KVM: Halt vcpu if page it tries to access is swapped out
[deliverable/linux.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/module.h>
36 #include <linux/mman.h>
37 #include <linux/highmem.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/cpufreq.h>
41 #include <linux/user-return-notifier.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/perf_event.h>
45 #include <linux/uaccess.h>
46 #include <linux/hash.h>
47 #include <trace/events/kvm.h>
48
49 #define CREATE_TRACE_POINTS
50 #include "trace.h"
51
52 #include <asm/debugreg.h>
53 #include <asm/msr.h>
54 #include <asm/desc.h>
55 #include <asm/mtrr.h>
56 #include <asm/mce.h>
57 #include <asm/i387.h>
58 #include <asm/xcr.h>
59 #include <asm/pvclock.h>
60 #include <asm/div64.h>
61
62 #define MAX_IO_MSRS 256
63 #define CR0_RESERVED_BITS \
64 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
65 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
66 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
67 #define CR4_RESERVED_BITS \
68 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
69 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
70 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
71 | X86_CR4_OSXSAVE \
72 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
73
74 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
75
76 #define KVM_MAX_MCE_BANKS 32
77 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
78
79 /* EFER defaults:
80 * - enable syscall per default because its emulated by KVM
81 * - enable LME and LMA per default on 64 bit KVM
82 */
83 #ifdef CONFIG_X86_64
84 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
85 #else
86 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
87 #endif
88
89 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
90 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
91
92 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
93 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
94 struct kvm_cpuid_entry2 __user *entries);
95
96 struct kvm_x86_ops *kvm_x86_ops;
97 EXPORT_SYMBOL_GPL(kvm_x86_ops);
98
99 int ignore_msrs = 0;
100 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
101
102 #define KVM_NR_SHARED_MSRS 16
103
104 struct kvm_shared_msrs_global {
105 int nr;
106 u32 msrs[KVM_NR_SHARED_MSRS];
107 };
108
109 struct kvm_shared_msrs {
110 struct user_return_notifier urn;
111 bool registered;
112 struct kvm_shared_msr_values {
113 u64 host;
114 u64 curr;
115 } values[KVM_NR_SHARED_MSRS];
116 };
117
118 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
119 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
120
121 struct kvm_stats_debugfs_item debugfs_entries[] = {
122 { "pf_fixed", VCPU_STAT(pf_fixed) },
123 { "pf_guest", VCPU_STAT(pf_guest) },
124 { "tlb_flush", VCPU_STAT(tlb_flush) },
125 { "invlpg", VCPU_STAT(invlpg) },
126 { "exits", VCPU_STAT(exits) },
127 { "io_exits", VCPU_STAT(io_exits) },
128 { "mmio_exits", VCPU_STAT(mmio_exits) },
129 { "signal_exits", VCPU_STAT(signal_exits) },
130 { "irq_window", VCPU_STAT(irq_window_exits) },
131 { "nmi_window", VCPU_STAT(nmi_window_exits) },
132 { "halt_exits", VCPU_STAT(halt_exits) },
133 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
134 { "hypercalls", VCPU_STAT(hypercalls) },
135 { "request_irq", VCPU_STAT(request_irq_exits) },
136 { "irq_exits", VCPU_STAT(irq_exits) },
137 { "host_state_reload", VCPU_STAT(host_state_reload) },
138 { "efer_reload", VCPU_STAT(efer_reload) },
139 { "fpu_reload", VCPU_STAT(fpu_reload) },
140 { "insn_emulation", VCPU_STAT(insn_emulation) },
141 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
142 { "irq_injections", VCPU_STAT(irq_injections) },
143 { "nmi_injections", VCPU_STAT(nmi_injections) },
144 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
145 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
146 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
147 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
148 { "mmu_flooded", VM_STAT(mmu_flooded) },
149 { "mmu_recycled", VM_STAT(mmu_recycled) },
150 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
151 { "mmu_unsync", VM_STAT(mmu_unsync) },
152 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
153 { "largepages", VM_STAT(lpages) },
154 { NULL }
155 };
156
157 u64 __read_mostly host_xcr0;
158
159 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
160 {
161 int i;
162 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
163 vcpu->arch.apf.gfns[i] = ~0;
164 }
165
166 static void kvm_on_user_return(struct user_return_notifier *urn)
167 {
168 unsigned slot;
169 struct kvm_shared_msrs *locals
170 = container_of(urn, struct kvm_shared_msrs, urn);
171 struct kvm_shared_msr_values *values;
172
173 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
174 values = &locals->values[slot];
175 if (values->host != values->curr) {
176 wrmsrl(shared_msrs_global.msrs[slot], values->host);
177 values->curr = values->host;
178 }
179 }
180 locals->registered = false;
181 user_return_notifier_unregister(urn);
182 }
183
184 static void shared_msr_update(unsigned slot, u32 msr)
185 {
186 struct kvm_shared_msrs *smsr;
187 u64 value;
188
189 smsr = &__get_cpu_var(shared_msrs);
190 /* only read, and nobody should modify it at this time,
191 * so don't need lock */
192 if (slot >= shared_msrs_global.nr) {
193 printk(KERN_ERR "kvm: invalid MSR slot!");
194 return;
195 }
196 rdmsrl_safe(msr, &value);
197 smsr->values[slot].host = value;
198 smsr->values[slot].curr = value;
199 }
200
201 void kvm_define_shared_msr(unsigned slot, u32 msr)
202 {
203 if (slot >= shared_msrs_global.nr)
204 shared_msrs_global.nr = slot + 1;
205 shared_msrs_global.msrs[slot] = msr;
206 /* we need ensured the shared_msr_global have been updated */
207 smp_wmb();
208 }
209 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
210
211 static void kvm_shared_msr_cpu_online(void)
212 {
213 unsigned i;
214
215 for (i = 0; i < shared_msrs_global.nr; ++i)
216 shared_msr_update(i, shared_msrs_global.msrs[i]);
217 }
218
219 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
220 {
221 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
222
223 if (((value ^ smsr->values[slot].curr) & mask) == 0)
224 return;
225 smsr->values[slot].curr = value;
226 wrmsrl(shared_msrs_global.msrs[slot], value);
227 if (!smsr->registered) {
228 smsr->urn.on_user_return = kvm_on_user_return;
229 user_return_notifier_register(&smsr->urn);
230 smsr->registered = true;
231 }
232 }
233 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
234
235 static void drop_user_return_notifiers(void *ignore)
236 {
237 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
238
239 if (smsr->registered)
240 kvm_on_user_return(&smsr->urn);
241 }
242
243 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
244 {
245 if (irqchip_in_kernel(vcpu->kvm))
246 return vcpu->arch.apic_base;
247 else
248 return vcpu->arch.apic_base;
249 }
250 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
251
252 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
253 {
254 /* TODO: reserve bits check */
255 if (irqchip_in_kernel(vcpu->kvm))
256 kvm_lapic_set_base(vcpu, data);
257 else
258 vcpu->arch.apic_base = data;
259 }
260 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
261
262 #define EXCPT_BENIGN 0
263 #define EXCPT_CONTRIBUTORY 1
264 #define EXCPT_PF 2
265
266 static int exception_class(int vector)
267 {
268 switch (vector) {
269 case PF_VECTOR:
270 return EXCPT_PF;
271 case DE_VECTOR:
272 case TS_VECTOR:
273 case NP_VECTOR:
274 case SS_VECTOR:
275 case GP_VECTOR:
276 return EXCPT_CONTRIBUTORY;
277 default:
278 break;
279 }
280 return EXCPT_BENIGN;
281 }
282
283 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
284 unsigned nr, bool has_error, u32 error_code,
285 bool reinject)
286 {
287 u32 prev_nr;
288 int class1, class2;
289
290 kvm_make_request(KVM_REQ_EVENT, vcpu);
291
292 if (!vcpu->arch.exception.pending) {
293 queue:
294 vcpu->arch.exception.pending = true;
295 vcpu->arch.exception.has_error_code = has_error;
296 vcpu->arch.exception.nr = nr;
297 vcpu->arch.exception.error_code = error_code;
298 vcpu->arch.exception.reinject = reinject;
299 return;
300 }
301
302 /* to check exception */
303 prev_nr = vcpu->arch.exception.nr;
304 if (prev_nr == DF_VECTOR) {
305 /* triple fault -> shutdown */
306 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
307 return;
308 }
309 class1 = exception_class(prev_nr);
310 class2 = exception_class(nr);
311 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
312 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
313 /* generate double fault per SDM Table 5-5 */
314 vcpu->arch.exception.pending = true;
315 vcpu->arch.exception.has_error_code = true;
316 vcpu->arch.exception.nr = DF_VECTOR;
317 vcpu->arch.exception.error_code = 0;
318 } else
319 /* replace previous exception with a new one in a hope
320 that instruction re-execution will regenerate lost
321 exception */
322 goto queue;
323 }
324
325 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
326 {
327 kvm_multiple_exception(vcpu, nr, false, 0, false);
328 }
329 EXPORT_SYMBOL_GPL(kvm_queue_exception);
330
331 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
332 {
333 kvm_multiple_exception(vcpu, nr, false, 0, true);
334 }
335 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
336
337 void kvm_inject_page_fault(struct kvm_vcpu *vcpu)
338 {
339 unsigned error_code = vcpu->arch.fault.error_code;
340
341 ++vcpu->stat.pf_guest;
342 vcpu->arch.cr2 = vcpu->arch.fault.address;
343 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
344 }
345
346 void kvm_propagate_fault(struct kvm_vcpu *vcpu)
347 {
348 if (mmu_is_nested(vcpu) && !vcpu->arch.fault.nested)
349 vcpu->arch.nested_mmu.inject_page_fault(vcpu);
350 else
351 vcpu->arch.mmu.inject_page_fault(vcpu);
352
353 vcpu->arch.fault.nested = false;
354 }
355
356 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
357 {
358 kvm_make_request(KVM_REQ_EVENT, vcpu);
359 vcpu->arch.nmi_pending = 1;
360 }
361 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
362
363 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
364 {
365 kvm_multiple_exception(vcpu, nr, true, error_code, false);
366 }
367 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
368
369 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
370 {
371 kvm_multiple_exception(vcpu, nr, true, error_code, true);
372 }
373 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
374
375 /*
376 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
377 * a #GP and return false.
378 */
379 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
380 {
381 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
382 return true;
383 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
384 return false;
385 }
386 EXPORT_SYMBOL_GPL(kvm_require_cpl);
387
388 /*
389 * This function will be used to read from the physical memory of the currently
390 * running guest. The difference to kvm_read_guest_page is that this function
391 * can read from guest physical or from the guest's guest physical memory.
392 */
393 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
394 gfn_t ngfn, void *data, int offset, int len,
395 u32 access)
396 {
397 gfn_t real_gfn;
398 gpa_t ngpa;
399
400 ngpa = gfn_to_gpa(ngfn);
401 real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
402 if (real_gfn == UNMAPPED_GVA)
403 return -EFAULT;
404
405 real_gfn = gpa_to_gfn(real_gfn);
406
407 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
408 }
409 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
410
411 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
412 void *data, int offset, int len, u32 access)
413 {
414 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
415 data, offset, len, access);
416 }
417
418 /*
419 * Load the pae pdptrs. Return true is they are all valid.
420 */
421 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
422 {
423 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
424 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
425 int i;
426 int ret;
427 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
428
429 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
430 offset * sizeof(u64), sizeof(pdpte),
431 PFERR_USER_MASK|PFERR_WRITE_MASK);
432 if (ret < 0) {
433 ret = 0;
434 goto out;
435 }
436 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
437 if (is_present_gpte(pdpte[i]) &&
438 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
439 ret = 0;
440 goto out;
441 }
442 }
443 ret = 1;
444
445 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
446 __set_bit(VCPU_EXREG_PDPTR,
447 (unsigned long *)&vcpu->arch.regs_avail);
448 __set_bit(VCPU_EXREG_PDPTR,
449 (unsigned long *)&vcpu->arch.regs_dirty);
450 out:
451
452 return ret;
453 }
454 EXPORT_SYMBOL_GPL(load_pdptrs);
455
456 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
457 {
458 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
459 bool changed = true;
460 int offset;
461 gfn_t gfn;
462 int r;
463
464 if (is_long_mode(vcpu) || !is_pae(vcpu))
465 return false;
466
467 if (!test_bit(VCPU_EXREG_PDPTR,
468 (unsigned long *)&vcpu->arch.regs_avail))
469 return true;
470
471 gfn = (vcpu->arch.cr3 & ~31u) >> PAGE_SHIFT;
472 offset = (vcpu->arch.cr3 & ~31u) & (PAGE_SIZE - 1);
473 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
474 PFERR_USER_MASK | PFERR_WRITE_MASK);
475 if (r < 0)
476 goto out;
477 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
478 out:
479
480 return changed;
481 }
482
483 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
484 {
485 unsigned long old_cr0 = kvm_read_cr0(vcpu);
486 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
487 X86_CR0_CD | X86_CR0_NW;
488
489 cr0 |= X86_CR0_ET;
490
491 #ifdef CONFIG_X86_64
492 if (cr0 & 0xffffffff00000000UL)
493 return 1;
494 #endif
495
496 cr0 &= ~CR0_RESERVED_BITS;
497
498 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
499 return 1;
500
501 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
502 return 1;
503
504 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
505 #ifdef CONFIG_X86_64
506 if ((vcpu->arch.efer & EFER_LME)) {
507 int cs_db, cs_l;
508
509 if (!is_pae(vcpu))
510 return 1;
511 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
512 if (cs_l)
513 return 1;
514 } else
515 #endif
516 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
517 vcpu->arch.cr3))
518 return 1;
519 }
520
521 kvm_x86_ops->set_cr0(vcpu, cr0);
522
523 if ((cr0 ^ old_cr0) & update_bits)
524 kvm_mmu_reset_context(vcpu);
525 return 0;
526 }
527 EXPORT_SYMBOL_GPL(kvm_set_cr0);
528
529 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
530 {
531 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
532 }
533 EXPORT_SYMBOL_GPL(kvm_lmsw);
534
535 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
536 {
537 u64 xcr0;
538
539 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
540 if (index != XCR_XFEATURE_ENABLED_MASK)
541 return 1;
542 xcr0 = xcr;
543 if (kvm_x86_ops->get_cpl(vcpu) != 0)
544 return 1;
545 if (!(xcr0 & XSTATE_FP))
546 return 1;
547 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
548 return 1;
549 if (xcr0 & ~host_xcr0)
550 return 1;
551 vcpu->arch.xcr0 = xcr0;
552 vcpu->guest_xcr0_loaded = 0;
553 return 0;
554 }
555
556 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
557 {
558 if (__kvm_set_xcr(vcpu, index, xcr)) {
559 kvm_inject_gp(vcpu, 0);
560 return 1;
561 }
562 return 0;
563 }
564 EXPORT_SYMBOL_GPL(kvm_set_xcr);
565
566 static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
567 {
568 struct kvm_cpuid_entry2 *best;
569
570 best = kvm_find_cpuid_entry(vcpu, 1, 0);
571 return best && (best->ecx & bit(X86_FEATURE_XSAVE));
572 }
573
574 static void update_cpuid(struct kvm_vcpu *vcpu)
575 {
576 struct kvm_cpuid_entry2 *best;
577
578 best = kvm_find_cpuid_entry(vcpu, 1, 0);
579 if (!best)
580 return;
581
582 /* Update OSXSAVE bit */
583 if (cpu_has_xsave && best->function == 0x1) {
584 best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
585 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
586 best->ecx |= bit(X86_FEATURE_OSXSAVE);
587 }
588 }
589
590 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
591 {
592 unsigned long old_cr4 = kvm_read_cr4(vcpu);
593 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
594
595 if (cr4 & CR4_RESERVED_BITS)
596 return 1;
597
598 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
599 return 1;
600
601 if (is_long_mode(vcpu)) {
602 if (!(cr4 & X86_CR4_PAE))
603 return 1;
604 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
605 && ((cr4 ^ old_cr4) & pdptr_bits)
606 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3))
607 return 1;
608
609 if (cr4 & X86_CR4_VMXE)
610 return 1;
611
612 kvm_x86_ops->set_cr4(vcpu, cr4);
613
614 if ((cr4 ^ old_cr4) & pdptr_bits)
615 kvm_mmu_reset_context(vcpu);
616
617 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
618 update_cpuid(vcpu);
619
620 return 0;
621 }
622 EXPORT_SYMBOL_GPL(kvm_set_cr4);
623
624 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
625 {
626 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
627 kvm_mmu_sync_roots(vcpu);
628 kvm_mmu_flush_tlb(vcpu);
629 return 0;
630 }
631
632 if (is_long_mode(vcpu)) {
633 if (cr3 & CR3_L_MODE_RESERVED_BITS)
634 return 1;
635 } else {
636 if (is_pae(vcpu)) {
637 if (cr3 & CR3_PAE_RESERVED_BITS)
638 return 1;
639 if (is_paging(vcpu) &&
640 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
641 return 1;
642 }
643 /*
644 * We don't check reserved bits in nonpae mode, because
645 * this isn't enforced, and VMware depends on this.
646 */
647 }
648
649 /*
650 * Does the new cr3 value map to physical memory? (Note, we
651 * catch an invalid cr3 even in real-mode, because it would
652 * cause trouble later on when we turn on paging anyway.)
653 *
654 * A real CPU would silently accept an invalid cr3 and would
655 * attempt to use it - with largely undefined (and often hard
656 * to debug) behavior on the guest side.
657 */
658 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
659 return 1;
660 vcpu->arch.cr3 = cr3;
661 vcpu->arch.mmu.new_cr3(vcpu);
662 return 0;
663 }
664 EXPORT_SYMBOL_GPL(kvm_set_cr3);
665
666 int __kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
667 {
668 if (cr8 & CR8_RESERVED_BITS)
669 return 1;
670 if (irqchip_in_kernel(vcpu->kvm))
671 kvm_lapic_set_tpr(vcpu, cr8);
672 else
673 vcpu->arch.cr8 = cr8;
674 return 0;
675 }
676
677 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
678 {
679 if (__kvm_set_cr8(vcpu, cr8))
680 kvm_inject_gp(vcpu, 0);
681 }
682 EXPORT_SYMBOL_GPL(kvm_set_cr8);
683
684 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
685 {
686 if (irqchip_in_kernel(vcpu->kvm))
687 return kvm_lapic_get_cr8(vcpu);
688 else
689 return vcpu->arch.cr8;
690 }
691 EXPORT_SYMBOL_GPL(kvm_get_cr8);
692
693 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
694 {
695 switch (dr) {
696 case 0 ... 3:
697 vcpu->arch.db[dr] = val;
698 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
699 vcpu->arch.eff_db[dr] = val;
700 break;
701 case 4:
702 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
703 return 1; /* #UD */
704 /* fall through */
705 case 6:
706 if (val & 0xffffffff00000000ULL)
707 return -1; /* #GP */
708 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
709 break;
710 case 5:
711 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
712 return 1; /* #UD */
713 /* fall through */
714 default: /* 7 */
715 if (val & 0xffffffff00000000ULL)
716 return -1; /* #GP */
717 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
718 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
719 kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
720 vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
721 }
722 break;
723 }
724
725 return 0;
726 }
727
728 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
729 {
730 int res;
731
732 res = __kvm_set_dr(vcpu, dr, val);
733 if (res > 0)
734 kvm_queue_exception(vcpu, UD_VECTOR);
735 else if (res < 0)
736 kvm_inject_gp(vcpu, 0);
737
738 return res;
739 }
740 EXPORT_SYMBOL_GPL(kvm_set_dr);
741
742 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
743 {
744 switch (dr) {
745 case 0 ... 3:
746 *val = vcpu->arch.db[dr];
747 break;
748 case 4:
749 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
750 return 1;
751 /* fall through */
752 case 6:
753 *val = vcpu->arch.dr6;
754 break;
755 case 5:
756 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
757 return 1;
758 /* fall through */
759 default: /* 7 */
760 *val = vcpu->arch.dr7;
761 break;
762 }
763
764 return 0;
765 }
766
767 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
768 {
769 if (_kvm_get_dr(vcpu, dr, val)) {
770 kvm_queue_exception(vcpu, UD_VECTOR);
771 return 1;
772 }
773 return 0;
774 }
775 EXPORT_SYMBOL_GPL(kvm_get_dr);
776
777 /*
778 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
779 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
780 *
781 * This list is modified at module load time to reflect the
782 * capabilities of the host cpu. This capabilities test skips MSRs that are
783 * kvm-specific. Those are put in the beginning of the list.
784 */
785
786 #define KVM_SAVE_MSRS_BEGIN 7
787 static u32 msrs_to_save[] = {
788 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
789 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
790 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
791 HV_X64_MSR_APIC_ASSIST_PAGE,
792 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
793 MSR_STAR,
794 #ifdef CONFIG_X86_64
795 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
796 #endif
797 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
798 };
799
800 static unsigned num_msrs_to_save;
801
802 static u32 emulated_msrs[] = {
803 MSR_IA32_MISC_ENABLE,
804 MSR_IA32_MCG_STATUS,
805 MSR_IA32_MCG_CTL,
806 };
807
808 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
809 {
810 u64 old_efer = vcpu->arch.efer;
811
812 if (efer & efer_reserved_bits)
813 return 1;
814
815 if (is_paging(vcpu)
816 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
817 return 1;
818
819 if (efer & EFER_FFXSR) {
820 struct kvm_cpuid_entry2 *feat;
821
822 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
823 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
824 return 1;
825 }
826
827 if (efer & EFER_SVME) {
828 struct kvm_cpuid_entry2 *feat;
829
830 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
831 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
832 return 1;
833 }
834
835 efer &= ~EFER_LMA;
836 efer |= vcpu->arch.efer & EFER_LMA;
837
838 kvm_x86_ops->set_efer(vcpu, efer);
839
840 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
841
842 /* Update reserved bits */
843 if ((efer ^ old_efer) & EFER_NX)
844 kvm_mmu_reset_context(vcpu);
845
846 return 0;
847 }
848
849 void kvm_enable_efer_bits(u64 mask)
850 {
851 efer_reserved_bits &= ~mask;
852 }
853 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
854
855
856 /*
857 * Writes msr value into into the appropriate "register".
