 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1344 return 1;
1345 }
1346
1347 *pdata = data;
1348 return 0;
1349 }
1350
1351 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1352 {
1353 u64 data = 0;
1354
1355 switch (msr) {
1356 case HV_X64_MSR_VP_INDEX: {
1357 int r;
1358 struct kvm_vcpu *v;
1359 kvm_for_each_vcpu(r, v, vcpu->kvm)
1360 if (v == vcpu)
1361 data = r;
1362 break;
1363 }
1364 case HV_X64_MSR_EOI:
1365 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1366 case HV_X64_MSR_ICR:
1367 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1368 case HV_X64_MSR_TPR:
1369 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1370 default:
1371 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1372 return 1;
1373 }
1374 *pdata = data;
1375 return 0;
1376 }
1377
1378 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1379 {
1380 u64 data;
1381
1382 switch (msr) {
1383 case MSR_IA32_PLATFORM_ID:
1384 case MSR_IA32_UCODE_REV:
1385 case MSR_IA32_EBL_CR_POWERON:
1386 case MSR_IA32_DEBUGCTLMSR:
1387 case MSR_IA32_LASTBRANCHFROMIP:
1388 case MSR_IA32_LASTBRANCHTOIP:
1389 case MSR_IA32_LASTINTFROMIP:
1390 case MSR_IA32_LASTINTTOIP:
1391 case MSR_K8_SYSCFG:
1392 case MSR_K7_HWCR:
1393 case MSR_VM_HSAVE_PA:
1394 case MSR_P6_PERFCTR0:
1395 case MSR_P6_PERFCTR1:
1396 case MSR_P6_EVNTSEL0:
1397 case MSR_P6_EVNTSEL1:
1398 case MSR_K7_EVNTSEL0:
1399 case MSR_K7_PERFCTR0:
1400 case MSR_K8_INT_PENDING_MSG:
1401 case MSR_AMD64_NB_CFG:
1402 case MSR_FAM10H_MMIO_CONF_BASE:
1403 data = 0;
1404 break;
1405 case MSR_MTRRcap:
1406 data = 0x500 | KVM_NR_VAR_MTRR;
1407 break;
1408 case 0x200 ... 0x2ff:
1409 return get_msr_mtrr(vcpu, msr, pdata);
1410 case 0xcd: /* fsb frequency */
1411 data = 3;
1412 break;
1413 case MSR_IA32_APICBASE:
1414 data = kvm_get_apic_base(vcpu);
1415 break;
1416 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1417 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1418 break;
1419 case MSR_IA32_MISC_ENABLE:
1420 data = vcpu->arch.ia32_misc_enable_msr;
1421 break;
1422 case MSR_IA32_PERF_STATUS:
1423 /* TSC increment by tick */
1424 data = 1000ULL;
1425 /* CPU multiplier */
1426 data |= (((uint64_t)4ULL) << 40);
1427 break;
1428 case MSR_EFER:
1429 data = vcpu->arch.efer;
1430 break;
1431 case MSR_KVM_WALL_CLOCK:
1432 data = vcpu->kvm->arch.wall_clock;
1433 break;
1434 case MSR_KVM_SYSTEM_TIME:
1435 data = vcpu->arch.time;
1436 break;
1437 case MSR_IA32_P5_MC_ADDR:
1438 case MSR_IA32_P5_MC_TYPE:
1439 case MSR_IA32_MCG_CAP:
1440 case MSR_IA32_MCG_CTL:
1441 case MSR_IA32_MCG_STATUS:
1442 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1443 return get_msr_mce(vcpu, msr, pdata);
1444 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1445 if (kvm_hv_msr_partition_wide(msr)) {
1446 int r;
1447 mutex_lock(&vcpu->kvm->lock);
1448 r = get_msr_hyperv_pw(vcpu, msr, pdata);
1449 mutex_unlock(&vcpu->kvm->lock);
1450 return r;
1451 } else
1452 return get_msr_hyperv(vcpu, msr, pdata);
1453 break;
1454 default:
1455 if (!ignore_msrs) {
1456 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1457 return 1;
1458 } else {
1459 pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1460 data = 0;
1461 }
1462 break;
1463 }
1464 *pdata = data;
1465 return 0;
1466 }
1467 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1468
1469 /*
1470 * Read or write a bunch of msrs. All parameters are kernel addresses.
1471 *
1472 * @return number of msrs set successfully.
1473 */
1474 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1475 struct kvm_msr_entry *entries,
1476 int (*do_msr)(struct kvm_vcpu *vcpu,
1477 unsigned index, u64 *data))
1478 {
1479 int i, idx;
1480
1481 vcpu_load(vcpu);
1482
1483 idx = srcu_read_lock(&vcpu->kvm->srcu);
1484 for (i = 0; i < msrs->nmsrs; ++i)
1485 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1486 break;
1487 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1488
1489 vcpu_put(vcpu);
1490
1491 return i;
1492 }
1493
1494 /*
1495 * Read or write a bunch of msrs. Parameters are user addresses.
1496 *
1497 * @return number of msrs set successfully.
1498 */
1499 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1500 int (*do_msr)(struct kvm_vcpu *vcpu,
1501 unsigned index, u64 *data),
1502 int writeback)
1503 {
1504 struct kvm_msrs msrs;
1505 struct kvm_msr_entry *entries;
1506 int r, n;
1507 unsigned size;
1508
1509 r = -EFAULT;
1510 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1511 goto out;
1512
1513 r = -E2BIG;
1514 if (msrs.nmsrs >= MAX_IO_MSRS)
1515 goto out;
1516
1517 r = -ENOMEM;
1518 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1519 entries = vmalloc(size);
1520 if (!entries)
1521 goto out;
1522
1523 r = -EFAULT;
1524 if (copy_from_user(entries, user_msrs->entries, size))
1525 goto out_free;
1526
1527 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1528 if (r < 0)
1529 goto out_free;
1530
1531 r = -EFAULT;
1532 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1533 goto out_free;
1534
1535 r = n;
1536
1537 out_free:
1538 vfree(entries);
1539 out:
1540 return r;
1541 }
1542
1543 int kvm_dev_ioctl_check_extension(long ext)
1544 {
1545 int r;
1546
1547 switch (ext) {
1548 case KVM_CAP_IRQCHIP:
1549 case KVM_CAP_HLT:
1550 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1551 case KVM_CAP_SET_TSS_ADDR:
1552 case KVM_CAP_EXT_CPUID:
1553 case KVM_CAP_CLOCKSOURCE:
1554 case KVM_CAP_PIT:
1555 case KVM_CAP_NOP_IO_DELAY:
1556 case KVM_CAP_MP_STATE:
1557 case KVM_CAP_SYNC_MMU:
1558 case KVM_CAP_REINJECT_CONTROL:
1559 case KVM_CAP_IRQ_INJECT_STATUS:
1560 case KVM_CAP_ASSIGN_DEV_IRQ:
1561 case KVM_CAP_IRQFD:
1562 case KVM_CAP_IOEVENTFD:
1563 case KVM_CAP_PIT2:
1564 case KVM_CAP_PIT_STATE2:
1565 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1566 case KVM_CAP_XEN_HVM:
1567 case KVM_CAP_ADJUST_CLOCK:
1568 case KVM_CAP_VCPU_EVENTS:
1569 case KVM_CAP_HYPERV:
1570 case KVM_CAP_HYPERV_VAPIC:
1571 case KVM_CAP_HYPERV_SPIN:
1572 r = 1;
1573 break;
1574 case KVM_CAP_COALESCED_MMIO:
1575 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1576 break;
1577 case KVM_CAP_VAPIC:
1578 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1579 break;
1580 case KVM_CAP_NR_VCPUS:
1581 r = KVM_MAX_VCPUS;
1582 break;
1583 case KVM_CAP_NR_MEMSLOTS:
1584 r = KVM_MEMORY_SLOTS;
1585 break;
1586 case KVM_CAP_PV_MMU: /* obsolete */
1587 r = 0;
1588 break;
1589 case KVM_CAP_IOMMU:
1590 r = iommu_found();
1591 break;
1592 case KVM_CAP_MCE:
1593 r = KVM_MAX_MCE_BANKS;
1594 break;
1595 default:
1596 r = 0;
1597 break;
1598 }
1599 return r;
1600
1601 }
1602
1603 long kvm_arch_dev_ioctl(struct file *filp,
1604 unsigned int ioctl, unsigned long arg)
1605 {
1606 void __user *argp = (void __user *)arg;
1607 long r;
1608
1609 switch (ioctl) {
1610 case KVM_GET_MSR_INDEX_LIST: {
1611 struct kvm_msr_list __user *user_msr_list = argp;
1612 struct kvm_msr_list msr_list;
1613 unsigned n;
1614
1615 r = -EFAULT;
1616 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1617 goto out;
1618 n = msr_list.nmsrs;
1619 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1620 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1621 goto out;
1622 r = -E2BIG;
1623 if (n < msr_list.nmsrs)
1624 goto out;
1625 r = -EFAULT;
1626 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1627 num_msrs_to_save * sizeof(u32)))
1628 goto out;
1629 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1630 &emulated_msrs,
1631 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1632 goto out;
1633 r = 0;
1634 break;
1635 }
1636 case KVM_GET_SUPPORTED_CPUID: {
1637 struct kvm_cpuid2 __user *cpuid_arg = argp;
1638 struct kvm_cpuid2 cpuid;
1639
1640 r = -EFAULT;
1641 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1642 goto out;
1643 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1644 cpuid_arg->entries);
1645 if (r)
1646 goto out;
1647
1648 r = -EFAULT;
1649 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1650 goto out;
1651 r = 0;
1652 break;
1653 }
1654 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1655 u64 mce_cap;
1656
1657 mce_cap = KVM_MCE_CAP_SUPPORTED;
1658 r = -EFAULT;
1659 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1660 goto out;
1661 r = 0;
1662 break;
1663 }
1664 default:
1665 r = -EINVAL;
1666 }
1667 out:
1668 return r;
1669 }
1670
1671 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1672 {
1673 kvm_x86_ops->vcpu_load(vcpu, cpu);
1674 if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) {
1675 unsigned long khz = cpufreq_quick_get(cpu);
1676 if (!khz)
1677 khz = tsc_khz;
1678 per_cpu(cpu_tsc_khz, cpu) = khz;
1679 }
1680 kvm_request_guest_time_update(vcpu);
1681 }
1682
1683 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1684 {
1685 kvm_put_guest_fpu(vcpu);
1686 kvm_x86_ops->vcpu_put(vcpu);
1687 }
1688
1689 static int is_efer_nx(void)
1690 {
1691 unsigned long long efer = 0;
1692
1693 rdmsrl_safe(MSR_EFER, &efer);
1694 return efer & EFER_NX;
1695 }
1696
1697 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1698 {
1699 int i;
1700 struct kvm_cpuid_entry2 *e, *entry;
1701
1702 entry = NULL;
1703 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1704 e = &vcpu->arch.cpuid_entries[i];
1705 if (e->function == 0x80000001) {
1706 entry = e;
1707 break;
1708 }
1709 }
1710 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1711 entry->edx &= ~(1 << 20);
1712 printk(KERN_INFO "kvm: guest NX capability removed\n");
1713 }
1714 }
1715
1716 /* when an old userspace process fills a new kernel module */
1717 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1718 struct kvm_cpuid *cpuid,
1719 struct kvm_cpuid_entry __user *entries)
1720 {
1721 int r, i;
1722 struct kvm_cpuid_entry *cpuid_entries;
1723
1724 r = -E2BIG;
1725 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1726 goto out;
1727 r = -ENOMEM;
1728 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1729 if (!cpuid_entries)
1730 goto out;
1731 r = -EFAULT;
1732 if (copy_from_user(cpuid_entries, entries,
1733 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1734 goto out_free;
1735 for (i = 0; i < cpuid->nent; i++) {
1736 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1737 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1738 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1739 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1740 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1741 vcpu->arch.cpuid_entries[i].index = 0;
1742 vcpu->arch.cpuid_entries[i].flags = 0;
1743 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1744 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1745 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1746 }
1747 vcpu->arch.cpuid_nent = cpuid->nent;
1748 cpuid_fix_nx_cap(vcpu);
1749 r = 0;
1750 kvm_apic_set_version(vcpu);
1751 kvm_x86_ops->cpuid_update(vcpu);
1752
1753 out_free:
1754 vfree(cpuid_entries);
1755 out:
1756 return r;
1757 }
1758
1759 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1760 struct kvm_cpuid2 *cpuid,
1761 struct kvm_cpuid_entry2 __user *entries)
1762 {
1763 int r;
1764
1765 r = -E2BIG;
1766 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1767 goto out;
1768 r = -EFAULT;
1769 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1770 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1771 goto out;
1772 vcpu->arch.cpuid_nent = cpuid->nent;
1773 kvm_apic_set_version(vcpu);
1774 kvm_x86_ops->cpuid_update(vcpu);
1775 return 0;
1776
1777 out:
1778 return r;
1779 }
1780
1781 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1782 struct kvm_cpuid2 *cpuid,
1783 struct kvm_cpuid_entry2 __user *entries)
1784 {
1785 int r;
1786
1787 r = -E2BIG;
1788 if (cpuid->nent < vcpu->arch.cpuid_nent)
1789 goto out;
1790 r = -EFAULT;
1791 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1792 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1793 goto out;
1794 return 0;
1795
1796 out:
1797 cpuid->nent = vcpu->arch.cpuid_nent;
1798 return r;
1799 }
1800
1801 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1802 u32 index)
1803 {
1804 entry->function = function;
1805 entry->index = index;
1806 cpuid_count(entry->function, entry->index,
1807 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1808 entry->flags = 0;
1809 }
1810
1811 #define F(x) bit(X86_FEATURE_##x)
1812
1813 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1814 u32 index, int *nent, int maxnent)
1815 {
1816 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
1817 #ifdef CONFIG_X86_64
1818 unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
1819 ? F(GBPAGES) : 0;
1820 unsigned f_lm = F(LM);
1821 #else
1822 unsigned f_gbpages = 0;
1823 unsigned f_lm = 0;
1824 #endif
1825 unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
1826
1827 /* cpuid 1.edx */
1828 const u32 kvm_supported_word0_x86_features =
1829 F(FPU) | F(VME) | F(DE) | F(PSE) |
1830 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1831 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
1832 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1833 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
1834 0 /* Reserved, DS, ACPI */ | F(MMX) |
1835 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
1836 0 /* HTT, TM, Reserved, PBE */;
1837 /* cpuid 0x80000001.edx */
1838 const u32 kvm_supported_word1_x86_features =
1839 F(FPU) | F(VME) | F(DE) | F(PSE) |
1840 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1841 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
1842 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1843 F(PAT) | F(PSE36) | 0 /* Reserved */ |
1844 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
1845 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
1846 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
1847 /* cpuid 1.ecx */
1848 const u32 kvm_supported_word4_x86_features =
1849 F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
1850 0 /* DS-CPL, VMX, SMX, EST */ |
1851 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1852 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
1853 0 /* Reserved, DCA */ | F(XMM4_1) |
1854 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
1855 0 /* Reserved, XSAVE, OSXSAVE */;
1856 /* cpuid 0x80000001.ecx */
1857 const u32 kvm_supported_word6_x86_features =
1858 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
1859 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
1860 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
1861 0 /* SKINIT */ | 0 /* WDT */;
1862
1863 /* all calls to cpuid_count() should be made on the same cpu */
1864 get_cpu();
1865 do_cpuid_1_ent(entry, function, index);
1866 ++*nent;
1867
1868 switch (function) {
1869 case 0:
1870 entry->eax = min(entry->eax, (u32)0xb);
1871 break;
1872 case 1:
1873 entry->edx &= kvm_supported_word0_x86_features;
1874 entry->ecx &= kvm_supported_word4_x86_features;
1875 /* we support x2apic emulation even if host does not support
1876 * it since we emulate x2apic in software */
1877 entry->ecx |= F(X2APIC);
1878 break;
1879 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1880 * may return different values. This forces us to get_cpu() before
1881 * issuing the first command, and also to emulate this annoying behavior
1882 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1883 case 2: {
