KVM: detect if VCPU triple faults
[deliverable/linux.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 *
8 * Authors:
9 * Avi Kivity <avi@qumranet.com>
10 * Yaniv Kamay <yaniv@qumranet.com>
11 *
12 * This work is licensed under the terms of the GNU GPL, version 2. See
13 * the COPYING file in the top-level directory.
14 *
15 */
16
17 #include <linux/kvm_host.h>
18 #include "irq.h"
19 #include "mmu.h"
20
21 #include <linux/clocksource.h>
22 #include <linux/kvm.h>
23 #include <linux/fs.h>
24 #include <linux/vmalloc.h>
25 #include <linux/module.h>
26 #include <linux/mman.h>
27 #include <linux/highmem.h>
28
29 #include <asm/uaccess.h>
30 #include <asm/msr.h>
31 #include <asm/desc.h>
32
33 #define MAX_IO_MSRS 256
34 #define CR0_RESERVED_BITS \
35 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
36 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
37 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
38 #define CR4_RESERVED_BITS \
39 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
40 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
41 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
42 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
43
44 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
45 /* EFER defaults:
46 * - enable syscall per default because its emulated by KVM
47 * - enable LME and LMA per default on 64 bit KVM
48 */
49 #ifdef CONFIG_X86_64
50 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
51 #else
52 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
53 #endif
54
55 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
56 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
57
58 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
59 struct kvm_cpuid_entry2 __user *entries);
60
61 struct kvm_x86_ops *kvm_x86_ops;
62
63 struct kvm_stats_debugfs_item debugfs_entries[] = {
64 { "pf_fixed", VCPU_STAT(pf_fixed) },
65 { "pf_guest", VCPU_STAT(pf_guest) },
66 { "tlb_flush", VCPU_STAT(tlb_flush) },
67 { "invlpg", VCPU_STAT(invlpg) },
68 { "exits", VCPU_STAT(exits) },
69 { "io_exits", VCPU_STAT(io_exits) },
70 { "mmio_exits", VCPU_STAT(mmio_exits) },
71 { "signal_exits", VCPU_STAT(signal_exits) },
72 { "irq_window", VCPU_STAT(irq_window_exits) },
73 { "halt_exits", VCPU_STAT(halt_exits) },
74 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
75 { "hypercalls", VCPU_STAT(hypercalls) },
76 { "request_irq", VCPU_STAT(request_irq_exits) },
77 { "irq_exits", VCPU_STAT(irq_exits) },
78 { "host_state_reload", VCPU_STAT(host_state_reload) },
79 { "efer_reload", VCPU_STAT(efer_reload) },
80 { "fpu_reload", VCPU_STAT(fpu_reload) },
81 { "insn_emulation", VCPU_STAT(insn_emulation) },
82 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
83 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
84 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
85 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
86 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
87 { "mmu_flooded", VM_STAT(mmu_flooded) },
88 { "mmu_recycled", VM_STAT(mmu_recycled) },
89 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
90 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
91 { "largepages", VM_STAT(lpages) },
92 { NULL }
93 };
94
95
96 unsigned long segment_base(u16 selector)
97 {
98 struct descriptor_table gdt;
99 struct desc_struct *d;
100 unsigned long table_base;
101 unsigned long v;
102
103 if (selector == 0)
104 return 0;
105
106 asm("sgdt %0" : "=m"(gdt));
107 table_base = gdt.base;
108
109 if (selector & 4) { /* from ldt */
110 u16 ldt_selector;
111
112 asm("sldt %0" : "=g"(ldt_selector));
113 table_base = segment_base(ldt_selector);
114 }
115 d = (struct desc_struct *)(table_base + (selector & ~7));
116 v = d->base0 | ((unsigned long)d->base1 << 16) |
117 ((unsigned long)d->base2 << 24);
118 #ifdef CONFIG_X86_64
119 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
120 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
121 #endif
122 return v;
123 }
124 EXPORT_SYMBOL_GPL(segment_base);
125
126 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
127 {
128 if (irqchip_in_kernel(vcpu->kvm))
129 return vcpu->arch.apic_base;
130 else
131 return vcpu->arch.apic_base;
132 }
133 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
134
135 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
136 {
137 /* TODO: reserve bits check */
138 if (irqchip_in_kernel(vcpu->kvm))
139 kvm_lapic_set_base(vcpu, data);
140 else
141 vcpu->arch.apic_base = data;
142 }
143 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
144
145 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
146 {
147 WARN_ON(vcpu->arch.exception.pending);
148 vcpu->arch.exception.pending = true;
149 vcpu->arch.exception.has_error_code = false;
150 vcpu->arch.exception.nr = nr;
151 }
152 EXPORT_SYMBOL_GPL(kvm_queue_exception);
153
154 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
155 u32 error_code)
156 {
157 ++vcpu->stat.pf_guest;
158 if (vcpu->arch.exception.pending) {
159 if (vcpu->arch.exception.nr == PF_VECTOR) {
160 printk(KERN_DEBUG "kvm: inject_page_fault:"
161 " double fault 0x%lx\n", addr);
162 vcpu->arch.exception.nr = DF_VECTOR;
163 vcpu->arch.exception.error_code = 0;
164 } else if (vcpu->arch.exception.nr == DF_VECTOR) {
165 /* triple fault -> shutdown */
166 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
167 }
168 return;
169 }
170 vcpu->arch.cr2 = addr;
171 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
172 }
173
174 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
175 {
176 WARN_ON(vcpu->arch.exception.pending);
177 vcpu->arch.exception.pending = true;
178 vcpu->arch.exception.has_error_code = true;
179 vcpu->arch.exception.nr = nr;
180 vcpu->arch.exception.error_code = error_code;
181 }
182 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
183
184 static void __queue_exception(struct kvm_vcpu *vcpu)
185 {
186 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
187 vcpu->arch.exception.has_error_code,
188 vcpu->arch.exception.error_code);
189 }
190
191 /*
192 * Load the pae pdptrs. Return true is they are all valid.
193 */
194 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
195 {
196 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
197 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
198 int i;
199 int ret;
200 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
201
202 down_read(&vcpu->kvm->slots_lock);
203 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
204 offset * sizeof(u64), sizeof(pdpte));
205 if (ret < 0) {
206 ret = 0;
207 goto out;
208 }
209 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
210 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
211 ret = 0;
212 goto out;
213 }
214 }
215 ret = 1;
216
217 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
218 out:
219 up_read(&vcpu->kvm->slots_lock);
220
221 return ret;
222 }
223 EXPORT_SYMBOL_GPL(load_pdptrs);
224
225 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
226 {
227 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
228 bool changed = true;
229 int r;
230
231 if (is_long_mode(vcpu) || !is_pae(vcpu))
232 return false;
233
234 down_read(&vcpu->kvm->slots_lock);
235 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
236 if (r < 0)
237 goto out;
238 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
239 out:
240 up_read(&vcpu->kvm->slots_lock);
241
242 return changed;
243 }
244
245 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
246 {
247 if (cr0 & CR0_RESERVED_BITS) {
248 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
249 cr0, vcpu->arch.cr0);
250 kvm_inject_gp(vcpu, 0);
251 return;
252 }
253
254 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
255 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
256 kvm_inject_gp(vcpu, 0);
257 return;
258 }
259
260 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
261 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
262 "and a clear PE flag\n");
263 kvm_inject_gp(vcpu, 0);
264 return;
265 }
266
267 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
268 #ifdef CONFIG_X86_64
269 if ((vcpu->arch.shadow_efer & EFER_LME)) {
270 int cs_db, cs_l;
271
272 if (!is_pae(vcpu)) {
273 printk(KERN_DEBUG "set_cr0: #GP, start paging "
274 "in long mode while PAE is disabled\n");
275 kvm_inject_gp(vcpu, 0);
276 return;
277 }
278 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
279 if (cs_l) {
280 printk(KERN_DEBUG "set_cr0: #GP, start paging "
281 "in long mode while CS.L == 1\n");
282 kvm_inject_gp(vcpu, 0);
283 return;
284
285 }
286 } else
287 #endif
288 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
289 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
290 "reserved bits\n");
291 kvm_inject_gp(vcpu, 0);
292 return;
293 }
294
295 }
296
297 kvm_x86_ops->set_cr0(vcpu, cr0);
298 vcpu->arch.cr0 = cr0;
299
300 kvm_mmu_reset_context(vcpu);
301 return;
302 }
303 EXPORT_SYMBOL_GPL(kvm_set_cr0);
304
305 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
306 {
307 kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
308 }
309 EXPORT_SYMBOL_GPL(kvm_lmsw);
310
311 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
312 {
313 if (cr4 & CR4_RESERVED_BITS) {
314 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
315 kvm_inject_gp(vcpu, 0);
316 return;
317 }
318
319 if (is_long_mode(vcpu)) {
320 if (!(cr4 & X86_CR4_PAE)) {
321 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
322 "in long mode\n");
323 kvm_inject_gp(vcpu, 0);
324 return;
325 }
326 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
327 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
328 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
329 kvm_inject_gp(vcpu, 0);
330 return;
331 }
332
333 if (cr4 & X86_CR4_VMXE) {
334 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
335 kvm_inject_gp(vcpu, 0);
336 return;
337 }
338 kvm_x86_ops->set_cr4(vcpu, cr4);
339 vcpu->arch.cr4 = cr4;
340 kvm_mmu_reset_context(vcpu);
341 }
342 EXPORT_SYMBOL_GPL(kvm_set_cr4);
343
344 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
345 {
346 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
347 kvm_mmu_flush_tlb(vcpu);
348 return;
349 }
350
351 if (is_long_mode(vcpu)) {
352 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
353 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
354 kvm_inject_gp(vcpu, 0);
355 return;
356 }
357 } else {
358 if (is_pae(vcpu)) {
359 if (cr3 & CR3_PAE_RESERVED_BITS) {
360 printk(KERN_DEBUG
361 "set_cr3: #GP, reserved bits\n");
362 kvm_inject_gp(vcpu, 0);
363 return;
364 }
365 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
366 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
367 "reserved bits\n");
368 kvm_inject_gp(vcpu, 0);
369 return;
370 }
371 }
372 /*
373 * We don't check reserved bits in nonpae mode, because
374 * this isn't enforced, and VMware depends on this.
375 */
376 }
377
378 down_read(&vcpu->kvm->slots_lock);
379 /*
380 * Does the new cr3 value map to physical memory? (Note, we
381 * catch an invalid cr3 even in real-mode, because it would
382 * cause trouble later on when we turn on paging anyway.)
383 *
384 * A real CPU would silently accept an invalid cr3 and would
385 * attempt to use it - with largely undefined (and often hard
386 * to debug) behavior on the guest side.
387 */
388 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
389 kvm_inject_gp(vcpu, 0);
390 else {
391 vcpu->arch.cr3 = cr3;
392 vcpu->arch.mmu.new_cr3(vcpu);
393 }
394 up_read(&vcpu->kvm->slots_lock);
395 }
396 EXPORT_SYMBOL_GPL(kvm_set_cr3);
397
398 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
399 {
400 if (cr8 & CR8_RESERVED_BITS) {
401 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
402 kvm_inject_gp(vcpu, 0);
403 return;
404 }
405 if (irqchip_in_kernel(vcpu->kvm))
406 kvm_lapic_set_tpr(vcpu, cr8);
407 else
408 vcpu->arch.cr8 = cr8;
409 }
410 EXPORT_SYMBOL_GPL(kvm_set_cr8);
411
412 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
413 {
414 if (irqchip_in_kernel(vcpu->kvm))
415 return kvm_lapic_get_cr8(vcpu);
416 else
417 return vcpu->arch.cr8;
418 }
419 EXPORT_SYMBOL_GPL(kvm_get_cr8);
420
421 /*
422 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
423 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
424 *
425 * This list is modified at module load time to reflect the
426 * capabilities of the host cpu.
427 */
428 static u32 msrs_to_save[] = {
429 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
430 MSR_K6_STAR,
431 #ifdef CONFIG_X86_64
432 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
433 #endif
434 MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
435 MSR_IA32_PERF_STATUS,
436 };
437
438 static unsigned num_msrs_to_save;
439
440 static u32 emulated_msrs[] = {
441 MSR_IA32_MISC_ENABLE,
442 };
443
444 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
445 {
446 if (efer & efer_reserved_bits) {
447 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
448 efer);
449 kvm_inject_gp(vcpu, 0);
450 return;
451 }
452
453 if (is_paging(vcpu)
454 && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
455 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
456 kvm_inject_gp(vcpu, 0);
457 return;
458 }
459
460 kvm_x86_ops->set_efer(vcpu, efer);
461
462 efer &= ~EFER_LMA;
463 efer |= vcpu->arch.shadow_efer & EFER_LMA;
464
465 vcpu->arch.shadow_efer = efer;
466 }
467
468 void kvm_enable_efer_bits(u64 mask)
469 {
470 efer_reserved_bits &= ~mask;
471 }
472 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
473
474
475 /*
476 * Writes msr value into into the appropriate "register".