858 * Returns 0 on success, non-0 otherwise.
859 * Assumes vcpu_load() was already called.
860 */
861 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
862 {
863 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
864 }
865
866 /*
867 * Adapt set_msr() to msr_io()'s calling convention
868 */
869 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
870 {
871 return kvm_set_msr(vcpu, index, *data);
872 }
873
874 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
875 {
876 int version;
877 int r;
878 struct pvclock_wall_clock wc;
879 struct timespec boot;
880
881 if (!wall_clock)
882 return;
883
884 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
885 if (r)
886 return;
887
888 if (version & 1)
889 ++version; /* first time write, random junk */
890
891 ++version;
892
893 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
894
895 /*
896 * The guest calculates current wall clock time by adding
897 * system time (updated by kvm_guest_time_update below) to the
898 * wall clock specified here. guest system time equals host
899 * system time for us, thus we must fill in host boot time here.
900 */
901 getboottime(&boot);
902
903 wc.sec = boot.tv_sec;
904 wc.nsec = boot.tv_nsec;
905 wc.version = version;
906
907 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
908
909 version++;
910 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
911 }
912
913 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
914 {
915 uint32_t quotient, remainder;
916
917 /* Don't try to replace with do_div(), this one calculates
918 * "(dividend << 32) / divisor" */
919 __asm__ ( "divl %4"
920 : "=a" (quotient), "=d" (remainder)
921 : "0" (0), "1" (dividend), "r" (divisor) );
922 return quotient;
923 }
924
925 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
926 s8 *pshift, u32 *pmultiplier)
927 {
928 uint64_t scaled64;
929 int32_t shift = 0;
930 uint64_t tps64;
931 uint32_t tps32;
932
933 tps64 = base_khz * 1000LL;
934 scaled64 = scaled_khz * 1000LL;
935 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
936 tps64 >>= 1;
937 shift--;
938 }
939
940 tps32 = (uint32_t)tps64;
941 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
942 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
943 scaled64 >>= 1;
944 else
945 tps32 <<= 1;
946 shift++;
947 }
948
949 *pshift = shift;
950 *pmultiplier = div_frac(scaled64, tps32);
951
952 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
953 __func__, base_khz, scaled_khz, shift, *pmultiplier);
954 }
955
956 static inline u64 get_kernel_ns(void)
957 {
958 struct timespec ts;
959
960 WARN_ON(preemptible());
961 ktime_get_ts(&ts);
962 monotonic_to_bootbased(&ts);
963 return timespec_to_ns(&ts);
964 }
965
966 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
967 unsigned long max_tsc_khz;
968
969 static inline int kvm_tsc_changes_freq(void)
970 {
971 int cpu = get_cpu();
972 int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
973 cpufreq_quick_get(cpu) != 0;
974 put_cpu();
975 return ret;
976 }
977
978 static inline u64 nsec_to_cycles(u64 nsec)
979 {
980 u64 ret;
981
982 WARN_ON(preemptible());
983 if (kvm_tsc_changes_freq())
984 printk_once(KERN_WARNING
985 "kvm: unreliable cycle conversion on adjustable rate TSC\n");
986 ret = nsec * __get_cpu_var(cpu_tsc_khz);
987 do_div(ret, USEC_PER_SEC);
988 return ret;
989 }
990
991 static void kvm_arch_set_tsc_khz(struct kvm *kvm, u32 this_tsc_khz)
992 {
993 /* Compute a scale to convert nanoseconds in TSC cycles */
994 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
995 &kvm->arch.virtual_tsc_shift,
996 &kvm->arch.virtual_tsc_mult);
997 kvm->arch.virtual_tsc_khz = this_tsc_khz;
998 }
999
1000 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1001 {
1002 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
1003 vcpu->kvm->arch.virtual_tsc_mult,
1004 vcpu->kvm->arch.virtual_tsc_shift);
1005 tsc += vcpu->arch.last_tsc_write;
1006 return tsc;
1007 }
1008
1009 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1010 {
1011 struct kvm *kvm = vcpu->kvm;
1012 u64 offset, ns, elapsed;
1013 unsigned long flags;
1014 s64 sdiff;
1015
1016 spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1017 offset = data - native_read_tsc();
1018 ns = get_kernel_ns();
1019 elapsed = ns - kvm->arch.last_tsc_nsec;
1020 sdiff = data - kvm->arch.last_tsc_write;
1021 if (sdiff < 0)
1022 sdiff = -sdiff;
1023
1024 /*
1025 * Special case: close write to TSC within 5 seconds of
1026 * another CPU is interpreted as an attempt to synchronize
1027 * The 5 seconds is to accomodate host load / swapping as
1028 * well as any reset of TSC during the boot process.
1029 *
1030 * In that case, for a reliable TSC, we can match TSC offsets,
1031 * or make a best guest using elapsed value.
1032 */
1033 if (sdiff < nsec_to_cycles(5ULL * NSEC_PER_SEC) &&
1034 elapsed < 5ULL * NSEC_PER_SEC) {
1035 if (!check_tsc_unstable()) {
1036 offset = kvm->arch.last_tsc_offset;
1037 pr_debug("kvm: matched tsc offset for %llu\n", data);
1038 } else {
1039 u64 delta = nsec_to_cycles(elapsed);
1040 offset += delta;
1041 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1042 }
1043 ns = kvm->arch.last_tsc_nsec;
1044 }
1045 kvm->arch.last_tsc_nsec = ns;
1046 kvm->arch.last_tsc_write = data;
1047 kvm->arch.last_tsc_offset = offset;
1048 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1049 spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1050
1051 /* Reset of TSC must disable overshoot protection below */
1052 vcpu->arch.hv_clock.tsc_timestamp = 0;
1053 vcpu->arch.last_tsc_write = data;
1054 vcpu->arch.last_tsc_nsec = ns;
1055 }
1056 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1057
1058 static int kvm_guest_time_update(struct kvm_vcpu *v)
1059 {
1060 unsigned long flags;
1061 struct kvm_vcpu_arch *vcpu = &v->arch;
1062 void *shared_kaddr;
1063 unsigned long this_tsc_khz;
1064 s64 kernel_ns, max_kernel_ns;
1065 u64 tsc_timestamp;
1066
1067 /* Keep irq disabled to prevent changes to the clock */
1068 local_irq_save(flags);
1069 kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
1070 kernel_ns = get_kernel_ns();
1071 this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1072
1073 if (unlikely(this_tsc_khz == 0)) {
1074 local_irq_restore(flags);
1075 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1076 return 1;
1077 }
1078
1079 /*
1080 * We may have to catch up the TSC to match elapsed wall clock
1081 * time for two reasons, even if kvmclock is used.
1082 * 1) CPU could have been running below the maximum TSC rate
1083 * 2) Broken TSC compensation resets the base at each VCPU
1084 * entry to avoid unknown leaps of TSC even when running
1085 * again on the same CPU. This may cause apparent elapsed
1086 * time to disappear, and the guest to stand still or run
1087 * very slowly.
1088 */
1089 if (vcpu->tsc_catchup) {
1090 u64 tsc = compute_guest_tsc(v, kernel_ns);
1091 if (tsc > tsc_timestamp) {
1092 kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp);
1093 tsc_timestamp = tsc;
1094 }
1095 }
1096
1097 local_irq_restore(flags);
1098
1099 if (!vcpu->time_page)
1100 return 0;
1101
1102 /*
1103 * Time as measured by the TSC may go backwards when resetting the base
1104 * tsc_timestamp. The reason for this is that the TSC resolution is
1105 * higher than the resolution of the other clock scales. Thus, many
1106 * possible measurments of the TSC correspond to one measurement of any
1107 * other clock, and so a spread of values is possible. This is not a
1108 * problem for the computation of the nanosecond clock; with TSC rates
1109 * around 1GHZ, there can only be a few cycles which correspond to one
1110 * nanosecond value, and any path through this code will inevitably
1111 * take longer than that. However, with the kernel_ns value itself,
1112 * the precision may be much lower, down to HZ granularity. If the
1113 * first sampling of TSC against kernel_ns ends in the low part of the
1114 * range, and the second in the high end of the range, we can get:
1115 *
1116 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1117 *
1118 * As the sampling errors potentially range in the thousands of cycles,
1119 * it is possible such a time value has already been observed by the
1120 * guest. To protect against this, we must compute the system time as
1121 * observed by the guest and ensure the new system time is greater.
1122 */
1123 max_kernel_ns = 0;
1124 if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
1125 max_kernel_ns = vcpu->last_guest_tsc -
1126 vcpu->hv_clock.tsc_timestamp;
1127 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1128 vcpu->hv_clock.tsc_to_system_mul,
1129 vcpu->hv_clock.tsc_shift);
1130 max_kernel_ns += vcpu->last_kernel_ns;
1131 }
1132
1133 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1134 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1135 &vcpu->hv_clock.tsc_shift,
1136 &vcpu->hv_clock.tsc_to_system_mul);
1137 vcpu->hw_tsc_khz = this_tsc_khz;
1138 }
1139
1140 if (max_kernel_ns > kernel_ns)
1141 kernel_ns = max_kernel_ns;
1142
1143 /* With all the info we got, fill in the values */
1144 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1145 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1146 vcpu->last_kernel_ns = kernel_ns;
1147 vcpu->last_guest_tsc = tsc_timestamp;
1148 vcpu->hv_clock.flags = 0;
1149
1150 /*
1151 * The interface expects us to write an even number signaling that the
1152 * update is finished. Since the guest won't see the intermediate
1153 * state, we just increase by 2 at the end.
1154 */
1155 vcpu->hv_clock.version += 2;
1156
1157 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
1158
1159 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1160 sizeof(vcpu->hv_clock));
1161
1162 kunmap_atomic(shared_kaddr, KM_USER0);
1163
1164 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1165 return 0;
1166 }
1167
1168 static bool msr_mtrr_valid(unsigned msr)
1169 {
1170 switch (msr) {
1171 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1172 case MSR_MTRRfix64K_00000:
1173 case MSR_MTRRfix16K_80000:
1174 case MSR_MTRRfix16K_A0000:
1175 case MSR_MTRRfix4K_C0000:
1176 case MSR_MTRRfix4K_C8000:
1177 case MSR_MTRRfix4K_D0000:
1178 case MSR_MTRRfix4K_D8000:
1179 case MSR_MTRRfix4K_E0000:
1180 case MSR_MTRRfix4K_E8000:
1181 case MSR_MTRRfix4K_F0000:
1182 case MSR_MTRRfix4K_F8000:
1183 case MSR_MTRRdefType:
1184 case MSR_IA32_CR_PAT:
1185 return true;
1186 case 0x2f8:
1187 return true;
1188 }
1189 return false;
1190 }
1191
1192 static bool valid_pat_type(unsigned t)
1193 {
1194 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1195 }
1196
1197 static bool valid_mtrr_type(unsigned t)
1198 {
1199 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1200 }
1201
1202 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1203 {
1204 int i;
1205
1206 if (!msr_mtrr_valid(msr))
1207 return false;
1208
1209 if (msr == MSR_IA32_CR_PAT) {
1210 for (i = 0; i < 8; i++)
1211 if (!valid_pat_type((data >> (i * 8)) & 0xff))
1212 return false;
1213 return true;
1214 } else if (msr == MSR_MTRRdefType) {
1215 if (data & ~0xcff)
1216 return false;
1217 return valid_mtrr_type(data & 0xff);
1218 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1219 for (i = 0; i < 8 ; i++)
1220 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1221 return false;
1222 return true;
1223 }
1224
1225 /* variable MTRRs */
1226 return valid_mtrr_type(data & 0xff);
1227 }
1228
1229 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1230 {
1231 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1232
1233 if (!mtrr_valid(vcpu, msr, data))
1234 return 1;
1235
1236 if (msr == MSR_MTRRdefType) {
1237 vcpu->arch.mtrr_state.def_type = data;
1238 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1239 } else if (msr == MSR_MTRRfix64K_00000)
1240 p[0] = data;
1241 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1242 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1243 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1244 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1245 else if (msr == MSR_IA32_CR_PAT)
1246 vcpu->arch.pat = data;
1247 else { /* Variable MTRRs */
1248 int idx, is_mtrr_mask;
1249 u64 *pt;
1250
1251 idx = (msr - 0x200) / 2;
1252 is_mtrr_mask = msr - 0x200 - 2 * idx;
1253 if (!is_mtrr_mask)
1254 pt =
1255 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1256 else
1257 pt =
1258 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1259 *pt = data;
1260 }
1261
1262 kvm_mmu_reset_context(vcpu);
1263 return 0;
1264 }
1265
1266 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1267 {
1268 u64 mcg_cap = vcpu->arch.mcg_cap;
1269 unsigned bank_num = mcg_cap & 0xff;
1270
1271 switch (msr) {
1272 case MSR_IA32_MCG_STATUS:
1273 vcpu->arch.mcg_status = data;
1274 break;
1275 case MSR_IA32_MCG_CTL:
1276 if (!(mcg_cap & MCG_CTL_P))
1277 return 1;
1278 if (data != 0 && data != ~(u64)0)
1279 return -1;
1280 vcpu->arch.mcg_ctl = data;
1281 break;
1282 default:
1283 if (msr >= MSR_IA32_MC0_CTL &&
1284 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1285 u32 offset = msr - MSR_IA32_MC0_CTL;
1286 /* only 0 or all 1s can be written to IA32_MCi_CTL
1287 * some Linux kernels though clear bit 10 in bank 4 to
1288 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1289 * this to avoid an uncatched #GP in the guest
1290 */
1291 if ((offset & 0x3) == 0 &&
1292 data != 0 && (data | (1 << 10)) != ~(u64)0)
1293 return -1;
1294 vcpu->arch.mce_banks[offset] = data;
1295 break;
1296 }
1297 return 1;
1298 }
1299 return 0;
1300 }
1301
1302 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1303 {
1304 struct kvm *kvm = vcpu->kvm;
1305 int lm = is_long_mode(vcpu);
1306 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1307 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1308 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1309 : kvm->arch.xen_hvm_config.blob_size_32;
1310 u32 page_num = data & ~PAGE_MASK;
1311 u64 page_addr = data & PAGE_MASK;
1312 u8 *page;
1313 int r;
1314
1315 r = -E2BIG;
1316 if (page_num >= blob_size)
1317 goto out;
1318 r = -ENOMEM;
1319 page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1320 if (!page)
1321 goto out;
1322 r = -EFAULT;
1323 if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1324 goto out_free;
1325 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1326 goto out_free;
1327 r = 0;
1328 out_free:
1329 kfree(page);
1330 out:
1331 return r;
1332 }
1333
1334 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1335 {
1336 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1337 }
1338
1339 static bool kvm_hv_msr_partition_wide(u32 msr)
1340 {
1341 bool r = false;
1342 switch (msr) {
1343 case HV_X64_MSR_GUEST_OS_ID:
1344 case HV_X64_MSR_HYPERCALL:
1345 r = true;
1346 break;
1347 }
1348
1349 return r;
1350 }
1351
1352 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1353 {
1354 struct kvm *kvm = vcpu->kvm;
1355
1356 switch (msr) {
1357 case HV_X64_MSR_GUEST_OS_ID:
1358 kvm->arch.hv_guest_os_id = data;
1359 /* setting guest os id to zero disables hypercall page */
1360 if (!kvm->arch.hv_guest_os_id)
1361 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1362 break;
1363 case HV_X64_MSR_HYPERCALL: {
1364 u64 gfn;
1365 unsigned long addr;
1366 u8 instructions[4];
1367
1368 /* if guest os id is not set hypercall should remain disabled */
1369 if (!kvm->arch.hv_guest_os_id)
1370 break;
1371 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1372 kvm->arch.hv_hypercall = data;
1373 break;
1374 }
1375 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1376 addr = gfn_to_hva(kvm, gfn);
1377 if (kvm_is_error_hva(addr))
1378 return 1;
1379 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1380 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1381 if (copy_to_user((void __user *)addr, instructions, 4))
1382 return 1;
1383 kvm->arch.hv_hypercall = data;
1384 break;
1385 }
1386 default:
1387 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1388 "data 0x%llx\n", msr, data);
1389 return 1;
1390 }
1391 return 0;
1392 }
1393
1394 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1395 {
1396 switch (msr) {
1397 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1398 unsigned long addr;
1399
1400 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1401 vcpu->arch.hv_vapic = data;
1402 break;
1403 }
1404 addr = gfn_to_hva(vcpu->kvm, data >>
1405 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1406 if (kvm_is_error_hva(addr))
1407 return 1;
1408 if (clear_user((void __user *)addr, PAGE_SIZE))
1409 return 1;
1410 vcpu->arch.hv_vapic = data;
1411 break;
1412 }
1413 case HV_X64_MSR_EOI:
1414 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1415 case HV_X64_MSR_ICR:
1416 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1417 case HV_X64_MSR_TPR:
1418 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1419 default:
1420 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1421 "data 0x%llx\n", msr, data);
1422 return 1;
1423 }
1424
1425 return 0;
1426 }
1427
1428 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1429 {
1430 switch (msr) {
1431 case MSR_EFER:
1432 return set_efer(vcpu, data);
1433 case MSR_K7_HWCR:
1434 data &= ~(u64)0x40; /* ignore flush filter disable */
1435 data &= ~(u64)0x100; /* ignore ignne emulation enable */
1436 if (data != 0) {
1437 pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1438 data);
1439 return 1;
1440 }
1441 break;
1442 case MSR_FAM10H_MMIO_CONF_BASE:
1443 if (data != 0) {
1444 pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1445 "0x%llx\n", data);
1446 return 1;
1447 }
1448 break;
1449 case MSR_AMD64_NB_CFG:
1450 break;
1451 case MSR_IA32_DEBUGCTLMSR:
1452 if (!data) {
1453 /* We support the non-activated case already */
1454 break;
1455 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1456 /* Values other than LBR and BTF are vendor-specific,
1457 thus reserved and should throw a #GP */
1458 return 1;
1459 }
1460 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1461 __func__, data);
1462 break;
1463 case MSR_IA32_UCODE_REV:
1464 case MSR_IA32_UCODE_WRITE:
1465 case MSR_VM_HSAVE_PA:
1466 case MSR_AMD64_PATCH_LOADER:
1467 break;
1468 case 0x200 ... 0x2ff:
1469 return set_msr_mtrr(vcpu, msr, data);
1470 case MSR_IA32_APICBASE:
1471 kvm_set_apic_base(vcpu, data);
1472 break;
1473 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1474 return kvm_x2apic_msr_write(vcpu, msr, data);
1475 case MSR_IA32_MISC_ENABLE:
1476 vcpu->arch.ia32_misc_enable_msr = data;
1477 break;
1478 case MSR_KVM_WALL_CLOCK_NEW:
1479 case MSR_KVM_WALL_CLOCK:
1480 vcpu->kvm->arch.wall_clock = data;
1481 kvm_write_wall_clock(vcpu->kvm, data);
1482 break;
1483 case MSR_KVM_SYSTEM_TIME_NEW:
1484 case MSR_KVM_SYSTEM_TIME: {
1485 if (vcpu->arch.time_page) {
1486 kvm_release_page_dirty(vcpu->arch.time_page);
1487 vcpu->arch.time_page = NULL;
1488 }
1489
1490 vcpu->arch.time = data;
1491 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1492
1493 /* we verify if the enable bit is set... */
1494 if (!(data & 1))
1495 break;
1496
1497 /* ...but clean it before doing the actual write */
1498 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1499
1500 vcpu->arch.time_page =
1501 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1502
1503 if (is_error_page(vcpu->arch.time_page)) {
1504 kvm_release_page_clean(vcpu->arch.time_page);
1505 vcpu->arch.time_page = NULL;
1506 }
1507 break;
1508 }
1509 case MSR_IA32_MCG_CTL:
1510 case MSR_IA32_MCG_STATUS:
1511 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1512 return set_msr_mce(vcpu, msr, data);
1513
1514 /* Performance counters are not protected by a CPUID bit,
1515 * so we should check all of them in the generic path for the sake of
1516 * cross vendor migration.
1517 * Writing a zero into the event select MSRs disables them,
1518 * which we perfectly emulate ;-). Any other value should be at least
1519 * reported, some guests depend on them.
1520 */
1521 case MSR_P6_EVNTSEL0:
1522 case MSR_P6_EVNTSEL1:
1523 case MSR_K7_EVNTSEL0:
1524 case MSR_K7_EVNTSEL1:
1525 case MSR_K7_EVNTSEL2:
1526 case MSR_K7_EVNTSEL3:
1527 if (data != 0)
1528 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1529 "0x%x data 0x%llx\n", msr, data);
1530 break;
1531 /* at least RHEL 4 unconditionally writes to the perfctr registers,
1532 * so we ignore writes to make it happy.
1533 */
1534 case MSR_P6_PERFCTR0:
1535 case MSR_P6_PERFCTR1:
1536 case MSR_K7_PERFCTR0:
1537 case MSR_K7_PERFCTR1:
1538 case MSR_K7_PERFCTR2:
1539 case MSR_K7_PERFCTR3:
1540 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1541 "0x%x data 0x%llx\n", msr, data);
1542 break;
1543 case MSR_K7_CLK_CTL:
1544 /*
1545 * Ignore all writes to this no longer documented MSR.
1546 * Writes are only relevant for old K7 processors,
1547 * all pre-dating SVM, but a recommended workaround from
1548 * AMD for these chips. It is possible to speicify the
1549 * affected processor models on the command line, hence
1550 * the need to ignore the workaround.