1884 int t, times = entry->eax & 0xff;
1885
1886 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1887 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1888 for (t = 1; t < times && *nent < maxnent; ++t) {
1889 do_cpuid_1_ent(&entry[t], function, 0);
1890 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1891 ++*nent;
1892 }
1893 break;
1894 }
1895 /* function 4 and 0xb have additional index. */
1896 case 4: {
1897 int i, cache_type;
1898
1899 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1900 /* read more entries until cache_type is zero */
1901 for (i = 1; *nent < maxnent; ++i) {
1902 cache_type = entry[i - 1].eax & 0x1f;
1903 if (!cache_type)
1904 break;
1905 do_cpuid_1_ent(&entry[i], function, i);
1906 entry[i].flags |=
1907 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1908 ++*nent;
1909 }
1910 break;
1911 }
1912 case 0xb: {
1913 int i, level_type;
1914
1915 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1916 /* read more entries until level_type is zero */
1917 for (i = 1; *nent < maxnent; ++i) {
1918 level_type = entry[i - 1].ecx & 0xff00;
1919 if (!level_type)
1920 break;
1921 do_cpuid_1_ent(&entry[i], function, i);
1922 entry[i].flags |=
1923 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1924 ++*nent;
1925 }
1926 break;
1927 }
1928 case 0x80000000:
1929 entry->eax = min(entry->eax, 0x8000001a);
1930 break;
1931 case 0x80000001:
1932 entry->edx &= kvm_supported_word1_x86_features;
1933 entry->ecx &= kvm_supported_word6_x86_features;
1934 break;
1935 }
1936 put_cpu();
1937 }
1938
1939 #undef F
1940
1941 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1942 struct kvm_cpuid_entry2 __user *entries)
1943 {
1944 struct kvm_cpuid_entry2 *cpuid_entries;
1945 int limit, nent = 0, r = -E2BIG;
1946 u32 func;
1947
1948 if (cpuid->nent < 1)
1949 goto out;
1950 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1951 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1952 r = -ENOMEM;
1953 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1954 if (!cpuid_entries)
1955 goto out;
1956
1957 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1958 limit = cpuid_entries[0].eax;
1959 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1960 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1961 &nent, cpuid->nent);
1962 r = -E2BIG;
1963 if (nent >= cpuid->nent)
1964 goto out_free;
1965
1966 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1967 limit = cpuid_entries[nent - 1].eax;
1968 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1969 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1970 &nent, cpuid->nent);
1971 r = -E2BIG;
1972 if (nent >= cpuid->nent)
1973 goto out_free;
1974
1975 r = -EFAULT;
1976 if (copy_to_user(entries, cpuid_entries,
1977 nent * sizeof(struct kvm_cpuid_entry2)))
1978 goto out_free;
1979 cpuid->nent = nent;
1980 r = 0;
1981
1982 out_free:
1983 vfree(cpuid_entries);
1984 out:
1985 return r;
1986 }
1987
1988 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1989 struct kvm_lapic_state *s)
1990 {
1991 vcpu_load(vcpu);
1992 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1993 vcpu_put(vcpu);
1994
1995 return 0;
1996 }
1997
1998 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1999 struct kvm_lapic_state *s)
2000 {
2001 vcpu_load(vcpu);
2002 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2003 kvm_apic_post_state_restore(vcpu);
2004 update_cr8_intercept(vcpu);
2005 vcpu_put(vcpu);
2006
2007 return 0;
2008 }
2009
2010 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2011 struct kvm_interrupt *irq)
2012 {
2013 if (irq->irq < 0 || irq->irq >= 256)
2014 return -EINVAL;
2015 if (irqchip_in_kernel(vcpu->kvm))
2016 return -ENXIO;
2017 vcpu_load(vcpu);
2018
2019 kvm_queue_interrupt(vcpu, irq->irq, false);
2020
2021 vcpu_put(vcpu);
2022
2023 return 0;
2024 }
2025
2026 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2027 {
2028 vcpu_load(vcpu);
2029 kvm_inject_nmi(vcpu);
2030 vcpu_put(vcpu);
2031
2032 return 0;
2033 }
2034
2035 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2036 struct kvm_tpr_access_ctl *tac)
2037 {
2038 if (tac->flags)
2039 return -EINVAL;
2040 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2041 return 0;
2042 }
2043
2044 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2045 u64 mcg_cap)
2046 {
2047 int r;
2048 unsigned bank_num = mcg_cap & 0xff, bank;
2049
2050 r = -EINVAL;
2051 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2052 goto out;
2053 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2054 goto out;
2055 r = 0;
2056 vcpu->arch.mcg_cap = mcg_cap;
2057 /* Init IA32_MCG_CTL to all 1s */
2058 if (mcg_cap & MCG_CTL_P)
2059 vcpu->arch.mcg_ctl = ~(u64)0;
2060 /* Init IA32_MCi_CTL to all 1s */
2061 for (bank = 0; bank < bank_num; bank++)
2062 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2063 out:
2064 return r;
2065 }
2066
2067 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2068 struct kvm_x86_mce *mce)
2069 {
2070 u64 mcg_cap = vcpu->arch.mcg_cap;
2071 unsigned bank_num = mcg_cap & 0xff;
2072 u64 *banks = vcpu->arch.mce_banks;
2073
2074 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2075 return -EINVAL;
2076 /*
2077 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2078 * reporting is disabled
2079 */
2080 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2081 vcpu->arch.mcg_ctl != ~(u64)0)
2082 return 0;
2083 banks += 4 * mce->bank;
2084 /*
2085 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2086 * reporting is disabled for the bank
2087 */
2088 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2089 return 0;
2090 if (mce->status & MCI_STATUS_UC) {
2091 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2092 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2093 printk(KERN_DEBUG "kvm: set_mce: "
2094 "injects mce exception while "
2095 "previous one is in progress!\n");
2096 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
2097 return 0;
2098 }
2099 if (banks[1] & MCI_STATUS_VAL)
2100 mce->status |= MCI_STATUS_OVER;
2101 banks[2] = mce->addr;
2102 banks[3] = mce->misc;
2103 vcpu->arch.mcg_status = mce->mcg_status;
2104 banks[1] = mce->status;
2105 kvm_queue_exception(vcpu, MC_VECTOR);
2106 } else if (!(banks[1] & MCI_STATUS_VAL)
2107 || !(banks[1] & MCI_STATUS_UC)) {
2108 if (banks[1] & MCI_STATUS_VAL)
2109 mce->status |= MCI_STATUS_OVER;
2110 banks[2] = mce->addr;
2111 banks[3] = mce->misc;
2112 banks[1] = mce->status;
2113 } else
2114 banks[1] |= MCI_STATUS_OVER;
2115 return 0;
2116 }
2117
2118 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2119 struct kvm_vcpu_events *events)
2120 {
2121 vcpu_load(vcpu);
2122
2123 events->exception.injected = vcpu->arch.exception.pending;
2124 events->exception.nr = vcpu->arch.exception.nr;
2125 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2126 events->exception.error_code = vcpu->arch.exception.error_code;
2127
2128 events->interrupt.injected = vcpu->arch.interrupt.pending;
2129 events->interrupt.nr = vcpu->arch.interrupt.nr;
2130 events->interrupt.soft = vcpu->arch.interrupt.soft;
2131
2132 events->nmi.injected = vcpu->arch.nmi_injected;
2133 events->nmi.pending = vcpu->arch.nmi_pending;
2134 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2135
2136 events->sipi_vector = vcpu->arch.sipi_vector;
2137
2138 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2139 | KVM_VCPUEVENT_VALID_SIPI_VECTOR);
2140
2141 vcpu_put(vcpu);
2142 }
2143
2144 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2145 struct kvm_vcpu_events *events)
2146 {
2147 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2148 | KVM_VCPUEVENT_VALID_SIPI_VECTOR))
2149 return -EINVAL;
2150
2151 vcpu_load(vcpu);
2152
2153 vcpu->arch.exception.pending = events->exception.injected;
2154 vcpu->arch.exception.nr = events->exception.nr;
2155 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2156 vcpu->arch.exception.error_code = events->exception.error_code;
2157
2158 vcpu->arch.interrupt.pending = events->interrupt.injected;
2159 vcpu->arch.interrupt.nr = events->interrupt.nr;
2160 vcpu->arch.interrupt.soft = events->interrupt.soft;
2161 if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
2162 kvm_pic_clear_isr_ack(vcpu->kvm);
2163
2164 vcpu->arch.nmi_injected = events->nmi.injected;
2165 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2166 vcpu->arch.nmi_pending = events->nmi.pending;
2167 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2168
2169 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2170 vcpu->arch.sipi_vector = events->sipi_vector;
2171
2172 vcpu_put(vcpu);
2173
2174 return 0;
2175 }
2176
2177 long kvm_arch_vcpu_ioctl(struct file *filp,
2178 unsigned int ioctl, unsigned long arg)
2179 {
2180 struct kvm_vcpu *vcpu = filp->private_data;
2181 void __user *argp = (void __user *)arg;
2182 int r;
2183 struct kvm_lapic_state *lapic = NULL;
2184
2185 switch (ioctl) {
2186 case KVM_GET_LAPIC: {
2187 r = -EINVAL;
2188 if (!vcpu->arch.apic)
2189 goto out;
2190 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2191
2192 r = -ENOMEM;
2193 if (!lapic)
2194 goto out;
2195 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
2196 if (r)
2197 goto out;
2198 r = -EFAULT;
2199 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
2200 goto out;
2201 r = 0;
2202 break;
2203 }
2204 case KVM_SET_LAPIC: {
2205 r = -EINVAL;
2206 if (!vcpu->arch.apic)
2207 goto out;
2208 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2209 r = -ENOMEM;
2210 if (!lapic)
2211 goto out;
2212 r = -EFAULT;
2213 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
2214 goto out;
2215 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
2216 if (r)
2217 goto out;
2218 r = 0;
2219 break;
2220 }
2221 case KVM_INTERRUPT: {
2222 struct kvm_interrupt irq;
2223
2224 r = -EFAULT;
2225 if (copy_from_user(&irq, argp, sizeof irq))
2226 goto out;
2227 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2228 if (r)
2229 goto out;
2230 r = 0;
2231 break;
2232 }
2233 case KVM_NMI: {
2234 r = kvm_vcpu_ioctl_nmi(vcpu);
2235 if (r)
2236 goto out;
2237 r = 0;
2238 break;
2239 }
2240 case KVM_SET_CPUID: {
2241 struct kvm_cpuid __user *cpuid_arg = argp;
2242 struct kvm_cpuid cpuid;
2243
2244 r = -EFAULT;
2245 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2246 goto out;
2247 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2248 if (r)
2249 goto out;
2250 break;
2251 }
2252 case KVM_SET_CPUID2: {
2253 struct kvm_cpuid2 __user *cpuid_arg = argp;
2254 struct kvm_cpuid2 cpuid;
2255
2256 r = -EFAULT;
2257 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2258 goto out;
2259 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2260 cpuid_arg->entries);
2261 if (r)
2262 goto out;
2263 break;
2264 }
2265 case KVM_GET_CPUID2: {
2266 struct kvm_cpuid2 __user *cpuid_arg = argp;
2267 struct kvm_cpuid2 cpuid;
2268
2269 r = -EFAULT;
2270 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2271 goto out;
2272 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2273 cpuid_arg->entries);
2274 if (r)
2275 goto out;
2276 r = -EFAULT;
2277 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2278 goto out;
2279 r = 0;
2280 break;
2281 }
2282 case KVM_GET_MSRS:
2283 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2284 break;
2285 case KVM_SET_MSRS:
2286 r = msr_io(vcpu, argp, do_set_msr, 0);
2287 break;
2288 case KVM_TPR_ACCESS_REPORTING: {
2289 struct kvm_tpr_access_ctl tac;
2290
2291 r = -EFAULT;
2292 if (copy_from_user(&tac, argp, sizeof tac))
2293 goto out;
2294 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2295 if (r)
2296 goto out;
2297 r = -EFAULT;
2298 if (copy_to_user(argp, &tac, sizeof tac))
2299 goto out;
2300 r = 0;
2301 break;
2302 };
2303 case KVM_SET_VAPIC_ADDR: {
2304 struct kvm_vapic_addr va;
2305
2306 r = -EINVAL;
2307 if (!irqchip_in_kernel(vcpu->kvm))
2308 goto out;
2309 r = -EFAULT;
2310 if (copy_from_user(&va, argp, sizeof va))
2311 goto out;
2312 r = 0;
2313 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2314 break;
2315 }
2316 case KVM_X86_SETUP_MCE: {
2317 u64 mcg_cap;
2318
2319 r = -EFAULT;
2320 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2321 goto out;
2322 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2323 break;
2324 }
2325 case KVM_X86_SET_MCE: {
2326 struct kvm_x86_mce mce;
2327
2328 r = -EFAULT;
2329 if (copy_from_user(&mce, argp, sizeof mce))
2330 goto out;
2331 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2332 break;
2333 }
2334 case KVM_GET_VCPU_EVENTS: {
2335 struct kvm_vcpu_events events;
2336
2337 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2338
2339 r = -EFAULT;
2340 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2341 break;
2342 r = 0;
2343 break;
2344 }
2345 case KVM_SET_VCPU_EVENTS: {
2346 struct kvm_vcpu_events events;
2347
2348 r = -EFAULT;
2349 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2350 break;
2351
2352 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2353 break;
2354 }
2355 default:
2356 r = -EINVAL;
2357 }
2358 out:
2359 kfree(lapic);
2360 return r;
2361 }
2362
2363 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2364 {
2365 int ret;
2366
2367 if (addr > (unsigned int)(-3 * PAGE_SIZE))
2368 return -1;
2369 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2370 return ret;
2371 }
2372
2373 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2374 u64 ident_addr)
2375 {
2376 kvm->arch.ept_identity_map_addr = ident_addr;
2377 return 0;
2378 }
2379
2380 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2381 u32 kvm_nr_mmu_pages)
2382 {
2383 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2384 return -EINVAL;
2385
2386 mutex_lock(&kvm->slots_lock);
2387 spin_lock(&kvm->mmu_lock);
2388
2389 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2390 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2391
2392 spin_unlock(&kvm->mmu_lock);
2393 mutex_unlock(&kvm->slots_lock);
2394 return 0;
2395 }
2396
2397 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2398 {
2399 return kvm->arch.n_alloc_mmu_pages;
2400 }
2401
2402 gfn_t unalias_gfn_instantiation(struct kvm *kvm, gfn_t gfn)
2403 {
2404 int i;
2405 struct kvm_mem_alias *alias;
2406 struct kvm_mem_aliases *aliases;
2407
2408 aliases = rcu_dereference(kvm->arch.aliases);
2409
2410 for (i = 0; i < aliases->naliases; ++i) {
2411 alias = &aliases->aliases[i];
2412 if (alias->flags & KVM_ALIAS_INVALID)
2413 continue;
2414 if (gfn >= alias->base_gfn
2415 && gfn < alias->base_gfn + alias->npages)
2416 return alias->target_gfn + gfn - alias->base_gfn;
2417 }
2418 return gfn;
2419 }
2420
2421 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
2422 {
2423 int i;
2424 struct kvm_mem_alias *alias;
2425 struct kvm_mem_aliases *aliases;
2426
2427 aliases = rcu_dereference(kvm->arch.aliases);
2428
2429 for (i = 0; i < aliases->naliases; ++i) {
2430 alias = &aliases->aliases[i];
2431 if (gfn >= alias->base_gfn
2432 && gfn < alias->base_gfn + alias->npages)
2433 return alias->target_gfn + gfn - alias->base_gfn;
2434 }
2435 return gfn;
2436 }
2437
2438 /*
2439 * Set a new alias region. Aliases map a portion of physical memory into
2440 * another portion. This is useful for memory windows, for example the PC
2441 * VGA region.