477 * Returns 0 on success, non-0 otherwise.
478 * Assumes vcpu_load() was already called.
479 */
480 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
481 {
482 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
483 }
484
485 /*
486 * Adapt set_msr() to msr_io()'s calling convention
487 */
488 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
489 {
490 return kvm_set_msr(vcpu, index, *data);
491 }
492
493 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
494 {
495 static int version;
496 struct kvm_wall_clock wc;
497 struct timespec wc_ts;
498
499 if (!wall_clock)
500 return;
501
502 version++;
503
504 down_read(&kvm->slots_lock);
505 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
506
507 wc_ts = current_kernel_time();
508 wc.wc_sec = wc_ts.tv_sec;
509 wc.wc_nsec = wc_ts.tv_nsec;
510 wc.wc_version = version;
511
512 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
513
514 version++;
515 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
516 up_read(&kvm->slots_lock);
517 }
518
519 static void kvm_write_guest_time(struct kvm_vcpu *v)
520 {
521 struct timespec ts;
522 unsigned long flags;
523 struct kvm_vcpu_arch *vcpu = &v->arch;
524 void *shared_kaddr;
525
526 if ((!vcpu->time_page))
527 return;
528
529 /* Keep irq disabled to prevent changes to the clock */
530 local_irq_save(flags);
531 kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
532 &vcpu->hv_clock.tsc_timestamp);
533 ktime_get_ts(&ts);
534 local_irq_restore(flags);
535
536 /* With all the info we got, fill in the values */
537
538 vcpu->hv_clock.system_time = ts.tv_nsec +
539 (NSEC_PER_SEC * (u64)ts.tv_sec);
540 /*
541 * The interface expects us to write an even number signaling that the
542 * update is finished. Since the guest won't see the intermediate
543 * state, we just write "2" at the end
544 */
545 vcpu->hv_clock.version = 2;
546
547 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
548
549 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
550 sizeof(vcpu->hv_clock));
551
552 kunmap_atomic(shared_kaddr, KM_USER0);
553
554 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
555 }
556
557
558 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
559 {
560 switch (msr) {
561 case MSR_EFER:
562 set_efer(vcpu, data);
563 break;
564 case MSR_IA32_MC0_STATUS:
565 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
566 __FUNCTION__, data);
567 break;
568 case MSR_IA32_MCG_STATUS:
569 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
570 __FUNCTION__, data);
571 break;
572 case MSR_IA32_MCG_CTL:
573 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
574 __FUNCTION__, data);
575 break;
576 case MSR_IA32_UCODE_REV:
577 case MSR_IA32_UCODE_WRITE:
578 case 0x200 ... 0x2ff: /* MTRRs */
579 break;
580 case MSR_IA32_APICBASE:
581 kvm_set_apic_base(vcpu, data);
582 break;
583 case MSR_IA32_MISC_ENABLE:
584 vcpu->arch.ia32_misc_enable_msr = data;
585 break;
586 case MSR_KVM_WALL_CLOCK:
587 vcpu->kvm->arch.wall_clock = data;
588 kvm_write_wall_clock(vcpu->kvm, data);
589 break;
590 case MSR_KVM_SYSTEM_TIME: {
591 if (vcpu->arch.time_page) {
592 kvm_release_page_dirty(vcpu->arch.time_page);
593 vcpu->arch.time_page = NULL;
594 }
595
596 vcpu->arch.time = data;
597
598 /* we verify if the enable bit is set... */
599 if (!(data & 1))
600 break;
601
602 /* ...but clean it before doing the actual write */
603 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
604
605 vcpu->arch.hv_clock.tsc_to_system_mul =
606 clocksource_khz2mult(tsc_khz, 22);
607 vcpu->arch.hv_clock.tsc_shift = 22;
608
609 down_read(&current->mm->mmap_sem);
610 down_read(&vcpu->kvm->slots_lock);
611 vcpu->arch.time_page =
612 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
613 up_read(&vcpu->kvm->slots_lock);
614 up_read(&current->mm->mmap_sem);
615
616 if (is_error_page(vcpu->arch.time_page)) {
617 kvm_release_page_clean(vcpu->arch.time_page);
618 vcpu->arch.time_page = NULL;
619 }
620
621 kvm_write_guest_time(vcpu);
622 break;
623 }
624 default:
625 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
626 return 1;
627 }
628 return 0;
629 }
630 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
631
632
633 /*
634 * Reads an msr value (of 'msr_index') into 'pdata'.
635 * Returns 0 on success, non-0 otherwise.
636 * Assumes vcpu_load() was already called.
637 */
638 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
639 {
640 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
641 }
642
643 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
644 {
645 u64 data;
646
647 switch (msr) {
648 case 0xc0010010: /* SYSCFG */
649 case 0xc0010015: /* HWCR */
650 case MSR_IA32_PLATFORM_ID:
651 case MSR_IA32_P5_MC_ADDR:
652 case MSR_IA32_P5_MC_TYPE:
653 case MSR_IA32_MC0_CTL:
654 case MSR_IA32_MCG_STATUS:
655 case MSR_IA32_MCG_CAP:
656 case MSR_IA32_MCG_CTL:
657 case MSR_IA32_MC0_MISC:
658 case MSR_IA32_MC0_MISC+4:
659 case MSR_IA32_MC0_MISC+8:
660 case MSR_IA32_MC0_MISC+12:
661 case MSR_IA32_MC0_MISC+16:
662 case MSR_IA32_UCODE_REV:
663 case MSR_IA32_EBL_CR_POWERON:
664 /* MTRR registers */
665 case 0xfe:
666 case 0x200 ... 0x2ff:
667 data = 0;
668 break;
669 case 0xcd: /* fsb frequency */
670 data = 3;
671 break;
672 case MSR_IA32_APICBASE:
673 data = kvm_get_apic_base(vcpu);
674 break;
675 case MSR_IA32_MISC_ENABLE:
676 data = vcpu->arch.ia32_misc_enable_msr;
677 break;
678 case MSR_IA32_PERF_STATUS:
679 /* TSC increment by tick */
680 data = 1000ULL;
681 /* CPU multiplier */
682 data |= (((uint64_t)4ULL) << 40);
683 break;
684 case MSR_EFER:
685 data = vcpu->arch.shadow_efer;
686 break;
687 case MSR_KVM_WALL_CLOCK:
688 data = vcpu->kvm->arch.wall_clock;
689 break;
690 case MSR_KVM_SYSTEM_TIME:
691 data = vcpu->arch.time;
692 break;
693 default:
694 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
695 return 1;
696 }
697 *pdata = data;
698 return 0;
699 }
700 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
701
702 /*
703 * Read or write a bunch of msrs. All parameters are kernel addresses.
704 *
705 * @return number of msrs set successfully.
706 */
707 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
708 struct kvm_msr_entry *entries,
709 int (*do_msr)(struct kvm_vcpu *vcpu,
710 unsigned index, u64 *data))
711 {
712 int i;
713
714 vcpu_load(vcpu);
715
716 for (i = 0; i < msrs->nmsrs; ++i)
717 if (do_msr(vcpu, entries[i].index, &entries[i].data))
718 break;
719
720 vcpu_put(vcpu);
721
722 return i;
723 }
724
725 /*
726 * Read or write a bunch of msrs. Parameters are user addresses.
727 *
728 * @return number of msrs set successfully.
729 */
730 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
731 int (*do_msr)(struct kvm_vcpu *vcpu,
732 unsigned index, u64 *data),
733 int writeback)
734 {
735 struct kvm_msrs msrs;
736 struct kvm_msr_entry *entries;
737 int r, n;
738 unsigned size;
739
740 r = -EFAULT;
741 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
742 goto out;
743
744 r = -E2BIG;
745 if (msrs.nmsrs >= MAX_IO_MSRS)
746 goto out;
747
748 r = -ENOMEM;
749 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
750 entries = vmalloc(size);
751 if (!entries)
752 goto out;
753
754 r = -EFAULT;
755 if (copy_from_user(entries, user_msrs->entries, size))
756 goto out_free;
757
758 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
759 if (r < 0)
760 goto out_free;
761
762 r = -EFAULT;
763 if (writeback && copy_to_user(user_msrs->entries, entries, size))
764 goto out_free;
765
766 r = n;
767
768 out_free:
769 vfree(entries);
770 out:
771 return r;
772 }
773
774 /*
775 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
776 * cached on it.
777 */
778 void decache_vcpus_on_cpu(int cpu)
779 {
780 struct kvm *vm;
781 struct kvm_vcpu *vcpu;
782 int i;
783
784 spin_lock(&kvm_lock);
785 list_for_each_entry(vm, &vm_list, vm_list)
786 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
787 vcpu = vm->vcpus[i];
788 if (!vcpu)
789 continue;
790 /*
791 * If the vcpu is locked, then it is running on some
792 * other cpu and therefore it is not cached on the
793 * cpu in question.
794 *
795 * If it's not locked, check the last cpu it executed
796 * on.
