3d9d08edbf29c8eecd2521e535771c56be21fa62
[deliverable/linux.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <trace/events/kvm.h>
50
51 #define CREATE_TRACE_POINTS
52 #include "trace.h"
53
54 #include <asm/debugreg.h>
55 #include <asm/msr.h>
56 #include <asm/desc.h>
57 #include <asm/mtrr.h>
58 #include <asm/mce.h>
59 #include <asm/i387.h>
60 #include <asm/fpu-internal.h> /* Ugh! */
61 #include <asm/xcr.h>
62 #include <asm/pvclock.h>
63 #include <asm/div64.h>
64
65 #define MAX_IO_MSRS 256
66 #define KVM_MAX_MCE_BANKS 32
67 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
68
69 #define emul_to_vcpu(ctxt) \
70 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
71
72 /* EFER defaults:
73 * - enable syscall per default because its emulated by KVM
74 * - enable LME and LMA per default on 64 bit KVM
75 */
76 #ifdef CONFIG_X86_64
77 static
78 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
79 #else
80 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
81 #endif
82
83 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
84 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
85
86 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
87 static void process_nmi(struct kvm_vcpu *vcpu);
88
89 struct kvm_x86_ops *kvm_x86_ops;
90 EXPORT_SYMBOL_GPL(kvm_x86_ops);
91
92 static bool ignore_msrs = 0;
93 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
94
95 bool kvm_has_tsc_control;
96 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
97 u32 kvm_max_guest_tsc_khz;
98 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
99
100 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
101 static u32 tsc_tolerance_ppm = 250;
102 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
103
104 #define KVM_NR_SHARED_MSRS 16
105
106 struct kvm_shared_msrs_global {
107 int nr;
108 u32 msrs[KVM_NR_SHARED_MSRS];
109 };
110
111 struct kvm_shared_msrs {
112 struct user_return_notifier urn;
113 bool registered;
114 struct kvm_shared_msr_values {
115 u64 host;
116 u64 curr;
117 } values[KVM_NR_SHARED_MSRS];
118 };
119
120 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
121 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
122
123 struct kvm_stats_debugfs_item debugfs_entries[] = {
124 { "pf_fixed", VCPU_STAT(pf_fixed) },
125 { "pf_guest", VCPU_STAT(pf_guest) },
126 { "tlb_flush", VCPU_STAT(tlb_flush) },
127 { "invlpg", VCPU_STAT(invlpg) },
128 { "exits", VCPU_STAT(exits) },
129 { "io_exits", VCPU_STAT(io_exits) },
130 { "mmio_exits", VCPU_STAT(mmio_exits) },
131 { "signal_exits", VCPU_STAT(signal_exits) },
132 { "irq_window", VCPU_STAT(irq_window_exits) },
133 { "nmi_window", VCPU_STAT(nmi_window_exits) },
134 { "halt_exits", VCPU_STAT(halt_exits) },
135 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
136 { "hypercalls", VCPU_STAT(hypercalls) },
137 { "request_irq", VCPU_STAT(request_irq_exits) },
138 { "irq_exits", VCPU_STAT(irq_exits) },
139 { "host_state_reload", VCPU_STAT(host_state_reload) },
140 { "efer_reload", VCPU_STAT(efer_reload) },
141 { "fpu_reload", VCPU_STAT(fpu_reload) },
142 { "insn_emulation", VCPU_STAT(insn_emulation) },
143 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
144 { "irq_injections", VCPU_STAT(irq_injections) },
145 { "nmi_injections", VCPU_STAT(nmi_injections) },
146 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
147 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
148 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
149 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
150 { "mmu_flooded", VM_STAT(mmu_flooded) },
151 { "mmu_recycled", VM_STAT(mmu_recycled) },
152 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
153 { "mmu_unsync", VM_STAT(mmu_unsync) },
154 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
155 { "largepages", VM_STAT(lpages) },
156 { NULL }
157 };
158
159 u64 __read_mostly host_xcr0;
160
161 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
162
163 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
164 {
165 int i;
166 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
167 vcpu->arch.apf.gfns[i] = ~0;
168 }
169
170 static void kvm_on_user_return(struct user_return_notifier *urn)
171 {
172 unsigned slot;
173 struct kvm_shared_msrs *locals
174 = container_of(urn, struct kvm_shared_msrs, urn);
175 struct kvm_shared_msr_values *values;
176
177 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
178 values = &locals->values[slot];
179 if (values->host != values->curr) {
180 wrmsrl(shared_msrs_global.msrs[slot], values->host);
181 values->curr = values->host;
182 }
183 }
184 locals->registered = false;
185 user_return_notifier_unregister(urn);
186 }
187
188 static void shared_msr_update(unsigned slot, u32 msr)
189 {
190 struct kvm_shared_msrs *smsr;
191 u64 value;
192
193 smsr = &__get_cpu_var(shared_msrs);
194 /* only read, and nobody should modify it at this time,
195 * so don't need lock */
196 if (slot >= shared_msrs_global.nr) {
197 printk(KERN_ERR "kvm: invalid MSR slot!");
198 return;
199 }
200 rdmsrl_safe(msr, &value);
201 smsr->values[slot].host = value;
202 smsr->values[slot].curr = value;
203 }
204
205 void kvm_define_shared_msr(unsigned slot, u32 msr)
206 {
207 if (slot >= shared_msrs_global.nr)
208 shared_msrs_global.nr = slot + 1;
209 shared_msrs_global.msrs[slot] = msr;
210 /* we need ensured the shared_msr_global have been updated */
211 smp_wmb();
212 }
213 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
214
215 static void kvm_shared_msr_cpu_online(void)
216 {
217 unsigned i;
218
219 for (i = 0; i < shared_msrs_global.nr; ++i)
220 shared_msr_update(i, shared_msrs_global.msrs[i]);
221 }
222
223 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
224 {
225 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
226
227 if (((value ^ smsr->values[slot].curr) & mask) == 0)
228 return;
229 smsr->values[slot].curr = value;
230 wrmsrl(shared_msrs_global.msrs[slot], value);
231 if (!smsr->registered) {
232 smsr->urn.on_user_return = kvm_on_user_return;
233 user_return_notifier_register(&smsr->urn);
234 smsr->registered = true;
235 }
236 }
237 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
238
239 static void drop_user_return_notifiers(void *ignore)
240 {
241 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
242
243 if (smsr->registered)
244 kvm_on_user_return(&smsr->urn);
245 }
246
247 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
248 {
249 if (irqchip_in_kernel(vcpu->kvm))
250 return vcpu->arch.apic_base;
251 else
252 return vcpu->arch.apic_base;
253 }
254 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
255
256 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
257 {
258 /* TODO: reserve bits check */
259 if (irqchip_in_kernel(vcpu->kvm))
260 kvm_lapic_set_base(vcpu, data);
261 else
262 vcpu->arch.apic_base = data;
263 }
264 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
265
266 #define EXCPT_BENIGN 0
267 #define EXCPT_CONTRIBUTORY 1
268 #define EXCPT_PF 2
269
270 static int exception_class(int vector)
271 {
272 switch (vector) {
273 case PF_VECTOR:
274 return EXCPT_PF;
275 case DE_VECTOR:
276 case TS_VECTOR:
277 case NP_VECTOR:
278 case SS_VECTOR:
279 case GP_VECTOR:
280 return EXCPT_CONTRIBUTORY;
281 default:
282 break;
283 }
284 return EXCPT_BENIGN;
285 }
286
287 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
288 unsigned nr, bool has_error, u32 error_code,
289 bool reinject)
290 {
291 u32 prev_nr;
292 int class1, class2;
293
294 kvm_make_request(KVM_REQ_EVENT, vcpu);
295
296 if (!vcpu->arch.exception.pending) {
297 queue:
298 vcpu->arch.exception.pending = true;
299 vcpu->arch.exception.has_error_code = has_error;
300 vcpu->arch.exception.nr = nr;
301 vcpu->arch.exception.error_code = error_code;
302 vcpu->arch.exception.reinject = reinject;
303 return;
304 }
305
306 /* to check exception */
307 prev_nr = vcpu->arch.exception.nr;
308 if (prev_nr == DF_VECTOR) {
309 /* triple fault -> shutdown */
310 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
311 return;
312 }
313 class1 = exception_class(prev_nr);
314 class2 = exception_class(nr);
315 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
316 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
317 /* generate double fault per SDM Table 5-5 */
318 vcpu->arch.exception.pending = true;
319 vcpu->arch.exception.has_error_code = true;
320 vcpu->arch.exception.nr = DF_VECTOR;
321 vcpu->arch.exception.error_code = 0;
322 } else
323 /* replace previous exception with a new one in a hope
324 that instruction re-execution will regenerate lost
325 exception */
326 goto queue;
327 }
328
329 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
330 {
331 kvm_multiple_exception(vcpu, nr, false, 0, false);
332 }
333 EXPORT_SYMBOL_GPL(kvm_queue_exception);
334
335 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
336 {
337 kvm_multiple_exception(vcpu, nr, false, 0, true);
338 }
339 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
340
341 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
342 {
343 if (err)
344 kvm_inject_gp(vcpu, 0);
345 else
346 kvm_x86_ops->skip_emulated_instruction(vcpu);
347 }
348 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
349
350 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
351 {
352 ++vcpu->stat.pf_guest;
353 vcpu->arch.cr2 = fault->address;
354 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
355 }
356 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
357
358 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
359 {
360 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
361 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
362 else
363 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
364 }
365
366 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
367 {
368 atomic_inc(&vcpu->arch.nmi_queued);
369 kvm_make_request(KVM_REQ_NMI, vcpu);
370 }
371 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
372
373 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
374 {
375 kvm_multiple_exception(vcpu, nr, true, error_code, false);
376 }
377 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
378
379 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
380 {
381 kvm_multiple_exception(vcpu, nr, true, error_code, true);
382 }
383 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
384
385 /*
386 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
387 * a #GP and return false.
388 */
389 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
390 {
391 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
392 return true;
393 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
394 return false;
395 }
396 EXPORT_SYMBOL_GPL(kvm_require_cpl);
397
398 /*
399 * This function will be used to read from the physical memory of the currently
400 * running guest. The difference to kvm_read_guest_page is that this function
401 * can read from guest physical or from the guest's guest physical memory.
402 */
403 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
404 gfn_t ngfn, void *data, int offset, int len,
405 u32 access)
406 {
407 gfn_t real_gfn;
408 gpa_t ngpa;
409
410 ngpa = gfn_to_gpa(ngfn);
411 real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
412 if (real_gfn == UNMAPPED_GVA)
413 return -EFAULT;
414
415 real_gfn = gpa_to_gfn(real_gfn);
416
417 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
418 }
419 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
420
421 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
422 void *data, int offset, int len, u32 access)
423 {
424 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
425 data, offset, len, access);
426 }
427
428 /*
429 * Load the pae pdptrs. Return true is they are all valid.
430 */
431 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
432 {
433 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
434 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
435 int i;
436 int ret;
437 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
438
439 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
440 offset * sizeof(u64), sizeof(pdpte),
441 PFERR_USER_MASK|PFERR_WRITE_MASK);
442 if (ret < 0) {
443 ret = 0;
444 goto out;
445 }
446 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
447 if (is_present_gpte(pdpte[i]) &&
448 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
449 ret = 0;
450 goto out;
451 }
452 }
453 ret = 1;
454
455 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
456 __set_bit(VCPU_EXREG_PDPTR,
457 (unsigned long *)&vcpu->arch.regs_avail);
458 __set_bit(VCPU_EXREG_PDPTR,
459 (unsigned long *)&vcpu->arch.regs_dirty);
460 out:
461
462 return ret;
463 }
464 EXPORT_SYMBOL_GPL(load_pdptrs);
465
466 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
467 {
468 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
469 bool changed = true;
470 int offset;
471 gfn_t gfn;
472 int r;
473
474 if (is_long_mode(vcpu) || !is_pae(vcpu))
475 return false;
476
477 if (!test_bit(VCPU_EXREG_PDPTR,
478 (unsigned long *)&vcpu->arch.regs_avail))
479 return true;
480
481 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
482 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
483 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
484 PFERR_USER_MASK | PFERR_WRITE_MASK);
485 if (r < 0)
486 goto out;
487 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
488 out:
489
490 return changed;
491 }
492
493 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
494 {
495 unsigned long old_cr0 = kvm_read_cr0(vcpu);
496 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
497 X86_CR0_CD | X86_CR0_NW;
498
499 cr0 |= X86_CR0_ET;
500
501 #ifdef CONFIG_X86_64
502 if (cr0 & 0xffffffff00000000UL)
503 return 1;
504 #endif
505
506 cr0 &= ~CR0_RESERVED_BITS;
507
508 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
509 return 1;
510
511 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
512 return 1;
513
514 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
515 #ifdef CONFIG_X86_64
516 if ((vcpu->arch.efer & EFER_LME)) {
517 int cs_db, cs_l;
518
519 if (!is_pae(vcpu))
520 return 1;
521 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
522 if (cs_l)
523 return 1;
524 } else
525 #endif
526 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
527 kvm_read_cr3(vcpu)))
528 return 1;
529 }
530
531 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
532 return 1;
533
534 kvm_x86_ops->set_cr0(vcpu, cr0);
535
536 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
537 kvm_clear_async_pf_completion_queue(vcpu);
538 kvm_async_pf_hash_reset(vcpu);
539 }
540
541 if ((cr0 ^ old_cr0) & update_bits)
542 kvm_mmu_reset_context(vcpu);
543 return 0;
544 }
545 EXPORT_SYMBOL_GPL(kvm_set_cr0);
546
547 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
548 {
549 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
550 }
551 EXPORT_SYMBOL_GPL(kvm_lmsw);
552
553 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
554 {
555 u64 xcr0;
556
557 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
558 if (index != XCR_XFEATURE_ENABLED_MASK)
559 return 1;
560 xcr0 = xcr;
561 if (kvm_x86_ops->get_cpl(vcpu) != 0)
562 return 1;
563 if (!(xcr0 & XSTATE_FP))
564 return 1;
565 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
566 return 1;
567 if (xcr0 & ~host_xcr0)
568 return 1;
569 vcpu->arch.xcr0 = xcr0;
570 vcpu->guest_xcr0_loaded = 0;
571 return 0;
572 }
573
574 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
575 {
576 if (__kvm_set_xcr(vcpu, index, xcr)) {
577 kvm_inject_gp(vcpu, 0);
578 return 1;
579 }
580 return 0;
581 }
582 EXPORT_SYMBOL_GPL(kvm_set_xcr);
583
584 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
585 {
586 unsigned long old_cr4 = kvm_read_cr4(vcpu);
587 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
588 X86_CR4_PAE | X86_CR4_SMEP;
589 if (cr4 & CR4_RESERVED_BITS)
590 return 1;
591
592 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
593 return 1;
594
595 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
596 return 1;
597
598 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
599 return 1;
600
601 if (is_long_mode(vcpu)) {
602 if (!(cr4 & X86_CR4_PAE))
603 return 1;
604 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
605 && ((cr4 ^ old_cr4) & pdptr_bits)
606 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
607 kvm_read_cr3(vcpu)))
608 return 1;
609
610 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
611 if (!guest_cpuid_has_pcid(vcpu))
612 return 1;
613
614 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
615 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
616 return 1;
617 }
618
619 if (kvm_x86_ops->set_cr4(vcpu, cr4))
620 return 1;
621
622 if (((cr4 ^ old_cr4) & pdptr_bits) ||
623 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
624 kvm_mmu_reset_context(vcpu);
625
626 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
627 kvm_update_cpuid(vcpu);
628
629 return 0;
630 }
631 EXPORT_SYMBOL_GPL(kvm_set_cr4);
632
633 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
634 {
635 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
636 kvm_mmu_sync_roots(vcpu);
637 kvm_mmu_flush_tlb(vcpu);
638 return 0;
639 }
640
641 if (is_long_mode(vcpu)) {
642 if (kvm_read_cr4(vcpu) & X86_CR4_PCIDE) {
643 if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
644 return 1;
645 } else
646 if (cr3 & CR3_L_MODE_RESERVED_BITS)
647 return 1;
648 } else {
649 if (is_pae(vcpu)) {
650 if (cr3 & CR3_PAE_RESERVED_BITS)
651 return 1;
652 if (is_paging(vcpu) &&
653 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
654 return 1;
655 }
656 /*
657 * We don't check reserved bits in nonpae mode, because
658 * this isn't enforced, and VMware depends on this.
659 */
660 }
661
662 /*
663 * Does the new cr3 value map to physical memory? (Note, we
664 * catch an invalid cr3 even in real-mode, because it would
665 * cause trouble later on when we turn on paging anyway.)
666 *
667 * A real CPU would silently accept an invalid cr3 and would
668 * attempt to use it - with largely undefined (and often hard
669 * to debug) behavior on the guest side.
670 */
671 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
672 return 1;
673 vcpu->arch.cr3 = cr3;
674 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
675 vcpu->arch.mmu.new_cr3(vcpu);
676 return 0;
677 }
678 EXPORT_SYMBOL_GPL(kvm_set_cr3);
679
680 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
681 {
682 if (cr8 & CR8_RESERVED_BITS)
683 return 1;
684 if (irqchip_in_kernel(vcpu->kvm))
685 kvm_lapic_set_tpr(vcpu, cr8);
686 else
687 vcpu->arch.cr8 = cr8;
688 return 0;
689 }
690 EXPORT_SYMBOL_GPL(kvm_set_cr8);
691
692 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
693 {
694 if (irqchip_in_kernel(vcpu->kvm))
695 return kvm_lapic_get_cr8(vcpu);
696 else
697 return vcpu->arch.cr8;
698 }
699 EXPORT_SYMBOL_GPL(kvm_get_cr8);
700
701 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
702 {
703 switch (dr) {
704 case 0 ... 3:
705 vcpu->arch.db[dr] = val;
706 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
707 vcpu->arch.eff_db[dr] = val;
708 break;
709 case 4:
710 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
711 return 1; /* #UD */
712 /* fall through */
713 case 6:
714 if (val & 0xffffffff00000000ULL)
715 return -1; /* #GP */
716 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
717 break;
718 case 5:
719 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
720 return 1; /* #UD */
721 /* fall through */
722 default: /* 7 */
723 if (val & 0xffffffff00000000ULL)
724 return -1; /* #GP */
725 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
726 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
727 kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
728 vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
729 }
730 break;
731 }
732
733 return 0;
734 }
735
736 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
737 {
738 int res;
739
740 res = __kvm_set_dr(vcpu, dr, val);
741 if (res > 0)
742 kvm_queue_exception(vcpu, UD_VECTOR);
743 else if (res < 0)
744 kvm_inject_gp(vcpu, 0);
745
746 return res;
747 }
748 EXPORT_SYMBOL_GPL(kvm_set_dr);
749
750 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
751 {
752 switch (dr) {
753 case 0 ... 3:
754 *val = vcpu->arch.db[dr];
755 break;
756 case 4:
757 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
758 return 1;
759 /* fall through */
760 case 6:
761 *val = vcpu->arch.dr6;
762 break;
763 case 5:
764 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
765 return 1;
766 /* fall through */
767 default: /* 7 */
768 *val = vcpu->arch.dr7;
769 break;
770 }
771
772 return 0;
773 }
774
775 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
776 {
777 if (_kvm_get_dr(vcpu, dr, val)) {
778 kvm_queue_exception(vcpu, UD_VECTOR);
779 return 1;
780 }
781 return 0;
782 }
783 EXPORT_SYMBOL_GPL(kvm_get_dr);
784
785 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
786 {
787 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
788 u64 data;
789 int err;
790
791 err = kvm_pmu_read_pmc(vcpu, ecx, &data);
792 if (err)
793 return err;
794 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
795 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
796 return err;
797 }
798 EXPORT_SYMBOL_GPL(kvm_rdpmc);
799
800 /*
801 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
802 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
803 *
804 * This list is modified at module load time to reflect the
805 * capabilities of the host cpu. This capabilities test skips MSRs that are
806 * kvm-specific. Those are put in the beginning of the list.
807 */
808
809 #define KVM_SAVE_MSRS_BEGIN 9
810 static u32 msrs_to_save[] = {
811 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
812 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
813 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
814 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
815 MSR_KVM_PV_EOI_EN,
816 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
817 MSR_STAR,
818 #ifdef CONFIG_X86_64
819 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
820 #endif
821 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
822 };
823
824 static unsigned num_msrs_to_save;
825
826 static u32 emulated_msrs[] = {
827 MSR_IA32_TSCDEADLINE,
828 MSR_IA32_MISC_ENABLE,
829 MSR_IA32_MCG_STATUS,
830 MSR_IA32_MCG_CTL,
831 };
832
833 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
834 {
835 u64 old_efer = vcpu->arch.efer;
836
837 if (efer & efer_reserved_bits)
838 return 1;
839
840 if (is_paging(vcpu)
841 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
842 return 1;
843
844 if (efer & EFER_FFXSR) {
845 struct kvm_cpuid_entry2 *feat;
846
847 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
848 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
849 return 1;
850 }
851
852 if (efer & EFER_SVME) {
853 struct kvm_cpuid_entry2 *feat;
854
855 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
856 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
857 return 1;
858 }
859
860 efer &= ~EFER_LMA;
861 efer |= vcpu->arch.efer & EFER_LMA;
862
863 kvm_x86_ops->set_efer(vcpu, efer);
864
865 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
866
867 /* Update reserved bits */
868 if ((efer ^ old_efer) & EFER_NX)
869 kvm_mmu_reset_context(vcpu);
870
871 return 0;
872 }
873
874 void kvm_enable_efer_bits(u64 mask)
875 {
876 efer_reserved_bits &= ~mask;
877 }
878 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
879
880
881 /*
882 * Writes msr value into into the appropriate "register".
883 * Returns 0 on success, non-0 otherwise.
884 * Assumes vcpu_load() was already called.
885 */
886 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
887 {
888 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
889 }
890
891 /*
892 * Adapt set_msr() to msr_io()'s calling convention
893 */
894 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
895 {
896 return kvm_set_msr(vcpu, index, *data);
897 }
898
899 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
900 {
901 int version;
902 int r;
903 struct pvclock_wall_clock wc;
904 struct timespec boot;
905
906 if (!wall_clock)
907 return;
908
909 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
910 if (r)
911 return;
912
913 if (version & 1)
914 ++version; /* first time write, random junk */
915
916 ++version;
917
918 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
919
920 /*
921 * The guest calculates current wall clock time by adding
922 * system time (updated by kvm_guest_time_update below) to the
923 * wall clock specified here. guest system time equals host
924 * system time for us, thus we must fill in host boot time here.
