KVM: do not treat noslot pfn as a error pfn
[deliverable/linux.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <trace/events/kvm.h>
50
51 #define CREATE_TRACE_POINTS
52 #include "trace.h"
53
54 #include <asm/debugreg.h>
55 #include <asm/msr.h>
56 #include <asm/desc.h>
57 #include <asm/mtrr.h>
58 #include <asm/mce.h>
59 #include <asm/i387.h>
60 #include <asm/fpu-internal.h> /* Ugh! */
61 #include <asm/xcr.h>
62 #include <asm/pvclock.h>
63 #include <asm/div64.h>
64
65 #define MAX_IO_MSRS 256
66 #define KVM_MAX_MCE_BANKS 32
67 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
68
69 #define emul_to_vcpu(ctxt) \
70 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
71
72 /* EFER defaults:
73 * - enable syscall per default because its emulated by KVM
74 * - enable LME and LMA per default on 64 bit KVM
75 */
76 #ifdef CONFIG_X86_64
77 static
78 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
79 #else
80 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
81 #endif
82
83 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
84 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
85
86 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
87 static void process_nmi(struct kvm_vcpu *vcpu);
88
89 struct kvm_x86_ops *kvm_x86_ops;
90 EXPORT_SYMBOL_GPL(kvm_x86_ops);
91
92 static bool ignore_msrs = 0;
93 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
94
95 bool kvm_has_tsc_control;
96 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
97 u32 kvm_max_guest_tsc_khz;
98 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
99
100 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
101 static u32 tsc_tolerance_ppm = 250;
102 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
103
104 #define KVM_NR_SHARED_MSRS 16
105
106 struct kvm_shared_msrs_global {
107 int nr;
108 u32 msrs[KVM_NR_SHARED_MSRS];
109 };
110
111 struct kvm_shared_msrs {
112 struct user_return_notifier urn;
113 bool registered;
114 struct kvm_shared_msr_values {
115 u64 host;
116 u64 curr;
117 } values[KVM_NR_SHARED_MSRS];
118 };
119
120 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
121 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
122
123 struct kvm_stats_debugfs_item debugfs_entries[] = {
124 { "pf_fixed", VCPU_STAT(pf_fixed) },
125 { "pf_guest", VCPU_STAT(pf_guest) },
126 { "tlb_flush", VCPU_STAT(tlb_flush) },
127 { "invlpg", VCPU_STAT(invlpg) },
128 { "exits", VCPU_STAT(exits) },
129 { "io_exits", VCPU_STAT(io_exits) },
130 { "mmio_exits", VCPU_STAT(mmio_exits) },
131 { "signal_exits", VCPU_STAT(signal_exits) },
132 { "irq_window", VCPU_STAT(irq_window_exits) },
133 { "nmi_window", VCPU_STAT(nmi_window_exits) },
134 { "halt_exits", VCPU_STAT(halt_exits) },
135 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
136 { "hypercalls", VCPU_STAT(hypercalls) },
137 { "request_irq", VCPU_STAT(request_irq_exits) },
138 { "irq_exits", VCPU_STAT(irq_exits) },
139 { "host_state_reload", VCPU_STAT(host_state_reload) },
140 { "efer_reload", VCPU_STAT(efer_reload) },
141 { "fpu_reload", VCPU_STAT(fpu_reload) },
142 { "insn_emulation", VCPU_STAT(insn_emulation) },
143 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
144 { "irq_injections", VCPU_STAT(irq_injections) },
145 { "nmi_injections", VCPU_STAT(nmi_injections) },
146 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
147 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
148 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
149 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
150 { "mmu_flooded", VM_STAT(mmu_flooded) },
151 { "mmu_recycled", VM_STAT(mmu_recycled) },
152 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
153 { "mmu_unsync", VM_STAT(mmu_unsync) },
154 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
155 { "largepages", VM_STAT(lpages) },
156 { NULL }
157 };
158
159 u64 __read_mostly host_xcr0;
160
161 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
162
163 static int kvm_vcpu_reset(struct kvm_vcpu *vcpu);
164
165 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
166 {
167 int i;
168 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
169 vcpu->arch.apf.gfns[i] = ~0;
170 }
171
172 static void kvm_on_user_return(struct user_return_notifier *urn)
173 {
174 unsigned slot;
175 struct kvm_shared_msrs *locals
176 = container_of(urn, struct kvm_shared_msrs, urn);
177 struct kvm_shared_msr_values *values;
178
179 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
180 values = &locals->values[slot];
181 if (values->host != values->curr) {
182 wrmsrl(shared_msrs_global.msrs[slot], values->host);
183 values->curr = values->host;
184 }
185 }
186 locals->registered = false;
187 user_return_notifier_unregister(urn);
188 }
189
190 static void shared_msr_update(unsigned slot, u32 msr)
191 {
192 struct kvm_shared_msrs *smsr;
193 u64 value;
194
195 smsr = &__get_cpu_var(shared_msrs);
196 /* only read, and nobody should modify it at this time,
197 * so don't need lock */
198 if (slot >= shared_msrs_global.nr) {
199 printk(KERN_ERR "kvm: invalid MSR slot!");
200 return;
201 }
202 rdmsrl_safe(msr, &value);
203 smsr->values[slot].host = value;
204 smsr->values[slot].curr = value;
205 }
206
207 void kvm_define_shared_msr(unsigned slot, u32 msr)
208 {
209 if (slot >= shared_msrs_global.nr)
210 shared_msrs_global.nr = slot + 1;
211 shared_msrs_global.msrs[slot] = msr;
212 /* we need ensured the shared_msr_global have been updated */
213 smp_wmb();
214 }
215 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
216
217 static void kvm_shared_msr_cpu_online(void)
218 {
219 unsigned i;
220
221 for (i = 0; i < shared_msrs_global.nr; ++i)
222 shared_msr_update(i, shared_msrs_global.msrs[i]);
223 }
224
225 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
226 {
227 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
228
229 if (((value ^ smsr->values[slot].curr) & mask) == 0)
230 return;
231 smsr->values[slot].curr = value;
232 wrmsrl(shared_msrs_global.msrs[slot], value);
233 if (!smsr->registered) {
234 smsr->urn.on_user_return = kvm_on_user_return;
235 user_return_notifier_register(&smsr->urn);
236 smsr->registered = true;
237 }
238 }
239 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
240
241 static void drop_user_return_notifiers(void *ignore)
242 {
243 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
244
245 if (smsr->registered)
246 kvm_on_user_return(&smsr->urn);
247 }
248
249 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
250 {
251 return vcpu->arch.apic_base;
252 }
253 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
254
255 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
256 {
257 /* TODO: reserve bits check */
258 kvm_lapic_set_base(vcpu, data);
259 }
260 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
261
262 #define EXCPT_BENIGN 0
263 #define EXCPT_CONTRIBUTORY 1
264 #define EXCPT_PF 2
265
266 static int exception_class(int vector)
267 {
268 switch (vector) {
269 case PF_VECTOR:
270 return EXCPT_PF;
271 case DE_VECTOR:
272 case TS_VECTOR:
273 case NP_VECTOR:
274 case SS_VECTOR:
275 case GP_VECTOR:
276 return EXCPT_CONTRIBUTORY;
277 default:
278 break;
279 }
280 return EXCPT_BENIGN;
281 }
282
283 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
284 unsigned nr, bool has_error, u32 error_code,
285 bool reinject)
286 {
287 u32 prev_nr;
288 int class1, class2;
289
290 kvm_make_request(KVM_REQ_EVENT, vcpu);
291
292 if (!vcpu->arch.exception.pending) {
293 queue:
294 vcpu->arch.exception.pending = true;
295 vcpu->arch.exception.has_error_code = has_error;
296 vcpu->arch.exception.nr = nr;
297 vcpu->arch.exception.error_code = error_code;
298 vcpu->arch.exception.reinject = reinject;
299 return;
300 }
301
302 /* to check exception */
303 prev_nr = vcpu->arch.exception.nr;
304 if (prev_nr == DF_VECTOR) {
305 /* triple fault -> shutdown */
306 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
307 return;
308 }
309 class1 = exception_class(prev_nr);
310 class2 = exception_class(nr);
311 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
312 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
313 /* generate double fault per SDM Table 5-5 */
314 vcpu->arch.exception.pending = true;
315 vcpu->arch.exception.has_error_code = true;
316 vcpu->arch.exception.nr = DF_VECTOR;
317 vcpu->arch.exception.error_code = 0;
318 } else
319 /* replace previous exception with a new one in a hope
320 that instruction re-execution will regenerate lost
321 exception */
322 goto queue;
323 }
324
325 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
326 {
327 kvm_multiple_exception(vcpu, nr, false, 0, false);
328 }
329 EXPORT_SYMBOL_GPL(kvm_queue_exception);
330
331 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
332 {
333 kvm_multiple_exception(vcpu, nr, false, 0, true);
334 }
335 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
336
337 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
338 {
339 if (err)
340 kvm_inject_gp(vcpu, 0);
341 else
342 kvm_x86_ops->skip_emulated_instruction(vcpu);
343 }
344 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
345
346 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
347 {
348 ++vcpu->stat.pf_guest;
349 vcpu->arch.cr2 = fault->address;
350 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
351 }
352 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
353
354 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
355 {
356 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
357 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
358 else
359 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
360 }
361
362 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
363 {
364 atomic_inc(&vcpu->arch.nmi_queued);
365 kvm_make_request(KVM_REQ_NMI, vcpu);
366 }
367 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
368
369 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
370 {
371 kvm_multiple_exception(vcpu, nr, true, error_code, false);
372 }
373 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
374
375 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
376 {
377 kvm_multiple_exception(vcpu, nr, true, error_code, true);
378 }
379 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
380
381 /*
382 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
383 * a #GP and return false.
384 */
385 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
386 {
387 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
388 return true;
389 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
390 return false;
391 }
392 EXPORT_SYMBOL_GPL(kvm_require_cpl);
393
394 /*
395 * This function will be used to read from the physical memory of the currently
396 * running guest. The difference to kvm_read_guest_page is that this function
397 * can read from guest physical or from the guest's guest physical memory.
398 */
399 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
400 gfn_t ngfn, void *data, int offset, int len,
401 u32 access)
402 {
403 gfn_t real_gfn;
404 gpa_t ngpa;
405
406 ngpa = gfn_to_gpa(ngfn);
407 real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
408 if (real_gfn == UNMAPPED_GVA)
409 return -EFAULT;
410
411 real_gfn = gpa_to_gfn(real_gfn);
412
413 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
414 }
415 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
416
417 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
418 void *data, int offset, int len, u32 access)
419 {
420 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
421 data, offset, len, access);
422 }
423
424 /*
425 * Load the pae pdptrs. Return true is they are all valid.
426 */
427 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
428 {
429 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
430 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
431 int i;
432 int ret;
433 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
434
435 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
436 offset * sizeof(u64), sizeof(pdpte),
437 PFERR_USER_MASK|PFERR_WRITE_MASK);
438 if (ret < 0) {
439 ret = 0;
440 goto out;
441 }
442 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
443 if (is_present_gpte(pdpte[i]) &&
444 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
445 ret = 0;
446 goto out;
447 }
448 }
449 ret = 1;
450
451 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
452 __set_bit(VCPU_EXREG_PDPTR,
453 (unsigned long *)&vcpu->arch.regs_avail);
454 __set_bit(VCPU_EXREG_PDPTR,
455 (unsigned long *)&vcpu->arch.regs_dirty);
456 out:
457
458 return ret;
459 }
460 EXPORT_SYMBOL_GPL(load_pdptrs);
461
462 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
463 {
464 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
465 bool changed = true;
466 int offset;
467 gfn_t gfn;
468 int r;
469
470 if (is_long_mode(vcpu) || !is_pae(vcpu))
471 return false;
472
473 if (!test_bit(VCPU_EXREG_PDPTR,
474 (unsigned long *)&vcpu->arch.regs_avail))
475 return true;
476
477 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
478 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
479 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
480 PFERR_USER_MASK | PFERR_WRITE_MASK);
481 if (r < 0)
482 goto out;
483 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
484 out:
485
486 return changed;
487 }
488
489 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
490 {
491 unsigned long old_cr0 = kvm_read_cr0(vcpu);
492 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
493 X86_CR0_CD | X86_CR0_NW;
494
495 cr0 |= X86_CR0_ET;
496
497 #ifdef CONFIG_X86_64
498 if (cr0 & 0xffffffff00000000UL)
499 return 1;
500 #endif
501
502 cr0 &= ~CR0_RESERVED_BITS;
503
504 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
505 return 1;
506
507 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
508 return 1;
509
510 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
511 #ifdef CONFIG_X86_64
512 if ((vcpu->arch.efer & EFER_LME)) {
513 int cs_db, cs_l;
514
515 if (!is_pae(vcpu))
516 return 1;
517 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
518 if (cs_l)
519 return 1;
520 } else
521 #endif
522 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
523 kvm_read_cr3(vcpu)))
524 return 1;
525 }
526
527 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
528 return 1;
529
530 kvm_x86_ops->set_cr0(vcpu, cr0);
531
532 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
533 kvm_clear_async_pf_completion_queue(vcpu);
534 kvm_async_pf_hash_reset(vcpu);
535 }
536
537 if ((cr0 ^ old_cr0) & update_bits)
538 kvm_mmu_reset_context(vcpu);
539 return 0;
540 }
541 EXPORT_SYMBOL_GPL(kvm_set_cr0);
542
543 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
544 {
545 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
546 }
547 EXPORT_SYMBOL_GPL(kvm_lmsw);
548
549 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
550 {
551 u64 xcr0;
552
553 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
554 if (index != XCR_XFEATURE_ENABLED_MASK)
555 return 1;
556 xcr0 = xcr;
557 if (kvm_x86_ops->get_cpl(vcpu) != 0)
558 return 1;
559 if (!(xcr0 & XSTATE_FP))
560 return 1;
561 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
562 return 1;
563 if (xcr0 & ~host_xcr0)
564 return 1;
565 vcpu->arch.xcr0 = xcr0;
566 vcpu->guest_xcr0_loaded = 0;
567 return 0;
568 }
569
570 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
571 {
572 if (__kvm_set_xcr(vcpu, index, xcr)) {
573 kvm_inject_gp(vcpu, 0);
574 return 1;
575 }
576 return 0;
577 }
578 EXPORT_SYMBOL_GPL(kvm_set_xcr);
579
580 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
581 {
582 unsigned long old_cr4 = kvm_read_cr4(vcpu);
583 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
584 X86_CR4_PAE | X86_CR4_SMEP;
585 if (cr4 & CR4_RESERVED_BITS)
586 return 1;
587
588 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
589 return 1;
590
591 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
592 return 1;
593
594 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
595 return 1;
596
597 if (is_long_mode(vcpu)) {
598 if (!(cr4 & X86_CR4_PAE))
599 return 1;
600 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
601 && ((cr4 ^ old_cr4) & pdptr_bits)
602 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
603 kvm_read_cr3(vcpu)))
604 return 1;
605
606 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
607 if (!guest_cpuid_has_pcid(vcpu))
608 return 1;
609
610 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
611 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
612 return 1;
613 }
614
615 if (kvm_x86_ops->set_cr4(vcpu, cr4))
616 return 1;
617
618 if (((cr4 ^ old_cr4) & pdptr_bits) ||
619 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
620 kvm_mmu_reset_context(vcpu);
621
622 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
623 kvm_update_cpuid(vcpu);
624
625 return 0;
626 }
627 EXPORT_SYMBOL_GPL(kvm_set_cr4);
628
629 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
630 {
631 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
632 kvm_mmu_sync_roots(vcpu);
633 kvm_mmu_flush_tlb(vcpu);
634 return 0;
635 }
636
637 if (is_long_mode(vcpu)) {
638 if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) {
639 if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
640 return 1;
641 } else
642 if (cr3 & CR3_L_MODE_RESERVED_BITS)
643 return 1;
644 } else {
645 if (is_pae(vcpu)) {
646 if (cr3 & CR3_PAE_RESERVED_BITS)
647 return 1;
648 if (is_paging(vcpu) &&
649 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
650 return 1;
651 }
652 /*
653 * We don't check reserved bits in nonpae mode, because
654 * this isn't enforced, and VMware depends on this.
655 */
656 }
657
658 /*
659 * Does the new cr3 value map to physical memory? (Note, we
660 * catch an invalid cr3 even in real-mode, because it would
661 * cause trouble later on when we turn on paging anyway.)
662 *
663 * A real CPU would silently accept an invalid cr3 and would
664 * attempt to use it - with largely undefined (and often hard
665 * to debug) behavior on the guest side.
666 */
667 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
668 return 1;
669 vcpu->arch.cr3 = cr3;
670 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
671 vcpu->arch.mmu.new_cr3(vcpu);
672 return 0;
673 }
674 EXPORT_SYMBOL_GPL(kvm_set_cr3);
675
676 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
677 {
678 if (cr8 & CR8_RESERVED_BITS)
679 return 1;
680 if (irqchip_in_kernel(vcpu->kvm))
681 kvm_lapic_set_tpr(vcpu, cr8);
682 else
683 vcpu->arch.cr8 = cr8;
684 return 0;
685 }
686 EXPORT_SYMBOL_GPL(kvm_set_cr8);
687
688 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
689 {
690 if (irqchip_in_kernel(vcpu->kvm))
691 return kvm_lapic_get_cr8(vcpu);
692 else
693 return vcpu->arch.cr8;
694 }
695 EXPORT_SYMBOL_GPL(kvm_get_cr8);
696
697 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
698 {
699 unsigned long dr7;
700
701 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
702 dr7 = vcpu->arch.guest_debug_dr7;
703 else
704 dr7 = vcpu->arch.dr7;
705 kvm_x86_ops->set_dr7(vcpu, dr7);
706 vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK);
707 }
708
709 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
710 {
711 switch (dr) {
712 case 0 ... 3:
713 vcpu->arch.db[dr] = val;
714 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
715 vcpu->arch.eff_db[dr] = val;
716 break;
717 case 4:
718 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
719 return 1; /* #UD */
720 /* fall through */
721 case 6:
722 if (val & 0xffffffff00000000ULL)
723 return -1; /* #GP */
724 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
725 break;
726 case 5:
727 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
728 return 1; /* #UD */
729 /* fall through */
730 default: /* 7 */
731 if (val & 0xffffffff00000000ULL)
732 return -1; /* #GP */
733 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
734 kvm_update_dr7(vcpu);
735 break;
736 }
737
738 return 0;
739 }
740
741 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
742 {
743 int res;
744
745 res = __kvm_set_dr(vcpu, dr, val);
746 if (res > 0)
747 kvm_queue_exception(vcpu, UD_VECTOR);
748 else if (res < 0)
749 kvm_inject_gp(vcpu, 0);
750
751 return res;
752 }
753 EXPORT_SYMBOL_GPL(kvm_set_dr);
754
755 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
756 {
757 switch (dr) {
758 case 0 ... 3:
759 *val = vcpu->arch.db[dr];
760 break;
761 case 4:
762 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
763 return 1;
764 /* fall through */
765 case 6:
766 *val = vcpu->arch.dr6;
767 break;
768 case 5:
769 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
770 return 1;
771 /* fall through */
772 default: /* 7 */
773 *val = vcpu->arch.dr7;
774 break;
775 }
776
777 return 0;
778 }
779
780 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
781 {
782 if (_kvm_get_dr(vcpu, dr, val)) {
783 kvm_queue_exception(vcpu, UD_VECTOR);
784 return 1;
785 }
786 return 0;
787 }
788 EXPORT_SYMBOL_GPL(kvm_get_dr);
789
790 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
791 {
792 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
793 u64 data;
794 int err;
795
796 err = kvm_pmu_read_pmc(vcpu, ecx, &data);
797 if (err)
798 return err;
799 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
800 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
801 return err;
802 }
803 EXPORT_SYMBOL_GPL(kvm_rdpmc);
804
805 /*
806 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
807 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
808 *
809 * This list is modified at module load time to reflect the
810 * capabilities of the host cpu. This capabilities test skips MSRs that are
811 * kvm-specific. Those are put in the beginning of the list.
812 */
813
814 #define KVM_SAVE_MSRS_BEGIN 10
815 static u32 msrs_to_save[] = {
816 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
817 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
818 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
819 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
820 MSR_KVM_PV_EOI_EN,
821 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
822 MSR_STAR,
823 #ifdef CONFIG_X86_64
824 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
825 #endif
826 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
827 };
828
829 static unsigned num_msrs_to_save;
830
831 static const u32 emulated_msrs[] = {
832 MSR_IA32_TSCDEADLINE,
833 MSR_IA32_MISC_ENABLE,
834 MSR_IA32_MCG_STATUS,
835 MSR_IA32_MCG_CTL,
836 };
837
838 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
839 {
840 u64 old_efer = vcpu->arch.efer;
841
842 if (efer & efer_reserved_bits)
843 return 1;
844
845 if (is_paging(vcpu)
846 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
847 return 1;
848
849 if (efer & EFER_FFXSR) {
850 struct kvm_cpuid_entry2 *feat;
851
852 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
853 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
854 return 1;
855 }
856
857 if (efer & EFER_SVME) {
858 struct kvm_cpuid_entry2 *feat;
859
860 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
861 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
862 return 1;
863 }
864
865 efer &= ~EFER_LMA;
866 efer |= vcpu->arch.efer & EFER_LMA;
867
868 kvm_x86_ops->set_efer(vcpu, efer);
869
870 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
871
872 /* Update reserved bits */
873 if ((efer ^ old_efer) & EFER_NX)
874 kvm_mmu_reset_context(vcpu);
875
876 return 0;
877 }
878
879 void kvm_enable_efer_bits(u64 mask)
880 {
881 efer_reserved_bits &= ~mask;
882 }
883 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
884
885
886 /*
887 * Writes msr value into into the appropriate "register".
888 * Returns 0 on success, non-0 otherwise.
889 * Assumes vcpu_load() was already called.
890 */
891 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
892 {
893 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
894 }
895
896 /*
897 * Adapt set_msr() to msr_io()'s calling convention
898 */
899 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
900 {
901 return kvm_set_msr(vcpu, index, *data);
902 }
903
904 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
905 {
906 int version;
907 int r;
908 struct pvclock_wall_clock wc;
909 struct timespec boot;
910
911 if (!wall_clock)
912 return;
913
914 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
915 if (r)
916 return;
917
918 if (version & 1)
919 ++version; /* first time write, random junk */
920
921 ++version;
922
923 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
924
925 /*
926 * The guest calculates current wall clock time by adding
927 * system time (updated by kvm_guest_time_update below) to the
928 * wall clock specified here. guest system time equals host
929 * system time for us, thus we must fill in host boot time here.