2442 */
2443 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
2444 struct kvm_memory_alias *alias)
2445 {
2446 int r, n;
2447 struct kvm_mem_alias *p;
2448 struct kvm_mem_aliases *aliases, *old_aliases;
2449
2450 r = -EINVAL;
2451 /* General sanity checks */
2452 if (alias->memory_size & (PAGE_SIZE - 1))
2453 goto out;
2454 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
2455 goto out;
2456 if (alias->slot >= KVM_ALIAS_SLOTS)
2457 goto out;
2458 if (alias->guest_phys_addr + alias->memory_size
2459 < alias->guest_phys_addr)
2460 goto out;
2461 if (alias->target_phys_addr + alias->memory_size
2462 < alias->target_phys_addr)
2463 goto out;
2464
2465 r = -ENOMEM;
2466 aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
2467 if (!aliases)
2468 goto out;
2469
2470 mutex_lock(&kvm->slots_lock);
2471
2472 /* invalidate any gfn reference in case of deletion/shrinking */
2473 memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
2474 aliases->aliases[alias->slot].flags |= KVM_ALIAS_INVALID;
2475 old_aliases = kvm->arch.aliases;
2476 rcu_assign_pointer(kvm->arch.aliases, aliases);
2477 synchronize_srcu_expedited(&kvm->srcu);
2478 kvm_mmu_zap_all(kvm);
2479 kfree(old_aliases);
2480
2481 r = -ENOMEM;
2482 aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
2483 if (!aliases)
2484 goto out_unlock;
2485
2486 memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
2487
2488 p = &aliases->aliases[alias->slot];
2489 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
2490 p->npages = alias->memory_size >> PAGE_SHIFT;
2491 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
2492 p->flags &= ~(KVM_ALIAS_INVALID);
2493
2494 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
2495 if (aliases->aliases[n - 1].npages)
2496 break;
2497 aliases->naliases = n;
2498
2499 old_aliases = kvm->arch.aliases;
2500 rcu_assign_pointer(kvm->arch.aliases, aliases);
2501 synchronize_srcu_expedited(&kvm->srcu);
2502 kfree(old_aliases);
2503 r = 0;
2504
2505 out_unlock:
2506 mutex_unlock(&kvm->slots_lock);
2507 out:
2508 return r;
2509 }
2510
2511 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2512 {
2513 int r;
2514
2515 r = 0;
2516 switch (chip->chip_id) {
2517 case KVM_IRQCHIP_PIC_MASTER:
2518 memcpy(&chip->chip.pic,
2519 &pic_irqchip(kvm)->pics[0],
2520 sizeof(struct kvm_pic_state));
2521 break;
2522 case KVM_IRQCHIP_PIC_SLAVE:
2523 memcpy(&chip->chip.pic,
2524 &pic_irqchip(kvm)->pics[1],
2525 sizeof(struct kvm_pic_state));
2526 break;
2527 case KVM_IRQCHIP_IOAPIC:
2528 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2529 break;
2530 default:
2531 r = -EINVAL;
2532 break;
2533 }
2534 return r;
2535 }
2536
2537 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2538 {
2539 int r;
2540
2541 r = 0;
2542 switch (chip->chip_id) {
2543 case KVM_IRQCHIP_PIC_MASTER:
2544 spin_lock(&pic_irqchip(kvm)->lock);
2545 memcpy(&pic_irqchip(kvm)->pics[0],
2546 &chip->chip.pic,
2547 sizeof(struct kvm_pic_state));
2548 spin_unlock(&pic_irqchip(kvm)->lock);
2549 break;
2550 case KVM_IRQCHIP_PIC_SLAVE:
2551 spin_lock(&pic_irqchip(kvm)->lock);
2552 memcpy(&pic_irqchip(kvm)->pics[1],
2553 &chip->chip.pic,
2554 sizeof(struct kvm_pic_state));
2555 spin_unlock(&pic_irqchip(kvm)->lock);
2556 break;
2557 case KVM_IRQCHIP_IOAPIC:
2558 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
2559 break;
2560 default:
2561 r = -EINVAL;
2562 break;
2563 }
2564 kvm_pic_update_irq(pic_irqchip(kvm));
2565 return r;
2566 }
2567
2568 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2569 {
2570 int r = 0;
2571
2572 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2573 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2574 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2575 return r;
2576 }
2577
2578 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2579 {
2580 int r = 0;
2581
2582 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2583 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2584 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2585 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2586 return r;
2587 }
2588
2589 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2590 {
2591 int r = 0;
2592
2593 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2594 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2595 sizeof(ps->channels));
2596 ps->flags = kvm->arch.vpit->pit_state.flags;
2597 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2598 return r;
2599 }
2600
2601 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2602 {
2603 int r = 0, start = 0;
2604 u32 prev_legacy, cur_legacy;
2605 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2606 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2607 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2608 if (!prev_legacy && cur_legacy)
2609 start = 1;
2610 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2611 sizeof(kvm->arch.vpit->pit_state.channels));
2612 kvm->arch.vpit->pit_state.flags = ps->flags;
2613 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2614 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2615 return r;
2616 }
2617
2618 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2619 struct kvm_reinject_control *control)
2620 {
2621 if (!kvm->arch.vpit)
2622 return -ENXIO;
2623 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2624 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2625 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2626 return 0;
2627 }
2628
2629 /*
2630 * Get (and clear) the dirty memory log for a memory slot.
2631 */
2632 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2633 struct kvm_dirty_log *log)
2634 {
2635 int r, n, i;
2636 struct kvm_memory_slot *memslot;
2637 unsigned long is_dirty = 0;
2638 unsigned long *dirty_bitmap = NULL;
2639
2640 mutex_lock(&kvm->slots_lock);
2641
2642 r = -EINVAL;
2643 if (log->slot >= KVM_MEMORY_SLOTS)
2644 goto out;
2645
2646 memslot = &kvm->memslots->memslots[log->slot];
2647 r = -ENOENT;
2648 if (!memslot->dirty_bitmap)
2649 goto out;
2650
2651 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
2652
2653 r = -ENOMEM;
2654 dirty_bitmap = vmalloc(n);
2655 if (!dirty_bitmap)
2656 goto out;
2657 memset(dirty_bitmap, 0, n);
2658
2659 for (i = 0; !is_dirty && i < n/sizeof(long); i++)
2660 is_dirty = memslot->dirty_bitmap[i];
2661
2662 /* If nothing is dirty, don't bother messing with page tables. */
2663 if (is_dirty) {
2664 struct kvm_memslots *slots, *old_slots;
2665
2666 spin_lock(&kvm->mmu_lock);
2667 kvm_mmu_slot_remove_write_access(kvm, log->slot);
2668 spin_unlock(&kvm->mmu_lock);
2669
2670 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
2671 if (!slots)
2672 goto out_free;
2673
2674 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
2675 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
2676
2677 old_slots = kvm->memslots;
2678 rcu_assign_pointer(kvm->memslots, slots);
2679 synchronize_srcu_expedited(&kvm->srcu);
2680 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
2681 kfree(old_slots);
2682 }
2683
2684 r = 0;
2685 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
2686 r = -EFAULT;
2687 out_free:
2688 vfree(dirty_bitmap);
2689 out:
2690 mutex_unlock(&kvm->slots_lock);
2691 return r;
2692 }
2693
2694 long kvm_arch_vm_ioctl(struct file *filp,
2695 unsigned int ioctl, unsigned long arg)
2696 {
2697 struct kvm *kvm = filp->private_data;
2698 void __user *argp = (void __user *)arg;
2699 int r = -ENOTTY;
2700 /*
2701 * This union makes it completely explicit to gcc-3.x
2702 * that these two variables' stack usage should be
2703 * combined, not added together.
2704 */
2705 union {
2706 struct kvm_pit_state ps;
2707 struct kvm_pit_state2 ps2;
2708 struct kvm_memory_alias alias;
2709 struct kvm_pit_config pit_config;
2710 } u;
2711
2712 switch (ioctl) {
2713 case KVM_SET_TSS_ADDR:
2714 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
2715 if (r < 0)
2716 goto out;
2717 break;
2718 case KVM_SET_IDENTITY_MAP_ADDR: {
2719 u64 ident_addr;
2720
2721 r = -EFAULT;
2722 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
2723 goto out;
2724 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
2725 if (r < 0)
2726 goto out;
2727 break;
2728 }
2729 case KVM_SET_MEMORY_REGION: {
2730 struct kvm_memory_region kvm_mem;
2731 struct kvm_userspace_memory_region kvm_userspace_mem;
2732
2733 r = -EFAULT;
2734 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2735 goto out;
2736 kvm_userspace_mem.slot = kvm_mem.slot;
2737 kvm_userspace_mem.flags = kvm_mem.flags;
2738 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
2739 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
2740 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
2741 if (r)
2742 goto out;
2743 break;
2744 }
2745 case KVM_SET_NR_MMU_PAGES:
2746 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
2747 if (r)
2748 goto out;
2749 break;
2750 case KVM_GET_NR_MMU_PAGES:
2751 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
2752 break;
2753 case KVM_SET_MEMORY_ALIAS:
2754 r = -EFAULT;
2755 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
2756 goto out;
2757 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
2758 if (r)
2759 goto out;
2760 break;
2761 case KVM_CREATE_IRQCHIP: {
2762 struct kvm_pic *vpic;
2763
2764 mutex_lock(&kvm->lock);
2765 r = -EEXIST;
2766 if (kvm->arch.vpic)
2767 goto create_irqchip_unlock;
2768 r = -ENOMEM;
2769 vpic = kvm_create_pic(kvm);
2770 if (vpic) {
2771 r = kvm_ioapic_init(kvm);
2772 if (r) {
2773 kfree(vpic);
2774 goto create_irqchip_unlock;
2775 }
2776 } else
2777 goto create_irqchip_unlock;
2778 smp_wmb();
2779 kvm->arch.vpic = vpic;
2780 smp_wmb();
2781 r = kvm_setup_default_irq_routing(kvm);
2782 if (r) {
2783 mutex_lock(&kvm->irq_lock);
2784 kfree(kvm->arch.vpic);
2785 kfree(kvm->arch.vioapic);
2786 kvm->arch.vpic = NULL;
2787 kvm->arch.vioapic = NULL;
2788 mutex_unlock(&kvm->irq_lock);
2789 }
2790 create_irqchip_unlock:
2791 mutex_unlock(&kvm->lock);
2792 break;
2793 }
2794 case KVM_CREATE_PIT:
2795 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
2796 goto create_pit;
2797 case KVM_CREATE_PIT2:
2798 r = -EFAULT;
2799 if (copy_from_user(&u.pit_config, argp,
2800 sizeof(struct kvm_pit_config)))
2801 goto out;
2802 create_pit:
2803 mutex_lock(&kvm->slots_lock);
2804 r = -EEXIST;
2805 if (kvm->arch.vpit)
2806 goto create_pit_unlock;
2807 r = -ENOMEM;
2808 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
2809 if (kvm->arch.vpit)
2810 r = 0;
2811 create_pit_unlock:
2812 mutex_unlock(&kvm->slots_lock);
2813 break;
2814 case KVM_IRQ_LINE_STATUS:
2815 case KVM_IRQ_LINE: {
2816 struct kvm_irq_level irq_event;
2817
2818 r = -EFAULT;
2819 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2820 goto out;
2821 if (irqchip_in_kernel(kvm)) {
2822 __s32 status;
2823 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2824 irq_event.irq, irq_event.level);
2825 if (ioctl == KVM_IRQ_LINE_STATUS) {
2826 irq_event.status = status;
2827 if (copy_to_user(argp, &irq_event,
2828 sizeof irq_event))
2829 goto out;
2830 }
2831 r = 0;
2832 }
2833 break;
2834 }
2835 case KVM_GET_IRQCHIP: {
2836 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2837 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2838
2839 r = -ENOMEM;
2840 if (!chip)
2841 goto out;
2842 r = -EFAULT;
2843 if (copy_from_user(chip, argp, sizeof *chip))
2844 goto get_irqchip_out;
2845 r = -ENXIO;
2846 if (!irqchip_in_kernel(kvm))
2847 goto get_irqchip_out;
2848 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
2849 if (r)
2850 goto get_irqchip_out;
2851 r = -EFAULT;
2852 if (copy_to_user(argp, chip, sizeof *chip))
2853 goto get_irqchip_out;
2854 r = 0;
2855 get_irqchip_out:
2856 kfree(chip);
2857 if (r)
2858 goto out;
2859 break;
2860 }
2861 case KVM_SET_IRQCHIP: {
2862 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2863 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2864
2865 r = -ENOMEM;
2866 if (!chip)
2867 goto out;
2868 r = -EFAULT;
2869 if (copy_from_user(chip, argp, sizeof *chip))
2870 goto set_irqchip_out;
2871 r = -ENXIO;
2872 if (!irqchip_in_kernel(kvm))
2873 goto set_irqchip_out;
2874 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
2875 if (r)
2876 goto set_irqchip_out;
2877 r = 0;
2878 set_irqchip_out:
2879 kfree(chip);
2880 if (r)
2881 goto out;
2882 break;
2883 }
2884 case KVM_GET_PIT: {
2885 r = -EFAULT;
2886 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
2887 goto out;
2888 r = -ENXIO;
2889 if (!kvm->arch.vpit)
2890 goto out;
2891 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
2892 if (r)
2893 goto out;
2894 r = -EFAULT;
2895 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
2896 goto out;
2897 r = 0;
2898 break;
2899 }
2900 case KVM_SET_PIT: {
2901 r = -EFAULT;
2902 if (copy_from_user(&u.ps, argp, sizeof u.ps))
2903 goto out;
2904 r = -ENXIO;
2905 if (!kvm->arch.vpit)
2906 goto out;
2907 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
2908 if (r)
2909 goto out;
2910 r = 0;
2911 break;
2912 }
2913 case KVM_GET_PIT2: {
2914 r = -ENXIO;
2915 if (!kvm->arch.vpit)
2916 goto out;
2917 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
2918 if (r)
2919 goto out;
2920 r = -EFAULT;
2921 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
2922 goto out;
2923 r = 0;
2924 break;
2925 }
2926 case KVM_SET_PIT2: {
2927 r = -EFAULT;
2928 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
2929 goto out;
2930 r = -ENXIO;
2931 if (!kvm->arch.vpit)
2932 goto out;
2933 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
2934 if (r)
2935 goto out;
2936 r = 0;
2937 break;
2938 }
2939 case KVM_REINJECT_CONTROL: {
2940 struct kvm_reinject_control control;
2941 r = -EFAULT;
2942 if (copy_from_user(&control, argp, sizeof(control)))
2943 goto out;
2944 r = kvm_vm_ioctl_reinject(kvm, &control);
2945 if (r)
2946 goto out;
2947 r = 0;
2948 break;
2949 }
2950 case KVM_XEN_HVM_CONFIG: {