925 */
926 getboottime(&boot);
927
928 wc.sec = boot.tv_sec;
929 wc.nsec = boot.tv_nsec;
930 wc.version = version;
931
932 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
933
934 version++;
935 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
936 }
937
938 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
939 {
940 uint32_t quotient, remainder;
941
942 /* Don't try to replace with do_div(), this one calculates
943 * "(dividend << 32) / divisor" */
944 __asm__ ( "divl %4"
945 : "=a" (quotient), "=d" (remainder)
946 : "0" (0), "1" (dividend), "r" (divisor) );
947 return quotient;
948 }
949
950 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
951 s8 *pshift, u32 *pmultiplier)
952 {
953 uint64_t scaled64;
954 int32_t shift = 0;
955 uint64_t tps64;
956 uint32_t tps32;
957
958 tps64 = base_khz * 1000LL;
959 scaled64 = scaled_khz * 1000LL;
960 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
961 tps64 >>= 1;
962 shift--;
963 }
964
965 tps32 = (uint32_t)tps64;
966 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
967 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
968 scaled64 >>= 1;
969 else
970 tps32 <<= 1;
971 shift++;
972 }
973
974 *pshift = shift;
975 *pmultiplier = div_frac(scaled64, tps32);
976
977 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
978 __func__, base_khz, scaled_khz, shift, *pmultiplier);
979 }
980
981 static inline u64 get_kernel_ns(void)
982 {
983 struct timespec ts;
984
985 WARN_ON(preemptible());
986 ktime_get_ts(&ts);
987 monotonic_to_bootbased(&ts);
988 return timespec_to_ns(&ts);
989 }
990
991 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
992 unsigned long max_tsc_khz;
993
994 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
995 {
996 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
997 vcpu->arch.virtual_tsc_shift);
998 }
999
1000 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1001 {
1002 u64 v = (u64)khz * (1000000 + ppm);
1003 do_div(v, 1000000);
1004 return v;
1005 }
1006
1007 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1008 {
1009 u32 thresh_lo, thresh_hi;
1010 int use_scaling = 0;
1011
1012 /* Compute a scale to convert nanoseconds in TSC cycles */
1013 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1014 &vcpu->arch.virtual_tsc_shift,
1015 &vcpu->arch.virtual_tsc_mult);
1016 vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1017
1018 /*
1019 * Compute the variation in TSC rate which is acceptable
1020 * within the range of tolerance and decide if the
1021 * rate being applied is within that bounds of the hardware
1022 * rate. If so, no scaling or compensation need be done.
1023 */
1024 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1025 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1026 if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1027 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1028 use_scaling = 1;
1029 }
1030 kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1031 }
1032
1033 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1034 {
1035 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1036 vcpu->arch.virtual_tsc_mult,
1037 vcpu->arch.virtual_tsc_shift);
1038 tsc += vcpu->arch.this_tsc_write;
1039 return tsc;
1040 }
1041
1042 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1043 {
1044 struct kvm *kvm = vcpu->kvm;
1045 u64 offset, ns, elapsed;
1046 unsigned long flags;
1047 s64 usdiff;
1048
1049 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1050 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1051 ns = get_kernel_ns();
1052 elapsed = ns - kvm->arch.last_tsc_nsec;
1053
1054 /* n.b - signed multiplication and division required */
1055 usdiff = data - kvm->arch.last_tsc_write;
1056 #ifdef CONFIG_X86_64
1057 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1058 #else
1059 /* do_div() only does unsigned */
1060 asm("idivl %2; xor %%edx, %%edx"
1061 : "=A"(usdiff)
1062 : "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz));
1063 #endif
1064 do_div(elapsed, 1000);
1065 usdiff -= elapsed;
1066 if (usdiff < 0)
1067 usdiff = -usdiff;
1068
1069 /*
1070 * Special case: TSC write with a small delta (1 second) of virtual
1071 * cycle time against real time is interpreted as an attempt to
1072 * synchronize the CPU.
1073 *
1074 * For a reliable TSC, we can match TSC offsets, and for an unstable
1075 * TSC, we add elapsed time in this computation. We could let the
1076 * compensation code attempt to catch up if we fall behind, but
1077 * it's better to try to match offsets from the beginning.
1078 */
1079 if (usdiff < USEC_PER_SEC &&
1080 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1081 if (!check_tsc_unstable()) {
1082 offset = kvm->arch.cur_tsc_offset;
1083 pr_debug("kvm: matched tsc offset for %llu\n", data);
1084 } else {
1085 u64 delta = nsec_to_cycles(vcpu, elapsed);
1086 data += delta;
1087 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1088 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1089 }
1090 } else {
1091 /*
1092 * We split periods of matched TSC writes into generations.
1093 * For each generation, we track the original measured
1094 * nanosecond time, offset, and write, so if TSCs are in
1095 * sync, we can match exact offset, and if not, we can match
1096 * exact software computation in compute_guest_tsc()
1097 *
1098 * These values are tracked in kvm->arch.cur_xxx variables.
1099 */
1100 kvm->arch.cur_tsc_generation++;
1101 kvm->arch.cur_tsc_nsec = ns;
1102 kvm->arch.cur_tsc_write = data;
1103 kvm->arch.cur_tsc_offset = offset;
1104 pr_debug("kvm: new tsc generation %u, clock %llu\n",
1105 kvm->arch.cur_tsc_generation, data);
1106 }
1107
1108 /*
1109 * We also track th most recent recorded KHZ, write and time to
1110 * allow the matching interval to be extended at each write.
1111 */
1112 kvm->arch.last_tsc_nsec = ns;
1113 kvm->arch.last_tsc_write = data;
1114 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1115
1116 /* Reset of TSC must disable overshoot protection below */
1117 vcpu->arch.hv_clock.tsc_timestamp = 0;
1118 vcpu->arch.last_guest_tsc = data;
1119
1120 /* Keep track of which generation this VCPU has synchronized to */
1121 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1122 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1123 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1124
1125 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1126 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1127 }
1128
1129 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1130
1131 static int kvm_guest_time_update(struct kvm_vcpu *v)
1132 {
1133 unsigned long flags;
1134 struct kvm_vcpu_arch *vcpu = &v->arch;
1135 void *shared_kaddr;
1136 unsigned long this_tsc_khz;
1137 s64 kernel_ns, max_kernel_ns;
1138 u64 tsc_timestamp;
1139
1140 /* Keep irq disabled to prevent changes to the clock */
1141 local_irq_save(flags);
1142 tsc_timestamp = kvm_x86_ops->read_l1_tsc(v);
1143 kernel_ns = get_kernel_ns();
1144 this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1145 if (unlikely(this_tsc_khz == 0)) {
1146 local_irq_restore(flags);
1147 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1148 return 1;
1149 }
1150
1151 /*
1152 * We may have to catch up the TSC to match elapsed wall clock
1153 * time for two reasons, even if kvmclock is used.
1154 * 1) CPU could have been running below the maximum TSC rate
1155 * 2) Broken TSC compensation resets the base at each VCPU
1156 * entry to avoid unknown leaps of TSC even when running
1157 * again on the same CPU. This may cause apparent elapsed
1158 * time to disappear, and the guest to stand still or run
1159 * very slowly.
1160 */
1161 if (vcpu->tsc_catchup) {
1162 u64 tsc = compute_guest_tsc(v, kernel_ns);
1163 if (tsc > tsc_timestamp) {
1164 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1165 tsc_timestamp = tsc;
1166 }
1167 }
1168
1169 local_irq_restore(flags);
1170
1171 if (!vcpu->time_page)
1172 return 0;
1173
1174 /*
1175 * Time as measured by the TSC may go backwards when resetting the base
1176 * tsc_timestamp. The reason for this is that the TSC resolution is
1177 * higher than the resolution of the other clock scales. Thus, many
1178 * possible measurments of the TSC correspond to one measurement of any
1179 * other clock, and so a spread of values is possible. This is not a
1180 * problem for the computation of the nanosecond clock; with TSC rates
1181 * around 1GHZ, there can only be a few cycles which correspond to one
1182 * nanosecond value, and any path through this code will inevitably
1183 * take longer than that. However, with the kernel_ns value itself,
1184 * the precision may be much lower, down to HZ granularity. If the
1185 * first sampling of TSC against kernel_ns ends in the low part of the
1186 * range, and the second in the high end of the range, we can get:
1187 *
1188 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1189 *
1190 * As the sampling errors potentially range in the thousands of cycles,
1191 * it is possible such a time value has already been observed by the
1192 * guest. To protect against this, we must compute the system time as
1193 * observed by the guest and ensure the new system time is greater.
1194 */
1195 max_kernel_ns = 0;
1196 if (vcpu->hv_clock.tsc_timestamp) {
1197 max_kernel_ns = vcpu->last_guest_tsc -
1198 vcpu->hv_clock.tsc_timestamp;
1199 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1200 vcpu->hv_clock.tsc_to_system_mul,
1201 vcpu->hv_clock.tsc_shift);
1202 max_kernel_ns += vcpu->last_kernel_ns;
1203 }
1204
1205 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1206 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1207 &vcpu->hv_clock.tsc_shift,
1208 &vcpu->hv_clock.tsc_to_system_mul);
1209 vcpu->hw_tsc_khz = this_tsc_khz;
1210 }
1211
1212 if (max_kernel_ns > kernel_ns)
1213 kernel_ns = max_kernel_ns;
1214
1215 /* With all the info we got, fill in the values */
1216 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1217 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1218 vcpu->last_kernel_ns = kernel_ns;
1219 vcpu->last_guest_tsc = tsc_timestamp;
1220 vcpu->hv_clock.flags = 0;
1221
1222 /*
1223 * The interface expects us to write an even number signaling that the
1224 * update is finished. Since the guest won't see the intermediate
1225 * state, we just increase by 2 at the end.
1226 */
1227 vcpu->hv_clock.version += 2;
1228
1229 shared_kaddr = kmap_atomic(vcpu->time_page);
1230
1231 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1232 sizeof(vcpu->hv_clock));
1233
1234 kunmap_atomic(shared_kaddr);
1235
1236 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1237 return 0;
1238 }
1239
1240 static bool msr_mtrr_valid(unsigned msr)
1241 {
1242 switch (msr) {
1243 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1244 case MSR_MTRRfix64K_00000:
1245 case MSR_MTRRfix16K_80000:
1246 case MSR_MTRRfix16K_A0000:
1247 case MSR_MTRRfix4K_C0000:
1248 case MSR_MTRRfix4K_C8000:
1249 case MSR_MTRRfix4K_D0000:
1250 case MSR_MTRRfix4K_D8000:
1251 case MSR_MTRRfix4K_E0000:
1252 case MSR_MTRRfix4K_E8000:
1253 case MSR_MTRRfix4K_F0000:
1254 case MSR_MTRRfix4K_F8000:
1255 case MSR_MTRRdefType:
1256 case MSR_IA32_CR_PAT:
1257 return true;
1258 case 0x2f8:
1259 return true;
1260 }
1261 return false;
1262 }
1263
1264 static bool valid_pat_type(unsigned t)
1265 {
1266 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1267 }
1268
1269 static bool valid_mtrr_type(unsigned t)
1270 {
1271 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1272 }
1273
1274 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1275 {
1276 int i;
1277
1278 if (!msr_mtrr_valid(msr))
1279 return false;
1280
1281 if (msr == MSR_IA32_CR_PAT) {
1282 for (i = 0; i < 8; i++)
1283 if (!valid_pat_type((data >> (i * 8)) & 0xff))
1284 return false;
1285 return true;
1286 } else if (msr == MSR_MTRRdefType) {
1287 if (data & ~0xcff)
1288 return false;
1289 return valid_mtrr_type(data & 0xff);
1290 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1291 for (i = 0; i < 8 ; i++)
1292 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1293 return false;
1294 return true;
1295 }
1296
1297 /* variable MTRRs */
1298 return valid_mtrr_type(data & 0xff);
1299 }
1300
1301 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1302 {
1303 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1304
1305 if (!mtrr_valid(vcpu, msr, data))
1306 return 1;
1307
1308 if (msr == MSR_MTRRdefType) {
1309 vcpu->arch.mtrr_state.def_type = data;
1310 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1311 } else if (msr == MSR_MTRRfix64K_00000)
1312 p[0] = data;
1313 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1314 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1315 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1316 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1317 else if (msr == MSR_IA32_CR_PAT)
1318 vcpu->arch.pat = data;
1319 else { /* Variable MTRRs */
1320 int idx, is_mtrr_mask;
1321 u64 *pt;
1322
1323 idx = (msr - 0x200) / 2;
1324 is_mtrr_mask = msr - 0x200 - 2 * idx;
1325 if (!is_mtrr_mask)
1326 pt =
1327 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1328 else
1329 pt =
1330 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1331 *pt = data;
1332 }
1333
1334 kvm_mmu_reset_context(vcpu);
1335 return 0;
1336 }
1337
1338 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1339 {
1340 u64 mcg_cap = vcpu->arch.mcg_cap;
1341 unsigned bank_num = mcg_cap & 0xff;
1342
1343 switch (msr) {
1344 case MSR_IA32_MCG_STATUS:
1345 vcpu->arch.mcg_status = data;
1346 break;
1347 case MSR_IA32_MCG_CTL:
1348 if (!(mcg_cap & MCG_CTL_P))
1349 return 1;
1350 if (data != 0 && data != ~(u64)0)
1351 return -1;
1352 vcpu->arch.mcg_ctl = data;
1353 break;
1354 default:
1355 if (msr >= MSR_IA32_MC0_CTL &&
1356 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1357 u32 offset = msr - MSR_IA32_MC0_CTL;
1358 /* only 0 or all 1s can be written to IA32_MCi_CTL
1359 * some Linux kernels though clear bit 10 in bank 4 to
1360 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1361 * this to avoid an uncatched #GP in the guest
1362 */
1363 if ((offset & 0x3) == 0 &&
1364 data != 0 && (data | (1 << 10)) != ~(u64)0)
1365 return -1;
1366 vcpu->arch.mce_banks[offset] = data;
1367 break;
1368 }
1369 return 1;
1370 }
1371 return 0;
1372 }
1373
1374 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1375 {
1376 struct kvm *kvm = vcpu->kvm;
1377 int lm = is_long_mode(vcpu);
1378 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1379 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1380 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1381 : kvm->arch.xen_hvm_config.blob_size_32;
1382 u32 page_num = data & ~PAGE_MASK;
1383 u64 page_addr = data & PAGE_MASK;
1384 u8 *page;
1385 int r;
1386
1387 r = -E2BIG;
1388 if (page_num >= blob_size)
1389 goto out;
1390 r = -ENOMEM;
1391 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1392 if (IS_ERR(page)) {
1393 r = PTR_ERR(page);
1394 goto out;
1395 }
1396 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1397 goto out_free;
1398 r = 0;
1399 out_free:
1400 kfree(page);
1401 out:
1402 return r;
1403 }
1404
1405 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1406 {
1407 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1408 }
1409
1410 static bool kvm_hv_msr_partition_wide(u32 msr)
1411 {
1412 bool r = false;
1413 switch (msr) {
1414 case HV_X64_MSR_GUEST_OS_ID:
1415 case HV_X64_MSR_HYPERCALL:
1416 r = true;
1417 break;
1418 }
1419
1420 return r;
1421 }
1422
1423 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1424 {
1425 struct kvm *kvm = vcpu->kvm;
1426
1427 switch (msr) {
1428 case HV_X64_MSR_GUEST_OS_ID:
1429 kvm->arch.hv_guest_os_id = data;
1430 /* setting guest os id to zero disables hypercall page */
1431 if (!kvm->arch.hv_guest_os_id)
1432 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1433 break;
1434 case HV_X64_MSR_HYPERCALL: {
1435 u64 gfn;
1436 unsigned long addr;
1437 u8 instructions[4];
1438
1439 /* if guest os id is not set hypercall should remain disabled */
1440 if (!kvm->arch.hv_guest_os_id)
1441 break;
1442 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1443 kvm->arch.hv_hypercall = data;
1444 break;
1445 }
1446 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1447 addr = gfn_to_hva(kvm, gfn);
1448 if (kvm_is_error_hva(addr))
1449 return 1;
1450 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1451 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1452 if (__copy_to_user((void __user *)addr, instructions, 4))
1453 return 1;
1454 kvm->arch.hv_hypercall = data;
1455 break;
1456 }
1457 default:
1458 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1459 "data 0x%llx\n", msr, data);
1460 return 1;
1461 }
1462 return 0;
1463 }
1464
1465 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1466 {
1467 switch (msr) {
1468 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1469 unsigned long addr;
1470
1471 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1472 vcpu->arch.hv_vapic = data;
1473 break;
1474 }
1475 addr = gfn_to_hva(vcpu->kvm, data >>
1476 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1477 if (kvm_is_error_hva(addr))
1478 return 1;
1479 if (__clear_user((void __user *)addr, PAGE_SIZE))
1480 return 1;
1481 vcpu->arch.hv_vapic = data;
1482 break;
1483 }
1484 case HV_X64_MSR_EOI:
1485 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1486 case HV_X64_MSR_ICR:
1487 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1488 case HV_X64_MSR_TPR:
1489 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1490 default:
1491 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1492 "data 0x%llx\n", msr, data);
1493 return 1;
1494 }
1495
1496 return 0;
1497 }
1498
1499 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1500 {
1501 gpa_t gpa = data & ~0x3f;
1502
1503 /* Bits 2:5 are reserved, Should be zero */
1504 if (data & 0x3c)
1505 return 1;
1506
1507 vcpu->arch.apf.msr_val = data;
1508
1509 if (!(data & KVM_ASYNC_PF_ENABLED)) {
1510 kvm_clear_async_pf_completion_queue(vcpu);
1511 kvm_async_pf_hash_reset(vcpu);
1512 return 0;
1513 }
1514
1515 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1516 return 1;
1517
1518 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1519 kvm_async_pf_wakeup_all(vcpu);
1520 return 0;
1521 }
1522
1523 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1524 {
1525 if (vcpu->arch.time_page) {
1526 kvm_release_page_dirty(vcpu->arch.time_page);
1527 vcpu->arch.time_page = NULL;
1528 }
1529 }
1530
1531 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1532 {
1533 u64 delta;
1534
1535 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1536 return;
1537
1538 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1539 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1540 vcpu->arch.st.accum_steal = delta;
1541 }
1542
1543 static void record_steal_time(struct kvm_vcpu *vcpu)
1544 {
1545 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1546 return;
1547
1548 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1549 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1550 return;
1551
1552 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1553 vcpu->arch.st.steal.version += 2;
1554 vcpu->arch.st.accum_steal = 0;
1555
1556 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1557 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1558 }
1559
1560 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1561 {
1562 bool pr = false;
1563
1564 switch (msr) {
1565 case MSR_EFER:
1566 return set_efer(vcpu, data);
1567 case MSR_K7_HWCR:
1568 data &= ~(u64)0x40; /* ignore flush filter disable */
1569 data &= ~(u64)0x100; /* ignore ignne emulation enable */
1570 data &= ~(u64)0x8; /* ignore TLB cache disable */
1571 if (data != 0) {
1572 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1573 data);
1574 return 1;
1575 }
1576 break;
1577 case MSR_FAM10H_MMIO_CONF_BASE:
1578 if (data != 0) {
1579 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1580 "0x%llx\n", data);
1581 return 1;
1582 }
1583 break;
1584 case MSR_AMD64_NB_CFG:
1585 break;
1586 case MSR_IA32_DEBUGCTLMSR:
1587 if (!data) {
1588 /* We support the non-activated case already */
1589 break;
1590 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1591 /* Values other than LBR and BTF are vendor-specific,
1592 thus reserved and should throw a #GP */
1593 return 1;
1594 }
1595 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1596 __func__, data);
1597 break;
1598 case MSR_IA32_UCODE_REV:
1599 case MSR_IA32_UCODE_WRITE:
1600 case MSR_VM_HSAVE_PA:
1601 case MSR_AMD64_PATCH_LOADER:
1602 break;
1603 case 0x200 ... 0x2ff:
1604 return set_msr_mtrr(vcpu, msr, data);
1605 case MSR_IA32_APICBASE:
1606 kvm_set_apic_base(vcpu, data);
1607 break;
1608 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1609 return kvm_x2apic_msr_write(vcpu, msr, data);
1610 case MSR_IA32_TSCDEADLINE:
1611 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1612 break;
1613 case MSR_IA32_MISC_ENABLE:
1614 vcpu->arch.ia32_misc_enable_msr = data;
1615 break;
1616 case MSR_KVM_WALL_CLOCK_NEW:
1617 case MSR_KVM_WALL_CLOCK:
1618 vcpu->kvm->arch.wall_clock = data;
1619 kvm_write_wall_clock(vcpu->kvm, data);
1620 break;
1621 case MSR_KVM_SYSTEM_TIME_NEW:
1622 case MSR_KVM_SYSTEM_TIME: {
1623 kvmclock_reset(vcpu);
1624
1625 vcpu->arch.time = data;
1626 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1627
1628 /* we verify if the enable bit is set... */
1629 if (!(data & 1))
1630 break;
1631
1632 /* ...but clean it before doing the actual write */
1633 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1634
1635 vcpu->arch.time_page =
1636 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1637
1638 if (is_error_page(vcpu->arch.time_page)) {
1639 kvm_release_page_clean(vcpu->arch.time_page);
1640 vcpu->arch.time_page = NULL;
1641 }
1642 break;
1643 }
1644 case MSR_KVM_ASYNC_PF_EN:
1645 if (kvm_pv_enable_async_pf(vcpu, data))
1646 return 1;
1647 break;
1648 case MSR_KVM_STEAL_TIME:
1649
1650 if (unlikely(!sched_info_on()))
1651 return 1;
1652
1653 if (data & KVM_STEAL_RESERVED_MASK)
1654 return 1;
1655
1656 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
1657 data & KVM_STEAL_VALID_BITS))
1658 return 1;
1659
1660 vcpu->arch.st.msr_val = data;
1661
1662 if (!(data & KVM_MSR_ENABLED))
1663 break;
1664
1665 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1666
1667 preempt_disable();
1668 accumulate_steal_time(vcpu);
1669 preempt_enable();
1670
1671 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
1672
1673 break;
1674 case MSR_KVM_PV_EOI_EN:
1675 if (kvm_lapic_enable_pv_eoi(vcpu, data))
1676 return 1;
1677 break;
1678
1679 case MSR_IA32_MCG_CTL:
1680 case MSR_IA32_MCG_STATUS:
1681 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1682 return set_msr_mce(vcpu, msr, data);
1683
1684 /* Performance counters are not protected by a CPUID bit,
1685 * so we should check all of them in the generic path for the sake of
1686 * cross vendor migration.
1687 * Writing a zero into the event select MSRs disables them,
1688 * which we perfectly emulate ;-). Any other value should be at least
1689 * reported, some guests depend on them.
1690 */
1691 case MSR_K7_EVNTSEL0:
1692 case MSR_K7_EVNTSEL1:
1693 case MSR_K7_EVNTSEL2:
1694 case MSR_K7_EVNTSEL3:
1695 if (data != 0)
1696 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1697 "0x%x data 0x%llx\n", msr, data);
1698 break;
1699 /* at least RHEL 4 unconditionally writes to the perfctr registers,
1700 * so we ignore writes to make it happy.
1701 */
1702 case MSR_K7_PERFCTR0:
1703 case MSR_K7_PERFCTR1:
1704 case MSR_K7_PERFCTR2:
1705 case MSR_K7_PERFCTR3:
1706 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1707 "0x%x data 0x%llx\n", msr, data);
1708 break;
1709 case MSR_P6_PERFCTR0:
1710 case MSR_P6_PERFCTR1:
1711 pr = true;
1712 case MSR_P6_EVNTSEL0:
1713 case MSR_P6_EVNTSEL1:
1714 if (kvm_pmu_msr(vcpu, msr))
1715 return kvm_pmu_set_msr(vcpu, msr, data);
1716
1717 if (pr || data != 0)
1718 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
1719 "0x%x data 0x%llx\n", msr, data);
1720 break;
1721 case MSR_K7_CLK_CTL:
1722 /*
1723 * Ignore all writes to this no longer documented MSR.
