delay capable() check in ext4_has_free_blocks()
[deliverable/linux.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Amit Shah <amit.shah@qumranet.com>
14 * Ben-Ami Yassour <benami@il.ibm.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
28
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/intel-iommu.h>
38
39 #include <asm/uaccess.h>
40 #include <asm/msr.h>
41 #include <asm/desc.h>
42
43 #define MAX_IO_MSRS 256
44 #define CR0_RESERVED_BITS \
45 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
46 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
47 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
48 #define CR4_RESERVED_BITS \
49 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
50 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
51 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
52 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
53
54 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
55 /* EFER defaults:
56 * - enable syscall per default because its emulated by KVM
57 * - enable LME and LMA per default on 64 bit KVM
58 */
59 #ifdef CONFIG_X86_64
60 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
61 #else
62 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
63 #endif
64
65 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
66 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
67
68 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
69 struct kvm_cpuid_entry2 __user *entries);
70
71 struct kvm_x86_ops *kvm_x86_ops;
72 EXPORT_SYMBOL_GPL(kvm_x86_ops);
73
74 struct kvm_stats_debugfs_item debugfs_entries[] = {
75 { "pf_fixed", VCPU_STAT(pf_fixed) },
76 { "pf_guest", VCPU_STAT(pf_guest) },
77 { "tlb_flush", VCPU_STAT(tlb_flush) },
78 { "invlpg", VCPU_STAT(invlpg) },
79 { "exits", VCPU_STAT(exits) },
80 { "io_exits", VCPU_STAT(io_exits) },
81 { "mmio_exits", VCPU_STAT(mmio_exits) },
82 { "signal_exits", VCPU_STAT(signal_exits) },
83 { "irq_window", VCPU_STAT(irq_window_exits) },
84 { "nmi_window", VCPU_STAT(nmi_window_exits) },
85 { "halt_exits", VCPU_STAT(halt_exits) },
86 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
87 { "hypercalls", VCPU_STAT(hypercalls) },
88 { "request_irq", VCPU_STAT(request_irq_exits) },
89 { "irq_exits", VCPU_STAT(irq_exits) },
90 { "host_state_reload", VCPU_STAT(host_state_reload) },
91 { "efer_reload", VCPU_STAT(efer_reload) },
92 { "fpu_reload", VCPU_STAT(fpu_reload) },
93 { "insn_emulation", VCPU_STAT(insn_emulation) },
94 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
95 { "irq_injections", VCPU_STAT(irq_injections) },
96 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
97 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
98 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
99 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
100 { "mmu_flooded", VM_STAT(mmu_flooded) },
101 { "mmu_recycled", VM_STAT(mmu_recycled) },
102 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
103 { "mmu_unsync", VM_STAT(mmu_unsync) },
104 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
105 { "largepages", VM_STAT(lpages) },
106 { NULL }
107 };
108
109 unsigned long segment_base(u16 selector)
110 {
111 struct descriptor_table gdt;
112 struct desc_struct *d;
113 unsigned long table_base;
114 unsigned long v;
115
116 if (selector == 0)
117 return 0;
118
119 asm("sgdt %0" : "=m"(gdt));
120 table_base = gdt.base;
121
122 if (selector & 4) { /* from ldt */
123 u16 ldt_selector;
124
125 asm("sldt %0" : "=g"(ldt_selector));
126 table_base = segment_base(ldt_selector);
127 }
128 d = (struct desc_struct *)(table_base + (selector & ~7));
129 v = d->base0 | ((unsigned long)d->base1 << 16) |
130 ((unsigned long)d->base2 << 24);
131 #ifdef CONFIG_X86_64
132 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
133 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
134 #endif
135 return v;
136 }
137 EXPORT_SYMBOL_GPL(segment_base);
138
139 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
140 {
141 if (irqchip_in_kernel(vcpu->kvm))
142 return vcpu->arch.apic_base;
143 else
144 return vcpu->arch.apic_base;
145 }
146 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
147
148 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
149 {
150 /* TODO: reserve bits check */
151 if (irqchip_in_kernel(vcpu->kvm))
152 kvm_lapic_set_base(vcpu, data);
153 else
154 vcpu->arch.apic_base = data;
155 }
156 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
157
158 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
159 {
160 WARN_ON(vcpu->arch.exception.pending);
161 vcpu->arch.exception.pending = true;
162 vcpu->arch.exception.has_error_code = false;
163 vcpu->arch.exception.nr = nr;
164 }
165 EXPORT_SYMBOL_GPL(kvm_queue_exception);
166
167 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
168 u32 error_code)
169 {
170 ++vcpu->stat.pf_guest;
171 if (vcpu->arch.exception.pending) {
172 if (vcpu->arch.exception.nr == PF_VECTOR) {
173 printk(KERN_DEBUG "kvm: inject_page_fault:"
174 " double fault 0x%lx\n", addr);
175 vcpu->arch.exception.nr = DF_VECTOR;
176 vcpu->arch.exception.error_code = 0;
177 } else if (vcpu->arch.exception.nr == DF_VECTOR) {
178 /* triple fault -> shutdown */
179 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
180 }
181 return;
182 }
183 vcpu->arch.cr2 = addr;
184 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
185 }
186
187 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
188 {
189 vcpu->arch.nmi_pending = 1;
190 }
191 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
192
193 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
194 {
195 WARN_ON(vcpu->arch.exception.pending);
196 vcpu->arch.exception.pending = true;
197 vcpu->arch.exception.has_error_code = true;
198 vcpu->arch.exception.nr = nr;
199 vcpu->arch.exception.error_code = error_code;
200 }
201 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
202
203 static void __queue_exception(struct kvm_vcpu *vcpu)
204 {
205 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
206 vcpu->arch.exception.has_error_code,
207 vcpu->arch.exception.error_code);
208 }
209
210 /*
211 * Load the pae pdptrs. Return true is they are all valid.