930 */
931 getboottime(&boot);
932
933 if (kvm->arch.kvmclock_offset) {
934 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
935 boot = timespec_sub(boot, ts);
936 }
937 wc.sec = boot.tv_sec;
938 wc.nsec = boot.tv_nsec;
939 wc.version = version;
940
941 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
942
943 version++;
944 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
945 }
946
947 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
948 {
949 uint32_t quotient, remainder;
950
951 /* Don't try to replace with do_div(), this one calculates
952 * "(dividend << 32) / divisor" */
953 __asm__ ( "divl %4"
954 : "=a" (quotient), "=d" (remainder)
955 : "0" (0), "1" (dividend), "r" (divisor) );
956 return quotient;
957 }
958
959 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
960 s8 *pshift, u32 *pmultiplier)
961 {
962 uint64_t scaled64;
963 int32_t shift = 0;
964 uint64_t tps64;
965 uint32_t tps32;
966
967 tps64 = base_khz * 1000LL;
968 scaled64 = scaled_khz * 1000LL;
969 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
970 tps64 >>= 1;
971 shift--;
972 }
973
974 tps32 = (uint32_t)tps64;
975 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
976 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
977 scaled64 >>= 1;
978 else
979 tps32 <<= 1;
980 shift++;
981 }
982
983 *pshift = shift;
984 *pmultiplier = div_frac(scaled64, tps32);
985
986 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
987 __func__, base_khz, scaled_khz, shift, *pmultiplier);
988 }
989
990 static inline u64 get_kernel_ns(void)
991 {
992 struct timespec ts;
993
994 WARN_ON(preemptible());
995 ktime_get_ts(&ts);
996 monotonic_to_bootbased(&ts);
997 return timespec_to_ns(&ts);
998 }
999
1000 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1001 unsigned long max_tsc_khz;
1002
1003 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1004 {
1005 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1006 vcpu->arch.virtual_tsc_shift);
1007 }
1008
1009 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1010 {
1011 u64 v = (u64)khz * (1000000 + ppm);
1012 do_div(v, 1000000);
1013 return v;
1014 }
1015
1016 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1017 {
1018 u32 thresh_lo, thresh_hi;
1019 int use_scaling = 0;
1020
1021 /* Compute a scale to convert nanoseconds in TSC cycles */
1022 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1023 &vcpu->arch.virtual_tsc_shift,
1024 &vcpu->arch.virtual_tsc_mult);
1025 vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1026
1027 /*
1028 * Compute the variation in TSC rate which is acceptable
1029 * within the range of tolerance and decide if the
1030 * rate being applied is within that bounds of the hardware
1031 * rate. If so, no scaling or compensation need be done.
1032 */
1033 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1034 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1035 if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1036 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1037 use_scaling = 1;
1038 }
1039 kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1040 }
1041
1042 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1043 {
1044 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1045 vcpu->arch.virtual_tsc_mult,
1046 vcpu->arch.virtual_tsc_shift);
1047 tsc += vcpu->arch.this_tsc_write;
1048 return tsc;
1049 }
1050
1051 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1052 {
1053 struct kvm *kvm = vcpu->kvm;
1054 u64 offset, ns, elapsed;
1055 unsigned long flags;
1056 s64 usdiff;
1057
1058 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1059 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1060 ns = get_kernel_ns();
1061 elapsed = ns - kvm->arch.last_tsc_nsec;
1062
1063 /* n.b - signed multiplication and division required */
1064 usdiff = data - kvm->arch.last_tsc_write;
1065 #ifdef CONFIG_X86_64
1066 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1067 #else
1068 /* do_div() only does unsigned */
1069 asm("idivl %2; xor %%edx, %%edx"
1070 : "=A"(usdiff)
1071 : "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz));
1072 #endif
1073 do_div(elapsed, 1000);
1074 usdiff -= elapsed;
1075 if (usdiff < 0)
1076 usdiff = -usdiff;
1077
1078 /*
1079 * Special case: TSC write with a small delta (1 second) of virtual
1080 * cycle time against real time is interpreted as an attempt to
1081 * synchronize the CPU.
1082 *
1083 * For a reliable TSC, we can match TSC offsets, and for an unstable
1084 * TSC, we add elapsed time in this computation. We could let the
1085 * compensation code attempt to catch up if we fall behind, but
1086 * it's better to try to match offsets from the beginning.
1087 */
1088 if (usdiff < USEC_PER_SEC &&
1089 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1090 if (!check_tsc_unstable()) {
1091 offset = kvm->arch.cur_tsc_offset;
1092 pr_debug("kvm: matched tsc offset for %llu\n", data);
1093 } else {
1094 u64 delta = nsec_to_cycles(vcpu, elapsed);
1095 data += delta;
1096 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1097 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1098 }
1099 } else {
1100 /*
1101 * We split periods of matched TSC writes into generations.
1102 * For each generation, we track the original measured
1103 * nanosecond time, offset, and write, so if TSCs are in
1104 * sync, we can match exact offset, and if not, we can match
1105 * exact software computation in compute_guest_tsc()
1106 *
1107 * These values are tracked in kvm->arch.cur_xxx variables.
1108 */
1109 kvm->arch.cur_tsc_generation++;
1110 kvm->arch.cur_tsc_nsec = ns;
1111 kvm->arch.cur_tsc_write = data;
1112 kvm->arch.cur_tsc_offset = offset;
1113 pr_debug("kvm: new tsc generation %u, clock %llu\n",
1114 kvm->arch.cur_tsc_generation, data);
1115 }
1116
1117 /*
1118 * We also track th most recent recorded KHZ, write and time to
1119 * allow the matching interval to be extended at each write.
1120 */
1121 kvm->arch.last_tsc_nsec = ns;
1122 kvm->arch.last_tsc_write = data;
1123 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1124
1125 /* Reset of TSC must disable overshoot protection below */
1126 vcpu->arch.hv_clock.tsc_timestamp = 0;
1127 vcpu->arch.last_guest_tsc = data;
1128
1129 /* Keep track of which generation this VCPU has synchronized to */
1130 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1131 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1132 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1133
1134 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1135 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1136 }
1137
1138 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1139
1140 static int kvm_guest_time_update(struct kvm_vcpu *v)
1141 {
1142 unsigned long flags;
1143 struct kvm_vcpu_arch *vcpu = &v->arch;
1144 void *shared_kaddr;
1145 unsigned long this_tsc_khz;
1146 s64 kernel_ns, max_kernel_ns;
1147 u64 tsc_timestamp;
1148 u8 pvclock_flags;
1149
1150 /* Keep irq disabled to prevent changes to the clock */
1151 local_irq_save(flags);
1152 tsc_timestamp = kvm_x86_ops->read_l1_tsc(v);
1153 kernel_ns = get_kernel_ns();
1154 this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1155 if (unlikely(this_tsc_khz == 0)) {
1156 local_irq_restore(flags);
1157 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1158 return 1;
1159 }
1160
1161 /*
1162 * We may have to catch up the TSC to match elapsed wall clock
1163 * time for two reasons, even if kvmclock is used.
1164 * 1) CPU could have been running below the maximum TSC rate
1165 * 2) Broken TSC compensation resets the base at each VCPU
1166 * entry to avoid unknown leaps of TSC even when running
1167 * again on the same CPU. This may cause apparent elapsed
1168 * time to disappear, and the guest to stand still or run
1169 * very slowly.
1170 */
1171 if (vcpu->tsc_catchup) {
1172 u64 tsc = compute_guest_tsc(v, kernel_ns);
1173 if (tsc > tsc_timestamp) {
1174 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1175 tsc_timestamp = tsc;
1176 }
1177 }
1178
1179 local_irq_restore(flags);
1180
1181 if (!vcpu->time_page)
1182 return 0;
1183
1184 /*
1185 * Time as measured by the TSC may go backwards when resetting the base
1186 * tsc_timestamp. The reason for this is that the TSC resolution is
1187 * higher than the resolution of the other clock scales. Thus, many
1188 * possible measurments of the TSC correspond to one measurement of any
1189 * other clock, and so a spread of values is possible. This is not a
1190 * problem for the computation of the nanosecond clock; with TSC rates
1191 * around 1GHZ, there can only be a few cycles which correspond to one
1192 * nanosecond value, and any path through this code will inevitably
1193 * take longer than that. However, with the kernel_ns value itself,
1194 * the precision may be much lower, down to HZ granularity. If the
1195 * first sampling of TSC against kernel_ns ends in the low part of the
1196 * range, and the second in the high end of the range, we can get:
1197 *
1198 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1199 *
1200 * As the sampling errors potentially range in the thousands of cycles,
1201 * it is possible such a time value has already been observed by the
1202 * guest. To protect against this, we must compute the system time as
1203 * observed by the guest and ensure the new system time is greater.
1204 */
1205 max_kernel_ns = 0;
1206 if (vcpu->hv_clock.tsc_timestamp) {
1207 max_kernel_ns = vcpu->last_guest_tsc -
1208 vcpu->hv_clock.tsc_timestamp;
1209 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1210 vcpu->hv_clock.tsc_to_system_mul,
1211 vcpu->hv_clock.tsc_shift);
1212 max_kernel_ns += vcpu->last_kernel_ns;
1213 }
1214
1215 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1216 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1217 &vcpu->hv_clock.tsc_shift,
1218 &vcpu->hv_clock.tsc_to_system_mul);
1219 vcpu->hw_tsc_khz = this_tsc_khz;
1220 }
1221
1222 if (max_kernel_ns > kernel_ns)
1223 kernel_ns = max_kernel_ns;
1224
1225 /* With all the info we got, fill in the values */
1226 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1227 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1228 vcpu->last_kernel_ns = kernel_ns;
1229 vcpu->last_guest_tsc = tsc_timestamp;
1230
1231 pvclock_flags = 0;
1232 if (vcpu->pvclock_set_guest_stopped_request) {
1233 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1234 vcpu->pvclock_set_guest_stopped_request = false;
1235 }
1236
1237 vcpu->hv_clock.flags = pvclock_flags;
1238
1239 /*
1240 * The interface expects us to write an even number signaling that the
1241 * update is finished. Since the guest won't see the intermediate
1242 * state, we just increase by 2 at the end.
1243 */
1244 vcpu->hv_clock.version += 2;
1245
1246 shared_kaddr = kmap_atomic(vcpu->time_page);
1247
1248 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1249 sizeof(vcpu->hv_clock));
1250
1251 kunmap_atomic(shared_kaddr);
1252
1253 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1254 return 0;
1255 }
1256
1257 static bool msr_mtrr_valid(unsigned msr)
1258 {
1259 switch (msr) {
1260 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1261 case MSR_MTRRfix64K_00000:
1262 case MSR_MTRRfix16K_80000:
1263 case MSR_MTRRfix16K_A0000:
1264 case MSR_MTRRfix4K_C0000:
1265 case MSR_MTRRfix4K_C8000:
1266 case MSR_MTRRfix4K_D0000:
1267 case MSR_MTRRfix4K_D8000:
1268 case MSR_MTRRfix4K_E0000:
1269 case MSR_MTRRfix4K_E8000:
1270 case MSR_MTRRfix4K_F0000:
1271 case MSR_MTRRfix4K_F8000:
1272 case MSR_MTRRdefType:
1273 case MSR_IA32_CR_PAT:
1274 return true;
1275 case 0x2f8:
1276 return true;
1277 }
1278 return false;
1279 }
1280
1281 static bool valid_pat_type(unsigned t)
1282 {
1283 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1284 }
1285
1286 static bool valid_mtrr_type(unsigned t)
1287 {
1288 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1289 }
1290
1291 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1292 {
1293 int i;
1294
1295 if (!msr_mtrr_valid(msr))
1296 return false;
1297
1298 if (msr == MSR_IA32_CR_PAT) {
1299 for (i = 0; i < 8; i++)
1300 if (!valid_pat_type((data >> (i * 8)) & 0xff))
1301 return false;
1302 return true;
1303 } else if (msr == MSR_MTRRdefType) {
1304 if (data & ~0xcff)
1305 return false;
1306 return valid_mtrr_type(data & 0xff);
1307 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1308 for (i = 0; i < 8 ; i++)
1309 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1310 return false;
1311 return true;
1312 }
1313
1314 /* variable MTRRs */
1315 return valid_mtrr_type(data & 0xff);
1316 }
1317
1318 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1319 {
1320 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1321
1322 if (!mtrr_valid(vcpu, msr, data))
1323 return 1;
1324
1325 if (msr == MSR_MTRRdefType) {
1326 vcpu->arch.mtrr_state.def_type = data;
1327 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1328 } else if (msr == MSR_MTRRfix64K_00000)
1329 p[0] = data;
1330 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1331 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1332 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1333 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1334 else if (msr == MSR_IA32_CR_PAT)
1335 vcpu->arch.pat = data;
1336 else { /* Variable MTRRs */
1337 int idx, is_mtrr_mask;
1338 u64 *pt;
1339
1340 idx = (msr - 0x200) / 2;
1341 is_mtrr_mask = msr - 0x200 - 2 * idx;
1342 if (!is_mtrr_mask)
1343 pt =
1344 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1345 else
1346 pt =
1347 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1348 *pt = data;
1349 }
1350
1351 kvm_mmu_reset_context(vcpu);
1352 return 0;
1353 }
1354
1355 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1356 {
1357 u64 mcg_cap = vcpu->arch.mcg_cap;
1358 unsigned bank_num = mcg_cap & 0xff;
1359
1360 switch (msr) {
1361 case MSR_IA32_MCG_STATUS:
1362 vcpu->arch.mcg_status = data;
1363 break;
1364 case MSR_IA32_MCG_CTL:
1365 if (!(mcg_cap & MCG_CTL_P))
1366 return 1;
1367 if (data != 0 && data != ~(u64)0)
1368 return -1;
1369 vcpu->arch.mcg_ctl = data;
1370 break;
1371 default:
1372 if (msr >= MSR_IA32_MC0_CTL &&
1373 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1374 u32 offset = msr - MSR_IA32_MC0_CTL;
1375 /* only 0 or all 1s can be written to IA32_MCi_CTL
1376 * some Linux kernels though clear bit 10 in bank 4 to
1377 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1378 * this to avoid an uncatched #GP in the guest
1379 */
1380 if ((offset & 0x3) == 0 &&
1381 data != 0 && (data | (1 << 10)) != ~(u64)0)
1382 return -1;
1383 vcpu->arch.mce_banks[offset] = data;
1384 break;
1385 }
1386 return 1;
1387 }
1388 return 0;
1389 }
1390
1391 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1392 {
1393 struct kvm *kvm = vcpu->kvm;
1394 int lm = is_long_mode(vcpu);
1395 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1396 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1397 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1398 : kvm->arch.xen_hvm_config.blob_size_32;
1399 u32 page_num = data & ~PAGE_MASK;
1400 u64 page_addr = data & PAGE_MASK;
1401 u8 *page;
1402 int r;
1403
1404 r = -E2BIG;
1405 if (page_num >= blob_size)
1406 goto out;
1407 r = -ENOMEM;
1408 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1409 if (IS_ERR(page)) {
1410 r = PTR_ERR(page);
1411 goto out;
1412 }
1413 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1414 goto out_free;
1415 r = 0;
1416 out_free:
1417 kfree(page);
1418 out:
1419 return r;
1420 }
1421
1422 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1423 {
1424 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1425 }
1426
1427 static bool kvm_hv_msr_partition_wide(u32 msr)
1428 {
1429 bool r = false;
1430 switch (msr) {
1431 case HV_X64_MSR_GUEST_OS_ID:
1432 case HV_X64_MSR_HYPERCALL:
1433 r = true;
1434 break;
1435 }
1436
1437 return r;
1438 }
1439
1440 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1441 {
1442 struct kvm *kvm = vcpu->kvm;
1443
1444 switch (msr) {
1445 case HV_X64_MSR_GUEST_OS_ID:
1446 kvm->arch.hv_guest_os_id = data;
1447 /* setting guest os id to zero disables hypercall page */
1448 if (!kvm->arch.hv_guest_os_id)
1449 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1450 break;
1451 case HV_X64_MSR_HYPERCALL: {
1452 u64 gfn;
1453 unsigned long addr;
1454 u8 instructions[4];
1455
1456 /* if guest os id is not set hypercall should remain disabled */
1457 if (!kvm->arch.hv_guest_os_id)
1458 break;
1459 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1460 kvm->arch.hv_hypercall = data;
1461 break;
1462 }
1463 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1464 addr = gfn_to_hva(kvm, gfn);
1465 if (kvm_is_error_hva(addr))
1466 return 1;
1467 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1468 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1469 if (__copy_to_user((void __user *)addr, instructions, 4))
1470 return 1;
1471 kvm->arch.hv_hypercall = data;
1472 break;
1473 }
1474 default:
1475 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1476 "data 0x%llx\n", msr, data);
1477 return 1;
1478 }
1479 return 0;
1480 }
1481
1482 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1483 {
1484 switch (msr) {
1485 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1486 unsigned long addr;
1487
1488 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1489 vcpu->arch.hv_vapic = data;
1490 break;
1491 }
1492 addr = gfn_to_hva(vcpu->kvm, data >>
1493 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1494 if (kvm_is_error_hva(addr))
1495 return 1;
1496 if (__clear_user((void __user *)addr, PAGE_SIZE))
1497 return 1;
1498 vcpu->arch.hv_vapic = data;
1499 break;
1500 }
1501 case HV_X64_MSR_EOI:
1502 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1503 case HV_X64_MSR_ICR:
1504 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1505 case HV_X64_MSR_TPR:
1506 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1507 default:
1508 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1509 "data 0x%llx\n", msr, data);
1510 return 1;
1511 }
1512
1513 return 0;
1514 }
1515
1516 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1517 {
1518 gpa_t gpa = data & ~0x3f;
1519
1520 /* Bits 2:5 are reserved, Should be zero */
1521 if (data & 0x3c)
1522 return 1;
1523
1524 vcpu->arch.apf.msr_val = data;
1525
1526 if (!(data & KVM_ASYNC_PF_ENABLED)) {
1527 kvm_clear_async_pf_completion_queue(vcpu);
1528 kvm_async_pf_hash_reset(vcpu);
1529 return 0;
1530 }
1531
1532 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1533 return 1;
1534
1535 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1536 kvm_async_pf_wakeup_all(vcpu);
1537 return 0;
1538 }
1539
1540 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1541 {
1542 if (vcpu->arch.time_page) {
1543 kvm_release_page_dirty(vcpu->arch.time_page);
1544 vcpu->arch.time_page = NULL;
1545 }
1546 }
1547
1548 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1549 {
1550 u64 delta;
1551
1552 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1553 return;
1554
1555 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1556 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1557 vcpu->arch.st.accum_steal = delta;
1558 }
1559
1560 static void record_steal_time(struct kvm_vcpu *vcpu)
1561 {
1562 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1563 return;
1564
1565 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1566 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1567 return;
1568
1569 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1570 vcpu->arch.st.steal.version += 2;
1571 vcpu->arch.st.accum_steal = 0;
1572
1573 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1574 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1575 }
1576
1577 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1578 {
1579 bool pr = false;
1580
1581 switch (msr) {
1582 case MSR_EFER:
1583 return set_efer(vcpu, data);
1584 case MSR_K7_HWCR:
1585 data &= ~(u64)0x40; /* ignore flush filter disable */
1586 data &= ~(u64)0x100; /* ignore ignne emulation enable */
1587 data &= ~(u64)0x8; /* ignore TLB cache disable */
1588 if (data != 0) {
1589 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1590 data);
1591 return 1;
1592 }
1593 break;
1594 case MSR_FAM10H_MMIO_CONF_BASE:
1595 if (data != 0) {
1596 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1597 "0x%llx\n", data);
1598 return 1;
1599 }
1600 break;
1601 case MSR_AMD64_NB_CFG:
1602 break;
1603 case MSR_IA32_DEBUGCTLMSR:
1604 if (!data) {
1605 /* We support the non-activated case already */
1606 break;
1607 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1608 /* Values other than LBR and BTF are vendor-specific,
1609 thus reserved and should throw a #GP */
1610 return 1;
1611 }
1612 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1613 __func__, data);
1614 break;
1615 case MSR_IA32_UCODE_REV:
1616 case MSR_IA32_UCODE_WRITE:
1617 case MSR_VM_HSAVE_PA:
1618 case MSR_AMD64_PATCH_LOADER:
1619 break;
1620 case 0x200 ... 0x2ff:
1621 return set_msr_mtrr(vcpu, msr, data);
1622 case MSR_IA32_APICBASE:
1623 kvm_set_apic_base(vcpu, data);
1624 break;
1625 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1626 return kvm_x2apic_msr_write(vcpu, msr, data);
1627 case MSR_IA32_TSCDEADLINE:
1628 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1629 break;
1630 case MSR_IA32_MISC_ENABLE:
1631 vcpu->arch.ia32_misc_enable_msr = data;
1632 break;
1633 case MSR_KVM_WALL_CLOCK_NEW:
1634 case MSR_KVM_WALL_CLOCK:
1635 vcpu->kvm->arch.wall_clock = data;
1636 kvm_write_wall_clock(vcpu->kvm, data);
1637 break;
1638 case MSR_KVM_SYSTEM_TIME_NEW:
1639 case MSR_KVM_SYSTEM_TIME: {
1640 kvmclock_reset(vcpu);
1641
1642 vcpu->arch.time = data;
1643 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1644
1645 /* we verify if the enable bit is set... */
1646 if (!(data & 1))
1647 break;
1648
1649 /* ...but clean it before doing the actual write */
1650 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1651
1652 vcpu->arch.time_page =
1653 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1654
1655 if (is_error_page(vcpu->arch.time_page))
1656 vcpu->arch.time_page = NULL;
1657
1658 break;
1659 }
1660 case MSR_KVM_ASYNC_PF_EN:
1661 if (kvm_pv_enable_async_pf(vcpu, data))
1662 return 1;
1663 break;
1664 case MSR_KVM_STEAL_TIME:
1665
1666 if (unlikely(!sched_info_on()))
1667 return 1;
1668
1669 if (data & KVM_STEAL_RESERVED_MASK)
1670 return 1;
1671
1672 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
1673 data & KVM_STEAL_VALID_BITS))
1674 return 1;
1675
1676 vcpu->arch.st.msr_val = data;
1677
1678 if (!(data & KVM_MSR_ENABLED))
1679 break;
1680
1681 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1682
1683 preempt_disable();
1684 accumulate_steal_time(vcpu);
1685 preempt_enable();
1686
1687 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
1688
1689 break;
1690 case MSR_KVM_PV_EOI_EN:
1691 if (kvm_lapic_enable_pv_eoi(vcpu, data))
1692 return 1;
1693 break;
1694
1695 case MSR_IA32_MCG_CTL:
1696 case MSR_IA32_MCG_STATUS:
1697 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1698 return set_msr_mce(vcpu, msr, data);
1699
1700 /* Performance counters are not protected by a CPUID bit,
1701 * so we should check all of them in the generic path for the sake of
1702 * cross vendor migration.
1703 * Writing a zero into the event select MSRs disables them,
1704 * which we perfectly emulate ;-). Any other value should be at least
1705 * reported, some guests depend on them.
1706 */
1707 case MSR_K7_EVNTSEL0:
1708 case MSR_K7_EVNTSEL1:
1709 case MSR_K7_EVNTSEL2:
1710 case MSR_K7_EVNTSEL3:
1711 if (data != 0)
1712 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1713 "0x%x data 0x%llx\n", msr, data);
1714 break;
1715 /* at least RHEL 4 unconditionally writes to the perfctr registers,
1716 * so we ignore writes to make it happy.
1717 */
1718 case MSR_K7_PERFCTR0:
1719 case MSR_K7_PERFCTR1:
1720 case MSR_K7_PERFCTR2:
1721 case MSR_K7_PERFCTR3:
1722 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1723 "0x%x data 0x%llx\n", msr, data);
1724 break;
1725 case MSR_P6_PERFCTR0:
1726 case MSR_P6_PERFCTR1:
1727 pr = true;
1728 case MSR_P6_EVNTSEL0:
1729 case MSR_P6_EVNTSEL1:
1730 if (kvm_pmu_msr(vcpu, msr))
1731 return kvm_pmu_set_msr(vcpu, msr, data);
1732
1733 if (pr || data != 0)
1734 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
1735 "0x%x data 0x%llx\n", msr, data);
1736 break;
1737 case MSR_K7_CLK_CTL:
1738 /*
1739 * Ignore all writes to this no longer documented MSR.