1551 */
1552 break;
1553 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1554 if (kvm_hv_msr_partition_wide(msr)) {
1555 int r;
1556 mutex_lock(&vcpu->kvm->lock);
1557 r = set_msr_hyperv_pw(vcpu, msr, data);
1558 mutex_unlock(&vcpu->kvm->lock);
1559 return r;
1560 } else
1561 return set_msr_hyperv(vcpu, msr, data);
1562 break;
1563 default:
1564 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1565 return xen_hvm_config(vcpu, data);
1566 if (!ignore_msrs) {
1567 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1568 msr, data);
1569 return 1;
1570 } else {
1571 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1572 msr, data);
1573 break;
1574 }
1575 }
1576 return 0;
1577 }
1578 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1579
1580
1581 /*
1582 * Reads an msr value (of 'msr_index') into 'pdata'.
1583 * Returns 0 on success, non-0 otherwise.
1584 * Assumes vcpu_load() was already called.
1585 */
1586 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1587 {
1588 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1589 }
1590
1591 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1592 {
1593 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1594
1595 if (!msr_mtrr_valid(msr))
1596 return 1;
1597
1598 if (msr == MSR_MTRRdefType)
1599 *pdata = vcpu->arch.mtrr_state.def_type +
1600 (vcpu->arch.mtrr_state.enabled << 10);
1601 else if (msr == MSR_MTRRfix64K_00000)
1602 *pdata = p[0];
1603 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1604 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1605 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1606 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1607 else if (msr == MSR_IA32_CR_PAT)
1608 *pdata = vcpu->arch.pat;
1609 else { /* Variable MTRRs */
1610 int idx, is_mtrr_mask;
1611 u64 *pt;
1612
1613 idx = (msr - 0x200) / 2;
1614 is_mtrr_mask = msr - 0x200 - 2 * idx;
1615 if (!is_mtrr_mask)
1616 pt =
1617 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1618 else
1619 pt =
1620 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1621 *pdata = *pt;
1622 }
1623
1624 return 0;
1625 }
1626
1627 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1628 {
1629 u64 data;
1630 u64 mcg_cap = vcpu->arch.mcg_cap;
1631 unsigned bank_num = mcg_cap & 0xff;
1632
1633 switch (msr) {
1634 case MSR_IA32_P5_MC_ADDR:
1635 case MSR_IA32_P5_MC_TYPE:
1636 data = 0;
1637 break;
1638 case MSR_IA32_MCG_CAP:
1639 data = vcpu->arch.mcg_cap;
1640 break;
1641 case MSR_IA32_MCG_CTL:
1642 if (!(mcg_cap & MCG_CTL_P))
1643 return 1;
1644 data = vcpu->arch.mcg_ctl;
1645 break;
1646 case MSR_IA32_MCG_STATUS:
1647 data = vcpu->arch.mcg_status;
1648 break;
1649 default:
1650 if (msr >= MSR_IA32_MC0_CTL &&
1651 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1652 u32 offset = msr - MSR_IA32_MC0_CTL;
1653 data = vcpu->arch.mce_banks[offset];
1654 break;
1655 }
1656 return 1;
1657 }
1658 *pdata = data;
1659 return 0;
1660 }
1661
1662 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1663 {
1664 u64 data = 0;
1665 struct kvm *kvm = vcpu->kvm;
1666
1667 switch (msr) {
1668 case HV_X64_MSR_GUEST_OS_ID:
1669 data = kvm->arch.hv_guest_os_id;
1670 break;
1671 case HV_X64_MSR_HYPERCALL:
1672 data = kvm->arch.hv_hypercall;
1673 break;
1674 default:
1675 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1676 return 1;
1677 }
1678
1679 *pdata = data;
1680 return 0;
1681 }
1682
1683 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1684 {
1685 u64 data = 0;
1686
1687 switch (msr) {
1688 case HV_X64_MSR_VP_INDEX: {
1689 int r;
1690 struct kvm_vcpu *v;
1691 kvm_for_each_vcpu(r, v, vcpu->kvm)
1692 if (v == vcpu)
1693 data = r;
1694 break;
1695 }
1696 case HV_X64_MSR_EOI:
1697 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1698 case HV_X64_MSR_ICR:
1699 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1700 case HV_X64_MSR_TPR:
1701 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1702 default:
1703 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1704 return 1;
1705 }
1706 *pdata = data;
1707 return 0;
1708 }
1709
1710 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1711 {
1712 u64 data;
1713
1714 switch (msr) {
1715 case MSR_IA32_PLATFORM_ID:
1716 case MSR_IA32_UCODE_REV:
1717 case MSR_IA32_EBL_CR_POWERON:
1718 case MSR_IA32_DEBUGCTLMSR:
1719 case MSR_IA32_LASTBRANCHFROMIP:
1720 case MSR_IA32_LASTBRANCHTOIP:
1721 case MSR_IA32_LASTINTFROMIP:
1722 case MSR_IA32_LASTINTTOIP:
1723 case MSR_K8_SYSCFG:
1724 case MSR_K7_HWCR:
1725 case MSR_VM_HSAVE_PA:
1726 case MSR_P6_PERFCTR0:
1727 case MSR_P6_PERFCTR1:
1728 case MSR_P6_EVNTSEL0:
1729 case MSR_P6_EVNTSEL1:
1730 case MSR_K7_EVNTSEL0:
1731 case MSR_K7_PERFCTR0:
1732 case MSR_K8_INT_PENDING_MSG:
1733 case MSR_AMD64_NB_CFG:
1734 case MSR_FAM10H_MMIO_CONF_BASE:
1735 data = 0;
1736 break;
1737 case MSR_MTRRcap:
1738 data = 0x500 | KVM_NR_VAR_MTRR;
1739 break;
1740 case 0x200 ... 0x2ff:
1741 return get_msr_mtrr(vcpu, msr, pdata);
1742 case 0xcd: /* fsb frequency */
1743 data = 3;
1744 break;
1745 /*
1746 * MSR_EBC_FREQUENCY_ID
1747 * Conservative value valid for even the basic CPU models.
1748 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1749 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1750 * and 266MHz for model 3, or 4. Set Core Clock
1751 * Frequency to System Bus Frequency Ratio to 1 (bits
1752 * 31:24) even though these are only valid for CPU
1753 * models > 2, however guests may end up dividing or
1754 * multiplying by zero otherwise.
1755 */
1756 case MSR_EBC_FREQUENCY_ID:
1757 data = 1 << 24;
1758 break;
1759 case MSR_IA32_APICBASE:
1760 data = kvm_get_apic_base(vcpu);
1761 break;
1762 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1763 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1764 break;
1765 case MSR_IA32_MISC_ENABLE:
1766 data = vcpu->arch.ia32_misc_enable_msr;
1767 break;
1768 case MSR_IA32_PERF_STATUS:
1769 /* TSC increment by tick */
1770 data = 1000ULL;
1771 /* CPU multiplier */
1772 data |= (((uint64_t)4ULL) << 40);
1773 break;
1774 case MSR_EFER:
1775 data = vcpu->arch.efer;
1776 break;
1777 case MSR_KVM_WALL_CLOCK:
1778 case MSR_KVM_WALL_CLOCK_NEW:
1779 data = vcpu->kvm->arch.wall_clock;
1780 break;
1781 case MSR_KVM_SYSTEM_TIME:
1782 case MSR_KVM_SYSTEM_TIME_NEW:
1783 data = vcpu->arch.time;
1784 break;
1785 case MSR_IA32_P5_MC_ADDR:
1786 case MSR_IA32_P5_MC_TYPE:
1787 case MSR_IA32_MCG_CAP:
1788 case MSR_IA32_MCG_CTL:
1789 case MSR_IA32_MCG_STATUS:
1790 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1791 return get_msr_mce(vcpu, msr, pdata);
1792 case MSR_K7_CLK_CTL:
1793 /*
1794 * Provide expected ramp-up count for K7. All other
1795 * are set to zero, indicating minimum divisors for
1796 * every field.
1797 *
1798 * This prevents guest kernels on AMD host with CPU
1799 * type 6, model 8 and higher from exploding due to
1800 * the rdmsr failing.
1801 */
1802 data = 0x20000000;
1803 break;
1804 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1805 if (kvm_hv_msr_partition_wide(msr)) {
1806 int r;
1807 mutex_lock(&vcpu->kvm->lock);
1808 r = get_msr_hyperv_pw(vcpu, msr, pdata);
1809 mutex_unlock(&vcpu->kvm->lock);
1810 return r;
1811 } else
1812 return get_msr_hyperv(vcpu, msr, pdata);
1813 break;
1814 default:
1815 if (!ignore_msrs) {
1816 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1817 return 1;
1818 } else {
1819 pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1820 data = 0;
1821 }
1822 break;
1823 }
1824 *pdata = data;
1825 return 0;
1826 }
1827 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1828
1829 /*
1830 * Read or write a bunch of msrs. All parameters are kernel addresses.
1831 *
1832 * @return number of msrs set successfully.
1833 */
1834 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1835 struct kvm_msr_entry *entries,
1836 int (*do_msr)(struct kvm_vcpu *vcpu,
1837 unsigned index, u64 *data))
1838 {
1839 int i, idx;
1840
1841 idx = srcu_read_lock(&vcpu->kvm->srcu);
1842 for (i = 0; i < msrs->nmsrs; ++i)
1843 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1844 break;
1845 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1846
1847 return i;
1848 }
1849
1850 /*
1851 * Read or write a bunch of msrs. Parameters are user addresses.
1852 *
1853 * @return number of msrs set successfully.
1854 */
1855 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1856 int (*do_msr)(struct kvm_vcpu *vcpu,
1857 unsigned index, u64 *data),
1858 int writeback)
1859 {
1860 struct kvm_msrs msrs;
1861 struct kvm_msr_entry *entries;
1862 int r, n;
1863 unsigned size;
1864
1865 r = -EFAULT;
1866 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1867 goto out;
1868
1869 r = -E2BIG;
1870 if (msrs.nmsrs >= MAX_IO_MSRS)
1871 goto out;
1872
1873 r = -ENOMEM;
1874 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1875 entries = kmalloc(size, GFP_KERNEL);
1876 if (!entries)
1877 goto out;
1878
1879 r = -EFAULT;
1880 if (copy_from_user(entries, user_msrs->entries, size))
1881 goto out_free;
1882
1883 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1884 if (r < 0)
1885 goto out_free;
1886
1887 r = -EFAULT;
1888 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1889 goto out_free;
1890
1891 r = n;
1892
1893 out_free:
1894 kfree(entries);
1895 out:
1896 return r;
1897 }
1898
1899 int kvm_dev_ioctl_check_extension(long ext)
1900 {
1901 int r;
1902
1903 switch (ext) {
1904 case KVM_CAP_IRQCHIP:
1905 case KVM_CAP_HLT:
1906 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1907 case KVM_CAP_SET_TSS_ADDR:
1908 case KVM_CAP_EXT_CPUID:
1909 case KVM_CAP_CLOCKSOURCE:
1910 case KVM_CAP_PIT:
1911 case KVM_CAP_NOP_IO_DELAY:
1912 case KVM_CAP_MP_STATE:
1913 case KVM_CAP_SYNC_MMU:
1914 case KVM_CAP_REINJECT_CONTROL:
1915 case KVM_CAP_IRQ_INJECT_STATUS:
1916 case KVM_CAP_ASSIGN_DEV_IRQ:
1917 case KVM_CAP_IRQFD:
1918 case KVM_CAP_IOEVENTFD:
1919 case KVM_CAP_PIT2:
1920 case KVM_CAP_PIT_STATE2:
1921 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1922 case KVM_CAP_XEN_HVM:
1923 case KVM_CAP_ADJUST_CLOCK:
1924 case KVM_CAP_VCPU_EVENTS:
1925 case KVM_CAP_HYPERV:
1926 case KVM_CAP_HYPERV_VAPIC:
1927 case KVM_CAP_HYPERV_SPIN:
1928 case KVM_CAP_PCI_SEGMENT:
1929 case KVM_CAP_DEBUGREGS:
1930 case KVM_CAP_X86_ROBUST_SINGLESTEP:
1931 case KVM_CAP_XSAVE:
1932 r = 1;
1933 break;
1934 case KVM_CAP_COALESCED_MMIO:
1935 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1936 break;
1937 case KVM_CAP_VAPIC:
1938 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1939 break;
1940 case KVM_CAP_NR_VCPUS:
1941 r = KVM_MAX_VCPUS;
1942 break;
1943 case KVM_CAP_NR_MEMSLOTS:
1944 r = KVM_MEMORY_SLOTS;
1945 break;
1946 case KVM_CAP_PV_MMU: /* obsolete */
1947 r = 0;
1948 break;
1949 case KVM_CAP_IOMMU:
1950 r = iommu_found();
1951 break;
1952 case KVM_CAP_MCE:
1953 r = KVM_MAX_MCE_BANKS;
1954 break;
1955 case KVM_CAP_XCRS:
1956 r = cpu_has_xsave;
1957 break;
1958 default:
1959 r = 0;
1960 break;
1961 }
1962 return r;
1963
1964 }
1965
1966 long kvm_arch_dev_ioctl(struct file *filp,
1967 unsigned int ioctl, unsigned long arg)
1968 {
1969 void __user *argp = (void __user *)arg;
1970 long r;
1971
1972 switch (ioctl) {
1973 case KVM_GET_MSR_INDEX_LIST: {
1974 struct kvm_msr_list __user *user_msr_list = argp;
1975 struct kvm_msr_list msr_list;
1976 unsigned n;
1977
1978 r = -EFAULT;
1979 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1980 goto out;
1981 n = msr_list.nmsrs;
1982 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1983 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1984 goto out;
1985 r = -E2BIG;
1986 if (n < msr_list.nmsrs)
1987 goto out;
1988 r = -EFAULT;
1989 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1990 num_msrs_to_save * sizeof(u32)))
1991 goto out;
1992 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1993 &emulated_msrs,
1994 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1995 goto out;
1996 r = 0;
1997 break;
1998 }
1999 case KVM_GET_SUPPORTED_CPUID: {
2000 struct kvm_cpuid2 __user *cpuid_arg = argp;
2001 struct kvm_cpuid2 cpuid;
2002
2003 r = -EFAULT;
2004 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2005 goto out;
2006 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2007 cpuid_arg->entries);
2008 if (r)
2009 goto out;
2010
2011 r = -EFAULT;
2012 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2013 goto out;
2014 r = 0;
2015 break;
2016 }
2017 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2018 u64 mce_cap;
2019
2020 mce_cap = KVM_MCE_CAP_SUPPORTED;
2021 r = -EFAULT;
2022 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2023 goto out;
2024 r = 0;
2025 break;
2026 }
2027 default:
2028 r = -EINVAL;
2029 }
2030 out:
2031 return r;
2032 }
2033
2034 static void wbinvd_ipi(void *garbage)
2035 {
2036 wbinvd();
2037 }
2038
2039 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2040 {
2041 return vcpu->kvm->arch.iommu_domain &&
2042 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2043 }
2044
2045 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2046 {
2047 /* Address WBINVD may be executed by guest */
2048 if (need_emulate_wbinvd(vcpu)) {
2049 if (kvm_x86_ops->has_wbinvd_exit())
2050 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2051 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2052 smp_call_function_single(vcpu->cpu,
2053 wbinvd_ipi, NULL, 1);
2054 }
2055
2056 kvm_x86_ops->vcpu_load(vcpu, cpu);
2057 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2058 /* Make sure TSC doesn't go backwards */
2059 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2060 native_read_tsc() - vcpu->arch.last_host_tsc;
2061 if (tsc_delta < 0)
2062 mark_tsc_unstable("KVM discovered backwards TSC");
2063 if (check_tsc_unstable()) {
2064 kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
2065 vcpu->arch.tsc_catchup = 1;
2066 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2067 }
2068 if (vcpu->cpu != cpu)
2069 kvm_migrate_timers(vcpu);
2070 vcpu->cpu = cpu;
2071 }
2072 }
2073
2074 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2075 {
2076 kvm_x86_ops->vcpu_put(vcpu);
2077 kvm_put_guest_fpu(vcpu);
2078 vcpu->arch.last_host_tsc = native_read_tsc();
2079 }
2080
2081 static int is_efer_nx(void)
2082 {
2083 unsigned long long efer = 0;
2084
2085 rdmsrl_safe(MSR_EFER, &efer);
2086 return efer & EFER_NX;
2087 }
2088
2089 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2090 {
2091 int i;
2092 struct kvm_cpuid_entry2 *e, *entry;
2093
2094 entry = NULL;
2095 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2096 e = &vcpu->arch.cpuid_entries[i];
2097 if (e->function == 0x80000001) {
2098 entry = e;
2099 break;
2100 }
2101 }
2102 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
2103 entry->edx &= ~(1 << 20);
2104 printk(KERN_INFO "kvm: guest NX capability removed\n");
2105 }
2106 }
2107
2108 /* when an old userspace process fills a new kernel module */
2109 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2110 struct kvm_cpuid *cpuid,
2111 struct kvm_cpuid_entry __user *entries)
2112 {
2113 int r, i;
2114 struct kvm_cpuid_entry *cpuid_entries;
2115
2116 r = -E2BIG;
2117 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2118 goto out;
2119 r = -ENOMEM;
2120 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
2121 if (!cpuid_entries)
2122 goto out;
2123 r = -EFAULT;
2124 if (copy_from_user(cpuid_entries, entries,
2125 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2126 goto out_free;
2127 for (i = 0; i < cpuid->nent; i++) {
2128 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
2129 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
2130 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
2131 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
2132 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
2133 vcpu->arch.cpuid_entries[i].index = 0;
2134 vcpu->arch.cpuid_entries[i].flags = 0;
2135 vcpu->arch.cpuid_entries[i].padding[0] = 0;
2136 vcpu->arch.cpuid_entries[i].padding[1] = 0;
2137 vcpu->arch.cpuid_entries[i].padding[2] = 0;
2138 }
2139 vcpu->arch.cpuid_nent = cpuid->nent;
2140 cpuid_fix_nx_cap(vcpu);
2141 r = 0;
2142 kvm_apic_set_version(vcpu);
2143 kvm_x86_ops->cpuid_update(vcpu);
2144 update_cpuid(vcpu);
2145
2146 out_free:
2147 vfree(cpuid_entries);
2148 out:
2149 return r;
2150 }
2151
2152 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
2153 struct kvm_cpuid2 *cpuid,
2154 struct kvm_cpuid_entry2 __user *entries)
2155 {
2156 int r;
2157
2158 r = -E2BIG;
2159 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2160 goto out;
2161 r = -EFAULT;
2162 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
2163 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
2164 goto out;
2165 vcpu->arch.cpuid_nent = cpuid->nent;
2166 kvm_apic_set_version(vcpu);
2167 kvm_x86_ops->cpuid_update(vcpu);
2168 update_cpuid(vcpu);
2169 return 0;
2170
2171 out:
2172 return r;
2173 }
2174
2175 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
2176 struct kvm_cpuid2 *cpuid,
2177 struct kvm_cpuid_entry2 __user *entries)
2178 {
2179 int r;
2180
2181 r = -E2BIG;
2182 if (cpuid->nent < vcpu->arch.cpuid_nent)
2183 goto out;
2184 r = -EFAULT;
2185 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
2186 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
2187 goto out;
2188 return 0;
2189
2190 out:
2191 cpuid->nent = vcpu->arch.cpuid_nent;
2192 return r;
2193 }
2194
2195 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2196 u32 index)
2197 {
2198 entry->function = function;
2199 entry->index = index;
2200 cpuid_count(entry->function, entry->index,
2201 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
2202 entry->flags = 0;
2203 }
2204
2205 #define F(x) bit(X86_FEATURE_##x)
2206
2207 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2208 u32 index, int *nent, int maxnent)
2209 {
2210 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
2211 #ifdef CONFIG_X86_64
2212 unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
2213 ? F(GBPAGES) : 0;
2214 unsigned f_lm = F(LM);
2215 #else
2216 unsigned f_gbpages = 0;
2217 unsigned f_lm = 0;
2218 #endif
2219 unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
2220
2221 /* cpuid 1.edx */
2222 const u32 kvm_supported_word0_x86_features =
2223 F(FPU) | F(VME) | F(DE) | F(PSE) |
2224 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2225 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
2226 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2227 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
2228 0 /* Reserved, DS, ACPI */ | F(MMX) |
2229 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
2230 0 /* HTT, TM, Reserved, PBE */;
2231 /* cpuid 0x80000001.edx */
2232 const u32 kvm_supported_word1_x86_features =
2233 F(FPU) | F(VME) | F(DE) | F(PSE) |
2234 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2235 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
2236 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2237 F(PAT) | F(PSE36) | 0 /* Reserved */ |
2238 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
2239 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
2240 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
2241 /* cpuid 1.ecx */
2242 const u32 kvm_supported_word4_x86_features =
2243 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
2244 0 /* DS-CPL, VMX, SMX, EST */ |
2245 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
2246 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
2247 0 /* Reserved, DCA */ | F(XMM4_1) |
2248 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
2249 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
2250 F(F16C);
2251 /* cpuid 0x80000001.ecx */
2252 const u32 kvm_supported_word6_x86_features =
2253 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
2254 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
2255 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP) |
2256 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
2257
2258 /* all calls to cpuid_count() should be made on the same cpu */
2259 get_cpu();
2260 do_cpuid_1_ent(entry, function, index);
2261 ++*nent;
2262
2263 switch (function) {
2264 case 0:
2265 entry->eax = min(entry->eax, (u32)0xd);
2266 break;
2267 case 1:
2268 entry->edx &= kvm_supported_word0_x86_features;
2269 entry->ecx &= kvm_supported_word4_x86_features;
2270 /* we support x2apic emulation even if host does not support
2271 * it since we emulate x2apic in software */
2272 entry->ecx |= F(X2APIC);
2273 break;
2274 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
2275 * may return different values. This forces us to get_cpu() before
2276 * issuing the first command, and also to emulate this annoying behavior
2277 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
2278 case 2: {
2279 int t, times = entry->eax & 0xff;
2280
2281 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2282 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2283 for (t = 1; t < times && *nent < maxnent; ++t) {
2284 do_cpuid_1_ent(&entry[t], function, 0);
2285 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2286 ++*nent;
2287 }
2288 break;
2289 }
2290 /* function 4 and 0xb have additional index. */
2291 case 4: {
2292 int i, cache_type;
2293
2294 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2295 /* read more entries until cache_type is zero */
2296 for (i = 1; *nent < maxnent; ++i) {
2297 cache_type = entry[i - 1].eax & 0x1f;
2298 if (!cache_type)
2299 break;
2300 do_cpuid_1_ent(&entry[i], function, i);
2301 entry[i].flags |=
2302 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2303 ++*nent;
2304 }
2305 break;
2306 }
2307 case 0xb: {
2308 int i, level_type;
2309
2310 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2311 /* read more entries until level_type is zero */
2312 for (i = 1; *nent < maxnent; ++i) {
2313 level_type = entry[i - 1].ecx & 0xff00;
2314 if (!level_type)
2315 break;
2316 do_cpuid_1_ent(&entry[i], function, i);
2317 entry[i].flags |=
2318 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2319 ++*nent;
2320 }
2321 break;
2322 }
2323 case 0xd: {
2324 int i;
2325
2326 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2327 for (i = 1; *nent < maxnent; ++i) {
2328 if (entry[i - 1].eax == 0 && i != 2)
2329 break;
2330 do_cpuid_1_ent(&entry[i], function, i);