2951 r = -EFAULT;
2952 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
2953 sizeof(struct kvm_xen_hvm_config)))
2954 goto out;
2955 r = -EINVAL;
2956 if (kvm->arch.xen_hvm_config.flags)
2957 goto out;
2958 r = 0;
2959 break;
2960 }
2961 case KVM_SET_CLOCK: {
2962 struct timespec now;
2963 struct kvm_clock_data user_ns;
2964 u64 now_ns;
2965 s64 delta;
2966
2967 r = -EFAULT;
2968 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
2969 goto out;
2970
2971 r = -EINVAL;
2972 if (user_ns.flags)
2973 goto out;
2974
2975 r = 0;
2976 ktime_get_ts(&now);
2977 now_ns = timespec_to_ns(&now);
2978 delta = user_ns.clock - now_ns;
2979 kvm->arch.kvmclock_offset = delta;
2980 break;
2981 }
2982 case KVM_GET_CLOCK: {
2983 struct timespec now;
2984 struct kvm_clock_data user_ns;
2985 u64 now_ns;
2986
2987 ktime_get_ts(&now);
2988 now_ns = timespec_to_ns(&now);
2989 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
2990 user_ns.flags = 0;
2991
2992 r = -EFAULT;
2993 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
2994 goto out;
2995 r = 0;
2996 break;
2997 }
2998
2999 default:
3000 ;
3001 }
3002 out:
3003 return r;
3004 }
3005
3006 static void kvm_init_msr_list(void)
3007 {
3008 u32 dummy[2];
3009 unsigned i, j;
3010
3011 /* skip the first msrs in the list. KVM-specific */
3012 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3013 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3014 continue;
3015 if (j < i)
3016 msrs_to_save[j] = msrs_to_save[i];
3017 j++;
3018 }
3019 num_msrs_to_save = j;
3020 }
3021
3022 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3023 const void *v)
3024 {
3025 if (vcpu->arch.apic &&
3026 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
3027 return 0;
3028
3029 return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3030 }
3031
3032 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3033 {
3034 if (vcpu->arch.apic &&
3035 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
3036 return 0;
3037
3038 return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3039 }
3040
3041 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
3042 struct kvm_vcpu *vcpu)
3043 {
3044 void *data = val;
3045 int r = X86EMUL_CONTINUE;
3046
3047 while (bytes) {
3048 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
3049 unsigned offset = addr & (PAGE_SIZE-1);
3050 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3051 int ret;
3052
3053 if (gpa == UNMAPPED_GVA) {
3054 r = X86EMUL_PROPAGATE_FAULT;
3055 goto out;
3056 }
3057 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3058 if (ret < 0) {
3059 r = X86EMUL_UNHANDLEABLE;
3060 goto out;
3061 }
3062
3063 bytes -= toread;
3064 data += toread;
3065 addr += toread;
3066 }
3067 out:
3068 return r;
3069 }
3070
3071 static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
3072 struct kvm_vcpu *vcpu)
3073 {
3074 void *data = val;
3075 int r = X86EMUL_CONTINUE;
3076
3077 while (bytes) {
3078 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
3079 unsigned offset = addr & (PAGE_SIZE-1);
3080 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3081 int ret;
3082
3083 if (gpa == UNMAPPED_GVA) {
3084 r = X86EMUL_PROPAGATE_FAULT;
3085 goto out;
3086 }
3087 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3088 if (ret < 0) {
3089 r = X86EMUL_UNHANDLEABLE;
3090 goto out;
3091 }
3092
3093 bytes -= towrite;
3094 data += towrite;
3095 addr += towrite;
3096 }
3097 out:
3098 return r;
3099 }
3100
3101
3102 static int emulator_read_emulated(unsigned long addr,
3103 void *val,
3104 unsigned int bytes,
3105 struct kvm_vcpu *vcpu)
3106 {
3107 gpa_t gpa;
3108
3109 if (vcpu->mmio_read_completed) {
3110 memcpy(val, vcpu->mmio_data, bytes);
3111 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3112 vcpu->mmio_phys_addr, *(u64 *)val);
3113 vcpu->mmio_read_completed = 0;
3114 return X86EMUL_CONTINUE;
3115 }
3116
3117 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
3118
3119 /* For APIC access vmexit */
3120 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3121 goto mmio;
3122
3123 if (kvm_read_guest_virt(addr, val, bytes, vcpu)
3124 == X86EMUL_CONTINUE)
3125 return X86EMUL_CONTINUE;
3126 if (gpa == UNMAPPED_GVA)
3127 return X86EMUL_PROPAGATE_FAULT;
3128
3129 mmio:
3130 /*
3131 * Is this MMIO handled locally?
3132 */
3133 if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
3134 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
3135 return X86EMUL_CONTINUE;
3136 }
3137
3138 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3139
3140 vcpu->mmio_needed = 1;
3141 vcpu->mmio_phys_addr = gpa;
3142 vcpu->mmio_size = bytes;
3143 vcpu->mmio_is_write = 0;
3144
3145 return X86EMUL_UNHANDLEABLE;
3146 }
3147
3148 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3149 const void *val, int bytes)
3150 {
3151 int ret;
3152
3153 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3154 if (ret < 0)
3155 return 0;
3156 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3157 return 1;
3158 }
3159
3160 static int emulator_write_emulated_onepage(unsigned long addr,
3161 const void *val,
3162 unsigned int bytes,
3163 struct kvm_vcpu *vcpu)
3164 {
3165 gpa_t gpa;
3166
3167 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
3168
3169 if (gpa == UNMAPPED_GVA) {
3170 kvm_inject_page_fault(vcpu, addr, 2);
3171 return X86EMUL_PROPAGATE_FAULT;
3172 }
3173
3174 /* For APIC access vmexit */
3175 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3176 goto mmio;
3177
3178 if (emulator_write_phys(vcpu, gpa, val, bytes))
3179 return X86EMUL_CONTINUE;
3180
3181 mmio:
3182 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3183 /*
3184 * Is this MMIO handled locally?
3185 */
3186 if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
3187 return X86EMUL_CONTINUE;
3188
3189 vcpu->mmio_needed = 1;
3190 vcpu->mmio_phys_addr = gpa;
3191 vcpu->mmio_size = bytes;
3192 vcpu->mmio_is_write = 1;
3193 memcpy(vcpu->mmio_data, val, bytes);
3194
3195 return X86EMUL_CONTINUE;
3196 }
3197
3198 int emulator_write_emulated(unsigned long addr,
3199 const void *val,
3200 unsigned int bytes,
3201 struct kvm_vcpu *vcpu)
3202 {
3203 /* Crossing a page boundary? */
3204 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3205 int rc, now;
3206
3207 now = -addr & ~PAGE_MASK;
3208 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
3209 if (rc != X86EMUL_CONTINUE)
3210 return rc;
3211 addr += now;
3212 val += now;
3213 bytes -= now;
3214 }
3215 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
3216 }
3217 EXPORT_SYMBOL_GPL(emulator_write_emulated);
3218
3219 static int emulator_cmpxchg_emulated(unsigned long addr,
3220 const void *old,
3221 const void *new,
3222 unsigned int bytes,
3223 struct kvm_vcpu *vcpu)
3224 {
3225 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3226 #ifndef CONFIG_X86_64
3227 /* guests cmpxchg8b have to be emulated atomically */
3228 if (bytes == 8) {
3229 gpa_t gpa;
3230 struct page *page;
3231 char *kaddr;
3232 u64 val;
3233
3234 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
3235
3236 if (gpa == UNMAPPED_GVA ||
3237 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3238 goto emul_write;
3239
3240 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3241 goto emul_write;
3242
3243 val = *(u64 *)new;
3244
3245 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3246
3247 kaddr = kmap_atomic(page, KM_USER0);
3248 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
3249 kunmap_atomic(kaddr, KM_USER0);
3250 kvm_release_page_dirty(page);
3251 }
3252 emul_write:
3253 #endif
3254
3255 return emulator_write_emulated(addr, new, bytes, vcpu);
3256 }
3257
3258 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
3259 {
3260 return kvm_x86_ops->get_segment_base(vcpu, seg);
3261 }
3262
3263 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
3264 {
3265 kvm_mmu_invlpg(vcpu, address);
3266 return X86EMUL_CONTINUE;
3267 }
3268
3269 int emulate_clts(struct kvm_vcpu *vcpu)
3270 {
3271 kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3272 kvm_x86_ops->fpu_activate(vcpu);
3273 return X86EMUL_CONTINUE;
3274 }
3275
3276 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
3277 {
3278 return kvm_x86_ops->get_dr(ctxt->vcpu, dr, dest);
3279 }
3280
3281 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
3282 {
3283 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
3284
3285 return kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask);
3286 }
3287
3288 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
3289 {
3290 u8 opcodes[4];
3291 unsigned long rip = kvm_rip_read(vcpu);
3292 unsigned long rip_linear;
3293
3294 if (!printk_ratelimit())
3295 return;
3296
3297 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
3298
3299 kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
3300
3301 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
3302 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
3303 }
3304 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
3305
3306 static struct x86_emulate_ops emulate_ops = {
3307 .read_std = kvm_read_guest_virt,
3308 .read_emulated = emulator_read_emulated,
3309 .write_emulated = emulator_write_emulated,
3310 .cmpxchg_emulated = emulator_cmpxchg_emulated,
3311 };
3312
3313 static void cache_all_regs(struct kvm_vcpu *vcpu)
3314 {
3315 kvm_register_read(vcpu, VCPU_REGS_RAX);
3316 kvm_register_read(vcpu, VCPU_REGS_RSP);
3317 kvm_register_read(vcpu, VCPU_REGS_RIP);
3318 vcpu->arch.regs_dirty = ~0;
3319 }
3320
3321 int emulate_instruction(struct kvm_vcpu *vcpu,
3322 unsigned long cr2,
3323 u16 error_code,
3324 int emulation_type)
3325 {
3326 int r, shadow_mask;
3327 struct decode_cache *c;
3328 struct kvm_run *run = vcpu->run;
3329
3330 kvm_clear_exception_queue(vcpu);
3331 vcpu->arch.mmio_fault_cr2 = cr2;
3332 /*
3333 * TODO: fix emulate.c to use guest_read/write_register
3334 * instead of direct ->regs accesses, can save hundred cycles
3335 * on Intel for instructions that don't read/change RSP, for
3336 * for example.
3337 */
3338 cache_all_regs(vcpu);
3339
3340 vcpu->mmio_is_write = 0;
3341 vcpu->arch.pio.string = 0;
3342
3343 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
3344 int cs_db, cs_l;
3345 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
3346
3347 vcpu->arch.emulate_ctxt.vcpu = vcpu;
3348 vcpu->arch.emulate_ctxt.eflags = kvm_get_rflags(vcpu);
3349 vcpu->arch.emulate_ctxt.mode =
3350 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
3351 ? X86EMUL_MODE_REAL : cs_l
3352 ? X86EMUL_MODE_PROT64 : cs_db
3353 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
3354
3355 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
3356
3357 /* Only allow emulation of specific instructions on #UD
3358 * (namely VMMCALL, sysenter, sysexit, syscall)*/
3359 c = &vcpu->arch.emulate_ctxt.decode;
3360 if (emulation_type & EMULTYPE_TRAP_UD) {
3361 if (!c->twobyte)
3362 return EMULATE_FAIL;
3363 switch (c->b) {
3364 case 0x01: /* VMMCALL */
3365 if (c->modrm_mod != 3 || c->modrm_rm != 1)
3366 return EMULATE_FAIL;
3367 break;
3368 case 0x34: /* sysenter */
3369 case 0x35: /* sysexit */
3370 if (c->modrm_mod != 0 || c->modrm_rm != 0)
3371 return EMULATE_FAIL;
3372 break;
3373 case 0x05: /* syscall */
3374 if (c->modrm_mod != 0 || c->modrm_rm != 0)
3375 return EMULATE_FAIL;
3376 break;
3377 default:
3378 return EMULATE_FAIL;
3379 }
3380
3381 if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
3382 return EMULATE_FAIL;
3383 }
3384
3385 ++vcpu->stat.insn_emulation;
3386 if (r) {
3387 ++vcpu->stat.insn_emulation_fail;
3388 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
3389 return EMULATE_DONE;
3390 return EMULATE_FAIL;
3391 }
3392 }
3393
3394 if (emulation_type & EMULTYPE_SKIP) {
3395 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
3396 return EMULATE_DONE;
3397 }
3398
3399 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
3400 shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
3401
3402 if (r == 0)
3403 kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
3404
3405 if (vcpu->arch.pio.string)
3406 return EMULATE_DO_MMIO;
3407
3408 if ((r || vcpu->mmio_is_write) && run) {
3409 run->exit_reason = KVM_EXIT_MMIO;
3410 run->mmio.phys_addr = vcpu->mmio_phys_addr;
3411 memcpy(run->mmio.data, vcpu->mmio_data, 8);
3412 run->mmio.len = vcpu->mmio_size;
3413 run->mmio.is_write = vcpu->mmio_is_write;
3414 }
3415
3416 if (r) {
3417 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
3418 return EMULATE_DONE;
3419 if (!vcpu->mmio_needed) {
3420 kvm_report_emulation_failure(vcpu, "mmio");
3421 return EMULATE_FAIL;
3422 }
3423 return EMULATE_DO_MMIO;
3424 }
3425
3426 kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
3427
3428 if (vcpu->mmio_is_write) {
3429 vcpu->mmio_needed = 0;
3430 return EMULATE_DO_MMIO;
3431 }
3432
3433 return EMULATE_DONE;
3434 }
3435 EXPORT_SYMBOL_GPL(emulate_instruction);
3436
3437 static int pio_copy_data(struct kvm_vcpu *vcpu)
3438 {
3439 void *p = vcpu->arch.pio_data;
3440 gva_t q = vcpu->arch.pio.guest_gva;
3441 unsigned bytes;
3442 int ret;
3443
3444 bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
3445 if (vcpu->arch.pio.in)
3446 ret = kvm_write_guest_virt(q, p, bytes, vcpu);
3447 else
3448 ret = kvm_read_guest_virt(q, p, bytes, vcpu);
3449 return ret;
3450 }
3451
3452 int complete_pio(struct kvm_vcpu *vcpu)
3453 {
3454 struct kvm_pio_request *io = &vcpu->arch.pio;
3455 long delta;
3456 int r;
3457 unsigned long val;
3458
3459 if (!io->string) {
3460 if (io->in) {
3461 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
3462 memcpy(&val, vcpu->arch.pio_data, io->size);
3463 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
3464 }
3465 } else {
3466 if (io->in) {
3467 r = pio_copy_data(vcpu);
3468 if (r)
3469 return r;
3470 }
3471
3472 delta = 1;
3473 if (io->rep) {
3474 delta *= io->cur_count;
3475 /*
3476 * The size of the register should really depend on
3477 * current address size.