1724 * Writes are only relevant for old K7 processors,
1725 * all pre-dating SVM, but a recommended workaround from
1726 * AMD for these chips. It is possible to specify the
1727 * affected processor models on the command line, hence
1728 * the need to ignore the workaround.
1729 */
1730 break;
1731 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1732 if (kvm_hv_msr_partition_wide(msr)) {
1733 int r;
1734 mutex_lock(&vcpu->kvm->lock);
1735 r = set_msr_hyperv_pw(vcpu, msr, data);
1736 mutex_unlock(&vcpu->kvm->lock);
1737 return r;
1738 } else
1739 return set_msr_hyperv(vcpu, msr, data);
1740 break;
1741 case MSR_IA32_BBL_CR_CTL3:
1742 /* Drop writes to this legacy MSR -- see rdmsr
1743 * counterpart for further detail.
1744 */
1745 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
1746 break;
1747 case MSR_AMD64_OSVW_ID_LENGTH:
1748 if (!guest_cpuid_has_osvw(vcpu))
1749 return 1;
1750 vcpu->arch.osvw.length = data;
1751 break;
1752 case MSR_AMD64_OSVW_STATUS:
1753 if (!guest_cpuid_has_osvw(vcpu))
1754 return 1;
1755 vcpu->arch.osvw.status = data;
1756 break;
1757 default:
1758 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1759 return xen_hvm_config(vcpu, data);
1760 if (kvm_pmu_msr(vcpu, msr))
1761 return kvm_pmu_set_msr(vcpu, msr, data);
1762 if (!ignore_msrs) {
1763 vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1764 msr, data);
1765 return 1;
1766 } else {
1767 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1768 msr, data);
1769 break;
1770 }
1771 }
1772 return 0;
1773 }
1774 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1775
1776
1777 /*
1778 * Reads an msr value (of 'msr_index') into 'pdata'.
1779 * Returns 0 on success, non-0 otherwise.
1780 * Assumes vcpu_load() was already called.
1781 */
1782 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1783 {
1784 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1785 }
1786
1787 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1788 {
1789 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1790
1791 if (!msr_mtrr_valid(msr))
1792 return 1;
1793
1794 if (msr == MSR_MTRRdefType)
1795 *pdata = vcpu->arch.mtrr_state.def_type +
1796 (vcpu->arch.mtrr_state.enabled << 10);
1797 else if (msr == MSR_MTRRfix64K_00000)
1798 *pdata = p[0];
1799 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1800 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1801 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1802 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1803 else if (msr == MSR_IA32_CR_PAT)
1804 *pdata = vcpu->arch.pat;
1805 else { /* Variable MTRRs */
1806 int idx, is_mtrr_mask;
1807 u64 *pt;
1808
1809 idx = (msr - 0x200) / 2;
1810 is_mtrr_mask = msr - 0x200 - 2 * idx;
1811 if (!is_mtrr_mask)
1812 pt =
1813 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1814 else
1815 pt =
1816 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1817 *pdata = *pt;
1818 }
1819
1820 return 0;
1821 }
1822
1823 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1824 {
1825 u64 data;
1826 u64 mcg_cap = vcpu->arch.mcg_cap;
1827 unsigned bank_num = mcg_cap & 0xff;
1828
1829 switch (msr) {
1830 case MSR_IA32_P5_MC_ADDR:
1831 case MSR_IA32_P5_MC_TYPE:
1832 data = 0;
1833 break;
1834 case MSR_IA32_MCG_CAP:
1835 data = vcpu->arch.mcg_cap;
1836 break;
1837 case MSR_IA32_MCG_CTL:
1838 if (!(mcg_cap & MCG_CTL_P))
1839 return 1;
1840 data = vcpu->arch.mcg_ctl;
1841 break;
1842 case MSR_IA32_MCG_STATUS:
1843 data = vcpu->arch.mcg_status;
1844 break;
1845 default:
1846 if (msr >= MSR_IA32_MC0_CTL &&
1847 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1848 u32 offset = msr - MSR_IA32_MC0_CTL;
1849 data = vcpu->arch.mce_banks[offset];
1850 break;
1851 }
1852 return 1;
1853 }
1854 *pdata = data;
1855 return 0;
1856 }
1857
1858 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1859 {
1860 u64 data = 0;
1861 struct kvm *kvm = vcpu->kvm;
1862
1863 switch (msr) {
1864 case HV_X64_MSR_GUEST_OS_ID:
1865 data = kvm->arch.hv_guest_os_id;
1866 break;
1867 case HV_X64_MSR_HYPERCALL:
1868 data = kvm->arch.hv_hypercall;
1869 break;
1870 default:
1871 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1872 return 1;
1873 }
1874
1875 *pdata = data;
1876 return 0;
1877 }
1878
1879 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1880 {
1881 u64 data = 0;
1882
1883 switch (msr) {
1884 case HV_X64_MSR_VP_INDEX: {
1885 int r;
1886 struct kvm_vcpu *v;
1887 kvm_for_each_vcpu(r, v, vcpu->kvm)
1888 if (v == vcpu)
1889 data = r;
1890 break;
1891 }
1892 case HV_X64_MSR_EOI:
1893 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1894 case HV_X64_MSR_ICR:
1895 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1896 case HV_X64_MSR_TPR:
1897 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1898 case HV_X64_MSR_APIC_ASSIST_PAGE:
1899 data = vcpu->arch.hv_vapic;
1900 break;
1901 default:
1902 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1903 return 1;
1904 }
1905 *pdata = data;
1906 return 0;
1907 }
1908
1909 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1910 {
1911 u64 data;
1912
1913 switch (msr) {
1914 case MSR_IA32_PLATFORM_ID:
1915 case MSR_IA32_EBL_CR_POWERON:
1916 case MSR_IA32_DEBUGCTLMSR:
1917 case MSR_IA32_LASTBRANCHFROMIP:
1918 case MSR_IA32_LASTBRANCHTOIP:
1919 case MSR_IA32_LASTINTFROMIP:
1920 case MSR_IA32_LASTINTTOIP:
1921 case MSR_K8_SYSCFG:
1922 case MSR_K7_HWCR:
1923 case MSR_VM_HSAVE_PA:
1924 case MSR_K7_EVNTSEL0:
1925 case MSR_K7_PERFCTR0:
1926 case MSR_K8_INT_PENDING_MSG:
1927 case MSR_AMD64_NB_CFG:
1928 case MSR_FAM10H_MMIO_CONF_BASE:
1929 data = 0;
1930 break;
1931 case MSR_P6_PERFCTR0:
1932 case MSR_P6_PERFCTR1:
1933 case MSR_P6_EVNTSEL0:
1934 case MSR_P6_EVNTSEL1:
1935 if (kvm_pmu_msr(vcpu, msr))
1936 return kvm_pmu_get_msr(vcpu, msr, pdata);
1937 data = 0;
1938 break;
1939 case MSR_IA32_UCODE_REV:
1940 data = 0x100000000ULL;
1941 break;
1942 case MSR_MTRRcap:
1943 data = 0x500 | KVM_NR_VAR_MTRR;
1944 break;
1945 case 0x200 ... 0x2ff:
1946 return get_msr_mtrr(vcpu, msr, pdata);
1947 case 0xcd: /* fsb frequency */
1948 data = 3;
1949 break;
1950 /*
1951 * MSR_EBC_FREQUENCY_ID
1952 * Conservative value valid for even the basic CPU models.
1953 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1954 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1955 * and 266MHz for model 3, or 4. Set Core Clock
1956 * Frequency to System Bus Frequency Ratio to 1 (bits
1957 * 31:24) even though these are only valid for CPU
1958 * models > 2, however guests may end up dividing or
1959 * multiplying by zero otherwise.
1960 */
1961 case MSR_EBC_FREQUENCY_ID:
1962 data = 1 << 24;
1963 break;
1964 case MSR_IA32_APICBASE:
1965 data = kvm_get_apic_base(vcpu);
1966 break;
1967 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1968 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1969 break;
1970 case MSR_IA32_TSCDEADLINE:
1971 data = kvm_get_lapic_tscdeadline_msr(vcpu);
1972 break;
1973 case MSR_IA32_MISC_ENABLE:
1974 data = vcpu->arch.ia32_misc_enable_msr;
1975 break;
1976 case MSR_IA32_PERF_STATUS:
1977 /* TSC increment by tick */
1978 data = 1000ULL;
1979 /* CPU multiplier */
1980 data |= (((uint64_t)4ULL) << 40);
1981 break;
1982 case MSR_EFER:
1983 data = vcpu->arch.efer;
1984 break;
1985 case MSR_KVM_WALL_CLOCK:
1986 case MSR_KVM_WALL_CLOCK_NEW:
1987 data = vcpu->kvm->arch.wall_clock;
1988 break;
1989 case MSR_KVM_SYSTEM_TIME:
1990 case MSR_KVM_SYSTEM_TIME_NEW:
1991 data = vcpu->arch.time;
1992 break;
1993 case MSR_KVM_ASYNC_PF_EN:
1994 data = vcpu->arch.apf.msr_val;
1995 break;
1996 case MSR_KVM_STEAL_TIME:
1997 data = vcpu->arch.st.msr_val;
1998 break;
1999 case MSR_IA32_P5_MC_ADDR:
2000 case MSR_IA32_P5_MC_TYPE:
2001 case MSR_IA32_MCG_CAP:
2002 case MSR_IA32_MCG_CTL:
2003 case MSR_IA32_MCG_STATUS:
2004 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2005 return get_msr_mce(vcpu, msr, pdata);
2006 case MSR_K7_CLK_CTL:
2007 /*
2008 * Provide expected ramp-up count for K7. All other
2009 * are set to zero, indicating minimum divisors for
2010 * every field.
2011 *
2012 * This prevents guest kernels on AMD host with CPU
2013 * type 6, model 8 and higher from exploding due to
2014 * the rdmsr failing.
2015 */
2016 data = 0x20000000;
2017 break;
2018 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2019 if (kvm_hv_msr_partition_wide(msr)) {
2020 int r;
2021 mutex_lock(&vcpu->kvm->lock);
2022 r = get_msr_hyperv_pw(vcpu, msr, pdata);
2023 mutex_unlock(&vcpu->kvm->lock);
2024 return r;
2025 } else
2026 return get_msr_hyperv(vcpu, msr, pdata);
2027 break;
2028 case MSR_IA32_BBL_CR_CTL3:
2029 /* This legacy MSR exists but isn't fully documented in current
2030 * silicon. It is however accessed by winxp in very narrow
2031 * scenarios where it sets bit #19, itself documented as
2032 * a "reserved" bit. Best effort attempt to source coherent
2033 * read data here should the balance of the register be
2034 * interpreted by the guest:
2035 *
2036 * L2 cache control register 3: 64GB range, 256KB size,
2037 * enabled, latency 0x1, configured
2038 */
2039 data = 0xbe702111;
2040 break;
2041 case MSR_AMD64_OSVW_ID_LENGTH:
2042 if (!guest_cpuid_has_osvw(vcpu))
2043 return 1;
2044 data = vcpu->arch.osvw.length;
2045 break;
2046 case MSR_AMD64_OSVW_STATUS:
2047 if (!guest_cpuid_has_osvw(vcpu))
2048 return 1;
2049 data = vcpu->arch.osvw.status;
2050 break;
2051 default:
2052 if (kvm_pmu_msr(vcpu, msr))
2053 return kvm_pmu_get_msr(vcpu, msr, pdata);
2054 if (!ignore_msrs) {
2055 vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2056 return 1;
2057 } else {
2058 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2059 data = 0;
2060 }
2061 break;
2062 }
2063 *pdata = data;
2064 return 0;
2065 }
2066 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2067
2068 /*
2069 * Read or write a bunch of msrs. All parameters are kernel addresses.
2070 *
2071 * @return number of msrs set successfully.
2072 */
2073 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2074 struct kvm_msr_entry *entries,
2075 int (*do_msr)(struct kvm_vcpu *vcpu,
2076 unsigned index, u64 *data))
2077 {
2078 int i, idx;
2079
2080 idx = srcu_read_lock(&vcpu->kvm->srcu);
2081 for (i = 0; i < msrs->nmsrs; ++i)
2082 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2083 break;
2084 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2085
2086 return i;
2087 }
2088
2089 /*
2090 * Read or write a bunch of msrs. Parameters are user addresses.
2091 *
2092 * @return number of msrs set successfully.
2093 */
2094 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2095 int (*do_msr)(struct kvm_vcpu *vcpu,
2096 unsigned index, u64 *data),
2097 int writeback)
2098 {
2099 struct kvm_msrs msrs;
2100 struct kvm_msr_entry *entries;
2101 int r, n;
2102 unsigned size;
2103
2104 r = -EFAULT;
2105 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2106 goto out;
2107
2108 r = -E2BIG;
2109 if (msrs.nmsrs >= MAX_IO_MSRS)
2110 goto out;
2111
2112 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2113 entries = memdup_user(user_msrs->entries, size);
2114 if (IS_ERR(entries)) {
2115 r = PTR_ERR(entries);
2116 goto out;
2117 }
2118
2119 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2120 if (r < 0)
2121 goto out_free;
2122
2123 r = -EFAULT;
2124 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2125 goto out_free;
2126
2127 r = n;
2128
2129 out_free:
2130 kfree(entries);
2131 out:
2132 return r;
2133 }
2134
2135 int kvm_dev_ioctl_check_extension(long ext)
2136 {
2137 int r;
2138
2139 switch (ext) {
2140 case KVM_CAP_IRQCHIP:
2141 case KVM_CAP_HLT:
2142 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2143 case KVM_CAP_SET_TSS_ADDR:
2144 case KVM_CAP_EXT_CPUID:
2145 case KVM_CAP_CLOCKSOURCE:
2146 case KVM_CAP_PIT:
2147 case KVM_CAP_NOP_IO_DELAY:
2148 case KVM_CAP_MP_STATE:
2149 case KVM_CAP_SYNC_MMU:
2150 case KVM_CAP_USER_NMI:
2151 case KVM_CAP_REINJECT_CONTROL:
2152 case KVM_CAP_IRQ_INJECT_STATUS:
2153 case KVM_CAP_ASSIGN_DEV_IRQ:
2154 case KVM_CAP_IRQFD:
2155 case KVM_CAP_IOEVENTFD:
2156 case KVM_CAP_PIT2:
2157 case KVM_CAP_PIT_STATE2:
2158 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2159 case KVM_CAP_XEN_HVM:
2160 case KVM_CAP_ADJUST_CLOCK:
2161 case KVM_CAP_VCPU_EVENTS:
2162 case KVM_CAP_HYPERV:
2163 case KVM_CAP_HYPERV_VAPIC:
2164 case KVM_CAP_HYPERV_SPIN:
2165 case KVM_CAP_PCI_SEGMENT:
2166 case KVM_CAP_DEBUGREGS:
2167 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2168 case KVM_CAP_XSAVE:
2169 case KVM_CAP_ASYNC_PF:
2170 case KVM_CAP_GET_TSC_KHZ:
2171 case KVM_CAP_PCI_2_3:
2172 case KVM_CAP_KVMCLOCK_CTRL:
2173 r = 1;
2174 break;
2175 case KVM_CAP_COALESCED_MMIO:
2176 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2177 break;
2178 case KVM_CAP_VAPIC:
2179 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2180 break;
2181 case KVM_CAP_NR_VCPUS:
2182 r = KVM_SOFT_MAX_VCPUS;
2183 break;
2184 case KVM_CAP_MAX_VCPUS:
2185 r = KVM_MAX_VCPUS;
2186 break;
2187 case KVM_CAP_NR_MEMSLOTS:
2188 r = KVM_MEMORY_SLOTS;
2189 break;
2190 case KVM_CAP_PV_MMU: /* obsolete */
2191 r = 0;
2192 break;
2193 case KVM_CAP_IOMMU:
2194 r = iommu_present(&pci_bus_type);
2195 break;
2196 case KVM_CAP_MCE:
2197 r = KVM_MAX_MCE_BANKS;
2198 break;
2199 case KVM_CAP_XCRS:
2200 r = cpu_has_xsave;
2201 break;
2202 case KVM_CAP_TSC_CONTROL:
2203 r = kvm_has_tsc_control;
2204 break;
2205 case KVM_CAP_TSC_DEADLINE_TIMER:
2206 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2207 break;
2208 default:
2209 r = 0;
2210 break;
2211 }
2212 return r;
2213
2214 }
2215
2216 long kvm_arch_dev_ioctl(struct file *filp,
2217 unsigned int ioctl, unsigned long arg)
2218 {
2219 void __user *argp = (void __user *)arg;
2220 long r;
2221
2222 switch (ioctl) {
2223 case KVM_GET_MSR_INDEX_LIST: {
2224 struct kvm_msr_list __user *user_msr_list = argp;
2225 struct kvm_msr_list msr_list;
2226 unsigned n;
2227
2228 r = -EFAULT;
2229 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2230 goto out;
2231 n = msr_list.nmsrs;
2232 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2233 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2234 goto out;
2235 r = -E2BIG;
2236 if (n < msr_list.nmsrs)
2237 goto out;
2238 r = -EFAULT;
2239 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2240 num_msrs_to_save * sizeof(u32)))
2241 goto out;
2242 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2243 &emulated_msrs,
2244 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2245 goto out;
2246 r = 0;
2247 break;
2248 }
2249 case KVM_GET_SUPPORTED_CPUID: {
2250 struct kvm_cpuid2 __user *cpuid_arg = argp;
2251 struct kvm_cpuid2 cpuid;
2252
2253 r = -EFAULT;
2254 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2255 goto out;
2256 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2257 cpuid_arg->entries);
2258 if (r)
2259 goto out;
2260
2261 r = -EFAULT;
2262 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2263 goto out;
2264 r = 0;
2265 break;
2266 }
2267 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2268 u64 mce_cap;
2269
2270 mce_cap = KVM_MCE_CAP_SUPPORTED;
2271 r = -EFAULT;
2272 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2273 goto out;
2274 r = 0;
2275 break;
2276 }
2277 default:
2278 r = -EINVAL;
2279 }
2280 out:
2281 return r;
2282 }
2283
2284 static void wbinvd_ipi(void *garbage)
2285 {
2286 wbinvd();
2287 }
2288
2289 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2290 {
2291 return vcpu->kvm->arch.iommu_domain &&
2292 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2293 }
2294
2295 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2296 {
2297 /* Address WBINVD may be executed by guest */
2298 if (need_emulate_wbinvd(vcpu)) {
2299 if (kvm_x86_ops->has_wbinvd_exit())
2300 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2301 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2302 smp_call_function_single(vcpu->cpu,
2303 wbinvd_ipi, NULL, 1);
2304 }
2305
2306 kvm_x86_ops->vcpu_load(vcpu, cpu);
2307
2308 /* Apply any externally detected TSC adjustments (due to suspend) */
2309 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2310 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2311 vcpu->arch.tsc_offset_adjustment = 0;
2312 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2313 }
2314
2315 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2316 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2317 native_read_tsc() - vcpu->arch.last_host_tsc;
2318 if (tsc_delta < 0)
2319 mark_tsc_unstable("KVM discovered backwards TSC");
2320 if (check_tsc_unstable()) {
2321 u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2322 vcpu->arch.last_guest_tsc);
2323 kvm_x86_ops->write_tsc_offset(vcpu, offset);
2324 vcpu->arch.tsc_catchup = 1;
2325 }
2326 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2327 if (vcpu->cpu != cpu)
2328 kvm_migrate_timers(vcpu);
2329 vcpu->cpu = cpu;
2330 }
2331
2332 accumulate_steal_time(vcpu);
2333 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2334 }
2335
2336 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2337 {
2338 kvm_x86_ops->vcpu_put(vcpu);
2339 kvm_put_guest_fpu(vcpu);
2340 vcpu->arch.last_host_tsc = native_read_tsc();
2341 }
2342
2343 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2344 struct kvm_lapic_state *s)
2345 {
2346 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2347
2348 return 0;
2349 }
2350
2351 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2352 struct kvm_lapic_state *s)
2353 {
2354 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2355 kvm_apic_post_state_restore(vcpu);
2356 update_cr8_intercept(vcpu);
2357
2358 return 0;
2359 }
2360
2361 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2362 struct kvm_interrupt *irq)
2363 {
2364 if (irq->irq < 0 || irq->irq >= 256)
2365 return -EINVAL;
2366 if (irqchip_in_kernel(vcpu->kvm))
2367 return -ENXIO;
2368
2369 kvm_queue_interrupt(vcpu, irq->irq, false);
2370 kvm_make_request(KVM_REQ_EVENT, vcpu);
2371
2372 return 0;
2373 }
2374
2375 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2376 {
2377 kvm_inject_nmi(vcpu);
2378
2379 return 0;
2380 }
2381
2382 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2383 struct kvm_tpr_access_ctl *tac)
2384 {
2385 if (tac->flags)
2386 return -EINVAL;
2387 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2388 return 0;
2389 }
2390
2391 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2392 u64 mcg_cap)
2393 {
2394 int r;
2395 unsigned bank_num = mcg_cap & 0xff, bank;
2396
2397 r = -EINVAL;
2398 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2399 goto out;
2400 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2401 goto out;
2402 r = 0;
2403 vcpu->arch.mcg_cap = mcg_cap;
2404 /* Init IA32_MCG_CTL to all 1s */
2405 if (mcg_cap & MCG_CTL_P)
2406 vcpu->arch.mcg_ctl = ~(u64)0;
2407 /* Init IA32_MCi_CTL to all 1s */
2408 for (bank = 0; bank < bank_num; bank++)
2409 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2410 out:
2411 return r;
2412 }
2413
2414 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2415 struct kvm_x86_mce *mce)
2416 {
2417 u64 mcg_cap = vcpu->arch.mcg_cap;
2418 unsigned bank_num = mcg_cap & 0xff;
2419 u64 *banks = vcpu->arch.mce_banks;
2420
2421 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2422 return -EINVAL;
2423 /*
2424 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2425 * reporting is disabled
2426 */
2427 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2428 vcpu->arch.mcg_ctl != ~(u64)0)
2429 return 0;
2430 banks += 4 * mce->bank;
2431 /*
2432 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2433 * reporting is disabled for the bank
2434 */
2435 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2436 return 0;
2437 if (mce->status & MCI_STATUS_UC) {
2438 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2439 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2440 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2441 return 0;
2442 }
2443 if (banks[1] & MCI_STATUS_VAL)
2444 mce->status |= MCI_STATUS_OVER;
2445 banks[2] = mce->addr;
2446 banks[3] = mce->misc;
2447 vcpu->arch.mcg_status = mce->mcg_status;
2448 banks[1] = mce->status;
2449 kvm_queue_exception(vcpu, MC_VECTOR);
2450 } else if (!(banks[1] & MCI_STATUS_VAL)
2451 || !(banks[1] & MCI_STATUS_UC)) {
2452 if (banks[1] & MCI_STATUS_VAL)
2453 mce->status |= MCI_STATUS_OVER;
2454 banks[2] = mce->addr;
2455 banks[3] = mce->misc;
2456 banks[1] = mce->status;
2457 } else
2458 banks[1] |= MCI_STATUS_OVER;
2459 return 0;
2460 }
2461
2462 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2463 struct kvm_vcpu_events *events)
2464 {
2465 process_nmi(vcpu);
2466 events->exception.injected =
2467 vcpu->arch.exception.pending &&
2468 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2469 events->exception.nr = vcpu->arch.exception.nr;
2470 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2471 events->exception.pad = 0;
2472 events->exception.error_code = vcpu->arch.exception.error_code;
2473
2474 events->interrupt.injected =
2475 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2476 events->interrupt.nr = vcpu->arch.interrupt.nr;
2477 events->interrupt.soft = 0;
2478 events->interrupt.shadow =
2479 kvm_x86_ops->get_interrupt_shadow(vcpu,
2480 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2481
2482 events->nmi.injected = vcpu->arch.nmi_injected;
2483 events->nmi.pending = vcpu->arch.nmi_pending != 0;
2484 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2485 events->nmi.pad = 0;
2486
2487 events->sipi_vector = vcpu->arch.sipi_vector;
2488
2489 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2490 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2491 | KVM_VCPUEVENT_VALID_SHADOW);
2492 memset(&events->reserved, 0, sizeof(events->reserved));
2493 }
2494
2495 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2496 struct kvm_vcpu_events *events)
2497 {
2498 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2499 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2500 | KVM_VCPUEVENT_VALID_SHADOW))
2501 return -EINVAL;
2502
2503 process_nmi(vcpu);
2504 vcpu->arch.exception.pending = events->exception.injected;
2505 vcpu->arch.exception.nr = events->exception.nr;
2506 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2507 vcpu->arch.exception.error_code = events->exception.error_code;
2508
2509 vcpu->arch.interrupt.pending = events->interrupt.injected;
2510 vcpu->arch.interrupt.nr = events->interrupt.nr;
2511 vcpu->arch.interrupt.soft = events->interrupt.soft;
2512 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2513 kvm_x86_ops->set_interrupt_shadow(vcpu,
2514 events->interrupt.shadow);
2515
2516 vcpu->arch.nmi_injected = events->nmi.injected;
2517 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2518 vcpu->arch.nmi_pending = events->nmi.pending;
2519 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2520
2521 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2522 vcpu->arch.sipi_vector = events->sipi_vector;
2523
2524 kvm_make_request(KVM_REQ_EVENT, vcpu);
2525
2526 return 0;
2527 }
2528
2529 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2530 struct kvm_debugregs *dbgregs)
2531 {
2532 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2533 dbgregs->dr6 = vcpu->arch.dr6;
2534 dbgregs->dr7 = vcpu->arch.dr7;
2535 dbgregs->flags = 0;
2536 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2537 }
2538
2539 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2540 struct kvm_debugregs *dbgregs)
2541 {
2542 if (dbgregs->flags)
2543 return -EINVAL;
2544
2545 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2546 vcpu->arch.dr6 = dbgregs->dr6;
2547 vcpu->arch.dr7 = dbgregs->dr7;
2548
2549 return 0;
2550 }
2551
2552 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2553 struct kvm_xsave *guest_xsave)
2554 {
2555 if (cpu_has_xsave)
2556 memcpy(guest_xsave->region,
2557 &vcpu->arch.guest_fpu.state->xsave,
2558 xstate_size);
2559 else {
2560 memcpy(guest_xsave->region,
2561 &vcpu->arch.guest_fpu.state->fxsave,
2562 sizeof(struct i387_fxsave_struct));
2563 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2564 XSTATE_FPSSE;
2565 }
2566 }
2567
2568 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2569 struct kvm_xsave *guest_xsave)
2570 {
2571 u64 xstate_bv =
2572 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2573
2574 if (cpu_has_xsave)
2575 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2576 guest_xsave->region, xstate_size);
2577 else {
2578 if (xstate_bv & ~XSTATE_FPSSE)
2579 return -EINVAL;
2580 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2581 guest_xsave->region, sizeof(struct i387_fxsave_struct));
2582 }
2583 return 0;
2584 }
2585
2586 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2587 struct kvm_xcrs *guest_xcrs)
2588 {
2589 if (!cpu_has_xsave) {
2590 guest_xcrs->nr_xcrs = 0;
2591 return;
2592 }
2593
2594 guest_xcrs->nr_xcrs = 1;
2595 guest_xcrs->flags = 0;
2596 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2597 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2598 }
2599
2600 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2601 struct kvm_xcrs *guest_xcrs)
2602 {
2603 int i, r = 0;
2604
2605 if (!cpu_has_xsave)
2606 return -EINVAL;
2607
2608 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2609 return -EINVAL;
2610
2611 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2612 /* Only support XCR0 currently */
2613 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2614 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2615 guest_xcrs->xcrs[0].value);
2616 break;
2617 }
2618 if (r)
2619 r = -EINVAL;
2620 return r;
2621 }
2622
2623 /*
2624 * kvm_set_guest_paused() indicates to the guest kernel that it has been
2625 * stopped by the hypervisor. This function will be called from the host only.