212 */
213 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
214 {
215 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
216 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
217 int i;
218 int ret;
219 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
220
221 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
222 offset * sizeof(u64), sizeof(pdpte));
223 if (ret < 0) {
224 ret = 0;
225 goto out;
226 }
227 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
228 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
229 ret = 0;
230 goto out;
231 }
232 }
233 ret = 1;
234
235 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
236 out:
237
238 return ret;
239 }
240 EXPORT_SYMBOL_GPL(load_pdptrs);
241
242 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
243 {
244 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
245 bool changed = true;
246 int r;
247
248 if (is_long_mode(vcpu) || !is_pae(vcpu))
249 return false;
250
251 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
252 if (r < 0)
253 goto out;
254 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
255 out:
256
257 return changed;
258 }
259
260 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
261 {
262 if (cr0 & CR0_RESERVED_BITS) {
263 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
264 cr0, vcpu->arch.cr0);
265 kvm_inject_gp(vcpu, 0);
266 return;
267 }
268
269 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
270 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
271 kvm_inject_gp(vcpu, 0);
272 return;
273 }
274
275 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
276 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
277 "and a clear PE flag\n");
278 kvm_inject_gp(vcpu, 0);
279 return;
280 }
281
282 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
283 #ifdef CONFIG_X86_64
284 if ((vcpu->arch.shadow_efer & EFER_LME)) {
285 int cs_db, cs_l;
286
287 if (!is_pae(vcpu)) {
288 printk(KERN_DEBUG "set_cr0: #GP, start paging "
289 "in long mode while PAE is disabled\n");
290 kvm_inject_gp(vcpu, 0);
291 return;
292 }
293 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
294 if (cs_l) {
295 printk(KERN_DEBUG "set_cr0: #GP, start paging "
296 "in long mode while CS.L == 1\n");
297 kvm_inject_gp(vcpu, 0);
298 return;
299
300 }
301 } else
302 #endif
303 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
304 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
305 "reserved bits\n");
306 kvm_inject_gp(vcpu, 0);
307 return;
308 }
309
310 }
311
312 kvm_x86_ops->set_cr0(vcpu, cr0);
313 vcpu->arch.cr0 = cr0;
314
315 kvm_mmu_reset_context(vcpu);
316 return;
317 }
318 EXPORT_SYMBOL_GPL(kvm_set_cr0);
319
320 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
321 {
322 kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
323 KVMTRACE_1D(LMSW, vcpu,
324 (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
325 handler);
326 }
327 EXPORT_SYMBOL_GPL(kvm_lmsw);
328
329 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
330 {
331 if (cr4 & CR4_RESERVED_BITS) {
332 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
333 kvm_inject_gp(vcpu, 0);
334 return;
335 }
336
337 if (is_long_mode(vcpu)) {
338 if (!(cr4 & X86_CR4_PAE)) {
339 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
340 "in long mode\n");
341 kvm_inject_gp(vcpu, 0);
342 return;
343 }
344 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
345 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
346 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
347 kvm_inject_gp(vcpu, 0);
348 return;
349 }
350
351 if (cr4 & X86_CR4_VMXE) {
352 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
353 kvm_inject_gp(vcpu, 0);
354 return;
355 }
356 kvm_x86_ops->set_cr4(vcpu, cr4);
357 vcpu->arch.cr4 = cr4;
358 kvm_mmu_reset_context(vcpu);
359 }
360 EXPORT_SYMBOL_GPL(kvm_set_cr4);
361
362 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
363 {
364 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
365 kvm_mmu_sync_roots(vcpu);
366 kvm_mmu_flush_tlb(vcpu);
367 return;
368 }
369
370 if (is_long_mode(vcpu)) {
371 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
372 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
373 kvm_inject_gp(vcpu, 0);
374 return;
375 }
376 } else {
377 if (is_pae(vcpu)) {
378 if (cr3 & CR3_PAE_RESERVED_BITS) {
379 printk(KERN_DEBUG
380 "set_cr3: #GP, reserved bits\n");
381 kvm_inject_gp(vcpu, 0);
382 return;
383 }
384 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
385 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
386 "reserved bits\n");
387 kvm_inject_gp(vcpu, 0);
388 return;
389 }
390 }
391 /*
392 * We don't check reserved bits in nonpae mode, because
393 * this isn't enforced, and VMware depends on this.
394 */
395 }
396
397 /*
398 * Does the new cr3 value map to physical memory? (Note, we
399 * catch an invalid cr3 even in real-mode, because it would
400 * cause trouble later on when we turn on paging anyway.)
401 *
402 * A real CPU would silently accept an invalid cr3 and would
403 * attempt to use it - with largely undefined (and often hard
404 * to debug) behavior on the guest side.
405 */
406 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
407 kvm_inject_gp(vcpu, 0);
408 else {
409 vcpu->arch.cr3 = cr3;
410 vcpu->arch.mmu.new_cr3(vcpu);
411 }
412 }
413 EXPORT_SYMBOL_GPL(kvm_set_cr3);
414
415 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
416 {
417 if (cr8 & CR8_RESERVED_BITS) {
418 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
419 kvm_inject_gp(vcpu, 0);
420 return;
421 }
422 if (irqchip_in_kernel(vcpu->kvm))
423 kvm_lapic_set_tpr(vcpu, cr8);
424 else
425 vcpu->arch.cr8 = cr8;
426 }
427 EXPORT_SYMBOL_GPL(kvm_set_cr8);
428
429 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
430 {
431 if (irqchip_in_kernel(vcpu->kvm))
432 return kvm_lapic_get_cr8(vcpu);
433 else
434 return vcpu->arch.cr8;
435 }
436 EXPORT_SYMBOL_GPL(kvm_get_cr8);
437
438 /*
439 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
440 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
441 *
442 * This list is modified at module load time to reflect the
443 * capabilities of the host cpu.
444 */
445 static u32 msrs_to_save[] = {
446 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
447 MSR_K6_STAR,
448 #ifdef CONFIG_X86_64
449 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
450 #endif
451 MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
452 MSR_IA32_PERF_STATUS,
453 };
454
455 static unsigned num_msrs_to_save;
456
457 static u32 emulated_msrs[] = {
458 MSR_IA32_MISC_ENABLE,
459 };
460
461 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
462 {
463 if (efer & efer_reserved_bits) {
464 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
465 efer);
466 kvm_inject_gp(vcpu, 0);
467 return;
468 }
469
470 if (is_paging(vcpu)
471 && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
472 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
473 kvm_inject_gp(vcpu, 0);
474 return;
475 }
476
477 kvm_x86_ops->set_efer(vcpu, efer);
478
479 efer &= ~EFER_LMA;
480 efer |= vcpu->arch.shadow_efer & EFER_LMA;
481
482 vcpu->arch.shadow_efer = efer;
483 }
484
485 void kvm_enable_efer_bits(u64 mask)
486 {
487 efer_reserved_bits &= ~mask;
488 }
489 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
490
491
492 /*
493 * Writes msr value into into the appropriate "register".
494 * Returns 0 on success, non-0 otherwise.
495 * Assumes vcpu_load() was already called.