2331 entry[i].flags |=
2332 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2333 ++*nent;
2334 }
2335 break;
2336 }
2337 case KVM_CPUID_SIGNATURE: {
2338 char signature[12] = "KVMKVMKVM\0\0";
2339 u32 *sigptr = (u32 *)signature;
2340 entry->eax = 0;
2341 entry->ebx = sigptr[0];
2342 entry->ecx = sigptr[1];
2343 entry->edx = sigptr[2];
2344 break;
2345 }
2346 case KVM_CPUID_FEATURES:
2347 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
2348 (1 << KVM_FEATURE_NOP_IO_DELAY) |
2349 (1 << KVM_FEATURE_CLOCKSOURCE2) |
2350 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
2351 entry->ebx = 0;
2352 entry->ecx = 0;
2353 entry->edx = 0;
2354 break;
2355 case 0x80000000:
2356 entry->eax = min(entry->eax, 0x8000001a);
2357 break;
2358 case 0x80000001:
2359 entry->edx &= kvm_supported_word1_x86_features;
2360 entry->ecx &= kvm_supported_word6_x86_features;
2361 break;
2362 }
2363
2364 kvm_x86_ops->set_supported_cpuid(function, entry);
2365
2366 put_cpu();
2367 }
2368
2369 #undef F
2370
2371 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
2372 struct kvm_cpuid_entry2 __user *entries)
2373 {
2374 struct kvm_cpuid_entry2 *cpuid_entries;
2375 int limit, nent = 0, r = -E2BIG;
2376 u32 func;
2377
2378 if (cpuid->nent < 1)
2379 goto out;
2380 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2381 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
2382 r = -ENOMEM;
2383 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
2384 if (!cpuid_entries)
2385 goto out;
2386
2387 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
2388 limit = cpuid_entries[0].eax;
2389 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
2390 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2391 &nent, cpuid->nent);
2392 r = -E2BIG;
2393 if (nent >= cpuid->nent)
2394 goto out_free;
2395
2396 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
2397 limit = cpuid_entries[nent - 1].eax;
2398 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
2399 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2400 &nent, cpuid->nent);
2401
2402
2403
2404 r = -E2BIG;
2405 if (nent >= cpuid->nent)
2406 goto out_free;
2407
2408 do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
2409 cpuid->nent);
2410
2411 r = -E2BIG;
2412 if (nent >= cpuid->nent)
2413 goto out_free;
2414
2415 do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
2416 cpuid->nent);
2417
2418 r = -E2BIG;
2419 if (nent >= cpuid->nent)
2420 goto out_free;
2421
2422 r = -EFAULT;
2423 if (copy_to_user(entries, cpuid_entries,
2424 nent * sizeof(struct kvm_cpuid_entry2)))
2425 goto out_free;
2426 cpuid->nent = nent;
2427 r = 0;
2428
2429 out_free:
2430 vfree(cpuid_entries);
2431 out:
2432 return r;
2433 }
2434
2435 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2436 struct kvm_lapic_state *s)
2437 {
2438 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2439
2440 return 0;
2441 }
2442
2443 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2444 struct kvm_lapic_state *s)
2445 {
2446 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2447 kvm_apic_post_state_restore(vcpu);
2448 update_cr8_intercept(vcpu);
2449
2450 return 0;
2451 }
2452
2453 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2454 struct kvm_interrupt *irq)
2455 {
2456 if (irq->irq < 0 || irq->irq >= 256)
2457 return -EINVAL;
2458 if (irqchip_in_kernel(vcpu->kvm))
2459 return -ENXIO;
2460
2461 kvm_queue_interrupt(vcpu, irq->irq, false);
2462 kvm_make_request(KVM_REQ_EVENT, vcpu);
2463
2464 return 0;
2465 }
2466
2467 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2468 {
2469 kvm_inject_nmi(vcpu);
2470
2471 return 0;
2472 }
2473
2474 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2475 struct kvm_tpr_access_ctl *tac)
2476 {
2477 if (tac->flags)
2478 return -EINVAL;
2479 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2480 return 0;
2481 }
2482
2483 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2484 u64 mcg_cap)
2485 {
2486 int r;
2487 unsigned bank_num = mcg_cap & 0xff, bank;
2488
2489 r = -EINVAL;
2490 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2491 goto out;
2492 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2493 goto out;
2494 r = 0;
2495 vcpu->arch.mcg_cap = mcg_cap;
2496 /* Init IA32_MCG_CTL to all 1s */
2497 if (mcg_cap & MCG_CTL_P)
2498 vcpu->arch.mcg_ctl = ~(u64)0;
2499 /* Init IA32_MCi_CTL to all 1s */
2500 for (bank = 0; bank < bank_num; bank++)
2501 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2502 out:
2503 return r;
2504 }
2505
2506 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2507 struct kvm_x86_mce *mce)
2508 {
2509 u64 mcg_cap = vcpu->arch.mcg_cap;
2510 unsigned bank_num = mcg_cap & 0xff;
2511 u64 *banks = vcpu->arch.mce_banks;
2512
2513 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2514 return -EINVAL;
2515 /*
2516 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2517 * reporting is disabled
2518 */
2519 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2520 vcpu->arch.mcg_ctl != ~(u64)0)
2521 return 0;
2522 banks += 4 * mce->bank;
2523 /*
2524 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2525 * reporting is disabled for the bank
2526 */
2527 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2528 return 0;
2529 if (mce->status & MCI_STATUS_UC) {
2530 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2531 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2532 printk(KERN_DEBUG "kvm: set_mce: "
2533 "injects mce exception while "
2534 "previous one is in progress!\n");
2535 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2536 return 0;
2537 }
2538 if (banks[1] & MCI_STATUS_VAL)
2539 mce->status |= MCI_STATUS_OVER;
2540 banks[2] = mce->addr;
2541 banks[3] = mce->misc;
2542 vcpu->arch.mcg_status = mce->mcg_status;
2543 banks[1] = mce->status;
2544 kvm_queue_exception(vcpu, MC_VECTOR);
2545 } else if (!(banks[1] & MCI_STATUS_VAL)
2546 || !(banks[1] & MCI_STATUS_UC)) {
2547 if (banks[1] & MCI_STATUS_VAL)
2548 mce->status |= MCI_STATUS_OVER;
2549 banks[2] = mce->addr;
2550 banks[3] = mce->misc;
2551 banks[1] = mce->status;
2552 } else
2553 banks[1] |= MCI_STATUS_OVER;
2554 return 0;
2555 }
2556
2557 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2558 struct kvm_vcpu_events *events)
2559 {
2560 events->exception.injected =
2561 vcpu->arch.exception.pending &&
2562 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2563 events->exception.nr = vcpu->arch.exception.nr;
2564 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2565 events->exception.pad = 0;
2566 events->exception.error_code = vcpu->arch.exception.error_code;
2567
2568 events->interrupt.injected =
2569 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2570 events->interrupt.nr = vcpu->arch.interrupt.nr;
2571 events->interrupt.soft = 0;
2572 events->interrupt.shadow =
2573 kvm_x86_ops->get_interrupt_shadow(vcpu,
2574 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2575
2576 events->nmi.injected = vcpu->arch.nmi_injected;
2577 events->nmi.pending = vcpu->arch.nmi_pending;
2578 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2579 events->nmi.pad = 0;
2580
2581 events->sipi_vector = vcpu->arch.sipi_vector;
2582
2583 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2584 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2585 | KVM_VCPUEVENT_VALID_SHADOW);
2586 memset(&events->reserved, 0, sizeof(events->reserved));
2587 }
2588
2589 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2590 struct kvm_vcpu_events *events)
2591 {
2592 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2593 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2594 | KVM_VCPUEVENT_VALID_SHADOW))
2595 return -EINVAL;
2596
2597 vcpu->arch.exception.pending = events->exception.injected;
2598 vcpu->arch.exception.nr = events->exception.nr;
2599 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2600 vcpu->arch.exception.error_code = events->exception.error_code;
2601
2602 vcpu->arch.interrupt.pending = events->interrupt.injected;
2603 vcpu->arch.interrupt.nr = events->interrupt.nr;
2604 vcpu->arch.interrupt.soft = events->interrupt.soft;
2605 if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
2606 kvm_pic_clear_isr_ack(vcpu->kvm);
2607 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2608 kvm_x86_ops->set_interrupt_shadow(vcpu,
2609 events->interrupt.shadow);
2610
2611 vcpu->arch.nmi_injected = events->nmi.injected;
2612 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2613 vcpu->arch.nmi_pending = events->nmi.pending;
2614 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2615
2616 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2617 vcpu->arch.sipi_vector = events->sipi_vector;
2618
2619 kvm_make_request(KVM_REQ_EVENT, vcpu);
2620
2621 return 0;
2622 }
2623
2624 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2625 struct kvm_debugregs *dbgregs)
2626 {
2627 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2628 dbgregs->dr6 = vcpu->arch.dr6;
2629 dbgregs->dr7 = vcpu->arch.dr7;
2630 dbgregs->flags = 0;
2631 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2632 }
2633
2634 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2635 struct kvm_debugregs *dbgregs)
2636 {
2637 if (dbgregs->flags)
2638 return -EINVAL;
2639
2640 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2641 vcpu->arch.dr6 = dbgregs->dr6;
2642 vcpu->arch.dr7 = dbgregs->dr7;
2643
2644 return 0;
2645 }
2646
2647 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2648 struct kvm_xsave *guest_xsave)
2649 {
2650 if (cpu_has_xsave)
2651 memcpy(guest_xsave->region,
2652 &vcpu->arch.guest_fpu.state->xsave,
2653 xstate_size);
2654 else {
2655 memcpy(guest_xsave->region,
2656 &vcpu->arch.guest_fpu.state->fxsave,
2657 sizeof(struct i387_fxsave_struct));
2658 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2659 XSTATE_FPSSE;
2660 }
2661 }
2662
2663 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2664 struct kvm_xsave *guest_xsave)
2665 {
2666 u64 xstate_bv =
2667 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2668
2669 if (cpu_has_xsave)
2670 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2671 guest_xsave->region, xstate_size);
2672 else {
2673 if (xstate_bv & ~XSTATE_FPSSE)
2674 return -EINVAL;
2675 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2676 guest_xsave->region, sizeof(struct i387_fxsave_struct));
2677 }
2678 return 0;
2679 }
2680
2681 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2682 struct kvm_xcrs *guest_xcrs)
2683 {
2684 if (!cpu_has_xsave) {
2685 guest_xcrs->nr_xcrs = 0;
2686 return;
2687 }
2688
2689 guest_xcrs->nr_xcrs = 1;
2690 guest_xcrs->flags = 0;
2691 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2692 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2693 }
2694
2695 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2696 struct kvm_xcrs *guest_xcrs)
2697 {
2698 int i, r = 0;
2699
2700 if (!cpu_has_xsave)
2701 return -EINVAL;
2702
2703 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2704 return -EINVAL;
2705
2706 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2707 /* Only support XCR0 currently */
2708 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2709 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2710 guest_xcrs->xcrs[0].value);
2711 break;
2712 }
2713 if (r)
2714 r = -EINVAL;
2715 return r;
2716 }
2717
2718 long kvm_arch_vcpu_ioctl(struct file *filp,
2719 unsigned int ioctl, unsigned long arg)
2720 {
2721 struct kvm_vcpu *vcpu = filp->private_data;
2722 void __user *argp = (void __user *)arg;
2723 int r;
2724 union {
2725 struct kvm_lapic_state *lapic;
2726 struct kvm_xsave *xsave;
2727 struct kvm_xcrs *xcrs;
2728 void *buffer;
2729 } u;
2730
2731 u.buffer = NULL;
2732 switch (ioctl) {
2733 case KVM_GET_LAPIC: {
2734 r = -EINVAL;
2735 if (!vcpu->arch.apic)
2736 goto out;
2737 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2738
2739 r = -ENOMEM;
2740 if (!u.lapic)
2741 goto out;
2742 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2743 if (r)
2744 goto out;
2745 r = -EFAULT;
2746 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2747 goto out;
2748 r = 0;
2749 break;
2750 }
2751 case KVM_SET_LAPIC: {
2752 r = -EINVAL;
2753 if (!vcpu->arch.apic)
2754 goto out;
2755 u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2756 r = -ENOMEM;
2757 if (!u.lapic)
2758 goto out;
2759 r = -EFAULT;
2760 if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
2761 goto out;
2762 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2763 if (r)
2764 goto out;
2765 r = 0;
2766 break;
2767 }
2768 case KVM_INTERRUPT: {
2769 struct kvm_interrupt irq;
2770
2771 r = -EFAULT;
2772 if (copy_from_user(&irq, argp, sizeof irq))
2773 goto out;
2774 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2775 if (r)
2776 goto out;
2777 r = 0;
2778 break;
2779 }
2780 case KVM_NMI: {
2781 r = kvm_vcpu_ioctl_nmi(vcpu);
2782 if (r)
2783 goto out;
2784 r = 0;
2785 break;
2786 }
2787 case KVM_SET_CPUID: {
2788 struct kvm_cpuid __user *cpuid_arg = argp;
2789 struct kvm_cpuid cpuid;
2790
2791 r = -EFAULT;
2792 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2793 goto out;
2794 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2795 if (r)
2796 goto out;
2797 break;
2798 }
2799 case KVM_SET_CPUID2: {
2800 struct kvm_cpuid2 __user *cpuid_arg = argp;
2801 struct kvm_cpuid2 cpuid;
2802
2803 r = -EFAULT;
2804 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2805 goto out;
2806 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2807 cpuid_arg->entries);
2808 if (r)
2809 goto out;
2810 break;
2811 }
2812 case KVM_GET_CPUID2: {
2813 struct kvm_cpuid2 __user *cpuid_arg = argp;
2814 struct kvm_cpuid2 cpuid;
2815
2816 r = -EFAULT;
2817 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2818 goto out;
2819 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2820 cpuid_arg->entries);
2821 if (r)
2822 goto out;
2823 r = -EFAULT;
2824 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2825 goto out;
2826 r = 0;
2827 break;
2828 }
2829 case KVM_GET_MSRS:
2830 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2831 break;
2832 case KVM_SET_MSRS:
2833 r = msr_io(vcpu, argp, do_set_msr, 0);
2834 break;
2835 case KVM_TPR_ACCESS_REPORTING: {
2836 struct kvm_tpr_access_ctl tac;
2837
2838 r = -EFAULT;
2839 if (copy_from_user(&tac, argp, sizeof tac))
2840 goto out;
2841 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2842 if (r)
2843 goto out;
2844 r = -EFAULT;
2845 if (copy_to_user(argp, &tac, sizeof tac))
2846 goto out;
2847 r = 0;
2848 break;
2849 };
2850 case KVM_SET_VAPIC_ADDR: {
2851 struct kvm_vapic_addr va;
2852
2853 r = -EINVAL;
2854 if (!irqchip_in_kernel(vcpu->kvm))
2855 goto out;
2856 r = -EFAULT;
2857 if (copy_from_user(&va, argp, sizeof va))
2858 goto out;
2859 r = 0;
2860 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2861 break;
2862 }
2863 case KVM_X86_SETUP_MCE: {
2864 u64 mcg_cap;
2865
2866 r = -EFAULT;
2867 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2868 goto out;
2869 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2870 break;
2871 }
2872 case KVM_X86_SET_MCE: {
2873 struct kvm_x86_mce mce;
2874
2875 r = -EFAULT;
2876 if (copy_from_user(&mce, argp, sizeof mce))
2877 goto out;
2878 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2879 break;
2880 }
2881 case KVM_GET_VCPU_EVENTS: {
2882 struct kvm_vcpu_events events;
2883
2884 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2885
2886 r = -EFAULT;
2887 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2888 break;
2889 r = 0;
2890 break;
2891 }
2892 case KVM_SET_VCPU_EVENTS: {
2893 struct kvm_vcpu_events events;
2894
2895 r = -EFAULT;
2896 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2897 break;
2898
2899 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2900 break;
2901 }
2902 case KVM_GET_DEBUGREGS: {
2903 struct kvm_debugregs dbgregs;
2904
2905 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2906
2907 r = -EFAULT;
2908 if (copy_to_user(argp, &dbgregs,
2909 sizeof(struct kvm_debugregs)))
2910 break;
2911 r = 0;
2912 break;
2913 }
2914 case KVM_SET_DEBUGREGS: {
2915 struct kvm_debugregs dbgregs;
2916
2917 r = -EFAULT;
2918 if (copy_from_user(&dbgregs, argp,
2919 sizeof(struct kvm_debugregs)))
2920 break;
2921
2922 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2923 break;
2924 }
2925 case KVM_GET_XSAVE: {
2926 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2927 r = -ENOMEM;
2928 if (!u.xsave)
2929 break;
2930
2931 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2932
2933 r = -EFAULT;
2934 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2935 break;
2936 r = 0;
2937 break;
2938 }
2939 case KVM_SET_XSAVE: {
2940 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2941 r = -ENOMEM;
2942 if (!u.xsave)
2943 break;
2944
2945 r = -EFAULT;
2946 if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
2947 break;
2948
2949 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2950 break;
2951 }
2952 case KVM_GET_XCRS: {
2953 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2954 r = -ENOMEM;
2955 if (!u.xcrs)
2956 break;
2957
2958 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
2959
2960 r = -EFAULT;
2961 if (copy_to_user(argp, u.xcrs,
2962 sizeof(struct kvm_xcrs)))
2963 break;
2964 r = 0;
2965 break;
2966 }
2967 case KVM_SET_XCRS: {
2968 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2969 r = -ENOMEM;
2970 if (!u.xcrs)
2971 break;
2972
2973 r = -EFAULT;
2974 if (copy_from_user(u.xcrs, argp,
2975 sizeof(struct kvm_xcrs)))
2976 break;
2977
2978 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
2979 break;
2980 }
2981 default:
2982 r = -EINVAL;
2983 }
2984 out:
2985 kfree(u.buffer);
2986 return r;
2987 }
2988
2989 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2990 {
2991 int ret;
2992
2993 if (addr > (unsigned int)(-3 * PAGE_SIZE))
2994 return -1;
2995 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2996 return ret;
2997 }
2998
2999 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3000 u64 ident_addr)
3001 {
3002 kvm->arch.ept_identity_map_addr = ident_addr;
3003 return 0;
3004 }
3005
3006 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3007 u32 kvm_nr_mmu_pages)
3008 {
3009 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3010 return -EINVAL;
3011
3012 mutex_lock(&kvm->slots_lock);
3013 spin_lock(&kvm->mmu_lock);
3014
3015 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3016 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3017
3018 spin_unlock(&kvm->mmu_lock);
3019 mutex_unlock(&kvm->slots_lock);
3020 return 0;
3021 }
3022
3023 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3024 {
3025 return kvm->arch.n_max_mmu_pages;
3026 }
3027
3028 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3029 {
3030 int r;
3031
3032 r = 0;
3033 switch (chip->chip_id) {
3034 case KVM_IRQCHIP_PIC_MASTER:
3035 memcpy(&chip->chip.pic,
3036 &pic_irqchip(kvm)->pics[0],
3037 sizeof(struct kvm_pic_state));
3038 break;
3039 case KVM_IRQCHIP_PIC_SLAVE:
3040 memcpy(&chip->chip.pic,
3041 &pic_irqchip(kvm)->pics[1],
3042 sizeof(struct kvm_pic_state));
3043 break;
3044 case KVM_IRQCHIP_IOAPIC:
3045 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3046 break;
3047 default:
3048 r = -EINVAL;
3049 break;
3050 }
3051 return r;
3052 }
3053
3054 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3055 {
3056 int r;
3057
3058 r = 0;
3059 switch (chip->chip_id) {
3060 case KVM_IRQCHIP_PIC_MASTER:
3061 spin_lock(&pic_irqchip(kvm)->lock);
3062 memcpy(&pic_irqchip(kvm)->pics[0],
3063 &chip->chip.pic,
3064 sizeof(struct kvm_pic_state));
3065 spin_unlock(&pic_irqchip(kvm)->lock);
3066 break;
3067 case KVM_IRQCHIP_PIC_SLAVE:
3068 spin_lock(&pic_irqchip(kvm)->lock);
3069 memcpy(&pic_irqchip(kvm)->pics[1],
3070 &chip->chip.pic,
3071 sizeof(struct kvm_pic_state));
3072 spin_unlock(&pic_irqchip(kvm)->lock);
3073 break;
3074 case KVM_IRQCHIP_IOAPIC:
3075 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3076 break;
3077 default:
3078 r = -EINVAL;
3079 break;
3080 }
3081 kvm_pic_update_irq(pic_irqchip(kvm));
3082 return r;
3083 }
3084
3085 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3086 {
3087 int r = 0;
3088
3089 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3090 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3091 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3092 return r;
3093 }
3094
3095 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3096 {
3097 int r = 0;
3098
3099 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3100 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3101 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3102 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3103 return r;
3104 }
3105
3106 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3107 {
3108 int r = 0;
3109
3110 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3111 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3112 sizeof(ps->channels));
3113 ps->flags = kvm->arch.vpit->pit_state.flags;
3114 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3115 memset(&ps->reserved, 0, sizeof(ps->reserved));
3116 return r;
3117 }
3118
3119 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3120 {
3121 int r = 0, start = 0;
3122 u32 prev_legacy, cur_legacy;
3123 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3124 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3125 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3126 if (!prev_legacy && cur_legacy)
3127 start = 1;
3128 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3129 sizeof(kvm->arch.vpit->pit_state.channels));
3130 kvm->arch.vpit->pit_state.flags = ps->flags;
3131 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3132 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3133 return r;
3134 }
3135
3136 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3137 struct kvm_reinject_control *control)
3138 {
3139 if (!kvm->arch.vpit)
3140 return -ENXIO;
3141 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3142 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
3143 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3144 return 0;
3145 }
3146
3147 /*
3148 * Get (and clear) the dirty memory log for a memory slot.