1740 * Writes are only relevant for old K7 processors,
1741 * all pre-dating SVM, but a recommended workaround from
1742 * AMD for these chips. It is possible to specify the
1743 * affected processor models on the command line, hence
1744 * the need to ignore the workaround.
1745 */
1746 break;
1747 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1748 if (kvm_hv_msr_partition_wide(msr)) {
1749 int r;
1750 mutex_lock(&vcpu->kvm->lock);
1751 r = set_msr_hyperv_pw(vcpu, msr, data);
1752 mutex_unlock(&vcpu->kvm->lock);
1753 return r;
1754 } else
1755 return set_msr_hyperv(vcpu, msr, data);
1756 break;
1757 case MSR_IA32_BBL_CR_CTL3:
1758 /* Drop writes to this legacy MSR -- see rdmsr
1759 * counterpart for further detail.
1760 */
1761 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
1762 break;
1763 case MSR_AMD64_OSVW_ID_LENGTH:
1764 if (!guest_cpuid_has_osvw(vcpu))
1765 return 1;
1766 vcpu->arch.osvw.length = data;
1767 break;
1768 case MSR_AMD64_OSVW_STATUS:
1769 if (!guest_cpuid_has_osvw(vcpu))
1770 return 1;
1771 vcpu->arch.osvw.status = data;
1772 break;
1773 default:
1774 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1775 return xen_hvm_config(vcpu, data);
1776 if (kvm_pmu_msr(vcpu, msr))
1777 return kvm_pmu_set_msr(vcpu, msr, data);
1778 if (!ignore_msrs) {
1779 vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1780 msr, data);
1781 return 1;
1782 } else {
1783 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1784 msr, data);
1785 break;
1786 }
1787 }
1788 return 0;
1789 }
1790 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1791
1792
1793 /*
1794 * Reads an msr value (of 'msr_index') into 'pdata'.
1795 * Returns 0 on success, non-0 otherwise.
1796 * Assumes vcpu_load() was already called.
1797 */
1798 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1799 {
1800 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1801 }
1802
1803 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1804 {
1805 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1806
1807 if (!msr_mtrr_valid(msr))
1808 return 1;
1809
1810 if (msr == MSR_MTRRdefType)
1811 *pdata = vcpu->arch.mtrr_state.def_type +
1812 (vcpu->arch.mtrr_state.enabled << 10);
1813 else if (msr == MSR_MTRRfix64K_00000)
1814 *pdata = p[0];
1815 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1816 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1817 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1818 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1819 else if (msr == MSR_IA32_CR_PAT)
1820 *pdata = vcpu->arch.pat;
1821 else { /* Variable MTRRs */
1822 int idx, is_mtrr_mask;
1823 u64 *pt;
1824
1825 idx = (msr - 0x200) / 2;
1826 is_mtrr_mask = msr - 0x200 - 2 * idx;
1827 if (!is_mtrr_mask)
1828 pt =
1829 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1830 else
1831 pt =
1832 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1833 *pdata = *pt;
1834 }
1835
1836 return 0;
1837 }
1838
1839 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1840 {
1841 u64 data;
1842 u64 mcg_cap = vcpu->arch.mcg_cap;
1843 unsigned bank_num = mcg_cap & 0xff;
1844
1845 switch (msr) {
1846 case MSR_IA32_P5_MC_ADDR:
1847 case MSR_IA32_P5_MC_TYPE:
1848 data = 0;
1849 break;
1850 case MSR_IA32_MCG_CAP:
1851 data = vcpu->arch.mcg_cap;
1852 break;
1853 case MSR_IA32_MCG_CTL:
1854 if (!(mcg_cap & MCG_CTL_P))
1855 return 1;
1856 data = vcpu->arch.mcg_ctl;
1857 break;
1858 case MSR_IA32_MCG_STATUS:
1859 data = vcpu->arch.mcg_status;
1860 break;
1861 default:
1862 if (msr >= MSR_IA32_MC0_CTL &&
1863 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1864 u32 offset = msr - MSR_IA32_MC0_CTL;
1865 data = vcpu->arch.mce_banks[offset];
1866 break;
1867 }
1868 return 1;
1869 }
1870 *pdata = data;
1871 return 0;
1872 }
1873
1874 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1875 {
1876 u64 data = 0;
1877 struct kvm *kvm = vcpu->kvm;
1878
1879 switch (msr) {
1880 case HV_X64_MSR_GUEST_OS_ID:
1881 data = kvm->arch.hv_guest_os_id;
1882 break;
1883 case HV_X64_MSR_HYPERCALL:
1884 data = kvm->arch.hv_hypercall;
1885 break;
1886 default:
1887 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1888 return 1;
1889 }
1890
1891 *pdata = data;
1892 return 0;
1893 }
1894
1895 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1896 {
1897 u64 data = 0;
1898
1899 switch (msr) {
1900 case HV_X64_MSR_VP_INDEX: {
1901 int r;
1902 struct kvm_vcpu *v;
1903 kvm_for_each_vcpu(r, v, vcpu->kvm)
1904 if (v == vcpu)
1905 data = r;
1906 break;
1907 }
1908 case HV_X64_MSR_EOI:
1909 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1910 case HV_X64_MSR_ICR:
1911 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1912 case HV_X64_MSR_TPR:
1913 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1914 case HV_X64_MSR_APIC_ASSIST_PAGE:
1915 data = vcpu->arch.hv_vapic;
1916 break;
1917 default:
1918 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1919 return 1;
1920 }
1921 *pdata = data;
1922 return 0;
1923 }
1924
1925 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1926 {
1927 u64 data;
1928
1929 switch (msr) {
1930 case MSR_IA32_PLATFORM_ID:
1931 case MSR_IA32_EBL_CR_POWERON:
1932 case MSR_IA32_DEBUGCTLMSR:
1933 case MSR_IA32_LASTBRANCHFROMIP:
1934 case MSR_IA32_LASTBRANCHTOIP:
1935 case MSR_IA32_LASTINTFROMIP:
1936 case MSR_IA32_LASTINTTOIP:
1937 case MSR_K8_SYSCFG:
1938 case MSR_K7_HWCR:
1939 case MSR_VM_HSAVE_PA:
1940 case MSR_K7_EVNTSEL0:
1941 case MSR_K7_PERFCTR0:
1942 case MSR_K8_INT_PENDING_MSG:
1943 case MSR_AMD64_NB_CFG:
1944 case MSR_FAM10H_MMIO_CONF_BASE:
1945 data = 0;
1946 break;
1947 case MSR_P6_PERFCTR0:
1948 case MSR_P6_PERFCTR1:
1949 case MSR_P6_EVNTSEL0:
1950 case MSR_P6_EVNTSEL1:
1951 if (kvm_pmu_msr(vcpu, msr))
1952 return kvm_pmu_get_msr(vcpu, msr, pdata);
1953 data = 0;
1954 break;
1955 case MSR_IA32_UCODE_REV:
1956 data = 0x100000000ULL;
1957 break;
1958 case MSR_MTRRcap:
1959 data = 0x500 | KVM_NR_VAR_MTRR;
1960 break;
1961 case 0x200 ... 0x2ff:
1962 return get_msr_mtrr(vcpu, msr, pdata);
1963 case 0xcd: /* fsb frequency */
1964 data = 3;
1965 break;
1966 /*
1967 * MSR_EBC_FREQUENCY_ID
1968 * Conservative value valid for even the basic CPU models.
1969 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1970 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1971 * and 266MHz for model 3, or 4. Set Core Clock
1972 * Frequency to System Bus Frequency Ratio to 1 (bits
1973 * 31:24) even though these are only valid for CPU
1974 * models > 2, however guests may end up dividing or
1975 * multiplying by zero otherwise.
1976 */
1977 case MSR_EBC_FREQUENCY_ID:
1978 data = 1 << 24;
1979 break;
1980 case MSR_IA32_APICBASE:
1981 data = kvm_get_apic_base(vcpu);
1982 break;
1983 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1984 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1985 break;
1986 case MSR_IA32_TSCDEADLINE:
1987 data = kvm_get_lapic_tscdeadline_msr(vcpu);
1988 break;
1989 case MSR_IA32_MISC_ENABLE:
1990 data = vcpu->arch.ia32_misc_enable_msr;
1991 break;
1992 case MSR_IA32_PERF_STATUS:
1993 /* TSC increment by tick */
1994 data = 1000ULL;
1995 /* CPU multiplier */
1996 data |= (((uint64_t)4ULL) << 40);
1997 break;
1998 case MSR_EFER:
1999 data = vcpu->arch.efer;
2000 break;
2001 case MSR_KVM_WALL_CLOCK:
2002 case MSR_KVM_WALL_CLOCK_NEW:
2003 data = vcpu->kvm->arch.wall_clock;
2004 break;
2005 case MSR_KVM_SYSTEM_TIME:
2006 case MSR_KVM_SYSTEM_TIME_NEW:
2007 data = vcpu->arch.time;
2008 break;
2009 case MSR_KVM_ASYNC_PF_EN:
2010 data = vcpu->arch.apf.msr_val;
2011 break;
2012 case MSR_KVM_STEAL_TIME:
2013 data = vcpu->arch.st.msr_val;
2014 break;
2015 case MSR_KVM_PV_EOI_EN:
2016 data = vcpu->arch.pv_eoi.msr_val;
2017 break;
2018 case MSR_IA32_P5_MC_ADDR:
2019 case MSR_IA32_P5_MC_TYPE:
2020 case MSR_IA32_MCG_CAP:
2021 case MSR_IA32_MCG_CTL:
2022 case MSR_IA32_MCG_STATUS:
2023 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2024 return get_msr_mce(vcpu, msr, pdata);
2025 case MSR_K7_CLK_CTL:
2026 /*
2027 * Provide expected ramp-up count for K7. All other
2028 * are set to zero, indicating minimum divisors for
2029 * every field.
2030 *
2031 * This prevents guest kernels on AMD host with CPU
2032 * type 6, model 8 and higher from exploding due to
2033 * the rdmsr failing.
2034 */
2035 data = 0x20000000;
2036 break;
2037 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2038 if (kvm_hv_msr_partition_wide(msr)) {
2039 int r;
2040 mutex_lock(&vcpu->kvm->lock);
2041 r = get_msr_hyperv_pw(vcpu, msr, pdata);
2042 mutex_unlock(&vcpu->kvm->lock);
2043 return r;
2044 } else
2045 return get_msr_hyperv(vcpu, msr, pdata);
2046 break;
2047 case MSR_IA32_BBL_CR_CTL3:
2048 /* This legacy MSR exists but isn't fully documented in current
2049 * silicon. It is however accessed by winxp in very narrow
2050 * scenarios where it sets bit #19, itself documented as
2051 * a "reserved" bit. Best effort attempt to source coherent
2052 * read data here should the balance of the register be
2053 * interpreted by the guest:
2054 *
2055 * L2 cache control register 3: 64GB range, 256KB size,
2056 * enabled, latency 0x1, configured
2057 */
2058 data = 0xbe702111;
2059 break;
2060 case MSR_AMD64_OSVW_ID_LENGTH:
2061 if (!guest_cpuid_has_osvw(vcpu))
2062 return 1;
2063 data = vcpu->arch.osvw.length;
2064 break;
2065 case MSR_AMD64_OSVW_STATUS:
2066 if (!guest_cpuid_has_osvw(vcpu))
2067 return 1;
2068 data = vcpu->arch.osvw.status;
2069 break;
2070 default:
2071 if (kvm_pmu_msr(vcpu, msr))
2072 return kvm_pmu_get_msr(vcpu, msr, pdata);
2073 if (!ignore_msrs) {
2074 vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2075 return 1;
2076 } else {
2077 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2078 data = 0;
2079 }
2080 break;
2081 }
2082 *pdata = data;
2083 return 0;
2084 }
2085 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2086
2087 /*
2088 * Read or write a bunch of msrs. All parameters are kernel addresses.
2089 *
2090 * @return number of msrs set successfully.
2091 */
2092 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2093 struct kvm_msr_entry *entries,
2094 int (*do_msr)(struct kvm_vcpu *vcpu,
2095 unsigned index, u64 *data))
2096 {
2097 int i, idx;
2098
2099 idx = srcu_read_lock(&vcpu->kvm->srcu);
2100 for (i = 0; i < msrs->nmsrs; ++i)
2101 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2102 break;
2103 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2104
2105 return i;
2106 }
2107
2108 /*
2109 * Read or write a bunch of msrs. Parameters are user addresses.
2110 *
2111 * @return number of msrs set successfully.
2112 */
2113 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2114 int (*do_msr)(struct kvm_vcpu *vcpu,
2115 unsigned index, u64 *data),
2116 int writeback)
2117 {
2118 struct kvm_msrs msrs;
2119 struct kvm_msr_entry *entries;
2120 int r, n;
2121 unsigned size;
2122
2123 r = -EFAULT;
2124 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2125 goto out;
2126
2127 r = -E2BIG;
2128 if (msrs.nmsrs >= MAX_IO_MSRS)
2129 goto out;
2130
2131 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2132 entries = memdup_user(user_msrs->entries, size);
2133 if (IS_ERR(entries)) {
2134 r = PTR_ERR(entries);
2135 goto out;
2136 }
2137
2138 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2139 if (r < 0)
2140 goto out_free;
2141
2142 r = -EFAULT;
2143 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2144 goto out_free;
2145
2146 r = n;
2147
2148 out_free:
2149 kfree(entries);
2150 out:
2151 return r;
2152 }
2153
2154 int kvm_dev_ioctl_check_extension(long ext)
2155 {
2156 int r;
2157
2158 switch (ext) {
2159 case KVM_CAP_IRQCHIP:
2160 case KVM_CAP_HLT:
2161 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2162 case KVM_CAP_SET_TSS_ADDR:
2163 case KVM_CAP_EXT_CPUID:
2164 case KVM_CAP_CLOCKSOURCE:
2165 case KVM_CAP_PIT:
2166 case KVM_CAP_NOP_IO_DELAY:
2167 case KVM_CAP_MP_STATE:
2168 case KVM_CAP_SYNC_MMU:
2169 case KVM_CAP_USER_NMI:
2170 case KVM_CAP_REINJECT_CONTROL:
2171 case KVM_CAP_IRQ_INJECT_STATUS:
2172 case KVM_CAP_ASSIGN_DEV_IRQ:
2173 case KVM_CAP_IRQFD:
2174 case KVM_CAP_IOEVENTFD:
2175 case KVM_CAP_PIT2:
2176 case KVM_CAP_PIT_STATE2:
2177 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2178 case KVM_CAP_XEN_HVM:
2179 case KVM_CAP_ADJUST_CLOCK:
2180 case KVM_CAP_VCPU_EVENTS:
2181 case KVM_CAP_HYPERV:
2182 case KVM_CAP_HYPERV_VAPIC:
2183 case KVM_CAP_HYPERV_SPIN:
2184 case KVM_CAP_PCI_SEGMENT:
2185 case KVM_CAP_DEBUGREGS:
2186 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2187 case KVM_CAP_XSAVE:
2188 case KVM_CAP_ASYNC_PF:
2189 case KVM_CAP_GET_TSC_KHZ:
2190 case KVM_CAP_PCI_2_3:
2191 case KVM_CAP_KVMCLOCK_CTRL:
2192 case KVM_CAP_READONLY_MEM:
2193 case KVM_CAP_IRQFD_RESAMPLE:
2194 r = 1;
2195 break;
2196 case KVM_CAP_COALESCED_MMIO:
2197 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2198 break;
2199 case KVM_CAP_VAPIC:
2200 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2201 break;
2202 case KVM_CAP_NR_VCPUS:
2203 r = KVM_SOFT_MAX_VCPUS;
2204 break;
2205 case KVM_CAP_MAX_VCPUS:
2206 r = KVM_MAX_VCPUS;
2207 break;
2208 case KVM_CAP_NR_MEMSLOTS:
2209 r = KVM_MEMORY_SLOTS;
2210 break;
2211 case KVM_CAP_PV_MMU: /* obsolete */
2212 r = 0;
2213 break;
2214 case KVM_CAP_IOMMU:
2215 r = iommu_present(&pci_bus_type);
2216 break;
2217 case KVM_CAP_MCE:
2218 r = KVM_MAX_MCE_BANKS;
2219 break;
2220 case KVM_CAP_XCRS:
2221 r = cpu_has_xsave;
2222 break;
2223 case KVM_CAP_TSC_CONTROL:
2224 r = kvm_has_tsc_control;
2225 break;
2226 case KVM_CAP_TSC_DEADLINE_TIMER:
2227 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2228 break;
2229 default:
2230 r = 0;
2231 break;
2232 }
2233 return r;
2234
2235 }
2236
2237 long kvm_arch_dev_ioctl(struct file *filp,
2238 unsigned int ioctl, unsigned long arg)
2239 {
2240 void __user *argp = (void __user *)arg;
2241 long r;
2242
2243 switch (ioctl) {
2244 case KVM_GET_MSR_INDEX_LIST: {
2245 struct kvm_msr_list __user *user_msr_list = argp;
2246 struct kvm_msr_list msr_list;
2247 unsigned n;
2248
2249 r = -EFAULT;
2250 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2251 goto out;
2252 n = msr_list.nmsrs;
2253 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2254 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2255 goto out;
2256 r = -E2BIG;
2257 if (n < msr_list.nmsrs)
2258 goto out;
2259 r = -EFAULT;
2260 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2261 num_msrs_to_save * sizeof(u32)))
2262 goto out;
2263 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2264 &emulated_msrs,
2265 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2266 goto out;
2267 r = 0;
2268 break;
2269 }
2270 case KVM_GET_SUPPORTED_CPUID: {
2271 struct kvm_cpuid2 __user *cpuid_arg = argp;
2272 struct kvm_cpuid2 cpuid;
2273
2274 r = -EFAULT;
2275 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2276 goto out;
2277 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2278 cpuid_arg->entries);
2279 if (r)
2280 goto out;
2281
2282 r = -EFAULT;
2283 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2284 goto out;
2285 r = 0;
2286 break;
2287 }
2288 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2289 u64 mce_cap;
2290
2291 mce_cap = KVM_MCE_CAP_SUPPORTED;
2292 r = -EFAULT;
2293 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2294 goto out;
2295 r = 0;
2296 break;
2297 }
2298 default:
2299 r = -EINVAL;
2300 }
2301 out:
2302 return r;
2303 }
2304
2305 static void wbinvd_ipi(void *garbage)
2306 {
2307 wbinvd();
2308 }
2309
2310 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2311 {
2312 return vcpu->kvm->arch.iommu_domain &&
2313 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2314 }
2315
2316 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2317 {
2318 /* Address WBINVD may be executed by guest */
2319 if (need_emulate_wbinvd(vcpu)) {
2320 if (kvm_x86_ops->has_wbinvd_exit())
2321 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2322 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2323 smp_call_function_single(vcpu->cpu,
2324 wbinvd_ipi, NULL, 1);
2325 }
2326
2327 kvm_x86_ops->vcpu_load(vcpu, cpu);
2328
2329 /* Apply any externally detected TSC adjustments (due to suspend) */
2330 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2331 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2332 vcpu->arch.tsc_offset_adjustment = 0;
2333 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2334 }
2335
2336 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2337 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2338 native_read_tsc() - vcpu->arch.last_host_tsc;
2339 if (tsc_delta < 0)
2340 mark_tsc_unstable("KVM discovered backwards TSC");
2341 if (check_tsc_unstable()) {
2342 u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2343 vcpu->arch.last_guest_tsc);
2344 kvm_x86_ops->write_tsc_offset(vcpu, offset);
2345 vcpu->arch.tsc_catchup = 1;
2346 }
2347 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2348 if (vcpu->cpu != cpu)
2349 kvm_migrate_timers(vcpu);
2350 vcpu->cpu = cpu;
2351 }
2352
2353 accumulate_steal_time(vcpu);
2354 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2355 }
2356
2357 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2358 {
2359 kvm_x86_ops->vcpu_put(vcpu);
2360 kvm_put_guest_fpu(vcpu);
2361 vcpu->arch.last_host_tsc = native_read_tsc();
2362 }
2363
2364 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2365 struct kvm_lapic_state *s)
2366 {
2367 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2368
2369 return 0;
2370 }
2371
2372 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2373 struct kvm_lapic_state *s)
2374 {
2375 kvm_apic_post_state_restore(vcpu, s);
2376 update_cr8_intercept(vcpu);
2377
2378 return 0;
2379 }
2380
2381 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2382 struct kvm_interrupt *irq)
2383 {
2384 if (irq->irq < 0 || irq->irq >= KVM_NR_INTERRUPTS)
2385 return -EINVAL;
2386 if (irqchip_in_kernel(vcpu->kvm))
2387 return -ENXIO;
2388
2389 kvm_queue_interrupt(vcpu, irq->irq, false);
2390 kvm_make_request(KVM_REQ_EVENT, vcpu);
2391
2392 return 0;
2393 }
2394
2395 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2396 {
2397 kvm_inject_nmi(vcpu);
2398
2399 return 0;
2400 }
2401
2402 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2403 struct kvm_tpr_access_ctl *tac)
2404 {
2405 if (tac->flags)
2406 return -EINVAL;
2407 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2408 return 0;
2409 }
2410
2411 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2412 u64 mcg_cap)
2413 {
2414 int r;
2415 unsigned bank_num = mcg_cap & 0xff, bank;
2416
2417 r = -EINVAL;
2418 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2419 goto out;
2420 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2421 goto out;
2422 r = 0;
2423 vcpu->arch.mcg_cap = mcg_cap;
2424 /* Init IA32_MCG_CTL to all 1s */
2425 if (mcg_cap & MCG_CTL_P)
2426 vcpu->arch.mcg_ctl = ~(u64)0;
2427 /* Init IA32_MCi_CTL to all 1s */
2428 for (bank = 0; bank < bank_num; bank++)
2429 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2430 out:
2431 return r;
2432 }
2433
2434 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2435 struct kvm_x86_mce *mce)
2436 {
2437 u64 mcg_cap = vcpu->arch.mcg_cap;
2438 unsigned bank_num = mcg_cap & 0xff;
2439 u64 *banks = vcpu->arch.mce_banks;
2440
2441 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2442 return -EINVAL;
2443 /*
2444 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2445 * reporting is disabled
2446 */
2447 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2448 vcpu->arch.mcg_ctl != ~(u64)0)
2449 return 0;
2450 banks += 4 * mce->bank;
2451 /*
2452 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2453 * reporting is disabled for the bank
2454 */
2455 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2456 return 0;
2457 if (mce->status & MCI_STATUS_UC) {
2458 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2459 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2460 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2461 return 0;
2462 }
2463 if (banks[1] & MCI_STATUS_VAL)
2464 mce->status |= MCI_STATUS_OVER;
2465 banks[2] = mce->addr;
2466 banks[3] = mce->misc;
2467 vcpu->arch.mcg_status = mce->mcg_status;
2468 banks[1] = mce->status;
2469 kvm_queue_exception(vcpu, MC_VECTOR);
2470 } else if (!(banks[1] & MCI_STATUS_VAL)
2471 || !(banks[1] & MCI_STATUS_UC)) {
2472 if (banks[1] & MCI_STATUS_VAL)
2473 mce->status |= MCI_STATUS_OVER;
2474 banks[2] = mce->addr;
2475 banks[3] = mce->misc;
2476 banks[1] = mce->status;
2477 } else
2478 banks[1] |= MCI_STATUS_OVER;
2479 return 0;
2480 }
2481
2482 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2483 struct kvm_vcpu_events *events)
2484 {
2485 process_nmi(vcpu);
2486 events->exception.injected =
2487 vcpu->arch.exception.pending &&
2488 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2489 events->exception.nr = vcpu->arch.exception.nr;
2490 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2491 events->exception.pad = 0;
2492 events->exception.error_code = vcpu->arch.exception.error_code;
2493
2494 events->interrupt.injected =
2495 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2496 events->interrupt.nr = vcpu->arch.interrupt.nr;
2497 events->interrupt.soft = 0;
2498 events->interrupt.shadow =
2499 kvm_x86_ops->get_interrupt_shadow(vcpu,
2500 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2501
2502 events->nmi.injected = vcpu->arch.nmi_injected;
2503 events->nmi.pending = vcpu->arch.nmi_pending != 0;
2504 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2505 events->nmi.pad = 0;
2506
2507 events->sipi_vector = vcpu->arch.sipi_vector;
2508
2509 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2510 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2511 | KVM_VCPUEVENT_VALID_SHADOW);
2512 memset(&events->reserved, 0, sizeof(events->reserved));
2513 }
2514
2515 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2516 struct kvm_vcpu_events *events)
2517 {
2518 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2519 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2520 | KVM_VCPUEVENT_VALID_SHADOW))
2521 return -EINVAL;
2522
2523 process_nmi(vcpu);
2524 vcpu->arch.exception.pending = events->exception.injected;
2525 vcpu->arch.exception.nr = events->exception.nr;
2526 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2527 vcpu->arch.exception.error_code = events->exception.error_code;
2528
2529 vcpu->arch.interrupt.pending = events->interrupt.injected;
2530 vcpu->arch.interrupt.nr = events->interrupt.nr;
2531 vcpu->arch.interrupt.soft = events->interrupt.soft;
2532 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2533 kvm_x86_ops->set_interrupt_shadow(vcpu,
2534 events->interrupt.shadow);
2535
2536 vcpu->arch.nmi_injected = events->nmi.injected;
2537 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2538 vcpu->arch.nmi_pending = events->nmi.pending;
2539 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2540
2541 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2542 vcpu->arch.sipi_vector = events->sipi_vector;
2543
2544 kvm_make_request(KVM_REQ_EVENT, vcpu);
2545
2546 return 0;
2547 }
2548
2549 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2550 struct kvm_debugregs *dbgregs)
2551 {
2552 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2553 dbgregs->dr6 = vcpu->arch.dr6;
2554 dbgregs->dr7 = vcpu->arch.dr7;
2555 dbgregs->flags = 0;
2556 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2557 }
2558
2559 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2560 struct kvm_debugregs *dbgregs)
2561 {
2562 if (dbgregs->flags)
2563 return -EINVAL;
2564
2565 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2566 vcpu->arch.dr6 = dbgregs->dr6;
2567 vcpu->arch.dr7 = dbgregs->dr7;
2568
2569 return 0;
2570 }
2571
2572 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2573 struct kvm_xsave *guest_xsave)
2574 {
2575 if (cpu_has_xsave)
2576 memcpy(guest_xsave->region,
2577 &vcpu->arch.guest_fpu.state->xsave,
2578 xstate_size);
2579 else {
2580 memcpy(guest_xsave->region,
2581 &vcpu->arch.guest_fpu.state->fxsave,
2582 sizeof(struct i387_fxsave_struct));
2583 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2584 XSTATE_FPSSE;
2585 }
2586 }
2587
2588 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2589 struct kvm_xsave *guest_xsave)
2590 {
2591 u64 xstate_bv =
2592 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2593
2594 if (cpu_has_xsave)
2595 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2596 guest_xsave->region, xstate_size);
2597 else {
2598 if (xstate_bv & ~XSTATE_FPSSE)
2599 return -EINVAL;
2600 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2601 guest_xsave->region, sizeof(struct i387_fxsave_struct));
2602 }
2603 return 0;
2604 }
2605
2606 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2607 struct kvm_xcrs *guest_xcrs)
2608 {
2609 if (!cpu_has_xsave) {
2610 guest_xcrs->nr_xcrs = 0;
2611 return;
2612 }
2613
2614 guest_xcrs->nr_xcrs = 1;
2615 guest_xcrs->flags = 0;
2616 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2617 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2618 }
2619
2620 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2621 struct kvm_xcrs *guest_xcrs)
2622 {
2623 int i, r = 0;
2624
2625 if (!cpu_has_xsave)
2626 return -EINVAL;
2627
2628 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2629 return -EINVAL;
2630
2631 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2632 /* Only support XCR0 currently */
2633 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2634 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2635 guest_xcrs->xcrs[0].value);
2636 break;
2637 }
2638 if (r)
2639 r = -EINVAL;
2640 return r;
2641 }
2642
2643 /*
2644 * kvm_set_guest_paused() indicates to the guest kernel that it has been
2645 * stopped by the hypervisor. This function will be called from the host only.