797 */
798 if (mutex_trylock(&vcpu->mutex)) {
799 if (vcpu->cpu == cpu) {
800 kvm_x86_ops->vcpu_decache(vcpu);
801 vcpu->cpu = -1;
802 }
803 mutex_unlock(&vcpu->mutex);
804 }
805 }
806 spin_unlock(&kvm_lock);
807 }
808
809 int kvm_dev_ioctl_check_extension(long ext)
810 {
811 int r;
812
813 switch (ext) {
814 case KVM_CAP_IRQCHIP:
815 case KVM_CAP_HLT:
816 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
817 case KVM_CAP_USER_MEMORY:
818 case KVM_CAP_SET_TSS_ADDR:
819 case KVM_CAP_EXT_CPUID:
820 case KVM_CAP_CLOCKSOURCE:
821 r = 1;
822 break;
823 case KVM_CAP_VAPIC:
824 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
825 break;
826 case KVM_CAP_NR_VCPUS:
827 r = KVM_MAX_VCPUS;
828 break;
829 case KVM_CAP_NR_MEMSLOTS:
830 r = KVM_MEMORY_SLOTS;
831 break;
832 default:
833 r = 0;
834 break;
835 }
836 return r;
837
838 }
839
840 long kvm_arch_dev_ioctl(struct file *filp,
841 unsigned int ioctl, unsigned long arg)
842 {
843 void __user *argp = (void __user *)arg;
844 long r;
845
846 switch (ioctl) {
847 case KVM_GET_MSR_INDEX_LIST: {
848 struct kvm_msr_list __user *user_msr_list = argp;
849 struct kvm_msr_list msr_list;
850 unsigned n;
851
852 r = -EFAULT;
853 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
854 goto out;
855 n = msr_list.nmsrs;
856 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
857 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
858 goto out;
859 r = -E2BIG;
860 if (n < num_msrs_to_save)
861 goto out;
862 r = -EFAULT;
863 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
864 num_msrs_to_save * sizeof(u32)))
865 goto out;
866 if (copy_to_user(user_msr_list->indices
867 + num_msrs_to_save * sizeof(u32),
868 &emulated_msrs,
869 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
870 goto out;
871 r = 0;
872 break;
873 }
874 case KVM_GET_SUPPORTED_CPUID: {
875 struct kvm_cpuid2 __user *cpuid_arg = argp;
876 struct kvm_cpuid2 cpuid;
877
878 r = -EFAULT;
879 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
880 goto out;
881 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
882 cpuid_arg->entries);
883 if (r)
884 goto out;
885
886 r = -EFAULT;
887 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
888 goto out;
889 r = 0;
890 break;
891 }
892 default:
893 r = -EINVAL;
894 }
895 out:
896 return r;
897 }
898
899 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
900 {
901 kvm_x86_ops->vcpu_load(vcpu, cpu);
902 kvm_write_guest_time(vcpu);
903 }
904
905 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
906 {
907 kvm_x86_ops->vcpu_put(vcpu);
908 kvm_put_guest_fpu(vcpu);
909 }
910
911 static int is_efer_nx(void)
912 {
913 u64 efer;
914
915 rdmsrl(MSR_EFER, efer);
916 return efer & EFER_NX;
917 }
918
919 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
920 {
921 int i;
922 struct kvm_cpuid_entry2 *e, *entry;
923
924 entry = NULL;
925 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
926 e = &vcpu->arch.cpuid_entries[i];
927 if (e->function == 0x80000001) {
928 entry = e;
929 break;
930 }
931 }
932 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
933 entry->edx &= ~(1 << 20);
934 printk(KERN_INFO "kvm: guest NX capability removed\n");
935 }
936 }
937
938 /* when an old userspace process fills a new kernel module */
939 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
940 struct kvm_cpuid *cpuid,
941 struct kvm_cpuid_entry __user *entries)
942 {
943 int r, i;
944 struct kvm_cpuid_entry *cpuid_entries;
945
946 r = -E2BIG;
947 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
948 goto out;
949 r = -ENOMEM;
950 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
951 if (!cpuid_entries)
952 goto out;
953 r = -EFAULT;
954 if (copy_from_user(cpuid_entries, entries,
955 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
956 goto out_free;
957 for (i = 0; i < cpuid->nent; i++) {
958 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
959 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
960 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
961 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
962 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
963 vcpu->arch.cpuid_entries[i].index = 0;
964 vcpu->arch.cpuid_entries[i].flags = 0;
965 vcpu->arch.cpuid_entries[i].padding[0] = 0;
966 vcpu->arch.cpuid_entries[i].padding[1] = 0;
967 vcpu->arch.cpuid_entries[i].padding[2] = 0;
968 }
969 vcpu->arch.cpuid_nent = cpuid->nent;
970 cpuid_fix_nx_cap(vcpu);
971 r = 0;
972
973 out_free:
974 vfree(cpuid_entries);
975 out:
976 return r;
977 }
978
979 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
980 struct kvm_cpuid2 *cpuid,
981 struct kvm_cpuid_entry2 __user *entries)
982 {
983 int r;
984
985 r = -E2BIG;
986 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
987 goto out;
988 r = -EFAULT;
989 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
990 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
991 goto out;
992 vcpu->arch.cpuid_nent = cpuid->nent;
993 return 0;
994
995 out:
996 return r;
997 }
998
999 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1000 struct kvm_cpuid2 *cpuid,
1001 struct kvm_cpuid_entry2 __user *entries)
1002 {
1003 int r;
1004
1005 r = -E2BIG;
1006 if (cpuid->nent < vcpu->arch.cpuid_nent)
1007 goto out;
1008 r = -EFAULT;
1009 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1010 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1011 goto out;
1012 return 0;
1013
1014 out:
1015 cpuid->nent = vcpu->arch.cpuid_nent;
1016 return r;
1017 }
1018
1019 static inline u32 bit(int bitno)
1020 {
1021 return 1 << (bitno & 31);
1022 }
1023
1024 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1025 u32 index)
1026 {
1027 entry->function = function;
1028 entry->index = index;
1029 cpuid_count(entry->function, entry->index,
1030 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1031 entry->flags = 0;
1032 }
1033
1034 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1035 u32 index, int *nent, int maxnent)
1036 {
1037 const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
1038 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1039 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1040 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1041 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1042 bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
1043 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1044 bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
1045 bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
1046 bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
1047 const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
1048 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1049 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1050 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1051 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1052 bit(X86_FEATURE_PGE) |
1053 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1054 bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
1055 bit(X86_FEATURE_SYSCALL) |
1056 (bit(X86_FEATURE_NX) && is_efer_nx()) |
1057 #ifdef CONFIG_X86_64
1058 bit(X86_FEATURE_LM) |
1059 #endif
1060 bit(X86_FEATURE_MMXEXT) |
1061 bit(X86_FEATURE_3DNOWEXT) |
1062 bit(X86_FEATURE_3DNOW);
1063 const u32 kvm_supported_word3_x86_features =
1064 bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
1065 const u32 kvm_supported_word6_x86_features =
1066 bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);
1067
1068 /* all func 2 cpuid_count() should be called on the same cpu */
1069 get_cpu();
1070 do_cpuid_1_ent(entry, function, index);
1071 ++*nent;
1072
1073 switch (function) {
1074 case 0:
1075 entry->eax = min(entry->eax, (u32)0xb);
1076 break;
1077 case 1:
1078 entry->edx &= kvm_supported_word0_x86_features;
1079 entry->ecx &= kvm_supported_word3_x86_features;
1080 break;
1081 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1082 * may return different values. This forces us to get_cpu() before
1083 * issuing the first command, and also to emulate this annoying behavior
1084 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1085 case 2: {
1086 int t, times = entry->eax & 0xff;
1087
1088 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1089 for (t = 1; t < times && *nent < maxnent; ++t) {
1090 do_cpuid_1_ent(&entry[t], function, 0);
1091 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1092 ++*nent;
1093 }
1094 break;
1095 }
1096 /* function 4 and 0xb have additional index. */
1097 case 4: {
1098 int i, cache_type;
1099
1100 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1101 /* read more entries until cache_type is zero */
1102 for (i = 1; *nent < maxnent; ++i) {
1103 cache_type = entry[i - 1].eax & 0x1f;
1104 if (!cache_type)
1105 break;
1106 do_cpuid_1_ent(&entry[i], function, i);
1107 entry[i].flags |=
1108 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1109 ++*nent;
1110 }
1111 break;
1112 }
1113 case 0xb: {
1114 int i, level_type;
1115
1116 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1117 /* read more entries until level_type is zero */
1118 for (i = 1; *nent < maxnent; ++i) {
1119 level_type = entry[i - 1].ecx & 0xff;
1120 if (!level_type)
1121 break;
1122 do_cpuid_1_ent(&entry[i], function, i);
1123 entry[i].flags |=
1124 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1125 ++*nent;
1126 }
1127 break;
1128 }
1129 case 0x80000000:
1130 entry->eax = min(entry->eax, 0x8000001a);
1131 break;
1132 case 0x80000001:
1133 entry->edx &= kvm_supported_word1_x86_features;
1134 entry->ecx &= kvm_supported_word6_x86_features;
1135 break;
1136 }
1137 put_cpu();
1138 }
1139
1140 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1141 struct kvm_cpuid_entry2 __user *entries)
1142 {
1143 struct kvm_cpuid_entry2 *cpuid_entries;
1144 int limit, nent = 0, r = -E2BIG;
1145 u32 func;
1146
1147 if (cpuid->nent < 1)
1148 goto out;
1149 r = -ENOMEM;
1150 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1151 if (!cpuid_entries)
1152 goto out;
1153
1154 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1155 limit = cpuid_entries[0].eax;
1156 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1157 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1158 &nent, cpuid->nent);
1159 r = -E2BIG;
1160 if (nent >= cpuid->nent)
1161 goto out_free;
1162
1163 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1164 limit = cpuid_entries[nent - 1].eax;
1165 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1166 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1167 &nent, cpuid->nent);
1168 r = -EFAULT;
1169 if (copy_to_user(entries, cpuid_entries,
1170 nent * sizeof(struct kvm_cpuid_entry2)))
1171 goto out_free;
1172 cpuid->nent = nent;
1173 r = 0;
1174
1175 out_free:
1176 vfree(cpuid_entries);
1177 out:
1178 return r;
1179 }
1180
1181 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1182 struct kvm_lapic_state *s)
1183 {
1184 vcpu_load(vcpu);
1185 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1186 vcpu_put(vcpu);
1187
1188 return 0;
1189 }
1190
1191 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1192 struct kvm_lapic_state *s)
1193 {
1194 vcpu_load(vcpu);
1195 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1196 kvm_apic_post_state_restore(vcpu);
1197 vcpu_put(vcpu);
1198
1199 return 0;
1200 }
1201
1202 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1203 struct kvm_interrupt *irq)
1204 {
1205 if (irq->irq < 0 || irq->irq >= 256)
1206 return -EINVAL;
1207 if (irqchip_in_kernel(vcpu->kvm))
1208 return -ENXIO;
1209 vcpu_load(vcpu);
1210
1211 set_bit(irq->irq, vcpu->arch.irq_pending);
1212 set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1213
1214 vcpu_put(vcpu);
1215
1216 return 0;
1217 }
1218
1219 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1220 struct kvm_tpr_access_ctl *tac)
1221 {
1222 if (tac->flags)
1223 return -EINVAL;
1224 vcpu->arch.tpr_access_reporting = !!tac->enabled;
1225 return 0;
1226 }
1227
1228 long kvm_arch_vcpu_ioctl(struct file *filp,
1229 unsigned int ioctl, unsigned long arg)
1230 {
1231 struct kvm_vcpu *vcpu = filp->private_data;
1232 void __user *argp = (void __user *)arg;
1233 int r;
1234
1235 switch (ioctl) {
1236 case KVM_GET_LAPIC: {
1237 struct kvm_lapic_state lapic;
1238
1239 memset(&lapic, 0, sizeof lapic);
1240 r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
1241 if (r)
1242 goto out;
1243 r = -EFAULT;
1244 if (copy_to_user(argp, &lapic, sizeof lapic))
1245 goto out;
1246 r = 0;
1247 break;
1248 }
1249 case KVM_SET_LAPIC: {
1250 struct kvm_lapic_state lapic;
1251
1252 r = -EFAULT;
1253 if (copy_from_user(&lapic, argp, sizeof lapic))
1254 goto out;
1255 r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
1256 if (r)
1257 goto out;
1258 r = 0;
1259 break;
1260 }
1261 case KVM_INTERRUPT: {
1262 struct kvm_interrupt irq;
1263
1264 r = -EFAULT;
1265 if (copy_from_user(&irq, argp, sizeof irq))
1266 goto out;
1267 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1268 if (r)
1269 goto out;
1270 r = 0;
1271 break;
1272 }
1273 case KVM_SET_CPUID: {
1274 struct kvm_cpuid __user *cpuid_arg = argp;
1275 struct kvm_cpuid cpuid;
1276
1277 r = -EFAULT;
1278 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1279 goto out;
1280 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1281 if (r)
1282 goto out;
1283 break;
1284 }
1285 case KVM_SET_CPUID2: {
1286 struct kvm_cpuid2 __user *cpuid_arg = argp;
1287 struct kvm_cpuid2 cpuid;
1288
1289 r = -EFAULT;
1290 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1291 goto out;
1292 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1293 cpuid_arg->entries);
1294 if (r)
1295 goto out;
1296 break;
1297 }
1298 case KVM_GET_CPUID2: {
1299 struct kvm_cpuid2 __user *cpuid_arg = argp;
1300 struct kvm_cpuid2 cpuid;
1301
1302 r = -EFAULT;
1303 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1304 goto out;
1305 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1306 cpuid_arg->entries);
1307 if (r)
1308 goto out;
1309 r = -EFAULT;
1310 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1311 goto out;
1312 r = 0;
1313 break;
1314 }
1315 case KVM_GET_MSRS:
1316 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1317 break;
1318 case KVM_SET_MSRS:
1319 r = msr_io(vcpu, argp, do_set_msr, 0);
1320 break;
1321 case KVM_TPR_ACCESS_REPORTING: {
1322 struct kvm_tpr_access_ctl tac;
1323
1324 r = -EFAULT;
1325 if (copy_from_user(&tac, argp, sizeof tac))
1326 goto out;
1327 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1328 if (r)
1329 goto out;
1330 r = -EFAULT;
1331 if (copy_to_user(argp, &tac, sizeof tac))
1332 goto out;
1333 r = 0;
1334 break;
1335 };
1336 case KVM_SET_VAPIC_ADDR: {
1337 struct kvm_vapic_addr va;
1338
1339 r = -EINVAL;
1340 if (!irqchip_in_kernel(vcpu->kvm))
1341 goto out;
1342 r = -EFAULT;
1343 if (copy_from_user(&va, argp, sizeof va))
1344 goto out;
1345 r = 0;
1346 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1347 break;
1348 }
1349 default:
1350 r = -EINVAL;
1351 }
1352 out:
1353 return r;
1354 }
1355
1356 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1357 {
1358 int ret;
1359
1360 if (addr > (unsigned int)(-3 * PAGE_SIZE))
1361 return -1;
1362 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1363 return ret;
1364 }
1365
1366 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1367 u32 kvm_nr_mmu_pages)
1368 {
1369 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1370 return -EINVAL;
1371
1372 down_write(&kvm->slots_lock);
1373
1374 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1375 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1376
1377 up_write(&kvm->slots_lock);
1378 return 0;
1379 }
1380
1381 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1382 {
1383 return kvm->arch.n_alloc_mmu_pages;
1384 }
1385
1386 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1387 {
1388 int i;
1389 struct kvm_mem_alias *alias;
1390
1391 for (i = 0; i < kvm->arch.naliases; ++i) {
1392 alias = &kvm->arch.aliases[i];
1393 if (gfn >= alias->base_gfn
1394 && gfn < alias->base_gfn + alias->npages)
1395 return alias->target_gfn + gfn - alias->base_gfn;
1396 }
1397 return gfn;
1398 }
1399
1400 /*
1401 * Set a new alias region. Aliases map a portion of physical memory into
1402 * another portion. This is useful for memory windows, for example the PC
1403 * VGA region.