496 */
497 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
498 {
499 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
500 }
501
502 /*
503 * Adapt set_msr() to msr_io()'s calling convention
504 */
505 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
506 {
507 return kvm_set_msr(vcpu, index, *data);
508 }
509
510 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
511 {
512 static int version;
513 struct pvclock_wall_clock wc;
514 struct timespec now, sys, boot;
515
516 if (!wall_clock)
517 return;
518
519 version++;
520
521 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
522
523 /*
524 * The guest calculates current wall clock time by adding
525 * system time (updated by kvm_write_guest_time below) to the
526 * wall clock specified here. guest system time equals host
527 * system time for us, thus we must fill in host boot time here.
528 */
529 now = current_kernel_time();
530 ktime_get_ts(&sys);
531 boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
532
533 wc.sec = boot.tv_sec;
534 wc.nsec = boot.tv_nsec;
535 wc.version = version;
536
537 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
538
539 version++;
540 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
541 }
542
543 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
544 {
545 uint32_t quotient, remainder;
546
547 /* Don't try to replace with do_div(), this one calculates
548 * "(dividend << 32) / divisor" */
549 __asm__ ( "divl %4"
550 : "=a" (quotient), "=d" (remainder)
551 : "0" (0), "1" (dividend), "r" (divisor) );
552 return quotient;
553 }
554
555 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
556 {
557 uint64_t nsecs = 1000000000LL;
558 int32_t shift = 0;
559 uint64_t tps64;
560 uint32_t tps32;
561
562 tps64 = tsc_khz * 1000LL;
563 while (tps64 > nsecs*2) {
564 tps64 >>= 1;
565 shift--;
566 }
567
568 tps32 = (uint32_t)tps64;
569 while (tps32 <= (uint32_t)nsecs) {
570 tps32 <<= 1;
571 shift++;
572 }
573
574 hv_clock->tsc_shift = shift;
575 hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
576
577 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
578 __func__, tsc_khz, hv_clock->tsc_shift,
579 hv_clock->tsc_to_system_mul);
580 }
581
582 static void kvm_write_guest_time(struct kvm_vcpu *v)
583 {
584 struct timespec ts;
585 unsigned long flags;
586 struct kvm_vcpu_arch *vcpu = &v->arch;
587 void *shared_kaddr;
588
589 if ((!vcpu->time_page))
590 return;
591
592 if (unlikely(vcpu->hv_clock_tsc_khz != tsc_khz)) {
593 kvm_set_time_scale(tsc_khz, &vcpu->hv_clock);
594 vcpu->hv_clock_tsc_khz = tsc_khz;
595 }
596
597 /* Keep irq disabled to prevent changes to the clock */
598 local_irq_save(flags);
599 kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
600 &vcpu->hv_clock.tsc_timestamp);
601 ktime_get_ts(&ts);
602 local_irq_restore(flags);
603
604 /* With all the info we got, fill in the values */
605
606 vcpu->hv_clock.system_time = ts.tv_nsec +
607 (NSEC_PER_SEC * (u64)ts.tv_sec);
608 /*
609 * The interface expects us to write an even number signaling that the
610 * update is finished. Since the guest won't see the intermediate
611 * state, we just increase by 2 at the end.
612 */
613 vcpu->hv_clock.version += 2;
614
615 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
616
617 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
618 sizeof(vcpu->hv_clock));
619
620 kunmap_atomic(shared_kaddr, KM_USER0);
621
622 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
623 }
624
625 static bool msr_mtrr_valid(unsigned msr)
626 {
627 switch (msr) {
628 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
629 case MSR_MTRRfix64K_00000:
630 case MSR_MTRRfix16K_80000:
631 case MSR_MTRRfix16K_A0000:
632 case MSR_MTRRfix4K_C0000:
633 case MSR_MTRRfix4K_C8000:
634 case MSR_MTRRfix4K_D0000:
635 case MSR_MTRRfix4K_D8000:
636 case MSR_MTRRfix4K_E0000:
637 case MSR_MTRRfix4K_E8000:
638 case MSR_MTRRfix4K_F0000:
639 case MSR_MTRRfix4K_F8000:
640 case MSR_MTRRdefType:
641 case MSR_IA32_CR_PAT:
642 return true;
643 case 0x2f8:
644 return true;
645 }
646 return false;
647 }
648
649 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
650 {
651 if (!msr_mtrr_valid(msr))
652 return 1;
653
654 vcpu->arch.mtrr[msr - 0x200] = data;
655 return 0;
656 }
657
658 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
659 {
660 switch (msr) {
661 case MSR_EFER:
662 set_efer(vcpu, data);
663 break;
664 case MSR_IA32_MC0_STATUS:
665 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
666 __func__, data);
667 break;
668 case MSR_IA32_MCG_STATUS:
669 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
670 __func__, data);
671 break;
672 case MSR_IA32_MCG_CTL:
673 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
674 __func__, data);
675 break;
676 case MSR_IA32_DEBUGCTLMSR:
677 if (!data) {
678 /* We support the non-activated case already */
679 break;
680 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
681 /* Values other than LBR and BTF are vendor-specific,
682 thus reserved and should throw a #GP */
683 return 1;
684 }
685 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
686 __func__, data);
687 break;
688 case MSR_IA32_UCODE_REV:
689 case MSR_IA32_UCODE_WRITE:
690 break;
691 case 0x200 ... 0x2ff:
692 return set_msr_mtrr(vcpu, msr, data);
693 case MSR_IA32_APICBASE:
694 kvm_set_apic_base(vcpu, data);
695 break;
696 case MSR_IA32_MISC_ENABLE:
697 vcpu->arch.ia32_misc_enable_msr = data;
698 break;
699 case MSR_KVM_WALL_CLOCK:
700 vcpu->kvm->arch.wall_clock = data;
701 kvm_write_wall_clock(vcpu->kvm, data);
702 break;
703 case MSR_KVM_SYSTEM_TIME: {
704 if (vcpu->arch.time_page) {
705 kvm_release_page_dirty(vcpu->arch.time_page);
706 vcpu->arch.time_page = NULL;
707 }
708
709 vcpu->arch.time = data;
710
711 /* we verify if the enable bit is set... */
712 if (!(data & 1))
713 break;
714
715 /* ...but clean it before doing the actual write */
716 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
717
718 vcpu->arch.time_page =
719 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
720
721 if (is_error_page(vcpu->arch.time_page)) {
722 kvm_release_page_clean(vcpu->arch.time_page);
723 vcpu->arch.time_page = NULL;
724 }
725
726 kvm_write_guest_time(vcpu);
727 break;
728 }
729 default:
730 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
731 return 1;
732 }
733 return 0;
734 }
735 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
736
737
738 /*
739 * Reads an msr value (of 'msr_index') into 'pdata'.