2646 * EINVAL is returned when the host attempts to set the flag for a guest that
2647 * does not support pv clocks.
2648 */
2649 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
2650 {
2651 if (!vcpu->arch.time_page)
2652 return -EINVAL;
2653 vcpu->arch.pvclock_set_guest_stopped_request = true;
2654 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2655 return 0;
2656 }
2657
2658 long kvm_arch_vcpu_ioctl(struct file *filp,
2659 unsigned int ioctl, unsigned long arg)
2660 {
2661 struct kvm_vcpu *vcpu = filp->private_data;
2662 void __user *argp = (void __user *)arg;
2663 int r;
2664 union {
2665 struct kvm_lapic_state *lapic;
2666 struct kvm_xsave *xsave;
2667 struct kvm_xcrs *xcrs;
2668 void *buffer;
2669 } u;
2670
2671 u.buffer = NULL;
2672 switch (ioctl) {
2673 case KVM_GET_LAPIC: {
2674 r = -EINVAL;
2675 if (!vcpu->arch.apic)
2676 goto out;
2677 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2678
2679 r = -ENOMEM;
2680 if (!u.lapic)
2681 goto out;
2682 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2683 if (r)
2684 goto out;
2685 r = -EFAULT;
2686 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2687 goto out;
2688 r = 0;
2689 break;
2690 }
2691 case KVM_SET_LAPIC: {
2692 r = -EINVAL;
2693 if (!vcpu->arch.apic)
2694 goto out;
2695 u.lapic = memdup_user(argp, sizeof(*u.lapic));
2696 if (IS_ERR(u.lapic)) {
2697 r = PTR_ERR(u.lapic);
2698 goto out;
2699 }
2700
2701 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2702 if (r)
2703 goto out;
2704 r = 0;
2705 break;
2706 }
2707 case KVM_INTERRUPT: {
2708 struct kvm_interrupt irq;
2709
2710 r = -EFAULT;
2711 if (copy_from_user(&irq, argp, sizeof irq))
2712 goto out;
2713 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2714 if (r)
2715 goto out;
2716 r = 0;
2717 break;
2718 }
2719 case KVM_NMI: {
2720 r = kvm_vcpu_ioctl_nmi(vcpu);
2721 if (r)
2722 goto out;
2723 r = 0;
2724 break;
2725 }
2726 case KVM_SET_CPUID: {
2727 struct kvm_cpuid __user *cpuid_arg = argp;
2728 struct kvm_cpuid cpuid;
2729
2730 r = -EFAULT;
2731 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2732 goto out;
2733 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2734 if (r)
2735 goto out;
2736 break;
2737 }
2738 case KVM_SET_CPUID2: {
2739 struct kvm_cpuid2 __user *cpuid_arg = argp;
2740 struct kvm_cpuid2 cpuid;
2741
2742 r = -EFAULT;
2743 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2744 goto out;
2745 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2746 cpuid_arg->entries);
2747 if (r)
2748 goto out;
2749 break;
2750 }
2751 case KVM_GET_CPUID2: {
2752 struct kvm_cpuid2 __user *cpuid_arg = argp;
2753 struct kvm_cpuid2 cpuid;
2754
2755 r = -EFAULT;
2756 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2757 goto out;
2758 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2759 cpuid_arg->entries);
2760 if (r)
2761 goto out;
2762 r = -EFAULT;
2763 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2764 goto out;
2765 r = 0;
2766 break;
2767 }
2768 case KVM_GET_MSRS:
2769 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2770 break;
2771 case KVM_SET_MSRS:
2772 r = msr_io(vcpu, argp, do_set_msr, 0);
2773 break;
2774 case KVM_TPR_ACCESS_REPORTING: {
2775 struct kvm_tpr_access_ctl tac;
2776
2777 r = -EFAULT;
2778 if (copy_from_user(&tac, argp, sizeof tac))
2779 goto out;
2780 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2781 if (r)
2782 goto out;
2783 r = -EFAULT;
2784 if (copy_to_user(argp, &tac, sizeof tac))
2785 goto out;
2786 r = 0;
2787 break;
2788 };
2789 case KVM_SET_VAPIC_ADDR: {
2790 struct kvm_vapic_addr va;
2791
2792 r = -EINVAL;
2793 if (!irqchip_in_kernel(vcpu->kvm))
2794 goto out;
2795 r = -EFAULT;
2796 if (copy_from_user(&va, argp, sizeof va))
2797 goto out;
2798 r = 0;
2799 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2800 break;
2801 }
2802 case KVM_X86_SETUP_MCE: {
2803 u64 mcg_cap;
2804
2805 r = -EFAULT;
2806 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2807 goto out;
2808 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2809 break;
2810 }
2811 case KVM_X86_SET_MCE: {
2812 struct kvm_x86_mce mce;
2813
2814 r = -EFAULT;
2815 if (copy_from_user(&mce, argp, sizeof mce))
2816 goto out;
2817 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2818 break;
2819 }
2820 case KVM_GET_VCPU_EVENTS: {
2821 struct kvm_vcpu_events events;
2822
2823 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2824
2825 r = -EFAULT;
2826 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2827 break;
2828 r = 0;
2829 break;
2830 }
2831 case KVM_SET_VCPU_EVENTS: {
2832 struct kvm_vcpu_events events;
2833
2834 r = -EFAULT;
2835 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2836 break;
2837
2838 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2839 break;
2840 }
2841 case KVM_GET_DEBUGREGS: {
2842 struct kvm_debugregs dbgregs;
2843
2844 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2845
2846 r = -EFAULT;
2847 if (copy_to_user(argp, &dbgregs,
2848 sizeof(struct kvm_debugregs)))
2849 break;
2850 r = 0;
2851 break;
2852 }
2853 case KVM_SET_DEBUGREGS: {
2854 struct kvm_debugregs dbgregs;
2855
2856 r = -EFAULT;
2857 if (copy_from_user(&dbgregs, argp,
2858 sizeof(struct kvm_debugregs)))
2859 break;
2860
2861 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2862 break;
2863 }
2864 case KVM_GET_XSAVE: {
2865 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2866 r = -ENOMEM;
2867 if (!u.xsave)
2868 break;
2869
2870 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2871
2872 r = -EFAULT;
2873 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2874 break;
2875 r = 0;
2876 break;
2877 }
2878 case KVM_SET_XSAVE: {
2879 u.xsave = memdup_user(argp, sizeof(*u.xsave));
2880 if (IS_ERR(u.xsave)) {
2881 r = PTR_ERR(u.xsave);
2882 goto out;
2883 }
2884
2885 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2886 break;
2887 }
2888 case KVM_GET_XCRS: {
2889 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2890 r = -ENOMEM;
2891 if (!u.xcrs)
2892 break;
2893
2894 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
2895
2896 r = -EFAULT;
2897 if (copy_to_user(argp, u.xcrs,
2898 sizeof(struct kvm_xcrs)))
2899 break;
2900 r = 0;
2901 break;
2902 }
2903 case KVM_SET_XCRS: {
2904 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
2905 if (IS_ERR(u.xcrs)) {
2906 r = PTR_ERR(u.xcrs);
2907 goto out;
2908 }
2909
2910 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
2911 break;
2912 }
2913 case KVM_SET_TSC_KHZ: {
2914 u32 user_tsc_khz;
2915
2916 r = -EINVAL;
2917 user_tsc_khz = (u32)arg;
2918
2919 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
2920 goto out;
2921
2922 if (user_tsc_khz == 0)
2923 user_tsc_khz = tsc_khz;
2924
2925 kvm_set_tsc_khz(vcpu, user_tsc_khz);
2926
2927 r = 0;
2928 goto out;
2929 }
2930 case KVM_GET_TSC_KHZ: {
2931 r = vcpu->arch.virtual_tsc_khz;
2932 goto out;
2933 }
2934 case KVM_KVMCLOCK_CTRL: {
2935 r = kvm_set_guest_paused(vcpu);
2936 goto out;
2937 }
2938 default:
2939 r = -EINVAL;
2940 }
2941 out:
2942 kfree(u.buffer);
2943 return r;
2944 }
2945
2946 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2947 {
2948 return VM_FAULT_SIGBUS;
2949 }
2950
2951 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2952 {
2953 int ret;
2954
2955 if (addr > (unsigned int)(-3 * PAGE_SIZE))
2956 return -1;
2957 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2958 return ret;
2959 }
2960
2961 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2962 u64 ident_addr)
2963 {
2964 kvm->arch.ept_identity_map_addr = ident_addr;
2965 return 0;
2966 }
2967
2968 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2969 u32 kvm_nr_mmu_pages)
2970 {
2971 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2972 return -EINVAL;
2973
2974 mutex_lock(&kvm->slots_lock);
2975 spin_lock(&kvm->mmu_lock);
2976
2977 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2978 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2979
2980 spin_unlock(&kvm->mmu_lock);
2981 mutex_unlock(&kvm->slots_lock);
2982 return 0;
2983 }
2984
2985 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2986 {
2987 return kvm->arch.n_max_mmu_pages;
2988 }
2989
2990 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2991 {
2992 int r;
2993
2994 r = 0;
2995 switch (chip->chip_id) {
2996 case KVM_IRQCHIP_PIC_MASTER:
2997 memcpy(&chip->chip.pic,
2998 &pic_irqchip(kvm)->pics[0],
2999 sizeof(struct kvm_pic_state));
3000 break;
3001 case KVM_IRQCHIP_PIC_SLAVE:
3002 memcpy(&chip->chip.pic,
3003 &pic_irqchip(kvm)->pics[1],
3004 sizeof(struct kvm_pic_state));
3005 break;
3006 case KVM_IRQCHIP_IOAPIC:
3007 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3008 break;
3009 default:
3010 r = -EINVAL;
3011 break;
3012 }
3013 return r;
3014 }
3015
3016 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3017 {
3018 int r;
3019
3020 r = 0;
3021 switch (chip->chip_id) {
3022 case KVM_IRQCHIP_PIC_MASTER:
3023 spin_lock(&pic_irqchip(kvm)->lock);
3024 memcpy(&pic_irqchip(kvm)->pics[0],
3025 &chip->chip.pic,
3026 sizeof(struct kvm_pic_state));
3027 spin_unlock(&pic_irqchip(kvm)->lock);
3028 break;
3029 case KVM_IRQCHIP_PIC_SLAVE:
3030 spin_lock(&pic_irqchip(kvm)->lock);
3031 memcpy(&pic_irqchip(kvm)->pics[1],
3032 &chip->chip.pic,
3033 sizeof(struct kvm_pic_state));
3034 spin_unlock(&pic_irqchip(kvm)->lock);
3035 break;
3036 case KVM_IRQCHIP_IOAPIC:
3037 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3038 break;
3039 default:
3040 r = -EINVAL;
3041 break;
3042 }
3043 kvm_pic_update_irq(pic_irqchip(kvm));
3044 return r;
3045 }
3046
3047 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3048 {
3049 int r = 0;
3050
3051 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3052 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3053 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3054 return r;
3055 }
3056
3057 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3058 {
3059 int r = 0;
3060
3061 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3062 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3063 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3064 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3065 return r;
3066 }
3067
3068 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3069 {
3070 int r = 0;
3071
3072 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3073 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3074 sizeof(ps->channels));
3075 ps->flags = kvm->arch.vpit->pit_state.flags;
3076 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3077 memset(&ps->reserved, 0, sizeof(ps->reserved));
3078 return r;
3079 }
3080
3081 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3082 {
3083 int r = 0, start = 0;
3084 u32 prev_legacy, cur_legacy;
3085 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3086 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3087 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3088 if (!prev_legacy && cur_legacy)
3089 start = 1;
3090 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3091 sizeof(kvm->arch.vpit->pit_state.channels));
3092 kvm->arch.vpit->pit_state.flags = ps->flags;
3093 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3094 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3095 return r;
3096 }
3097
3098 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3099 struct kvm_reinject_control *control)
3100 {
3101 if (!kvm->arch.vpit)
3102 return -ENXIO;
3103 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3104 kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3105 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3106 return 0;
3107 }
3108
3109 /**
3110 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3111 * @kvm: kvm instance
3112 * @log: slot id and address to which we copy the log
3113 *
3114 * We need to keep it in mind that VCPU threads can write to the bitmap
3115 * concurrently. So, to avoid losing data, we keep the following order for
3116 * each bit:
3117 *
3118 * 1. Take a snapshot of the bit and clear it if needed.
3119 * 2. Write protect the corresponding page.
3120 * 3. Flush TLB's if needed.
3121 * 4. Copy the snapshot to the userspace.
3122 *
3123 * Between 2 and 3, the guest may write to the page using the remaining TLB
3124 * entry. This is not a problem because the page will be reported dirty at
3125 * step 4 using the snapshot taken before and step 3 ensures that successive
3126 * writes will be logged for the next call.
3127 */
3128 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3129 {
3130 int r;
3131 struct kvm_memory_slot *memslot;
3132 unsigned long n, i;
3133 unsigned long *dirty_bitmap;
3134 unsigned long *dirty_bitmap_buffer;
3135 bool is_dirty = false;
3136
3137 mutex_lock(&kvm->slots_lock);
3138
3139 r = -EINVAL;
3140 if (log->slot >= KVM_MEMORY_SLOTS)
3141 goto out;
3142
3143 memslot = id_to_memslot(kvm->memslots, log->slot);
3144
3145 dirty_bitmap = memslot->dirty_bitmap;
3146 r = -ENOENT;
3147 if (!dirty_bitmap)
3148 goto out;
3149
3150 n = kvm_dirty_bitmap_bytes(memslot);
3151
3152 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3153 memset(dirty_bitmap_buffer, 0, n);
3154
3155 spin_lock(&kvm->mmu_lock);
3156
3157 for (i = 0; i < n / sizeof(long); i++) {
3158 unsigned long mask;
3159 gfn_t offset;
3160
3161 if (!dirty_bitmap[i])
3162 continue;
3163
3164 is_dirty = true;
3165
3166 mask = xchg(&dirty_bitmap[i], 0);
3167 dirty_bitmap_buffer[i] = mask;
3168
3169 offset = i * BITS_PER_LONG;
3170 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3171 }
3172 if (is_dirty)
3173 kvm_flush_remote_tlbs(kvm);
3174
3175 spin_unlock(&kvm->mmu_lock);
3176
3177 r = -EFAULT;
3178 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3179 goto out;
3180
3181 r = 0;
3182 out:
3183 mutex_unlock(&kvm->slots_lock);
3184 return r;
3185 }
3186
3187 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event)
3188 {
3189 if (!irqchip_in_kernel(kvm))
3190 return -ENXIO;
3191
3192 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3193 irq_event->irq, irq_event->level);
3194 return 0;
3195 }
3196
3197 long kvm_arch_vm_ioctl(struct file *filp,
3198 unsigned int ioctl, unsigned long arg)
3199 {
3200 struct kvm *kvm = filp->private_data;
3201 void __user *argp = (void __user *)arg;
3202 int r = -ENOTTY;
3203 /*
3204 * This union makes it completely explicit to gcc-3.x
3205 * that these two variables' stack usage should be
3206 * combined, not added together.