1404 */
1405 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1406 struct kvm_memory_alias *alias)
1407 {
1408 int r, n;
1409 struct kvm_mem_alias *p;
1410
1411 r = -EINVAL;
1412 /* General sanity checks */
1413 if (alias->memory_size & (PAGE_SIZE - 1))
1414 goto out;
1415 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1416 goto out;
1417 if (alias->slot >= KVM_ALIAS_SLOTS)
1418 goto out;
1419 if (alias->guest_phys_addr + alias->memory_size
1420 < alias->guest_phys_addr)
1421 goto out;
1422 if (alias->target_phys_addr + alias->memory_size
1423 < alias->target_phys_addr)
1424 goto out;
1425
1426 down_write(&kvm->slots_lock);
1427
1428 p = &kvm->arch.aliases[alias->slot];
1429 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1430 p->npages = alias->memory_size >> PAGE_SHIFT;
1431 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1432
1433 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1434 if (kvm->arch.aliases[n - 1].npages)
1435 break;
1436 kvm->arch.naliases = n;
1437
1438 kvm_mmu_zap_all(kvm);
1439
1440 up_write(&kvm->slots_lock);
1441
1442 return 0;
1443
1444 out:
1445 return r;
1446 }
1447
1448 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1449 {
1450 int r;
1451
1452 r = 0;
1453 switch (chip->chip_id) {
1454 case KVM_IRQCHIP_PIC_MASTER:
1455 memcpy(&chip->chip.pic,
1456 &pic_irqchip(kvm)->pics[0],
1457 sizeof(struct kvm_pic_state));
1458 break;
1459 case KVM_IRQCHIP_PIC_SLAVE:
1460 memcpy(&chip->chip.pic,
1461 &pic_irqchip(kvm)->pics[1],
1462 sizeof(struct kvm_pic_state));
1463 break;
1464 case KVM_IRQCHIP_IOAPIC:
1465 memcpy(&chip->chip.ioapic,
1466 ioapic_irqchip(kvm),
1467 sizeof(struct kvm_ioapic_state));
1468 break;
1469 default:
1470 r = -EINVAL;
1471 break;
1472 }
1473 return r;
1474 }
1475
1476 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1477 {
1478 int r;
1479
1480 r = 0;
1481 switch (chip->chip_id) {
1482 case KVM_IRQCHIP_PIC_MASTER:
1483 memcpy(&pic_irqchip(kvm)->pics[0],
1484 &chip->chip.pic,
1485 sizeof(struct kvm_pic_state));
1486 break;
1487 case KVM_IRQCHIP_PIC_SLAVE:
1488 memcpy(&pic_irqchip(kvm)->pics[1],
1489 &chip->chip.pic,
1490 sizeof(struct kvm_pic_state));
1491 break;
1492 case KVM_IRQCHIP_IOAPIC:
1493 memcpy(ioapic_irqchip(kvm),
1494 &chip->chip.ioapic,
1495 sizeof(struct kvm_ioapic_state));
1496 break;
1497 default:
1498 r = -EINVAL;
1499 break;
1500 }
1501 kvm_pic_update_irq(pic_irqchip(kvm));
1502 return r;
1503 }
1504
1505 /*
1506 * Get (and clear) the dirty memory log for a memory slot.
1507 */
1508 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1509 struct kvm_dirty_log *log)
1510 {
1511 int r;
1512 int n;
1513 struct kvm_memory_slot *memslot;
1514 int is_dirty = 0;
1515
1516 down_write(&kvm->slots_lock);
1517
1518 r = kvm_get_dirty_log(kvm, log, &is_dirty);
1519 if (r)
1520 goto out;
1521
1522 /* If nothing is dirty, don't bother messing with page tables. */
1523 if (is_dirty) {
1524 kvm_mmu_slot_remove_write_access(kvm, log->slot);
1525 kvm_flush_remote_tlbs(kvm);
1526 memslot = &kvm->memslots[log->slot];
1527 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1528 memset(memslot->dirty_bitmap, 0, n);
1529 }
1530 r = 0;
1531 out:
1532 up_write(&kvm->slots_lock);
1533 return r;
1534 }
1535
1536 long kvm_arch_vm_ioctl(struct file *filp,
1537 unsigned int ioctl, unsigned long arg)
1538 {
1539 struct kvm *kvm = filp->private_data;
1540 void __user *argp = (void __user *)arg;
1541 int r = -EINVAL;
1542
1543 switch (ioctl) {
1544 case KVM_SET_TSS_ADDR:
1545 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
1546 if (r < 0)
1547 goto out;
1548 break;
1549 case KVM_SET_MEMORY_REGION: {
1550 struct kvm_memory_region kvm_mem;
1551 struct kvm_userspace_memory_region kvm_userspace_mem;
1552
1553 r = -EFAULT;
1554 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
1555 goto out;
1556 kvm_userspace_mem.slot = kvm_mem.slot;
1557 kvm_userspace_mem.flags = kvm_mem.flags;
1558 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
1559 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
1560 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
1561 if (r)
1562 goto out;
1563 break;
1564 }
1565 case KVM_SET_NR_MMU_PAGES:
1566 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
1567 if (r)
1568 goto out;
1569 break;
1570 case KVM_GET_NR_MMU_PAGES:
1571 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
1572 break;
1573 case KVM_SET_MEMORY_ALIAS: {
1574 struct kvm_memory_alias alias;
1575
1576 r = -EFAULT;
1577 if (copy_from_user(&alias, argp, sizeof alias))
1578 goto out;
1579 r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
1580 if (r)
1581 goto out;
1582 break;
1583 }
1584 case KVM_CREATE_IRQCHIP:
1585 r = -ENOMEM;
1586 kvm->arch.vpic = kvm_create_pic(kvm);
1587 if (kvm->arch.vpic) {
1588 r = kvm_ioapic_init(kvm);
1589 if (r) {
1590 kfree(kvm->arch.vpic);
1591 kvm->arch.vpic = NULL;
1592 goto out;
1593 }
1594 } else
1595 goto out;
1596 break;
1597 case KVM_IRQ_LINE: {
1598 struct kvm_irq_level irq_event;
1599
1600 r = -EFAULT;
1601 if (copy_from_user(&irq_event, argp, sizeof irq_event))
1602 goto out;
1603 if (irqchip_in_kernel(kvm)) {
1604 mutex_lock(&kvm->lock);
1605 if (irq_event.irq < 16)
1606 kvm_pic_set_irq(pic_irqchip(kvm),
1607 irq_event.irq,
1608 irq_event.level);
1609 kvm_ioapic_set_irq(kvm->arch.vioapic,
1610 irq_event.irq,
1611 irq_event.level);
1612 mutex_unlock(&kvm->lock);
1613 r = 0;
1614 }
1615 break;
1616 }
1617 case KVM_GET_IRQCHIP: {
1618 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1619 struct kvm_irqchip chip;
1620
1621 r = -EFAULT;
1622 if (copy_from_user(&chip, argp, sizeof chip))
1623 goto out;
1624 r = -ENXIO;
1625 if (!irqchip_in_kernel(kvm))
1626 goto out;
1627 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
1628 if (r)
1629 goto out;
1630 r = -EFAULT;
1631 if (copy_to_user(argp, &chip, sizeof chip))
1632 goto out;
1633 r = 0;
1634 break;
1635 }
1636 case KVM_SET_IRQCHIP: {
1637 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1638 struct kvm_irqchip chip;
1639
1640 r = -EFAULT;
1641 if (copy_from_user(&chip, argp, sizeof chip))
1642 goto out;
1643 r = -ENXIO;
1644 if (!irqchip_in_kernel(kvm))
1645 goto out;
1646 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
1647 if (r)
1648 goto out;
1649 r = 0;
1650 break;
1651 }
1652 default:
1653 ;
1654 }
1655 out:
1656 return r;
1657 }
1658
1659 static void kvm_init_msr_list(void)
1660 {
1661 u32 dummy[2];
1662 unsigned i, j;
1663
1664 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
1665 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
1666 continue;
1667 if (j < i)
1668 msrs_to_save[j] = msrs_to_save[i];
1669 j++;
1670 }
1671 num_msrs_to_save = j;
1672 }
1673
1674 /*
1675 * Only apic need an MMIO device hook, so shortcut now..
1676 */
1677 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
1678 gpa_t addr)
1679 {
1680 struct kvm_io_device *dev;
1681
1682 if (vcpu->arch.apic) {
1683 dev = &vcpu->arch.apic->dev;
1684 if (dev->in_range(dev, addr))
1685 return dev;
1686 }
1687 return NULL;
1688 }
1689
1690
1691 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1692 gpa_t addr)
1693 {
1694 struct kvm_io_device *dev;
1695
1696 dev = vcpu_find_pervcpu_dev(vcpu, addr);
1697 if (dev == NULL)
1698 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
1699 return dev;
1700 }
1701
1702 int emulator_read_std(unsigned long addr,
1703 void *val,
1704 unsigned int bytes,
1705 struct kvm_vcpu *vcpu)
1706 {
1707 void *data = val;
1708 int r = X86EMUL_CONTINUE;
1709
1710 down_read(&vcpu->kvm->slots_lock);
1711 while (bytes) {
1712 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1713 unsigned offset = addr & (PAGE_SIZE-1);
1714 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
1715 int ret;
1716
1717 if (gpa == UNMAPPED_GVA) {
1718 r = X86EMUL_PROPAGATE_FAULT;
1719 goto out;
1720 }
1721 ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
1722 if (ret < 0) {
1723 r = X86EMUL_UNHANDLEABLE;
1724 goto out;
1725 }
1726
1727 bytes -= tocopy;
1728 data += tocopy;
1729 addr += tocopy;
1730 }
1731 out:
1732 up_read(&vcpu->kvm->slots_lock);
1733 return r;
1734 }
1735 EXPORT_SYMBOL_GPL(emulator_read_std);
1736
1737 static int emulator_read_emulated(unsigned long addr,
1738 void *val,
1739 unsigned int bytes,
1740 struct kvm_vcpu *vcpu)
1741 {
1742 struct kvm_io_device *mmio_dev;
1743 gpa_t gpa;
1744
1745 if (vcpu->mmio_read_completed) {
1746 memcpy(val, vcpu->mmio_data, bytes);
1747 vcpu->mmio_read_completed = 0;
1748 return X86EMUL_CONTINUE;
1749 }
1750
1751 down_read(&vcpu->kvm->slots_lock);
1752 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1753 up_read(&vcpu->kvm->slots_lock);
1754
1755 /* For APIC access vmexit */
1756 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1757 goto mmio;
1758
1759 if (emulator_read_std(addr, val, bytes, vcpu)
1760 == X86EMUL_CONTINUE)
1761 return X86EMUL_CONTINUE;
1762 if (gpa == UNMAPPED_GVA)
1763 return X86EMUL_PROPAGATE_FAULT;
1764
1765 mmio:
1766 /*
1767 * Is this MMIO handled locally?
1768 */
1769 mutex_lock(&vcpu->kvm->lock);
1770 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1771 if (mmio_dev) {
1772 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1773 mutex_unlock(&vcpu->kvm->lock);
1774 return X86EMUL_CONTINUE;
1775 }
1776 mutex_unlock(&vcpu->kvm->lock);
1777
1778 vcpu->mmio_needed = 1;
1779 vcpu->mmio_phys_addr = gpa;
1780 vcpu->mmio_size = bytes;
1781 vcpu->mmio_is_write = 0;
1782
1783 return X86EMUL_UNHANDLEABLE;
1784 }
1785
1786 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1787 const void *val, int bytes)
1788 {
1789 int ret;
1790
1791 down_read(&vcpu->kvm->slots_lock);
1792 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
1793 if (ret < 0) {
1794 up_read(&vcpu->kvm->slots_lock);
1795 return 0;
1796 }
1797 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
1798 up_read(&vcpu->kvm->slots_lock);
1799 return 1;
1800 }
1801
1802 static int emulator_write_emulated_onepage(unsigned long addr,
1803 const void *val,
1804 unsigned int bytes,
1805 struct kvm_vcpu *vcpu)
1806 {
1807 struct kvm_io_device *mmio_dev;
1808 gpa_t gpa;
1809
1810 down_read(&vcpu->kvm->slots_lock);
1811 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1812 up_read(&vcpu->kvm->slots_lock);
1813
1814 if (gpa == UNMAPPED_GVA) {
1815 kvm_inject_page_fault(vcpu, addr, 2);
1816 return X86EMUL_PROPAGATE_FAULT;
1817 }
1818
1819 /* For APIC access vmexit */
1820 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1821 goto mmio;
1822
1823 if (emulator_write_phys(vcpu, gpa, val, bytes))
1824 return X86EMUL_CONTINUE;
1825
1826 mmio:
1827 /*
1828 * Is this MMIO handled locally?