3478 */
3479 val = kvm_register_read(vcpu, VCPU_REGS_RCX);
3480 val -= delta;
3481 kvm_register_write(vcpu, VCPU_REGS_RCX, val);
3482 }
3483 if (io->down)
3484 delta = -delta;
3485 delta *= io->size;
3486 if (io->in) {
3487 val = kvm_register_read(vcpu, VCPU_REGS_RDI);
3488 val += delta;
3489 kvm_register_write(vcpu, VCPU_REGS_RDI, val);
3490 } else {
3491 val = kvm_register_read(vcpu, VCPU_REGS_RSI);
3492 val += delta;
3493 kvm_register_write(vcpu, VCPU_REGS_RSI, val);
3494 }
3495 }
3496
3497 io->count -= io->cur_count;
3498 io->cur_count = 0;
3499
3500 return 0;
3501 }
3502
3503 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3504 {
3505 /* TODO: String I/O for in kernel device */
3506 int r;
3507
3508 if (vcpu->arch.pio.in)
3509 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3510 vcpu->arch.pio.size, pd);
3511 else
3512 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3513 vcpu->arch.pio.port, vcpu->arch.pio.size,
3514 pd);
3515 return r;
3516 }
3517
3518 static int pio_string_write(struct kvm_vcpu *vcpu)
3519 {
3520 struct kvm_pio_request *io = &vcpu->arch.pio;
3521 void *pd = vcpu->arch.pio_data;
3522 int i, r = 0;
3523
3524 for (i = 0; i < io->cur_count; i++) {
3525 if (kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3526 io->port, io->size, pd)) {
3527 r = -EOPNOTSUPP;
3528 break;
3529 }
3530 pd += io->size;
3531 }
3532 return r;
3533 }
3534
3535 int kvm_emulate_pio(struct kvm_vcpu *vcpu, int in, int size, unsigned port)
3536 {
3537 unsigned long val;
3538
3539 vcpu->run->exit_reason = KVM_EXIT_IO;
3540 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3541 vcpu->run->io.size = vcpu->arch.pio.size = size;
3542 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3543 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
3544 vcpu->run->io.port = vcpu->arch.pio.port = port;
3545 vcpu->arch.pio.in = in;
3546 vcpu->arch.pio.string = 0;
3547 vcpu->arch.pio.down = 0;
3548 vcpu->arch.pio.rep = 0;
3549
3550 trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
3551 size, 1);
3552
3553 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
3554 memcpy(vcpu->arch.pio_data, &val, 4);
3555
3556 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3557 complete_pio(vcpu);
3558 return 1;
3559 }
3560 return 0;
3561 }
3562 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
3563
3564 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, int in,
3565 int size, unsigned long count, int down,
3566 gva_t address, int rep, unsigned port)
3567 {
3568 unsigned now, in_page;
3569 int ret = 0;
3570
3571 vcpu->run->exit_reason = KVM_EXIT_IO;
3572 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3573 vcpu->run->io.size = vcpu->arch.pio.size = size;
3574 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3575 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
3576 vcpu->run->io.port = vcpu->arch.pio.port = port;
3577 vcpu->arch.pio.in = in;
3578 vcpu->arch.pio.string = 1;
3579 vcpu->arch.pio.down = down;
3580 vcpu->arch.pio.rep = rep;
3581
3582 trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
3583 size, count);
3584
3585 if (!count) {
3586 kvm_x86_ops->skip_emulated_instruction(vcpu);
3587 return 1;
3588 }
3589
3590 if (!down)
3591 in_page = PAGE_SIZE - offset_in_page(address);
3592 else
3593 in_page = offset_in_page(address) + size;
3594 now = min(count, (unsigned long)in_page / size);
3595 if (!now)
3596 now = 1;
3597 if (down) {
3598 /*
3599 * String I/O in reverse. Yuck. Kill the guest, fix later.
3600 */
3601 pr_unimpl(vcpu, "guest string pio down\n");
3602 kvm_inject_gp(vcpu, 0);
3603 return 1;
3604 }
3605 vcpu->run->io.count = now;
3606 vcpu->arch.pio.cur_count = now;
3607
3608 if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
3609 kvm_x86_ops->skip_emulated_instruction(vcpu);
3610
3611 vcpu->arch.pio.guest_gva = address;
3612
3613 if (!vcpu->arch.pio.in) {
3614 /* string PIO write */
3615 ret = pio_copy_data(vcpu);
3616 if (ret == X86EMUL_PROPAGATE_FAULT) {
3617 kvm_inject_gp(vcpu, 0);
3618 return 1;
3619 }
3620 if (ret == 0 && !pio_string_write(vcpu)) {
3621 complete_pio(vcpu);
3622 if (vcpu->arch.pio.count == 0)
3623 ret = 1;
3624 }
3625 }
3626 /* no string PIO read support yet */
3627
3628 return ret;
3629 }
3630 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
3631
3632 static void bounce_off(void *info)
3633 {
3634 /* nothing */
3635 }
3636
3637 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
3638 void *data)
3639 {
3640 struct cpufreq_freqs *freq = data;
3641 struct kvm *kvm;
3642 struct kvm_vcpu *vcpu;
3643 int i, send_ipi = 0;
3644
3645 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
3646 return 0;
3647 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
3648 return 0;
3649 per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
3650
3651 spin_lock(&kvm_lock);
3652 list_for_each_entry(kvm, &vm_list, vm_list) {
3653 kvm_for_each_vcpu(i, vcpu, kvm) {
3654 if (vcpu->cpu != freq->cpu)
3655 continue;
3656 if (!kvm_request_guest_time_update(vcpu))
3657 continue;
3658 if (vcpu->cpu != smp_processor_id())
3659 send_ipi++;
3660 }
3661 }
3662 spin_unlock(&kvm_lock);
3663
3664 if (freq->old < freq->new && send_ipi) {
3665 /*
3666 * We upscale the frequency. Must make the guest
3667 * doesn't see old kvmclock values while running with
3668 * the new frequency, otherwise we risk the guest sees
3669 * time go backwards.
3670 *
3671 * In case we update the frequency for another cpu
3672 * (which might be in guest context) send an interrupt
3673 * to kick the cpu out of guest context. Next time
3674 * guest context is entered kvmclock will be updated,
3675 * so the guest will not see stale values.
3676 */
3677 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
3678 }
3679 return 0;
3680 }
3681
3682 static struct notifier_block kvmclock_cpufreq_notifier_block = {
3683 .notifier_call = kvmclock_cpufreq_notifier
3684 };
3685
3686 static void kvm_timer_init(void)
3687 {
3688 int cpu;
3689
3690 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
3691 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
3692 CPUFREQ_TRANSITION_NOTIFIER);
3693 for_each_online_cpu(cpu) {
3694 unsigned long khz = cpufreq_get(cpu);
3695 if (!khz)
3696 khz = tsc_khz;
3697 per_cpu(cpu_tsc_khz, cpu) = khz;
3698 }
3699 } else {
3700 for_each_possible_cpu(cpu)
3701 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
3702 }
3703 }
3704
3705 int kvm_arch_init(void *opaque)
3706 {
3707 int r;
3708 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
3709
3710 if (kvm_x86_ops) {
3711 printk(KERN_ERR "kvm: already loaded the other module\n");
3712 r = -EEXIST;
3713 goto out;
3714 }
3715
3716 if (!ops->cpu_has_kvm_support()) {
3717 printk(KERN_ERR "kvm: no hardware support\n");
3718 r = -EOPNOTSUPP;
3719 goto out;
3720 }
3721 if (ops->disabled_by_bios()) {
3722 printk(KERN_ERR "kvm: disabled by bios\n");
3723 r = -EOPNOTSUPP;
3724 goto out;
3725 }
3726
3727 r = kvm_mmu_module_init();
3728 if (r)
3729 goto out;
3730
3731 kvm_init_msr_list();
3732
3733 kvm_x86_ops = ops;
3734 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
3735 kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
3736 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
3737 PT_DIRTY_MASK, PT64_NX_MASK, 0);
3738
3739 kvm_timer_init();
3740
3741 return 0;
3742
3743 out:
3744 return r;
3745 }
3746
3747 void kvm_arch_exit(void)
3748 {
3749 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
3750 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
3751 CPUFREQ_TRANSITION_NOTIFIER);
3752 kvm_x86_ops = NULL;
3753 kvm_mmu_module_exit();
3754 }
3755
3756 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
3757 {
3758 ++vcpu->stat.halt_exits;
3759 if (irqchip_in_kernel(vcpu->kvm)) {
3760 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
3761 return 1;
3762 } else {
3763 vcpu->run->exit_reason = KVM_EXIT_HLT;
3764 return 0;
3765 }
3766 }
3767 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
3768
3769 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
3770 unsigned long a1)
3771 {
3772 if (is_long_mode(vcpu))
3773 return a0;
3774 else
3775 return a0 | ((gpa_t)a1 << 32);
3776 }
3777
3778 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
3779 {
3780 u64 param, ingpa, outgpa, ret;
3781 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
3782 bool fast, longmode;
3783 int cs_db, cs_l;
3784
3785 /*
3786 * hypercall generates UD from non zero cpl and real mode
3787 * per HYPER-V spec
3788 */
3789 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
3790 kvm_queue_exception(vcpu, UD_VECTOR);
3791 return 0;
3792 }
3793
3794 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
3795 longmode = is_long_mode(vcpu) && cs_l == 1;
3796
3797 if (!longmode) {
3798 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
3799 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
3800 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
3801 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
3802 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
3803 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
3804 }
3805 #ifdef CONFIG_X86_64
3806 else {
3807 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
3808 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
3809 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
3810 }
3811 #endif
3812
3813 code = param & 0xffff;
3814 fast = (param >> 16) & 0x1;
3815 rep_cnt = (param >> 32) & 0xfff;
3816 rep_idx = (param >> 48) & 0xfff;
3817
3818 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
3819
3820 switch (code) {
3821 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
3822 kvm_vcpu_on_spin(vcpu);
3823 break;
3824 default:
3825 res = HV_STATUS_INVALID_HYPERCALL_CODE;
3826 break;
3827 }
3828
3829 ret = res | (((u64)rep_done & 0xfff) << 32);
3830 if (longmode) {
3831 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
3832 } else {
3833 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
3834 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
3835 }
3836
3837 return 1;
3838 }
3839
3840 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
3841 {
3842 unsigned long nr, a0, a1, a2, a3, ret;
3843 int r = 1;
3844
3845 if (kvm_hv_hypercall_enabled(vcpu->kvm))
3846 return kvm_hv_hypercall(vcpu);
3847
3848 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
3849 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
3850 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
3851 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
3852 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
3853
3854 trace_kvm_hypercall(nr, a0, a1, a2, a3);
3855
3856 if (!is_long_mode(vcpu)) {
3857 nr &= 0xFFFFFFFF;
3858 a0 &= 0xFFFFFFFF;
3859 a1 &= 0xFFFFFFFF;
3860 a2 &= 0xFFFFFFFF;
3861 a3 &= 0xFFFFFFFF;
3862 }
3863
3864 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
3865 ret = -KVM_EPERM;
3866 goto out;
3867 }
3868
3869 switch (nr) {
3870 case KVM_HC_VAPIC_POLL_IRQ:
3871 ret = 0;
3872 break;
3873 case KVM_HC_MMU_OP:
3874 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
3875 break;
3876 default:
3877 ret = -KVM_ENOSYS;
3878 break;
3879 }
3880 out:
3881 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
3882 ++vcpu->stat.hypercalls;
3883 return r;
3884 }
3885 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
3886
3887 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
3888 {
3889 char instruction[3];
3890 int ret = 0;
3891 unsigned long rip = kvm_rip_read(vcpu);
3892
3893
3894 /*
3895 * Blow out the MMU to ensure that no other VCPU has an active mapping
3896 * to ensure that the updated hypercall appears atomically across all
3897 * VCPUs.
3898 */
3899 kvm_mmu_zap_all(vcpu->kvm);
3900
3901 kvm_x86_ops->patch_hypercall(vcpu, instruction);
3902 if (emulator_write_emulated(rip, instruction, 3, vcpu)
3903 != X86EMUL_CONTINUE)
3904 ret = -EFAULT;
3905
3906 return ret;
3907 }
3908
3909 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3910 {
3911 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3912 }
3913
3914 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3915 {
3916 struct descriptor_table dt = { limit, base };
3917
3918 kvm_x86_ops->set_gdt(vcpu, &dt);
3919 }
3920
3921 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3922 {
3923 struct descriptor_table dt = { limit, base };
3924
3925 kvm_x86_ops->set_idt(vcpu, &dt);
3926 }
3927
3928 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
3929 unsigned long *rflags)
3930 {
3931 kvm_lmsw(vcpu, msw);
3932 *rflags = kvm_get_rflags(vcpu);
3933 }
3934
3935 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
3936 {
3937 unsigned long value;
3938
3939 switch (cr) {
3940 case 0:
3941 value = kvm_read_cr0(vcpu);
3942 break;
3943 case 2:
3944 value = vcpu->arch.cr2;
3945 break;
3946 case 3:
3947 value = vcpu->arch.cr3;
3948 break;
3949 case 4:
3950 value = kvm_read_cr4(vcpu);
3951 break;
3952 case 8:
3953 value = kvm_get_cr8(vcpu);
3954 break;
3955 default:
3956 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3957 return 0;
3958 }
3959
3960 return value;
3961 }
3962
3963 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
3964 unsigned long *rflags)
3965 {
3966 switch (cr) {
3967 case 0:
3968 kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
3969 *rflags = kvm_get_rflags(vcpu);
3970 break;
3971 case 2:
3972 vcpu->arch.cr2 = val;
3973 break;
3974 case 3:
3975 kvm_set_cr3(vcpu, val);
3976 break;
3977 case 4:
3978 kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
3979 break;
3980 case 8:
3981 kvm_set_cr8(vcpu, val & 0xfUL);
3982 break;
3983 default:
3984 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3985 }
3986 }
3987
3988 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
3989 {
3990 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
3991 int j, nent = vcpu->arch.cpuid_nent;
3992
3993 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
3994 /* when no next entry is found, the current entry[i] is reselected */
3995 for (j = i + 1; ; j = (j + 1) % nent) {
3996 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
3997 if (ej->function == e->function) {
3998 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
3999 return j;
4000 }
4001 }
4002 return 0; /* silence gcc, even though control never reaches here */
4003 }
4004
4005 /* find an entry with matching function, matching index (if needed), and that
4006 * should be read next (if it's stateful) */
4007 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
4008 u32 function, u32 index)
4009 {
4010 if (e->function != function)
4011 return 0;
4012 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
4013 return 0;
4014 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
4015 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
4016 return 0;
4017 return 1;
4018 }
4019
4020 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
4021 u32 function, u32 index)
4022 {
4023 int i;
4024 struct kvm_cpuid_entry2 *best = NULL;
4025
4026 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
4027 struct kvm_cpuid_entry2 *e;
4028
4029 e = &vcpu->arch.cpuid_entries[i];
4030 if (is_matching_cpuid_entry(e, function, index)) {
4031 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
4032 move_to_next_stateful_cpuid_entry(vcpu, i);
4033 best = e;
4034 break;
4035 }
4036 /*
4037 * Both basic or both extended?