3149 */
3150 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
3151 struct kvm_dirty_log *log)
3152 {
3153 int r, i;
3154 struct kvm_memory_slot *memslot;
3155 unsigned long n;
3156 unsigned long is_dirty = 0;
3157
3158 mutex_lock(&kvm->slots_lock);
3159
3160 r = -EINVAL;
3161 if (log->slot >= KVM_MEMORY_SLOTS)
3162 goto out;
3163
3164 memslot = &kvm->memslots->memslots[log->slot];
3165 r = -ENOENT;
3166 if (!memslot->dirty_bitmap)
3167 goto out;
3168
3169 n = kvm_dirty_bitmap_bytes(memslot);
3170
3171 for (i = 0; !is_dirty && i < n/sizeof(long); i++)
3172 is_dirty = memslot->dirty_bitmap[i];
3173
3174 /* If nothing is dirty, don't bother messing with page tables. */
3175 if (is_dirty) {
3176 struct kvm_memslots *slots, *old_slots;
3177 unsigned long *dirty_bitmap;
3178
3179 r = -ENOMEM;
3180 dirty_bitmap = vmalloc(n);
3181 if (!dirty_bitmap)
3182 goto out;
3183 memset(dirty_bitmap, 0, n);
3184
3185 r = -ENOMEM;
3186 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
3187 if (!slots) {
3188 vfree(dirty_bitmap);
3189 goto out;
3190 }
3191 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
3192 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
3193
3194 old_slots = kvm->memslots;
3195 rcu_assign_pointer(kvm->memslots, slots);
3196 synchronize_srcu_expedited(&kvm->srcu);
3197 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
3198 kfree(old_slots);
3199
3200 spin_lock(&kvm->mmu_lock);
3201 kvm_mmu_slot_remove_write_access(kvm, log->slot);
3202 spin_unlock(&kvm->mmu_lock);
3203
3204 r = -EFAULT;
3205 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n)) {
3206 vfree(dirty_bitmap);
3207 goto out;
3208 }
3209 vfree(dirty_bitmap);
3210 } else {
3211 r = -EFAULT;
3212 if (clear_user(log->dirty_bitmap, n))
3213 goto out;
3214 }
3215
3216 r = 0;
3217 out:
3218 mutex_unlock(&kvm->slots_lock);
3219 return r;
3220 }
3221
3222 long kvm_arch_vm_ioctl(struct file *filp,
3223 unsigned int ioctl, unsigned long arg)
3224 {
3225 struct kvm *kvm = filp->private_data;
3226 void __user *argp = (void __user *)arg;
3227 int r = -ENOTTY;
3228 /*
3229 * This union makes it completely explicit to gcc-3.x
3230 * that these two variables' stack usage should be
3231 * combined, not added together.
3232 */
3233 union {
3234 struct kvm_pit_state ps;
3235 struct kvm_pit_state2 ps2;
3236 struct kvm_pit_config pit_config;
3237 } u;
3238
3239 switch (ioctl) {
3240 case KVM_SET_TSS_ADDR:
3241 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3242 if (r < 0)
3243 goto out;
3244 break;
3245 case KVM_SET_IDENTITY_MAP_ADDR: {
3246 u64 ident_addr;
3247
3248 r = -EFAULT;
3249 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3250 goto out;
3251 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3252 if (r < 0)
3253 goto out;
3254 break;
3255 }
3256 case KVM_SET_NR_MMU_PAGES:
3257 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3258 if (r)
3259 goto out;
3260 break;
3261 case KVM_GET_NR_MMU_PAGES:
3262 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3263 break;
3264 case KVM_CREATE_IRQCHIP: {
3265 struct kvm_pic *vpic;
3266
3267 mutex_lock(&kvm->lock);
3268 r = -EEXIST;
3269 if (kvm->arch.vpic)
3270 goto create_irqchip_unlock;
3271 r = -ENOMEM;
3272 vpic = kvm_create_pic(kvm);
3273 if (vpic) {
3274 r = kvm_ioapic_init(kvm);
3275 if (r) {
3276 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3277 &vpic->dev);
3278 kfree(vpic);
3279 goto create_irqchip_unlock;
3280 }
3281 } else
3282 goto create_irqchip_unlock;
3283 smp_wmb();
3284 kvm->arch.vpic = vpic;
3285 smp_wmb();
3286 r = kvm_setup_default_irq_routing(kvm);
3287 if (r) {
3288 mutex_lock(&kvm->irq_lock);
3289 kvm_ioapic_destroy(kvm);
3290 kvm_destroy_pic(kvm);
3291 mutex_unlock(&kvm->irq_lock);
3292 }
3293 create_irqchip_unlock:
3294 mutex_unlock(&kvm->lock);
3295 break;
3296 }
3297 case KVM_CREATE_PIT:
3298 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3299 goto create_pit;
3300 case KVM_CREATE_PIT2:
3301 r = -EFAULT;
3302 if (copy_from_user(&u.pit_config, argp,
3303 sizeof(struct kvm_pit_config)))
3304 goto out;
3305 create_pit:
3306 mutex_lock(&kvm->slots_lock);
3307 r = -EEXIST;
3308 if (kvm->arch.vpit)
3309 goto create_pit_unlock;
3310 r = -ENOMEM;
3311 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3312 if (kvm->arch.vpit)
3313 r = 0;
3314 create_pit_unlock:
3315 mutex_unlock(&kvm->slots_lock);
3316 break;
3317 case KVM_IRQ_LINE_STATUS:
3318 case KVM_IRQ_LINE: {
3319 struct kvm_irq_level irq_event;
3320
3321 r = -EFAULT;
3322 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3323 goto out;
3324 r = -ENXIO;
3325 if (irqchip_in_kernel(kvm)) {
3326 __s32 status;
3327 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3328 irq_event.irq, irq_event.level);
3329 if (ioctl == KVM_IRQ_LINE_STATUS) {
3330 r = -EFAULT;
3331 irq_event.status = status;
3332 if (copy_to_user(argp, &irq_event,
3333 sizeof irq_event))
3334 goto out;
3335 }
3336 r = 0;
3337 }
3338 break;
3339 }
3340 case KVM_GET_IRQCHIP: {
3341 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3342 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3343
3344 r = -ENOMEM;
3345 if (!chip)
3346 goto out;
3347 r = -EFAULT;
3348 if (copy_from_user(chip, argp, sizeof *chip))
3349 goto get_irqchip_out;
3350 r = -ENXIO;
3351 if (!irqchip_in_kernel(kvm))
3352 goto get_irqchip_out;
3353 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3354 if (r)
3355 goto get_irqchip_out;
3356 r = -EFAULT;
3357 if (copy_to_user(argp, chip, sizeof *chip))
3358 goto get_irqchip_out;
3359 r = 0;
3360 get_irqchip_out:
3361 kfree(chip);
3362 if (r)
3363 goto out;
3364 break;
3365 }
3366 case KVM_SET_IRQCHIP: {
3367 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3368 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3369
3370 r = -ENOMEM;
3371 if (!chip)
3372 goto out;
3373 r = -EFAULT;
3374 if (copy_from_user(chip, argp, sizeof *chip))
3375 goto set_irqchip_out;
3376 r = -ENXIO;
3377 if (!irqchip_in_kernel(kvm))
3378 goto set_irqchip_out;
3379 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3380 if (r)
3381 goto set_irqchip_out;
3382 r = 0;
3383 set_irqchip_out:
3384 kfree(chip);
3385 if (r)
3386 goto out;
3387 break;
3388 }
3389 case KVM_GET_PIT: {
3390 r = -EFAULT;
3391 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3392 goto out;
3393 r = -ENXIO;
3394 if (!kvm->arch.vpit)
3395 goto out;
3396 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3397 if (r)
3398 goto out;
3399 r = -EFAULT;
3400 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3401 goto out;
3402 r = 0;
3403 break;
3404 }
3405 case KVM_SET_PIT: {
3406 r = -EFAULT;
3407 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3408 goto out;
3409 r = -ENXIO;
3410 if (!kvm->arch.vpit)
3411 goto out;
3412 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3413 if (r)
3414 goto out;
3415 r = 0;
3416 break;
3417 }
3418 case KVM_GET_PIT2: {
3419 r = -ENXIO;
3420 if (!kvm->arch.vpit)
3421 goto out;
3422 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3423 if (r)
3424 goto out;
3425 r = -EFAULT;
3426 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3427 goto out;
3428 r = 0;
3429 break;
3430 }
3431 case KVM_SET_PIT2: {
3432 r = -EFAULT;
3433 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3434 goto out;
3435 r = -ENXIO;
3436 if (!kvm->arch.vpit)
3437 goto out;
3438 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3439 if (r)
3440 goto out;
3441 r = 0;
3442 break;
3443 }
3444 case KVM_REINJECT_CONTROL: {
3445 struct kvm_reinject_control control;
3446 r = -EFAULT;
3447 if (copy_from_user(&control, argp, sizeof(control)))
3448 goto out;
3449 r = kvm_vm_ioctl_reinject(kvm, &control);
3450 if (r)
3451 goto out;
3452 r = 0;
3453 break;
3454 }
3455 case KVM_XEN_HVM_CONFIG: {
3456 r = -EFAULT;
3457 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3458 sizeof(struct kvm_xen_hvm_config)))
3459 goto out;
3460 r = -EINVAL;
3461 if (kvm->arch.xen_hvm_config.flags)
3462 goto out;
3463 r = 0;
3464 break;
3465 }
3466 case KVM_SET_CLOCK: {
3467 struct kvm_clock_data user_ns;
3468 u64 now_ns;
3469 s64 delta;
3470
3471 r = -EFAULT;
3472 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3473 goto out;
3474
3475 r = -EINVAL;
3476 if (user_ns.flags)
3477 goto out;
3478
3479 r = 0;
3480 local_irq_disable();
3481 now_ns = get_kernel_ns();
3482 delta = user_ns.clock - now_ns;
3483 local_irq_enable();
3484 kvm->arch.kvmclock_offset = delta;
3485 break;
3486 }
3487 case KVM_GET_CLOCK: {
3488 struct kvm_clock_data user_ns;
3489 u64 now_ns;
3490
3491 local_irq_disable();
3492 now_ns = get_kernel_ns();
3493 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3494 local_irq_enable();
3495 user_ns.flags = 0;
3496 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3497
3498 r = -EFAULT;
3499 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3500 goto out;
3501 r = 0;
3502 break;
3503 }
3504
3505 default:
3506 ;
3507 }
3508 out:
3509 return r;
3510 }
3511
3512 static void kvm_init_msr_list(void)
3513 {
3514 u32 dummy[2];
3515 unsigned i, j;
3516
3517 /* skip the first msrs in the list. KVM-specific */
3518 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3519 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3520 continue;
3521 if (j < i)
3522 msrs_to_save[j] = msrs_to_save[i];
3523 j++;
3524 }
3525 num_msrs_to_save = j;
3526 }
3527
3528 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3529 const void *v)
3530 {
3531 if (vcpu->arch.apic &&
3532 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
3533 return 0;
3534
3535 return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3536 }
3537
3538 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3539 {
3540 if (vcpu->arch.apic &&
3541 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
3542 return 0;
3543
3544 return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3545 }
3546
3547 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3548 struct kvm_segment *var, int seg)
3549 {
3550 kvm_x86_ops->set_segment(vcpu, var, seg);
3551 }
3552
3553 void kvm_get_segment(struct kvm_vcpu *vcpu,
3554 struct kvm_segment *var, int seg)
3555 {
3556 kvm_x86_ops->get_segment(vcpu, var, seg);
3557 }
3558
3559 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3560 {
3561 return gpa;
3562 }
3563
3564 static gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3565 {
3566 gpa_t t_gpa;
3567 u32 error;
3568
3569 BUG_ON(!mmu_is_nested(vcpu));
3570
3571 /* NPT walks are always user-walks */
3572 access |= PFERR_USER_MASK;
3573 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &error);
3574 if (t_gpa == UNMAPPED_GVA)
3575 vcpu->arch.fault.nested = true;
3576
3577 return t_gpa;
3578 }
3579
3580 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3581 {
3582 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3583 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
3584 }
3585
3586 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3587 {
3588 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3589 access |= PFERR_FETCH_MASK;
3590 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
3591 }
3592
3593 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3594 {
3595 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3596 access |= PFERR_WRITE_MASK;
3597 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
3598 }
3599
3600 /* uses this to access any guest's mapped memory without checking CPL */
3601 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3602 {
3603 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, error);
3604 }
3605
3606 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3607 struct kvm_vcpu *vcpu, u32 access,
3608 u32 *error)
3609 {
3610 void *data = val;
3611 int r = X86EMUL_CONTINUE;
3612
3613 while (bytes) {
3614 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3615 error);
3616 unsigned offset = addr & (PAGE_SIZE-1);
3617 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3618 int ret;
3619
3620 if (gpa == UNMAPPED_GVA) {
3621 r = X86EMUL_PROPAGATE_FAULT;
3622 goto out;
3623 }
3624 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3625 if (ret < 0) {
3626 r = X86EMUL_IO_NEEDED;
3627 goto out;
3628 }
3629
3630 bytes -= toread;
3631 data += toread;
3632 addr += toread;
3633 }
3634 out:
3635 return r;
3636 }
3637
3638 /* used for instruction fetching */
3639 static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
3640 struct kvm_vcpu *vcpu, u32 *error)
3641 {
3642 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3643 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3644 access | PFERR_FETCH_MASK, error);
3645 }
3646
3647 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
3648 struct kvm_vcpu *vcpu, u32 *error)
3649 {
3650 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3651 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3652 error);
3653 }
3654
3655 static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
3656 struct kvm_vcpu *vcpu, u32 *error)
3657 {
3658 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
3659 }
3660
3661 static int kvm_write_guest_virt_system(gva_t addr, void *val,
3662 unsigned int bytes,
3663 struct kvm_vcpu *vcpu,
3664 u32 *error)
3665 {
3666 void *data = val;
3667 int r = X86EMUL_CONTINUE;
3668
3669 while (bytes) {
3670 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3671 PFERR_WRITE_MASK,
3672 error);
3673 unsigned offset = addr & (PAGE_SIZE-1);
3674 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3675 int ret;
3676
3677 if (gpa == UNMAPPED_GVA) {
3678 r = X86EMUL_PROPAGATE_FAULT;
3679 goto out;
3680 }
3681 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3682 if (ret < 0) {
3683 r = X86EMUL_IO_NEEDED;
3684 goto out;
3685 }
3686
3687 bytes -= towrite;
3688 data += towrite;
3689 addr += towrite;
3690 }
3691 out:
3692 return r;
3693 }
3694
3695 static int emulator_read_emulated(unsigned long addr,
3696 void *val,
3697 unsigned int bytes,
3698 unsigned int *error_code,
3699 struct kvm_vcpu *vcpu)
3700 {
3701 gpa_t gpa;
3702
3703 if (vcpu->mmio_read_completed) {
3704 memcpy(val, vcpu->mmio_data, bytes);
3705 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3706 vcpu->mmio_phys_addr, *(u64 *)val);
3707 vcpu->mmio_read_completed = 0;
3708 return X86EMUL_CONTINUE;
3709 }
3710
3711 gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, error_code);
3712
3713 if (gpa == UNMAPPED_GVA)
3714 return X86EMUL_PROPAGATE_FAULT;
3715
3716 /* For APIC access vmexit */
3717 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3718 goto mmio;
3719
3720 if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
3721 == X86EMUL_CONTINUE)
3722 return X86EMUL_CONTINUE;
3723
3724 mmio:
3725 /*
3726 * Is this MMIO handled locally?
3727 */
3728 if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
3729 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
3730 return X86EMUL_CONTINUE;
3731 }
3732
3733 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3734
3735 vcpu->mmio_needed = 1;
3736 vcpu->run->exit_reason = KVM_EXIT_MMIO;
3737 vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3738 vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3739 vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
3740
3741 return X86EMUL_IO_NEEDED;
3742 }
3743
3744 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3745 const void *val, int bytes)
3746 {
3747 int ret;
3748
3749 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3750 if (ret < 0)
3751 return 0;
3752 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3753 return 1;
3754 }
3755
3756 static int emulator_write_emulated_onepage(unsigned long addr,
3757 const void *val,
3758 unsigned int bytes,
3759 unsigned int *error_code,
3760 struct kvm_vcpu *vcpu)
3761 {
3762 gpa_t gpa;
3763
3764 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, error_code);
3765
3766 if (gpa == UNMAPPED_GVA)
3767 return X86EMUL_PROPAGATE_FAULT;
3768
3769 /* For APIC access vmexit */
3770 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3771 goto mmio;
3772
3773 if (emulator_write_phys(vcpu, gpa, val, bytes))
3774 return X86EMUL_CONTINUE;
3775
3776 mmio:
3777 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3778 /*
3779 * Is this MMIO handled locally?