2626 * EINVAL is returned when the host attempts to set the flag for a guest that
2627 * does not support pv clocks.
2628 */
2629 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
2630 {
2631 struct pvclock_vcpu_time_info *src = &vcpu->arch.hv_clock;
2632 if (!vcpu->arch.time_page)
2633 return -EINVAL;
2634 src->flags |= PVCLOCK_GUEST_STOPPED;
2635 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2636 return 0;
2637 }
2638
2639 long kvm_arch_vcpu_ioctl(struct file *filp,
2640 unsigned int ioctl, unsigned long arg)
2641 {
2642 struct kvm_vcpu *vcpu = filp->private_data;
2643 void __user *argp = (void __user *)arg;
2644 int r;
2645 union {
2646 struct kvm_lapic_state *lapic;
2647 struct kvm_xsave *xsave;
2648 struct kvm_xcrs *xcrs;
2649 void *buffer;
2650 } u;
2651
2652 u.buffer = NULL;
2653 switch (ioctl) {
2654 case KVM_GET_LAPIC: {
2655 r = -EINVAL;
2656 if (!vcpu->arch.apic)
2657 goto out;
2658 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2659
2660 r = -ENOMEM;
2661 if (!u.lapic)
2662 goto out;
2663 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2664 if (r)
2665 goto out;
2666 r = -EFAULT;
2667 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2668 goto out;
2669 r = 0;
2670 break;
2671 }
2672 case KVM_SET_LAPIC: {
2673 r = -EINVAL;
2674 if (!vcpu->arch.apic)
2675 goto out;
2676 u.lapic = memdup_user(argp, sizeof(*u.lapic));
2677 if (IS_ERR(u.lapic)) {
2678 r = PTR_ERR(u.lapic);
2679 goto out;
2680 }
2681
2682 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2683 if (r)
2684 goto out;
2685 r = 0;
2686 break;
2687 }
2688 case KVM_INTERRUPT: {
2689 struct kvm_interrupt irq;
2690
2691 r = -EFAULT;
2692 if (copy_from_user(&irq, argp, sizeof irq))
2693 goto out;
2694 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2695 if (r)
2696 goto out;
2697 r = 0;
2698 break;
2699 }
2700 case KVM_NMI: {
2701 r = kvm_vcpu_ioctl_nmi(vcpu);
2702 if (r)
2703 goto out;
2704 r = 0;
2705 break;
2706 }
2707 case KVM_SET_CPUID: {
2708 struct kvm_cpuid __user *cpuid_arg = argp;
2709 struct kvm_cpuid cpuid;
2710
2711 r = -EFAULT;
2712 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2713 goto out;
2714 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2715 if (r)
2716 goto out;
2717 break;
2718 }
2719 case KVM_SET_CPUID2: {
2720 struct kvm_cpuid2 __user *cpuid_arg = argp;
2721 struct kvm_cpuid2 cpuid;
2722
2723 r = -EFAULT;
2724 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2725 goto out;
2726 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2727 cpuid_arg->entries);
2728 if (r)
2729 goto out;
2730 break;
2731 }
2732 case KVM_GET_CPUID2: {
2733 struct kvm_cpuid2 __user *cpuid_arg = argp;
2734 struct kvm_cpuid2 cpuid;
2735
2736 r = -EFAULT;
2737 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2738 goto out;
2739 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2740 cpuid_arg->entries);
2741 if (r)
2742 goto out;
2743 r = -EFAULT;
2744 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2745 goto out;
2746 r = 0;
2747 break;
2748 }
2749 case KVM_GET_MSRS:
2750 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2751 break;
2752 case KVM_SET_MSRS:
2753 r = msr_io(vcpu, argp, do_set_msr, 0);
2754 break;
2755 case KVM_TPR_ACCESS_REPORTING: {
2756 struct kvm_tpr_access_ctl tac;
2757
2758 r = -EFAULT;
2759 if (copy_from_user(&tac, argp, sizeof tac))
2760 goto out;
2761 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2762 if (r)
2763 goto out;
2764 r = -EFAULT;
2765 if (copy_to_user(argp, &tac, sizeof tac))
2766 goto out;
2767 r = 0;
2768 break;
2769 };
2770 case KVM_SET_VAPIC_ADDR: {
2771 struct kvm_vapic_addr va;
2772
2773 r = -EINVAL;
2774 if (!irqchip_in_kernel(vcpu->kvm))
2775 goto out;
2776 r = -EFAULT;
2777 if (copy_from_user(&va, argp, sizeof va))
2778 goto out;
2779 r = 0;
2780 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2781 break;
2782 }
2783 case KVM_X86_SETUP_MCE: {
2784 u64 mcg_cap;
2785
2786 r = -EFAULT;
2787 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2788 goto out;
2789 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2790 break;
2791 }
2792 case KVM_X86_SET_MCE: {
2793 struct kvm_x86_mce mce;
2794
2795 r = -EFAULT;
2796 if (copy_from_user(&mce, argp, sizeof mce))
2797 goto out;
2798 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2799 break;
2800 }
2801 case KVM_GET_VCPU_EVENTS: {
2802 struct kvm_vcpu_events events;
2803
2804 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2805
2806 r = -EFAULT;
2807 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2808 break;
2809 r = 0;
2810 break;
2811 }
2812 case KVM_SET_VCPU_EVENTS: {
2813 struct kvm_vcpu_events events;
2814
2815 r = -EFAULT;
2816 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2817 break;
2818
2819 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2820 break;
2821 }
2822 case KVM_GET_DEBUGREGS: {
2823 struct kvm_debugregs dbgregs;
2824
2825 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2826
2827 r = -EFAULT;
2828 if (copy_to_user(argp, &dbgregs,
2829 sizeof(struct kvm_debugregs)))
2830 break;
2831 r = 0;
2832 break;
2833 }
2834 case KVM_SET_DEBUGREGS: {
2835 struct kvm_debugregs dbgregs;
2836
2837 r = -EFAULT;
2838 if (copy_from_user(&dbgregs, argp,
2839 sizeof(struct kvm_debugregs)))
2840 break;
2841
2842 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2843 break;
2844 }
2845 case KVM_GET_XSAVE: {
2846 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2847 r = -ENOMEM;
2848 if (!u.xsave)
2849 break;
2850
2851 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2852
2853 r = -EFAULT;
2854 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2855 break;
2856 r = 0;
2857 break;
2858 }
2859 case KVM_SET_XSAVE: {
2860 u.xsave = memdup_user(argp, sizeof(*u.xsave));
2861 if (IS_ERR(u.xsave)) {
2862 r = PTR_ERR(u.xsave);
2863 goto out;
2864 }
2865
2866 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2867 break;
2868 }
2869 case KVM_GET_XCRS: {
2870 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2871 r = -ENOMEM;
2872 if (!u.xcrs)
2873 break;
2874
2875 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
2876
2877 r = -EFAULT;
2878 if (copy_to_user(argp, u.xcrs,
2879 sizeof(struct kvm_xcrs)))
2880 break;
2881 r = 0;
2882 break;
2883 }
2884 case KVM_SET_XCRS: {
2885 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
2886 if (IS_ERR(u.xcrs)) {
2887 r = PTR_ERR(u.xcrs);
2888 goto out;
2889 }
2890
2891 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
2892 break;
2893 }
2894 case KVM_SET_TSC_KHZ: {
2895 u32 user_tsc_khz;
2896
2897 r = -EINVAL;
2898 user_tsc_khz = (u32)arg;
2899
2900 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
2901 goto out;
2902
2903 if (user_tsc_khz == 0)
2904 user_tsc_khz = tsc_khz;
2905
2906 kvm_set_tsc_khz(vcpu, user_tsc_khz);
2907
2908 r = 0;
2909 goto out;
2910 }
2911 case KVM_GET_TSC_KHZ: {
2912 r = vcpu->arch.virtual_tsc_khz;
2913 goto out;
2914 }
2915 case KVM_KVMCLOCK_CTRL: {
2916 r = kvm_set_guest_paused(vcpu);
2917 goto out;
2918 }
2919 default:
2920 r = -EINVAL;
2921 }
2922 out:
2923 kfree(u.buffer);
2924 return r;
2925 }
2926
2927 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2928 {
2929 return VM_FAULT_SIGBUS;
2930 }
2931
2932 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2933 {
2934 int ret;
2935
2936 if (addr > (unsigned int)(-3 * PAGE_SIZE))
2937 return -1;
2938 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2939 return ret;
2940 }
2941
2942 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2943 u64 ident_addr)
2944 {
2945 kvm->arch.ept_identity_map_addr = ident_addr;
2946 return 0;
2947 }
2948
2949 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2950 u32 kvm_nr_mmu_pages)
2951 {
2952 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2953 return -EINVAL;
2954
2955 mutex_lock(&kvm->slots_lock);
2956 spin_lock(&kvm->mmu_lock);
2957
2958 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2959 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2960
2961 spin_unlock(&kvm->mmu_lock);
2962 mutex_unlock(&kvm->slots_lock);
2963 return 0;
2964 }
2965
2966 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2967 {
2968 return kvm->arch.n_max_mmu_pages;
2969 }
2970
2971 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2972 {
2973 int r;
2974
2975 r = 0;
2976 switch (chip->chip_id) {
2977 case KVM_IRQCHIP_PIC_MASTER:
2978 memcpy(&chip->chip.pic,
2979 &pic_irqchip(kvm)->pics[0],
2980 sizeof(struct kvm_pic_state));
2981 break;
2982 case KVM_IRQCHIP_PIC_SLAVE:
2983 memcpy(&chip->chip.pic,
2984 &pic_irqchip(kvm)->pics[1],
2985 sizeof(struct kvm_pic_state));
2986 break;
2987 case KVM_IRQCHIP_IOAPIC:
2988 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2989 break;
2990 default:
2991 r = -EINVAL;
2992 break;
2993 }
2994 return r;
2995 }
2996
2997 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2998 {
2999 int r;
3000
3001 r = 0;
3002 switch (chip->chip_id) {
3003 case KVM_IRQCHIP_PIC_MASTER:
3004 spin_lock(&pic_irqchip(kvm)->lock);
3005 memcpy(&pic_irqchip(kvm)->pics[0],
3006 &chip->chip.pic,
3007 sizeof(struct kvm_pic_state));
3008 spin_unlock(&pic_irqchip(kvm)->lock);
3009 break;
3010 case KVM_IRQCHIP_PIC_SLAVE:
3011 spin_lock(&pic_irqchip(kvm)->lock);
3012 memcpy(&pic_irqchip(kvm)->pics[1],
3013 &chip->chip.pic,
3014 sizeof(struct kvm_pic_state));
3015 spin_unlock(&pic_irqchip(kvm)->lock);
3016 break;
3017 case KVM_IRQCHIP_IOAPIC:
3018 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3019 break;
3020 default:
3021 r = -EINVAL;
3022 break;
3023 }
3024 kvm_pic_update_irq(pic_irqchip(kvm));
3025 return r;
3026 }
3027
3028 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3029 {
3030 int r = 0;
3031
3032 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3033 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3034 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3035 return r;
3036 }
3037
3038 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3039 {
3040 int r = 0;
3041
3042 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3043 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3044 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3045 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3046 return r;
3047 }
3048
3049 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3050 {
3051 int r = 0;
3052
3053 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3054 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3055 sizeof(ps->channels));
3056 ps->flags = kvm->arch.vpit->pit_state.flags;
3057 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3058 memset(&ps->reserved, 0, sizeof(ps->reserved));
3059 return r;
3060 }
3061
3062 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3063 {
3064 int r = 0, start = 0;
3065 u32 prev_legacy, cur_legacy;
3066 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3067 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3068 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3069 if (!prev_legacy && cur_legacy)
3070 start = 1;
3071 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3072 sizeof(kvm->arch.vpit->pit_state.channels));
3073 kvm->arch.vpit->pit_state.flags = ps->flags;
3074 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3075 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3076 return r;
3077 }
3078
3079 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3080 struct kvm_reinject_control *control)
3081 {
3082 if (!kvm->arch.vpit)
3083 return -ENXIO;
3084 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3085 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
3086 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3087 return 0;
3088 }
3089
3090 /**
3091 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3092 * @kvm: kvm instance
3093 * @log: slot id and address to which we copy the log
3094 *
3095 * We need to keep it in mind that VCPU threads can write to the bitmap
3096 * concurrently. So, to avoid losing data, we keep the following order for
3097 * each bit:
3098 *
3099 * 1. Take a snapshot of the bit and clear it if needed.
3100 * 2. Write protect the corresponding page.
3101 * 3. Flush TLB's if needed.
3102 * 4. Copy the snapshot to the userspace.
3103 *
3104 * Between 2 and 3, the guest may write to the page using the remaining TLB
3105 * entry. This is not a problem because the page will be reported dirty at
3106 * step 4 using the snapshot taken before and step 3 ensures that successive
3107 * writes will be logged for the next call.
3108 */
3109 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3110 {
3111 int r;
3112 struct kvm_memory_slot *memslot;
3113 unsigned long n, i;
3114 unsigned long *dirty_bitmap;
3115 unsigned long *dirty_bitmap_buffer;
3116 bool is_dirty = false;
3117
3118 mutex_lock(&kvm->slots_lock);
3119
3120 r = -EINVAL;
3121 if (log->slot >= KVM_MEMORY_SLOTS)
3122 goto out;
3123
3124 memslot = id_to_memslot(kvm->memslots, log->slot);
3125
3126 dirty_bitmap = memslot->dirty_bitmap;
3127 r = -ENOENT;
3128 if (!dirty_bitmap)
3129 goto out;
3130
3131 n = kvm_dirty_bitmap_bytes(memslot);
3132
3133 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3134 memset(dirty_bitmap_buffer, 0, n);
3135
3136 spin_lock(&kvm->mmu_lock);
3137
3138 for (i = 0; i < n / sizeof(long); i++) {
3139 unsigned long mask;
3140 gfn_t offset;
3141
3142 if (!dirty_bitmap[i])
3143 continue;
3144
3145 is_dirty = true;
3146
3147 mask = xchg(&dirty_bitmap[i], 0);
3148 dirty_bitmap_buffer[i] = mask;
3149
3150 offset = i * BITS_PER_LONG;
3151 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3152 }
3153 if (is_dirty)
3154 kvm_flush_remote_tlbs(kvm);
3155
3156 spin_unlock(&kvm->mmu_lock);
3157
3158 r = -EFAULT;
3159 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3160 goto out;
3161
3162 r = 0;
3163 out:
3164 mutex_unlock(&kvm->slots_lock);
3165 return r;
3166 }
3167
3168 long kvm_arch_vm_ioctl(struct file *filp,
3169 unsigned int ioctl, unsigned long arg)
3170 {
3171 struct kvm *kvm = filp->private_data;
3172 void __user *argp = (void __user *)arg;
3173 int r = -ENOTTY;
3174 /*
3175 * This union makes it completely explicit to gcc-3.x
3176 * that these two variables' stack usage should be
3177 * combined, not added together.