1829 */
1830 mutex_lock(&vcpu->kvm->lock);
1831 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1832 if (mmio_dev) {
1833 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1834 mutex_unlock(&vcpu->kvm->lock);
1835 return X86EMUL_CONTINUE;
1836 }
1837 mutex_unlock(&vcpu->kvm->lock);
1838
1839 vcpu->mmio_needed = 1;
1840 vcpu->mmio_phys_addr = gpa;
1841 vcpu->mmio_size = bytes;
1842 vcpu->mmio_is_write = 1;
1843 memcpy(vcpu->mmio_data, val, bytes);
1844
1845 return X86EMUL_CONTINUE;
1846 }
1847
1848 int emulator_write_emulated(unsigned long addr,
1849 const void *val,
1850 unsigned int bytes,
1851 struct kvm_vcpu *vcpu)
1852 {
1853 /* Crossing a page boundary? */
1854 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
1855 int rc, now;
1856
1857 now = -addr & ~PAGE_MASK;
1858 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
1859 if (rc != X86EMUL_CONTINUE)
1860 return rc;
1861 addr += now;
1862 val += now;
1863 bytes -= now;
1864 }
1865 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
1866 }
1867 EXPORT_SYMBOL_GPL(emulator_write_emulated);
1868
1869 static int emulator_cmpxchg_emulated(unsigned long addr,
1870 const void *old,
1871 const void *new,
1872 unsigned int bytes,
1873 struct kvm_vcpu *vcpu)
1874 {
1875 static int reported;
1876
1877 if (!reported) {
1878 reported = 1;
1879 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1880 }
1881 #ifndef CONFIG_X86_64
1882 /* guests cmpxchg8b have to be emulated atomically */
1883 if (bytes == 8) {
1884 gpa_t gpa;
1885 struct page *page;
1886 char *kaddr;
1887 u64 val;
1888
1889 down_read(&vcpu->kvm->slots_lock);
1890 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1891
1892 if (gpa == UNMAPPED_GVA ||
1893 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1894 goto emul_write;
1895
1896 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
1897 goto emul_write;
1898
1899 val = *(u64 *)new;
1900
1901 down_read(&current->mm->mmap_sem);
1902 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1903 up_read(&current->mm->mmap_sem);
1904
1905 kaddr = kmap_atomic(page, KM_USER0);
1906 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
1907 kunmap_atomic(kaddr, KM_USER0);
1908 kvm_release_page_dirty(page);
1909 emul_write:
1910 up_read(&vcpu->kvm->slots_lock);
1911 }
1912 #endif
1913
1914 return emulator_write_emulated(addr, new, bytes, vcpu);
1915 }
1916
1917 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
1918 {
1919 return kvm_x86_ops->get_segment_base(vcpu, seg);
1920 }
1921
1922 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1923 {
1924 return X86EMUL_CONTINUE;
1925 }
1926
1927 int emulate_clts(struct kvm_vcpu *vcpu)
1928 {
1929 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
1930 return X86EMUL_CONTINUE;
1931 }
1932
1933 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
1934 {
1935 struct kvm_vcpu *vcpu = ctxt->vcpu;
1936
1937 switch (dr) {
1938 case 0 ... 3:
1939 *dest = kvm_x86_ops->get_dr(vcpu, dr);
1940 return X86EMUL_CONTINUE;
1941 default:
1942 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
1943 return X86EMUL_UNHANDLEABLE;
1944 }
1945 }
1946
1947 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1948 {
1949 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1950 int exception;
1951
1952 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1953 if (exception) {
1954 /* FIXME: better handling */
1955 return X86EMUL_UNHANDLEABLE;
1956 }
1957 return X86EMUL_CONTINUE;
1958 }
1959
1960 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
1961 {
1962 static int reported;
1963 u8 opcodes[4];
1964 unsigned long rip = vcpu->arch.rip;
1965 unsigned long rip_linear;
1966
1967 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
1968
1969 if (reported)
1970 return;
1971
1972 emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
1973
1974 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
1975 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1976 reported = 1;
1977 }
1978 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
1979
1980 static struct x86_emulate_ops emulate_ops = {
1981 .read_std = emulator_read_std,
1982 .read_emulated = emulator_read_emulated,
1983 .write_emulated = emulator_write_emulated,
1984 .cmpxchg_emulated = emulator_cmpxchg_emulated,
1985 };
1986
1987 int emulate_instruction(struct kvm_vcpu *vcpu,
1988 struct kvm_run *run,
1989 unsigned long cr2,
1990 u16 error_code,
1991 int emulation_type)
1992 {
1993 int r;
1994 struct decode_cache *c;
1995
1996 vcpu->arch.mmio_fault_cr2 = cr2;
1997 kvm_x86_ops->cache_regs(vcpu);
1998
1999 vcpu->mmio_is_write = 0;
2000 vcpu->arch.pio.string = 0;
2001
2002 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2003 int cs_db, cs_l;
2004 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2005
2006 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2007 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2008 vcpu->arch.emulate_ctxt.mode =
2009 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2010 ? X86EMUL_MODE_REAL : cs_l
2011 ? X86EMUL_MODE_PROT64 : cs_db
2012 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2013
2014 if (vcpu->arch.emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
2015 vcpu->arch.emulate_ctxt.cs_base = 0;
2016 vcpu->arch.emulate_ctxt.ds_base = 0;
2017 vcpu->arch.emulate_ctxt.es_base = 0;
2018 vcpu->arch.emulate_ctxt.ss_base = 0;
2019 } else {
2020 vcpu->arch.emulate_ctxt.cs_base =
2021 get_segment_base(vcpu, VCPU_SREG_CS);
2022 vcpu->arch.emulate_ctxt.ds_base =
2023 get_segment_base(vcpu, VCPU_SREG_DS);
2024 vcpu->arch.emulate_ctxt.es_base =
2025 get_segment_base(vcpu, VCPU_SREG_ES);
2026 vcpu->arch.emulate_ctxt.ss_base =
2027 get_segment_base(vcpu, VCPU_SREG_SS);
2028 }
2029
2030 vcpu->arch.emulate_ctxt.gs_base =
2031 get_segment_base(vcpu, VCPU_SREG_GS);
2032 vcpu->arch.emulate_ctxt.fs_base =
2033 get_segment_base(vcpu, VCPU_SREG_FS);
2034
2035 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2036
2037 /* Reject the instructions other than VMCALL/VMMCALL when
2038 * try to emulate invalid opcode */
2039 c = &vcpu->arch.emulate_ctxt.decode;
2040 if ((emulation_type & EMULTYPE_TRAP_UD) &&
2041 (!(c->twobyte && c->b == 0x01 &&
2042 (c->modrm_reg == 0 || c->modrm_reg == 3) &&
2043 c->modrm_mod == 3 && c->modrm_rm == 1)))
2044 return EMULATE_FAIL;
2045
2046 ++vcpu->stat.insn_emulation;
2047 if (r) {
2048 ++vcpu->stat.insn_emulation_fail;
2049 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2050 return EMULATE_DONE;
2051 return EMULATE_FAIL;
2052 }
2053 }
2054
2055 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2056
2057 if (vcpu->arch.pio.string)
2058 return EMULATE_DO_MMIO;
2059
2060 if ((r || vcpu->mmio_is_write) && run) {
2061 run->exit_reason = KVM_EXIT_MMIO;
2062 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2063 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2064 run->mmio.len = vcpu->mmio_size;
2065 run->mmio.is_write = vcpu->mmio_is_write;
2066 }
2067
2068 if (r) {
2069 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2070 return EMULATE_DONE;
2071 if (!vcpu->mmio_needed) {
2072 kvm_report_emulation_failure(vcpu, "mmio");
2073 return EMULATE_FAIL;
2074 }
2075 return EMULATE_DO_MMIO;
2076 }
2077
2078 kvm_x86_ops->decache_regs(vcpu);
2079 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2080
2081 if (vcpu->mmio_is_write) {
2082 vcpu->mmio_needed = 0;
2083 return EMULATE_DO_MMIO;
2084 }
2085
2086 return EMULATE_DONE;
2087 }
2088 EXPORT_SYMBOL_GPL(emulate_instruction);
2089
2090 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
2091 {
2092 int i;
2093
2094 for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
2095 if (vcpu->arch.pio.guest_pages[i]) {
2096 kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
2097 vcpu->arch.pio.guest_pages[i] = NULL;
2098 }
2099 }
2100
2101 static int pio_copy_data(struct kvm_vcpu *vcpu)
2102 {
2103 void *p = vcpu->arch.pio_data;
2104 void *q;
2105 unsigned bytes;
2106 int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
2107
2108 q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
2109 PAGE_KERNEL);
2110 if (!q) {
2111 free_pio_guest_pages(vcpu);
2112 return -ENOMEM;
2113 }
2114 q += vcpu->arch.pio.guest_page_offset;
2115 bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2116 if (vcpu->arch.pio.in)
2117 memcpy(q, p, bytes);
2118 else
2119 memcpy(p, q, bytes);
2120 q -= vcpu->arch.pio.guest_page_offset;
2121 vunmap(q);
2122 free_pio_guest_pages(vcpu);
2123 return 0;
2124 }
2125
2126 int complete_pio(struct kvm_vcpu *vcpu)
2127 {
2128 struct kvm_pio_request *io = &vcpu->arch.pio;
2129 long delta;
2130 int r;
2131
2132 kvm_x86_ops->cache_regs(vcpu);
2133
2134 if (!io->string) {
2135 if (io->in)
2136 memcpy(&vcpu->arch.regs[VCPU_REGS_RAX], vcpu->arch.pio_data,
2137 io->size);
2138 } else {
2139 if (io->in) {
2140 r = pio_copy_data(vcpu);
2141 if (r) {
2142 kvm_x86_ops->cache_regs(vcpu);
2143 return r;
2144 }
2145 }
2146
2147 delta = 1;
2148 if (io->rep) {
2149 delta *= io->cur_count;
2150 /*
2151 * The size of the register should really depend on
2152 * current address size.
2153 */
2154 vcpu->arch.regs[VCPU_REGS_RCX] -= delta;
2155 }
2156 if (io->down)
2157 delta = -delta;
2158 delta *= io->size;
2159 if (io->in)
2160 vcpu->arch.regs[VCPU_REGS_RDI] += delta;
2161 else
2162 vcpu->arch.regs[VCPU_REGS_RSI] += delta;
2163 }
2164
2165 kvm_x86_ops->decache_regs(vcpu);
2166
2167 io->count -= io->cur_count;
2168 io->cur_count = 0;
2169
2170 return 0;
2171 }
2172
2173 static void kernel_pio(struct kvm_io_device *pio_dev,
2174 struct kvm_vcpu *vcpu,
2175 void *pd)
2176 {
2177 /* TODO: String I/O for in kernel device */
2178
2179 mutex_lock(&vcpu->kvm->lock);
2180 if (vcpu->arch.pio.in)
2181 kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
2182 vcpu->arch.pio.size,
2183 pd);
2184 else
2185 kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
2186 vcpu->arch.pio.size,
2187 pd);
2188 mutex_unlock(&vcpu->kvm->lock);
2189 }
2190
2191 static void pio_string_write(struct kvm_io_device *pio_dev,
2192 struct kvm_vcpu *vcpu)
2193 {
2194 struct kvm_pio_request *io = &vcpu->arch.pio;
2195 void *pd = vcpu->arch.pio_data;
2196 int i;
2197
2198 mutex_lock(&vcpu->kvm->lock);
2199 for (i = 0; i < io->cur_count; i++) {
2200 kvm_iodevice_write(pio_dev, io->port,
2201 io->size,
2202 pd);
2203 pd += io->size;
2204 }
2205 mutex_unlock(&vcpu->kvm->lock);
2206 }
2207
2208 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2209 gpa_t addr)
2210 {
2211 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
2212 }
2213
2214 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2215 int size, unsigned port)
2216 {
2217 struct kvm_io_device *pio_dev;
2218
2219 vcpu->run->exit_reason = KVM_EXIT_IO;
2220 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2221 vcpu->run->io.size = vcpu->arch.pio.size = size;
2222 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2223 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2224 vcpu->run->io.port = vcpu->arch.pio.port = port;
2225 vcpu->arch.pio.in = in;
2226 vcpu->arch.pio.string = 0;
2227 vcpu->arch.pio.down = 0;
2228 vcpu->arch.pio.guest_page_offset = 0;
2229 vcpu->arch.pio.rep = 0;
2230
2231 kvm_x86_ops->cache_regs(vcpu);
2232 memcpy(vcpu->arch.pio_data, &vcpu->arch.regs[VCPU_REGS_RAX], 4);
2233 kvm_x86_ops->decache_regs(vcpu);
2234
2235 kvm_x86_ops->skip_emulated_instruction(vcpu);
2236
2237 pio_dev = vcpu_find_pio_dev(vcpu, port);
2238 if (pio_dev) {
2239 kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2240 complete_pio(vcpu);
2241 return 1;
2242 }
2243 return 0;
2244 }
2245 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2246
2247 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2248 int size, unsigned long count, int down,
2249 gva_t address, int rep, unsigned port)
2250 {
2251 unsigned now, in_page;
2252 int i, ret = 0;
2253 int nr_pages = 1;
2254 struct page *page;
2255 struct kvm_io_device *pio_dev;
2256
2257 vcpu->run->exit_reason = KVM_EXIT_IO;
2258 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2259 vcpu->run->io.size = vcpu->arch.pio.size = size;
2260 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2261 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2262 vcpu->run->io.port = vcpu->arch.pio.port = port;
2263 vcpu->arch.pio.in = in;
2264 vcpu->arch.pio.string = 1;
2265 vcpu->arch.pio.down = down;
2266 vcpu->arch.pio.guest_page_offset = offset_in_page(address);
2267 vcpu->arch.pio.rep = rep;
2268
2269 if (!count) {
2270 kvm_x86_ops->skip_emulated_instruction(vcpu);
2271 return 1;
2272 }
2273
2274 if (!down)
2275 in_page = PAGE_SIZE - offset_in_page(address);
2276 else
2277 in_page = offset_in_page(address) + size;
2278 now = min(count, (unsigned long)in_page / size);
2279 if (!now) {
2280 /*
2281 * String I/O straddles page boundary. Pin two guest pages
2282 * so that we satisfy atomicity constraints. Do just one
2283 * transaction to avoid complexity.