3207 */
3208 union {
3209 struct kvm_pit_state ps;
3210 struct kvm_pit_state2 ps2;
3211 struct kvm_pit_config pit_config;
3212 } u;
3213
3214 switch (ioctl) {
3215 case KVM_SET_TSS_ADDR:
3216 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3217 if (r < 0)
3218 goto out;
3219 break;
3220 case KVM_SET_IDENTITY_MAP_ADDR: {
3221 u64 ident_addr;
3222
3223 r = -EFAULT;
3224 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3225 goto out;
3226 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3227 if (r < 0)
3228 goto out;
3229 break;
3230 }
3231 case KVM_SET_NR_MMU_PAGES:
3232 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3233 if (r)
3234 goto out;
3235 break;
3236 case KVM_GET_NR_MMU_PAGES:
3237 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3238 break;
3239 case KVM_CREATE_IRQCHIP: {
3240 struct kvm_pic *vpic;
3241
3242 mutex_lock(&kvm->lock);
3243 r = -EEXIST;
3244 if (kvm->arch.vpic)
3245 goto create_irqchip_unlock;
3246 r = -EINVAL;
3247 if (atomic_read(&kvm->online_vcpus))
3248 goto create_irqchip_unlock;
3249 r = -ENOMEM;
3250 vpic = kvm_create_pic(kvm);
3251 if (vpic) {
3252 r = kvm_ioapic_init(kvm);
3253 if (r) {
3254 mutex_lock(&kvm->slots_lock);
3255 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3256 &vpic->dev_master);
3257 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3258 &vpic->dev_slave);
3259 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3260 &vpic->dev_eclr);
3261 mutex_unlock(&kvm->slots_lock);
3262 kfree(vpic);
3263 goto create_irqchip_unlock;
3264 }
3265 } else
3266 goto create_irqchip_unlock;
3267 smp_wmb();
3268 kvm->arch.vpic = vpic;
3269 smp_wmb();
3270 r = kvm_setup_default_irq_routing(kvm);
3271 if (r) {
3272 mutex_lock(&kvm->slots_lock);
3273 mutex_lock(&kvm->irq_lock);
3274 kvm_ioapic_destroy(kvm);
3275 kvm_destroy_pic(kvm);
3276 mutex_unlock(&kvm->irq_lock);
3277 mutex_unlock(&kvm->slots_lock);
3278 }
3279 create_irqchip_unlock:
3280 mutex_unlock(&kvm->lock);
3281 break;
3282 }
3283 case KVM_CREATE_PIT:
3284 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3285 goto create_pit;
3286 case KVM_CREATE_PIT2:
3287 r = -EFAULT;
3288 if (copy_from_user(&u.pit_config, argp,
3289 sizeof(struct kvm_pit_config)))
3290 goto out;
3291 create_pit:
3292 mutex_lock(&kvm->slots_lock);
3293 r = -EEXIST;
3294 if (kvm->arch.vpit)
3295 goto create_pit_unlock;
3296 r = -ENOMEM;
3297 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3298 if (kvm->arch.vpit)
3299 r = 0;
3300 create_pit_unlock:
3301 mutex_unlock(&kvm->slots_lock);
3302 break;
3303 case KVM_GET_IRQCHIP: {
3304 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3305 struct kvm_irqchip *chip;
3306
3307 chip = memdup_user(argp, sizeof(*chip));
3308 if (IS_ERR(chip)) {
3309 r = PTR_ERR(chip);
3310 goto out;
3311 }
3312
3313 r = -ENXIO;
3314 if (!irqchip_in_kernel(kvm))
3315 goto get_irqchip_out;
3316 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3317 if (r)
3318 goto get_irqchip_out;
3319 r = -EFAULT;
3320 if (copy_to_user(argp, chip, sizeof *chip))
3321 goto get_irqchip_out;
3322 r = 0;
3323 get_irqchip_out:
3324 kfree(chip);
3325 if (r)
3326 goto out;
3327 break;
3328 }
3329 case KVM_SET_IRQCHIP: {
3330 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3331 struct kvm_irqchip *chip;
3332
3333 chip = memdup_user(argp, sizeof(*chip));
3334 if (IS_ERR(chip)) {
3335 r = PTR_ERR(chip);
3336 goto out;
3337 }
3338
3339 r = -ENXIO;
3340 if (!irqchip_in_kernel(kvm))
3341 goto set_irqchip_out;
3342 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3343 if (r)
3344 goto set_irqchip_out;
3345 r = 0;
3346 set_irqchip_out:
3347 kfree(chip);
3348 if (r)
3349 goto out;
3350 break;
3351 }
3352 case KVM_GET_PIT: {
3353 r = -EFAULT;
3354 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3355 goto out;
3356 r = -ENXIO;
3357 if (!kvm->arch.vpit)
3358 goto out;
3359 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3360 if (r)
3361 goto out;
3362 r = -EFAULT;
3363 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3364 goto out;
3365 r = 0;
3366 break;
3367 }
3368 case KVM_SET_PIT: {
3369 r = -EFAULT;
3370 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3371 goto out;
3372 r = -ENXIO;
3373 if (!kvm->arch.vpit)
3374 goto out;
3375 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3376 if (r)
3377 goto out;
3378 r = 0;
3379 break;
3380 }
3381 case KVM_GET_PIT2: {
3382 r = -ENXIO;
3383 if (!kvm->arch.vpit)
3384 goto out;
3385 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3386 if (r)
3387 goto out;
3388 r = -EFAULT;
3389 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3390 goto out;
3391 r = 0;
3392 break;
3393 }
3394 case KVM_SET_PIT2: {
3395 r = -EFAULT;
3396 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3397 goto out;
3398 r = -ENXIO;
3399 if (!kvm->arch.vpit)
3400 goto out;
3401 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3402 if (r)
3403 goto out;
3404 r = 0;
3405 break;
3406 }
3407 case KVM_REINJECT_CONTROL: {
3408 struct kvm_reinject_control control;
3409 r = -EFAULT;
3410 if (copy_from_user(&control, argp, sizeof(control)))
3411 goto out;
3412 r = kvm_vm_ioctl_reinject(kvm, &control);
3413 if (r)
3414 goto out;
3415 r = 0;
3416 break;
3417 }
3418 case KVM_XEN_HVM_CONFIG: {
3419 r = -EFAULT;
3420 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3421 sizeof(struct kvm_xen_hvm_config)))
3422 goto out;
3423 r = -EINVAL;
3424 if (kvm->arch.xen_hvm_config.flags)
3425 goto out;
3426 r = 0;
3427 break;
3428 }
3429 case KVM_SET_CLOCK: {
3430 struct kvm_clock_data user_ns;
3431 u64 now_ns;
3432 s64 delta;
3433
3434 r = -EFAULT;
3435 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3436 goto out;
3437
3438 r = -EINVAL;
3439 if (user_ns.flags)
3440 goto out;
3441
3442 r = 0;
3443 local_irq_disable();
3444 now_ns = get_kernel_ns();
3445 delta = user_ns.clock - now_ns;
3446 local_irq_enable();
3447 kvm->arch.kvmclock_offset = delta;
3448 break;
3449 }
3450 case KVM_GET_CLOCK: {
3451 struct kvm_clock_data user_ns;
3452 u64 now_ns;
3453
3454 local_irq_disable();
3455 now_ns = get_kernel_ns();
3456 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3457 local_irq_enable();
3458 user_ns.flags = 0;
3459 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3460
3461 r = -EFAULT;
3462 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3463 goto out;
3464 r = 0;
3465 break;
3466 }
3467
3468 default:
3469 ;
3470 }
3471 out:
3472 return r;
3473 }
3474
3475 static void kvm_init_msr_list(void)
3476 {
3477 u32 dummy[2];
3478 unsigned i, j;
3479
3480 /* skip the first msrs in the list. KVM-specific */
3481 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3482 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3483 continue;
3484 if (j < i)
3485 msrs_to_save[j] = msrs_to_save[i];
3486 j++;
3487 }
3488 num_msrs_to_save = j;
3489 }
3490
3491 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3492 const void *v)
3493 {
3494 int handled = 0;
3495 int n;
3496
3497 do {
3498 n = min(len, 8);
3499 if (!(vcpu->arch.apic &&
3500 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3501 && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3502 break;
3503 handled += n;
3504 addr += n;
3505 len -= n;
3506 v += n;
3507 } while (len);
3508
3509 return handled;
3510 }
3511
3512 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3513 {
3514 int handled = 0;
3515 int n;
3516
3517 do {
3518 n = min(len, 8);
3519 if (!(vcpu->arch.apic &&
3520 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3521 && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3522 break;
3523 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3524 handled += n;
3525 addr += n;
3526 len -= n;
3527 v += n;
3528 } while (len);
3529
3530 return handled;
3531 }
3532
3533 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3534 struct kvm_segment *var, int seg)
3535 {
3536 kvm_x86_ops->set_segment(vcpu, var, seg);
3537 }
3538
3539 void kvm_get_segment(struct kvm_vcpu *vcpu,
3540 struct kvm_segment *var, int seg)
3541 {
3542 kvm_x86_ops->get_segment(vcpu, var, seg);
3543 }
3544
3545 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3546 {
3547 gpa_t t_gpa;
3548 struct x86_exception exception;
3549
3550 BUG_ON(!mmu_is_nested(vcpu));
3551
3552 /* NPT walks are always user-walks */
3553 access |= PFERR_USER_MASK;
3554 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3555
3556 return t_gpa;
3557 }
3558
3559 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3560 struct x86_exception *exception)
3561 {
3562 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3563 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3564 }
3565
3566 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3567 struct x86_exception *exception)
3568 {
3569 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3570 access |= PFERR_FETCH_MASK;
3571 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3572 }
3573
3574 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3575 struct x86_exception *exception)
3576 {
3577 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3578 access |= PFERR_WRITE_MASK;
3579 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3580 }
3581
3582 /* uses this to access any guest's mapped memory without checking CPL */
3583 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3584 struct x86_exception *exception)
3585 {
3586 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3587 }
3588
3589 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3590 struct kvm_vcpu *vcpu, u32 access,
3591 struct x86_exception *exception)
3592 {
3593 void *data = val;
3594 int r = X86EMUL_CONTINUE;
3595
3596 while (bytes) {
3597 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3598 exception);
3599 unsigned offset = addr & (PAGE_SIZE-1);
3600 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3601 int ret;
3602
3603 if (gpa == UNMAPPED_GVA)
3604 return X86EMUL_PROPAGATE_FAULT;
3605 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3606 if (ret < 0) {
3607 r = X86EMUL_IO_NEEDED;
3608 goto out;
3609 }
3610
3611 bytes -= toread;
3612 data += toread;
3613 addr += toread;
3614 }
3615 out:
3616 return r;
3617 }
3618
3619 /* used for instruction fetching */
3620 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3621 gva_t addr, void *val, unsigned int bytes,
3622 struct x86_exception *exception)
3623 {
3624 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3625 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3626
3627 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3628 access | PFERR_FETCH_MASK,
3629 exception);
3630 }
3631
3632 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3633 gva_t addr, void *val, unsigned int bytes,
3634 struct x86_exception *exception)
3635 {
3636 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3637 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3638
3639 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3640 exception);
3641 }
3642 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
3643
3644 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3645 gva_t addr, void *val, unsigned int bytes,
3646 struct x86_exception *exception)
3647 {
3648 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3649 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3650 }
3651
3652 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3653 gva_t addr, void *val,
3654 unsigned int bytes,
3655 struct x86_exception *exception)
3656 {
3657 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3658 void *data = val;
3659 int r = X86EMUL_CONTINUE;
3660
3661 while (bytes) {
3662 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3663 PFERR_WRITE_MASK,
3664 exception);
3665 unsigned offset = addr & (PAGE_SIZE-1);
3666 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3667 int ret;
3668
3669 if (gpa == UNMAPPED_GVA)
3670 return X86EMUL_PROPAGATE_FAULT;
3671 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3672 if (ret < 0) {
3673 r = X86EMUL_IO_NEEDED;
3674 goto out;
3675 }
3676
3677 bytes -= towrite;
3678 data += towrite;
3679 addr += towrite;
3680 }
3681 out:
3682 return r;
3683 }
3684 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
3685
3686 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
3687 gpa_t *gpa, struct x86_exception *exception,
3688 bool write)
3689 {
3690 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
3691 | (write ? PFERR_WRITE_MASK : 0);
3692
3693 if (vcpu_match_mmio_gva(vcpu, gva)
3694 && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) {
3695 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
3696 (gva & (PAGE_SIZE - 1));
3697 trace_vcpu_match_mmio(gva, *gpa, write, false);
3698 return 1;
3699 }
3700
3701 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3702
3703 if (*gpa == UNMAPPED_GVA)
3704 return -1;
3705
3706 /* For APIC access vmexit */
3707 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3708 return 1;
3709
3710 if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
3711 trace_vcpu_match_mmio(gva, *gpa, write, true);
3712 return 1;
3713 }
3714
3715 return 0;
3716 }
3717
3718 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3719 const void *val, int bytes)
3720 {
3721 int ret;
3722
3723 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3724 if (ret < 0)
3725 return 0;
3726 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
3727 return 1;
3728 }
3729
3730 struct read_write_emulator_ops {
3731 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
3732 int bytes);
3733 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
3734 void *val, int bytes);
3735 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
3736 int bytes, void *val);
3737 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
3738 void *val, int bytes);
3739 bool write;
3740 };
3741
3742 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
3743 {
3744 if (vcpu->mmio_read_completed) {
3745 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3746 vcpu->mmio_fragments[0].gpa, *(u64 *)val);
3747 vcpu->mmio_read_completed = 0;
3748 return 1;
3749 }
3750
3751 return 0;
3752 }
3753
3754 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
3755 void *val, int bytes)
3756 {
3757 return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
3758 }
3759
3760 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
3761 void *val, int bytes)
3762 {
3763 return emulator_write_phys(vcpu, gpa, val, bytes);
3764 }
3765
3766 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
3767 {
3768 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3769 return vcpu_mmio_write(vcpu, gpa, bytes, val);
3770 }
3771
3772 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
3773 void *val, int bytes)
3774 {
3775 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3776 return X86EMUL_IO_NEEDED;
3777 }
3778
3779 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
3780 void *val, int bytes)
3781 {
3782 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
3783
3784 memcpy(vcpu->run->mmio.data, frag->data, frag->len);
3785 return X86EMUL_CONTINUE;
3786 }
3787
3788 static const struct read_write_emulator_ops read_emultor = {
3789 .read_write_prepare = read_prepare,
3790 .read_write_emulate = read_emulate,
3791 .read_write_mmio = vcpu_mmio_read,
3792 .read_write_exit_mmio = read_exit_mmio,
3793 };
3794
3795 static const struct read_write_emulator_ops write_emultor = {
3796 .read_write_emulate = write_emulate,
3797 .read_write_mmio = write_mmio,
3798 .read_write_exit_mmio = write_exit_mmio,
3799 .write = true,
3800 };
3801
3802 static int emulator_read_write_onepage(unsigned long addr, void *val,
3803 unsigned int bytes,
3804 struct x86_exception *exception,
3805 struct kvm_vcpu *vcpu,
3806 const struct read_write_emulator_ops *ops)
3807 {
3808 gpa_t gpa;
3809 int handled, ret;
3810 bool write = ops->write;
3811 struct kvm_mmio_fragment *frag;
3812
3813 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
3814
3815 if (ret < 0)
3816 return X86EMUL_PROPAGATE_FAULT;
3817
3818 /* For APIC access vmexit */
3819 if (ret)
3820 goto mmio;
3821
3822 if (ops->read_write_emulate(vcpu, gpa, val, bytes))
3823 return X86EMUL_CONTINUE;
3824
3825 mmio:
3826 /*
3827 * Is this MMIO handled locally?
3828 */
3829 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
3830 if (handled == bytes)
3831 return X86EMUL_CONTINUE;
3832
3833 gpa += handled;
3834 bytes -= handled;
3835 val += handled;
3836
3837 while (bytes) {
3838 unsigned now = min(bytes, 8U);
3839
3840 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
3841 frag->gpa = gpa;
3842 frag->data = val;
3843 frag->len = now;
3844
3845 gpa += now;
3846 val += now;
3847 bytes -= now;
3848 }
3849 return X86EMUL_CONTINUE;
3850 }
3851
3852 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
3853 void *val, unsigned int bytes,
3854 struct x86_exception *exception,
3855 const struct read_write_emulator_ops *ops)
3856 {
3857 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3858 gpa_t gpa;
3859 int rc;
3860
3861 if (ops->read_write_prepare &&
3862 ops->read_write_prepare(vcpu, val, bytes))
3863 return X86EMUL_CONTINUE;
3864
3865 vcpu->mmio_nr_fragments = 0;
3866
3867 /* Crossing a page boundary? */
3868 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3869 int now;
3870
3871 now = -addr & ~PAGE_MASK;
3872 rc = emulator_read_write_onepage(addr, val, now, exception,
3873 vcpu, ops);
3874
3875 if (rc != X86EMUL_CONTINUE)
3876 return rc;
3877 addr += now;
3878 val += now;
3879 bytes -= now;
3880 }
3881
3882 rc = emulator_read_write_onepage(addr, val, bytes, exception,
3883 vcpu, ops);
3884 if (rc != X86EMUL_CONTINUE)
3885 return rc;
3886
3887 if (!vcpu->mmio_nr_fragments)
3888 return rc;
3889
3890 gpa = vcpu->mmio_fragments[0].gpa;
3891
3892 vcpu->mmio_needed = 1;
3893 vcpu->mmio_cur_fragment = 0;
3894
3895 vcpu->run->mmio.len = vcpu->mmio_fragments[0].len;
3896 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
3897 vcpu->run->exit_reason = KVM_EXIT_MMIO;
3898 vcpu->run->mmio.phys_addr = gpa;
3899
3900 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
3901 }
3902
3903 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
3904 unsigned long addr,
3905 void *val,
3906 unsigned int bytes,
3907 struct x86_exception *exception)
3908 {
3909 return emulator_read_write(ctxt, addr, val, bytes,
3910 exception, &read_emultor);
3911 }
3912
3913 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
3914 unsigned long addr,
3915 const void *val,
3916 unsigned int bytes,
3917 struct x86_exception *exception)
3918 {
3919 return emulator_read_write(ctxt, addr, (void *)val, bytes,
3920 exception, &write_emultor);
3921 }
3922
3923 #define CMPXCHG_TYPE(t, ptr, old, new) \
3924 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3925
3926 #ifdef CONFIG_X86_64
3927 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3928 #else
3929 # define CMPXCHG64(ptr, old, new) \
3930 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3931 #endif
3932
3933 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
3934 unsigned long addr,
3935 const void *old,
3936 const void *new,
3937 unsigned int bytes,
3938 struct x86_exception *exception)
3939 {
3940 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3941 gpa_t gpa;
3942 struct page *page;
3943 char *kaddr;
3944 bool exchanged;
3945
3946 /* guests cmpxchg8b have to be emulated atomically */
3947 if (bytes > 8 || (bytes & (bytes - 1)))
3948 goto emul_write;
3949
3950 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3951
3952 if (gpa == UNMAPPED_GVA ||
3953 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3954 goto emul_write;
3955
3956 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3957 goto emul_write;
3958
3959 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3960 if (is_error_page(page))
3961 goto emul_write;
3962
3963 kaddr = kmap_atomic(page);
3964 kaddr += offset_in_page(gpa);
3965 switch (bytes) {
3966 case 1:
3967 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3968 break;
3969 case 2:
3970 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3971 break;
3972 case 4:
3973 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3974 break;
3975 case 8:
3976 exchanged = CMPXCHG64(kaddr, old, new);
3977 break;
3978 default:
3979 BUG();
3980 }
3981 kunmap_atomic(kaddr);
3982 kvm_release_page_dirty(page);
3983
3984 if (!exchanged)
3985 return X86EMUL_CMPXCHG_FAILED;
3986
3987 kvm_mmu_pte_write(vcpu, gpa, new, bytes);
3988
3989 return X86EMUL_CONTINUE;
3990
3991 emul_write:
3992 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3993
3994 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
3995 }
3996
3997 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3998 {
3999 /* TODO: String I/O for in kernel device */
4000 int r;
4001
4002 if (vcpu->arch.pio.in)
4003 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4004 vcpu->arch.pio.size, pd);
4005 else
4006 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4007 vcpu->arch.pio.port, vcpu->arch.pio.size,
4008 pd);
4009 return r;
4010 }
4011
4012 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4013 unsigned short port, void *val,
4014 unsigned int count, bool in)
4015 {
4016 trace_kvm_pio(!in, port, size, count);
4017
4018 vcpu->arch.pio.port = port;
4019 vcpu->arch.pio.in = in;
4020 vcpu->arch.pio.count = count;
4021 vcpu->arch.pio.size = size;
4022
4023 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4024 vcpu->arch.pio.count = 0;
4025 return 1;
4026 }
4027
4028 vcpu->run->exit_reason = KVM_EXIT_IO;
4029 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4030 vcpu->run->io.size = size;
4031 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4032 vcpu->run->io.count = count;
4033 vcpu->run->io.port = port;
4034
4035 return 0;
4036 }
4037
4038 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4039 int size, unsigned short port, void *val,
4040 unsigned int count)
4041 {
4042 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4043 int ret;
4044
4045 if (vcpu->arch.pio.count)
4046 goto data_avail;
4047
4048 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4049 if (ret) {
4050 data_avail:
4051 memcpy(val, vcpu->arch.pio_data, size * count);
4052 vcpu->arch.pio.count = 0;
4053 return 1;
4054 }
4055
4056 return 0;
4057 }
4058
4059 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4060 int size, unsigned short port,
4061 const void *val, unsigned int count)
4062 {
4063 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4064
4065 memcpy(vcpu->arch.pio_data, val, size * count);
4066 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4067 }
4068
4069 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4070 {
4071 return kvm_x86_ops->get_segment_base(vcpu, seg);
4072 }
4073
4074 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4075 {
4076 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4077 }
4078
4079 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4080 {
4081 if (!need_emulate_wbinvd(vcpu))
4082 return X86EMUL_CONTINUE;
4083
4084 if (kvm_x86_ops->has_wbinvd_exit()) {
4085 int cpu = get_cpu();
4086
4087 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4088 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4089 wbinvd_ipi, NULL, 1);
4090 put_cpu();
4091 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4092 } else
4093 wbinvd();
4094 return X86EMUL_CONTINUE;
4095 }
4096 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4097
4098 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4099 {
4100 kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4101 }
4102
4103 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4104 {
4105 return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4106 }
4107
4108 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4109 {
4110
4111 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4112 }
4113
4114 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4115 {
4116 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4117 }
4118
4119 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4120 {
4121 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4122 unsigned long value;
4123
4124 switch (cr) {
4125 case 0:
4126 value = kvm_read_cr0(vcpu);
4127 break;
4128 case 2:
4129 value = vcpu->arch.cr2;
4130 break;
4131 case 3:
4132 value = kvm_read_cr3(vcpu);
4133 break;
4134 case 4:
4135 value = kvm_read_cr4(vcpu);
4136 break;
4137 case 8:
4138 value = kvm_get_cr8(vcpu);
4139 break;
4140 default:
4141 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4142 return 0;
4143 }
4144
4145 return value;
4146 }
4147
4148 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4149 {
4150 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4151 int res = 0;
4152
4153 switch (cr) {
4154 case 0:
4155 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4156 break;
4157 case 2:
4158 vcpu->arch.cr2 = val;
4159 break;
4160 case 3:
4161 res = kvm_set_cr3(vcpu, val);
4162 break;
4163 case 4:
4164 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4165 break;
4166 case 8:
4167 res = kvm_set_cr8(vcpu, val);
4168 break;
4169 default:
4170 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4171 res = -1;
4172 }
4173
4174 return res;
4175 }
4176
4177 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4178 {
4179 kvm_set_rflags(emul_to_vcpu(ctxt), val);
4180 }
4181
4182 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4183 {
4184 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4185 }
4186
4187 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4188 {
4189 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4190 }
4191
4192 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4193 {
4194 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4195 }
4196
4197 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4198 {
4199 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4200 }
4201
4202 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4203 {
4204 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4205 }
4206
4207 static unsigned long emulator_get_cached_segment_base(
4208 struct x86_emulate_ctxt *ctxt, int seg)
4209 {
4210 return get_segment_base(emul_to_vcpu(ctxt), seg);
4211 }
4212
4213 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4214 struct desc_struct *desc, u32 *base3,
4215 int seg)
4216 {
4217 struct kvm_segment var;
4218
4219 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4220 *selector = var.selector;
4221
4222 if (var.unusable)
4223 return false;
4224
4225 if (var.g)
4226 var.limit >>= 12;
4227 set_desc_limit(desc, var.limit);
4228 set_desc_base(desc, (unsigned long)var.base);
4229 #ifdef CONFIG_X86_64
4230 if (base3)
4231 *base3 = var.base >> 32;
4232 #endif
4233 desc->type = var.type;
4234 desc->s = var.s;
4235 desc->dpl = var.dpl;
4236 desc->p = var.present;
4237 desc->avl = var.avl;
4238 desc->l = var.l;
4239 desc->d = var.db;
4240 desc->g = var.g;
4241
4242 return true;
4243 }
4244
4245 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4246 struct desc_struct *desc, u32 base3,
4247 int seg)
4248 {
4249 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4250 struct kvm_segment var;
4251
4252 var.selector = selector;
4253 var.base = get_desc_base(desc);
4254 #ifdef CONFIG_X86_64
4255 var.base |= ((u64)base3) << 32;
4256 #endif
4257 var.limit = get_desc_limit(desc);
4258 if (desc->g)
4259 var.limit = (var.limit << 12) | 0xfff;
4260 var.type = desc->type;
4261 var.present = desc->p;
4262 var.dpl = desc->dpl;
4263 var.db = desc->d;
4264 var.s = desc->s;
4265 var.l = desc->l;
4266 var.g = desc->g;
4267 var.avl = desc->avl;
4268 var.present = desc->p;
4269 var.unusable = !var.present;
4270 var.padding = 0;
4271
4272 kvm_set_segment(vcpu, &var, seg);
4273 return;
4274 }
4275
4276 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4277 u32 msr_index, u64 *pdata)
4278 {
4279 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4280 }
4281
4282 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4283 u32 msr_index, u64 data)
4284 {
4285 return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
4286 }
4287
4288 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4289 u32 pmc, u64 *pdata)
4290 {
4291 return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4292 }
4293
4294 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4295 {
4296 emul_to_vcpu(ctxt)->arch.halt_request = 1;
4297 }
4298
4299 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4300 {
4301 preempt_disable();
4302 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4303 /*
4304 * CR0.TS may reference the host fpu state, not the guest fpu state,
4305 * so it may be clear at this point.