3178 */
3179 union {
3180 struct kvm_pit_state ps;
3181 struct kvm_pit_state2 ps2;
3182 struct kvm_pit_config pit_config;
3183 } u;
3184
3185 switch (ioctl) {
3186 case KVM_SET_TSS_ADDR:
3187 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3188 if (r < 0)
3189 goto out;
3190 break;
3191 case KVM_SET_IDENTITY_MAP_ADDR: {
3192 u64 ident_addr;
3193
3194 r = -EFAULT;
3195 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3196 goto out;
3197 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3198 if (r < 0)
3199 goto out;
3200 break;
3201 }
3202 case KVM_SET_NR_MMU_PAGES:
3203 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3204 if (r)
3205 goto out;
3206 break;
3207 case KVM_GET_NR_MMU_PAGES:
3208 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3209 break;
3210 case KVM_CREATE_IRQCHIP: {
3211 struct kvm_pic *vpic;
3212
3213 mutex_lock(&kvm->lock);
3214 r = -EEXIST;
3215 if (kvm->arch.vpic)
3216 goto create_irqchip_unlock;
3217 r = -EINVAL;
3218 if (atomic_read(&kvm->online_vcpus))
3219 goto create_irqchip_unlock;
3220 r = -ENOMEM;
3221 vpic = kvm_create_pic(kvm);
3222 if (vpic) {
3223 r = kvm_ioapic_init(kvm);
3224 if (r) {
3225 mutex_lock(&kvm->slots_lock);
3226 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3227 &vpic->dev_master);
3228 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3229 &vpic->dev_slave);
3230 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3231 &vpic->dev_eclr);
3232 mutex_unlock(&kvm->slots_lock);
3233 kfree(vpic);
3234 goto create_irqchip_unlock;
3235 }
3236 } else
3237 goto create_irqchip_unlock;
3238 smp_wmb();
3239 kvm->arch.vpic = vpic;
3240 smp_wmb();
3241 r = kvm_setup_default_irq_routing(kvm);
3242 if (r) {
3243 mutex_lock(&kvm->slots_lock);
3244 mutex_lock(&kvm->irq_lock);
3245 kvm_ioapic_destroy(kvm);
3246 kvm_destroy_pic(kvm);
3247 mutex_unlock(&kvm->irq_lock);
3248 mutex_unlock(&kvm->slots_lock);
3249 }
3250 create_irqchip_unlock:
3251 mutex_unlock(&kvm->lock);
3252 break;
3253 }
3254 case KVM_CREATE_PIT:
3255 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3256 goto create_pit;
3257 case KVM_CREATE_PIT2:
3258 r = -EFAULT;
3259 if (copy_from_user(&u.pit_config, argp,
3260 sizeof(struct kvm_pit_config)))
3261 goto out;
3262 create_pit:
3263 mutex_lock(&kvm->slots_lock);
3264 r = -EEXIST;
3265 if (kvm->arch.vpit)
3266 goto create_pit_unlock;
3267 r = -ENOMEM;
3268 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3269 if (kvm->arch.vpit)
3270 r = 0;
3271 create_pit_unlock:
3272 mutex_unlock(&kvm->slots_lock);
3273 break;
3274 case KVM_IRQ_LINE_STATUS:
3275 case KVM_IRQ_LINE: {
3276 struct kvm_irq_level irq_event;
3277
3278 r = -EFAULT;
3279 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3280 goto out;
3281 r = -ENXIO;
3282 if (irqchip_in_kernel(kvm)) {
3283 __s32 status;
3284 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3285 irq_event.irq, irq_event.level);
3286 if (ioctl == KVM_IRQ_LINE_STATUS) {
3287 r = -EFAULT;
3288 irq_event.status = status;
3289 if (copy_to_user(argp, &irq_event,
3290 sizeof irq_event))
3291 goto out;
3292 }
3293 r = 0;
3294 }
3295 break;
3296 }
3297 case KVM_GET_IRQCHIP: {
3298 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3299 struct kvm_irqchip *chip;
3300
3301 chip = memdup_user(argp, sizeof(*chip));
3302 if (IS_ERR(chip)) {
3303 r = PTR_ERR(chip);
3304 goto out;
3305 }
3306
3307 r = -ENXIO;
3308 if (!irqchip_in_kernel(kvm))
3309 goto get_irqchip_out;
3310 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3311 if (r)
3312 goto get_irqchip_out;
3313 r = -EFAULT;
3314 if (copy_to_user(argp, chip, sizeof *chip))
3315 goto get_irqchip_out;
3316 r = 0;
3317 get_irqchip_out:
3318 kfree(chip);
3319 if (r)
3320 goto out;
3321 break;
3322 }
3323 case KVM_SET_IRQCHIP: {
3324 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3325 struct kvm_irqchip *chip;
3326
3327 chip = memdup_user(argp, sizeof(*chip));
3328 if (IS_ERR(chip)) {
3329 r = PTR_ERR(chip);
3330 goto out;
3331 }
3332
3333 r = -ENXIO;
3334 if (!irqchip_in_kernel(kvm))
3335 goto set_irqchip_out;
3336 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3337 if (r)
3338 goto set_irqchip_out;
3339 r = 0;
3340 set_irqchip_out:
3341 kfree(chip);
3342 if (r)
3343 goto out;
3344 break;
3345 }
3346 case KVM_GET_PIT: {
3347 r = -EFAULT;
3348 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3349 goto out;
3350 r = -ENXIO;
3351 if (!kvm->arch.vpit)
3352 goto out;
3353 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3354 if (r)
3355 goto out;
3356 r = -EFAULT;
3357 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3358 goto out;
3359 r = 0;
3360 break;
3361 }
3362 case KVM_SET_PIT: {
3363 r = -EFAULT;
3364 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3365 goto out;
3366 r = -ENXIO;
3367 if (!kvm->arch.vpit)
3368 goto out;
3369 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3370 if (r)
3371 goto out;
3372 r = 0;
3373 break;
3374 }
3375 case KVM_GET_PIT2: {
3376 r = -ENXIO;
3377 if (!kvm->arch.vpit)
3378 goto out;
3379 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3380 if (r)
3381 goto out;
3382 r = -EFAULT;
3383 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3384 goto out;
3385 r = 0;
3386 break;
3387 }
3388 case KVM_SET_PIT2: {
3389 r = -EFAULT;
3390 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3391 goto out;
3392 r = -ENXIO;
3393 if (!kvm->arch.vpit)
3394 goto out;
3395 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3396 if (r)
3397 goto out;
3398 r = 0;
3399 break;
3400 }
3401 case KVM_REINJECT_CONTROL: {
3402 struct kvm_reinject_control control;
3403 r = -EFAULT;
3404 if (copy_from_user(&control, argp, sizeof(control)))
3405 goto out;
3406 r = kvm_vm_ioctl_reinject(kvm, &control);
3407 if (r)
3408 goto out;
3409 r = 0;
3410 break;
3411 }
3412 case KVM_XEN_HVM_CONFIG: {
3413 r = -EFAULT;
3414 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3415 sizeof(struct kvm_xen_hvm_config)))
3416 goto out;
3417 r = -EINVAL;
3418 if (kvm->arch.xen_hvm_config.flags)
3419 goto out;
3420 r = 0;
3421 break;
3422 }
3423 case KVM_SET_CLOCK: {
3424 struct kvm_clock_data user_ns;
3425 u64 now_ns;
3426 s64 delta;
3427
3428 r = -EFAULT;
3429 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3430 goto out;
3431
3432 r = -EINVAL;
3433 if (user_ns.flags)
3434 goto out;
3435
3436 r = 0;
3437 local_irq_disable();
3438 now_ns = get_kernel_ns();
3439 delta = user_ns.clock - now_ns;
3440 local_irq_enable();
3441 kvm->arch.kvmclock_offset = delta;
3442 break;
3443 }
3444 case KVM_GET_CLOCK: {
3445 struct kvm_clock_data user_ns;
3446 u64 now_ns;
3447
3448 local_irq_disable();
3449 now_ns = get_kernel_ns();
3450 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3451 local_irq_enable();
3452 user_ns.flags = 0;
3453 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3454
3455 r = -EFAULT;
3456 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3457 goto out;
3458 r = 0;
3459 break;
3460 }
3461
3462 default:
3463 ;
3464 }
3465 out:
3466 return r;
3467 }
3468
3469 static void kvm_init_msr_list(void)
3470 {
3471 u32 dummy[2];
3472 unsigned i, j;
3473
3474 /* skip the first msrs in the list. KVM-specific */
3475 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3476 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3477 continue;
3478 if (j < i)
3479 msrs_to_save[j] = msrs_to_save[i];
3480 j++;
3481 }
3482 num_msrs_to_save = j;
3483 }
3484
3485 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3486 const void *v)
3487 {
3488 int handled = 0;
3489 int n;
3490
3491 do {
3492 n = min(len, 8);
3493 if (!(vcpu->arch.apic &&
3494 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3495 && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3496 break;
3497 handled += n;
3498 addr += n;
3499 len -= n;
3500 v += n;
3501 } while (len);
3502
3503 return handled;
3504 }
3505
3506 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3507 {
3508 int handled = 0;
3509 int n;
3510
3511 do {
3512 n = min(len, 8);
3513 if (!(vcpu->arch.apic &&
3514 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3515 && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3516 break;
3517 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3518 handled += n;
3519 addr += n;
3520 len -= n;
3521 v += n;
3522 } while (len);
3523
3524 return handled;
3525 }
3526
3527 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3528 struct kvm_segment *var, int seg)
3529 {
3530 kvm_x86_ops->set_segment(vcpu, var, seg);
3531 }
3532
3533 void kvm_get_segment(struct kvm_vcpu *vcpu,
3534 struct kvm_segment *var, int seg)
3535 {
3536 kvm_x86_ops->get_segment(vcpu, var, seg);
3537 }
3538
3539 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3540 {
3541 gpa_t t_gpa;
3542 struct x86_exception exception;
3543
3544 BUG_ON(!mmu_is_nested(vcpu));
3545
3546 /* NPT walks are always user-walks */
3547 access |= PFERR_USER_MASK;
3548 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3549
3550 return t_gpa;
3551 }
3552
3553 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3554 struct x86_exception *exception)
3555 {
3556 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3557 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3558 }
3559
3560 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3561 struct x86_exception *exception)
3562 {
3563 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3564 access |= PFERR_FETCH_MASK;
3565 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3566 }
3567
3568 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3569 struct x86_exception *exception)
3570 {
3571 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3572 access |= PFERR_WRITE_MASK;
3573 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3574 }
3575
3576 /* uses this to access any guest's mapped memory without checking CPL */
3577 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3578 struct x86_exception *exception)
3579 {
3580 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3581 }
3582
3583 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3584 struct kvm_vcpu *vcpu, u32 access,
3585 struct x86_exception *exception)
3586 {
3587 void *data = val;
3588 int r = X86EMUL_CONTINUE;
3589
3590 while (bytes) {
3591 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3592 exception);
3593 unsigned offset = addr & (PAGE_SIZE-1);
3594 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3595 int ret;
3596
3597 if (gpa == UNMAPPED_GVA)
3598 return X86EMUL_PROPAGATE_FAULT;
3599 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3600 if (ret < 0) {
3601 r = X86EMUL_IO_NEEDED;
3602 goto out;
3603 }
3604
3605 bytes -= toread;
3606 data += toread;
3607 addr += toread;
3608 }
3609 out:
3610 return r;
3611 }
3612
3613 /* used for instruction fetching */
3614 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3615 gva_t addr, void *val, unsigned int bytes,
3616 struct x86_exception *exception)
3617 {
3618 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3619 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3620
3621 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3622 access | PFERR_FETCH_MASK,
3623 exception);
3624 }
3625
3626 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3627 gva_t addr, void *val, unsigned int bytes,
3628 struct x86_exception *exception)
3629 {
3630 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3631 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3632
3633 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3634 exception);
3635 }
3636 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
3637
3638 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3639 gva_t addr, void *val, unsigned int bytes,
3640 struct x86_exception *exception)
3641 {
3642 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3643 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3644 }
3645
3646 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3647 gva_t addr, void *val,
3648 unsigned int bytes,
3649 struct x86_exception *exception)
3650 {
3651 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3652 void *data = val;
3653 int r = X86EMUL_CONTINUE;
3654
3655 while (bytes) {
3656 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3657 PFERR_WRITE_MASK,
3658 exception);
3659 unsigned offset = addr & (PAGE_SIZE-1);
3660 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3661 int ret;
3662
3663 if (gpa == UNMAPPED_GVA)
3664 return X86EMUL_PROPAGATE_FAULT;
3665 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3666 if (ret < 0) {
3667 r = X86EMUL_IO_NEEDED;
3668 goto out;
3669 }
3670
3671 bytes -= towrite;
3672 data += towrite;
3673 addr += towrite;
3674 }
3675 out:
3676 return r;
3677 }
3678 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
3679
3680 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
3681 gpa_t *gpa, struct x86_exception *exception,
3682 bool write)
3683 {
3684 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3685
3686 if (vcpu_match_mmio_gva(vcpu, gva) &&
3687 check_write_user_access(vcpu, write, access,
3688 vcpu->arch.access)) {
3689 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
3690 (gva & (PAGE_SIZE - 1));
3691 trace_vcpu_match_mmio(gva, *gpa, write, false);
3692 return 1;
3693 }
3694
3695 if (write)
3696 access |= PFERR_WRITE_MASK;
3697
3698 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3699
3700 if (*gpa == UNMAPPED_GVA)
3701 return -1;
3702
3703 /* For APIC access vmexit */
3704 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3705 return 1;
3706
3707 if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
3708 trace_vcpu_match_mmio(gva, *gpa, write, true);
3709 return 1;
3710 }
3711
3712 return 0;
3713 }
3714
3715 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3716 const void *val, int bytes)
3717 {
3718 int ret;
3719
3720 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3721 if (ret < 0)
3722 return 0;
3723 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
3724 return 1;
3725 }
3726
3727 struct read_write_emulator_ops {
3728 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
3729 int bytes);
3730 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
3731 void *val, int bytes);
3732 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
3733 int bytes, void *val);
3734 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
3735 void *val, int bytes);
3736 bool write;
3737 };
3738
3739 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
3740 {
3741 if (vcpu->mmio_read_completed) {
3742 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3743 vcpu->mmio_fragments[0].gpa, *(u64 *)val);
3744 vcpu->mmio_read_completed = 0;
3745 return 1;
3746 }
3747
3748 return 0;
3749 }
3750
3751 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
3752 void *val, int bytes)
3753 {
3754 return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
3755 }
3756
3757 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
3758 void *val, int bytes)
3759 {
3760 return emulator_write_phys(vcpu, gpa, val, bytes);
3761 }
3762
3763 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
3764 {
3765 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3766 return vcpu_mmio_write(vcpu, gpa, bytes, val);
3767 }
3768
3769 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
3770 void *val, int bytes)
3771 {
3772 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3773 return X86EMUL_IO_NEEDED;
3774 }
3775
3776 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
3777 void *val, int bytes)
3778 {
3779 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
3780
3781 memcpy(vcpu->run->mmio.data, frag->data, frag->len);
3782 return X86EMUL_CONTINUE;
3783 }
3784
3785 static struct read_write_emulator_ops read_emultor = {
3786 .read_write_prepare = read_prepare,
3787 .read_write_emulate = read_emulate,
3788 .read_write_mmio = vcpu_mmio_read,
3789 .read_write_exit_mmio = read_exit_mmio,
3790 };
3791
3792 static struct read_write_emulator_ops write_emultor = {
3793 .read_write_emulate = write_emulate,
3794 .read_write_mmio = write_mmio,
3795 .read_write_exit_mmio = write_exit_mmio,
3796 .write = true,
3797 };
3798
3799 static int emulator_read_write_onepage(unsigned long addr, void *val,
3800 unsigned int bytes,
3801 struct x86_exception *exception,
3802 struct kvm_vcpu *vcpu,
3803 struct read_write_emulator_ops *ops)
3804 {
3805 gpa_t gpa;
3806 int handled, ret;
3807 bool write = ops->write;
3808 struct kvm_mmio_fragment *frag;
3809
3810 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
3811
3812 if (ret < 0)
3813 return X86EMUL_PROPAGATE_FAULT;
3814
3815 /* For APIC access vmexit */
3816 if (ret)
3817 goto mmio;
3818
3819 if (ops->read_write_emulate(vcpu, gpa, val, bytes))
3820 return X86EMUL_CONTINUE;
3821
3822 mmio:
3823 /*
3824 * Is this MMIO handled locally?
3825 */
3826 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
3827 if (handled == bytes)
3828 return X86EMUL_CONTINUE;
3829
3830 gpa += handled;
3831 bytes -= handled;
3832 val += handled;
3833
3834 while (bytes) {
3835 unsigned now = min(bytes, 8U);
3836
3837 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
3838 frag->gpa = gpa;
3839 frag->data = val;
3840 frag->len = now;
3841
3842 gpa += now;
3843 val += now;
3844 bytes -= now;
3845 }
3846 return X86EMUL_CONTINUE;
3847 }
3848
3849 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
3850 void *val, unsigned int bytes,
3851 struct x86_exception *exception,
3852 struct read_write_emulator_ops *ops)
3853 {
3854 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3855 gpa_t gpa;
3856 int rc;
3857
3858 if (ops->read_write_prepare &&
3859 ops->read_write_prepare(vcpu, val, bytes))
3860 return X86EMUL_CONTINUE;
3861
3862 vcpu->mmio_nr_fragments = 0;
3863
3864 /* Crossing a page boundary? */
3865 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3866 int now;
3867
3868 now = -addr & ~PAGE_MASK;
3869 rc = emulator_read_write_onepage(addr, val, now, exception,
3870 vcpu, ops);
3871
3872 if (rc != X86EMUL_CONTINUE)
3873 return rc;
3874 addr += now;
3875 val += now;
3876 bytes -= now;
3877 }
3878
3879 rc = emulator_read_write_onepage(addr, val, bytes, exception,
3880 vcpu, ops);
3881 if (rc != X86EMUL_CONTINUE)
3882 return rc;
3883
3884 if (!vcpu->mmio_nr_fragments)
3885 return rc;
3886
3887 gpa = vcpu->mmio_fragments[0].gpa;
3888
3889 vcpu->mmio_needed = 1;
3890 vcpu->mmio_cur_fragment = 0;
3891
3892 vcpu->run->mmio.len = vcpu->mmio_fragments[0].len;
3893 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
3894 vcpu->run->exit_reason = KVM_EXIT_MMIO;
3895 vcpu->run->mmio.phys_addr = gpa;
3896
3897 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
3898 }
3899
3900 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
3901 unsigned long addr,
3902 void *val,
3903 unsigned int bytes,
3904 struct x86_exception *exception)
3905 {
3906 return emulator_read_write(ctxt, addr, val, bytes,
3907 exception, &read_emultor);
3908 }
3909
3910 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
3911 unsigned long addr,
3912 const void *val,
3913 unsigned int bytes,
3914 struct x86_exception *exception)
3915 {
3916 return emulator_read_write(ctxt, addr, (void *)val, bytes,
3917 exception, &write_emultor);
3918 }
3919
3920 #define CMPXCHG_TYPE(t, ptr, old, new) \
3921 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3922
3923 #ifdef CONFIG_X86_64
3924 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3925 #else
3926 # define CMPXCHG64(ptr, old, new) \
3927 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3928 #endif
3929
3930 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
3931 unsigned long addr,
3932 const void *old,
3933 const void *new,
3934 unsigned int bytes,
3935 struct x86_exception *exception)
3936 {
3937 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3938 gpa_t gpa;
3939 struct page *page;
3940 char *kaddr;
3941 bool exchanged;
3942
3943 /* guests cmpxchg8b have to be emulated atomically */
3944 if (bytes > 8 || (bytes & (bytes - 1)))
3945 goto emul_write;
3946
3947 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3948
3949 if (gpa == UNMAPPED_GVA ||
3950 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3951 goto emul_write;
3952
3953 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3954 goto emul_write;
3955
3956 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3957 if (is_error_page(page)) {
3958 kvm_release_page_clean(page);
3959 goto emul_write;
3960 }
3961
3962 kaddr = kmap_atomic(page);
3963 kaddr += offset_in_page(gpa);
3964 switch (bytes) {
3965 case 1:
3966 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3967 break;
3968 case 2:
3969 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3970 break;
3971 case 4:
3972 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3973 break;
3974 case 8:
3975 exchanged = CMPXCHG64(kaddr, old, new);
3976 break;
3977 default:
3978 BUG();
3979 }
3980 kunmap_atomic(kaddr);
3981 kvm_release_page_dirty(page);
3982
3983 if (!exchanged)
3984 return X86EMUL_CMPXCHG_FAILED;
3985
3986 kvm_mmu_pte_write(vcpu, gpa, new, bytes);
3987
3988 return X86EMUL_CONTINUE;
3989
3990 emul_write:
3991 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3992
3993 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
3994 }
3995
3996 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3997 {
3998 /* TODO: String I/O for in kernel device */
3999 int r;
4000
4001 if (vcpu->arch.pio.in)
4002 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4003 vcpu->arch.pio.size, pd);
4004 else
4005 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4006 vcpu->arch.pio.port, vcpu->arch.pio.size,
4007 pd);
4008 return r;
4009 }
4010
4011 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4012 unsigned short port, void *val,
4013 unsigned int count, bool in)
4014 {
4015 trace_kvm_pio(!in, port, size, count);
4016
4017 vcpu->arch.pio.port = port;
4018 vcpu->arch.pio.in = in;
4019 vcpu->arch.pio.count = count;
4020 vcpu->arch.pio.size = size;
4021
4022 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4023 vcpu->arch.pio.count = 0;
4024 return 1;
4025 }
4026
4027 vcpu->run->exit_reason = KVM_EXIT_IO;
4028 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4029 vcpu->run->io.size = size;
4030 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4031 vcpu->run->io.count = count;
4032 vcpu->run->io.port = port;
4033
4034 return 0;
4035 }
4036
4037 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4038 int size, unsigned short port, void *val,
4039 unsigned int count)
4040 {
4041 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4042 int ret;
4043
4044 if (vcpu->arch.pio.count)
4045 goto data_avail;
4046
4047 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4048 if (ret) {
4049 data_avail:
4050 memcpy(val, vcpu->arch.pio_data, size * count);
4051 vcpu->arch.pio.count = 0;
4052 return 1;
4053 }
4054
4055 return 0;
4056 }
4057
4058 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4059 int size, unsigned short port,
4060 const void *val, unsigned int count)
4061 {
4062 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4063
4064 memcpy(vcpu->arch.pio_data, val, size * count);
4065 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4066 }
4067
4068 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4069 {
4070 return kvm_x86_ops->get_segment_base(vcpu, seg);
4071 }
4072
4073 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4074 {
4075 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4076 }
4077
4078 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4079 {
4080 if (!need_emulate_wbinvd(vcpu))
4081 return X86EMUL_CONTINUE;
4082
4083 if (kvm_x86_ops->has_wbinvd_exit()) {
4084 int cpu = get_cpu();
4085
4086 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4087 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4088 wbinvd_ipi, NULL, 1);
4089 put_cpu();
4090 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4091 } else
4092 wbinvd();
4093 return X86EMUL_CONTINUE;
4094 }
4095 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4096
4097 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4098 {
4099 kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4100 }
4101
4102 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4103 {
4104 return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4105 }
4106
4107 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4108 {
4109
4110 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4111 }
4112
4113 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4114 {
4115 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4116 }
4117
4118 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4119 {
4120 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4121 unsigned long value;
4122
4123 switch (cr) {
4124 case 0:
4125 value = kvm_read_cr0(vcpu);
4126 break;
4127 case 2:
4128 value = vcpu->arch.cr2;
4129 break;
4130 case 3:
4131 value = kvm_read_cr3(vcpu);
4132 break;
4133 case 4:
4134 value = kvm_read_cr4(vcpu);
4135 break;
4136 case 8:
4137 value = kvm_get_cr8(vcpu);
4138 break;
4139 default:
4140 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4141 return 0;
4142 }
4143
4144 return value;
4145 }
4146
4147 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4148 {
4149 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4150 int res = 0;
4151
4152 switch (cr) {
4153 case 0:
4154 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4155 break;
4156 case 2:
4157 vcpu->arch.cr2 = val;
4158 break;
4159 case 3:
4160 res = kvm_set_cr3(vcpu, val);
4161 break;
4162 case 4:
4163 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4164 break;
4165 case 8:
4166 res = kvm_set_cr8(vcpu, val);
4167 break;
4168 default:
4169 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4170 res = -1;
4171 }
4172
4173 return res;
4174 }
4175
4176 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4177 {
4178 kvm_set_rflags(emul_to_vcpu(ctxt), val);
4179 }
4180
4181 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4182 {
4183 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4184 }
4185
4186 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4187 {
4188 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4189 }
4190
4191 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4192 {
4193 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4194 }
4195
4196 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4197 {
4198 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4199 }
4200
4201 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4202 {
4203 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4204 }
4205
4206 static unsigned long emulator_get_cached_segment_base(
4207 struct x86_emulate_ctxt *ctxt, int seg)
4208 {
4209 return get_segment_base(emul_to_vcpu(ctxt), seg);
4210 }
4211
4212 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4213 struct desc_struct *desc, u32 *base3,
4214 int seg)
4215 {
4216 struct kvm_segment var;
4217
4218 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4219 *selector = var.selector;
4220
4221 if (var.unusable)
4222 return false;
4223
4224 if (var.g)
4225 var.limit >>= 12;
4226 set_desc_limit(desc, var.limit);
4227 set_desc_base(desc, (unsigned long)var.base);
4228 #ifdef CONFIG_X86_64
4229 if (base3)
4230 *base3 = var.base >> 32;
4231 #endif
4232 desc->type = var.type;
4233 desc->s = var.s;
4234 desc->dpl = var.dpl;
4235 desc->p = var.present;
4236 desc->avl = var.avl;
4237 desc->l = var.l;
4238 desc->d = var.db;
4239 desc->g = var.g;
4240
4241 return true;
4242 }
4243
4244 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4245 struct desc_struct *desc, u32 base3,
4246 int seg)
4247 {
4248 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4249 struct kvm_segment var;
4250
4251 var.selector = selector;
4252 var.base = get_desc_base(desc);
4253 #ifdef CONFIG_X86_64
4254 var.base |= ((u64)base3) << 32;
4255 #endif
4256 var.limit = get_desc_limit(desc);
4257 if (desc->g)
4258 var.limit = (var.limit << 12) | 0xfff;
4259 var.type = desc->type;
4260 var.present = desc->p;
4261 var.dpl = desc->dpl;
4262 var.db = desc->d;
4263 var.s = desc->s;
4264 var.l = desc->l;
4265 var.g = desc->g;
4266 var.avl = desc->avl;
4267 var.present = desc->p;
4268 var.unusable = !var.present;
4269 var.padding = 0;
4270
4271 kvm_set_segment(vcpu, &var, seg);
4272 return;
4273 }
4274
4275 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4276 u32 msr_index, u64 *pdata)
4277 {
4278 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4279 }
4280
4281 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4282 u32 msr_index, u64 data)
4283 {
4284 return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
4285 }
4286
4287 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4288 u32 pmc, u64 *pdata)
4289 {
4290 return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4291 }
4292
4293 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4294 {
4295 emul_to_vcpu(ctxt)->arch.halt_request = 1;
4296 }
4297
4298 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4299 {
4300 preempt_disable();
4301 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4302 /*
4303 * CR0.TS may reference the host fpu state, not the guest fpu state,
4304 * so it may be clear at this point.