2284 */
2285 nr_pages = 2;
2286 now = 1;
2287 }
2288 if (down) {
2289 /*
2290 * String I/O in reverse. Yuck. Kill the guest, fix later.
2291 */
2292 pr_unimpl(vcpu, "guest string pio down\n");
2293 kvm_inject_gp(vcpu, 0);
2294 return 1;
2295 }
2296 vcpu->run->io.count = now;
2297 vcpu->arch.pio.cur_count = now;
2298
2299 if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2300 kvm_x86_ops->skip_emulated_instruction(vcpu);
2301
2302 for (i = 0; i < nr_pages; ++i) {
2303 down_read(&vcpu->kvm->slots_lock);
2304 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
2305 vcpu->arch.pio.guest_pages[i] = page;
2306 up_read(&vcpu->kvm->slots_lock);
2307 if (!page) {
2308 kvm_inject_gp(vcpu, 0);
2309 free_pio_guest_pages(vcpu);
2310 return 1;
2311 }
2312 }
2313
2314 pio_dev = vcpu_find_pio_dev(vcpu, port);
2315 if (!vcpu->arch.pio.in) {
2316 /* string PIO write */
2317 ret = pio_copy_data(vcpu);
2318 if (ret >= 0 && pio_dev) {
2319 pio_string_write(pio_dev, vcpu);
2320 complete_pio(vcpu);
2321 if (vcpu->arch.pio.count == 0)
2322 ret = 1;
2323 }
2324 } else if (pio_dev)
2325 pr_unimpl(vcpu, "no string pio read support yet, "
2326 "port %x size %d count %ld\n",
2327 port, size, count);
2328
2329 return ret;
2330 }
2331 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2332
2333 int kvm_arch_init(void *opaque)
2334 {
2335 int r;
2336 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
2337
2338 if (kvm_x86_ops) {
2339 printk(KERN_ERR "kvm: already loaded the other module\n");
2340 r = -EEXIST;
2341 goto out;
2342 }
2343
2344 if (!ops->cpu_has_kvm_support()) {
2345 printk(KERN_ERR "kvm: no hardware support\n");
2346 r = -EOPNOTSUPP;
2347 goto out;
2348 }
2349 if (ops->disabled_by_bios()) {
2350 printk(KERN_ERR "kvm: disabled by bios\n");
2351 r = -EOPNOTSUPP;
2352 goto out;
2353 }
2354
2355 r = kvm_mmu_module_init();
2356 if (r)
2357 goto out;
2358
2359 kvm_init_msr_list();
2360
2361 kvm_x86_ops = ops;
2362 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2363 return 0;
2364
2365 out:
2366 return r;
2367 }
2368
2369 void kvm_arch_exit(void)
2370 {
2371 kvm_x86_ops = NULL;
2372 kvm_mmu_module_exit();
2373 }
2374
2375 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
2376 {
2377 ++vcpu->stat.halt_exits;
2378 if (irqchip_in_kernel(vcpu->kvm)) {
2379 vcpu->arch.mp_state = VCPU_MP_STATE_HALTED;
2380 kvm_vcpu_block(vcpu);
2381 if (vcpu->arch.mp_state != VCPU_MP_STATE_RUNNABLE)
2382 return -EINTR;
2383 return 1;
2384 } else {
2385 vcpu->run->exit_reason = KVM_EXIT_HLT;
2386 return 0;
2387 }
2388 }
2389 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
2390
2391 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
2392 {
2393 unsigned long nr, a0, a1, a2, a3, ret;
2394
2395 kvm_x86_ops->cache_regs(vcpu);
2396
2397 nr = vcpu->arch.regs[VCPU_REGS_RAX];
2398 a0 = vcpu->arch.regs[VCPU_REGS_RBX];
2399 a1 = vcpu->arch.regs[VCPU_REGS_RCX];
2400 a2 = vcpu->arch.regs[VCPU_REGS_RDX];
2401 a3 = vcpu->arch.regs[VCPU_REGS_RSI];
2402
2403 if (!is_long_mode(vcpu)) {
2404 nr &= 0xFFFFFFFF;
2405 a0 &= 0xFFFFFFFF;
2406 a1 &= 0xFFFFFFFF;
2407 a2 &= 0xFFFFFFFF;
2408 a3 &= 0xFFFFFFFF;
2409 }
2410
2411 switch (nr) {
2412 case KVM_HC_VAPIC_POLL_IRQ:
2413 ret = 0;
2414 break;
2415 default:
2416 ret = -KVM_ENOSYS;
2417 break;
2418 }
2419 vcpu->arch.regs[VCPU_REGS_RAX] = ret;
2420 kvm_x86_ops->decache_regs(vcpu);
2421 ++vcpu->stat.hypercalls;
2422 return 0;
2423 }
2424 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
2425
2426 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
2427 {
2428 char instruction[3];
2429 int ret = 0;
2430
2431
2432 /*
2433 * Blow out the MMU to ensure that no other VCPU has an active mapping
2434 * to ensure that the updated hypercall appears atomically across all
2435 * VCPUs.
2436 */
2437 kvm_mmu_zap_all(vcpu->kvm);
2438
2439 kvm_x86_ops->cache_regs(vcpu);
2440 kvm_x86_ops->patch_hypercall(vcpu, instruction);
2441 if (emulator_write_emulated(vcpu->arch.rip, instruction, 3, vcpu)
2442 != X86EMUL_CONTINUE)
2443 ret = -EFAULT;
2444
2445 return ret;
2446 }
2447
2448 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
2449 {
2450 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
2451 }
2452
2453 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2454 {
2455 struct descriptor_table dt = { limit, base };
2456
2457 kvm_x86_ops->set_gdt(vcpu, &dt);
2458 }
2459
2460 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2461 {
2462 struct descriptor_table dt = { limit, base };
2463
2464 kvm_x86_ops->set_idt(vcpu, &dt);
2465 }
2466
2467 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
2468 unsigned long *rflags)
2469 {
2470 kvm_lmsw(vcpu, msw);
2471 *rflags = kvm_x86_ops->get_rflags(vcpu);
2472 }
2473
2474 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
2475 {
2476 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2477 switch (cr) {
2478 case 0:
2479 return vcpu->arch.cr0;
2480 case 2:
2481 return vcpu->arch.cr2;
2482 case 3:
2483 return vcpu->arch.cr3;
2484 case 4:
2485 return vcpu->arch.cr4;
2486 case 8:
2487 return kvm_get_cr8(vcpu);
2488 default:
2489 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
2490 return 0;
2491 }
2492 }
2493
2494 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
2495 unsigned long *rflags)
2496 {
2497 switch (cr) {
2498 case 0:
2499 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2500 *rflags = kvm_x86_ops->get_rflags(vcpu);
2501 break;
2502 case 2:
2503 vcpu->arch.cr2 = val;
2504 break;
2505 case 3:
2506 kvm_set_cr3(vcpu, val);
2507 break;
2508 case 4:
2509 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2510 break;
2511 case 8:
2512 kvm_set_cr8(vcpu, val & 0xfUL);
2513 break;
2514 default:
2515 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
2516 }
2517 }
2518
2519 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
2520 {
2521 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
2522 int j, nent = vcpu->arch.cpuid_nent;
2523
2524 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
2525 /* when no next entry is found, the current entry[i] is reselected */
2526 for (j = i + 1; j == i; j = (j + 1) % nent) {
2527 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2528 if (ej->function == e->function) {
2529 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2530 return j;
2531 }
2532 }
2533 return 0; /* silence gcc, even though control never reaches here */
2534 }
2535
2536 /* find an entry with matching function, matching index (if needed), and that
2537 * should be read next (if it's stateful) */
2538 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
2539 u32 function, u32 index)
2540 {
2541 if (e->function != function)
2542 return 0;
2543 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
2544 return 0;
2545 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
2546 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
2547 return 0;
2548 return 1;
2549 }
2550
2551 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
2552 {
2553 int i;
2554 u32 function, index;
2555 struct kvm_cpuid_entry2 *e, *best;
2556
2557 kvm_x86_ops->cache_regs(vcpu);
2558 function = vcpu->arch.regs[VCPU_REGS_RAX];
2559 index = vcpu->arch.regs[VCPU_REGS_RCX];
2560 vcpu->arch.regs[VCPU_REGS_RAX] = 0;
2561 vcpu->arch.regs[VCPU_REGS_RBX] = 0;
2562 vcpu->arch.regs[VCPU_REGS_RCX] = 0;
2563 vcpu->arch.regs[VCPU_REGS_RDX] = 0;
2564 best = NULL;
2565 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2566 e = &vcpu->arch.cpuid_entries[i];
2567 if (is_matching_cpuid_entry(e, function, index)) {
2568 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
2569 move_to_next_stateful_cpuid_entry(vcpu, i);
2570 best = e;
2571 break;
2572 }
2573 /*
2574 * Both basic or both extended?
2575 */
2576 if (((e->function ^ function) & 0x80000000) == 0)
2577 if (!best || e->function > best->function)
2578 best = e;
2579 }
2580 if (best) {
2581 vcpu->arch.regs[VCPU_REGS_RAX] = best->eax;
2582 vcpu->arch.regs[VCPU_REGS_RBX] = best->ebx;
2583 vcpu->arch.regs[VCPU_REGS_RCX] = best->ecx;
2584 vcpu->arch.regs[VCPU_REGS_RDX] = best->edx;
2585 }
2586 kvm_x86_ops->decache_regs(vcpu);
2587 kvm_x86_ops->skip_emulated_instruction(vcpu);
2588 }
2589 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
2590
2591 /*
2592 * Check if userspace requested an interrupt window, and that the
2593 * interrupt window is open.
2594 *
2595 * No need to exit to userspace if we already have an interrupt queued.