3780 */
3781 if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
3782 return X86EMUL_CONTINUE;
3783
3784 vcpu->mmio_needed = 1;
3785 vcpu->run->exit_reason = KVM_EXIT_MMIO;
3786 vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3787 vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3788 vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
3789 memcpy(vcpu->run->mmio.data, val, bytes);
3790
3791 return X86EMUL_CONTINUE;
3792 }
3793
3794 int emulator_write_emulated(unsigned long addr,
3795 const void *val,
3796 unsigned int bytes,
3797 unsigned int *error_code,
3798 struct kvm_vcpu *vcpu)
3799 {
3800 /* Crossing a page boundary? */
3801 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3802 int rc, now;
3803
3804 now = -addr & ~PAGE_MASK;
3805 rc = emulator_write_emulated_onepage(addr, val, now, error_code,
3806 vcpu);
3807 if (rc != X86EMUL_CONTINUE)
3808 return rc;
3809 addr += now;
3810 val += now;
3811 bytes -= now;
3812 }
3813 return emulator_write_emulated_onepage(addr, val, bytes, error_code,
3814 vcpu);
3815 }
3816
3817 #define CMPXCHG_TYPE(t, ptr, old, new) \
3818 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3819
3820 #ifdef CONFIG_X86_64
3821 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3822 #else
3823 # define CMPXCHG64(ptr, old, new) \
3824 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3825 #endif
3826
3827 static int emulator_cmpxchg_emulated(unsigned long addr,
3828 const void *old,
3829 const void *new,
3830 unsigned int bytes,
3831 unsigned int *error_code,
3832 struct kvm_vcpu *vcpu)
3833 {
3834 gpa_t gpa;
3835 struct page *page;
3836 char *kaddr;
3837 bool exchanged;
3838
3839 /* guests cmpxchg8b have to be emulated atomically */
3840 if (bytes > 8 || (bytes & (bytes - 1)))
3841 goto emul_write;
3842
3843 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3844
3845 if (gpa == UNMAPPED_GVA ||
3846 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3847 goto emul_write;
3848
3849 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3850 goto emul_write;
3851
3852 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3853 if (is_error_page(page)) {
3854 kvm_release_page_clean(page);
3855 goto emul_write;
3856 }
3857
3858 kaddr = kmap_atomic(page, KM_USER0);
3859 kaddr += offset_in_page(gpa);
3860 switch (bytes) {
3861 case 1:
3862 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3863 break;
3864 case 2:
3865 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3866 break;
3867 case 4:
3868 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3869 break;
3870 case 8:
3871 exchanged = CMPXCHG64(kaddr, old, new);
3872 break;
3873 default:
3874 BUG();
3875 }
3876 kunmap_atomic(kaddr, KM_USER0);
3877 kvm_release_page_dirty(page);
3878
3879 if (!exchanged)
3880 return X86EMUL_CMPXCHG_FAILED;
3881
3882 kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
3883
3884 return X86EMUL_CONTINUE;
3885
3886 emul_write:
3887 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3888
3889 return emulator_write_emulated(addr, new, bytes, error_code, vcpu);
3890 }
3891
3892 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3893 {
3894 /* TODO: String I/O for in kernel device */
3895 int r;
3896
3897 if (vcpu->arch.pio.in)
3898 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3899 vcpu->arch.pio.size, pd);
3900 else
3901 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3902 vcpu->arch.pio.port, vcpu->arch.pio.size,
3903 pd);
3904 return r;
3905 }
3906
3907
3908 static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
3909 unsigned int count, struct kvm_vcpu *vcpu)
3910 {
3911 if (vcpu->arch.pio.count)
3912 goto data_avail;
3913
3914 trace_kvm_pio(0, port, size, 1);
3915
3916 vcpu->arch.pio.port = port;
3917 vcpu->arch.pio.in = 1;
3918 vcpu->arch.pio.count = count;
3919 vcpu->arch.pio.size = size;
3920
3921 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3922 data_avail:
3923 memcpy(val, vcpu->arch.pio_data, size * count);
3924 vcpu->arch.pio.count = 0;
3925 return 1;
3926 }
3927
3928 vcpu->run->exit_reason = KVM_EXIT_IO;
3929 vcpu->run->io.direction = KVM_EXIT_IO_IN;
3930 vcpu->run->io.size = size;
3931 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3932 vcpu->run->io.count = count;
3933 vcpu->run->io.port = port;
3934
3935 return 0;
3936 }
3937
3938 static int emulator_pio_out_emulated(int size, unsigned short port,
3939 const void *val, unsigned int count,
3940 struct kvm_vcpu *vcpu)
3941 {
3942 trace_kvm_pio(1, port, size, 1);
3943
3944 vcpu->arch.pio.port = port;
3945 vcpu->arch.pio.in = 0;
3946 vcpu->arch.pio.count = count;
3947 vcpu->arch.pio.size = size;
3948
3949 memcpy(vcpu->arch.pio_data, val, size * count);
3950
3951 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3952 vcpu->arch.pio.count = 0;
3953 return 1;
3954 }
3955
3956 vcpu->run->exit_reason = KVM_EXIT_IO;
3957 vcpu->run->io.direction = KVM_EXIT_IO_OUT;
3958 vcpu->run->io.size = size;
3959 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3960 vcpu->run->io.count = count;
3961 vcpu->run->io.port = port;
3962
3963 return 0;
3964 }
3965
3966 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
3967 {
3968 return kvm_x86_ops->get_segment_base(vcpu, seg);
3969 }
3970
3971 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
3972 {
3973 kvm_mmu_invlpg(vcpu, address);
3974 return X86EMUL_CONTINUE;
3975 }
3976
3977 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
3978 {
3979 if (!need_emulate_wbinvd(vcpu))
3980 return X86EMUL_CONTINUE;
3981
3982 if (kvm_x86_ops->has_wbinvd_exit()) {
3983 preempt_disable();
3984 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
3985 wbinvd_ipi, NULL, 1);
3986 preempt_enable();
3987 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
3988 }
3989 wbinvd();
3990 return X86EMUL_CONTINUE;
3991 }
3992 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
3993
3994 int emulate_clts(struct kvm_vcpu *vcpu)
3995 {
3996 kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3997 kvm_x86_ops->fpu_activate(vcpu);
3998 return X86EMUL_CONTINUE;
3999 }
4000
4001 int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu)
4002 {
4003 return _kvm_get_dr(vcpu, dr, dest);
4004 }
4005
4006 int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu)
4007 {
4008
4009 return __kvm_set_dr(vcpu, dr, value);
4010 }
4011
4012 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4013 {
4014 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4015 }
4016
4017 static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
4018 {
4019 unsigned long value;
4020
4021 switch (cr) {
4022 case 0:
4023 value = kvm_read_cr0(vcpu);
4024 break;
4025 case 2:
4026 value = vcpu->arch.cr2;
4027 break;
4028 case 3:
4029 value = vcpu->arch.cr3;
4030 break;
4031 case 4:
4032 value = kvm_read_cr4(vcpu);
4033 break;
4034 case 8:
4035 value = kvm_get_cr8(vcpu);
4036 break;
4037 default:
4038 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4039 return 0;
4040 }
4041
4042 return value;
4043 }
4044
4045 static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
4046 {
4047 int res = 0;
4048
4049 switch (cr) {
4050 case 0:
4051 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4052 break;
4053 case 2:
4054 vcpu->arch.cr2 = val;
4055 break;
4056 case 3:
4057 res = kvm_set_cr3(vcpu, val);
4058 break;
4059 case 4:
4060 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4061 break;
4062 case 8:
4063 res = __kvm_set_cr8(vcpu, val & 0xfUL);
4064 break;
4065 default:
4066 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4067 res = -1;
4068 }
4069
4070 return res;
4071 }
4072
4073 static int emulator_get_cpl(struct kvm_vcpu *vcpu)
4074 {
4075 return kvm_x86_ops->get_cpl(vcpu);
4076 }
4077
4078 static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
4079 {
4080 kvm_x86_ops->get_gdt(vcpu, dt);
4081 }
4082
4083 static void emulator_get_idt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
4084 {
4085 kvm_x86_ops->get_idt(vcpu, dt);
4086 }
4087
4088 static unsigned long emulator_get_cached_segment_base(int seg,
4089 struct kvm_vcpu *vcpu)
4090 {
4091 return get_segment_base(vcpu, seg);
4092 }
4093
4094 static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
4095 struct kvm_vcpu *vcpu)
4096 {
4097 struct kvm_segment var;
4098
4099 kvm_get_segment(vcpu, &var, seg);
4100
4101 if (var.unusable)
4102 return false;
4103
4104 if (var.g)
4105 var.limit >>= 12;
4106 set_desc_limit(desc, var.limit);
4107 set_desc_base(desc, (unsigned long)var.base);
4108 desc->type = var.type;
4109 desc->s = var.s;
4110 desc->dpl = var.dpl;
4111 desc->p = var.present;
4112 desc->avl = var.avl;
4113 desc->l = var.l;
4114 desc->d = var.db;
4115 desc->g = var.g;
4116
4117 return true;
4118 }
4119
4120 static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
4121 struct kvm_vcpu *vcpu)
4122 {
4123 struct kvm_segment var;
4124
4125 /* needed to preserve selector */
4126 kvm_get_segment(vcpu, &var, seg);
4127
4128 var.base = get_desc_base(desc);
4129 var.limit = get_desc_limit(desc);
4130 if (desc->g)
4131 var.limit = (var.limit << 12) | 0xfff;
4132 var.type = desc->type;
4133 var.present = desc->p;
4134 var.dpl = desc->dpl;
4135 var.db = desc->d;
4136 var.s = desc->s;
4137 var.l = desc->l;
4138 var.g = desc->g;
4139 var.avl = desc->avl;
4140 var.present = desc->p;
4141 var.unusable = !var.present;
4142 var.padding = 0;
4143
4144 kvm_set_segment(vcpu, &var, seg);
4145 return;
4146 }
4147
4148 static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
4149 {
4150 struct kvm_segment kvm_seg;
4151
4152 kvm_get_segment(vcpu, &kvm_seg, seg);
4153 return kvm_seg.selector;
4154 }
4155
4156 static void emulator_set_segment_selector(u16 sel, int seg,
4157 struct kvm_vcpu *vcpu)
4158 {
4159 struct kvm_segment kvm_seg;
4160
4161 kvm_get_segment(vcpu, &kvm_seg, seg);
4162 kvm_seg.selector = sel;
4163 kvm_set_segment(vcpu, &kvm_seg, seg);
4164 }
4165
4166 static struct x86_emulate_ops emulate_ops = {
4167 .read_std = kvm_read_guest_virt_system,
4168 .write_std = kvm_write_guest_virt_system,
4169 .fetch = kvm_fetch_guest_virt,
4170 .read_emulated = emulator_read_emulated,
4171 .write_emulated = emulator_write_emulated,
4172 .cmpxchg_emulated = emulator_cmpxchg_emulated,
4173 .pio_in_emulated = emulator_pio_in_emulated,
4174 .pio_out_emulated = emulator_pio_out_emulated,
4175 .get_cached_descriptor = emulator_get_cached_descriptor,
4176 .set_cached_descriptor = emulator_set_cached_descriptor,
4177 .get_segment_selector = emulator_get_segment_selector,
4178 .set_segment_selector = emulator_set_segment_selector,
4179 .get_cached_segment_base = emulator_get_cached_segment_base,
4180 .get_gdt = emulator_get_gdt,
4181 .get_idt = emulator_get_idt,
4182 .get_cr = emulator_get_cr,
4183 .set_cr = emulator_set_cr,
4184 .cpl = emulator_get_cpl,
4185 .get_dr = emulator_get_dr,
4186 .set_dr = emulator_set_dr,
4187 .set_msr = kvm_set_msr,
4188 .get_msr = kvm_get_msr,
4189 };
4190
4191 static void cache_all_regs(struct kvm_vcpu *vcpu)
4192 {
4193 kvm_register_read(vcpu, VCPU_REGS_RAX);
4194 kvm_register_read(vcpu, VCPU_REGS_RSP);
4195 kvm_register_read(vcpu, VCPU_REGS_RIP);
4196 vcpu->arch.regs_dirty = ~0;
4197 }
4198
4199 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4200 {
4201 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4202 /*
4203 * an sti; sti; sequence only disable interrupts for the first
4204 * instruction. So, if the last instruction, be it emulated or
4205 * not, left the system with the INT_STI flag enabled, it
4206 * means that the last instruction is an sti. We should not
4207 * leave the flag on in this case. The same goes for mov ss
4208 */
4209 if (!(int_shadow & mask))
4210 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4211 }
4212
4213 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4214 {
4215 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4216 if (ctxt->exception == PF_VECTOR)
4217 kvm_propagate_fault(vcpu);
4218 else if (ctxt->error_code_valid)
4219 kvm_queue_exception_e(vcpu, ctxt->exception, ctxt->error_code);
4220 else
4221 kvm_queue_exception(vcpu, ctxt->exception);
4222 }
4223
4224 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4225 {
4226 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4227 int cs_db, cs_l;
4228
4229 cache_all_regs(vcpu);
4230
4231 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4232
4233 vcpu->arch.emulate_ctxt.vcpu = vcpu;
4234 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
4235 vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
4236 vcpu->arch.emulate_ctxt.mode =
4237 (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4238 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
4239 ? X86EMUL_MODE_VM86 : cs_l
4240 ? X86EMUL_MODE_PROT64 : cs_db
4241 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
4242 memset(c, 0, sizeof(struct decode_cache));
4243 memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4244 }
4245
4246 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq)
4247 {
4248 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4249 int ret;
4250
4251 init_emulate_ctxt(vcpu);
4252
4253 vcpu->arch.emulate_ctxt.decode.op_bytes = 2;
4254 vcpu->arch.emulate_ctxt.decode.ad_bytes = 2;
4255 vcpu->arch.emulate_ctxt.decode.eip = vcpu->arch.emulate_ctxt.eip;
4256 ret = emulate_int_real(&vcpu->arch.emulate_ctxt, &emulate_ops, irq);
4257
4258 if (ret != X86EMUL_CONTINUE)
4259 return EMULATE_FAIL;
4260
4261 vcpu->arch.emulate_ctxt.eip = c->eip;
4262 memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4263 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4264 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4265
4266 if (irq == NMI_VECTOR)
4267 vcpu->arch.nmi_pending = false;
4268 else
4269 vcpu->arch.interrupt.pending = false;
4270
4271 return EMULATE_DONE;
4272 }
4273 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4274
4275 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4276 {
4277 ++vcpu->stat.insn_emulation_fail;
4278 trace_kvm_emulate_insn_failed(vcpu);
4279 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4280 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4281 vcpu->run->internal.ndata = 0;
4282 kvm_queue_exception(vcpu, UD_VECTOR);
4283 return EMULATE_FAIL;
4284 }
4285
4286 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4287 {
4288 gpa_t gpa;
4289
4290 if (tdp_enabled)
4291 return false;
4292
4293 /*
4294 * if emulation was due to access to shadowed page table
4295 * and it failed try to unshadow page and re-entetr the
4296 * guest to let CPU execute the instruction.
4297 */
4298 if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4299 return true;
4300
4301 gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4302
4303 if (gpa == UNMAPPED_GVA)
4304 return true; /* let cpu generate fault */
4305
4306 if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4307 return true;
4308
4309 return false;
4310 }
4311
4312 int emulate_instruction(struct kvm_vcpu *vcpu,
4313 unsigned long cr2,
4314 u16 error_code,
4315 int emulation_type)
4316 {
4317 int r;
4318 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4319
4320 kvm_clear_exception_queue(vcpu);
4321 vcpu->arch.mmio_fault_cr2 = cr2;
4322 /*
4323 * TODO: fix emulate.c to use guest_read/write_register
4324 * instead of direct ->regs accesses, can save hundred cycles
4325 * on Intel for instructions that don't read/change RSP, for
4326 * for example.
4327 */
4328 cache_all_regs(vcpu);
4329
4330 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4331 init_emulate_ctxt(vcpu);
4332 vcpu->arch.emulate_ctxt.interruptibility = 0;
4333 vcpu->arch.emulate_ctxt.exception = -1;
4334 vcpu->arch.emulate_ctxt.perm_ok = false;
4335
4336 r = x86_decode_insn(&vcpu->arch.emulate_ctxt);
4337 if (r == X86EMUL_PROPAGATE_FAULT)
4338 goto done;
4339
4340 trace_kvm_emulate_insn_start(vcpu);
4341
4342 /* Only allow emulation of specific instructions on #UD
4343 * (namely VMMCALL, sysenter, sysexit, syscall)*/
4344 if (emulation_type & EMULTYPE_TRAP_UD) {
4345 if (!c->twobyte)
4346 return EMULATE_FAIL;
4347 switch (c->b) {
4348 case 0x01: /* VMMCALL */
4349 if (c->modrm_mod != 3 || c->modrm_rm != 1)
4350 return EMULATE_FAIL;
4351 break;
4352 case 0x34: /* sysenter */
4353 case 0x35: /* sysexit */
4354 if (c->modrm_mod != 0 || c->modrm_rm != 0)
4355 return EMULATE_FAIL;
4356 break;
4357 case 0x05: /* syscall */
4358 if (c->modrm_mod != 0 || c->modrm_rm != 0)
4359 return EMULATE_FAIL;
4360 break;
4361 default:
4362 return EMULATE_FAIL;
4363 }
4364
4365 if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
4366 return EMULATE_FAIL;
4367 }
4368
4369 ++vcpu->stat.insn_emulation;
4370 if (r) {
4371 if (reexecute_instruction(vcpu, cr2))
4372 return EMULATE_DONE;
4373 if (emulation_type & EMULTYPE_SKIP)
4374 return EMULATE_FAIL;
4375 return handle_emulation_failure(vcpu);
4376 }
4377 }
4378
4379 if (emulation_type & EMULTYPE_SKIP) {
4380 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
4381 return EMULATE_DONE;
4382 }
4383
4384 /* this is needed for vmware backdor interface to work since it
4385 changes registers values during IO operation */
4386 memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4387
4388 restart:
4389 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt);
4390
4391 if (r == EMULATION_FAILED) {
4392 if (reexecute_instruction(vcpu, cr2))
4393 return EMULATE_DONE;
4394
4395 return handle_emulation_failure(vcpu);
4396 }
4397
4398 done:
4399 if (vcpu->arch.emulate_ctxt.exception >= 0) {
4400 inject_emulated_exception(vcpu);
4401 r = EMULATE_DONE;
4402 } else if (vcpu->arch.pio.count) {
4403 if (!vcpu->arch.pio.in)
4404 vcpu->arch.pio.count = 0;
4405 r = EMULATE_DO_MMIO;
4406 } else if (vcpu->mmio_needed) {
4407 if (vcpu->mmio_is_write)
4408 vcpu->mmio_needed = 0;
4409 r = EMULATE_DO_MMIO;
4410 } else if (r == EMULATION_RESTART)
4411 goto restart;
4412 else
4413 r = EMULATE_DONE;
4414
4415 toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility);
4416 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4417 kvm_make_request(KVM_REQ_EVENT, vcpu);
4418 memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4419 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4420
4421 return r;
4422 }
4423 EXPORT_SYMBOL_GPL(emulate_instruction);
4424
4425 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4426 {
4427 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4428 int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
4429 /* do not return to emulator after return from userspace */
4430 vcpu->arch.pio.count = 0;
4431 return ret;
4432 }
4433 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4434
4435 static void tsc_bad(void *info)
4436 {
4437 __get_cpu_var(cpu_tsc_khz) = 0;
4438 }
4439
4440 static void tsc_khz_changed(void *data)
4441 {
4442 struct cpufreq_freqs *freq = data;
4443 unsigned long khz = 0;
4444
4445 if (data)
4446 khz = freq->new;
4447 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4448 khz = cpufreq_quick_get(raw_smp_processor_id());
4449 if (!khz)
4450 khz = tsc_khz;
4451 __get_cpu_var(cpu_tsc_khz) = khz;
4452 }
4453
4454 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4455 void *data)
4456 {
4457 struct cpufreq_freqs *freq = data;
4458 struct kvm *kvm;
4459 struct kvm_vcpu *vcpu;
4460 int i, send_ipi = 0;
4461
4462 /*
4463 * We allow guests to temporarily run on slowing clocks,
4464 * provided we notify them after, or to run on accelerating
4465 * clocks, provided we notify them before. Thus time never
4466 * goes backwards.
4467 *
4468 * However, we have a problem. We can't atomically update
4469 * the frequency of a given CPU from this function; it is
4470 * merely a notifier, which can be called from any CPU.
4471 * Changing the TSC frequency at arbitrary points in time
4472 * requires a recomputation of local variables related to
4473 * the TSC for each VCPU. We must flag these local variables
4474 * to be updated and be sure the update takes place with the
4475 * new frequency before any guests proceed.
4476 *
4477 * Unfortunately, the combination of hotplug CPU and frequency
4478 * change creates an intractable locking scenario; the order
4479 * of when these callouts happen is undefined with respect to
4480 * CPU hotplug, and they can race with each other. As such,
4481 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4482 * undefined; you can actually have a CPU frequency change take
4483 * place in between the computation of X and the setting of the
4484 * variable. To protect against this problem, all updates of
4485 * the per_cpu tsc_khz variable are done in an interrupt
4486 * protected IPI, and all callers wishing to update the value
4487 * must wait for a synchronous IPI to complete (which is trivial
4488 * if the caller is on the CPU already). This establishes the
4489 * necessary total order on variable updates.
4490 *
4491 * Note that because a guest time update may take place
4492 * anytime after the setting of the VCPU's request bit, the
4493 * correct TSC value must be set before the request. However,
4494 * to ensure the update actually makes it to any guest which
4495 * starts running in hardware virtualization between the set
4496 * and the acquisition of the spinlock, we must also ping the
4497 * CPU after setting the request bit.
4498 *
4499 */
4500
4501 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4502 return 0;
4503 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4504 return 0;
4505
4506 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4507
4508 spin_lock(&kvm_lock);
4509 list_for_each_entry(kvm, &vm_list, vm_list) {
4510 kvm_for_each_vcpu(i, vcpu, kvm) {
4511 if (vcpu->cpu != freq->cpu)
4512 continue;
4513 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4514 if (vcpu->cpu != smp_processor_id())
4515 send_ipi = 1;
4516 }
4517 }
4518 spin_unlock(&kvm_lock);
4519
4520 if (freq->old < freq->new && send_ipi) {
4521 /*
4522 * We upscale the frequency. Must make the guest
4523 * doesn't see old kvmclock values while running with
4524 * the new frequency, otherwise we risk the guest sees
4525 * time go backwards.
4526 *
4527 * In case we update the frequency for another cpu
4528 * (which might be in guest context) send an interrupt
4529 * to kick the cpu out of guest context. Next time
4530 * guest context is entered kvmclock will be updated,
4531 * so the guest will not see stale values.