740 * Returns 0 on success, non-0 otherwise.
741 * Assumes vcpu_load() was already called.
742 */
743 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
744 {
745 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
746 }
747
748 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
749 {
750 if (!msr_mtrr_valid(msr))
751 return 1;
752
753 *pdata = vcpu->arch.mtrr[msr - 0x200];
754 return 0;
755 }
756
757 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
758 {
759 u64 data;
760
761 switch (msr) {
762 case 0xc0010010: /* SYSCFG */
763 case 0xc0010015: /* HWCR */
764 case MSR_IA32_PLATFORM_ID:
765 case MSR_IA32_P5_MC_ADDR:
766 case MSR_IA32_P5_MC_TYPE:
767 case MSR_IA32_MC0_CTL:
768 case MSR_IA32_MCG_STATUS:
769 case MSR_IA32_MCG_CAP:
770 case MSR_IA32_MCG_CTL:
771 case MSR_IA32_MC0_MISC:
772 case MSR_IA32_MC0_MISC+4:
773 case MSR_IA32_MC0_MISC+8:
774 case MSR_IA32_MC0_MISC+12:
775 case MSR_IA32_MC0_MISC+16:
776 case MSR_IA32_MC0_MISC+20:
777 case MSR_IA32_UCODE_REV:
778 case MSR_IA32_EBL_CR_POWERON:
779 case MSR_IA32_DEBUGCTLMSR:
780 case MSR_IA32_LASTBRANCHFROMIP:
781 case MSR_IA32_LASTBRANCHTOIP:
782 case MSR_IA32_LASTINTFROMIP:
783 case MSR_IA32_LASTINTTOIP:
784 data = 0;
785 break;
786 case MSR_MTRRcap:
787 data = 0x500 | KVM_NR_VAR_MTRR;
788 break;
789 case 0x200 ... 0x2ff:
790 return get_msr_mtrr(vcpu, msr, pdata);
791 case 0xcd: /* fsb frequency */
792 data = 3;
793 break;
794 case MSR_IA32_APICBASE:
795 data = kvm_get_apic_base(vcpu);
796 break;
797 case MSR_IA32_MISC_ENABLE:
798 data = vcpu->arch.ia32_misc_enable_msr;
799 break;
800 case MSR_IA32_PERF_STATUS:
801 /* TSC increment by tick */
802 data = 1000ULL;
803 /* CPU multiplier */
804 data |= (((uint64_t)4ULL) << 40);
805 break;
806 case MSR_EFER:
807 data = vcpu->arch.shadow_efer;
808 break;
809 case MSR_KVM_WALL_CLOCK:
810 data = vcpu->kvm->arch.wall_clock;
811 break;
812 case MSR_KVM_SYSTEM_TIME:
813 data = vcpu->arch.time;
814 break;
815 default:
816 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
817 return 1;
818 }
819 *pdata = data;
820 return 0;
821 }
822 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
823
824 /*
825 * Read or write a bunch of msrs. All parameters are kernel addresses.
826 *
827 * @return number of msrs set successfully.
828 */
829 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
830 struct kvm_msr_entry *entries,
831 int (*do_msr)(struct kvm_vcpu *vcpu,
832 unsigned index, u64 *data))
833 {
834 int i;
835
836 vcpu_load(vcpu);
837
838 down_read(&vcpu->kvm->slots_lock);
839 for (i = 0; i < msrs->nmsrs; ++i)
840 if (do_msr(vcpu, entries[i].index, &entries[i].data))
841 break;
842 up_read(&vcpu->kvm->slots_lock);
843
844 vcpu_put(vcpu);
845
846 return i;
847 }
848
849 /*
850 * Read or write a bunch of msrs. Parameters are user addresses.
851 *
852 * @return number of msrs set successfully.
853 */
854 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
855 int (*do_msr)(struct kvm_vcpu *vcpu,
856 unsigned index, u64 *data),
857 int writeback)
858 {
859 struct kvm_msrs msrs;
860 struct kvm_msr_entry *entries;
861 int r, n;
862 unsigned size;
863
864 r = -EFAULT;
865 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
866 goto out;
867
868 r = -E2BIG;
869 if (msrs.nmsrs >= MAX_IO_MSRS)
870 goto out;
871
872 r = -ENOMEM;
873 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
874 entries = vmalloc(size);
875 if (!entries)
876 goto out;
877
878 r = -EFAULT;
879 if (copy_from_user(entries, user_msrs->entries, size))
880 goto out_free;
881
882 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
883 if (r < 0)
884 goto out_free;
885
886 r = -EFAULT;
887 if (writeback && copy_to_user(user_msrs->entries, entries, size))
888 goto out_free;
889
890 r = n;
891
892 out_free:
893 vfree(entries);
894 out:
895 return r;
896 }
897
898 int kvm_dev_ioctl_check_extension(long ext)
899 {
900 int r;
901
902 switch (ext) {
903 case KVM_CAP_IRQCHIP:
904 case KVM_CAP_HLT:
905 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
906 case KVM_CAP_USER_MEMORY:
907 case KVM_CAP_SET_TSS_ADDR:
908 case KVM_CAP_EXT_CPUID:
909 case KVM_CAP_CLOCKSOURCE:
910 case KVM_CAP_PIT:
911 case KVM_CAP_NOP_IO_DELAY:
912 case KVM_CAP_MP_STATE:
913 case KVM_CAP_SYNC_MMU:
914 r = 1;
915 break;
916 case KVM_CAP_COALESCED_MMIO:
917 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
918 break;
919 case KVM_CAP_VAPIC:
920 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
921 break;
922 case KVM_CAP_NR_VCPUS:
923 r = KVM_MAX_VCPUS;
924 break;
925 case KVM_CAP_NR_MEMSLOTS:
926 r = KVM_MEMORY_SLOTS;
927 break;
928 case KVM_CAP_PV_MMU:
929 r = !tdp_enabled;
930 break;
931 case KVM_CAP_IOMMU:
932 r = intel_iommu_found();
933 break;
934 default:
935 r = 0;
936 break;
937 }
938 return r;
939
940 }
941
942 long kvm_arch_dev_ioctl(struct file *filp,
943 unsigned int ioctl, unsigned long arg)
944 {
945 void __user *argp = (void __user *)arg;
946 long r;
947
948 switch (ioctl) {
949 case KVM_GET_MSR_INDEX_LIST: {
950 struct kvm_msr_list __user *user_msr_list = argp;
951 struct kvm_msr_list msr_list;
952 unsigned n;
953
954 r = -EFAULT;
955 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
956 goto out;
957 n = msr_list.nmsrs;
958 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
959 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
960 goto out;
961 r = -E2BIG;
962 if (n < num_msrs_to_save)
963 goto out;
964 r = -EFAULT;
965 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
966 num_msrs_to_save * sizeof(u32)))
967 goto out;
968 if (copy_to_user(user_msr_list->indices
969 + num_msrs_to_save * sizeof(u32),
970 &emulated_msrs,
971 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
972 goto out;
973 r = 0;
974 break;
975 }
976 case KVM_GET_SUPPORTED_CPUID: {
977 struct kvm_cpuid2 __user *cpuid_arg = argp;
978 struct kvm_cpuid2 cpuid;
979
980 r = -EFAULT;
981 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
982 goto out;
983 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
984 cpuid_arg->entries);
985 if (r)
986 goto out;
987
988 r = -EFAULT;
989 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
990 goto out;
991 r = 0;
992 break;
993 }
994 default:
995 r = -EINVAL;
996 }
997 out:
998 return r;
999 }
1000
1001 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1002 {
1003 kvm_x86_ops->vcpu_load(vcpu, cpu);
1004 kvm_write_guest_time(vcpu);
1005 }
1006
1007 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1008 {
1009 kvm_x86_ops->vcpu_put(vcpu);
1010 kvm_put_guest_fpu(vcpu);
1011 }
1012
1013 static int is_efer_nx(void)
1014 {
1015 u64 efer;
1016
1017 rdmsrl(MSR_EFER, efer);
1018 return efer & EFER_NX;
1019 }
1020
1021 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1022 {
1023 int i;
1024 struct kvm_cpuid_entry2 *e, *entry;
1025
1026 entry = NULL;
1027 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1028 e = &vcpu->arch.cpuid_entries[i];