2596 */
2597 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
2598 struct kvm_run *kvm_run)
2599 {
2600 return (!vcpu->arch.irq_summary &&
2601 kvm_run->request_interrupt_window &&
2602 vcpu->arch.interrupt_window_open &&
2603 (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
2604 }
2605
2606 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
2607 struct kvm_run *kvm_run)
2608 {
2609 kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
2610 kvm_run->cr8 = kvm_get_cr8(vcpu);
2611 kvm_run->apic_base = kvm_get_apic_base(vcpu);
2612 if (irqchip_in_kernel(vcpu->kvm))
2613 kvm_run->ready_for_interrupt_injection = 1;
2614 else
2615 kvm_run->ready_for_interrupt_injection =
2616 (vcpu->arch.interrupt_window_open &&
2617 vcpu->arch.irq_summary == 0);
2618 }
2619
2620 static void vapic_enter(struct kvm_vcpu *vcpu)
2621 {
2622 struct kvm_lapic *apic = vcpu->arch.apic;
2623 struct page *page;
2624
2625 if (!apic || !apic->vapic_addr)
2626 return;
2627
2628 down_read(&current->mm->mmap_sem);
2629 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2630 up_read(&current->mm->mmap_sem);
2631
2632 vcpu->arch.apic->vapic_page = page;
2633 }
2634
2635 static void vapic_exit(struct kvm_vcpu *vcpu)
2636 {
2637 struct kvm_lapic *apic = vcpu->arch.apic;
2638
2639 if (!apic || !apic->vapic_addr)
2640 return;
2641
2642 kvm_release_page_dirty(apic->vapic_page);
2643 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2644 }
2645
2646 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2647 {
2648 int r;
2649
2650 if (unlikely(vcpu->arch.mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
2651 pr_debug("vcpu %d received sipi with vector # %x\n",
2652 vcpu->vcpu_id, vcpu->arch.sipi_vector);
2653 kvm_lapic_reset(vcpu);
2654 r = kvm_x86_ops->vcpu_reset(vcpu);
2655 if (r)
2656 return r;
2657 vcpu->arch.mp_state = VCPU_MP_STATE_RUNNABLE;
2658 }
2659
2660 vapic_enter(vcpu);
2661
2662 preempted:
2663 if (vcpu->guest_debug.enabled)
2664 kvm_x86_ops->guest_debug_pre(vcpu);
2665
2666 again:
2667 if (vcpu->requests)
2668 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
2669 kvm_mmu_unload(vcpu);
2670
2671 r = kvm_mmu_reload(vcpu);
2672 if (unlikely(r))
2673 goto out;
2674
2675 if (vcpu->requests) {
2676 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
2677 __kvm_migrate_apic_timer(vcpu);
2678 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
2679 &vcpu->requests)) {
2680 kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
2681 r = 0;
2682 goto out;
2683 }
2684 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
2685 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2686 r = 0;
2687 goto out;
2688 }
2689 }
2690
2691 kvm_inject_pending_timer_irqs(vcpu);
2692
2693 preempt_disable();
2694
2695 kvm_x86_ops->prepare_guest_switch(vcpu);
2696 kvm_load_guest_fpu(vcpu);
2697
2698 local_irq_disable();
2699
2700 if (need_resched()) {
2701 local_irq_enable();
2702 preempt_enable();
2703 r = 1;
2704 goto out;
2705 }
2706
2707 if (vcpu->requests)
2708 if (test_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests)) {
2709 local_irq_enable();
2710 preempt_enable();
2711 r = 1;
2712 goto out;
2713 }
2714
2715 if (signal_pending(current)) {
2716 local_irq_enable();
2717 preempt_enable();
2718 r = -EINTR;
2719 kvm_run->exit_reason = KVM_EXIT_INTR;
2720 ++vcpu->stat.signal_exits;
2721 goto out;
2722 }
2723
2724 if (vcpu->arch.exception.pending)
2725 __queue_exception(vcpu);
2726 else if (irqchip_in_kernel(vcpu->kvm))
2727 kvm_x86_ops->inject_pending_irq(vcpu);
2728 else
2729 kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
2730
2731 kvm_lapic_sync_to_vapic(vcpu);
2732
2733 vcpu->guest_mode = 1;
2734 kvm_guest_enter();
2735
2736 if (vcpu->requests)
2737 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
2738 kvm_x86_ops->tlb_flush(vcpu);
2739
2740 kvm_x86_ops->run(vcpu, kvm_run);
2741
2742 vcpu->guest_mode = 0;
2743 local_irq_enable();
2744
2745 ++vcpu->stat.exits;
2746
2747 /*
2748 * We must have an instruction between local_irq_enable() and
2749 * kvm_guest_exit(), so the timer interrupt isn't delayed by
2750 * the interrupt shadow. The stat.exits increment will do nicely.
2751 * But we need to prevent reordering, hence this barrier():
2752 */
2753 barrier();
2754
2755 kvm_guest_exit();
2756
2757 preempt_enable();
2758
2759 /*
2760 * Profile KVM exit RIPs:
2761 */
2762 if (unlikely(prof_on == KVM_PROFILING)) {
2763 kvm_x86_ops->cache_regs(vcpu);
2764 profile_hit(KVM_PROFILING, (void *)vcpu->arch.rip);
2765 }
2766
2767 if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
2768 vcpu->arch.exception.pending = false;
2769
2770 kvm_lapic_sync_from_vapic(vcpu);
2771
2772 r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
2773
2774 if (r > 0) {
2775 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
2776 r = -EINTR;
2777 kvm_run->exit_reason = KVM_EXIT_INTR;
2778 ++vcpu->stat.request_irq_exits;
2779 goto out;
2780 }
2781 if (!need_resched())
2782 goto again;
2783 }
2784
2785 out:
2786 if (r > 0) {
2787 kvm_resched(vcpu);
2788 goto preempted;
2789 }
2790
2791 post_kvm_run_save(vcpu, kvm_run);
2792
2793 vapic_exit(vcpu);
2794
2795 return r;
2796 }
2797
2798 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2799 {
2800 int r;
2801 sigset_t sigsaved;
2802
2803 vcpu_load(vcpu);
2804
2805 if (unlikely(vcpu->arch.mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
2806 kvm_vcpu_block(vcpu);
2807 vcpu_put(vcpu);
2808 return -EAGAIN;
2809 }
2810
2811 if (vcpu->sigset_active)
2812 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
2813
2814 /* re-sync apic's tpr */
2815 if (!irqchip_in_kernel(vcpu->kvm))
2816 kvm_set_cr8(vcpu, kvm_run->cr8);
2817
2818 if (vcpu->arch.pio.cur_count) {
2819 r = complete_pio(vcpu);
2820 if (r)
2821 goto out;
2822 }
2823 #if CONFIG_HAS_IOMEM
2824 if (vcpu->mmio_needed) {
2825 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
2826 vcpu->mmio_read_completed = 1;
2827 vcpu->mmio_needed = 0;
2828 r = emulate_instruction(vcpu, kvm_run,
2829 vcpu->arch.mmio_fault_cr2, 0,
2830 EMULTYPE_NO_DECODE);
2831 if (r == EMULATE_DO_MMIO) {
2832 /*
2833 * Read-modify-write. Back to userspace.
2834 */
2835 r = 0;
2836 goto out;
2837 }
2838 }
2839 #endif
2840 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
2841 kvm_x86_ops->cache_regs(vcpu);
2842 vcpu->arch.regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
2843 kvm_x86_ops->decache_regs(vcpu);
2844 }
2845
2846 r = __vcpu_run(vcpu, kvm_run);
2847
2848 out:
2849 if (vcpu->sigset_active)
2850 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2851
2852 vcpu_put(vcpu);
2853 return r;
2854 }
2855
2856 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
2857 {
2858 vcpu_load(vcpu);
2859
2860 kvm_x86_ops->cache_regs(vcpu);
2861
2862 regs->rax = vcpu->arch.regs[VCPU_REGS_RAX];
2863 regs->rbx = vcpu->arch.regs[VCPU_REGS_RBX];
2864 regs->rcx = vcpu->arch.regs[VCPU_REGS_RCX];
2865 regs->rdx = vcpu->arch.regs[VCPU_REGS_RDX];
2866 regs->rsi = vcpu->arch.regs[VCPU_REGS_RSI];
2867 regs->rdi = vcpu->arch.regs[VCPU_REGS_RDI];
2868 regs->rsp = vcpu->arch.regs[VCPU_REGS_RSP];
2869 regs->rbp = vcpu->arch.regs[VCPU_REGS_RBP];
2870 #ifdef CONFIG_X86_64
2871 regs->r8 = vcpu->arch.regs[VCPU_REGS_R8];
2872 regs->r9 = vcpu->arch.regs[VCPU_REGS_R9];
2873 regs->r10 = vcpu->arch.regs[VCPU_REGS_R10];
2874 regs->r11 = vcpu->arch.regs[VCPU_REGS_R11];
2875 regs->r12 = vcpu->arch.regs[VCPU_REGS_R12];
2876 regs->r13 = vcpu->arch.regs[VCPU_REGS_R13];
2877 regs->r14 = vcpu->arch.regs[VCPU_REGS_R14];
2878 regs->r15 = vcpu->arch.regs[VCPU_REGS_R15];
2879 #endif
2880
2881 regs->rip = vcpu->arch.rip;
2882 regs->rflags = kvm_x86_ops->get_rflags(vcpu);
2883
2884 /*
2885 * Don't leak debug flags in case they were set for guest debugging
2886 */
2887 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
2888 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
2889
2890 vcpu_put(vcpu);
2891
2892 return 0;
2893 }
2894
2895 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
2896 {
2897 vcpu_load(vcpu);
2898
2899 vcpu->arch.regs[VCPU_REGS_RAX] = regs->rax;
2900 vcpu->arch.regs[VCPU_REGS_RBX] = regs->rbx;
2901 vcpu->arch.regs[VCPU_REGS_RCX] = regs->rcx;
2902 vcpu->arch.regs[VCPU_REGS_RDX] = regs->rdx;
2903 vcpu->arch.regs[VCPU_REGS_RSI] = regs->rsi;
2904 vcpu->arch.regs[VCPU_REGS_RDI] = regs->rdi;
2905 vcpu->arch.regs[VCPU_REGS_RSP] = regs->rsp;
2906 vcpu->arch.regs[VCPU_REGS_RBP] = regs->rbp;
2907 #ifdef CONFIG_X86_64
2908 vcpu->arch.regs[VCPU_REGS_R8] = regs->r8;
2909 vcpu->arch.regs[VCPU_REGS_R9] = regs->r9;
2910 vcpu->arch.regs[VCPU_REGS_R10] = regs->r10;
2911 vcpu->arch.regs[VCPU_REGS_R11] = regs->r11;
2912 vcpu->arch.regs[VCPU_REGS_R12] = regs->r12;
2913 vcpu->arch.regs[VCPU_REGS_R13] = regs->r13;
2914 vcpu->arch.regs[VCPU_REGS_R14] = regs->r14;
2915 vcpu->arch.regs[VCPU_REGS_R15] = regs->r15;
2916 #endif
2917
2918 vcpu->arch.rip = regs->rip;
2919 kvm_x86_ops->set_rflags(vcpu, regs->rflags);
2920
2921 kvm_x86_ops->decache_regs(vcpu);
2922
2923 vcpu_put(vcpu);
2924
2925 return 0;
2926 }
2927
2928 static void get_segment(struct kvm_vcpu *vcpu,
2929 struct kvm_segment *var, int seg)
2930 {
2931 kvm_x86_ops->get_segment(vcpu, var, seg);
2932 }
2933
2934 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
2935 {
2936 struct kvm_segment cs;
2937
2938 get_segment(vcpu, &cs, VCPU_SREG_CS);
2939 *db = cs.db;
2940 *l = cs.l;
2941 }
2942 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
2943
2944 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
2945 struct kvm_sregs *sregs)
2946 {
2947 struct descriptor_table dt;
2948 int pending_vec;
2949
2950 vcpu_load(vcpu);
2951
2952 get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2953 get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2954 get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2955 get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2956 get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2957 get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2958
2959 get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2960 get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2961
2962 kvm_x86_ops->get_idt(vcpu, &dt);
2963 sregs->idt.limit = dt.limit;
2964 sregs->idt.base = dt.base;
2965 kvm_x86_ops->get_gdt(vcpu, &dt);
2966 sregs->gdt.limit = dt.limit;
2967 sregs->gdt.base = dt.base;
2968
2969 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2970 sregs->cr0 = vcpu->arch.cr0;
2971 sregs->cr2 = vcpu->arch.cr2;
2972 sregs->cr3 = vcpu->arch.cr3;
2973 sregs->cr4 = vcpu->arch.cr4;
2974 sregs->cr8 = kvm_get_cr8(vcpu);
2975 sregs->efer = vcpu->arch.shadow_efer;
2976 sregs->apic_base = kvm_get_apic_base(vcpu);
2977
2978 if (irqchip_in_kernel(vcpu->kvm)) {
2979 memset(sregs->interrupt_bitmap, 0,
2980 sizeof sregs->interrupt_bitmap);
2981 pending_vec = kvm_x86_ops->get_irq(vcpu);
2982 if (pending_vec >= 0)
2983 set_bit(pending_vec,
2984 (unsigned long *)sregs->interrupt_bitmap);
2985 } else
2986 memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
2987 sizeof sregs->interrupt_bitmap);
2988
2989 vcpu_put(vcpu);
2990
2991 return 0;
2992 }
2993
2994 static void set_segment(struct kvm_vcpu *vcpu,
2995 struct kvm_segment *var, int seg)
2996 {
2997 kvm_x86_ops->set_segment(vcpu, var, seg);
2998 }
2999
3000 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
3001 struct kvm_sregs *sregs)
3002 {
3003 int mmu_reset_needed = 0;
3004 int i, pending_vec, max_bits;
3005 struct descriptor_table dt;
3006
3007 vcpu_load(vcpu);
3008
3009 dt.limit = sregs->idt.limit;
3010 dt.base = sregs->idt.base;
3011 kvm_x86_ops->set_idt(vcpu, &dt);
3012 dt.limit = sregs->gdt.limit;
3013 dt.base = sregs->gdt.base;
3014 kvm_x86_ops->set_gdt(vcpu, &dt);
3015
3016 vcpu->arch.cr2 = sregs->cr2;
3017 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
3018 vcpu->arch.cr3 = sregs->cr3;
3019
3020 kvm_set_cr8(vcpu, sregs->cr8);
3021
3022 mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
3023 kvm_x86_ops->set_efer(vcpu, sregs->efer);
3024 kvm_set_apic_base(vcpu, sregs->apic_base);
3025
3026 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3027
3028 mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
3029 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
3030 vcpu->arch.cr0 = sregs->cr0;
3031
3032 mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
3033 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
3034 if (!is_long_mode(vcpu) && is_pae(vcpu))
3035 load_pdptrs(vcpu, vcpu->arch.cr3);
3036
3037 if (mmu_reset_needed)
3038 kvm_mmu_reset_context(vcpu);
3039
3040 if (!irqchip_in_kernel(vcpu->kvm)) {
3041 memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
3042 sizeof vcpu->arch.irq_pending);
3043 vcpu->arch.irq_summary = 0;
3044 for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
3045 if (vcpu->arch.irq_pending[i])
3046 __set_bit(i, &vcpu->arch.irq_summary);
3047 } else {
3048 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
3049 pending_vec = find_first_bit(
3050 (const unsigned long *)sregs->interrupt_bitmap,
3051 max_bits);
3052 /* Only pending external irq is handled here */
3053 if (pending_vec < max_bits) {
3054 kvm_x86_ops->set_irq(vcpu, pending_vec);
3055 pr_debug("Set back pending irq %d\n",
3056 pending_vec);
3057 }
3058 }
3059
3060 set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3061 set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3062 set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3063 set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3064 set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3065 set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3066
3067 set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3068 set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3069
3070 vcpu_put(vcpu);
3071
3072 return 0;
3073 }
3074
3075 int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
3076 struct kvm_debug_guest *dbg)
3077 {
3078 int r;
3079
3080 vcpu_load(vcpu);
3081
3082 r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
3083
3084 vcpu_put(vcpu);
3085
3086 return r;
3087 }
3088
3089 /*
3090 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
3091 * we have asm/x86/processor.h
3092 */
3093 struct fxsave {
3094 u16 cwd;
3095 u16 swd;
3096 u16 twd;
3097 u16 fop;
3098 u64 rip;
3099 u64 rdp;
3100 u32 mxcsr;
3101 u32 mxcsr_mask;
3102 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
3103 #ifdef CONFIG_X86_64
3104 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
3105 #else
3106 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
3107 #endif
3108 };
3109
3110 /*
3111 * Translate a guest virtual address to a guest physical address.