4532 */
4533 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4534 }
4535 return 0;
4536 }
4537
4538 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4539 .notifier_call = kvmclock_cpufreq_notifier
4540 };
4541
4542 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4543 unsigned long action, void *hcpu)
4544 {
4545 unsigned int cpu = (unsigned long)hcpu;
4546
4547 switch (action) {
4548 case CPU_ONLINE:
4549 case CPU_DOWN_FAILED:
4550 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4551 break;
4552 case CPU_DOWN_PREPARE:
4553 smp_call_function_single(cpu, tsc_bad, NULL, 1);
4554 break;
4555 }
4556 return NOTIFY_OK;
4557 }
4558
4559 static struct notifier_block kvmclock_cpu_notifier_block = {
4560 .notifier_call = kvmclock_cpu_notifier,
4561 .priority = -INT_MAX
4562 };
4563
4564 static void kvm_timer_init(void)
4565 {
4566 int cpu;
4567
4568 max_tsc_khz = tsc_khz;
4569 register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4570 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4571 #ifdef CONFIG_CPU_FREQ
4572 struct cpufreq_policy policy;
4573 memset(&policy, 0, sizeof(policy));
4574 cpu = get_cpu();
4575 cpufreq_get_policy(&policy, cpu);
4576 if (policy.cpuinfo.max_freq)
4577 max_tsc_khz = policy.cpuinfo.max_freq;
4578 put_cpu();
4579 #endif
4580 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4581 CPUFREQ_TRANSITION_NOTIFIER);
4582 }
4583 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
4584 for_each_online_cpu(cpu)
4585 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4586 }
4587
4588 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4589
4590 static int kvm_is_in_guest(void)
4591 {
4592 return percpu_read(current_vcpu) != NULL;
4593 }
4594
4595 static int kvm_is_user_mode(void)
4596 {
4597 int user_mode = 3;
4598
4599 if (percpu_read(current_vcpu))
4600 user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
4601
4602 return user_mode != 0;
4603 }
4604
4605 static unsigned long kvm_get_guest_ip(void)
4606 {
4607 unsigned long ip = 0;
4608
4609 if (percpu_read(current_vcpu))
4610 ip = kvm_rip_read(percpu_read(current_vcpu));
4611
4612 return ip;
4613 }
4614
4615 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4616 .is_in_guest = kvm_is_in_guest,
4617 .is_user_mode = kvm_is_user_mode,
4618 .get_guest_ip = kvm_get_guest_ip,
4619 };
4620
4621 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4622 {
4623 percpu_write(current_vcpu, vcpu);
4624 }
4625 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4626
4627 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4628 {
4629 percpu_write(current_vcpu, NULL);
4630 }
4631 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4632
4633 int kvm_arch_init(void *opaque)
4634 {
4635 int r;
4636 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4637
4638 if (kvm_x86_ops) {
4639 printk(KERN_ERR "kvm: already loaded the other module\n");
4640 r = -EEXIST;
4641 goto out;
4642 }
4643
4644 if (!ops->cpu_has_kvm_support()) {
4645 printk(KERN_ERR "kvm: no hardware support\n");
4646 r = -EOPNOTSUPP;
4647 goto out;
4648 }
4649 if (ops->disabled_by_bios()) {
4650 printk(KERN_ERR "kvm: disabled by bios\n");
4651 r = -EOPNOTSUPP;
4652 goto out;
4653 }
4654
4655 r = kvm_mmu_module_init();
4656 if (r)
4657 goto out;
4658
4659 kvm_init_msr_list();
4660
4661 kvm_x86_ops = ops;
4662 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
4663 kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
4664 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4665 PT_DIRTY_MASK, PT64_NX_MASK, 0);
4666
4667 kvm_timer_init();
4668
4669 perf_register_guest_info_callbacks(&kvm_guest_cbs);
4670
4671 if (cpu_has_xsave)
4672 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4673
4674 return 0;
4675
4676 out:
4677 return r;
4678 }
4679
4680 void kvm_arch_exit(void)
4681 {
4682 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4683
4684 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4685 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4686 CPUFREQ_TRANSITION_NOTIFIER);
4687 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4688 kvm_x86_ops = NULL;
4689 kvm_mmu_module_exit();
4690 }
4691
4692 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4693 {
4694 ++vcpu->stat.halt_exits;
4695 if (irqchip_in_kernel(vcpu->kvm)) {
4696 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4697 return 1;
4698 } else {
4699 vcpu->run->exit_reason = KVM_EXIT_HLT;
4700 return 0;
4701 }
4702 }
4703 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4704
4705 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
4706 unsigned long a1)
4707 {
4708 if (is_long_mode(vcpu))
4709 return a0;
4710 else
4711 return a0 | ((gpa_t)a1 << 32);
4712 }
4713
4714 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4715 {
4716 u64 param, ingpa, outgpa, ret;
4717 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4718 bool fast, longmode;
4719 int cs_db, cs_l;
4720
4721 /*
4722 * hypercall generates UD from non zero cpl and real mode
4723 * per HYPER-V spec
4724 */
4725 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4726 kvm_queue_exception(vcpu, UD_VECTOR);
4727 return 0;
4728 }
4729
4730 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4731 longmode = is_long_mode(vcpu) && cs_l == 1;
4732
4733 if (!longmode) {
4734 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4735 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4736 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4737 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4738 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4739 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4740 }
4741 #ifdef CONFIG_X86_64
4742 else {
4743 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4744 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4745 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4746 }
4747 #endif
4748
4749 code = param & 0xffff;
4750 fast = (param >> 16) & 0x1;
4751 rep_cnt = (param >> 32) & 0xfff;
4752 rep_idx = (param >> 48) & 0xfff;
4753
4754 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4755
4756 switch (code) {
4757 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4758 kvm_vcpu_on_spin(vcpu);
4759 break;
4760 default:
4761 res = HV_STATUS_INVALID_HYPERCALL_CODE;
4762 break;
4763 }
4764
4765 ret = res | (((u64)rep_done & 0xfff) << 32);
4766 if (longmode) {
4767 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4768 } else {
4769 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
4770 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
4771 }
4772
4773 return 1;
4774 }
4775
4776 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
4777 {
4778 unsigned long nr, a0, a1, a2, a3, ret;
4779 int r = 1;
4780
4781 if (kvm_hv_hypercall_enabled(vcpu->kvm))
4782 return kvm_hv_hypercall(vcpu);
4783
4784 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
4785 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
4786 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
4787 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
4788 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
4789
4790 trace_kvm_hypercall(nr, a0, a1, a2, a3);
4791
4792 if (!is_long_mode(vcpu)) {
4793 nr &= 0xFFFFFFFF;
4794 a0 &= 0xFFFFFFFF;
4795 a1 &= 0xFFFFFFFF;
4796 a2 &= 0xFFFFFFFF;
4797 a3 &= 0xFFFFFFFF;
4798 }
4799
4800 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
4801 ret = -KVM_EPERM;
4802 goto out;
4803 }
4804
4805 switch (nr) {
4806 case KVM_HC_VAPIC_POLL_IRQ:
4807 ret = 0;
4808 break;
4809 case KVM_HC_MMU_OP:
4810 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
4811 break;
4812 default:
4813 ret = -KVM_ENOSYS;
4814 break;
4815 }
4816 out:
4817 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4818 ++vcpu->stat.hypercalls;
4819 return r;
4820 }
4821 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
4822
4823 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
4824 {
4825 char instruction[3];
4826 unsigned long rip = kvm_rip_read(vcpu);
4827
4828 /*
4829 * Blow out the MMU to ensure that no other VCPU has an active mapping
4830 * to ensure that the updated hypercall appears atomically across all
4831 * VCPUs.
4832 */
4833 kvm_mmu_zap_all(vcpu->kvm);
4834
4835 kvm_x86_ops->patch_hypercall(vcpu, instruction);
4836
4837 return emulator_write_emulated(rip, instruction, 3, NULL, vcpu);
4838 }
4839
4840 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4841 {
4842 struct desc_ptr dt = { limit, base };
4843
4844 kvm_x86_ops->set_gdt(vcpu, &dt);
4845 }
4846
4847 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4848 {
4849 struct desc_ptr dt = { limit, base };
4850
4851 kvm_x86_ops->set_idt(vcpu, &dt);
4852 }
4853
4854 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
4855 {
4856 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
4857 int j, nent = vcpu->arch.cpuid_nent;
4858
4859 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
4860 /* when no next entry is found, the current entry[i] is reselected */
4861 for (j = i + 1; ; j = (j + 1) % nent) {
4862 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
4863 if (ej->function == e->function) {
4864 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
4865 return j;
4866 }
4867 }
4868 return 0; /* silence gcc, even though control never reaches here */
4869 }
4870
4871 /* find an entry with matching function, matching index (if needed), and that
4872 * should be read next (if it's stateful) */
4873 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
4874 u32 function, u32 index)
4875 {
4876 if (e->function != function)
4877 return 0;
4878 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
4879 return 0;
4880 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
4881 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
4882 return 0;
4883 return 1;
4884 }
4885
4886 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
4887 u32 function, u32 index)
4888 {
4889 int i;
4890 struct kvm_cpuid_entry2 *best = NULL;
4891
4892 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
4893 struct kvm_cpuid_entry2 *e;
4894
4895 e = &vcpu->arch.cpuid_entries[i];
4896 if (is_matching_cpuid_entry(e, function, index)) {
4897 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
4898 move_to_next_stateful_cpuid_entry(vcpu, i);
4899 best = e;
4900 break;
4901 }
4902 /*
4903 * Both basic or both extended?
4904 */
4905 if (((e->function ^ function) & 0x80000000) == 0)
4906 if (!best || e->function > best->function)
4907 best = e;
4908 }
4909 return best;
4910 }
4911 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
4912
4913 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
4914 {
4915 struct kvm_cpuid_entry2 *best;
4916
4917 best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
4918 if (!best || best->eax < 0x80000008)
4919 goto not_found;
4920 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
4921 if (best)
4922 return best->eax & 0xff;
4923 not_found:
4924 return 36;
4925 }
4926
4927 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
4928 {
4929 u32 function, index;
4930 struct kvm_cpuid_entry2 *best;
4931
4932 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
4933 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4934 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
4935 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
4936 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
4937 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
4938 best = kvm_find_cpuid_entry(vcpu, function, index);
4939 if (best) {
4940 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
4941 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
4942 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
4943 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
4944 }
4945 kvm_x86_ops->skip_emulated_instruction(vcpu);
4946 trace_kvm_cpuid(function,
4947 kvm_register_read(vcpu, VCPU_REGS_RAX),
4948 kvm_register_read(vcpu, VCPU_REGS_RBX),
4949 kvm_register_read(vcpu, VCPU_REGS_RCX),
4950 kvm_register_read(vcpu, VCPU_REGS_RDX));
4951 }
4952 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
4953
4954 /*
4955 * Check if userspace requested an interrupt window, and that the
4956 * interrupt window is open.
4957 *
4958 * No need to exit to userspace if we already have an interrupt queued.
4959 */
4960 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
4961 {
4962 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
4963 vcpu->run->request_interrupt_window &&
4964 kvm_arch_interrupt_allowed(vcpu));
4965 }
4966
4967 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
4968 {
4969 struct kvm_run *kvm_run = vcpu->run;
4970
4971 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
4972 kvm_run->cr8 = kvm_get_cr8(vcpu);
4973 kvm_run->apic_base = kvm_get_apic_base(vcpu);
4974 if (irqchip_in_kernel(vcpu->kvm))
4975 kvm_run->ready_for_interrupt_injection = 1;
4976 else
4977 kvm_run->ready_for_interrupt_injection =
4978 kvm_arch_interrupt_allowed(vcpu) &&
4979 !kvm_cpu_has_interrupt(vcpu) &&
4980 !kvm_event_needs_reinjection(vcpu);
4981 }
4982
4983 static void vapic_enter(struct kvm_vcpu *vcpu)
4984 {
4985 struct kvm_lapic *apic = vcpu->arch.apic;
4986 struct page *page;
4987
4988 if (!apic || !apic->vapic_addr)
4989 return;
4990
4991 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4992
4993 vcpu->arch.apic->vapic_page = page;
4994 }
4995
4996 static void vapic_exit(struct kvm_vcpu *vcpu)
4997 {
4998 struct kvm_lapic *apic = vcpu->arch.apic;
4999 int idx;
5000
5001 if (!apic || !apic->vapic_addr)
5002 return;
5003
5004 idx = srcu_read_lock(&vcpu->kvm->srcu);
5005 kvm_release_page_dirty(apic->vapic_page);
5006 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5007 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5008 }
5009
5010 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5011 {
5012 int max_irr, tpr;
5013
5014 if (!kvm_x86_ops->update_cr8_intercept)
5015 return;
5016
5017 if (!vcpu->arch.apic)
5018 return;
5019
5020 if (!vcpu->arch.apic->vapic_addr)
5021 max_irr = kvm_lapic_find_highest_irr(vcpu);
5022 else
5023 max_irr = -1;
5024
5025 if (max_irr != -1)
5026 max_irr >>= 4;
5027
5028 tpr = kvm_lapic_get_cr8(vcpu);
5029
5030 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5031 }
5032
5033 static void inject_pending_event(struct kvm_vcpu *vcpu)
5034 {
5035 /* try to reinject previous events if any */
5036 if (vcpu->arch.exception.pending) {
5037 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5038 vcpu->arch.exception.has_error_code,
5039 vcpu->arch.exception.error_code);
5040 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5041 vcpu->arch.exception.has_error_code,
5042 vcpu->arch.exception.error_code,
5043 vcpu->arch.exception.reinject);
5044 return;
5045 }
5046
5047 if (vcpu->arch.nmi_injected) {
5048 kvm_x86_ops->set_nmi(vcpu);
5049 return;
5050 }
5051
5052 if (vcpu->arch.interrupt.pending) {
5053 kvm_x86_ops->set_irq(vcpu);
5054 return;
5055 }
5056
5057 /* try to inject new event if pending */
5058 if (vcpu->arch.nmi_pending) {
5059 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5060 vcpu->arch.nmi_pending = false;
5061 vcpu->arch.nmi_injected = true;
5062 kvm_x86_ops->set_nmi(vcpu);
5063 }
5064 } else if (kvm_cpu_has_interrupt(vcpu)) {
5065 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5066 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5067 false);
5068 kvm_x86_ops->set_irq(vcpu);
5069 }
5070 }
5071 }
5072
5073 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5074 {
5075 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5076 !vcpu->guest_xcr0_loaded) {
5077 /* kvm_set_xcr() also depends on this */
5078 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5079 vcpu->guest_xcr0_loaded = 1;
5080 }
5081 }
5082
5083 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5084 {
5085 if (vcpu->guest_xcr0_loaded) {
5086 if (vcpu->arch.xcr0 != host_xcr0)
5087 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5088 vcpu->guest_xcr0_loaded = 0;
5089 }
5090 }
5091
5092 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5093 {
5094 int r;
5095 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5096 vcpu->run->request_interrupt_window;
5097
5098 if (vcpu->requests) {
5099 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5100 kvm_mmu_unload(vcpu);
5101 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5102 __kvm_migrate_timers(vcpu);
5103 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5104 r = kvm_guest_time_update(vcpu);
5105 if (unlikely(r))
5106 goto out;
5107 }
5108 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5109 kvm_mmu_sync_roots(vcpu);
5110 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5111 kvm_x86_ops->tlb_flush(vcpu);
5112 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5113 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5114 r = 0;
5115 goto out;
5116 }
5117 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5118 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5119 r = 0;
5120 goto out;
5121 }
5122 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5123 vcpu->fpu_active = 0;
5124 kvm_x86_ops->fpu_deactivate(vcpu);
5125 }
5126 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5127 /* Page is swapped out. Do synthetic halt */
5128 vcpu->arch.apf.halted = true;
5129 r = 1;
5130 goto out;
5131 }
5132 }
5133
5134 r = kvm_mmu_reload(vcpu);
5135 if (unlikely(r))
5136 goto out;
5137
5138 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5139 inject_pending_event(vcpu);
5140
5141 /* enable NMI/IRQ window open exits if needed */
5142 if (vcpu->arch.nmi_pending)
5143 kvm_x86_ops->enable_nmi_window(vcpu);
5144 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5145 kvm_x86_ops->enable_irq_window(vcpu);
5146
5147 if (kvm_lapic_enabled(vcpu)) {
5148 update_cr8_intercept(vcpu);
5149 kvm_lapic_sync_to_vapic(vcpu);
5150 }
5151 }
5152
5153 preempt_disable();
5154
5155 kvm_x86_ops->prepare_guest_switch(vcpu);
5156 if (vcpu->fpu_active)
5157 kvm_load_guest_fpu(vcpu);
5158 kvm_load_guest_xcr0(vcpu);
5159
5160 atomic_set(&vcpu->guest_mode, 1);
5161 smp_wmb();
5162
5163 local_irq_disable();
5164
5165 if (!atomic_read(&vcpu->guest_mode) || vcpu->requests
5166 || need_resched() || signal_pending(current)) {
5167 atomic_set(&vcpu->guest_mode, 0);
5168 smp_wmb();
5169 local_irq_enable();
5170 preempt_enable();
5171 kvm_x86_ops->cancel_injection(vcpu);
5172 r = 1;
5173 goto out;
5174 }
5175
5176 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5177
5178 kvm_guest_enter();
5179
5180 if (unlikely(vcpu->arch.switch_db_regs)) {
5181 set_debugreg(0, 7);
5182 set_debugreg(vcpu->arch.eff_db[0], 0);
5183 set_debugreg(vcpu->arch.eff_db[1], 1);
5184 set_debugreg(vcpu->arch.eff_db[2], 2);
5185 set_debugreg(vcpu->arch.eff_db[3], 3);
5186 }
5187
5188 trace_kvm_entry(vcpu->vcpu_id);
5189 kvm_x86_ops->run(vcpu);
5190
5191 /*
5192 * If the guest has used debug registers, at least dr7
5193 * will be disabled while returning to the host.
5194 * If we don't have active breakpoints in the host, we don't
5195 * care about the messed up debug address registers. But if
5196 * we have some of them active, restore the old state.
5197 */
5198 if (hw_breakpoint_active())
5199 hw_breakpoint_restore();
5200
5201 kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
5202
5203 atomic_set(&vcpu->guest_mode, 0);
5204 smp_wmb();
5205 local_irq_enable();
5206
5207 ++vcpu->stat.exits;
5208
5209 /*
5210 * We must have an instruction between local_irq_enable() and
5211 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5212 * the interrupt shadow. The stat.exits increment will do nicely.
5213 * But we need to prevent reordering, hence this barrier():
5214 */
5215 barrier();
5216
5217 kvm_guest_exit();
5218
5219 preempt_enable();
5220
5221 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5222
5223 /*
5224 * Profile KVM exit RIPs:
5225 */
5226 if (unlikely(prof_on == KVM_PROFILING)) {
5227 unsigned long rip = kvm_rip_read(vcpu);
5228 profile_hit(KVM_PROFILING, (void *)rip);
5229 }
5230
5231
5232 kvm_lapic_sync_from_vapic(vcpu);
5233
5234 r = kvm_x86_ops->handle_exit(vcpu);
5235 out:
5236 return r;
5237 }
5238
5239
5240 static int __vcpu_run(struct kvm_vcpu *vcpu)
5241 {
5242 int r;
5243 struct kvm *kvm = vcpu->kvm;
5244
5245 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5246 pr_debug("vcpu %d received sipi with vector # %x\n",
5247 vcpu->vcpu_id, vcpu->arch.sipi_vector);
5248 kvm_lapic_reset(vcpu);
5249 r = kvm_arch_vcpu_reset(vcpu);
5250 if (r)
5251 return r;
5252 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5253 }
5254
5255 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5256 vapic_enter(vcpu);
5257
5258 r = 1;
5259 while (r > 0) {
5260 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5261 !vcpu->arch.apf.halted)
5262 r = vcpu_enter_guest(vcpu);
5263 else {
5264 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5265 kvm_vcpu_block(vcpu);
5266 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5267 if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5268 {
5269 switch(vcpu->arch.mp_state) {
5270 case KVM_MP_STATE_HALTED:
5271 vcpu->arch.mp_state =
5272 KVM_MP_STATE_RUNNABLE;
5273 case KVM_MP_STATE_RUNNABLE:
5274 vcpu->arch.apf.halted = false;
5275 break;
5276 case KVM_MP_STATE_SIPI_RECEIVED:
5277 default:
5278 r = -EINTR;
5279 break;
5280 }
5281 }
5282 }
5283
5284 if (r <= 0)
5285 break;
5286
5287 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5288 if (kvm_cpu_has_pending_timer(vcpu))
5289 kvm_inject_pending_timer_irqs(vcpu);
5290
5291 if (dm_request_for_irq_injection(vcpu)) {
5292 r = -EINTR;
5293 vcpu->run->exit_reason = KVM_EXIT_INTR;
5294 ++vcpu->stat.request_irq_exits;
5295 }
5296
5297 kvm_check_async_pf_completion(vcpu);
5298
5299 if (signal_pending(current)) {
5300 r = -EINTR;
5301 vcpu->run->exit_reason = KVM_EXIT_INTR;
5302 ++vcpu->stat.signal_exits;
5303 }
5304 if (need_resched()) {
5305 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5306 kvm_resched(vcpu);
5307 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5308 }
5309 }
5310
5311 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5312
5313 vapic_exit(vcpu);
5314
5315 return r;
5316 }
5317
5318 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5319 {
5320 int r;
5321 sigset_t sigsaved;
5322
5323 if (vcpu->sigset_active)
5324 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5325
5326 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5327 kvm_vcpu_block(vcpu);
5328 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5329 r = -EAGAIN;
5330 goto out;
5331 }
5332
5333 /* re-sync apic's tpr */
5334 if (!irqchip_in_kernel(vcpu->kvm))
5335 kvm_set_cr8(vcpu, kvm_run->cr8);
5336
5337 if (vcpu->arch.pio.count || vcpu->mmio_needed) {
5338 if (vcpu->mmio_needed) {
5339 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
5340 vcpu->mmio_read_completed = 1;
5341 vcpu->mmio_needed = 0;
5342 }
5343 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5344 r = emulate_instruction(vcpu, 0, 0, EMULTYPE_NO_DECODE);
5345 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5346 if (r != EMULATE_DONE) {
5347 r = 0;
5348 goto out;
5349 }
5350 }
5351 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
5352 kvm_register_write(vcpu, VCPU_REGS_RAX,
5353 kvm_run->hypercall.ret);
5354
5355 r = __vcpu_run(vcpu);
5356
5357 out:
5358 post_kvm_run_save(vcpu);
5359 if (vcpu->sigset_active)
5360 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5361
5362 return r;
5363 }
5364
5365 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5366 {
5367 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5368 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5369 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5370 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5371 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5372 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5373 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5374 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5375 #ifdef CONFIG_X86_64
5376 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5377 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5378 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5379 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5380 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5381 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5382 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5383 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5384 #endif
5385
5386 regs->rip = kvm_rip_read(vcpu);
5387 regs->rflags = kvm_get_rflags(vcpu);
5388
5389 return 0;
5390 }
5391
5392 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5393 {
5394 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5395 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5396 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5397 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5398 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5399 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5400 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5401 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5402 #ifdef CONFIG_X86_64
5403 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5404 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5405 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5406 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5407 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5408 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5409 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5410 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5411 #endif
5412
5413 kvm_rip_write(vcpu, regs->rip);
5414 kvm_set_rflags(vcpu, regs->rflags);
5415
5416 vcpu->arch.exception.pending = false;
5417
5418 kvm_make_request(KVM_REQ_EVENT, vcpu);
5419
5420 return 0;
5421 }
5422
5423 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5424 {
5425 struct kvm_segment cs;
5426
5427 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5428 *db = cs.db;
5429 *l = cs.l;
5430 }
5431 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5432
5433 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5434 struct kvm_sregs *sregs)
5435 {
5436 struct desc_ptr dt;
5437
5438 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5439 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5440 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5441 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5442 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5443 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5444
5445 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5446 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5447
5448 kvm_x86_ops->get_idt(vcpu, &dt);
5449 sregs->idt.limit = dt.size;
5450 sregs->idt.base = dt.address;
5451 kvm_x86_ops->get_gdt(vcpu, &dt);
5452 sregs->gdt.limit = dt.size;
5453 sregs->gdt.base = dt.address;
5454
5455 sregs->cr0 = kvm_read_cr0(vcpu);
5456 sregs->cr2 = vcpu->arch.cr2;
5457 sregs->cr3 = vcpu->arch.cr3;
5458 sregs->cr4 = kvm_read_cr4(vcpu);
5459 sregs->cr8 = kvm_get_cr8(vcpu);
5460 sregs->efer = vcpu->arch.efer;
5461 sregs->apic_base = kvm_get_apic_base(vcpu);
5462
5463 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5464
5465 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5466 set_bit(vcpu->arch.interrupt.nr,
5467 (unsigned long *)sregs->interrupt_bitmap);
5468
5469 return 0;
5470 }
5471
5472 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5473 struct kvm_mp_state *mp_state)
5474 {
5475 mp_state->mp_state = vcpu->arch.mp_state;
5476 return 0;
5477 }
5478
5479 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5480 struct kvm_mp_state *mp_state)
5481 {
5482 vcpu->arch.mp_state = mp_state->mp_state;
5483 kvm_make_request(KVM_REQ_EVENT, vcpu);
5484 return 0;
5485 }
5486
5487 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
5488 bool has_error_code, u32 error_code)
5489 {
5490 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
5491 int ret;
5492
5493 init_emulate_ctxt(vcpu);
5494
5495 ret = emulator_task_switch(&vcpu->arch.emulate_ctxt,
5496 tss_selector, reason, has_error_code,
5497 error_code);
5498
5499 if (ret)
5500 return EMULATE_FAIL;
5501
5502 memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
5503 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
5504 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
5505 kvm_make_request(KVM_REQ_EVENT, vcpu);
5506 return EMULATE_DONE;
5507 }
5508 EXPORT_SYMBOL_GPL(kvm_task_switch);
5509
5510 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5511 struct kvm_sregs *sregs)
5512 {
5513 int mmu_reset_needed = 0;
5514 int pending_vec, max_bits;
5515 struct desc_ptr dt;
5516
5517 dt.size = sregs->idt.limit;
5518 dt.address = sregs->idt.base;
5519 kvm_x86_ops->set_idt(vcpu, &dt);
5520 dt.size = sregs->gdt.limit;
5521 dt.address = sregs->gdt.base;
5522 kvm_x86_ops->set_gdt(vcpu, &dt);
5523
5524 vcpu->arch.cr2 = sregs->cr2;
5525 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
5526 vcpu->arch.cr3 = sregs->cr3;
5527
5528 kvm_set_cr8(vcpu, sregs->cr8);
5529
5530 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5531 kvm_x86_ops->set_efer(vcpu, sregs->efer);
5532 kvm_set_apic_base(vcpu, sregs->apic_base);
5533
5534 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5535 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5536 vcpu->arch.cr0 = sregs->cr0;
5537
5538 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5539 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5540 if (sregs->cr4 & X86_CR4_OSXSAVE)
5541 update_cpuid(vcpu);
5542 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5543 load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3);
5544 mmu_reset_needed = 1;
5545 }
5546
5547 if (mmu_reset_needed)
5548 kvm_mmu_reset_context(vcpu);
5549
5550 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5551 pending_vec = find_first_bit(
5552 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5553 if (pending_vec < max_bits) {
5554 kvm_queue_interrupt(vcpu, pending_vec, false);
5555 pr_debug("Set back pending irq %d\n", pending_vec);
5556 if (irqchip_in_kernel(vcpu->kvm))
5557 kvm_pic_clear_isr_ack(vcpu->kvm);
5558 }
5559
5560 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5561 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5562 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5563 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5564 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5565 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5566
5567 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5568 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5569
5570 update_cr8_intercept(vcpu);
5571
5572 /* Older userspace won't unhalt the vcpu on reset. */
5573 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5574 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5575 !is_protmode(vcpu))
5576 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5577
5578 kvm_make_request(KVM_REQ_EVENT, vcpu);
5579
5580 return 0;
5581 }
5582
5583 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5584 struct kvm_guest_debug *dbg)
5585 {
5586 unsigned long rflags;
5587 int i, r;
5588
5589 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5590 r = -EBUSY;
5591 if (vcpu->arch.exception.pending)
5592 goto out;
5593 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5594 kvm_queue_exception(vcpu, DB_VECTOR);
5595 else
5596 kvm_queue_exception(vcpu, BP_VECTOR);
5597 }
5598
5599 /*
5600 * Read rflags as long as potentially injected trace flags are still
5601 * filtered out.