1029 if (e->function == 0x80000001) {
1030 entry = e;
1031 break;
1032 }
1033 }
1034 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1035 entry->edx &= ~(1 << 20);
1036 printk(KERN_INFO "kvm: guest NX capability removed\n");
1037 }
1038 }
1039
1040 /* when an old userspace process fills a new kernel module */
1041 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1042 struct kvm_cpuid *cpuid,
1043 struct kvm_cpuid_entry __user *entries)
1044 {
1045 int r, i;
1046 struct kvm_cpuid_entry *cpuid_entries;
1047
1048 r = -E2BIG;
1049 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1050 goto out;
1051 r = -ENOMEM;
1052 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1053 if (!cpuid_entries)
1054 goto out;
1055 r = -EFAULT;
1056 if (copy_from_user(cpuid_entries, entries,
1057 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1058 goto out_free;
1059 for (i = 0; i < cpuid->nent; i++) {
1060 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1061 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1062 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1063 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1064 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1065 vcpu->arch.cpuid_entries[i].index = 0;
1066 vcpu->arch.cpuid_entries[i].flags = 0;
1067 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1068 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1069 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1070 }
1071 vcpu->arch.cpuid_nent = cpuid->nent;
1072 cpuid_fix_nx_cap(vcpu);
1073 r = 0;
1074
1075 out_free:
1076 vfree(cpuid_entries);
1077 out:
1078 return r;
1079 }
1080
1081 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1082 struct kvm_cpuid2 *cpuid,
1083 struct kvm_cpuid_entry2 __user *entries)
1084 {
1085 int r;
1086
1087 r = -E2BIG;
1088 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1089 goto out;
1090 r = -EFAULT;
1091 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1092 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1093 goto out;
1094 vcpu->arch.cpuid_nent = cpuid->nent;
1095 return 0;
1096
1097 out:
1098 return r;
1099 }
1100
1101 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1102 struct kvm_cpuid2 *cpuid,
1103 struct kvm_cpuid_entry2 __user *entries)
1104 {
1105 int r;
1106
1107 r = -E2BIG;
1108 if (cpuid->nent < vcpu->arch.cpuid_nent)
1109 goto out;
1110 r = -EFAULT;
1111 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1112 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1113 goto out;
1114 return 0;
1115
1116 out:
1117 cpuid->nent = vcpu->arch.cpuid_nent;
1118 return r;
1119 }
1120
1121 static inline u32 bit(int bitno)
1122 {
1123 return 1 << (bitno & 31);
1124 }
1125
1126 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1127 u32 index)
1128 {
1129 entry->function = function;
1130 entry->index = index;
1131 cpuid_count(entry->function, entry->index,
1132 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1133 entry->flags = 0;
1134 }
1135
1136 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1137 u32 index, int *nent, int maxnent)
1138 {
1139 const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
1140 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1141 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1142 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1143 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1144 bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
1145 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1146 bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
1147 bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
1148 bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
1149 const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
1150 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1151 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1152 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1153 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1154 bit(X86_FEATURE_PGE) |
1155 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1156 bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
1157 bit(X86_FEATURE_SYSCALL) |
1158 (bit(X86_FEATURE_NX) && is_efer_nx()) |
1159 #ifdef CONFIG_X86_64
1160 bit(X86_FEATURE_LM) |
1161 #endif
1162 bit(X86_FEATURE_MMXEXT) |
1163 bit(X86_FEATURE_3DNOWEXT) |
1164 bit(X86_FEATURE_3DNOW);
1165 const u32 kvm_supported_word3_x86_features =
1166 bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
1167 const u32 kvm_supported_word6_x86_features =
1168 bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);
1169
1170 /* all func 2 cpuid_count() should be called on the same cpu */
1171 get_cpu();
1172 do_cpuid_1_ent(entry, function, index);
1173 ++*nent;
1174
1175 switch (function) {
1176 case 0:
1177 entry->eax = min(entry->eax, (u32)0xb);
1178 break;
1179 case 1:
1180 entry->edx &= kvm_supported_word0_x86_features;
1181 entry->ecx &= kvm_supported_word3_x86_features;
1182 break;
1183 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1184 * may return different values. This forces us to get_cpu() before
1185 * issuing the first command, and also to emulate this annoying behavior
1186 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1187 case 2: {
1188 int t, times = entry->eax & 0xff;
1189
1190 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1191 for (t = 1; t < times && *nent < maxnent; ++t) {
1192 do_cpuid_1_ent(&entry[t], function, 0);
1193 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1194 ++*nent;
1195 }
1196 break;
1197 }
1198 /* function 4 and 0xb have additional index. */
1199 case 4: {
1200 int i, cache_type;
1201
1202 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1203 /* read more entries until cache_type is zero */
1204 for (i = 1; *nent < maxnent; ++i) {
1205 cache_type = entry[i - 1].eax & 0x1f;
1206 if (!cache_type)
1207 break;
1208 do_cpuid_1_ent(&entry[i], function, i);
1209 entry[i].flags |=
1210 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1211 ++*nent;
1212 }
1213 break;
1214 }
1215 case 0xb: {
1216 int i, level_type;
1217
1218 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1219 /* read more entries until level_type is zero */
1220 for (i = 1; *nent < maxnent; ++i) {
1221 level_type = entry[i - 1].ecx & 0xff;
1222 if (!level_type)
1223 break;
1224 do_cpuid_1_ent(&entry[i], function, i);
1225 entry[i].flags |=
1226 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1227 ++*nent;
1228 }
1229 break;
1230 }
1231 case 0x80000000:
1232 entry->eax = min(entry->eax, 0x8000001a);
1233 break;
1234 case 0x80000001:
1235 entry->edx &= kvm_supported_word1_x86_features;
1236 entry->ecx &= kvm_supported_word6_x86_features;
1237 break;
1238 }
1239 put_cpu();
1240 }
1241