4306 */
4307 clts();
4308 }
4309
4310 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4311 {
4312 preempt_enable();
4313 }
4314
4315 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4316 struct x86_instruction_info *info,
4317 enum x86_intercept_stage stage)
4318 {
4319 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4320 }
4321
4322 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4323 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4324 {
4325 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4326 }
4327
4328 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4329 {
4330 return kvm_register_read(emul_to_vcpu(ctxt), reg);
4331 }
4332
4333 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4334 {
4335 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4336 }
4337
4338 static const struct x86_emulate_ops emulate_ops = {
4339 .read_gpr = emulator_read_gpr,
4340 .write_gpr = emulator_write_gpr,
4341 .read_std = kvm_read_guest_virt_system,
4342 .write_std = kvm_write_guest_virt_system,
4343 .fetch = kvm_fetch_guest_virt,
4344 .read_emulated = emulator_read_emulated,
4345 .write_emulated = emulator_write_emulated,
4346 .cmpxchg_emulated = emulator_cmpxchg_emulated,
4347 .invlpg = emulator_invlpg,
4348 .pio_in_emulated = emulator_pio_in_emulated,
4349 .pio_out_emulated = emulator_pio_out_emulated,
4350 .get_segment = emulator_get_segment,
4351 .set_segment = emulator_set_segment,
4352 .get_cached_segment_base = emulator_get_cached_segment_base,
4353 .get_gdt = emulator_get_gdt,
4354 .get_idt = emulator_get_idt,
4355 .set_gdt = emulator_set_gdt,
4356 .set_idt = emulator_set_idt,
4357 .get_cr = emulator_get_cr,
4358 .set_cr = emulator_set_cr,
4359 .set_rflags = emulator_set_rflags,
4360 .cpl = emulator_get_cpl,
4361 .get_dr = emulator_get_dr,
4362 .set_dr = emulator_set_dr,
4363 .set_msr = emulator_set_msr,
4364 .get_msr = emulator_get_msr,
4365 .read_pmc = emulator_read_pmc,
4366 .halt = emulator_halt,
4367 .wbinvd = emulator_wbinvd,
4368 .fix_hypercall = emulator_fix_hypercall,
4369 .get_fpu = emulator_get_fpu,
4370 .put_fpu = emulator_put_fpu,
4371 .intercept = emulator_intercept,
4372 .get_cpuid = emulator_get_cpuid,
4373 };
4374
4375 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4376 {
4377 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4378 /*
4379 * an sti; sti; sequence only disable interrupts for the first
4380 * instruction. So, if the last instruction, be it emulated or
4381 * not, left the system with the INT_STI flag enabled, it
4382 * means that the last instruction is an sti. We should not
4383 * leave the flag on in this case. The same goes for mov ss
4384 */
4385 if (!(int_shadow & mask))
4386 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4387 }
4388
4389 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4390 {
4391 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4392 if (ctxt->exception.vector == PF_VECTOR)
4393 kvm_propagate_fault(vcpu, &ctxt->exception);
4394 else if (ctxt->exception.error_code_valid)
4395 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4396 ctxt->exception.error_code);
4397 else
4398 kvm_queue_exception(vcpu, ctxt->exception.vector);
4399 }
4400
4401 static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
4402 {
4403 memset(&ctxt->twobyte, 0,
4404 (void *)&ctxt->_regs - (void *)&ctxt->twobyte);
4405
4406 ctxt->fetch.start = 0;
4407 ctxt->fetch.end = 0;
4408 ctxt->io_read.pos = 0;
4409 ctxt->io_read.end = 0;
4410 ctxt->mem_read.pos = 0;
4411 ctxt->mem_read.end = 0;
4412 }
4413
4414 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4415 {
4416 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4417 int cs_db, cs_l;
4418
4419 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4420
4421 ctxt->eflags = kvm_get_rflags(vcpu);
4422 ctxt->eip = kvm_rip_read(vcpu);
4423 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4424 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
4425 cs_l ? X86EMUL_MODE_PROT64 :
4426 cs_db ? X86EMUL_MODE_PROT32 :
4427 X86EMUL_MODE_PROT16;
4428 ctxt->guest_mode = is_guest_mode(vcpu);
4429
4430 init_decode_cache(ctxt);
4431 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4432 }
4433
4434 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4435 {
4436 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4437 int ret;
4438
4439 init_emulate_ctxt(vcpu);
4440
4441 ctxt->op_bytes = 2;
4442 ctxt->ad_bytes = 2;
4443 ctxt->_eip = ctxt->eip + inc_eip;
4444 ret = emulate_int_real(ctxt, irq);
4445
4446 if (ret != X86EMUL_CONTINUE)
4447 return EMULATE_FAIL;
4448
4449 ctxt->eip = ctxt->_eip;
4450 kvm_rip_write(vcpu, ctxt->eip);
4451 kvm_set_rflags(vcpu, ctxt->eflags);
4452
4453 if (irq == NMI_VECTOR)
4454 vcpu->arch.nmi_pending = 0;
4455 else
4456 vcpu->arch.interrupt.pending = false;
4457
4458 return EMULATE_DONE;
4459 }
4460 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4461
4462 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4463 {
4464 int r = EMULATE_DONE;
4465
4466 ++vcpu->stat.insn_emulation_fail;
4467 trace_kvm_emulate_insn_failed(vcpu);
4468 if (!is_guest_mode(vcpu)) {
4469 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4470 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4471 vcpu->run->internal.ndata = 0;
4472 r = EMULATE_FAIL;
4473 }
4474 kvm_queue_exception(vcpu, UD_VECTOR);
4475
4476 return r;
4477 }
4478
4479 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4480 {
4481 gpa_t gpa;
4482 pfn_t pfn;
4483
4484 if (tdp_enabled)
4485 return false;
4486
4487 /*
4488 * if emulation was due to access to shadowed page table
4489 * and it failed try to unshadow page and re-enter the
4490 * guest to let CPU execute the instruction.
4491 */
4492 if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4493 return true;
4494
4495 gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4496
4497 if (gpa == UNMAPPED_GVA)
4498 return true; /* let cpu generate fault */
4499
4500 /*
4501 * Do not retry the unhandleable instruction if it faults on the
4502 * readonly host memory, otherwise it will goto a infinite loop:
4503 * retry instruction -> write #PF -> emulation fail -> retry
4504 * instruction -> ...
4505 */
4506 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4507 if (!is_error_noslot_pfn(pfn)) {
4508 kvm_release_pfn_clean(pfn);
4509 return true;
4510 }
4511
4512 return false;
4513 }
4514
4515 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4516 unsigned long cr2, int emulation_type)
4517 {
4518 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4519 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4520
4521 last_retry_eip = vcpu->arch.last_retry_eip;
4522 last_retry_addr = vcpu->arch.last_retry_addr;
4523
4524 /*
4525 * If the emulation is caused by #PF and it is non-page_table
4526 * writing instruction, it means the VM-EXIT is caused by shadow
4527 * page protected, we can zap the shadow page and retry this
4528 * instruction directly.
4529 *
4530 * Note: if the guest uses a non-page-table modifying instruction
4531 * on the PDE that points to the instruction, then we will unmap
4532 * the instruction and go to an infinite loop. So, we cache the
4533 * last retried eip and the last fault address, if we meet the eip
4534 * and the address again, we can break out of the potential infinite
4535 * loop.
4536 */
4537 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4538
4539 if (!(emulation_type & EMULTYPE_RETRY))
4540 return false;
4541
4542 if (x86_page_table_writing_insn(ctxt))
4543 return false;
4544
4545 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4546 return false;
4547
4548 vcpu->arch.last_retry_eip = ctxt->eip;
4549 vcpu->arch.last_retry_addr = cr2;
4550
4551 if (!vcpu->arch.mmu.direct_map)
4552 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4553
4554 kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4555
4556 return true;
4557 }
4558
4559 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
4560 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
4561
4562 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4563 unsigned long cr2,
4564 int emulation_type,
4565 void *insn,
4566 int insn_len)
4567 {
4568 int r;
4569 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4570 bool writeback = true;
4571
4572 kvm_clear_exception_queue(vcpu);
4573
4574 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4575 init_emulate_ctxt(vcpu);
4576 ctxt->interruptibility = 0;
4577 ctxt->have_exception = false;
4578 ctxt->perm_ok = false;
4579
4580 ctxt->only_vendor_specific_insn
4581 = emulation_type & EMULTYPE_TRAP_UD;
4582
4583 r = x86_decode_insn(ctxt, insn, insn_len);
4584
4585 trace_kvm_emulate_insn_start(vcpu);
4586 ++vcpu->stat.insn_emulation;
4587 if (r != EMULATION_OK) {
4588 if (emulation_type & EMULTYPE_TRAP_UD)
4589 return EMULATE_FAIL;
4590 if (reexecute_instruction(vcpu, cr2))
4591 return EMULATE_DONE;
4592 if (emulation_type & EMULTYPE_SKIP)
4593 return EMULATE_FAIL;
4594 return handle_emulation_failure(vcpu);
4595 }
4596 }
4597
4598 if (emulation_type & EMULTYPE_SKIP) {
4599 kvm_rip_write(vcpu, ctxt->_eip);
4600 return EMULATE_DONE;
4601 }
4602
4603 if (retry_instruction(ctxt, cr2, emulation_type))
4604 return EMULATE_DONE;
4605
4606 /* this is needed for vmware backdoor interface to work since it
4607 changes registers values during IO operation */
4608 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4609 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4610 emulator_invalidate_register_cache(ctxt);
4611 }
4612
4613 restart:
4614 r = x86_emulate_insn(ctxt);
4615
4616 if (r == EMULATION_INTERCEPTED)
4617 return EMULATE_DONE;
4618
4619 if (r == EMULATION_FAILED) {
4620 if (reexecute_instruction(vcpu, cr2))
4621 return EMULATE_DONE;
4622
4623 return handle_emulation_failure(vcpu);
4624 }
4625
4626 if (ctxt->have_exception) {
4627 inject_emulated_exception(vcpu);
4628 r = EMULATE_DONE;
4629 } else if (vcpu->arch.pio.count) {
4630 if (!vcpu->arch.pio.in)
4631 vcpu->arch.pio.count = 0;
4632 else {
4633 writeback = false;
4634 vcpu->arch.complete_userspace_io = complete_emulated_pio;
4635 }
4636 r = EMULATE_DO_MMIO;
4637 } else if (vcpu->mmio_needed) {
4638 if (!vcpu->mmio_is_write)
4639 writeback = false;
4640 r = EMULATE_DO_MMIO;
4641 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
4642 } else if (r == EMULATION_RESTART)
4643 goto restart;
4644 else
4645 r = EMULATE_DONE;
4646
4647 if (writeback) {
4648 toggle_interruptibility(vcpu, ctxt->interruptibility);
4649 kvm_set_rflags(vcpu, ctxt->eflags);
4650 kvm_make_request(KVM_REQ_EVENT, vcpu);
4651 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
4652 kvm_rip_write(vcpu, ctxt->eip);
4653 } else
4654 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
4655
4656 return r;
4657 }
4658 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4659
4660 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4661 {
4662 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4663 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
4664 size, port, &val, 1);
4665 /* do not return to emulator after return from userspace */
4666 vcpu->arch.pio.count = 0;
4667 return ret;
4668 }
4669 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4670
4671 static void tsc_bad(void *info)
4672 {
4673 __this_cpu_write(cpu_tsc_khz, 0);
4674 }
4675
4676 static void tsc_khz_changed(void *data)
4677 {
4678 struct cpufreq_freqs *freq = data;
4679 unsigned long khz = 0;
4680
4681 if (data)
4682 khz = freq->new;
4683 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4684 khz = cpufreq_quick_get(raw_smp_processor_id());
4685 if (!khz)
4686 khz = tsc_khz;
4687 __this_cpu_write(cpu_tsc_khz, khz);
4688 }
4689
4690 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4691 void *data)
4692 {
4693 struct cpufreq_freqs *freq = data;
4694 struct kvm *kvm;
4695 struct kvm_vcpu *vcpu;
4696 int i, send_ipi = 0;
4697
4698 /*
4699 * We allow guests to temporarily run on slowing clocks,
4700 * provided we notify them after, or to run on accelerating
4701 * clocks, provided we notify them before. Thus time never
4702 * goes backwards.
4703 *
4704 * However, we have a problem. We can't atomically update
4705 * the frequency of a given CPU from this function; it is
4706 * merely a notifier, which can be called from any CPU.
4707 * Changing the TSC frequency at arbitrary points in time
4708 * requires a recomputation of local variables related to
4709 * the TSC for each VCPU. We must flag these local variables
4710 * to be updated and be sure the update takes place with the
4711 * new frequency before any guests proceed.
4712 *
4713 * Unfortunately, the combination of hotplug CPU and frequency
4714 * change creates an intractable locking scenario; the order
4715 * of when these callouts happen is undefined with respect to
4716 * CPU hotplug, and they can race with each other. As such,
4717 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4718 * undefined; you can actually have a CPU frequency change take
4719 * place in between the computation of X and the setting of the
4720 * variable. To protect against this problem, all updates of
4721 * the per_cpu tsc_khz variable are done in an interrupt
4722 * protected IPI, and all callers wishing to update the value
4723 * must wait for a synchronous IPI to complete (which is trivial
4724 * if the caller is on the CPU already). This establishes the
4725 * necessary total order on variable updates.
4726 *
4727 * Note that because a guest time update may take place
4728 * anytime after the setting of the VCPU's request bit, the
4729 * correct TSC value must be set before the request. However,
4730 * to ensure the update actually makes it to any guest which
4731 * starts running in hardware virtualization between the set
4732 * and the acquisition of the spinlock, we must also ping the
4733 * CPU after setting the request bit.
4734 *
4735 */
4736
4737 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4738 return 0;
4739 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4740 return 0;
4741
4742 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4743
4744 raw_spin_lock(&kvm_lock);
4745 list_for_each_entry(kvm, &vm_list, vm_list) {
4746 kvm_for_each_vcpu(i, vcpu, kvm) {
4747 if (vcpu->cpu != freq->cpu)
4748 continue;
4749 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4750 if (vcpu->cpu != smp_processor_id())
4751 send_ipi = 1;
4752 }
4753 }
4754 raw_spin_unlock(&kvm_lock);
4755
4756 if (freq->old < freq->new && send_ipi) {
4757 /*
4758 * We upscale the frequency. Must make the guest
4759 * doesn't see old kvmclock values while running with
4760 * the new frequency, otherwise we risk the guest sees
4761 * time go backwards.
4762 *
4763 * In case we update the frequency for another cpu
4764 * (which might be in guest context) send an interrupt
4765 * to kick the cpu out of guest context. Next time
4766 * guest context is entered kvmclock will be updated,
4767 * so the guest will not see stale values.
4768 */
4769 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4770 }
4771 return 0;
4772 }
4773
4774 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4775 .notifier_call = kvmclock_cpufreq_notifier
4776 };
4777
4778 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4779 unsigned long action, void *hcpu)
4780 {
4781 unsigned int cpu = (unsigned long)hcpu;
4782
4783 switch (action) {
4784 case CPU_ONLINE:
4785 case CPU_DOWN_FAILED:
4786 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4787 break;
4788 case CPU_DOWN_PREPARE:
4789 smp_call_function_single(cpu, tsc_bad, NULL, 1);
4790 break;
4791 }
4792 return NOTIFY_OK;
4793 }
4794
4795 static struct notifier_block kvmclock_cpu_notifier_block = {
4796 .notifier_call = kvmclock_cpu_notifier,
4797 .priority = -INT_MAX
4798 };
4799
4800 static void kvm_timer_init(void)
4801 {
4802 int cpu;
4803
4804 max_tsc_khz = tsc_khz;
4805 register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4806 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4807 #ifdef CONFIG_CPU_FREQ
4808 struct cpufreq_policy policy;
4809 memset(&policy, 0, sizeof(policy));
4810 cpu = get_cpu();
4811 cpufreq_get_policy(&policy, cpu);
4812 if (policy.cpuinfo.max_freq)
4813 max_tsc_khz = policy.cpuinfo.max_freq;
4814 put_cpu();
4815 #endif
4816 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4817 CPUFREQ_TRANSITION_NOTIFIER);
4818 }
4819 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
4820 for_each_online_cpu(cpu)
4821 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4822 }
4823
4824 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4825
4826 int kvm_is_in_guest(void)
4827 {
4828 return __this_cpu_read(current_vcpu) != NULL;
4829 }
4830
4831 static int kvm_is_user_mode(void)
4832 {
4833 int user_mode = 3;
4834
4835 if (__this_cpu_read(current_vcpu))
4836 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
4837
4838 return user_mode != 0;
4839 }
4840
4841 static unsigned long kvm_get_guest_ip(void)
4842 {
4843 unsigned long ip = 0;
4844
4845 if (__this_cpu_read(current_vcpu))
4846 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
4847
4848 return ip;
4849 }
4850
4851 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4852 .is_in_guest = kvm_is_in_guest,
4853 .is_user_mode = kvm_is_user_mode,
4854 .get_guest_ip = kvm_get_guest_ip,
4855 };
4856
4857 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4858 {
4859 __this_cpu_write(current_vcpu, vcpu);
4860 }
4861 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4862
4863 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4864 {
4865 __this_cpu_write(current_vcpu, NULL);
4866 }
4867 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4868
4869 static void kvm_set_mmio_spte_mask(void)
4870 {
4871 u64 mask;
4872 int maxphyaddr = boot_cpu_data.x86_phys_bits;
4873
4874 /*
4875 * Set the reserved bits and the present bit of an paging-structure
4876 * entry to generate page fault with PFER.RSV = 1.
4877 */
4878 mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
4879 mask |= 1ull;
4880
4881 #ifdef CONFIG_X86_64
4882 /*
4883 * If reserved bit is not supported, clear the present bit to disable
4884 * mmio page fault.
4885 */
4886 if (maxphyaddr == 52)
4887 mask &= ~1ull;
4888 #endif
4889
4890 kvm_mmu_set_mmio_spte_mask(mask);
4891 }
4892
4893 int kvm_arch_init(void *opaque)
4894 {
4895 int r;
4896 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4897
4898 if (kvm_x86_ops) {
4899 printk(KERN_ERR "kvm: already loaded the other module\n");
4900 r = -EEXIST;
4901 goto out;
4902 }
4903
4904 if (!ops->cpu_has_kvm_support()) {
4905 printk(KERN_ERR "kvm: no hardware support\n");
4906 r = -EOPNOTSUPP;
4907 goto out;
4908 }
4909 if (ops->disabled_by_bios()) {
4910 printk(KERN_ERR "kvm: disabled by bios\n");
4911 r = -EOPNOTSUPP;
4912 goto out;
4913 }
4914
4915 r = kvm_mmu_module_init();
4916 if (r)
4917 goto out;
4918
4919 kvm_set_mmio_spte_mask();
4920 kvm_init_msr_list();
4921
4922 kvm_x86_ops = ops;
4923 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4924 PT_DIRTY_MASK, PT64_NX_MASK, 0);
4925
4926 kvm_timer_init();
4927
4928 perf_register_guest_info_callbacks(&kvm_guest_cbs);
4929
4930 if (cpu_has_xsave)
4931 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4932
4933 kvm_lapic_init();
4934 return 0;
4935
4936 out:
4937 return r;
4938 }
4939
4940 void kvm_arch_exit(void)
4941 {
4942 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4943
4944 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4945 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4946 CPUFREQ_TRANSITION_NOTIFIER);
4947 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4948 kvm_x86_ops = NULL;
4949 kvm_mmu_module_exit();
4950 }
4951
4952 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4953 {
4954 ++vcpu->stat.halt_exits;
4955 if (irqchip_in_kernel(vcpu->kvm)) {
4956 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4957 return 1;
4958 } else {
4959 vcpu->run->exit_reason = KVM_EXIT_HLT;
4960 return 0;
4961 }
4962 }
4963 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4964
4965 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4966 {
4967 u64 param, ingpa, outgpa, ret;
4968 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4969 bool fast, longmode;
4970 int cs_db, cs_l;
4971
4972 /*
4973 * hypercall generates UD from non zero cpl and real mode
4974 * per HYPER-V spec
4975 */
4976 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4977 kvm_queue_exception(vcpu, UD_VECTOR);
4978 return 0;
4979 }
4980
4981 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4982 longmode = is_long_mode(vcpu) && cs_l == 1;
4983
4984 if (!longmode) {
4985 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4986 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4987 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4988 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4989 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4990 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4991 }
4992 #ifdef CONFIG_X86_64
4993 else {
4994 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4995 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4996 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4997 }
4998 #endif
4999
5000 code = param & 0xffff;
5001 fast = (param >> 16) & 0x1;
5002 rep_cnt = (param >> 32) & 0xfff;
5003 rep_idx = (param >> 48) & 0xfff;
5004
5005 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5006
5007 switch (code) {
5008 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5009 kvm_vcpu_on_spin(vcpu);
5010 break;
5011 default:
5012 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5013 break;
5014 }
5015
5016 ret = res | (((u64)rep_done & 0xfff) << 32);
5017 if (longmode) {
5018 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5019 } else {
5020 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5021 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5022 }
5023
5024 return 1;
5025 }
5026
5027 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5028 {
5029 unsigned long nr, a0, a1, a2, a3, ret;
5030 int r = 1;
5031
5032 if (kvm_hv_hypercall_enabled(vcpu->kvm))
5033 return kvm_hv_hypercall(vcpu);
5034
5035 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5036 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5037 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5038 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5039 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5040
5041 trace_kvm_hypercall(nr, a0, a1, a2, a3);
5042
5043 if (!is_long_mode(vcpu)) {
5044 nr &= 0xFFFFFFFF;
5045 a0 &= 0xFFFFFFFF;
5046 a1 &= 0xFFFFFFFF;
5047 a2 &= 0xFFFFFFFF;
5048 a3 &= 0xFFFFFFFF;
5049 }
5050
5051 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5052 ret = -KVM_EPERM;
5053 goto out;
5054 }
5055
5056 switch (nr) {
5057 case KVM_HC_VAPIC_POLL_IRQ:
5058 ret = 0;
5059 break;
5060 default:
5061 ret = -KVM_ENOSYS;
5062 break;
5063 }
5064 out:
5065 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5066 ++vcpu->stat.hypercalls;
5067 return r;
5068 }
5069 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5070
5071 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5072 {
5073 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5074 char instruction[3];
5075 unsigned long rip = kvm_rip_read(vcpu);
5076
5077 /*
5078 * Blow out the MMU to ensure that no other VCPU has an active mapping
5079 * to ensure that the updated hypercall appears atomically across all
5080 * VCPUs.
5081 */
5082 kvm_mmu_zap_all(vcpu->kvm);
5083
5084 kvm_x86_ops->patch_hypercall(vcpu, instruction);
5085
5086 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5087 }
5088
5089 /*
5090 * Check if userspace requested an interrupt window, and that the
5091 * interrupt window is open.
5092 *
5093 * No need to exit to userspace if we already have an interrupt queued.