4038 */
4039 if (((e->function ^ function) & 0x80000000) == 0)
4040 if (!best || e->function > best->function)
4041 best = e;
4042 }
4043 return best;
4044 }
4045 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
4046
4047 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
4048 {
4049 struct kvm_cpuid_entry2 *best;
4050
4051 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
4052 if (best)
4053 return best->eax & 0xff;
4054 return 36;
4055 }
4056
4057 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
4058 {
4059 u32 function, index;
4060 struct kvm_cpuid_entry2 *best;
4061
4062 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
4063 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4064 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
4065 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
4066 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
4067 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
4068 best = kvm_find_cpuid_entry(vcpu, function, index);
4069 if (best) {
4070 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
4071 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
4072 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
4073 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
4074 }
4075 kvm_x86_ops->skip_emulated_instruction(vcpu);
4076 trace_kvm_cpuid(function,
4077 kvm_register_read(vcpu, VCPU_REGS_RAX),
4078 kvm_register_read(vcpu, VCPU_REGS_RBX),
4079 kvm_register_read(vcpu, VCPU_REGS_RCX),
4080 kvm_register_read(vcpu, VCPU_REGS_RDX));
4081 }
4082 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
4083
4084 /*
4085 * Check if userspace requested an interrupt window, and that the
4086 * interrupt window is open.
4087 *
4088 * No need to exit to userspace if we already have an interrupt queued.
4089 */
4090 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
4091 {
4092 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
4093 vcpu->run->request_interrupt_window &&
4094 kvm_arch_interrupt_allowed(vcpu));
4095 }
4096
4097 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
4098 {
4099 struct kvm_run *kvm_run = vcpu->run;
4100
4101 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
4102 kvm_run->cr8 = kvm_get_cr8(vcpu);
4103 kvm_run->apic_base = kvm_get_apic_base(vcpu);
4104 if (irqchip_in_kernel(vcpu->kvm))
4105 kvm_run->ready_for_interrupt_injection = 1;
4106 else
4107 kvm_run->ready_for_interrupt_injection =
4108 kvm_arch_interrupt_allowed(vcpu) &&
4109 !kvm_cpu_has_interrupt(vcpu) &&
4110 !kvm_event_needs_reinjection(vcpu);
4111 }
4112
4113 static void vapic_enter(struct kvm_vcpu *vcpu)
4114 {
4115 struct kvm_lapic *apic = vcpu->arch.apic;
4116 struct page *page;
4117
4118 if (!apic || !apic->vapic_addr)
4119 return;
4120
4121 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4122
4123 vcpu->arch.apic->vapic_page = page;
4124 }
4125
4126 static void vapic_exit(struct kvm_vcpu *vcpu)
4127 {
4128 struct kvm_lapic *apic = vcpu->arch.apic;
4129 int idx;
4130
4131 if (!apic || !apic->vapic_addr)
4132 return;
4133
4134 idx = srcu_read_lock(&vcpu->kvm->srcu);
4135 kvm_release_page_dirty(apic->vapic_page);
4136 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4137 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4138 }
4139
4140 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
4141 {
4142 int max_irr, tpr;
4143
4144 if (!kvm_x86_ops->update_cr8_intercept)
4145 return;
4146
4147 if (!vcpu->arch.apic)
4148 return;
4149
4150 if (!vcpu->arch.apic->vapic_addr)
4151 max_irr = kvm_lapic_find_highest_irr(vcpu);
4152 else
4153 max_irr = -1;
4154
4155 if (max_irr != -1)
4156 max_irr >>= 4;
4157
4158 tpr = kvm_lapic_get_cr8(vcpu);
4159
4160 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
4161 }
4162
4163 static void inject_pending_event(struct kvm_vcpu *vcpu)
4164 {
4165 /* try to reinject previous events if any */
4166 if (vcpu->arch.exception.pending) {
4167 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
4168 vcpu->arch.exception.has_error_code,
4169 vcpu->arch.exception.error_code);
4170 return;
4171 }
4172
4173 if (vcpu->arch.nmi_injected) {
4174 kvm_x86_ops->set_nmi(vcpu);
4175 return;
4176 }
4177
4178 if (vcpu->arch.interrupt.pending) {
4179 kvm_x86_ops->set_irq(vcpu);
4180 return;
4181 }
4182
4183 /* try to inject new event if pending */
4184 if (vcpu->arch.nmi_pending) {
4185 if (kvm_x86_ops->nmi_allowed(vcpu)) {
4186 vcpu->arch.nmi_pending = false;
4187 vcpu->arch.nmi_injected = true;
4188 kvm_x86_ops->set_nmi(vcpu);
4189 }
4190 } else if (kvm_cpu_has_interrupt(vcpu)) {
4191 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
4192 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
4193 false);
4194 kvm_x86_ops->set_irq(vcpu);
4195 }
4196 }
4197 }
4198
4199 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
4200 {
4201 int r;
4202 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
4203 vcpu->run->request_interrupt_window;
4204
4205 if (vcpu->requests)
4206 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
4207 kvm_mmu_unload(vcpu);
4208
4209 r = kvm_mmu_reload(vcpu);
4210 if (unlikely(r))
4211 goto out;
4212
4213 if (vcpu->requests) {
4214 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
4215 __kvm_migrate_timers(vcpu);
4216 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
4217 kvm_write_guest_time(vcpu);
4218 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
4219 kvm_mmu_sync_roots(vcpu);
4220 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
4221 kvm_x86_ops->tlb_flush(vcpu);
4222 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
4223 &vcpu->requests)) {
4224 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
4225 r = 0;
4226 goto out;
4227 }
4228 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
4229 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4230 r = 0;
4231 goto out;
4232 }
4233 if (test_and_clear_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests)) {
4234 vcpu->fpu_active = 0;
4235 kvm_x86_ops->fpu_deactivate(vcpu);
4236 }
4237 }
4238
4239 preempt_disable();
4240
4241 kvm_x86_ops->prepare_guest_switch(vcpu);
4242 if (vcpu->fpu_active)
4243 kvm_load_guest_fpu(vcpu);
4244
4245 local_irq_disable();
4246
4247 clear_bit(KVM_REQ_KICK, &vcpu->requests);
4248 smp_mb__after_clear_bit();
4249
4250 if (vcpu->requests || need_resched() || signal_pending(current)) {
4251 set_bit(KVM_REQ_KICK, &vcpu->requests);
4252 local_irq_enable();
4253 preempt_enable();
4254 r = 1;
4255 goto out;
4256 }
4257
4258 inject_pending_event(vcpu);
4259
4260 /* enable NMI/IRQ window open exits if needed */
4261 if (vcpu->arch.nmi_pending)
4262 kvm_x86_ops->enable_nmi_window(vcpu);
4263 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
4264 kvm_x86_ops->enable_irq_window(vcpu);
4265
4266 if (kvm_lapic_enabled(vcpu)) {
4267 update_cr8_intercept(vcpu);
4268 kvm_lapic_sync_to_vapic(vcpu);
4269 }
4270
4271 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4272
4273 kvm_guest_enter();
4274
4275 if (unlikely(vcpu->arch.switch_db_regs)) {
4276 set_debugreg(0, 7);
4277 set_debugreg(vcpu->arch.eff_db[0], 0);
4278 set_debugreg(vcpu->arch.eff_db[1], 1);
4279 set_debugreg(vcpu->arch.eff_db[2], 2);
4280 set_debugreg(vcpu->arch.eff_db[3], 3);
4281 }
4282
4283 trace_kvm_entry(vcpu->vcpu_id);
4284 kvm_x86_ops->run(vcpu);
4285
4286 /*
4287 * If the guest has used debug registers, at least dr7
4288 * will be disabled while returning to the host.
4289 * If we don't have active breakpoints in the host, we don't
4290 * care about the messed up debug address registers. But if
4291 * we have some of them active, restore the old state.
4292 */
4293 if (hw_breakpoint_active())
4294 hw_breakpoint_restore();
4295
4296 set_bit(KVM_REQ_KICK, &vcpu->requests);
4297 local_irq_enable();
4298
4299 ++vcpu->stat.exits;
4300
4301 /*
4302 * We must have an instruction between local_irq_enable() and
4303 * kvm_guest_exit(), so the timer interrupt isn't delayed by
4304 * the interrupt shadow. The stat.exits increment will do nicely.
4305 * But we need to prevent reordering, hence this barrier():
4306 */
4307 barrier();
4308
4309 kvm_guest_exit();
4310
4311 preempt_enable();
4312
4313 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4314
4315 /*
4316 * Profile KVM exit RIPs:
4317 */
4318 if (unlikely(prof_on == KVM_PROFILING)) {
4319 unsigned long rip = kvm_rip_read(vcpu);
4320 profile_hit(KVM_PROFILING, (void *)rip);
4321 }
4322
4323
4324 kvm_lapic_sync_from_vapic(vcpu);
4325
4326 r = kvm_x86_ops->handle_exit(vcpu);
4327 out:
4328 return r;
4329 }
4330
4331
4332 static int __vcpu_run(struct kvm_vcpu *vcpu)
4333 {
4334 int r;
4335 struct kvm *kvm = vcpu->kvm;
4336
4337 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
4338 pr_debug("vcpu %d received sipi with vector # %x\n",
4339 vcpu->vcpu_id, vcpu->arch.sipi_vector);
4340 kvm_lapic_reset(vcpu);
4341 r = kvm_arch_vcpu_reset(vcpu);
4342 if (r)
4343 return r;
4344 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4345 }
4346
4347 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4348 vapic_enter(vcpu);
4349
4350 r = 1;
4351 while (r > 0) {
4352 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
4353 r = vcpu_enter_guest(vcpu);
4354 else {
4355 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4356 kvm_vcpu_block(vcpu);
4357 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4358 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
4359 {
4360 switch(vcpu->arch.mp_state) {
4361 case KVM_MP_STATE_HALTED:
4362 vcpu->arch.mp_state =
4363 KVM_MP_STATE_RUNNABLE;
4364 case KVM_MP_STATE_RUNNABLE:
4365 break;
4366 case KVM_MP_STATE_SIPI_RECEIVED:
4367 default:
4368 r = -EINTR;
4369 break;
4370 }
4371 }
4372 }
4373
4374 if (r <= 0)
4375 break;
4376
4377 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
4378 if (kvm_cpu_has_pending_timer(vcpu))
4379 kvm_inject_pending_timer_irqs(vcpu);
4380
4381 if (dm_request_for_irq_injection(vcpu)) {
4382 r = -EINTR;
4383 vcpu->run->exit_reason = KVM_EXIT_INTR;
4384 ++vcpu->stat.request_irq_exits;
4385 }
4386 if (signal_pending(current)) {
4387 r = -EINTR;
4388 vcpu->run->exit_reason = KVM_EXIT_INTR;
4389 ++vcpu->stat.signal_exits;
4390 }
4391 if (need_resched()) {
4392 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4393 kvm_resched(vcpu);
4394 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4395 }
4396 }
4397
4398 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4399 post_kvm_run_save(vcpu);
4400
4401 vapic_exit(vcpu);
4402
4403 return r;
4404 }
4405
4406 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
4407 {
4408 int r;
4409 sigset_t sigsaved;
4410
4411 vcpu_load(vcpu);
4412
4413 if (vcpu->sigset_active)
4414 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
4415
4416 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
4417 kvm_vcpu_block(vcpu);
4418 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
4419 r = -EAGAIN;
4420 goto out;
4421 }
4422
4423 /* re-sync apic's tpr */
4424 if (!irqchip_in_kernel(vcpu->kvm))
4425 kvm_set_cr8(vcpu, kvm_run->cr8);
4426
4427 if (vcpu->arch.pio.cur_count) {
4428 r = complete_pio(vcpu);
4429 if (r)
4430 goto out;
4431 }
4432 if (vcpu->mmio_needed) {
4433 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
4434 vcpu->mmio_read_completed = 1;
4435 vcpu->mmio_needed = 0;
4436
4437 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4438 r = emulate_instruction(vcpu, vcpu->arch.mmio_fault_cr2, 0,
4439 EMULTYPE_NO_DECODE);
4440 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4441 if (r == EMULATE_DO_MMIO) {
4442 /*
4443 * Read-modify-write. Back to userspace.