1242 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1243 struct kvm_cpuid_entry2 __user *entries)
1244 {
1245 struct kvm_cpuid_entry2 *cpuid_entries;
1246 int limit, nent = 0, r = -E2BIG;
1247 u32 func;
1248
1249 if (cpuid->nent < 1)
1250 goto out;
1251 r = -ENOMEM;
1252 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1253 if (!cpuid_entries)
1254 goto out;
1255
1256 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1257 limit = cpuid_entries[0].eax;
1258 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1259 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1260 &nent, cpuid->nent);
1261 r = -E2BIG;
1262 if (nent >= cpuid->nent)
1263 goto out_free;
1264
1265 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1266 limit = cpuid_entries[nent - 1].eax;
1267 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1268 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1269 &nent, cpuid->nent);
1270 r = -EFAULT;
1271 if (copy_to_user(entries, cpuid_entries,
1272 nent * sizeof(struct kvm_cpuid_entry2)))
1273 goto out_free;
1274 cpuid->nent = nent;
1275 r = 0;
1276
1277 out_free:
1278 vfree(cpuid_entries);
1279 out:
1280 return r;
1281 }
1282
1283 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1284 struct kvm_lapic_state *s)
1285 {
1286 vcpu_load(vcpu);
1287 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1288 vcpu_put(vcpu);
1289
1290 return 0;
1291 }
1292
1293 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1294 struct kvm_lapic_state *s)
1295 {
1296 vcpu_load(vcpu);
1297 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1298 kvm_apic_post_state_restore(vcpu);
1299 vcpu_put(vcpu);
1300
1301 return 0;
1302 }
1303
1304 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1305 struct kvm_interrupt *irq)
1306 {
1307 if (irq->irq < 0 || irq->irq >= 256)
1308 return -EINVAL;
1309 if (irqchip_in_kernel(vcpu->kvm))
1310 return -ENXIO;
1311 vcpu_load(vcpu);
1312
1313 set_bit(irq->irq, vcpu->arch.irq_pending);
1314 set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1315
1316 vcpu_put(vcpu);
1317
1318 return 0;
1319 }
1320
1321 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1322 struct kvm_tpr_access_ctl *tac)
1323 {
1324 if (tac->flags)
1325 return -EINVAL;
1326 vcpu->arch.tpr_access_reporting = !!tac->enabled;
1327 return 0;
1328 }
1329
1330 long kvm_arch_vcpu_ioctl(struct file *filp,
1331 unsigned int ioctl, unsigned long arg)
1332 {
1333 struct kvm_vcpu *vcpu = filp->private_data;
1334 void __user *argp = (void __user *)arg;
1335 int r;
1336 struct kvm_lapic_state *lapic = NULL;
1337
1338 switch (ioctl) {
1339 case KVM_GET_LAPIC: {
1340 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1341
1342 r = -ENOMEM;
1343 if (!lapic)
1344 goto out;
1345 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
1346 if (r)
1347 goto out;
1348 r = -EFAULT;
1349 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
1350 goto out;
1351 r = 0;
1352 break;
1353 }
1354 case KVM_SET_LAPIC: {
1355 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1356 r = -ENOMEM;
1357 if (!lapic)
1358 goto out;
1359 r = -EFAULT;
1360 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
1361 goto out;
1362 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
1363 if (r)
1364 goto out;
1365 r = 0;
1366 break;
1367 }
1368 case KVM_INTERRUPT: {
1369 struct kvm_interrupt irq;
1370
1371 r = -EFAULT;
1372 if (copy_from_user(&irq, argp, sizeof irq))
1373 goto out;
1374 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1375 if (r)
1376 goto out;
1377 r = 0;
1378 break;
1379 }
1380 case KVM_SET_CPUID: {
1381 struct kvm_cpuid __user *cpuid_arg = argp;
1382 struct kvm_cpuid cpuid;
1383
1384 r = -EFAULT;
1385 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1386 goto out;
1387 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1388 if (r)
1389 goto out;
1390 break;
1391 }
1392 case KVM_SET_CPUID2: {
1393 struct kvm_cpuid2 __user *cpuid_arg = argp;
1394 struct kvm_cpuid2 cpuid;
1395
1396 r = -EFAULT;
1397 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1398 goto out;
1399 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1400 cpuid_arg->entries);
1401 if (r)
1402 goto out;
1403 break;
1404 }
1405 case KVM_GET_CPUID2: {
1406 struct kvm_cpuid2 __user *cpuid_arg = argp;
1407 struct kvm_cpuid2 cpuid;
1408
1409 r = -EFAULT;
1410 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1411 goto out;
1412 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1413 cpuid_arg->entries);
1414 if (r)
1415 goto out;
1416 r = -EFAULT;
1417 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1418 goto out;
1419 r = 0;
1420 break;
1421 }
1422 case KVM_GET_MSRS:
1423 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1424 break;
1425 case KVM_SET_MSRS:
1426 r = msr_io(vcpu, argp, do_set_msr, 0);
1427 break;
1428 case KVM_TPR_ACCESS_REPORTING: {
1429 struct kvm_tpr_access_ctl tac;
1430
1431 r = -EFAULT;
1432 if (copy_from_user(&tac, argp, sizeof tac))
1433 goto out;
1434 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1435 if (r)
1436 goto out;
1437 r = -EFAULT;
1438 if (copy_to_user(argp, &tac, sizeof tac))
1439 goto out;
1440 r = 0;
1441 break;
1442 };
1443 case KVM_SET_VAPIC_ADDR: {
1444 struct kvm_vapic_addr va;
1445
1446 r = -EINVAL;
1447 if (!irqchip_in_kernel(vcpu->kvm))
1448 goto out;
1449 r = -EFAULT;
1450 if (copy_from_user(&va, argp, sizeof va))
1451 goto out;
1452 r = 0;
1453 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1454 break;
1455 }
1456 default:
1457 r = -EINVAL;
1458 }
1459 out:
1460 if (lapic)
1461 kfree(lapic);
1462 return r;
1463 }
1464
1465 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1466 {
1467 int ret;
1468
1469 if (addr > (unsigned int)(-3 * PAGE_SIZE))
1470 return -1;
1471 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1472 return ret;
1473 }
1474
1475 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1476 u32 kvm_nr_mmu_pages)
1477 {
1478 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1479 return -EINVAL;
1480
1481 down_write(&kvm->slots_lock);
1482
1483 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1484 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1485
1486 up_write(&kvm->slots_lock);
1487 return 0;
1488 }
1489
1490 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1491 {
1492 return kvm->arch.n_alloc_mmu_pages;
1493 }
1494
1495 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1496 {
1497 int i;
1498 struct kvm_mem_alias *alias;
1499
1500 for (i = 0; i < kvm->arch.naliases; ++i) {
1501 alias = &kvm->arch.aliases[i];
1502 if (gfn >= alias->base_gfn
1503 && gfn < alias->base_gfn + alias->npages)
1504 return alias->target_gfn + gfn - alias->base_gfn;
1505 }
1506 return gfn;
1507 }
1508
1509 /*
1510 * Set a new alias region. Aliases map a portion of physical memory into
1511 * another portion. This is useful for memory windows, for example the PC
1512 * VGA region.