4305 */
4306 clts();
4307 }
4308
4309 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4310 {
4311 preempt_enable();
4312 }
4313
4314 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4315 struct x86_instruction_info *info,
4316 enum x86_intercept_stage stage)
4317 {
4318 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4319 }
4320
4321 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4322 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4323 {
4324 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4325 }
4326
4327 static struct x86_emulate_ops emulate_ops = {
4328 .read_std = kvm_read_guest_virt_system,
4329 .write_std = kvm_write_guest_virt_system,
4330 .fetch = kvm_fetch_guest_virt,
4331 .read_emulated = emulator_read_emulated,
4332 .write_emulated = emulator_write_emulated,
4333 .cmpxchg_emulated = emulator_cmpxchg_emulated,
4334 .invlpg = emulator_invlpg,
4335 .pio_in_emulated = emulator_pio_in_emulated,
4336 .pio_out_emulated = emulator_pio_out_emulated,
4337 .get_segment = emulator_get_segment,
4338 .set_segment = emulator_set_segment,
4339 .get_cached_segment_base = emulator_get_cached_segment_base,
4340 .get_gdt = emulator_get_gdt,
4341 .get_idt = emulator_get_idt,
4342 .set_gdt = emulator_set_gdt,
4343 .set_idt = emulator_set_idt,
4344 .get_cr = emulator_get_cr,
4345 .set_cr = emulator_set_cr,
4346 .set_rflags = emulator_set_rflags,
4347 .cpl = emulator_get_cpl,
4348 .get_dr = emulator_get_dr,
4349 .set_dr = emulator_set_dr,
4350 .set_msr = emulator_set_msr,
4351 .get_msr = emulator_get_msr,
4352 .read_pmc = emulator_read_pmc,
4353 .halt = emulator_halt,
4354 .wbinvd = emulator_wbinvd,
4355 .fix_hypercall = emulator_fix_hypercall,
4356 .get_fpu = emulator_get_fpu,
4357 .put_fpu = emulator_put_fpu,
4358 .intercept = emulator_intercept,
4359 .get_cpuid = emulator_get_cpuid,
4360 };
4361
4362 static void cache_all_regs(struct kvm_vcpu *vcpu)
4363 {
4364 kvm_register_read(vcpu, VCPU_REGS_RAX);
4365 kvm_register_read(vcpu, VCPU_REGS_RSP);
4366 kvm_register_read(vcpu, VCPU_REGS_RIP);
4367 vcpu->arch.regs_dirty = ~0;
4368 }
4369
4370 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4371 {
4372 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4373 /*
4374 * an sti; sti; sequence only disable interrupts for the first
4375 * instruction. So, if the last instruction, be it emulated or
4376 * not, left the system with the INT_STI flag enabled, it
4377 * means that the last instruction is an sti. We should not
4378 * leave the flag on in this case. The same goes for mov ss
4379 */
4380 if (!(int_shadow & mask))
4381 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4382 }
4383
4384 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4385 {
4386 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4387 if (ctxt->exception.vector == PF_VECTOR)
4388 kvm_propagate_fault(vcpu, &ctxt->exception);
4389 else if (ctxt->exception.error_code_valid)
4390 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4391 ctxt->exception.error_code);
4392 else
4393 kvm_queue_exception(vcpu, ctxt->exception.vector);
4394 }
4395
4396 static void init_decode_cache(struct x86_emulate_ctxt *ctxt,
4397 const unsigned long *regs)
4398 {
4399 memset(&ctxt->twobyte, 0,
4400 (void *)&ctxt->regs - (void *)&ctxt->twobyte);
4401 memcpy(ctxt->regs, regs, sizeof(ctxt->regs));
4402
4403 ctxt->fetch.start = 0;
4404 ctxt->fetch.end = 0;
4405 ctxt->io_read.pos = 0;
4406 ctxt->io_read.end = 0;
4407 ctxt->mem_read.pos = 0;
4408 ctxt->mem_read.end = 0;
4409 }
4410
4411 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4412 {
4413 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4414 int cs_db, cs_l;
4415
4416 /*
4417 * TODO: fix emulate.c to use guest_read/write_register
4418 * instead of direct ->regs accesses, can save hundred cycles
4419 * on Intel for instructions that don't read/change RSP, for
4420 * for example.
4421 */
4422 cache_all_regs(vcpu);
4423
4424 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4425
4426 ctxt->eflags = kvm_get_rflags(vcpu);
4427 ctxt->eip = kvm_rip_read(vcpu);
4428 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4429 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
4430 cs_l ? X86EMUL_MODE_PROT64 :
4431 cs_db ? X86EMUL_MODE_PROT32 :
4432 X86EMUL_MODE_PROT16;
4433 ctxt->guest_mode = is_guest_mode(vcpu);
4434
4435 init_decode_cache(ctxt, vcpu->arch.regs);
4436 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4437 }
4438
4439 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4440 {
4441 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4442 int ret;
4443
4444 init_emulate_ctxt(vcpu);
4445
4446 ctxt->op_bytes = 2;
4447 ctxt->ad_bytes = 2;
4448 ctxt->_eip = ctxt->eip + inc_eip;
4449 ret = emulate_int_real(ctxt, irq);
4450
4451 if (ret != X86EMUL_CONTINUE)
4452 return EMULATE_FAIL;
4453
4454 ctxt->eip = ctxt->_eip;
4455 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
4456 kvm_rip_write(vcpu, ctxt->eip);
4457 kvm_set_rflags(vcpu, ctxt->eflags);
4458
4459 if (irq == NMI_VECTOR)
4460 vcpu->arch.nmi_pending = 0;
4461 else
4462 vcpu->arch.interrupt.pending = false;
4463
4464 return EMULATE_DONE;
4465 }
4466 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4467
4468 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4469 {
4470 int r = EMULATE_DONE;
4471
4472 ++vcpu->stat.insn_emulation_fail;
4473 trace_kvm_emulate_insn_failed(vcpu);
4474 if (!is_guest_mode(vcpu)) {
4475 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4476 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4477 vcpu->run->internal.ndata = 0;
4478 r = EMULATE_FAIL;
4479 }
4480 kvm_queue_exception(vcpu, UD_VECTOR);
4481
4482 return r;
4483 }
4484
4485 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4486 {
4487 gpa_t gpa;
4488
4489 if (tdp_enabled)
4490 return false;
4491
4492 /*
4493 * if emulation was due to access to shadowed page table
4494 * and it failed try to unshadow page and re-enter the
4495 * guest to let CPU execute the instruction.
4496 */
4497 if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4498 return true;
4499
4500 gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4501
4502 if (gpa == UNMAPPED_GVA)
4503 return true; /* let cpu generate fault */
4504
4505 if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4506 return true;
4507
4508 return false;
4509 }
4510
4511 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4512 unsigned long cr2, int emulation_type)
4513 {
4514 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4515 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4516
4517 last_retry_eip = vcpu->arch.last_retry_eip;
4518 last_retry_addr = vcpu->arch.last_retry_addr;
4519
4520 /*
4521 * If the emulation is caused by #PF and it is non-page_table
4522 * writing instruction, it means the VM-EXIT is caused by shadow
4523 * page protected, we can zap the shadow page and retry this
4524 * instruction directly.
4525 *
4526 * Note: if the guest uses a non-page-table modifying instruction
4527 * on the PDE that points to the instruction, then we will unmap
4528 * the instruction and go to an infinite loop. So, we cache the
4529 * last retried eip and the last fault address, if we meet the eip
4530 * and the address again, we can break out of the potential infinite
4531 * loop.
4532 */
4533 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4534
4535 if (!(emulation_type & EMULTYPE_RETRY))
4536 return false;
4537
4538 if (x86_page_table_writing_insn(ctxt))
4539 return false;
4540
4541 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4542 return false;
4543
4544 vcpu->arch.last_retry_eip = ctxt->eip;
4545 vcpu->arch.last_retry_addr = cr2;
4546
4547 if (!vcpu->arch.mmu.direct_map)
4548 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4549
4550 kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4551
4552 return true;
4553 }
4554
4555 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4556 unsigned long cr2,
4557 int emulation_type,
4558 void *insn,
4559 int insn_len)
4560 {
4561 int r;
4562 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4563 bool writeback = true;
4564
4565 kvm_clear_exception_queue(vcpu);
4566
4567 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4568 init_emulate_ctxt(vcpu);
4569 ctxt->interruptibility = 0;
4570 ctxt->have_exception = false;
4571 ctxt->perm_ok = false;
4572
4573 ctxt->only_vendor_specific_insn
4574 = emulation_type & EMULTYPE_TRAP_UD;
4575
4576 r = x86_decode_insn(ctxt, insn, insn_len);
4577
4578 trace_kvm_emulate_insn_start(vcpu);
4579 ++vcpu->stat.insn_emulation;
4580 if (r != EMULATION_OK) {
4581 if (emulation_type & EMULTYPE_TRAP_UD)
4582 return EMULATE_FAIL;
4583 if (reexecute_instruction(vcpu, cr2))
4584 return EMULATE_DONE;
4585 if (emulation_type & EMULTYPE_SKIP)
4586 return EMULATE_FAIL;
4587 return handle_emulation_failure(vcpu);
4588 }
4589 }
4590
4591 if (emulation_type & EMULTYPE_SKIP) {
4592 kvm_rip_write(vcpu, ctxt->_eip);
4593 return EMULATE_DONE;
4594 }
4595
4596 if (retry_instruction(ctxt, cr2, emulation_type))
4597 return EMULATE_DONE;
4598
4599 /* this is needed for vmware backdoor interface to work since it
4600 changes registers values during IO operation */
4601 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4602 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4603 memcpy(ctxt->regs, vcpu->arch.regs, sizeof ctxt->regs);
4604 }
4605
4606 restart:
4607 r = x86_emulate_insn(ctxt);
4608
4609 if (r == EMULATION_INTERCEPTED)
4610 return EMULATE_DONE;
4611
4612 if (r == EMULATION_FAILED) {
4613 if (reexecute_instruction(vcpu, cr2))
4614 return EMULATE_DONE;
4615
4616 return handle_emulation_failure(vcpu);
4617 }
4618
4619 if (ctxt->have_exception) {
4620 inject_emulated_exception(vcpu);
4621 r = EMULATE_DONE;
4622 } else if (vcpu->arch.pio.count) {
4623 if (!vcpu->arch.pio.in)
4624 vcpu->arch.pio.count = 0;
4625 else
4626 writeback = false;
4627 r = EMULATE_DO_MMIO;
4628 } else if (vcpu->mmio_needed) {
4629 if (!vcpu->mmio_is_write)
4630 writeback = false;
4631 r = EMULATE_DO_MMIO;
4632 } else if (r == EMULATION_RESTART)
4633 goto restart;
4634 else
4635 r = EMULATE_DONE;
4636
4637 if (writeback) {
4638 toggle_interruptibility(vcpu, ctxt->interruptibility);
4639 kvm_set_rflags(vcpu, ctxt->eflags);
4640 kvm_make_request(KVM_REQ_EVENT, vcpu);
4641 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
4642 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
4643 kvm_rip_write(vcpu, ctxt->eip);
4644 } else
4645 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
4646
4647 return r;
4648 }
4649 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4650
4651 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4652 {
4653 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4654 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
4655 size, port, &val, 1);
4656 /* do not return to emulator after return from userspace */
4657 vcpu->arch.pio.count = 0;
4658 return ret;
4659 }
4660 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4661
4662 static void tsc_bad(void *info)
4663 {
4664 __this_cpu_write(cpu_tsc_khz, 0);
4665 }
4666
4667 static void tsc_khz_changed(void *data)
4668 {
4669 struct cpufreq_freqs *freq = data;
4670 unsigned long khz = 0;
4671
4672 if (data)
4673 khz = freq->new;
4674 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4675 khz = cpufreq_quick_get(raw_smp_processor_id());
4676 if (!khz)
4677 khz = tsc_khz;
4678 __this_cpu_write(cpu_tsc_khz, khz);
4679 }
4680
4681 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4682 void *data)
4683 {
4684 struct cpufreq_freqs *freq = data;
4685 struct kvm *kvm;
4686 struct kvm_vcpu *vcpu;
4687 int i, send_ipi = 0;
4688
4689 /*
4690 * We allow guests to temporarily run on slowing clocks,
4691 * provided we notify them after, or to run on accelerating
4692 * clocks, provided we notify them before. Thus time never
4693 * goes backwards.
4694 *
4695 * However, we have a problem. We can't atomically update
4696 * the frequency of a given CPU from this function; it is
4697 * merely a notifier, which can be called from any CPU.
4698 * Changing the TSC frequency at arbitrary points in time
4699 * requires a recomputation of local variables related to
4700 * the TSC for each VCPU. We must flag these local variables
4701 * to be updated and be sure the update takes place with the
4702 * new frequency before any guests proceed.
4703 *
4704 * Unfortunately, the combination of hotplug CPU and frequency
4705 * change creates an intractable locking scenario; the order
4706 * of when these callouts happen is undefined with respect to
4707 * CPU hotplug, and they can race with each other. As such,
4708 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4709 * undefined; you can actually have a CPU frequency change take
4710 * place in between the computation of X and the setting of the
4711 * variable. To protect against this problem, all updates of
4712 * the per_cpu tsc_khz variable are done in an interrupt
4713 * protected IPI, and all callers wishing to update the value
4714 * must wait for a synchronous IPI to complete (which is trivial
4715 * if the caller is on the CPU already). This establishes the
4716 * necessary total order on variable updates.
4717 *
4718 * Note that because a guest time update may take place
4719 * anytime after the setting of the VCPU's request bit, the
4720 * correct TSC value must be set before the request. However,
4721 * to ensure the update actually makes it to any guest which
4722 * starts running in hardware virtualization between the set
4723 * and the acquisition of the spinlock, we must also ping the
4724 * CPU after setting the request bit.
4725 *
4726 */
4727
4728 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4729 return 0;
4730 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4731 return 0;
4732
4733 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4734
4735 raw_spin_lock(&kvm_lock);
4736 list_for_each_entry(kvm, &vm_list, vm_list) {
4737 kvm_for_each_vcpu(i, vcpu, kvm) {
4738 if (vcpu->cpu != freq->cpu)
4739 continue;
4740 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4741 if (vcpu->cpu != smp_processor_id())
4742 send_ipi = 1;
4743 }
4744 }
4745 raw_spin_unlock(&kvm_lock);
4746
4747 if (freq->old < freq->new && send_ipi) {
4748 /*
4749 * We upscale the frequency. Must make the guest
4750 * doesn't see old kvmclock values while running with
4751 * the new frequency, otherwise we risk the guest sees
4752 * time go backwards.
4753 *
4754 * In case we update the frequency for another cpu
4755 * (which might be in guest context) send an interrupt
4756 * to kick the cpu out of guest context. Next time
4757 * guest context is entered kvmclock will be updated,
4758 * so the guest will not see stale values.
4759 */
4760 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4761 }
4762 return 0;
4763 }
4764
4765 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4766 .notifier_call = kvmclock_cpufreq_notifier
4767 };
4768
4769 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4770 unsigned long action, void *hcpu)
4771 {
4772 unsigned int cpu = (unsigned long)hcpu;
4773
4774 switch (action) {
4775 case CPU_ONLINE:
4776 case CPU_DOWN_FAILED:
4777 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4778 break;
4779 case CPU_DOWN_PREPARE:
4780 smp_call_function_single(cpu, tsc_bad, NULL, 1);
4781 break;
4782 }
4783 return NOTIFY_OK;
4784 }
4785
4786 static struct notifier_block kvmclock_cpu_notifier_block = {
4787 .notifier_call = kvmclock_cpu_notifier,
4788 .priority = -INT_MAX
4789 };
4790
4791 static void kvm_timer_init(void)
4792 {
4793 int cpu;
4794
4795 max_tsc_khz = tsc_khz;
4796 register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4797 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4798 #ifdef CONFIG_CPU_FREQ
4799 struct cpufreq_policy policy;
4800 memset(&policy, 0, sizeof(policy));
4801 cpu = get_cpu();
4802 cpufreq_get_policy(&policy, cpu);
4803 if (policy.cpuinfo.max_freq)
4804 max_tsc_khz = policy.cpuinfo.max_freq;
4805 put_cpu();
4806 #endif
4807 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4808 CPUFREQ_TRANSITION_NOTIFIER);
4809 }
4810 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
4811 for_each_online_cpu(cpu)
4812 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4813 }
4814
4815 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4816
4817 int kvm_is_in_guest(void)
4818 {
4819 return __this_cpu_read(current_vcpu) != NULL;
4820 }
4821
4822 static int kvm_is_user_mode(void)
4823 {
4824 int user_mode = 3;
4825
4826 if (__this_cpu_read(current_vcpu))
4827 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
4828
4829 return user_mode != 0;
4830 }
4831
4832 static unsigned long kvm_get_guest_ip(void)
4833 {
4834 unsigned long ip = 0;
4835
4836 if (__this_cpu_read(current_vcpu))
4837 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
4838
4839 return ip;
4840 }
4841
4842 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4843 .is_in_guest = kvm_is_in_guest,
4844 .is_user_mode = kvm_is_user_mode,
4845 .get_guest_ip = kvm_get_guest_ip,
4846 };
4847
4848 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4849 {
4850 __this_cpu_write(current_vcpu, vcpu);
4851 }
4852 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4853
4854 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4855 {
4856 __this_cpu_write(current_vcpu, NULL);
4857 }
4858 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4859
4860 static void kvm_set_mmio_spte_mask(void)
4861 {
4862 u64 mask;
4863 int maxphyaddr = boot_cpu_data.x86_phys_bits;
4864
4865 /*
4866 * Set the reserved bits and the present bit of an paging-structure
4867 * entry to generate page fault with PFER.RSV = 1.
4868 */
4869 mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
4870 mask |= 1ull;
4871
4872 #ifdef CONFIG_X86_64
4873 /*
4874 * If reserved bit is not supported, clear the present bit to disable
4875 * mmio page fault.
4876 */
4877 if (maxphyaddr == 52)
4878 mask &= ~1ull;
4879 #endif
4880
4881 kvm_mmu_set_mmio_spte_mask(mask);
4882 }
4883
4884 int kvm_arch_init(void *opaque)
4885 {
4886 int r;
4887 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4888
4889 if (kvm_x86_ops) {
4890 printk(KERN_ERR "kvm: already loaded the other module\n");
4891 r = -EEXIST;
4892 goto out;
4893 }
4894
4895 if (!ops->cpu_has_kvm_support()) {
4896 printk(KERN_ERR "kvm: no hardware support\n");
4897 r = -EOPNOTSUPP;
4898 goto out;
4899 }
4900 if (ops->disabled_by_bios()) {
4901 printk(KERN_ERR "kvm: disabled by bios\n");
4902 r = -EOPNOTSUPP;
4903 goto out;
4904 }
4905
4906 r = kvm_mmu_module_init();
4907 if (r)
4908 goto out;
4909
4910 kvm_set_mmio_spte_mask();
4911 kvm_init_msr_list();
4912
4913 kvm_x86_ops = ops;
4914 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4915 PT_DIRTY_MASK, PT64_NX_MASK, 0);
4916
4917 kvm_timer_init();
4918
4919 perf_register_guest_info_callbacks(&kvm_guest_cbs);
4920
4921 if (cpu_has_xsave)
4922 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4923
4924 return 0;
4925
4926 out:
4927 return r;
4928 }
4929
4930 void kvm_arch_exit(void)
4931 {
4932 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4933
4934 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4935 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4936 CPUFREQ_TRANSITION_NOTIFIER);
4937 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4938 kvm_x86_ops = NULL;
4939 kvm_mmu_module_exit();
4940 }
4941
4942 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4943 {
4944 ++vcpu->stat.halt_exits;
4945 if (irqchip_in_kernel(vcpu->kvm)) {
4946 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4947 return 1;
4948 } else {
4949 vcpu->run->exit_reason = KVM_EXIT_HLT;
4950 return 0;
4951 }
4952 }
4953 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4954
4955 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4956 {
4957 u64 param, ingpa, outgpa, ret;
4958 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4959 bool fast, longmode;
4960 int cs_db, cs_l;
4961
4962 /*
4963 * hypercall generates UD from non zero cpl and real mode
4964 * per HYPER-V spec
4965 */
4966 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4967 kvm_queue_exception(vcpu, UD_VECTOR);
4968 return 0;
4969 }
4970
4971 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4972 longmode = is_long_mode(vcpu) && cs_l == 1;
4973
4974 if (!longmode) {
4975 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4976 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4977 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4978 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4979 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4980 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4981 }
4982 #ifdef CONFIG_X86_64
4983 else {
4984 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4985 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4986 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4987 }
4988 #endif
4989
4990 code = param & 0xffff;
4991 fast = (param >> 16) & 0x1;
4992 rep_cnt = (param >> 32) & 0xfff;
4993 rep_idx = (param >> 48) & 0xfff;
4994
4995 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4996
4997 switch (code) {
4998 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4999 kvm_vcpu_on_spin(vcpu);
5000 break;
5001 default:
5002 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5003 break;
5004 }
5005
5006 ret = res | (((u64)rep_done & 0xfff) << 32);
5007 if (longmode) {
5008 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5009 } else {
5010 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5011 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5012 }
5013
5014 return 1;
5015 }
5016
5017 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5018 {
5019 unsigned long nr, a0, a1, a2, a3, ret;
5020 int r = 1;
5021
5022 if (kvm_hv_hypercall_enabled(vcpu->kvm))
5023 return kvm_hv_hypercall(vcpu);
5024
5025 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5026 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5027 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5028 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5029 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5030
5031 trace_kvm_hypercall(nr, a0, a1, a2, a3);
5032
5033 if (!is_long_mode(vcpu)) {
5034 nr &= 0xFFFFFFFF;
5035 a0 &= 0xFFFFFFFF;
5036 a1 &= 0xFFFFFFFF;
5037 a2 &= 0xFFFFFFFF;
5038 a3 &= 0xFFFFFFFF;
5039 }
5040
5041 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5042 ret = -KVM_EPERM;
5043 goto out;
5044 }
5045
5046 switch (nr) {
5047 case KVM_HC_VAPIC_POLL_IRQ:
5048 ret = 0;
5049 break;
5050 default:
5051 ret = -KVM_ENOSYS;
5052 break;
5053 }
5054 out:
5055 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5056 ++vcpu->stat.hypercalls;
5057 return r;
5058 }
5059 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5060
5061 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5062 {
5063 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5064 char instruction[3];
5065 unsigned long rip = kvm_rip_read(vcpu);
5066
5067 /*
5068 * Blow out the MMU to ensure that no other VCPU has an active mapping
5069 * to ensure that the updated hypercall appears atomically across all
5070 * VCPUs.