5094 */
5095 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5096 {
5097 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5098 vcpu->run->request_interrupt_window &&
5099 kvm_arch_interrupt_allowed(vcpu));
5100 }
5101
5102 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5103 {
5104 struct kvm_run *kvm_run = vcpu->run;
5105
5106 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5107 kvm_run->cr8 = kvm_get_cr8(vcpu);
5108 kvm_run->apic_base = kvm_get_apic_base(vcpu);
5109 if (irqchip_in_kernel(vcpu->kvm))
5110 kvm_run->ready_for_interrupt_injection = 1;
5111 else
5112 kvm_run->ready_for_interrupt_injection =
5113 kvm_arch_interrupt_allowed(vcpu) &&
5114 !kvm_cpu_has_interrupt(vcpu) &&
5115 !kvm_event_needs_reinjection(vcpu);
5116 }
5117
5118 static int vapic_enter(struct kvm_vcpu *vcpu)
5119 {
5120 struct kvm_lapic *apic = vcpu->arch.apic;
5121 struct page *page;
5122
5123 if (!apic || !apic->vapic_addr)
5124 return 0;
5125
5126 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5127 if (is_error_page(page))
5128 return -EFAULT;
5129
5130 vcpu->arch.apic->vapic_page = page;
5131 return 0;
5132 }
5133
5134 static void vapic_exit(struct kvm_vcpu *vcpu)
5135 {
5136 struct kvm_lapic *apic = vcpu->arch.apic;
5137 int idx;
5138
5139 if (!apic || !apic->vapic_addr)
5140 return;
5141
5142 idx = srcu_read_lock(&vcpu->kvm->srcu);
5143 kvm_release_page_dirty(apic->vapic_page);
5144 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5145 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5146 }
5147
5148 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5149 {
5150 int max_irr, tpr;
5151
5152 if (!kvm_x86_ops->update_cr8_intercept)
5153 return;
5154
5155 if (!vcpu->arch.apic)
5156 return;
5157
5158 if (!vcpu->arch.apic->vapic_addr)
5159 max_irr = kvm_lapic_find_highest_irr(vcpu);
5160 else
5161 max_irr = -1;
5162
5163 if (max_irr != -1)
5164 max_irr >>= 4;
5165
5166 tpr = kvm_lapic_get_cr8(vcpu);
5167
5168 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5169 }
5170
5171 static void inject_pending_event(struct kvm_vcpu *vcpu)
5172 {
5173 /* try to reinject previous events if any */
5174 if (vcpu->arch.exception.pending) {
5175 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5176 vcpu->arch.exception.has_error_code,
5177 vcpu->arch.exception.error_code);
5178 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5179 vcpu->arch.exception.has_error_code,
5180 vcpu->arch.exception.error_code,
5181 vcpu->arch.exception.reinject);
5182 return;
5183 }
5184
5185 if (vcpu->arch.nmi_injected) {
5186 kvm_x86_ops->set_nmi(vcpu);
5187 return;
5188 }
5189
5190 if (vcpu->arch.interrupt.pending) {
5191 kvm_x86_ops->set_irq(vcpu);
5192 return;
5193 }
5194
5195 /* try to inject new event if pending */
5196 if (vcpu->arch.nmi_pending) {
5197 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5198 --vcpu->arch.nmi_pending;
5199 vcpu->arch.nmi_injected = true;
5200 kvm_x86_ops->set_nmi(vcpu);
5201 }
5202 } else if (kvm_cpu_has_interrupt(vcpu)) {
5203 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5204 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5205 false);
5206 kvm_x86_ops->set_irq(vcpu);
5207 }
5208 }
5209 }
5210
5211 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5212 {
5213 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5214 !vcpu->guest_xcr0_loaded) {
5215 /* kvm_set_xcr() also depends on this */
5216 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5217 vcpu->guest_xcr0_loaded = 1;
5218 }
5219 }
5220
5221 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5222 {
5223 if (vcpu->guest_xcr0_loaded) {
5224 if (vcpu->arch.xcr0 != host_xcr0)
5225 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5226 vcpu->guest_xcr0_loaded = 0;
5227 }
5228 }
5229
5230 static void process_nmi(struct kvm_vcpu *vcpu)
5231 {
5232 unsigned limit = 2;
5233
5234 /*
5235 * x86 is limited to one NMI running, and one NMI pending after it.
5236 * If an NMI is already in progress, limit further NMIs to just one.
5237 * Otherwise, allow two (and we'll inject the first one immediately).
5238 */
5239 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5240 limit = 1;
5241
5242 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5243 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5244 kvm_make_request(KVM_REQ_EVENT, vcpu);
5245 }
5246
5247 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5248 {
5249 int r;
5250 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5251 vcpu->run->request_interrupt_window;
5252 bool req_immediate_exit = 0;
5253
5254 if (vcpu->requests) {
5255 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5256 kvm_mmu_unload(vcpu);
5257 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5258 __kvm_migrate_timers(vcpu);
5259 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5260 r = kvm_guest_time_update(vcpu);
5261 if (unlikely(r))
5262 goto out;
5263 }
5264 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5265 kvm_mmu_sync_roots(vcpu);
5266 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5267 kvm_x86_ops->tlb_flush(vcpu);
5268 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5269 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5270 r = 0;
5271 goto out;
5272 }
5273 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5274 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5275 r = 0;
5276 goto out;
5277 }
5278 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5279 vcpu->fpu_active = 0;
5280 kvm_x86_ops->fpu_deactivate(vcpu);
5281 }
5282 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5283 /* Page is swapped out. Do synthetic halt */
5284 vcpu->arch.apf.halted = true;
5285 r = 1;
5286 goto out;
5287 }
5288 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5289 record_steal_time(vcpu);
5290 if (kvm_check_request(KVM_REQ_NMI, vcpu))
5291 process_nmi(vcpu);
5292 req_immediate_exit =
5293 kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
5294 if (kvm_check_request(KVM_REQ_PMU, vcpu))
5295 kvm_handle_pmu_event(vcpu);
5296 if (kvm_check_request(KVM_REQ_PMI, vcpu))
5297 kvm_deliver_pmi(vcpu);
5298 }
5299
5300 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5301 inject_pending_event(vcpu);
5302
5303 /* enable NMI/IRQ window open exits if needed */
5304 if (vcpu->arch.nmi_pending)
5305 kvm_x86_ops->enable_nmi_window(vcpu);
5306 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5307 kvm_x86_ops->enable_irq_window(vcpu);
5308
5309 if (kvm_lapic_enabled(vcpu)) {
5310 update_cr8_intercept(vcpu);
5311 kvm_lapic_sync_to_vapic(vcpu);
5312 }
5313 }
5314
5315 r = kvm_mmu_reload(vcpu);
5316 if (unlikely(r)) {
5317 goto cancel_injection;
5318 }
5319
5320 preempt_disable();
5321
5322 kvm_x86_ops->prepare_guest_switch(vcpu);
5323 if (vcpu->fpu_active)
5324 kvm_load_guest_fpu(vcpu);
5325 kvm_load_guest_xcr0(vcpu);
5326
5327 vcpu->mode = IN_GUEST_MODE;
5328
5329 /* We should set ->mode before check ->requests,
5330 * see the comment in make_all_cpus_request.
5331 */
5332 smp_mb();
5333
5334 local_irq_disable();
5335
5336 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5337 || need_resched() || signal_pending(current)) {
5338 vcpu->mode = OUTSIDE_GUEST_MODE;
5339 smp_wmb();
5340 local_irq_enable();
5341 preempt_enable();
5342 r = 1;
5343 goto cancel_injection;
5344 }
5345
5346 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5347
5348 if (req_immediate_exit)
5349 smp_send_reschedule(vcpu->cpu);
5350
5351 kvm_guest_enter();
5352
5353 if (unlikely(vcpu->arch.switch_db_regs)) {
5354 set_debugreg(0, 7);
5355 set_debugreg(vcpu->arch.eff_db[0], 0);
5356 set_debugreg(vcpu->arch.eff_db[1], 1);
5357 set_debugreg(vcpu->arch.eff_db[2], 2);
5358 set_debugreg(vcpu->arch.eff_db[3], 3);
5359 }
5360
5361 trace_kvm_entry(vcpu->vcpu_id);
5362 kvm_x86_ops->run(vcpu);
5363
5364 /*
5365 * If the guest has used debug registers, at least dr7
5366 * will be disabled while returning to the host.
5367 * If we don't have active breakpoints in the host, we don't
5368 * care about the messed up debug address registers. But if
5369 * we have some of them active, restore the old state.
5370 */
5371 if (hw_breakpoint_active())
5372 hw_breakpoint_restore();
5373
5374 vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu);
5375
5376 vcpu->mode = OUTSIDE_GUEST_MODE;
5377 smp_wmb();
5378 local_irq_enable();
5379
5380 ++vcpu->stat.exits;
5381
5382 /*
5383 * We must have an instruction between local_irq_enable() and
5384 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5385 * the interrupt shadow. The stat.exits increment will do nicely.
5386 * But we need to prevent reordering, hence this barrier():
5387 */
5388 barrier();
5389
5390 kvm_guest_exit();
5391
5392 preempt_enable();
5393
5394 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5395
5396 /*
5397 * Profile KVM exit RIPs:
5398 */
5399 if (unlikely(prof_on == KVM_PROFILING)) {
5400 unsigned long rip = kvm_rip_read(vcpu);
5401 profile_hit(KVM_PROFILING, (void *)rip);
5402 }
5403
5404 if (unlikely(vcpu->arch.tsc_always_catchup))
5405 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5406
5407 if (vcpu->arch.apic_attention)
5408 kvm_lapic_sync_from_vapic(vcpu);
5409
5410 r = kvm_x86_ops->handle_exit(vcpu);
5411 return r;
5412
5413 cancel_injection:
5414 kvm_x86_ops->cancel_injection(vcpu);
5415 if (unlikely(vcpu->arch.apic_attention))
5416 kvm_lapic_sync_from_vapic(vcpu);
5417 out:
5418 return r;
5419 }
5420
5421
5422 static int __vcpu_run(struct kvm_vcpu *vcpu)
5423 {
5424 int r;
5425 struct kvm *kvm = vcpu->kvm;
5426
5427 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5428 pr_debug("vcpu %d received sipi with vector # %x\n",
5429 vcpu->vcpu_id, vcpu->arch.sipi_vector);
5430 kvm_lapic_reset(vcpu);
5431 r = kvm_vcpu_reset(vcpu);
5432 if (r)
5433 return r;
5434 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5435 }
5436
5437 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5438 r = vapic_enter(vcpu);
5439 if (r) {
5440 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5441 return r;
5442 }
5443
5444 r = 1;
5445 while (r > 0) {
5446 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5447 !vcpu->arch.apf.halted)
5448 r = vcpu_enter_guest(vcpu);
5449 else {
5450 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5451 kvm_vcpu_block(vcpu);
5452 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5453 if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5454 {
5455 switch(vcpu->arch.mp_state) {
5456 case KVM_MP_STATE_HALTED:
5457 vcpu->arch.mp_state =
5458 KVM_MP_STATE_RUNNABLE;
5459 case KVM_MP_STATE_RUNNABLE:
5460 vcpu->arch.apf.halted = false;
5461 break;
5462 case KVM_MP_STATE_SIPI_RECEIVED:
5463 default:
5464 r = -EINTR;
5465 break;
5466 }
5467 }
5468 }
5469
5470 if (r <= 0)
5471 break;
5472
5473 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5474 if (kvm_cpu_has_pending_timer(vcpu))
5475 kvm_inject_pending_timer_irqs(vcpu);
5476
5477 if (dm_request_for_irq_injection(vcpu)) {
5478 r = -EINTR;
5479 vcpu->run->exit_reason = KVM_EXIT_INTR;
5480 ++vcpu->stat.request_irq_exits;
5481 }
5482
5483 kvm_check_async_pf_completion(vcpu);
5484
5485 if (signal_pending(current)) {
5486 r = -EINTR;
5487 vcpu->run->exit_reason = KVM_EXIT_INTR;
5488 ++vcpu->stat.signal_exits;
5489 }
5490 if (need_resched()) {
5491 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5492 kvm_resched(vcpu);
5493 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5494 }
5495 }
5496
5497 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5498
5499 vapic_exit(vcpu);
5500
5501 return r;
5502 }
5503
5504 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
5505 {
5506 int r;
5507 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5508 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5509 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5510 if (r != EMULATE_DONE)
5511 return 0;
5512 return 1;
5513 }
5514
5515 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
5516 {
5517 BUG_ON(!vcpu->arch.pio.count);
5518
5519 return complete_emulated_io(vcpu);
5520 }
5521
5522 /*
5523 * Implements the following, as a state machine:
5524 *
5525 * read:
5526 * for each fragment
5527 * write gpa, len
5528 * exit
5529 * copy data
5530 * execute insn
5531 *
5532 * write:
5533 * for each fragment
5534 * write gpa, len
5535 * copy data
5536 * exit
5537 */
5538 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
5539 {
5540 struct kvm_run *run = vcpu->run;
5541 struct kvm_mmio_fragment *frag;
5542
5543 BUG_ON(!vcpu->mmio_needed);
5544
5545 /* Complete previous fragment */
5546 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment++];
5547 if (!vcpu->mmio_is_write)
5548 memcpy(frag->data, run->mmio.data, frag->len);
5549 if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
5550 vcpu->mmio_needed = 0;
5551 if (vcpu->mmio_is_write)
5552 return 1;
5553 vcpu->mmio_read_completed = 1;
5554 return complete_emulated_io(vcpu);
5555 }
5556 /* Initiate next fragment */
5557 ++frag;
5558 run->exit_reason = KVM_EXIT_MMIO;
5559 run->mmio.phys_addr = frag->gpa;
5560 if (vcpu->mmio_is_write)
5561 memcpy(run->mmio.data, frag->data, frag->len);
5562 run->mmio.len = frag->len;
5563 run->mmio.is_write = vcpu->mmio_is_write;
5564 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5565 return 0;
5566 }
5567
5568
5569 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5570 {
5571 int r;
5572 sigset_t sigsaved;
5573
5574 if (!tsk_used_math(current) && init_fpu(current))
5575 return -ENOMEM;
5576
5577 if (vcpu->sigset_active)
5578 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5579
5580 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5581 kvm_vcpu_block(vcpu);
5582 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5583 r = -EAGAIN;
5584 goto out;
5585 }
5586
5587 /* re-sync apic's tpr */
5588 if (!irqchip_in_kernel(vcpu->kvm)) {
5589 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5590 r = -EINVAL;
5591 goto out;
5592 }
5593 }
5594
5595 if (unlikely(vcpu->arch.complete_userspace_io)) {
5596 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
5597 vcpu->arch.complete_userspace_io = NULL;
5598 r = cui(vcpu);
5599 if (r <= 0)
5600 goto out;
5601 } else
5602 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
5603
5604 r = __vcpu_run(vcpu);
5605
5606 out:
5607 post_kvm_run_save(vcpu);
5608 if (vcpu->sigset_active)
5609 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5610
5611 return r;
5612 }
5613
5614 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5615 {
5616 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
5617 /*
5618 * We are here if userspace calls get_regs() in the middle of
5619 * instruction emulation. Registers state needs to be copied
5620 * back from emulation context to vcpu. Userspace shouldn't do
5621 * that usually, but some bad designed PV devices (vmware
5622 * backdoor interface) need this to work
5623 */
5624 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
5625 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5626 }
5627 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5628 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5629 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5630 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5631 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5632 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5633 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5634 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5635 #ifdef CONFIG_X86_64
5636 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5637 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5638 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5639 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5640 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5641 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5642 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5643 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5644 #endif
5645
5646 regs->rip = kvm_rip_read(vcpu);
5647 regs->rflags = kvm_get_rflags(vcpu);
5648
5649 return 0;
5650 }
5651
5652 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5653 {
5654 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
5655 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5656
5657 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5658 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5659 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5660 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5661 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5662 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5663 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5664 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5665 #ifdef CONFIG_X86_64
5666 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5667 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5668 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5669 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5670 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5671 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5672 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5673 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5674 #endif
5675
5676 kvm_rip_write(vcpu, regs->rip);
5677 kvm_set_rflags(vcpu, regs->rflags);
5678
5679 vcpu->arch.exception.pending = false;
5680
5681 kvm_make_request(KVM_REQ_EVENT, vcpu);
5682
5683 return 0;
5684 }
5685
5686 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5687 {
5688 struct kvm_segment cs;
5689
5690 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5691 *db = cs.db;
5692 *l = cs.l;
5693 }
5694 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5695
5696 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5697 struct kvm_sregs *sregs)
5698 {
5699 struct desc_ptr dt;
5700
5701 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5702 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5703 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5704 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5705 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5706 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5707
5708 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5709 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5710
5711 kvm_x86_ops->get_idt(vcpu, &dt);
5712 sregs->idt.limit = dt.size;
5713 sregs->idt.base = dt.address;
5714 kvm_x86_ops->get_gdt(vcpu, &dt);
5715 sregs->gdt.limit = dt.size;
5716 sregs->gdt.base = dt.address;
5717
5718 sregs->cr0 = kvm_read_cr0(vcpu);
5719 sregs->cr2 = vcpu->arch.cr2;
5720 sregs->cr3 = kvm_read_cr3(vcpu);
5721 sregs->cr4 = kvm_read_cr4(vcpu);
5722 sregs->cr8 = kvm_get_cr8(vcpu);
5723 sregs->efer = vcpu->arch.efer;
5724 sregs->apic_base = kvm_get_apic_base(vcpu);
5725
5726 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5727
5728 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5729 set_bit(vcpu->arch.interrupt.nr,
5730 (unsigned long *)sregs->interrupt_bitmap);
5731
5732 return 0;
5733 }
5734
5735 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5736 struct kvm_mp_state *mp_state)
5737 {
5738 mp_state->mp_state = vcpu->arch.mp_state;
5739 return 0;
5740 }
5741
5742 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5743 struct kvm_mp_state *mp_state)
5744 {
5745 vcpu->arch.mp_state = mp_state->mp_state;
5746 kvm_make_request(KVM_REQ_EVENT, vcpu);
5747 return 0;
5748 }
5749
5750 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
5751 int reason, bool has_error_code, u32 error_code)
5752 {
5753 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5754 int ret;
5755
5756 init_emulate_ctxt(vcpu);
5757
5758 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
5759 has_error_code, error_code);
5760
5761 if (ret)
5762 return EMULATE_FAIL;
5763
5764 kvm_rip_write(vcpu, ctxt->eip);
5765 kvm_set_rflags(vcpu, ctxt->eflags);
5766 kvm_make_request(KVM_REQ_EVENT, vcpu);
5767 return EMULATE_DONE;
5768 }
5769 EXPORT_SYMBOL_GPL(kvm_task_switch);
5770
5771 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5772 struct kvm_sregs *sregs)
5773 {
5774 int mmu_reset_needed = 0;
5775 int pending_vec, max_bits, idx;
5776 struct desc_ptr dt;
5777
5778 dt.size = sregs->idt.limit;
5779 dt.address = sregs->idt.base;
5780 kvm_x86_ops->set_idt(vcpu, &dt);
5781 dt.size = sregs->gdt.limit;
5782 dt.address = sregs->gdt.base;
5783 kvm_x86_ops->set_gdt(vcpu, &dt);
5784
5785 vcpu->arch.cr2 = sregs->cr2;
5786 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
5787 vcpu->arch.cr3 = sregs->cr3;
5788 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
5789
5790 kvm_set_cr8(vcpu, sregs->cr8);
5791
5792 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5793 kvm_x86_ops->set_efer(vcpu, sregs->efer);
5794 kvm_set_apic_base(vcpu, sregs->apic_base);
5795
5796 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5797 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5798 vcpu->arch.cr0 = sregs->cr0;
5799
5800 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5801 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5802 if (sregs->cr4 & X86_CR4_OSXSAVE)
5803 kvm_update_cpuid(vcpu);
5804
5805 idx = srcu_read_lock(&vcpu->kvm->srcu);
5806 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5807 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
5808 mmu_reset_needed = 1;
5809 }
5810 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5811
5812 if (mmu_reset_needed)
5813 kvm_mmu_reset_context(vcpu);
5814
5815 max_bits = KVM_NR_INTERRUPTS;
5816 pending_vec = find_first_bit(
5817 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5818 if (pending_vec < max_bits) {
5819 kvm_queue_interrupt(vcpu, pending_vec, false);
5820 pr_debug("Set back pending irq %d\n", pending_vec);
5821 }
5822
5823 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5824 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5825 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5826 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5827 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5828 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5829
5830 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5831 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5832
5833 update_cr8_intercept(vcpu);
5834
5835 /* Older userspace won't unhalt the vcpu on reset. */
5836 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5837 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5838 !is_protmode(vcpu))
5839 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5840
5841 kvm_make_request(KVM_REQ_EVENT, vcpu);
5842
5843 return 0;
5844 }
5845
5846 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5847 struct kvm_guest_debug *dbg)
5848 {
5849 unsigned long rflags;
5850 int i, r;
5851
5852 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5853 r = -EBUSY;
5854 if (vcpu->arch.exception.pending)
5855 goto out;
5856 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5857 kvm_queue_exception(vcpu, DB_VECTOR);
5858 else
5859 kvm_queue_exception(vcpu, BP_VECTOR);
5860 }
5861
5862 /*
5863 * Read rflags as long as potentially injected trace flags are still
5864 * filtered out.
5865 */
5866 rflags = kvm_get_rflags(vcpu);
5867
5868 vcpu->guest_debug = dbg->control;
5869 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5870 vcpu->guest_debug = 0;
5871
5872 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5873 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5874 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5875 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
5876 } else {
5877 for (i = 0; i < KVM_NR_DB_REGS; i++)
5878 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5879 }
5880 kvm_update_dr7(vcpu);
5881
5882 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5883 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5884 get_segment_base(vcpu, VCPU_SREG_CS);
5885
5886 /*
5887 * Trigger an rflags update that will inject or remove the trace
5888 * flags.
5889 */
5890 kvm_set_rflags(vcpu, rflags);
5891
5892 kvm_x86_ops->update_db_bp_intercept(vcpu);
5893
5894 r = 0;
5895
5896 out:
5897
5898 return r;
5899 }
5900
5901 /*
5902 * Translate a guest virtual address to a guest physical address.