1513 */
1514 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1515 struct kvm_memory_alias *alias)
1516 {
1517 int r, n;
1518 struct kvm_mem_alias *p;
1519
1520 r = -EINVAL;
1521 /* General sanity checks */
1522 if (alias->memory_size & (PAGE_SIZE - 1))
1523 goto out;
1524 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1525 goto out;
1526 if (alias->slot >= KVM_ALIAS_SLOTS)
1527 goto out;
1528 if (alias->guest_phys_addr + alias->memory_size
1529 < alias->guest_phys_addr)
1530 goto out;
1531 if (alias->target_phys_addr + alias->memory_size
1532 < alias->target_phys_addr)
1533 goto out;
1534
1535 down_write(&kvm->slots_lock);
1536 spin_lock(&kvm->mmu_lock);
1537
1538 p = &kvm->arch.aliases[alias->slot];
1539 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1540 p->npages = alias->memory_size >> PAGE_SHIFT;
1541 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1542
1543 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1544 if (kvm->arch.aliases[n - 1].npages)
1545 break;
1546 kvm->arch.naliases = n;
1547
1548 spin_unlock(&kvm->mmu_lock);
1549 kvm_mmu_zap_all(kvm);
1550
1551 up_write(&kvm->slots_lock);
1552
1553 return 0;
1554
1555 out:
1556 return r;
1557 }
1558
1559 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1560 {
1561 int r;
1562
1563 r = 0;
1564 switch (chip->chip_id) {
1565 case KVM_IRQCHIP_PIC_MASTER:
1566 memcpy(&chip->chip.pic,
1567 &pic_irqchip(kvm)->pics[0],
1568 sizeof(struct kvm_pic_state));
1569 break;
1570 case KVM_IRQCHIP_PIC_SLAVE:
1571 memcpy(&chip->chip.pic,
1572 &pic_irqchip(kvm)->pics[1],
1573 sizeof(struct kvm_pic_state));
1574 break;
1575 case KVM_IRQCHIP_IOAPIC:
1576 memcpy(&chip->chip.ioapic,
1577 ioapic_irqchip(kvm),
1578 sizeof(struct kvm_ioapic_state));
1579 break;
1580 default:
1581 r = -EINVAL;
1582 break;
1583 }
1584 return r;
1585 }
1586
1587 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1588 {
1589 int r;
1590
1591 r = 0;
1592 switch (chip->chip_id) {
1593 case KVM_IRQCHIP_PIC_MASTER:
1594 memcpy(&pic_irqchip(kvm)->pics[0],
1595 &chip->chip.pic,
1596 sizeof(struct kvm_pic_state));
1597 break;
1598 case KVM_IRQCHIP_PIC_SLAVE:
1599 memcpy(&pic_irqchip(kvm)->pics[1],
1600 &chip->chip.pic,
1601 sizeof(struct kvm_pic_state));
1602 break;
1603 case KVM_IRQCHIP_IOAPIC:
1604 memcpy(ioapic_irqchip(kvm),
1605 &chip->chip.ioapic,
1606 sizeof(struct kvm_ioapic_state));
1607 break;
1608 default:
1609 r = -EINVAL;
1610 break;
1611 }
1612 kvm_pic_update_irq(pic_irqchip(kvm));
1613 return r;
1614 }
1615
1616 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1617 {
1618 int r = 0;
1619
1620 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
1621 return r;
1622 }
1623
1624 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1625 {
1626 int r = 0;
1627
1628 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
1629 kvm_pit_load_count(kvm, 0, ps->channels[0].count);
1630 return r;
1631 }
1632
1633 /*
1634 * Get (and clear) the dirty memory log for a memory slot.
1635 */
1636 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1637 struct kvm_dirty_log *log)
1638 {
1639 int r;
1640 int n;
1641 struct kvm_memory_slot *memslot;
1642 int is_dirty = 0;
1643
1644 down_write(&kvm->slots_lock);
1645
1646 r = kvm_get_dirty_log(kvm, log, &is_dirty);
1647 if (r)
1648 goto out;
1649
1650 /* If nothing is dirty, don't bother messing with page tables. */
1651 if (is_dirty) {
1652 kvm_mmu_slot_remove_write_access(kvm, log->slot);
1653 kvm_flush_remote_tlbs(kvm);
1654 memslot = &kvm->memslots[log->slot];
1655 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1656 memset(memslot->dirty_bitmap, 0, n);
1657 }
1658 r = 0;
1659 out:
1660 up_write(&kvm->slots_lock);
1661 return r;
1662 }
1663
1664 long kvm_arch_vm_ioctl(struct file *filp,
1665 unsigned int ioctl, unsigned long arg)
1666 {
1667 struct kvm *kvm = filp->private_data;
1668 void __user *argp = (void __user *)arg;
1669 int r = -EINVAL;
1670 /*
1671 * This union makes it completely explicit to gcc-3.x
1672 * that these two variables' stack usage should be
1673 * combined, not added together.