3112 */
3113 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
3114 struct kvm_translation *tr)
3115 {
3116 unsigned long vaddr = tr->linear_address;
3117 gpa_t gpa;
3118
3119 vcpu_load(vcpu);
3120 down_read(&vcpu->kvm->slots_lock);
3121 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
3122 up_read(&vcpu->kvm->slots_lock);
3123 tr->physical_address = gpa;
3124 tr->valid = gpa != UNMAPPED_GVA;
3125 tr->writeable = 1;
3126 tr->usermode = 0;
3127 vcpu_put(vcpu);
3128
3129 return 0;
3130 }
3131
3132 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
3133 {
3134 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3135
3136 vcpu_load(vcpu);
3137
3138 memcpy(fpu->fpr, fxsave->st_space, 128);
3139 fpu->fcw = fxsave->cwd;
3140 fpu->fsw = fxsave->swd;
3141 fpu->ftwx = fxsave->twd;
3142 fpu->last_opcode = fxsave->fop;
3143 fpu->last_ip = fxsave->rip;
3144 fpu->last_dp = fxsave->rdp;
3145 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
3146
3147 vcpu_put(vcpu);
3148
3149 return 0;
3150 }
3151
3152 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
3153 {
3154 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3155
3156 vcpu_load(vcpu);
3157
3158 memcpy(fxsave->st_space, fpu->fpr, 128);
3159 fxsave->cwd = fpu->fcw;
3160 fxsave->swd = fpu->fsw;
3161 fxsave->twd = fpu->ftwx;
3162 fxsave->fop = fpu->last_opcode;
3163 fxsave->rip = fpu->last_ip;
3164 fxsave->rdp = fpu->last_dp;
3165 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
3166
3167 vcpu_put(vcpu);
3168
3169 return 0;
3170 }
3171
3172 void fx_init(struct kvm_vcpu *vcpu)
3173 {
3174 unsigned after_mxcsr_mask;
3175
3176 /* Initialize guest FPU by resetting ours and saving into guest's */
3177 preempt_disable();
3178 fx_save(&vcpu->arch.host_fx_image);
3179 fpu_init();
3180 fx_save(&vcpu->arch.guest_fx_image);
3181 fx_restore(&vcpu->arch.host_fx_image);
3182 preempt_enable();
3183
3184 vcpu->arch.cr0 |= X86_CR0_ET;
3185 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
3186 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
3187 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
3188 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
3189 }
3190 EXPORT_SYMBOL_GPL(fx_init);
3191
3192 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
3193 {
3194 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
3195 return;
3196
3197 vcpu->guest_fpu_loaded = 1;
3198 fx_save(&vcpu->arch.host_fx_image);
3199 fx_restore(&vcpu->arch.guest_fx_image);
3200 }
3201 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
3202
3203 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
3204 {
3205 if (!vcpu->guest_fpu_loaded)
3206 return;
3207
3208 vcpu->guest_fpu_loaded = 0;
3209 fx_save(&vcpu->arch.guest_fx_image);
3210 fx_restore(&vcpu->arch.host_fx_image);
3211 ++vcpu->stat.fpu_reload;
3212 }
3213 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
3214
3215 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
3216 {
3217 kvm_x86_ops->vcpu_free(vcpu);
3218 }
3219
3220 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
3221 unsigned int id)
3222 {
3223 return kvm_x86_ops->vcpu_create(kvm, id);
3224 }
3225
3226 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
3227 {
3228 int r;
3229
3230 /* We do fxsave: this must be aligned. */
3231 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
3232
3233 vcpu_load(vcpu);
3234 r = kvm_arch_vcpu_reset(vcpu);
3235 if (r == 0)
3236 r = kvm_mmu_setup(vcpu);
3237 vcpu_put(vcpu);
3238 if (r < 0)
3239 goto free_vcpu;
3240
3241 return 0;
3242 free_vcpu:
3243 kvm_x86_ops->vcpu_free(vcpu);
3244 return r;
3245 }
3246
3247 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
3248 {
3249 vcpu_load(vcpu);
3250 kvm_mmu_unload(vcpu);
3251 vcpu_put(vcpu);
3252
3253 kvm_x86_ops->vcpu_free(vcpu);
3254 }
3255
3256 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
3257 {
3258 return kvm_x86_ops->vcpu_reset(vcpu);
3259 }
3260
3261 void kvm_arch_hardware_enable(void *garbage)
3262 {
3263 kvm_x86_ops->hardware_enable(garbage);
3264 }
3265
3266 void kvm_arch_hardware_disable(void *garbage)
3267 {
3268 kvm_x86_ops->hardware_disable(garbage);
3269 }
3270
3271 int kvm_arch_hardware_setup(void)
3272 {
3273 return kvm_x86_ops->hardware_setup();
3274 }
3275
3276 void kvm_arch_hardware_unsetup(void)
3277 {
3278 kvm_x86_ops->hardware_unsetup();
3279 }
3280
3281 void kvm_arch_check_processor_compat(void *rtn)
3282 {
3283 kvm_x86_ops->check_processor_compatibility(rtn);
3284 }
3285
3286 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
3287 {
3288 struct page *page;
3289 struct kvm *kvm;
3290 int r;
3291
3292 BUG_ON(vcpu->kvm == NULL);
3293 kvm = vcpu->kvm;
3294
3295 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3296 if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
3297 vcpu->arch.mp_state = VCPU_MP_STATE_RUNNABLE;
3298 else
3299 vcpu->arch.mp_state = VCPU_MP_STATE_UNINITIALIZED;
3300
3301 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3302 if (!page) {
3303 r = -ENOMEM;
3304 goto fail;
3305 }
3306 vcpu->arch.pio_data = page_address(page);
3307
3308 r = kvm_mmu_create(vcpu);
3309 if (r < 0)
3310 goto fail_free_pio_data;
3311
3312 if (irqchip_in_kernel(kvm)) {
3313 r = kvm_create_lapic(vcpu);
3314 if (r < 0)
3315 goto fail_mmu_destroy;
3316 }
3317
3318 return 0;
3319
3320 fail_mmu_destroy:
3321 kvm_mmu_destroy(vcpu);
3322 fail_free_pio_data:
3323 free_page((unsigned long)vcpu->arch.pio_data);
3324 fail:
3325 return r;
3326 }
3327
3328 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
3329 {
3330 kvm_free_lapic(vcpu);
3331 kvm_mmu_destroy(vcpu);
3332 free_page((unsigned long)vcpu->arch.pio_data);
3333 }
3334
3335 struct kvm *kvm_arch_create_vm(void)
3336 {
3337 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
3338
3339 if (!kvm)
3340 return ERR_PTR(-ENOMEM);
3341
3342 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
3343
3344 return kvm;
3345 }
3346
3347 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
3348 {
3349 vcpu_load(vcpu);
3350 kvm_mmu_unload(vcpu);
3351 vcpu_put(vcpu);
3352 }
3353
3354 static void kvm_free_vcpus(struct kvm *kvm)
3355 {
3356 unsigned int i;
3357
3358 /*
3359 * Unpin any mmu pages first.
3360 */
3361 for (i = 0; i < KVM_MAX_VCPUS; ++i)
3362 if (kvm->vcpus[i])
3363 kvm_unload_vcpu_mmu(kvm->vcpus[i]);
3364 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3365 if (kvm->vcpus[i]) {
3366 kvm_arch_vcpu_free(kvm->vcpus[i]);
3367 kvm->vcpus[i] = NULL;
3368 }
3369 }
3370
3371 }
3372
3373 void kvm_arch_destroy_vm(struct kvm *kvm)
3374 {
3375 kfree(kvm->arch.vpic);
3376 kfree(kvm->arch.vioapic);
3377 kvm_free_vcpus(kvm);
3378 kvm_free_physmem(kvm);
3379 kfree(kvm);
3380 }
3381
3382 int kvm_arch_set_memory_region(struct kvm *kvm,
3383 struct kvm_userspace_memory_region *mem,
3384 struct kvm_memory_slot old,
3385 int user_alloc)
3386 {
3387 int npages = mem->memory_size >> PAGE_SHIFT;
3388 struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
3389
3390 /*To keep backward compatibility with older userspace,
3391 *x86 needs to hanlde !user_alloc case.
3392 */
3393 if (!user_alloc) {
3394 if (npages && !old.rmap) {
3395 down_write(&current->mm->mmap_sem);
3396 memslot->userspace_addr = do_mmap(NULL, 0,
3397 npages * PAGE_SIZE,
3398 PROT_READ | PROT_WRITE,
3399 MAP_SHARED | MAP_ANONYMOUS,
3400 0);
3401 up_write(&current->mm->mmap_sem);
3402
3403 if (IS_ERR((void *)memslot->userspace_addr))
3404 return PTR_ERR((void *)memslot->userspace_addr);
3405 } else {
3406 if (!old.user_alloc && old.rmap) {
3407 int ret;
3408
3409 down_write(&current->mm->mmap_sem);
3410 ret = do_munmap(current->mm, old.userspace_addr,
3411 old.npages * PAGE_SIZE);
3412 up_write(&current->mm->mmap_sem);
3413 if (ret < 0)
3414 printk(KERN_WARNING
3415 "kvm_vm_ioctl_set_memory_region: "
3416 "failed to munmap memory\n");
3417 }
3418 }
3419 }
3420
3421 if (!kvm->arch.n_requested_mmu_pages) {
3422 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
3423 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
3424 }
3425
3426 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
3427 kvm_flush_remote_tlbs(kvm);
3428
3429 return 0;
3430 }
3431
3432 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
3433 {
3434 return vcpu->arch.mp_state == VCPU_MP_STATE_RUNNABLE
3435 || vcpu->arch.mp_state == VCPU_MP_STATE_SIPI_RECEIVED;
3436 }
3437
3438 static void vcpu_kick_intr(void *info)
3439 {
3440 #ifdef DEBUG
3441 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
3442 printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
3443 #endif
3444 }
3445
3446 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3447 {
3448 int ipi_pcpu = vcpu->cpu;
3449
3450 if (waitqueue_active(&vcpu->wq)) {
3451 wake_up_interruptible(&vcpu->wq);
3452 ++vcpu->stat.halt_wakeup;
3453 }
3454 if (vcpu->guest_mode)
3455 smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0, 0);
3456 }
This page took 0.146407 seconds and 5 git commands to generate.