5602 */
5603 rflags = kvm_get_rflags(vcpu);
5604
5605 vcpu->guest_debug = dbg->control;
5606 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5607 vcpu->guest_debug = 0;
5608
5609 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5610 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5611 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5612 vcpu->arch.switch_db_regs =
5613 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5614 } else {
5615 for (i = 0; i < KVM_NR_DB_REGS; i++)
5616 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5617 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5618 }
5619
5620 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5621 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5622 get_segment_base(vcpu, VCPU_SREG_CS);
5623
5624 /*
5625 * Trigger an rflags update that will inject or remove the trace
5626 * flags.
5627 */
5628 kvm_set_rflags(vcpu, rflags);
5629
5630 kvm_x86_ops->set_guest_debug(vcpu, dbg);
5631
5632 r = 0;
5633
5634 out:
5635
5636 return r;
5637 }
5638
5639 /*
5640 * Translate a guest virtual address to a guest physical address.
5641 */
5642 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5643 struct kvm_translation *tr)
5644 {
5645 unsigned long vaddr = tr->linear_address;
5646 gpa_t gpa;
5647 int idx;
5648
5649 idx = srcu_read_lock(&vcpu->kvm->srcu);
5650 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5651 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5652 tr->physical_address = gpa;
5653 tr->valid = gpa != UNMAPPED_GVA;
5654 tr->writeable = 1;
5655 tr->usermode = 0;
5656
5657 return 0;
5658 }
5659
5660 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5661 {
5662 struct i387_fxsave_struct *fxsave =
5663 &vcpu->arch.guest_fpu.state->fxsave;
5664
5665 memcpy(fpu->fpr, fxsave->st_space, 128);
5666 fpu->fcw = fxsave->cwd;
5667 fpu->fsw = fxsave->swd;
5668 fpu->ftwx = fxsave->twd;
5669 fpu->last_opcode = fxsave->fop;
5670 fpu->last_ip = fxsave->rip;
5671 fpu->last_dp = fxsave->rdp;
5672 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5673
5674 return 0;
5675 }
5676
5677 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5678 {
5679 struct i387_fxsave_struct *fxsave =
5680 &vcpu->arch.guest_fpu.state->fxsave;
5681
5682 memcpy(fxsave->st_space, fpu->fpr, 128);
5683 fxsave->cwd = fpu->fcw;
5684 fxsave->swd = fpu->fsw;
5685 fxsave->twd = fpu->ftwx;
5686 fxsave->fop = fpu->last_opcode;
5687 fxsave->rip = fpu->last_ip;
5688 fxsave->rdp = fpu->last_dp;
5689 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5690
5691 return 0;
5692 }
5693
5694 int fx_init(struct kvm_vcpu *vcpu)
5695 {
5696 int err;
5697
5698 err = fpu_alloc(&vcpu->arch.guest_fpu);
5699 if (err)
5700 return err;
5701
5702 fpu_finit(&vcpu->arch.guest_fpu);
5703
5704 /*
5705 * Ensure guest xcr0 is valid for loading
5706 */
5707 vcpu->arch.xcr0 = XSTATE_FP;
5708
5709 vcpu->arch.cr0 |= X86_CR0_ET;
5710
5711 return 0;
5712 }
5713 EXPORT_SYMBOL_GPL(fx_init);
5714
5715 static void fx_free(struct kvm_vcpu *vcpu)
5716 {
5717 fpu_free(&vcpu->arch.guest_fpu);
5718 }
5719
5720 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5721 {
5722 if (vcpu->guest_fpu_loaded)
5723 return;
5724
5725 /*
5726 * Restore all possible states in the guest,
5727 * and assume host would use all available bits.
5728 * Guest xcr0 would be loaded later.
5729 */
5730 kvm_put_guest_xcr0(vcpu);
5731 vcpu->guest_fpu_loaded = 1;
5732 unlazy_fpu(current);
5733 fpu_restore_checking(&vcpu->arch.guest_fpu);
5734 trace_kvm_fpu(1);
5735 }
5736
5737 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5738 {
5739 kvm_put_guest_xcr0(vcpu);
5740
5741 if (!vcpu->guest_fpu_loaded)
5742 return;
5743
5744 vcpu->guest_fpu_loaded = 0;
5745 fpu_save_init(&vcpu->arch.guest_fpu);
5746 ++vcpu->stat.fpu_reload;
5747 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
5748 trace_kvm_fpu(0);
5749 }
5750
5751 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5752 {
5753 if (vcpu->arch.time_page) {
5754 kvm_release_page_dirty(vcpu->arch.time_page);
5755 vcpu->arch.time_page = NULL;
5756 }
5757
5758 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
5759 fx_free(vcpu);
5760 kvm_x86_ops->vcpu_free(vcpu);
5761 }
5762
5763 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5764 unsigned int id)
5765 {
5766 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
5767 printk_once(KERN_WARNING
5768 "kvm: SMP vm created on host with unstable TSC; "
5769 "guest TSC will not be reliable\n");
5770 return kvm_x86_ops->vcpu_create(kvm, id);
5771 }
5772
5773 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5774 {
5775 int r;
5776
5777 vcpu->arch.mtrr_state.have_fixed = 1;
5778 vcpu_load(vcpu);
5779 r = kvm_arch_vcpu_reset(vcpu);
5780 if (r == 0)
5781 r = kvm_mmu_setup(vcpu);
5782 vcpu_put(vcpu);
5783 if (r < 0)
5784 goto free_vcpu;
5785
5786 return 0;
5787 free_vcpu:
5788 kvm_x86_ops->vcpu_free(vcpu);
5789 return r;
5790 }
5791
5792 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5793 {
5794 vcpu_load(vcpu);
5795 kvm_mmu_unload(vcpu);
5796 vcpu_put(vcpu);
5797
5798 fx_free(vcpu);
5799 kvm_x86_ops->vcpu_free(vcpu);
5800 }
5801
5802 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5803 {
5804 vcpu->arch.nmi_pending = false;
5805 vcpu->arch.nmi_injected = false;
5806
5807 vcpu->arch.switch_db_regs = 0;
5808 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5809 vcpu->arch.dr6 = DR6_FIXED_1;
5810 vcpu->arch.dr7 = DR7_FIXED_1;
5811
5812 kvm_make_request(KVM_REQ_EVENT, vcpu);
5813
5814 kvm_clear_async_pf_completion_queue(vcpu);
5815 kvm_async_pf_hash_reset(vcpu);
5816 vcpu->arch.apf.halted = false;
5817
5818 return kvm_x86_ops->vcpu_reset(vcpu);
5819 }
5820
5821 int kvm_arch_hardware_enable(void *garbage)
5822 {
5823 struct kvm *kvm;
5824 struct kvm_vcpu *vcpu;
5825 int i;
5826
5827 kvm_shared_msr_cpu_online();
5828 list_for_each_entry(kvm, &vm_list, vm_list)
5829 kvm_for_each_vcpu(i, vcpu, kvm)
5830 if (vcpu->cpu == smp_processor_id())
5831 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5832 return kvm_x86_ops->hardware_enable(garbage);
5833 }
5834
5835 void kvm_arch_hardware_disable(void *garbage)
5836 {
5837 kvm_x86_ops->hardware_disable(garbage);
5838 drop_user_return_notifiers(garbage);
5839 }
5840
5841 int kvm_arch_hardware_setup(void)
5842 {
5843 return kvm_x86_ops->hardware_setup();
5844 }
5845
5846 void kvm_arch_hardware_unsetup(void)
5847 {
5848 kvm_x86_ops->hardware_unsetup();
5849 }
5850
5851 void kvm_arch_check_processor_compat(void *rtn)
5852 {
5853 kvm_x86_ops->check_processor_compatibility(rtn);
5854 }
5855
5856 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5857 {
5858 struct page *page;
5859 struct kvm *kvm;
5860 int r;
5861
5862 BUG_ON(vcpu->kvm == NULL);
5863 kvm = vcpu->kvm;
5864
5865 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
5866 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
5867 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5868 vcpu->arch.mmu.translate_gpa = translate_gpa;
5869 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5870 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5871 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5872 else
5873 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5874
5875 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5876 if (!page) {
5877 r = -ENOMEM;
5878 goto fail;
5879 }
5880 vcpu->arch.pio_data = page_address(page);
5881
5882 if (!kvm->arch.virtual_tsc_khz)
5883 kvm_arch_set_tsc_khz(kvm, max_tsc_khz);
5884
5885 r = kvm_mmu_create(vcpu);
5886 if (r < 0)
5887 goto fail_free_pio_data;
5888
5889 if (irqchip_in_kernel(kvm)) {
5890 r = kvm_create_lapic(vcpu);
5891 if (r < 0)
5892 goto fail_mmu_destroy;
5893 }
5894
5895 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5896 GFP_KERNEL);
5897 if (!vcpu->arch.mce_banks) {
5898 r = -ENOMEM;
5899 goto fail_free_lapic;
5900 }
5901 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5902
5903 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
5904 goto fail_free_mce_banks;
5905
5906 kvm_async_pf_hash_reset(vcpu);
5907
5908 return 0;
5909 fail_free_mce_banks:
5910 kfree(vcpu->arch.mce_banks);
5911 fail_free_lapic:
5912 kvm_free_lapic(vcpu);
5913 fail_mmu_destroy:
5914 kvm_mmu_destroy(vcpu);
5915 fail_free_pio_data:
5916 free_page((unsigned long)vcpu->arch.pio_data);
5917 fail:
5918 return r;
5919 }
5920
5921 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
5922 {
5923 int idx;
5924
5925 kfree(vcpu->arch.mce_banks);
5926 kvm_free_lapic(vcpu);
5927 idx = srcu_read_lock(&vcpu->kvm->srcu);
5928 kvm_mmu_destroy(vcpu);
5929 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5930 free_page((unsigned long)vcpu->arch.pio_data);
5931 }
5932
5933 struct kvm *kvm_arch_create_vm(void)
5934 {
5935 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
5936
5937 if (!kvm)
5938 return ERR_PTR(-ENOMEM);
5939
5940 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5941 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
5942
5943 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5944 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
5945
5946 spin_lock_init(&kvm->arch.tsc_write_lock);
5947
5948 return kvm;
5949 }
5950
5951 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
5952 {
5953 vcpu_load(vcpu);
5954 kvm_mmu_unload(vcpu);
5955 vcpu_put(vcpu);
5956 }
5957
5958 static void kvm_free_vcpus(struct kvm *kvm)
5959 {
5960 unsigned int i;
5961 struct kvm_vcpu *vcpu;
5962
5963 /*
5964 * Unpin any mmu pages first.
5965 */
5966 kvm_for_each_vcpu(i, vcpu, kvm) {
5967 kvm_clear_async_pf_completion_queue(vcpu);
5968 kvm_unload_vcpu_mmu(vcpu);
5969 }
5970 kvm_for_each_vcpu(i, vcpu, kvm)
5971 kvm_arch_vcpu_free(vcpu);
5972
5973 mutex_lock(&kvm->lock);
5974 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
5975 kvm->vcpus[i] = NULL;
5976
5977 atomic_set(&kvm->online_vcpus, 0);
5978 mutex_unlock(&kvm->lock);
5979 }
5980
5981 void kvm_arch_sync_events(struct kvm *kvm)
5982 {
5983 kvm_free_all_assigned_devices(kvm);
5984 kvm_free_pit(kvm);
5985 }
5986
5987 void kvm_arch_destroy_vm(struct kvm *kvm)
5988 {
5989 kvm_iommu_unmap_guest(kvm);
5990 kfree(kvm->arch.vpic);
5991 kfree(kvm->arch.vioapic);
5992 kvm_free_vcpus(kvm);
5993 kvm_free_physmem(kvm);
5994 if (kvm->arch.apic_access_page)
5995 put_page(kvm->arch.apic_access_page);
5996 if (kvm->arch.ept_identity_pagetable)
5997 put_page(kvm->arch.ept_identity_pagetable);
5998 cleanup_srcu_struct(&kvm->srcu);
5999 kfree(kvm);
6000 }
6001
6002 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6003 struct kvm_memory_slot *memslot,
6004 struct kvm_memory_slot old,
6005 struct kvm_userspace_memory_region *mem,
6006 int user_alloc)
6007 {
6008 int npages = memslot->npages;
6009 int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6010
6011 /* Prevent internal slot pages from being moved by fork()/COW. */
6012 if (memslot->id >= KVM_MEMORY_SLOTS)
6013 map_flags = MAP_SHARED | MAP_ANONYMOUS;
6014
6015 /*To keep backward compatibility with older userspace,
6016 *x86 needs to hanlde !user_alloc case.
6017 */
6018 if (!user_alloc) {
6019 if (npages && !old.rmap) {
6020 unsigned long userspace_addr;
6021
6022 down_write(&current->mm->mmap_sem);
6023 userspace_addr = do_mmap(NULL, 0,
6024 npages * PAGE_SIZE,
6025 PROT_READ | PROT_WRITE,
6026 map_flags,
6027 0);
6028 up_write(&current->mm->mmap_sem);
6029
6030 if (IS_ERR((void *)userspace_addr))
6031 return PTR_ERR((void *)userspace_addr);
6032
6033 memslot->userspace_addr = userspace_addr;
6034 }
6035 }
6036
6037
6038 return 0;
6039 }
6040
6041 void kvm_arch_commit_memory_region(struct kvm *kvm,
6042 struct kvm_userspace_memory_region *mem,
6043 struct kvm_memory_slot old,
6044 int user_alloc)
6045 {
6046
6047 int npages = mem->memory_size >> PAGE_SHIFT;
6048
6049 if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
6050 int ret;
6051
6052 down_write(&current->mm->mmap_sem);
6053 ret = do_munmap(current->mm, old.userspace_addr,
6054 old.npages * PAGE_SIZE);
6055 up_write(&current->mm->mmap_sem);
6056 if (ret < 0)
6057 printk(KERN_WARNING
6058 "kvm_vm_ioctl_set_memory_region: "
6059 "failed to munmap memory\n");
6060 }
6061
6062 spin_lock(&kvm->mmu_lock);
6063 if (!kvm->arch.n_requested_mmu_pages) {
6064 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6065 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6066 }
6067
6068 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6069 spin_unlock(&kvm->mmu_lock);
6070 }
6071
6072 void kvm_arch_flush_shadow(struct kvm *kvm)
6073 {
6074 kvm_mmu_zap_all(kvm);
6075 kvm_reload_remote_mmus(kvm);
6076 }
6077
6078 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6079 {
6080 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6081 !vcpu->arch.apf.halted)
6082 || !list_empty_careful(&vcpu->async_pf.done)
6083 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6084 || vcpu->arch.nmi_pending ||
6085 (kvm_arch_interrupt_allowed(vcpu) &&
6086 kvm_cpu_has_interrupt(vcpu));
6087 }
6088
6089 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
6090 {
6091 int me;
6092 int cpu = vcpu->cpu;
6093
6094 if (waitqueue_active(&vcpu->wq)) {
6095 wake_up_interruptible(&vcpu->wq);
6096 ++vcpu->stat.halt_wakeup;
6097 }
6098
6099 me = get_cpu();
6100 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
6101 if (atomic_xchg(&vcpu->guest_mode, 0))
6102 smp_send_reschedule(cpu);
6103 put_cpu();
6104 }
6105
6106 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6107 {
6108 return kvm_x86_ops->interrupt_allowed(vcpu);
6109 }
6110
6111 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6112 {
6113 unsigned long current_rip = kvm_rip_read(vcpu) +
6114 get_segment_base(vcpu, VCPU_SREG_CS);
6115
6116 return current_rip == linear_rip;
6117 }
6118 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6119
6120 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6121 {
6122 unsigned long rflags;
6123
6124 rflags = kvm_x86_ops->get_rflags(vcpu);
6125 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6126 rflags &= ~X86_EFLAGS_TF;
6127 return rflags;
6128 }
6129 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6130
6131 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6132 {
6133 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6134 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6135 rflags |= X86_EFLAGS_TF;
6136 kvm_x86_ops->set_rflags(vcpu, rflags);
6137 kvm_make_request(KVM_REQ_EVENT, vcpu);
6138 }
6139 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6140
6141 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
6142 {
6143 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
6144 }
6145
6146 static inline u32 kvm_async_pf_next_probe(u32 key)
6147 {
6148 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
6149 }
6150
6151 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6152 {
6153 u32 key = kvm_async_pf_hash_fn(gfn);
6154
6155 while (vcpu->arch.apf.gfns[key] != ~0)
6156 key = kvm_async_pf_next_probe(key);
6157
6158 vcpu->arch.apf.gfns[key] = gfn;
6159 }
6160
6161 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
6162 {
6163 int i;
6164 u32 key = kvm_async_pf_hash_fn(gfn);
6165
6166 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
6167 (vcpu->arch.apf.gfns[key] != gfn ||
6168 vcpu->arch.apf.gfns[key] == ~0); i++)
6169 key = kvm_async_pf_next_probe(key);
6170
6171 return key;
6172 }
6173
6174 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6175 {
6176 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
6177 }
6178
6179 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6180 {
6181 u32 i, j, k;
6182
6183 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
6184 while (true) {
6185 vcpu->arch.apf.gfns[i] = ~0;
6186 do {
6187 j = kvm_async_pf_next_probe(j);
6188 if (vcpu->arch.apf.gfns[j] == ~0)
6189 return;
6190 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
6191 /*
6192 * k lies cyclically in ]i,j]
6193 * | i.k.j |
6194 * |....j i.k.| or |.k..j i...|
6195 */
6196 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
6197 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
6198 i = j;
6199 }
6200 }
6201
6202 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
6203 struct kvm_async_pf *work)
6204 {
6205 trace_kvm_async_pf_not_present(work->gva);
6206
6207 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
6208 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
6209 }
6210
6211 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
6212 struct kvm_async_pf *work)
6213 {
6214 trace_kvm_async_pf_ready(work->gva);
6215 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
6216 }
6217
6218 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6219 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6220 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6221 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6222 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6223 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6224 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6225 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6226 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6227 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6228 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6229 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
This page took 0.316978 seconds and 5 git commands to generate.