4444 */
4445 r = 0;
4446 goto out;
4447 }
4448 }
4449 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
4450 kvm_register_write(vcpu, VCPU_REGS_RAX,
4451 kvm_run->hypercall.ret);
4452
4453 r = __vcpu_run(vcpu);
4454
4455 out:
4456 if (vcpu->sigset_active)
4457 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
4458
4459 vcpu_put(vcpu);
4460 return r;
4461 }
4462
4463 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4464 {
4465 vcpu_load(vcpu);
4466
4467 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4468 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4469 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4470 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4471 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4472 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4473 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4474 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4475 #ifdef CONFIG_X86_64
4476 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
4477 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
4478 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
4479 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
4480 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
4481 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
4482 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
4483 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
4484 #endif
4485
4486 regs->rip = kvm_rip_read(vcpu);
4487 regs->rflags = kvm_get_rflags(vcpu);
4488
4489 vcpu_put(vcpu);
4490
4491 return 0;
4492 }
4493
4494 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4495 {
4496 vcpu_load(vcpu);
4497
4498 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
4499 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
4500 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
4501 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
4502 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
4503 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
4504 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
4505 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
4506 #ifdef CONFIG_X86_64
4507 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
4508 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
4509 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
4510 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
4511 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
4512 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
4513 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
4514 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
4515 #endif
4516
4517 kvm_rip_write(vcpu, regs->rip);
4518 kvm_set_rflags(vcpu, regs->rflags);
4519
4520 vcpu->arch.exception.pending = false;
4521
4522 vcpu_put(vcpu);
4523
4524 return 0;
4525 }
4526
4527 void kvm_get_segment(struct kvm_vcpu *vcpu,
4528 struct kvm_segment *var, int seg)
4529 {
4530 kvm_x86_ops->get_segment(vcpu, var, seg);
4531 }
4532
4533 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4534 {
4535 struct kvm_segment cs;
4536
4537 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
4538 *db = cs.db;
4539 *l = cs.l;
4540 }
4541 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
4542
4543 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
4544 struct kvm_sregs *sregs)
4545 {
4546 struct descriptor_table dt;
4547
4548 vcpu_load(vcpu);
4549
4550 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4551 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4552 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4553 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4554 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4555 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4556
4557 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4558 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4559
4560 kvm_x86_ops->get_idt(vcpu, &dt);
4561 sregs->idt.limit = dt.limit;
4562 sregs->idt.base = dt.base;
4563 kvm_x86_ops->get_gdt(vcpu, &dt);
4564 sregs->gdt.limit = dt.limit;
4565 sregs->gdt.base = dt.base;
4566
4567 sregs->cr0 = kvm_read_cr0(vcpu);
4568 sregs->cr2 = vcpu->arch.cr2;
4569 sregs->cr3 = vcpu->arch.cr3;
4570 sregs->cr4 = kvm_read_cr4(vcpu);
4571 sregs->cr8 = kvm_get_cr8(vcpu);
4572 sregs->efer = vcpu->arch.efer;
4573 sregs->apic_base = kvm_get_apic_base(vcpu);
4574
4575 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
4576
4577 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
4578 set_bit(vcpu->arch.interrupt.nr,
4579 (unsigned long *)sregs->interrupt_bitmap);
4580
4581 vcpu_put(vcpu);
4582
4583 return 0;
4584 }
4585
4586 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
4587 struct kvm_mp_state *mp_state)
4588 {
4589 vcpu_load(vcpu);
4590 mp_state->mp_state = vcpu->arch.mp_state;
4591 vcpu_put(vcpu);
4592 return 0;
4593 }
4594
4595 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
4596 struct kvm_mp_state *mp_state)
4597 {
4598 vcpu_load(vcpu);
4599 vcpu->arch.mp_state = mp_state->mp_state;
4600 vcpu_put(vcpu);
4601 return 0;
4602 }
4603
4604 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4605 struct kvm_segment *var, int seg)
4606 {
4607 kvm_x86_ops->set_segment(vcpu, var, seg);
4608 }
4609
4610 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
4611 struct kvm_segment *kvm_desct)
4612 {
4613 kvm_desct->base = get_desc_base(seg_desc);
4614 kvm_desct->limit = get_desc_limit(seg_desc);
4615 if (seg_desc->g) {
4616 kvm_desct->limit <<= 12;
4617 kvm_desct->limit |= 0xfff;
4618 }
4619 kvm_desct->selector = selector;
4620 kvm_desct->type = seg_desc->type;
4621 kvm_desct->present = seg_desc->p;
4622 kvm_desct->dpl = seg_desc->dpl;
4623 kvm_desct->db = seg_desc->d;
4624 kvm_desct->s = seg_desc->s;
4625 kvm_desct->l = seg_desc->l;
4626 kvm_desct->g = seg_desc->g;
4627 kvm_desct->avl = seg_desc->avl;
4628 if (!selector)
4629 kvm_desct->unusable = 1;
4630 else
4631 kvm_desct->unusable = 0;
4632 kvm_desct->padding = 0;
4633 }
4634
4635 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
4636 u16 selector,
4637 struct descriptor_table *dtable)
4638 {
4639 if (selector & 1 << 2) {
4640 struct kvm_segment kvm_seg;
4641
4642 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
4643
4644 if (kvm_seg.unusable)
4645 dtable->limit = 0;
4646 else
4647 dtable->limit = kvm_seg.limit;
4648 dtable->base = kvm_seg.base;
4649 }
4650 else
4651 kvm_x86_ops->get_gdt(vcpu, dtable);
4652 }
4653
4654 /* allowed just for 8 bytes segments */
4655 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4656 struct desc_struct *seg_desc)
4657 {
4658 struct descriptor_table dtable;
4659 u16 index = selector >> 3;
4660
4661 get_segment_descriptor_dtable(vcpu, selector, &dtable);
4662
4663 if (dtable.limit < index * 8 + 7) {
4664 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
4665 return 1;
4666 }
4667 return kvm_read_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
4668 }
4669
4670 /* allowed just for 8 bytes segments */
4671 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4672 struct desc_struct *seg_desc)
4673 {
4674 struct descriptor_table dtable;
4675 u16 index = selector >> 3;
4676
4677 get_segment_descriptor_dtable(vcpu, selector, &dtable);
4678
4679 if (dtable.limit < index * 8 + 7)
4680 return 1;
4681 return kvm_write_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
4682 }
4683
4684 static gpa_t get_tss_base_addr(struct kvm_vcpu *vcpu,
4685 struct desc_struct *seg_desc)
4686 {
4687 u32 base_addr = get_desc_base(seg_desc);
4688
4689 return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
4690 }
4691
4692 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
4693 {
4694 struct kvm_segment kvm_seg;
4695
4696 kvm_get_segment(vcpu, &kvm_seg, seg);
4697 return kvm_seg.selector;
4698 }
4699
4700 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
4701 u16 selector,
4702 struct kvm_segment *kvm_seg)
4703 {
4704 struct desc_struct seg_desc;
4705
4706 if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
4707 return 1;
4708 seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
4709 return 0;
4710 }
4711
4712 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
4713 {
4714 struct kvm_segment segvar = {
4715 .base = selector << 4,
4716 .limit = 0xffff,
4717 .selector = selector,
4718 .type = 3,
4719 .present = 1,
4720 .dpl = 3,
4721 .db = 0,
4722 .s = 1,
4723 .l = 0,
4724 .g = 0,
4725 .avl = 0,
4726 .unusable = 0,
4727 };
4728 kvm_x86_ops->set_segment(vcpu, &segvar, seg);
4729 return 0;
4730 }
4731
4732 static int is_vm86_segment(struct kvm_vcpu *vcpu, int seg)
4733 {
4734 return (seg != VCPU_SREG_LDTR) &&
4735 (seg != VCPU_SREG_TR) &&
4736 (kvm_get_rflags(vcpu) & X86_EFLAGS_VM);
4737 }
4738
4739 static void kvm_check_segment_descriptor(struct kvm_vcpu *vcpu, int seg,
4740 u16 selector)
4741 {
4742 /* NULL selector is not valid for CS and SS */
4743 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
4744 if (!selector)
4745 kvm_queue_exception_e(vcpu, TS_VECTOR, selector >> 3);
4746 }
4747
4748 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4749 int type_bits, int seg)
4750 {
4751 struct kvm_segment kvm_seg;
4752
4753 if (is_vm86_segment(vcpu, seg) || !is_protmode(vcpu))
4754 return kvm_load_realmode_segment(vcpu, selector, seg);
4755 if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
4756 return 1;
4757
4758 kvm_check_segment_descriptor(vcpu, seg, selector);
4759 kvm_seg.type |= type_bits;
4760
4761 if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
4762 seg != VCPU_SREG_LDTR)
4763 if (!kvm_seg.s)
4764 kvm_seg.unusable = 1;
4765
4766 kvm_set_segment(vcpu, &kvm_seg, seg);
4767 return 0;
4768 }
4769
4770 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
4771 struct tss_segment_32 *tss)
4772 {
4773 tss->cr3 = vcpu->arch.cr3;
4774 tss->eip = kvm_rip_read(vcpu);
4775 tss->eflags = kvm_get_rflags(vcpu);
4776 tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4777 tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4778 tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4779 tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4780 tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4781 tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4782 tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4783 tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4784 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4785 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4786 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4787 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4788 tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
4789 tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
4790 tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4791 }
4792
4793 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
4794 struct tss_segment_32 *tss)
4795 {
4796 kvm_set_cr3(vcpu, tss->cr3);
4797
4798 kvm_rip_write(vcpu, tss->eip);
4799 kvm_set_rflags(vcpu, tss->eflags | 2);
4800
4801 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
4802 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
4803 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
4804 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
4805 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
4806 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
4807 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
4808 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
4809
4810 if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
4811 return 1;
4812
4813 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4814 return 1;
4815
4816 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4817 return 1;
4818
4819 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4820 return 1;
4821
4822 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4823 return 1;
4824
4825 if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
4826 return 1;
4827
4828 if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
4829 return 1;
4830 return 0;
4831 }
4832
4833 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
4834 struct tss_segment_16 *tss)
4835 {
4836 tss->ip = kvm_rip_read(vcpu);
4837 tss->flag = kvm_get_rflags(vcpu);
4838 tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4839 tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4840 tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4841 tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4842 tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4843 tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4844 tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
4845 tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
4846
4847 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4848 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4849 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4850 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4851 tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4852 }
4853
4854 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
4855 struct tss_segment_16 *tss)
4856 {
4857 kvm_rip_write(vcpu, tss->ip);
4858 kvm_set_rflags(vcpu, tss->flag | 2);
4859 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
4860 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
4861 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
4862 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
4863 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
4864 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
4865 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
4866 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
4867
4868 if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
4869 return 1;
4870
4871 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4872 return 1;
4873
4874 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4875 return 1;
4876
4877 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4878 return 1;
4879
4880 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4881 return 1;
4882 return 0;
4883 }
4884
4885 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
4886 u16 old_tss_sel, u32 old_tss_base,
4887 struct desc_struct *nseg_desc)
4888 {
4889 struct tss_segment_16 tss_segment_16;
4890 int ret = 0;
4891
4892 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4893 sizeof tss_segment_16))
4894 goto out;
4895
4896 save_state_to_tss16(vcpu, &tss_segment_16);
4897
4898 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4899 sizeof tss_segment_16))
4900 goto out;
4901
4902 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4903 &tss_segment_16, sizeof tss_segment_16))
4904 goto out;
4905
4906 if (old_tss_sel != 0xffff) {
4907 tss_segment_16.prev_task_link = old_tss_sel;
4908
4909 if (kvm_write_guest(vcpu->kvm,
4910 get_tss_base_addr(vcpu, nseg_desc),
4911 &tss_segment_16.prev_task_link,
4912 sizeof tss_segment_16.prev_task_link))
4913 goto out;
4914 }
4915
4916 if (load_state_from_tss16(vcpu, &tss_segment_16))
4917 goto out;
4918
4919 ret = 1;
4920 out:
4921 return ret;
4922 }
4923
4924 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
4925 u16 old_tss_sel, u32 old_tss_base,
4926 struct desc_struct *nseg_desc)
4927 {
4928 struct tss_segment_32 tss_segment_32;
4929 int ret = 0;
4930
4931 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4932 sizeof tss_segment_32))
4933 goto out;
4934
4935 save_state_to_tss32(vcpu, &tss_segment_32);
4936
4937 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4938 sizeof tss_segment_32))
4939 goto out;
4940
4941 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4942 &tss_segment_32, sizeof tss_segment_32))
4943 goto out;
4944
4945 if (old_tss_sel != 0xffff) {
4946 tss_segment_32.prev_task_link = old_tss_sel;
4947
4948 if (kvm_write_guest(vcpu->kvm,
4949 get_tss_base_addr(vcpu, nseg_desc),
4950 &tss_segment_32.prev_task_link,
4951 sizeof tss_segment_32.prev_task_link))
4952 goto out;
4953 }
4954
4955 if (load_state_from_tss32(vcpu, &tss_segment_32))
4956 goto out;
4957
4958 ret = 1;
4959 out:
4960 return ret;
4961 }
4962
4963 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
4964 {
4965 struct kvm_segment tr_seg;
4966 struct desc_struct cseg_desc;
4967 struct desc_struct nseg_desc;
4968 int ret = 0;
4969 u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
4970 u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
4971
4972 old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
4973
4974 /* FIXME: Handle errors. Failure to read either TSS or their
4975 * descriptors should generate a pagefault.
4976 */
4977 if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
4978 goto out;
4979
4980 if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
4981 goto out;
4982
4983 if (reason != TASK_SWITCH_IRET) {
4984 int cpl;
4985
4986 cpl = kvm_x86_ops->get_cpl(vcpu);
4987 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
4988 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4989 return 1;
4990 }
4991 }
4992
4993 if (!nseg_desc.p || get_desc_limit(&nseg_desc) < 0x67) {
4994 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
4995 return 1;
4996 }
4997
4998 if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
4999 cseg_desc.type &= ~(1 << 1); //clear the B flag
5000 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
5001 }
5002
5003 if (reason == TASK_SWITCH_IRET) {
5004 u32 eflags = kvm_get_rflags(vcpu);
5005 kvm_set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
5006 }
5007
5008 /* set back link to prev task only if NT bit is set in eflags
5009 note that old_tss_sel is not used afetr this point */
5010 if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
5011 old_tss_sel = 0xffff;
5012
5013 if (nseg_desc.type & 8)
5014 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
5015 old_tss_base, &nseg_desc);
5016 else
5017 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
5018 old_tss_base, &nseg_desc);
5019
5020 if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
5021 u32 eflags = kvm_get_rflags(vcpu);
5022 kvm_set_rflags(vcpu, eflags | X86_EFLAGS_NT);
5023 }
5024
5025 if (reason != TASK_SWITCH_IRET) {
5026 nseg_desc.type |= (1 << 1);
5027 save_guest_segment_descriptor(vcpu, tss_selector,
5028 &nseg_desc);
5029 }
5030
5031 kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0(vcpu) | X86_CR0_TS);
5032 seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
5033 tr_seg.type = 11;
5034 kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
5035 out:
5036 return ret;
5037 }
5038 EXPORT_SYMBOL_GPL(kvm_task_switch);
5039
5040 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5041 struct kvm_sregs *sregs)
5042 {
5043 int mmu_reset_needed = 0;
5044 int pending_vec, max_bits;
5045 struct descriptor_table dt;
5046
5047 vcpu_load(vcpu);
5048
5049 dt.limit = sregs->idt.limit;
5050 dt.base = sregs->idt.base;
5051 kvm_x86_ops->set_idt(vcpu, &dt);
5052 dt.limit = sregs->gdt.limit;
5053 dt.base = sregs->gdt.base;
5054 kvm_x86_ops->set_gdt(vcpu, &dt);
5055
5056 vcpu->arch.cr2 = sregs->cr2;
5057 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
5058 vcpu->arch.cr3 = sregs->cr3;
5059
5060 kvm_set_cr8(vcpu, sregs->cr8);
5061
5062 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5063 kvm_x86_ops->set_efer(vcpu, sregs->efer);
5064 kvm_set_apic_base(vcpu, sregs->apic_base);
5065
5066 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5067 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5068 vcpu->arch.cr0 = sregs->cr0;
5069
5070 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5071 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5072 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5073 load_pdptrs(vcpu, vcpu->arch.cr3);
5074 mmu_reset_needed = 1;
5075 }
5076
5077 if (mmu_reset_needed)
5078 kvm_mmu_reset_context(vcpu);
5079
5080 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5081 pending_vec = find_first_bit(
5082 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5083 if (pending_vec < max_bits) {
5084 kvm_queue_interrupt(vcpu, pending_vec, false);
5085 pr_debug("Set back pending irq %d\n", pending_vec);
5086 if (irqchip_in_kernel(vcpu->kvm))
5087 kvm_pic_clear_isr_ack(vcpu->kvm);
5088 }
5089
5090 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5091 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5092 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5093 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5094 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5095 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5096
5097 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5098 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5099
5100 update_cr8_intercept(vcpu);
5101
5102 /* Older userspace won't unhalt the vcpu on reset. */
5103 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5104 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5105 !is_protmode(vcpu))
5106 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5107
5108 vcpu_put(vcpu);
5109
5110 return 0;
5111 }
5112
5113 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5114 struct kvm_guest_debug *dbg)
5115 {
5116 unsigned long rflags;
5117 int i, r;
5118
5119 vcpu_load(vcpu);
5120
5121 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5122 r = -EBUSY;
5123 if (vcpu->arch.exception.pending)
5124 goto unlock_out;
5125 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5126 kvm_queue_exception(vcpu, DB_VECTOR);
5127 else
5128 kvm_queue_exception(vcpu, BP_VECTOR);
5129 }
5130
5131 /*
5132 * Read rflags as long as potentially injected trace flags are still
5133 * filtered out.
5134 */
5135 rflags = kvm_get_rflags(vcpu);
5136
5137 vcpu->guest_debug = dbg->control;
5138 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5139 vcpu->guest_debug = 0;
5140
5141 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5142 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5143 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5144 vcpu->arch.switch_db_regs =
5145 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5146 } else {
5147 for (i = 0; i < KVM_NR_DB_REGS; i++)
5148 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5149 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5150 }
5151
5152 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5153 vcpu->arch.singlestep_cs =
5154 get_segment_selector(vcpu, VCPU_SREG_CS);
5155 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu);
5156 }
5157
5158 /*
5159 * Trigger an rflags update that will inject or remove the trace
5160 * flags.