5071 */
5072 kvm_mmu_zap_all(vcpu->kvm);
5073
5074 kvm_x86_ops->patch_hypercall(vcpu, instruction);
5075
5076 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5077 }
5078
5079 /*
5080 * Check if userspace requested an interrupt window, and that the
5081 * interrupt window is open.
5082 *
5083 * No need to exit to userspace if we already have an interrupt queued.
5084 */
5085 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5086 {
5087 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5088 vcpu->run->request_interrupt_window &&
5089 kvm_arch_interrupt_allowed(vcpu));
5090 }
5091
5092 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5093 {
5094 struct kvm_run *kvm_run = vcpu->run;
5095
5096 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5097 kvm_run->cr8 = kvm_get_cr8(vcpu);
5098 kvm_run->apic_base = kvm_get_apic_base(vcpu);
5099 if (irqchip_in_kernel(vcpu->kvm))
5100 kvm_run->ready_for_interrupt_injection = 1;
5101 else
5102 kvm_run->ready_for_interrupt_injection =
5103 kvm_arch_interrupt_allowed(vcpu) &&
5104 !kvm_cpu_has_interrupt(vcpu) &&
5105 !kvm_event_needs_reinjection(vcpu);
5106 }
5107
5108 static void vapic_enter(struct kvm_vcpu *vcpu)
5109 {
5110 struct kvm_lapic *apic = vcpu->arch.apic;
5111 struct page *page;
5112
5113 if (!apic || !apic->vapic_addr)
5114 return;
5115
5116 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5117
5118 vcpu->arch.apic->vapic_page = page;
5119 }
5120
5121 static void vapic_exit(struct kvm_vcpu *vcpu)
5122 {
5123 struct kvm_lapic *apic = vcpu->arch.apic;
5124 int idx;
5125
5126 if (!apic || !apic->vapic_addr)
5127 return;
5128
5129 idx = srcu_read_lock(&vcpu->kvm->srcu);
5130 kvm_release_page_dirty(apic->vapic_page);
5131 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5132 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5133 }
5134
5135 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5136 {
5137 int max_irr, tpr;
5138
5139 if (!kvm_x86_ops->update_cr8_intercept)
5140 return;
5141
5142 if (!vcpu->arch.apic)
5143 return;
5144
5145 if (!vcpu->arch.apic->vapic_addr)
5146 max_irr = kvm_lapic_find_highest_irr(vcpu);
5147 else
5148 max_irr = -1;
5149
5150 if (max_irr != -1)
5151 max_irr >>= 4;
5152
5153 tpr = kvm_lapic_get_cr8(vcpu);
5154
5155 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5156 }
5157
5158 static void inject_pending_event(struct kvm_vcpu *vcpu)
5159 {
5160 /* try to reinject previous events if any */
5161 if (vcpu->arch.exception.pending) {
5162 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5163 vcpu->arch.exception.has_error_code,
5164 vcpu->arch.exception.error_code);
5165 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5166 vcpu->arch.exception.has_error_code,
5167 vcpu->arch.exception.error_code,
5168 vcpu->arch.exception.reinject);
5169 return;
5170 }
5171
5172 if (vcpu->arch.nmi_injected) {
5173 kvm_x86_ops->set_nmi(vcpu);
5174 return;
5175 }
5176
5177 if (vcpu->arch.interrupt.pending) {
5178 kvm_x86_ops->set_irq(vcpu);
5179 return;
5180 }
5181
5182 /* try to inject new event if pending */
5183 if (vcpu->arch.nmi_pending) {
5184 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5185 --vcpu->arch.nmi_pending;
5186 vcpu->arch.nmi_injected = true;
5187 kvm_x86_ops->set_nmi(vcpu);
5188 }
5189 } else if (kvm_cpu_has_interrupt(vcpu)) {
5190 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5191 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5192 false);
5193 kvm_x86_ops->set_irq(vcpu);
5194 }
5195 }
5196 }
5197
5198 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5199 {
5200 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5201 !vcpu->guest_xcr0_loaded) {
5202 /* kvm_set_xcr() also depends on this */
5203 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5204 vcpu->guest_xcr0_loaded = 1;
5205 }
5206 }
5207
5208 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5209 {
5210 if (vcpu->guest_xcr0_loaded) {
5211 if (vcpu->arch.xcr0 != host_xcr0)
5212 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5213 vcpu->guest_xcr0_loaded = 0;
5214 }
5215 }
5216
5217 static void process_nmi(struct kvm_vcpu *vcpu)
5218 {
5219 unsigned limit = 2;
5220
5221 /*
5222 * x86 is limited to one NMI running, and one NMI pending after it.
5223 * If an NMI is already in progress, limit further NMIs to just one.
5224 * Otherwise, allow two (and we'll inject the first one immediately).
5225 */
5226 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5227 limit = 1;
5228
5229 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5230 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5231 kvm_make_request(KVM_REQ_EVENT, vcpu);
5232 }
5233
5234 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5235 {
5236 int r;
5237 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5238 vcpu->run->request_interrupt_window;
5239 bool req_immediate_exit = 0;
5240
5241 if (vcpu->requests) {
5242 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5243 kvm_mmu_unload(vcpu);
5244 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5245 __kvm_migrate_timers(vcpu);
5246 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5247 r = kvm_guest_time_update(vcpu);
5248 if (unlikely(r))
5249 goto out;
5250 }
5251 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5252 kvm_mmu_sync_roots(vcpu);
5253 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5254 kvm_x86_ops->tlb_flush(vcpu);
5255 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5256 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5257 r = 0;
5258 goto out;
5259 }
5260 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5261 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5262 r = 0;
5263 goto out;
5264 }
5265 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5266 vcpu->fpu_active = 0;
5267 kvm_x86_ops->fpu_deactivate(vcpu);
5268 }
5269 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5270 /* Page is swapped out. Do synthetic halt */
5271 vcpu->arch.apf.halted = true;
5272 r = 1;
5273 goto out;
5274 }
5275 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5276 record_steal_time(vcpu);
5277 if (kvm_check_request(KVM_REQ_NMI, vcpu))
5278 process_nmi(vcpu);
5279 req_immediate_exit =
5280 kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
5281 if (kvm_check_request(KVM_REQ_PMU, vcpu))
5282 kvm_handle_pmu_event(vcpu);
5283 if (kvm_check_request(KVM_REQ_PMI, vcpu))
5284 kvm_deliver_pmi(vcpu);
5285 }
5286
5287 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5288 inject_pending_event(vcpu);
5289
5290 /* enable NMI/IRQ window open exits if needed */
5291 if (vcpu->arch.nmi_pending)
5292 kvm_x86_ops->enable_nmi_window(vcpu);
5293 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5294 kvm_x86_ops->enable_irq_window(vcpu);
5295
5296 if (kvm_lapic_enabled(vcpu)) {
5297 update_cr8_intercept(vcpu);
5298 kvm_lapic_sync_to_vapic(vcpu);
5299 }
5300 }
5301
5302 r = kvm_mmu_reload(vcpu);
5303 if (unlikely(r)) {
5304 goto cancel_injection;
5305 }
5306
5307 preempt_disable();
5308
5309 kvm_x86_ops->prepare_guest_switch(vcpu);
5310 if (vcpu->fpu_active)
5311 kvm_load_guest_fpu(vcpu);
5312 kvm_load_guest_xcr0(vcpu);
5313
5314 vcpu->mode = IN_GUEST_MODE;
5315
5316 /* We should set ->mode before check ->requests,
5317 * see the comment in make_all_cpus_request.
5318 */
5319 smp_mb();
5320
5321 local_irq_disable();
5322
5323 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5324 || need_resched() || signal_pending(current)) {
5325 vcpu->mode = OUTSIDE_GUEST_MODE;
5326 smp_wmb();
5327 local_irq_enable();
5328 preempt_enable();
5329 r = 1;
5330 goto cancel_injection;
5331 }
5332
5333 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5334
5335 if (req_immediate_exit)
5336 smp_send_reschedule(vcpu->cpu);
5337
5338 kvm_guest_enter();
5339
5340 if (unlikely(vcpu->arch.switch_db_regs)) {
5341 set_debugreg(0, 7);
5342 set_debugreg(vcpu->arch.eff_db[0], 0);
5343 set_debugreg(vcpu->arch.eff_db[1], 1);
5344 set_debugreg(vcpu->arch.eff_db[2], 2);
5345 set_debugreg(vcpu->arch.eff_db[3], 3);
5346 }
5347
5348 trace_kvm_entry(vcpu->vcpu_id);
5349 kvm_x86_ops->run(vcpu);
5350
5351 /*
5352 * If the guest has used debug registers, at least dr7
5353 * will be disabled while returning to the host.
5354 * If we don't have active breakpoints in the host, we don't
5355 * care about the messed up debug address registers. But if
5356 * we have some of them active, restore the old state.
5357 */
5358 if (hw_breakpoint_active())
5359 hw_breakpoint_restore();
5360
5361 vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu);
5362
5363 vcpu->mode = OUTSIDE_GUEST_MODE;
5364 smp_wmb();
5365 local_irq_enable();
5366
5367 ++vcpu->stat.exits;
5368
5369 /*
5370 * We must have an instruction between local_irq_enable() and
5371 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5372 * the interrupt shadow. The stat.exits increment will do nicely.
5373 * But we need to prevent reordering, hence this barrier():
5374 */
5375 barrier();
5376
5377 kvm_guest_exit();
5378
5379 preempt_enable();
5380
5381 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5382
5383 /*
5384 * Profile KVM exit RIPs:
5385 */
5386 if (unlikely(prof_on == KVM_PROFILING)) {
5387 unsigned long rip = kvm_rip_read(vcpu);
5388 profile_hit(KVM_PROFILING, (void *)rip);
5389 }
5390
5391 if (unlikely(vcpu->arch.tsc_always_catchup))
5392 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5393
5394 if (vcpu->arch.apic_attention)
5395 kvm_lapic_sync_from_vapic(vcpu);
5396
5397 r = kvm_x86_ops->handle_exit(vcpu);
5398 return r;
5399
5400 cancel_injection:
5401 kvm_x86_ops->cancel_injection(vcpu);
5402 if (unlikely(vcpu->arch.apic_attention))
5403 kvm_lapic_sync_from_vapic(vcpu);
5404 out:
5405 return r;
5406 }
5407
5408
5409 static int __vcpu_run(struct kvm_vcpu *vcpu)
5410 {
5411 int r;
5412 struct kvm *kvm = vcpu->kvm;
5413
5414 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5415 pr_debug("vcpu %d received sipi with vector # %x\n",
5416 vcpu->vcpu_id, vcpu->arch.sipi_vector);
5417 kvm_lapic_reset(vcpu);
5418 r = kvm_arch_vcpu_reset(vcpu);
5419 if (r)
5420 return r;
5421 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5422 }
5423
5424 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5425 vapic_enter(vcpu);
5426
5427 r = 1;
5428 while (r > 0) {
5429 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5430 !vcpu->arch.apf.halted)
5431 r = vcpu_enter_guest(vcpu);
5432 else {
5433 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5434 kvm_vcpu_block(vcpu);
5435 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5436 if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5437 {
5438 switch(vcpu->arch.mp_state) {
5439 case KVM_MP_STATE_HALTED:
5440 vcpu->arch.mp_state =
5441 KVM_MP_STATE_RUNNABLE;
5442 case KVM_MP_STATE_RUNNABLE:
5443 vcpu->arch.apf.halted = false;
5444 break;
5445 case KVM_MP_STATE_SIPI_RECEIVED:
5446 default:
5447 r = -EINTR;
5448 break;
5449 }
5450 }
5451 }
5452
5453 if (r <= 0)
5454 break;
5455
5456 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5457 if (kvm_cpu_has_pending_timer(vcpu))
5458 kvm_inject_pending_timer_irqs(vcpu);
5459
5460 if (dm_request_for_irq_injection(vcpu)) {
5461 r = -EINTR;
5462 vcpu->run->exit_reason = KVM_EXIT_INTR;
5463 ++vcpu->stat.request_irq_exits;
5464 }
5465
5466 kvm_check_async_pf_completion(vcpu);
5467
5468 if (signal_pending(current)) {
5469 r = -EINTR;
5470 vcpu->run->exit_reason = KVM_EXIT_INTR;
5471 ++vcpu->stat.signal_exits;
5472 }
5473 if (need_resched()) {
5474 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5475 kvm_resched(vcpu);
5476 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5477 }
5478 }
5479
5480 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5481
5482 vapic_exit(vcpu);
5483
5484 return r;
5485 }
5486
5487 /*
5488 * Implements the following, as a state machine:
5489 *
5490 * read:
5491 * for each fragment
5492 * write gpa, len
5493 * exit
5494 * copy data
5495 * execute insn
5496 *
5497 * write:
5498 * for each fragment
5499 * write gpa, len
5500 * copy data
5501 * exit
5502 */
5503 static int complete_mmio(struct kvm_vcpu *vcpu)
5504 {
5505 struct kvm_run *run = vcpu->run;
5506 struct kvm_mmio_fragment *frag;
5507 int r;
5508
5509 if (!(vcpu->arch.pio.count || vcpu->mmio_needed))
5510 return 1;
5511
5512 if (vcpu->mmio_needed) {
5513 /* Complete previous fragment */
5514 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment++];
5515 if (!vcpu->mmio_is_write)
5516 memcpy(frag->data, run->mmio.data, frag->len);
5517 if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
5518 vcpu->mmio_needed = 0;
5519 if (vcpu->mmio_is_write)
5520 return 1;
5521 vcpu->mmio_read_completed = 1;
5522 goto done;
5523 }
5524 /* Initiate next fragment */
5525 ++frag;
5526 run->exit_reason = KVM_EXIT_MMIO;
5527 run->mmio.phys_addr = frag->gpa;
5528 if (vcpu->mmio_is_write)
5529 memcpy(run->mmio.data, frag->data, frag->len);
5530 run->mmio.len = frag->len;
5531 run->mmio.is_write = vcpu->mmio_is_write;
5532 return 0;
5533
5534 }
5535 done:
5536 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5537 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5538 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5539 if (r != EMULATE_DONE)
5540 return 0;
5541 return 1;
5542 }
5543
5544 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5545 {
5546 int r;
5547 sigset_t sigsaved;
5548
5549 if (!tsk_used_math(current) && init_fpu(current))
5550 return -ENOMEM;
5551
5552 if (vcpu->sigset_active)
5553 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5554
5555 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5556 kvm_vcpu_block(vcpu);
5557 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5558 r = -EAGAIN;
5559 goto out;
5560 }
5561
5562 /* re-sync apic's tpr */
5563 if (!irqchip_in_kernel(vcpu->kvm)) {
5564 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5565 r = -EINVAL;
5566 goto out;
5567 }
5568 }
5569
5570 r = complete_mmio(vcpu);
5571 if (r <= 0)
5572 goto out;
5573
5574 r = __vcpu_run(vcpu);
5575
5576 out:
5577 post_kvm_run_save(vcpu);
5578 if (vcpu->sigset_active)
5579 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5580
5581 return r;
5582 }
5583
5584 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5585 {
5586 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
5587 /*
5588 * We are here if userspace calls get_regs() in the middle of
5589 * instruction emulation. Registers state needs to be copied
5590 * back from emulation context to vcpu. Userspace shouldn't do
5591 * that usually, but some bad designed PV devices (vmware
5592 * backdoor interface) need this to work
5593 */
5594 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5595 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
5596 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5597 }
5598 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5599 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5600 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5601 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5602 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5603 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5604 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5605 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5606 #ifdef CONFIG_X86_64
5607 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5608 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5609 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5610 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5611 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5612 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5613 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5614 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5615 #endif
5616
5617 regs->rip = kvm_rip_read(vcpu);
5618 regs->rflags = kvm_get_rflags(vcpu);
5619
5620 return 0;
5621 }
5622
5623 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5624 {
5625 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
5626 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5627
5628 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5629 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5630 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5631 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5632 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5633 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5634 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5635 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5636 #ifdef CONFIG_X86_64
5637 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5638 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5639 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5640 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5641 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5642 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5643 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5644 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5645 #endif
5646
5647 kvm_rip_write(vcpu, regs->rip);
5648 kvm_set_rflags(vcpu, regs->rflags);
5649
5650 vcpu->arch.exception.pending = false;
5651
5652 kvm_make_request(KVM_REQ_EVENT, vcpu);
5653
5654 return 0;
5655 }
5656
5657 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5658 {
5659 struct kvm_segment cs;
5660
5661 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5662 *db = cs.db;
5663 *l = cs.l;
5664 }
5665 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5666
5667 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5668 struct kvm_sregs *sregs)
5669 {
5670 struct desc_ptr dt;
5671
5672 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5673 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5674 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5675 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5676 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5677 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5678
5679 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5680 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5681
5682 kvm_x86_ops->get_idt(vcpu, &dt);
5683 sregs->idt.limit = dt.size;
5684 sregs->idt.base = dt.address;
5685 kvm_x86_ops->get_gdt(vcpu, &dt);
5686 sregs->gdt.limit = dt.size;
5687 sregs->gdt.base = dt.address;
5688
5689 sregs->cr0 = kvm_read_cr0(vcpu);
5690 sregs->cr2 = vcpu->arch.cr2;
5691 sregs->cr3 = kvm_read_cr3(vcpu);
5692 sregs->cr4 = kvm_read_cr4(vcpu);
5693 sregs->cr8 = kvm_get_cr8(vcpu);
5694 sregs->efer = vcpu->arch.efer;
5695 sregs->apic_base = kvm_get_apic_base(vcpu);
5696
5697 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5698
5699 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5700 set_bit(vcpu->arch.interrupt.nr,
5701 (unsigned long *)sregs->interrupt_bitmap);
5702
5703 return 0;
5704 }
5705
5706 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5707 struct kvm_mp_state *mp_state)
5708 {
5709 mp_state->mp_state = vcpu->arch.mp_state;
5710 return 0;
5711 }
5712
5713 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5714 struct kvm_mp_state *mp_state)
5715 {
5716 vcpu->arch.mp_state = mp_state->mp_state;
5717 kvm_make_request(KVM_REQ_EVENT, vcpu);
5718 return 0;
5719 }
5720
5721 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
5722 int reason, bool has_error_code, u32 error_code)
5723 {
5724 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5725 int ret;
5726
5727 init_emulate_ctxt(vcpu);
5728
5729 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
5730 has_error_code, error_code);
5731
5732 if (ret)
5733 return EMULATE_FAIL;
5734
5735 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
5736 kvm_rip_write(vcpu, ctxt->eip);
5737 kvm_set_rflags(vcpu, ctxt->eflags);
5738 kvm_make_request(KVM_REQ_EVENT, vcpu);
5739 return EMULATE_DONE;
5740 }
5741 EXPORT_SYMBOL_GPL(kvm_task_switch);
5742
5743 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5744 struct kvm_sregs *sregs)
5745 {
5746 int mmu_reset_needed = 0;
5747 int pending_vec, max_bits, idx;
5748 struct desc_ptr dt;
5749
5750 dt.size = sregs->idt.limit;
5751 dt.address = sregs->idt.base;
5752 kvm_x86_ops->set_idt(vcpu, &dt);
5753 dt.size = sregs->gdt.limit;
5754 dt.address = sregs->gdt.base;
5755 kvm_x86_ops->set_gdt(vcpu, &dt);
5756
5757 vcpu->arch.cr2 = sregs->cr2;
5758 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
5759 vcpu->arch.cr3 = sregs->cr3;
5760 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
5761
5762 kvm_set_cr8(vcpu, sregs->cr8);
5763
5764 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5765 kvm_x86_ops->set_efer(vcpu, sregs->efer);
5766 kvm_set_apic_base(vcpu, sregs->apic_base);
5767
5768 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5769 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5770 vcpu->arch.cr0 = sregs->cr0;
5771
5772 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5773 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5774 if (sregs->cr4 & X86_CR4_OSXSAVE)
5775 kvm_update_cpuid(vcpu);
5776
5777 idx = srcu_read_lock(&vcpu->kvm->srcu);
5778 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5779 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
5780 mmu_reset_needed = 1;
5781 }
5782 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5783
5784 if (mmu_reset_needed)
5785 kvm_mmu_reset_context(vcpu);
5786
5787 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5788 pending_vec = find_first_bit(
5789 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5790 if (pending_vec < max_bits) {
5791 kvm_queue_interrupt(vcpu, pending_vec, false);
5792 pr_debug("Set back pending irq %d\n", pending_vec);
5793 }
5794
5795 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5796 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5797 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5798 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5799 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5800 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5801
5802 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5803 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5804
5805 update_cr8_intercept(vcpu);
5806
5807 /* Older userspace won't unhalt the vcpu on reset. */
5808 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5809 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5810 !is_protmode(vcpu))
5811 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5812
5813 kvm_make_request(KVM_REQ_EVENT, vcpu);
5814
5815 return 0;
5816 }
5817
5818 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5819 struct kvm_guest_debug *dbg)
5820 {
5821 unsigned long rflags;
5822 int i, r;
5823
5824 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5825 r = -EBUSY;
5826 if (vcpu->arch.exception.pending)
5827 goto out;
5828 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5829 kvm_queue_exception(vcpu, DB_VECTOR);
5830 else
5831 kvm_queue_exception(vcpu, BP_VECTOR);
5832 }
5833
5834 /*
5835 * Read rflags as long as potentially injected trace flags are still
5836 * filtered out.
5837 */
5838 rflags = kvm_get_rflags(vcpu);
5839
5840 vcpu->guest_debug = dbg->control;
5841 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5842 vcpu->guest_debug = 0;
5843
5844 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5845 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5846 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5847 vcpu->arch.switch_db_regs =
5848 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5849 } else {
5850 for (i = 0; i < KVM_NR_DB_REGS; i++)
5851 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5852 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5853 }
5854
5855 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5856 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5857 get_segment_base(vcpu, VCPU_SREG_CS);
5858
5859 /*
5860 * Trigger an rflags update that will inject or remove the trace
5861 * flags.
5862 */
5863 kvm_set_rflags(vcpu, rflags);
5864
5865 kvm_x86_ops->set_guest_debug(vcpu, dbg);
5866
5867 r = 0;
5868
5869 out:
5870
5871 return r;
5872 }
5873
5874 /*
5875 * Translate a guest virtual address to a guest physical address.