5903 */
5904 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5905 struct kvm_translation *tr)
5906 {
5907 unsigned long vaddr = tr->linear_address;
5908 gpa_t gpa;
5909 int idx;
5910
5911 idx = srcu_read_lock(&vcpu->kvm->srcu);
5912 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5913 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5914 tr->physical_address = gpa;
5915 tr->valid = gpa != UNMAPPED_GVA;
5916 tr->writeable = 1;
5917 tr->usermode = 0;
5918
5919 return 0;
5920 }
5921
5922 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5923 {
5924 struct i387_fxsave_struct *fxsave =
5925 &vcpu->arch.guest_fpu.state->fxsave;
5926
5927 memcpy(fpu->fpr, fxsave->st_space, 128);
5928 fpu->fcw = fxsave->cwd;
5929 fpu->fsw = fxsave->swd;
5930 fpu->ftwx = fxsave->twd;
5931 fpu->last_opcode = fxsave->fop;
5932 fpu->last_ip = fxsave->rip;
5933 fpu->last_dp = fxsave->rdp;
5934 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5935
5936 return 0;
5937 }
5938
5939 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5940 {
5941 struct i387_fxsave_struct *fxsave =
5942 &vcpu->arch.guest_fpu.state->fxsave;
5943
5944 memcpy(fxsave->st_space, fpu->fpr, 128);
5945 fxsave->cwd = fpu->fcw;
5946 fxsave->swd = fpu->fsw;
5947 fxsave->twd = fpu->ftwx;
5948 fxsave->fop = fpu->last_opcode;
5949 fxsave->rip = fpu->last_ip;
5950 fxsave->rdp = fpu->last_dp;
5951 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5952
5953 return 0;
5954 }
5955
5956 int fx_init(struct kvm_vcpu *vcpu)
5957 {
5958 int err;
5959
5960 err = fpu_alloc(&vcpu->arch.guest_fpu);
5961 if (err)
5962 return err;
5963
5964 fpu_finit(&vcpu->arch.guest_fpu);
5965
5966 /*
5967 * Ensure guest xcr0 is valid for loading
5968 */
5969 vcpu->arch.xcr0 = XSTATE_FP;
5970
5971 vcpu->arch.cr0 |= X86_CR0_ET;
5972
5973 return 0;
5974 }
5975 EXPORT_SYMBOL_GPL(fx_init);
5976
5977 static void fx_free(struct kvm_vcpu *vcpu)
5978 {
5979 fpu_free(&vcpu->arch.guest_fpu);
5980 }
5981
5982 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5983 {
5984 if (vcpu->guest_fpu_loaded)
5985 return;
5986
5987 /*
5988 * Restore all possible states in the guest,
5989 * and assume host would use all available bits.
5990 * Guest xcr0 would be loaded later.
5991 */
5992 kvm_put_guest_xcr0(vcpu);
5993 vcpu->guest_fpu_loaded = 1;
5994 __kernel_fpu_begin();
5995 fpu_restore_checking(&vcpu->arch.guest_fpu);
5996 trace_kvm_fpu(1);
5997 }
5998
5999 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6000 {
6001 kvm_put_guest_xcr0(vcpu);
6002
6003 if (!vcpu->guest_fpu_loaded)
6004 return;
6005
6006 vcpu->guest_fpu_loaded = 0;
6007 fpu_save_init(&vcpu->arch.guest_fpu);
6008 __kernel_fpu_end();
6009 ++vcpu->stat.fpu_reload;
6010 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6011 trace_kvm_fpu(0);
6012 }
6013
6014 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6015 {
6016 kvmclock_reset(vcpu);
6017
6018 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6019 fx_free(vcpu);
6020 kvm_x86_ops->vcpu_free(vcpu);
6021 }
6022
6023 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6024 unsigned int id)
6025 {
6026 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6027 printk_once(KERN_WARNING
6028 "kvm: SMP vm created on host with unstable TSC; "
6029 "guest TSC will not be reliable\n");
6030 return kvm_x86_ops->vcpu_create(kvm, id);
6031 }
6032
6033 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6034 {
6035 int r;
6036
6037 vcpu->arch.mtrr_state.have_fixed = 1;
6038 r = vcpu_load(vcpu);
6039 if (r)
6040 return r;
6041 r = kvm_vcpu_reset(vcpu);
6042 if (r == 0)
6043 r = kvm_mmu_setup(vcpu);
6044 vcpu_put(vcpu);
6045
6046 return r;
6047 }
6048
6049 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6050 {
6051 int r;
6052 vcpu->arch.apf.msr_val = 0;
6053
6054 r = vcpu_load(vcpu);
6055 BUG_ON(r);
6056 kvm_mmu_unload(vcpu);
6057 vcpu_put(vcpu);
6058
6059 fx_free(vcpu);
6060 kvm_x86_ops->vcpu_free(vcpu);
6061 }
6062
6063 static int kvm_vcpu_reset(struct kvm_vcpu *vcpu)
6064 {
6065 atomic_set(&vcpu->arch.nmi_queued, 0);
6066 vcpu->arch.nmi_pending = 0;
6067 vcpu->arch.nmi_injected = false;
6068
6069 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6070 vcpu->arch.dr6 = DR6_FIXED_1;
6071 vcpu->arch.dr7 = DR7_FIXED_1;
6072 kvm_update_dr7(vcpu);
6073
6074 kvm_make_request(KVM_REQ_EVENT, vcpu);
6075 vcpu->arch.apf.msr_val = 0;
6076 vcpu->arch.st.msr_val = 0;
6077
6078 kvmclock_reset(vcpu);
6079
6080 kvm_clear_async_pf_completion_queue(vcpu);
6081 kvm_async_pf_hash_reset(vcpu);
6082 vcpu->arch.apf.halted = false;
6083
6084 kvm_pmu_reset(vcpu);
6085
6086 return kvm_x86_ops->vcpu_reset(vcpu);
6087 }
6088
6089 int kvm_arch_hardware_enable(void *garbage)
6090 {
6091 struct kvm *kvm;
6092 struct kvm_vcpu *vcpu;
6093 int i;
6094 int ret;
6095 u64 local_tsc;
6096 u64 max_tsc = 0;
6097 bool stable, backwards_tsc = false;
6098
6099 kvm_shared_msr_cpu_online();
6100 ret = kvm_x86_ops->hardware_enable(garbage);
6101 if (ret != 0)
6102 return ret;
6103
6104 local_tsc = native_read_tsc();
6105 stable = !check_tsc_unstable();
6106 list_for_each_entry(kvm, &vm_list, vm_list) {
6107 kvm_for_each_vcpu(i, vcpu, kvm) {
6108 if (!stable && vcpu->cpu == smp_processor_id())
6109 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6110 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6111 backwards_tsc = true;
6112 if (vcpu->arch.last_host_tsc > max_tsc)
6113 max_tsc = vcpu->arch.last_host_tsc;
6114 }
6115 }
6116 }
6117
6118 /*
6119 * Sometimes, even reliable TSCs go backwards. This happens on
6120 * platforms that reset TSC during suspend or hibernate actions, but
6121 * maintain synchronization. We must compensate. Fortunately, we can
6122 * detect that condition here, which happens early in CPU bringup,
6123 * before any KVM threads can be running. Unfortunately, we can't
6124 * bring the TSCs fully up to date with real time, as we aren't yet far
6125 * enough into CPU bringup that we know how much real time has actually
6126 * elapsed; our helper function, get_kernel_ns() will be using boot
6127 * variables that haven't been updated yet.
6128 *
6129 * So we simply find the maximum observed TSC above, then record the
6130 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
6131 * the adjustment will be applied. Note that we accumulate
6132 * adjustments, in case multiple suspend cycles happen before some VCPU
6133 * gets a chance to run again. In the event that no KVM threads get a
6134 * chance to run, we will miss the entire elapsed period, as we'll have
6135 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6136 * loose cycle time. This isn't too big a deal, since the loss will be
6137 * uniform across all VCPUs (not to mention the scenario is extremely
6138 * unlikely). It is possible that a second hibernate recovery happens
6139 * much faster than a first, causing the observed TSC here to be
6140 * smaller; this would require additional padding adjustment, which is
6141 * why we set last_host_tsc to the local tsc observed here.
6142 *
6143 * N.B. - this code below runs only on platforms with reliable TSC,
6144 * as that is the only way backwards_tsc is set above. Also note
6145 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6146 * have the same delta_cyc adjustment applied if backwards_tsc
6147 * is detected. Note further, this adjustment is only done once,
6148 * as we reset last_host_tsc on all VCPUs to stop this from being
6149 * called multiple times (one for each physical CPU bringup).
6150 *
6151 * Platforms with unreliable TSCs don't have to deal with this, they
6152 * will be compensated by the logic in vcpu_load, which sets the TSC to
6153 * catchup mode. This will catchup all VCPUs to real time, but cannot
6154 * guarantee that they stay in perfect synchronization.
6155 */
6156 if (backwards_tsc) {
6157 u64 delta_cyc = max_tsc - local_tsc;
6158 list_for_each_entry(kvm, &vm_list, vm_list) {
6159 kvm_for_each_vcpu(i, vcpu, kvm) {
6160 vcpu->arch.tsc_offset_adjustment += delta_cyc;
6161 vcpu->arch.last_host_tsc = local_tsc;
6162 }
6163
6164 /*
6165 * We have to disable TSC offset matching.. if you were
6166 * booting a VM while issuing an S4 host suspend....
6167 * you may have some problem. Solving this issue is
6168 * left as an exercise to the reader.
6169 */
6170 kvm->arch.last_tsc_nsec = 0;
6171 kvm->arch.last_tsc_write = 0;
6172 }
6173
6174 }
6175 return 0;
6176 }
6177
6178 void kvm_arch_hardware_disable(void *garbage)
6179 {
6180 kvm_x86_ops->hardware_disable(garbage);
6181 drop_user_return_notifiers(garbage);
6182 }
6183
6184 int kvm_arch_hardware_setup(void)
6185 {
6186 return kvm_x86_ops->hardware_setup();
6187 }
6188
6189 void kvm_arch_hardware_unsetup(void)
6190 {
6191 kvm_x86_ops->hardware_unsetup();
6192 }
6193
6194 void kvm_arch_check_processor_compat(void *rtn)
6195 {
6196 kvm_x86_ops->check_processor_compatibility(rtn);
6197 }
6198
6199 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6200 {
6201 return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6202 }
6203
6204 struct static_key kvm_no_apic_vcpu __read_mostly;
6205
6206 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6207 {
6208 struct page *page;
6209 struct kvm *kvm;
6210 int r;
6211
6212 BUG_ON(vcpu->kvm == NULL);
6213 kvm = vcpu->kvm;
6214
6215 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6216 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6217 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6218 else
6219 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6220
6221 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6222 if (!page) {
6223 r = -ENOMEM;
6224 goto fail;
6225 }
6226 vcpu->arch.pio_data = page_address(page);
6227
6228 kvm_set_tsc_khz(vcpu, max_tsc_khz);
6229
6230 r = kvm_mmu_create(vcpu);
6231 if (r < 0)
6232 goto fail_free_pio_data;
6233
6234 if (irqchip_in_kernel(kvm)) {
6235 r = kvm_create_lapic(vcpu);
6236 if (r < 0)
6237 goto fail_mmu_destroy;
6238 } else
6239 static_key_slow_inc(&kvm_no_apic_vcpu);
6240
6241 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6242 GFP_KERNEL);
6243 if (!vcpu->arch.mce_banks) {
6244 r = -ENOMEM;
6245 goto fail_free_lapic;
6246 }
6247 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6248
6249 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
6250 goto fail_free_mce_banks;
6251
6252 kvm_async_pf_hash_reset(vcpu);
6253 kvm_pmu_init(vcpu);
6254
6255 return 0;
6256 fail_free_mce_banks:
6257 kfree(vcpu->arch.mce_banks);
6258 fail_free_lapic:
6259 kvm_free_lapic(vcpu);
6260 fail_mmu_destroy:
6261 kvm_mmu_destroy(vcpu);
6262 fail_free_pio_data:
6263 free_page((unsigned long)vcpu->arch.pio_data);
6264 fail:
6265 return r;
6266 }
6267
6268 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6269 {
6270 int idx;
6271
6272 kvm_pmu_destroy(vcpu);
6273 kfree(vcpu->arch.mce_banks);
6274 kvm_free_lapic(vcpu);
6275 idx = srcu_read_lock(&vcpu->kvm->srcu);
6276 kvm_mmu_destroy(vcpu);
6277 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6278 free_page((unsigned long)vcpu->arch.pio_data);
6279 if (!irqchip_in_kernel(vcpu->kvm))
6280 static_key_slow_dec(&kvm_no_apic_vcpu);
6281 }
6282
6283 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6284 {
6285 if (type)
6286 return -EINVAL;
6287
6288 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6289 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6290
6291 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6292 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6293 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
6294 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
6295 &kvm->arch.irq_sources_bitmap);
6296
6297 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6298 mutex_init(&kvm->arch.apic_map_lock);
6299
6300 return 0;
6301 }
6302
6303 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6304 {
6305 int r;
6306 r = vcpu_load(vcpu);
6307 BUG_ON(r);
6308 kvm_mmu_unload(vcpu);
6309 vcpu_put(vcpu);
6310 }
6311
6312 static void kvm_free_vcpus(struct kvm *kvm)
6313 {
6314 unsigned int i;
6315 struct kvm_vcpu *vcpu;
6316
6317 /*
6318 * Unpin any mmu pages first.
6319 */
6320 kvm_for_each_vcpu(i, vcpu, kvm) {
6321 kvm_clear_async_pf_completion_queue(vcpu);
6322 kvm_unload_vcpu_mmu(vcpu);
6323 }
6324 kvm_for_each_vcpu(i, vcpu, kvm)
6325 kvm_arch_vcpu_free(vcpu);
6326
6327 mutex_lock(&kvm->lock);
6328 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6329 kvm->vcpus[i] = NULL;
6330
6331 atomic_set(&kvm->online_vcpus, 0);
6332 mutex_unlock(&kvm->lock);
6333 }
6334
6335 void kvm_arch_sync_events(struct kvm *kvm)
6336 {
6337 kvm_free_all_assigned_devices(kvm);
6338 kvm_free_pit(kvm);
6339 }
6340
6341 void kvm_arch_destroy_vm(struct kvm *kvm)
6342 {
6343 kvm_iommu_unmap_guest(kvm);
6344 kfree(kvm->arch.vpic);
6345 kfree(kvm->arch.vioapic);
6346 kvm_free_vcpus(kvm);
6347 if (kvm->arch.apic_access_page)
6348 put_page(kvm->arch.apic_access_page);
6349 if (kvm->arch.ept_identity_pagetable)
6350 put_page(kvm->arch.ept_identity_pagetable);
6351 kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
6352 }
6353
6354 void kvm_arch_free_memslot(struct kvm_memory_slot *free,
6355 struct kvm_memory_slot *dont)
6356 {
6357 int i;
6358
6359 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6360 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
6361 kvm_kvfree(free->arch.rmap[i]);
6362 free->arch.rmap[i] = NULL;
6363 }
6364 if (i == 0)
6365 continue;
6366
6367 if (!dont || free->arch.lpage_info[i - 1] !=
6368 dont->arch.lpage_info[i - 1]) {
6369 kvm_kvfree(free->arch.lpage_info[i - 1]);
6370 free->arch.lpage_info[i - 1] = NULL;
6371 }
6372 }
6373 }
6374
6375 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
6376 {
6377 int i;
6378
6379 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6380 unsigned long ugfn;
6381 int lpages;
6382 int level = i + 1;
6383
6384 lpages = gfn_to_index(slot->base_gfn + npages - 1,
6385 slot->base_gfn, level) + 1;
6386
6387 slot->arch.rmap[i] =
6388 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
6389 if (!slot->arch.rmap[i])
6390 goto out_free;
6391 if (i == 0)
6392 continue;
6393
6394 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
6395 sizeof(*slot->arch.lpage_info[i - 1]));
6396 if (!slot->arch.lpage_info[i - 1])
6397 goto out_free;
6398
6399 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
6400 slot->arch.lpage_info[i - 1][0].write_count = 1;
6401 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
6402 slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
6403 ugfn = slot->userspace_addr >> PAGE_SHIFT;
6404 /*
6405 * If the gfn and userspace address are not aligned wrt each
6406 * other, or if explicitly asked to, disable large page
6407 * support for this slot
6408 */
6409 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
6410 !kvm_largepages_enabled()) {
6411 unsigned long j;
6412
6413 for (j = 0; j < lpages; ++j)
6414 slot->arch.lpage_info[i - 1][j].write_count = 1;
6415 }
6416 }
6417
6418 return 0;
6419
6420 out_free:
6421 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6422 kvm_kvfree(slot->arch.rmap[i]);
6423 slot->arch.rmap[i] = NULL;
6424 if (i == 0)
6425 continue;
6426
6427 kvm_kvfree(slot->arch.lpage_info[i - 1]);
6428 slot->arch.lpage_info[i - 1] = NULL;
6429 }
6430 return -ENOMEM;
6431 }
6432
6433 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6434 struct kvm_memory_slot *memslot,
6435 struct kvm_memory_slot old,
6436 struct kvm_userspace_memory_region *mem,
6437 int user_alloc)
6438 {
6439 int npages = memslot->npages;
6440 int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6441
6442 /* Prevent internal slot pages from being moved by fork()/COW. */
6443 if (memslot->id >= KVM_MEMORY_SLOTS)
6444 map_flags = MAP_SHARED | MAP_ANONYMOUS;
6445
6446 /*To keep backward compatibility with older userspace,
6447 *x86 needs to handle !user_alloc case.
6448 */
6449 if (!user_alloc) {
6450 if (npages && !old.npages) {
6451 unsigned long userspace_addr;
6452
6453 userspace_addr = vm_mmap(NULL, 0,
6454 npages * PAGE_SIZE,
6455 PROT_READ | PROT_WRITE,
6456 map_flags,
6457 0);
6458
6459 if (IS_ERR((void *)userspace_addr))
6460 return PTR_ERR((void *)userspace_addr);
6461
6462 memslot->userspace_addr = userspace_addr;
6463 }
6464 }
6465
6466
6467 return 0;
6468 }
6469
6470 void kvm_arch_commit_memory_region(struct kvm *kvm,
6471 struct kvm_userspace_memory_region *mem,
6472 struct kvm_memory_slot old,
6473 int user_alloc)
6474 {
6475
6476 int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
6477
6478 if (!user_alloc && !old.user_alloc && old.npages && !npages) {
6479 int ret;
6480
6481 ret = vm_munmap(old.userspace_addr,
6482 old.npages * PAGE_SIZE);
6483 if (ret < 0)
6484 printk(KERN_WARNING
6485 "kvm_vm_ioctl_set_memory_region: "
6486 "failed to munmap memory\n");
6487 }
6488
6489 if (!kvm->arch.n_requested_mmu_pages)
6490 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6491
6492 spin_lock(&kvm->mmu_lock);
6493 if (nr_mmu_pages)
6494 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6495 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6496 spin_unlock(&kvm->mmu_lock);
6497 /*
6498 * If memory slot is created, or moved, we need to clear all
6499 * mmio sptes.
6500 */
6501 if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT) {
6502 kvm_mmu_zap_all(kvm);
6503 kvm_reload_remote_mmus(kvm);
6504 }
6505 }
6506
6507 void kvm_arch_flush_shadow_all(struct kvm *kvm)
6508 {
6509 kvm_mmu_zap_all(kvm);
6510 kvm_reload_remote_mmus(kvm);
6511 }
6512
6513 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
6514 struct kvm_memory_slot *slot)
6515 {
6516 kvm_arch_flush_shadow_all(kvm);
6517 }
6518
6519 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6520 {
6521 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6522 !vcpu->arch.apf.halted)
6523 || !list_empty_careful(&vcpu->async_pf.done)
6524 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6525 || atomic_read(&vcpu->arch.nmi_queued) ||
6526 (kvm_arch_interrupt_allowed(vcpu) &&
6527 kvm_cpu_has_interrupt(vcpu));
6528 }
6529
6530 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
6531 {
6532 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
6533 }
6534
6535 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6536 {
6537 return kvm_x86_ops->interrupt_allowed(vcpu);
6538 }
6539
6540 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6541 {
6542 unsigned long current_rip = kvm_rip_read(vcpu) +
6543 get_segment_base(vcpu, VCPU_SREG_CS);
6544
6545 return current_rip == linear_rip;
6546 }
6547 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6548
6549 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6550 {
6551 unsigned long rflags;
6552
6553 rflags = kvm_x86_ops->get_rflags(vcpu);
6554 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6555 rflags &= ~X86_EFLAGS_TF;
6556 return rflags;
6557 }
6558 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6559
6560 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6561 {
6562 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6563 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6564 rflags |= X86_EFLAGS_TF;
6565 kvm_x86_ops->set_rflags(vcpu, rflags);
6566 kvm_make_request(KVM_REQ_EVENT, vcpu);
6567 }
6568 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6569
6570 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6571 {
6572 int r;
6573
6574 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
6575 is_error_page(work->page))
6576 return;
6577
6578 r = kvm_mmu_reload(vcpu);
6579 if (unlikely(r))
6580 return;
6581
6582 if (!vcpu->arch.mmu.direct_map &&
6583 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
6584 return;
6585
6586 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
6587 }
6588
6589 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
6590 {
6591 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
6592 }
6593
6594 static inline u32 kvm_async_pf_next_probe(u32 key)
6595 {
6596 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
6597 }
6598
6599 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6600 {
6601 u32 key = kvm_async_pf_hash_fn(gfn);
6602
6603 while (vcpu->arch.apf.gfns[key] != ~0)
6604 key = kvm_async_pf_next_probe(key);
6605
6606 vcpu->arch.apf.gfns[key] = gfn;
6607 }
6608
6609 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
6610 {
6611 int i;
6612 u32 key = kvm_async_pf_hash_fn(gfn);
6613
6614 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
6615 (vcpu->arch.apf.gfns[key] != gfn &&
6616 vcpu->arch.apf.gfns[key] != ~0); i++)
6617 key = kvm_async_pf_next_probe(key);
6618
6619 return key;
6620 }
6621
6622 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6623 {
6624 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
6625 }
6626
6627 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6628 {
6629 u32 i, j, k;
6630
6631 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
6632 while (true) {
6633 vcpu->arch.apf.gfns[i] = ~0;
6634 do {
6635 j = kvm_async_pf_next_probe(j);
6636 if (vcpu->arch.apf.gfns[j] == ~0)
6637 return;
6638 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
6639 /*
6640 * k lies cyclically in ]i,j]
6641 * | i.k.j |
6642 * |....j i.k.| or |.k..j i...|
6643 */
6644 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
6645 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
6646 i = j;
6647 }
6648 }
6649
6650 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
6651 {
6652
6653 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
6654 sizeof(val));
6655 }
6656
6657 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
6658 struct kvm_async_pf *work)
6659 {
6660 struct x86_exception fault;
6661
6662 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
6663 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
6664
6665 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
6666 (vcpu->arch.apf.send_user_only &&
6667 kvm_x86_ops->get_cpl(vcpu) == 0))
6668 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
6669 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
6670 fault.vector = PF_VECTOR;
6671 fault.error_code_valid = true;
6672 fault.error_code = 0;
6673 fault.nested_page_fault = false;
6674 fault.address = work->arch.token;
6675 kvm_inject_page_fault(vcpu, &fault);
6676 }
6677 }
6678
6679 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
6680 struct kvm_async_pf *work)
6681 {
6682 struct x86_exception fault;
6683
6684 trace_kvm_async_pf_ready(work->arch.token, work->gva);
6685 if (is_error_page(work->page))
6686 work->arch.token = ~0; /* broadcast wakeup */
6687 else
6688 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
6689
6690 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
6691 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
6692 fault.vector = PF_VECTOR;
6693 fault.error_code_valid = true;
6694 fault.error_code = 0;
6695 fault.nested_page_fault = false;
6696 fault.address = work->arch.token;
6697 kvm_inject_page_fault(vcpu, &fault);
6698 }
6699 vcpu->arch.apf.halted = false;
6700 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6701 }
6702
6703 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
6704 {
6705 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
6706 return true;
6707 else
6708 return !kvm_event_needs_reinjection(vcpu) &&
6709 kvm_x86_ops->interrupt_allowed(vcpu);
6710 }
6711
6712 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6713 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6714 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6715 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6716 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6717 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6718 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6719 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6720 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6721 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6722 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6723 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
This page took 0.167576 seconds and 5 git commands to generate.