5161 */
5162 kvm_set_rflags(vcpu, rflags);
5163
5164 kvm_x86_ops->set_guest_debug(vcpu, dbg);
5165
5166 r = 0;
5167
5168 unlock_out:
5169 vcpu_put(vcpu);
5170
5171 return r;
5172 }
5173
5174 /*
5175 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
5176 * we have asm/x86/processor.h
5177 */
5178 struct fxsave {
5179 u16 cwd;
5180 u16 swd;
5181 u16 twd;
5182 u16 fop;
5183 u64 rip;
5184 u64 rdp;
5185 u32 mxcsr;
5186 u32 mxcsr_mask;
5187 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
5188 #ifdef CONFIG_X86_64
5189 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
5190 #else
5191 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
5192 #endif
5193 };
5194
5195 /*
5196 * Translate a guest virtual address to a guest physical address.
5197 */
5198 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5199 struct kvm_translation *tr)
5200 {
5201 unsigned long vaddr = tr->linear_address;
5202 gpa_t gpa;
5203 int idx;
5204
5205 vcpu_load(vcpu);
5206 idx = srcu_read_lock(&vcpu->kvm->srcu);
5207 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
5208 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5209 tr->physical_address = gpa;
5210 tr->valid = gpa != UNMAPPED_GVA;
5211 tr->writeable = 1;
5212 tr->usermode = 0;
5213 vcpu_put(vcpu);
5214
5215 return 0;
5216 }
5217
5218 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5219 {
5220 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
5221
5222 vcpu_load(vcpu);
5223
5224 memcpy(fpu->fpr, fxsave->st_space, 128);
5225 fpu->fcw = fxsave->cwd;
5226 fpu->fsw = fxsave->swd;
5227 fpu->ftwx = fxsave->twd;
5228 fpu->last_opcode = fxsave->fop;
5229 fpu->last_ip = fxsave->rip;
5230 fpu->last_dp = fxsave->rdp;
5231 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5232
5233 vcpu_put(vcpu);
5234
5235 return 0;
5236 }
5237
5238 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5239 {
5240 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
5241
5242 vcpu_load(vcpu);
5243
5244 memcpy(fxsave->st_space, fpu->fpr, 128);
5245 fxsave->cwd = fpu->fcw;
5246 fxsave->swd = fpu->fsw;
5247 fxsave->twd = fpu->ftwx;
5248 fxsave->fop = fpu->last_opcode;
5249 fxsave->rip = fpu->last_ip;
5250 fxsave->rdp = fpu->last_dp;
5251 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5252
5253 vcpu_put(vcpu);
5254
5255 return 0;
5256 }
5257
5258 void fx_init(struct kvm_vcpu *vcpu)
5259 {
5260 unsigned after_mxcsr_mask;
5261
5262 /*
5263 * Touch the fpu the first time in non atomic context as if
5264 * this is the first fpu instruction the exception handler
5265 * will fire before the instruction returns and it'll have to
5266 * allocate ram with GFP_KERNEL.
5267 */
5268 if (!used_math())
5269 kvm_fx_save(&vcpu->arch.host_fx_image);
5270
5271 /* Initialize guest FPU by resetting ours and saving into guest's */
5272 preempt_disable();
5273 kvm_fx_save(&vcpu->arch.host_fx_image);
5274 kvm_fx_finit();
5275 kvm_fx_save(&vcpu->arch.guest_fx_image);
5276 kvm_fx_restore(&vcpu->arch.host_fx_image);
5277 preempt_enable();
5278
5279 vcpu->arch.cr0 |= X86_CR0_ET;
5280 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
5281 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
5282 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
5283 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
5284 }
5285 EXPORT_SYMBOL_GPL(fx_init);
5286
5287 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5288 {
5289 if (vcpu->guest_fpu_loaded)
5290 return;
5291
5292 vcpu->guest_fpu_loaded = 1;
5293 kvm_fx_save(&vcpu->arch.host_fx_image);
5294 kvm_fx_restore(&vcpu->arch.guest_fx_image);
5295 }
5296
5297 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5298 {
5299 if (!vcpu->guest_fpu_loaded)
5300 return;
5301
5302 vcpu->guest_fpu_loaded = 0;
5303 kvm_fx_save(&vcpu->arch.guest_fx_image);
5304 kvm_fx_restore(&vcpu->arch.host_fx_image);
5305 ++vcpu->stat.fpu_reload;
5306 set_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests);
5307 }
5308
5309 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5310 {
5311 if (vcpu->arch.time_page) {
5312 kvm_release_page_dirty(vcpu->arch.time_page);
5313 vcpu->arch.time_page = NULL;
5314 }
5315
5316 kvm_x86_ops->vcpu_free(vcpu);
5317 }
5318
5319 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5320 unsigned int id)
5321 {
5322 return kvm_x86_ops->vcpu_create(kvm, id);
5323 }
5324
5325 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5326 {
5327 int r;
5328
5329 /* We do fxsave: this must be aligned. */
5330 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
5331
5332 vcpu->arch.mtrr_state.have_fixed = 1;
5333 vcpu_load(vcpu);
5334 r = kvm_arch_vcpu_reset(vcpu);
5335 if (r == 0)
5336 r = kvm_mmu_setup(vcpu);
5337 vcpu_put(vcpu);
5338 if (r < 0)
5339 goto free_vcpu;
5340
5341 return 0;
5342 free_vcpu:
5343 kvm_x86_ops->vcpu_free(vcpu);
5344 return r;
5345 }
5346
5347 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5348 {
5349 vcpu_load(vcpu);
5350 kvm_mmu_unload(vcpu);
5351 vcpu_put(vcpu);
5352
5353 kvm_x86_ops->vcpu_free(vcpu);
5354 }
5355
5356 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5357 {
5358 vcpu->arch.nmi_pending = false;
5359 vcpu->arch.nmi_injected = false;
5360
5361 vcpu->arch.switch_db_regs = 0;
5362 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5363 vcpu->arch.dr6 = DR6_FIXED_1;
5364 vcpu->arch.dr7 = DR7_FIXED_1;
5365
5366 return kvm_x86_ops->vcpu_reset(vcpu);
5367 }
5368
5369 int kvm_arch_hardware_enable(void *garbage)
5370 {
5371 /*
5372 * Since this may be called from a hotplug notifcation,
5373 * we can't get the CPU frequency directly.
5374 */
5375 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5376 int cpu = raw_smp_processor_id();
5377 per_cpu(cpu_tsc_khz, cpu) = 0;
5378 }
5379
5380 kvm_shared_msr_cpu_online();
5381
5382 return kvm_x86_ops->hardware_enable(garbage);
5383 }
5384
5385 void kvm_arch_hardware_disable(void *garbage)
5386 {
5387 kvm_x86_ops->hardware_disable(garbage);
5388 drop_user_return_notifiers(garbage);
5389 }
5390
5391 int kvm_arch_hardware_setup(void)
5392 {
5393 return kvm_x86_ops->hardware_setup();
5394 }
5395
5396 void kvm_arch_hardware_unsetup(void)
5397 {
5398 kvm_x86_ops->hardware_unsetup();
5399 }
5400
5401 void kvm_arch_check_processor_compat(void *rtn)
5402 {
5403 kvm_x86_ops->check_processor_compatibility(rtn);
5404 }
5405
5406 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5407 {
5408 struct page *page;
5409 struct kvm *kvm;
5410 int r;
5411
5412 BUG_ON(vcpu->kvm == NULL);
5413 kvm = vcpu->kvm;
5414
5415 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5416 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5417 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5418 else
5419 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5420
5421 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5422 if (!page) {
5423 r = -ENOMEM;
5424 goto fail;
5425 }
5426 vcpu->arch.pio_data = page_address(page);
5427
5428 r = kvm_mmu_create(vcpu);
5429 if (r < 0)
5430 goto fail_free_pio_data;
5431
5432 if (irqchip_in_kernel(kvm)) {
5433 r = kvm_create_lapic(vcpu);
5434 if (r < 0)
5435 goto fail_mmu_destroy;
5436 }
5437
5438 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5439 GFP_KERNEL);
5440 if (!vcpu->arch.mce_banks) {
5441 r = -ENOMEM;
5442 goto fail_free_lapic;
5443 }
5444 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5445
5446 return 0;
5447 fail_free_lapic:
5448 kvm_free_lapic(vcpu);
5449 fail_mmu_destroy:
5450 kvm_mmu_destroy(vcpu);
5451 fail_free_pio_data:
5452 free_page((unsigned long)vcpu->arch.pio_data);
5453 fail:
5454 return r;
5455 }
5456
5457 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
5458 {
5459 int idx;
5460
5461 kfree(vcpu->arch.mce_banks);
5462 kvm_free_lapic(vcpu);
5463 idx = srcu_read_lock(&vcpu->kvm->srcu);
5464 kvm_mmu_destroy(vcpu);
5465 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5466 free_page((unsigned long)vcpu->arch.pio_data);
5467 }
5468
5469 struct kvm *kvm_arch_create_vm(void)
5470 {
5471 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
5472
5473 if (!kvm)
5474 return ERR_PTR(-ENOMEM);
5475
5476 kvm->arch.aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
5477 if (!kvm->arch.aliases) {
5478 kfree(kvm);
5479 return ERR_PTR(-ENOMEM);
5480 }
5481
5482 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5483 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
5484
5485 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5486 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
5487
5488 rdtscll(kvm->arch.vm_init_tsc);
5489
5490 return kvm;
5491 }
5492
5493 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
5494 {
5495 vcpu_load(vcpu);
5496 kvm_mmu_unload(vcpu);
5497 vcpu_put(vcpu);
5498 }
5499
5500 static void kvm_free_vcpus(struct kvm *kvm)
5501 {
5502 unsigned int i;
5503 struct kvm_vcpu *vcpu;
5504
5505 /*
5506 * Unpin any mmu pages first.
5507 */
5508 kvm_for_each_vcpu(i, vcpu, kvm)
5509 kvm_unload_vcpu_mmu(vcpu);
5510 kvm_for_each_vcpu(i, vcpu, kvm)
5511 kvm_arch_vcpu_free(vcpu);
5512
5513 mutex_lock(&kvm->lock);
5514 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
5515 kvm->vcpus[i] = NULL;
5516
5517 atomic_set(&kvm->online_vcpus, 0);
5518 mutex_unlock(&kvm->lock);
5519 }
5520
5521 void kvm_arch_sync_events(struct kvm *kvm)
5522 {
5523 kvm_free_all_assigned_devices(kvm);
5524 }
5525
5526 void kvm_arch_destroy_vm(struct kvm *kvm)
5527 {
5528 kvm_iommu_unmap_guest(kvm);
5529 kvm_free_pit(kvm);
5530 kfree(kvm->arch.vpic);
5531 kfree(kvm->arch.vioapic);
5532 kvm_free_vcpus(kvm);
5533 kvm_free_physmem(kvm);
5534 if (kvm->arch.apic_access_page)
5535 put_page(kvm->arch.apic_access_page);
5536 if (kvm->arch.ept_identity_pagetable)
5537 put_page(kvm->arch.ept_identity_pagetable);
5538 cleanup_srcu_struct(&kvm->srcu);
5539 kfree(kvm->arch.aliases);
5540 kfree(kvm);
5541 }
5542
5543 int kvm_arch_prepare_memory_region(struct kvm *kvm,
5544 struct kvm_memory_slot *memslot,
5545 struct kvm_memory_slot old,
5546 struct kvm_userspace_memory_region *mem,
5547 int user_alloc)
5548 {
5549 int npages = memslot->npages;
5550
5551 /*To keep backward compatibility with older userspace,
5552 *x86 needs to hanlde !user_alloc case.
5553 */
5554 if (!user_alloc) {
5555 if (npages && !old.rmap) {
5556 unsigned long userspace_addr;
5557
5558 down_write(&current->mm->mmap_sem);
5559 userspace_addr = do_mmap(NULL, 0,
5560 npages * PAGE_SIZE,
5561 PROT_READ | PROT_WRITE,
5562 MAP_PRIVATE | MAP_ANONYMOUS,
5563 0);
5564 up_write(&current->mm->mmap_sem);
5565
5566 if (IS_ERR((void *)userspace_addr))
5567 return PTR_ERR((void *)userspace_addr);
5568
5569 memslot->userspace_addr = userspace_addr;
5570 }
5571 }
5572
5573
5574 return 0;
5575 }
5576
5577 void kvm_arch_commit_memory_region(struct kvm *kvm,
5578 struct kvm_userspace_memory_region *mem,
5579 struct kvm_memory_slot old,
5580 int user_alloc)
5581 {
5582
5583 int npages = mem->memory_size >> PAGE_SHIFT;
5584
5585 if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
5586 int ret;
5587
5588 down_write(&current->mm->mmap_sem);
5589 ret = do_munmap(current->mm, old.userspace_addr,
5590 old.npages * PAGE_SIZE);
5591 up_write(&current->mm->mmap_sem);
5592 if (ret < 0)
5593 printk(KERN_WARNING
5594 "kvm_vm_ioctl_set_memory_region: "
5595 "failed to munmap memory\n");
5596 }
5597
5598 spin_lock(&kvm->mmu_lock);
5599 if (!kvm->arch.n_requested_mmu_pages) {
5600 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
5601 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
5602 }
5603
5604 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
5605 spin_unlock(&kvm->mmu_lock);
5606 }
5607
5608 void kvm_arch_flush_shadow(struct kvm *kvm)
5609 {
5610 kvm_mmu_zap_all(kvm);
5611 kvm_reload_remote_mmus(kvm);
5612 }
5613
5614 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
5615 {
5616 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
5617 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
5618 || vcpu->arch.nmi_pending ||
5619 (kvm_arch_interrupt_allowed(vcpu) &&
5620 kvm_cpu_has_interrupt(vcpu));
5621 }
5622
5623 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
5624 {
5625 int me;
5626 int cpu = vcpu->cpu;
5627
5628 if (waitqueue_active(&vcpu->wq)) {
5629 wake_up_interruptible(&vcpu->wq);
5630 ++vcpu->stat.halt_wakeup;
5631 }
5632
5633 me = get_cpu();
5634 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
5635 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
5636 smp_send_reschedule(cpu);
5637 put_cpu();
5638 }
5639
5640 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
5641 {
5642 return kvm_x86_ops->interrupt_allowed(vcpu);
5643 }
5644
5645 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
5646 {
5647 unsigned long rflags;
5648
5649 rflags = kvm_x86_ops->get_rflags(vcpu);
5650 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5651 rflags &= ~(unsigned long)(X86_EFLAGS_TF | X86_EFLAGS_RF);
5652 return rflags;
5653 }
5654 EXPORT_SYMBOL_GPL(kvm_get_rflags);
5655
5656 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
5657 {
5658 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
5659 vcpu->arch.singlestep_cs ==
5660 get_segment_selector(vcpu, VCPU_SREG_CS) &&
5661 vcpu->arch.singlestep_rip == kvm_rip_read(vcpu))
5662 rflags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
5663 kvm_x86_ops->set_rflags(vcpu, rflags);
5664 }
5665 EXPORT_SYMBOL_GPL(kvm_set_rflags);
5666
5667 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
5668 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
5669 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
5670 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
5671 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
5672 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
5673 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
5674 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
5675 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
5676 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
5677 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
This page took 0.154301 seconds and 5 git commands to generate.