5876 */
5877 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5878 struct kvm_translation *tr)
5879 {
5880 unsigned long vaddr = tr->linear_address;
5881 gpa_t gpa;
5882 int idx;
5883
5884 idx = srcu_read_lock(&vcpu->kvm->srcu);
5885 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5886 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5887 tr->physical_address = gpa;
5888 tr->valid = gpa != UNMAPPED_GVA;
5889 tr->writeable = 1;
5890 tr->usermode = 0;
5891
5892 return 0;
5893 }
5894
5895 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5896 {
5897 struct i387_fxsave_struct *fxsave =
5898 &vcpu->arch.guest_fpu.state->fxsave;
5899
5900 memcpy(fpu->fpr, fxsave->st_space, 128);
5901 fpu->fcw = fxsave->cwd;
5902 fpu->fsw = fxsave->swd;
5903 fpu->ftwx = fxsave->twd;
5904 fpu->last_opcode = fxsave->fop;
5905 fpu->last_ip = fxsave->rip;
5906 fpu->last_dp = fxsave->rdp;
5907 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5908
5909 return 0;
5910 }
5911
5912 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5913 {
5914 struct i387_fxsave_struct *fxsave =
5915 &vcpu->arch.guest_fpu.state->fxsave;
5916
5917 memcpy(fxsave->st_space, fpu->fpr, 128);
5918 fxsave->cwd = fpu->fcw;
5919 fxsave->swd = fpu->fsw;
5920 fxsave->twd = fpu->ftwx;
5921 fxsave->fop = fpu->last_opcode;
5922 fxsave->rip = fpu->last_ip;
5923 fxsave->rdp = fpu->last_dp;
5924 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5925
5926 return 0;
5927 }
5928
5929 int fx_init(struct kvm_vcpu *vcpu)
5930 {
5931 int err;
5932
5933 err = fpu_alloc(&vcpu->arch.guest_fpu);
5934 if (err)
5935 return err;
5936
5937 fpu_finit(&vcpu->arch.guest_fpu);
5938
5939 /*
5940 * Ensure guest xcr0 is valid for loading
5941 */
5942 vcpu->arch.xcr0 = XSTATE_FP;
5943
5944 vcpu->arch.cr0 |= X86_CR0_ET;
5945
5946 return 0;
5947 }
5948 EXPORT_SYMBOL_GPL(fx_init);
5949
5950 static void fx_free(struct kvm_vcpu *vcpu)
5951 {
5952 fpu_free(&vcpu->arch.guest_fpu);
5953 }
5954
5955 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5956 {
5957 if (vcpu->guest_fpu_loaded)
5958 return;
5959
5960 /*
5961 * Restore all possible states in the guest,
5962 * and assume host would use all available bits.
5963 * Guest xcr0 would be loaded later.
5964 */
5965 kvm_put_guest_xcr0(vcpu);
5966 vcpu->guest_fpu_loaded = 1;
5967 unlazy_fpu(current);
5968 fpu_restore_checking(&vcpu->arch.guest_fpu);
5969 trace_kvm_fpu(1);
5970 }
5971
5972 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5973 {
5974 kvm_put_guest_xcr0(vcpu);
5975
5976 if (!vcpu->guest_fpu_loaded)
5977 return;
5978
5979 vcpu->guest_fpu_loaded = 0;
5980 fpu_save_init(&vcpu->arch.guest_fpu);
5981 ++vcpu->stat.fpu_reload;
5982 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
5983 trace_kvm_fpu(0);
5984 }
5985
5986 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5987 {
5988 kvmclock_reset(vcpu);
5989
5990 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
5991 fx_free(vcpu);
5992 kvm_x86_ops->vcpu_free(vcpu);
5993 }
5994
5995 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5996 unsigned int id)
5997 {
5998 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
5999 printk_once(KERN_WARNING
6000 "kvm: SMP vm created on host with unstable TSC; "
6001 "guest TSC will not be reliable\n");
6002 return kvm_x86_ops->vcpu_create(kvm, id);
6003 }
6004
6005 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6006 {
6007 int r;
6008
6009 vcpu->arch.mtrr_state.have_fixed = 1;
6010 vcpu_load(vcpu);
6011 r = kvm_arch_vcpu_reset(vcpu);
6012 if (r == 0)
6013 r = kvm_mmu_setup(vcpu);
6014 vcpu_put(vcpu);
6015
6016 return r;
6017 }
6018
6019 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6020 {
6021 vcpu->arch.apf.msr_val = 0;
6022
6023 vcpu_load(vcpu);
6024 kvm_mmu_unload(vcpu);
6025 vcpu_put(vcpu);
6026
6027 fx_free(vcpu);
6028 kvm_x86_ops->vcpu_free(vcpu);
6029 }
6030
6031 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
6032 {
6033 atomic_set(&vcpu->arch.nmi_queued, 0);
6034 vcpu->arch.nmi_pending = 0;
6035 vcpu->arch.nmi_injected = false;
6036
6037 vcpu->arch.switch_db_regs = 0;
6038 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6039 vcpu->arch.dr6 = DR6_FIXED_1;
6040 vcpu->arch.dr7 = DR7_FIXED_1;
6041
6042 kvm_make_request(KVM_REQ_EVENT, vcpu);
6043 vcpu->arch.apf.msr_val = 0;
6044 vcpu->arch.st.msr_val = 0;
6045
6046 kvmclock_reset(vcpu);
6047
6048 kvm_clear_async_pf_completion_queue(vcpu);
6049 kvm_async_pf_hash_reset(vcpu);
6050 vcpu->arch.apf.halted = false;
6051
6052 kvm_pmu_reset(vcpu);
6053
6054 return kvm_x86_ops->vcpu_reset(vcpu);
6055 }
6056
6057 int kvm_arch_hardware_enable(void *garbage)
6058 {
6059 struct kvm *kvm;
6060 struct kvm_vcpu *vcpu;
6061 int i;
6062 int ret;
6063 u64 local_tsc;
6064 u64 max_tsc = 0;
6065 bool stable, backwards_tsc = false;
6066
6067 kvm_shared_msr_cpu_online();
6068 ret = kvm_x86_ops->hardware_enable(garbage);
6069 if (ret != 0)
6070 return ret;
6071
6072 local_tsc = native_read_tsc();
6073 stable = !check_tsc_unstable();
6074 list_for_each_entry(kvm, &vm_list, vm_list) {
6075 kvm_for_each_vcpu(i, vcpu, kvm) {
6076 if (!stable && vcpu->cpu == smp_processor_id())
6077 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6078 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6079 backwards_tsc = true;
6080 if (vcpu->arch.last_host_tsc > max_tsc)
6081 max_tsc = vcpu->arch.last_host_tsc;
6082 }
6083 }
6084 }
6085
6086 /*
6087 * Sometimes, even reliable TSCs go backwards. This happens on
6088 * platforms that reset TSC during suspend or hibernate actions, but
6089 * maintain synchronization. We must compensate. Fortunately, we can
6090 * detect that condition here, which happens early in CPU bringup,
6091 * before any KVM threads can be running. Unfortunately, we can't
6092 * bring the TSCs fully up to date with real time, as we aren't yet far
6093 * enough into CPU bringup that we know how much real time has actually
6094 * elapsed; our helper function, get_kernel_ns() will be using boot
6095 * variables that haven't been updated yet.
6096 *
6097 * So we simply find the maximum observed TSC above, then record the
6098 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
6099 * the adjustment will be applied. Note that we accumulate
6100 * adjustments, in case multiple suspend cycles happen before some VCPU
6101 * gets a chance to run again. In the event that no KVM threads get a
6102 * chance to run, we will miss the entire elapsed period, as we'll have
6103 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6104 * loose cycle time. This isn't too big a deal, since the loss will be
6105 * uniform across all VCPUs (not to mention the scenario is extremely
6106 * unlikely). It is possible that a second hibernate recovery happens
6107 * much faster than a first, causing the observed TSC here to be
6108 * smaller; this would require additional padding adjustment, which is
6109 * why we set last_host_tsc to the local tsc observed here.
6110 *
6111 * N.B. - this code below runs only on platforms with reliable TSC,
6112 * as that is the only way backwards_tsc is set above. Also note
6113 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6114 * have the same delta_cyc adjustment applied if backwards_tsc
6115 * is detected. Note further, this adjustment is only done once,
6116 * as we reset last_host_tsc on all VCPUs to stop this from being
6117 * called multiple times (one for each physical CPU bringup).
6118 *
6119 * Platforms with unreliable TSCs don't have to deal with this, they
6120 * will be compensated by the logic in vcpu_load, which sets the TSC to
6121 * catchup mode. This will catchup all VCPUs to real time, but cannot
6122 * guarantee that they stay in perfect synchronization.
6123 */
6124 if (backwards_tsc) {
6125 u64 delta_cyc = max_tsc - local_tsc;
6126 list_for_each_entry(kvm, &vm_list, vm_list) {
6127 kvm_for_each_vcpu(i, vcpu, kvm) {
6128 vcpu->arch.tsc_offset_adjustment += delta_cyc;
6129 vcpu->arch.last_host_tsc = local_tsc;
6130 }
6131
6132 /*
6133 * We have to disable TSC offset matching.. if you were
6134 * booting a VM while issuing an S4 host suspend....
6135 * you may have some problem. Solving this issue is
6136 * left as an exercise to the reader.
6137 */
6138 kvm->arch.last_tsc_nsec = 0;
6139 kvm->arch.last_tsc_write = 0;
6140 }
6141
6142 }
6143 return 0;
6144 }
6145
6146 void kvm_arch_hardware_disable(void *garbage)
6147 {
6148 kvm_x86_ops->hardware_disable(garbage);
6149 drop_user_return_notifiers(garbage);
6150 }
6151
6152 int kvm_arch_hardware_setup(void)
6153 {
6154 return kvm_x86_ops->hardware_setup();
6155 }
6156
6157 void kvm_arch_hardware_unsetup(void)
6158 {
6159 kvm_x86_ops->hardware_unsetup();
6160 }
6161
6162 void kvm_arch_check_processor_compat(void *rtn)
6163 {
6164 kvm_x86_ops->check_processor_compatibility(rtn);
6165 }
6166
6167 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6168 {
6169 return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6170 }
6171
6172 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6173 {
6174 struct page *page;
6175 struct kvm *kvm;
6176 int r;
6177
6178 BUG_ON(vcpu->kvm == NULL);
6179 kvm = vcpu->kvm;
6180
6181 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6182 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6183 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6184 else
6185 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6186
6187 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6188 if (!page) {
6189 r = -ENOMEM;
6190 goto fail;
6191 }
6192 vcpu->arch.pio_data = page_address(page);
6193
6194 kvm_set_tsc_khz(vcpu, max_tsc_khz);
6195
6196 r = kvm_mmu_create(vcpu);
6197 if (r < 0)
6198 goto fail_free_pio_data;
6199
6200 if (irqchip_in_kernel(kvm)) {
6201 r = kvm_create_lapic(vcpu);
6202 if (r < 0)
6203 goto fail_mmu_destroy;
6204 }
6205
6206 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6207 GFP_KERNEL);
6208 if (!vcpu->arch.mce_banks) {
6209 r = -ENOMEM;
6210 goto fail_free_lapic;
6211 }
6212 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6213
6214 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
6215 goto fail_free_mce_banks;
6216
6217 kvm_async_pf_hash_reset(vcpu);
6218 kvm_pmu_init(vcpu);
6219
6220 return 0;
6221 fail_free_mce_banks:
6222 kfree(vcpu->arch.mce_banks);
6223 fail_free_lapic:
6224 kvm_free_lapic(vcpu);
6225 fail_mmu_destroy:
6226 kvm_mmu_destroy(vcpu);
6227 fail_free_pio_data:
6228 free_page((unsigned long)vcpu->arch.pio_data);
6229 fail:
6230 return r;
6231 }
6232
6233 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6234 {
6235 int idx;
6236
6237 kvm_pmu_destroy(vcpu);
6238 kfree(vcpu->arch.mce_banks);
6239 kvm_free_lapic(vcpu);
6240 idx = srcu_read_lock(&vcpu->kvm->srcu);
6241 kvm_mmu_destroy(vcpu);
6242 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6243 free_page((unsigned long)vcpu->arch.pio_data);
6244 }
6245
6246 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6247 {
6248 if (type)
6249 return -EINVAL;
6250
6251 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6252 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6253
6254 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6255 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6256
6257 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6258
6259 return 0;
6260 }
6261
6262 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6263 {
6264 vcpu_load(vcpu);
6265 kvm_mmu_unload(vcpu);
6266 vcpu_put(vcpu);
6267 }
6268
6269 static void kvm_free_vcpus(struct kvm *kvm)
6270 {
6271 unsigned int i;
6272 struct kvm_vcpu *vcpu;
6273
6274 /*
6275 * Unpin any mmu pages first.
6276 */
6277 kvm_for_each_vcpu(i, vcpu, kvm) {
6278 kvm_clear_async_pf_completion_queue(vcpu);
6279 kvm_unload_vcpu_mmu(vcpu);
6280 }
6281 kvm_for_each_vcpu(i, vcpu, kvm)
6282 kvm_arch_vcpu_free(vcpu);
6283
6284 mutex_lock(&kvm->lock);
6285 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6286 kvm->vcpus[i] = NULL;
6287
6288 atomic_set(&kvm->online_vcpus, 0);
6289 mutex_unlock(&kvm->lock);
6290 }
6291
6292 void kvm_arch_sync_events(struct kvm *kvm)
6293 {
6294 kvm_free_all_assigned_devices(kvm);
6295 kvm_free_pit(kvm);
6296 }
6297
6298 void kvm_arch_destroy_vm(struct kvm *kvm)
6299 {
6300 kvm_iommu_unmap_guest(kvm);
6301 kfree(kvm->arch.vpic);
6302 kfree(kvm->arch.vioapic);
6303 kvm_free_vcpus(kvm);
6304 if (kvm->arch.apic_access_page)
6305 put_page(kvm->arch.apic_access_page);
6306 if (kvm->arch.ept_identity_pagetable)
6307 put_page(kvm->arch.ept_identity_pagetable);
6308 }
6309
6310 void kvm_arch_free_memslot(struct kvm_memory_slot *free,
6311 struct kvm_memory_slot *dont)
6312 {
6313 int i;
6314
6315 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
6316 if (!dont || free->arch.rmap_pde[i] != dont->arch.rmap_pde[i]) {
6317 kvm_kvfree(free->arch.rmap_pde[i]);
6318 free->arch.rmap_pde[i] = NULL;
6319 }
6320 if (!dont || free->arch.lpage_info[i] != dont->arch.lpage_info[i]) {
6321 kvm_kvfree(free->arch.lpage_info[i]);
6322 free->arch.lpage_info[i] = NULL;
6323 }
6324 }
6325 }
6326
6327 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
6328 {
6329 int i;
6330
6331 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
6332 unsigned long ugfn;
6333 int lpages;
6334 int level = i + 2;
6335
6336 lpages = gfn_to_index(slot->base_gfn + npages - 1,
6337 slot->base_gfn, level) + 1;
6338
6339 slot->arch.rmap_pde[i] =
6340 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap_pde[i]));
6341 if (!slot->arch.rmap_pde[i])
6342 goto out_free;
6343
6344 slot->arch.lpage_info[i] =
6345 kvm_kvzalloc(lpages * sizeof(*slot->arch.lpage_info[i]));
6346 if (!slot->arch.lpage_info[i])
6347 goto out_free;
6348
6349 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
6350 slot->arch.lpage_info[i][0].write_count = 1;
6351 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
6352 slot->arch.lpage_info[i][lpages - 1].write_count = 1;
6353 ugfn = slot->userspace_addr >> PAGE_SHIFT;
6354 /*
6355 * If the gfn and userspace address are not aligned wrt each
6356 * other, or if explicitly asked to, disable large page
6357 * support for this slot
6358 */
6359 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
6360 !kvm_largepages_enabled()) {
6361 unsigned long j;
6362
6363 for (j = 0; j < lpages; ++j)
6364 slot->arch.lpage_info[i][j].write_count = 1;
6365 }
6366 }
6367
6368 return 0;
6369
6370 out_free:
6371 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
6372 kvm_kvfree(slot->arch.rmap_pde[i]);
6373 kvm_kvfree(slot->arch.lpage_info[i]);
6374 slot->arch.rmap_pde[i] = NULL;
6375 slot->arch.lpage_info[i] = NULL;
6376 }
6377 return -ENOMEM;
6378 }
6379
6380 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6381 struct kvm_memory_slot *memslot,
6382 struct kvm_memory_slot old,
6383 struct kvm_userspace_memory_region *mem,
6384 int user_alloc)
6385 {
6386 int npages = memslot->npages;
6387 int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6388
6389 /* Prevent internal slot pages from being moved by fork()/COW. */
6390 if (memslot->id >= KVM_MEMORY_SLOTS)
6391 map_flags = MAP_SHARED | MAP_ANONYMOUS;
6392
6393 /*To keep backward compatibility with older userspace,
6394 *x86 needs to handle !user_alloc case.
6395 */
6396 if (!user_alloc) {
6397 if (npages && !old.rmap) {
6398 unsigned long userspace_addr;
6399
6400 userspace_addr = vm_mmap(NULL, 0,
6401 npages * PAGE_SIZE,
6402 PROT_READ | PROT_WRITE,
6403 map_flags,
6404 0);
6405
6406 if (IS_ERR((void *)userspace_addr))
6407 return PTR_ERR((void *)userspace_addr);
6408
6409 memslot->userspace_addr = userspace_addr;
6410 }
6411 }
6412
6413
6414 return 0;
6415 }
6416
6417 void kvm_arch_commit_memory_region(struct kvm *kvm,
6418 struct kvm_userspace_memory_region *mem,
6419 struct kvm_memory_slot old,
6420 int user_alloc)
6421 {
6422
6423 int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
6424
6425 if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
6426 int ret;
6427
6428 ret = vm_munmap(old.userspace_addr,
6429 old.npages * PAGE_SIZE);
6430 if (ret < 0)
6431 printk(KERN_WARNING
6432 "kvm_vm_ioctl_set_memory_region: "
6433 "failed to munmap memory\n");
6434 }
6435
6436 if (!kvm->arch.n_requested_mmu_pages)
6437 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6438
6439 spin_lock(&kvm->mmu_lock);
6440 if (nr_mmu_pages)
6441 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6442 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6443 spin_unlock(&kvm->mmu_lock);
6444 }
6445
6446 void kvm_arch_flush_shadow(struct kvm *kvm)
6447 {
6448 kvm_mmu_zap_all(kvm);
6449 kvm_reload_remote_mmus(kvm);
6450 }
6451
6452 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6453 {
6454 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6455 !vcpu->arch.apf.halted)
6456 || !list_empty_careful(&vcpu->async_pf.done)
6457 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6458 || atomic_read(&vcpu->arch.nmi_queued) ||
6459 (kvm_arch_interrupt_allowed(vcpu) &&
6460 kvm_cpu_has_interrupt(vcpu));
6461 }
6462
6463 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
6464 {
6465 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
6466 }
6467
6468 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6469 {
6470 return kvm_x86_ops->interrupt_allowed(vcpu);
6471 }
6472
6473 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6474 {
6475 unsigned long current_rip = kvm_rip_read(vcpu) +
6476 get_segment_base(vcpu, VCPU_SREG_CS);
6477
6478 return current_rip == linear_rip;
6479 }
6480 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6481
6482 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6483 {
6484 unsigned long rflags;
6485
6486 rflags = kvm_x86_ops->get_rflags(vcpu);
6487 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6488 rflags &= ~X86_EFLAGS_TF;
6489 return rflags;
6490 }
6491 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6492
6493 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6494 {
6495 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6496 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6497 rflags |= X86_EFLAGS_TF;
6498 kvm_x86_ops->set_rflags(vcpu, rflags);
6499 kvm_make_request(KVM_REQ_EVENT, vcpu);
6500 }
6501 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6502
6503 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6504 {
6505 int r;
6506
6507 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
6508 is_error_page(work->page))
6509 return;
6510
6511 r = kvm_mmu_reload(vcpu);
6512 if (unlikely(r))
6513 return;
6514
6515 if (!vcpu->arch.mmu.direct_map &&
6516 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
6517 return;
6518
6519 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
6520 }
6521
6522 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
6523 {
6524 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
6525 }
6526
6527 static inline u32 kvm_async_pf_next_probe(u32 key)
6528 {
6529 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
6530 }
6531
6532 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6533 {
6534 u32 key = kvm_async_pf_hash_fn(gfn);
6535
6536 while (vcpu->arch.apf.gfns[key] != ~0)
6537 key = kvm_async_pf_next_probe(key);
6538
6539 vcpu->arch.apf.gfns[key] = gfn;
6540 }
6541
6542 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
6543 {
6544 int i;
6545 u32 key = kvm_async_pf_hash_fn(gfn);
6546
6547 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
6548 (vcpu->arch.apf.gfns[key] != gfn &&
6549 vcpu->arch.apf.gfns[key] != ~0); i++)
6550 key = kvm_async_pf_next_probe(key);
6551
6552 return key;
6553 }
6554
6555 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6556 {
6557 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
6558 }
6559
6560 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6561 {
6562 u32 i, j, k;
6563
6564 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
6565 while (true) {
6566 vcpu->arch.apf.gfns[i] = ~0;
6567 do {
6568 j = kvm_async_pf_next_probe(j);
6569 if (vcpu->arch.apf.gfns[j] == ~0)
6570 return;
6571 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
6572 /*
6573 * k lies cyclically in ]i,j]
6574 * | i.k.j |
6575 * |....j i.k.| or |.k..j i...|
6576 */
6577 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
6578 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
6579 i = j;
6580 }
6581 }
6582
6583 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
6584 {
6585
6586 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
6587 sizeof(val));
6588 }
6589
6590 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
6591 struct kvm_async_pf *work)
6592 {
6593 struct x86_exception fault;
6594
6595 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
6596 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
6597
6598 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
6599 (vcpu->arch.apf.send_user_only &&
6600 kvm_x86_ops->get_cpl(vcpu) == 0))
6601 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
6602 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
6603 fault.vector = PF_VECTOR;
6604 fault.error_code_valid = true;
6605 fault.error_code = 0;
6606 fault.nested_page_fault = false;
6607 fault.address = work->arch.token;
6608 kvm_inject_page_fault(vcpu, &fault);
6609 }
6610 }
6611
6612 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
6613 struct kvm_async_pf *work)
6614 {
6615 struct x86_exception fault;
6616
6617 trace_kvm_async_pf_ready(work->arch.token, work->gva);
6618 if (is_error_page(work->page))
6619 work->arch.token = ~0; /* broadcast wakeup */
6620 else
6621 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
6622
6623 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
6624 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
6625 fault.vector = PF_VECTOR;
6626 fault.error_code_valid = true;
6627 fault.error_code = 0;
6628 fault.nested_page_fault = false;
6629 fault.address = work->arch.token;
6630 kvm_inject_page_fault(vcpu, &fault);
6631 }
6632 vcpu->arch.apf.halted = false;
6633 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6634 }
6635
6636 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
6637 {
6638 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
6639 return true;
6640 else
6641 return !kvm_event_needs_reinjection(vcpu) &&
6642 kvm_x86_ops->interrupt_allowed(vcpu);
6643 }
6644
6645 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6646 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6647 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6648 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6649 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6650 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6651 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6652 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6653 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6654 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6655 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6656 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
This page took 0.265085 seconds and 4 git commands to generate.