1674 */
1675 union {
1676 struct kvm_pit_state ps;
1677 struct kvm_memory_alias alias;
1678 } u;
1679
1680 switch (ioctl) {
1681 case KVM_SET_TSS_ADDR:
1682 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
1683 if (r < 0)
1684 goto out;
1685 break;
1686 case KVM_SET_MEMORY_REGION: {
1687 struct kvm_memory_region kvm_mem;
1688 struct kvm_userspace_memory_region kvm_userspace_mem;
1689
1690 r = -EFAULT;
1691 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
1692 goto out;
1693 kvm_userspace_mem.slot = kvm_mem.slot;
1694 kvm_userspace_mem.flags = kvm_mem.flags;
1695 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
1696 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
1697 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
1698 if (r)
1699 goto out;
1700 break;
1701 }
1702 case KVM_SET_NR_MMU_PAGES:
1703 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
1704 if (r)
1705 goto out;
1706 break;
1707 case KVM_GET_NR_MMU_PAGES:
1708 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
1709 break;
1710 case KVM_SET_MEMORY_ALIAS:
1711 r = -EFAULT;
1712 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
1713 goto out;
1714 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
1715 if (r)
1716 goto out;
1717 break;
1718 case KVM_CREATE_IRQCHIP:
1719 r = -ENOMEM;
1720 kvm->arch.vpic = kvm_create_pic(kvm);
1721 if (kvm->arch.vpic) {
1722 r = kvm_ioapic_init(kvm);
1723 if (r) {
1724 kfree(kvm->arch.vpic);
1725 kvm->arch.vpic = NULL;
1726 goto out;
1727 }
1728 } else
1729 goto out;
1730 break;
1731 case KVM_CREATE_PIT:
1732 r = -ENOMEM;
1733 kvm->arch.vpit = kvm_create_pit(kvm);
1734 if (kvm->arch.vpit)
1735 r = 0;
1736 break;
1737 case KVM_IRQ_LINE: {
1738 struct kvm_irq_level irq_event;
1739
1740 r = -EFAULT;
1741 if (copy_from_user(&irq_event, argp, sizeof irq_event))
1742 goto out;
1743 if (irqchip_in_kernel(kvm)) {
1744 mutex_lock(&kvm->lock);
1745 kvm_set_irq(kvm, irq_event.irq, irq_event.level);
1746 mutex_unlock(&kvm->lock);
1747 r = 0;
1748 }
1749 break;
1750 }
1751 case KVM_GET_IRQCHIP: {
1752 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1753 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1754
1755 r = -ENOMEM;
1756 if (!chip)
1757 goto out;
1758 r = -EFAULT;
1759 if (copy_from_user(chip, argp, sizeof *chip))
1760 goto get_irqchip_out;
1761 r = -ENXIO;
1762 if (!irqchip_in_kernel(kvm))
1763 goto get_irqchip_out;
1764 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
1765 if (r)
1766 goto get_irqchip_out;
1767 r = -EFAULT;
1768 if (copy_to_user(argp, chip, sizeof *chip))
1769 goto get_irqchip_out;
1770 r = 0;
1771 get_irqchip_out:
1772 kfree(chip);
1773 if (r)
1774 goto out;
1775 break;
1776 }
1777 case KVM_SET_IRQCHIP: {
1778 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1779 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1780
1781 r = -ENOMEM;
1782 if (!chip)
1783 goto out;
1784 r = -EFAULT;
1785 if (copy_from_user(chip, argp, sizeof *chip))
1786 goto set_irqchip_out;
1787 r = -ENXIO;
1788 if (!irqchip_in_kernel(kvm))
1789 goto set_irqchip_out;
1790 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
1791 if (r)
1792 goto set_irqchip_out;
1793 r = 0;
1794 set_irqchip_out:
1795 kfree(chip);
1796 if (r)
1797 goto out;
1798 break;
1799 }
1800 case KVM_GET_PIT: {
1801 r = -EFAULT;
1802 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
1803 goto out;
1804 r = -ENXIO;
1805 if (!kvm->arch.vpit)
1806 goto out;
1807 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
1808 if (r)
1809 goto out;
1810 r = -EFAULT;
1811 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
1812 goto out;
1813 r = 0;
1814 break;
1815 }
1816 case KVM_SET_PIT: {
1817 r = -EFAULT;
1818 if (copy_from_user(&u.ps, argp, sizeof u.ps))
1819 goto out;
1820 r = -ENXIO;
1821 if (!kvm->arch.vpit)
1822 goto out;
1823 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
1824 if (r)
1825 goto out;
1826 r = 0;
1827 break;
1828 }
1829 default:
1830 ;
1831 }
1832 out:
1833 return r;
1834 }
1835
1836 static void kvm_init_msr_list(void)
1837 {
1838 u32 dummy[2];
1839 unsigned i, j;
1840
1841 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
1842 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
1843 continue;
1844 if (j < i)
1845 msrs_to_save[j] = msrs_to_save[i];
1846 j++;
1847 }
1848 num_msrs_to_save = j;
1849 }
1850
1851 /*
1852 * Only apic need an MMIO device hook, so shortcut now..
1853 */
1854 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
1855 gpa_t addr, int len,
1856 int is_write)
1857 {
1858 struct kvm_io_device *dev;
1859
1860 if (vcpu->arch.apic) {
1861 dev = &vcpu->arch.apic->dev;
1862 if (dev->in_range(dev, addr, len, is_write))
1863 return dev;
1864 }
1865 return NULL;
1866 }
1867
1868
1869 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1870 gpa_t addr, int len,
1871 int is_write)
1872 {
1873 struct kvm_io_device *dev;
1874
1875 dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
1876 if (dev == NULL)
1877 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
1878 is_write);
1879 return dev;
1880 }
1881
1882 int emulator_read_std(unsigned long addr,
1883 void *val,
1884 unsigned int bytes,
1885 struct kvm_vcpu *vcpu)
1886 {
1887 void *data = val;
1888 int r = X86EMUL_CONTINUE;
1889
1890 while (bytes) {
1891 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1892 unsigned offset = addr & (PAGE_SIZE-1);
1893 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
1894 int ret;
1895
1896 if (gpa == UNMAPPED_GVA) {
1897 r = X86EMUL_PROPAGATE_FAULT;
1898 goto out;
1899 }
1900 ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
1901 if (ret < 0) {
1902 r = X86EMUL_UNHANDLEABLE;
1903 goto out;
1904 }
1905
1906 bytes -= tocopy;
1907 data += tocopy;
1908 addr += tocopy;
1909 }
1910 out:
1911 return r;
1912 }
1913 EXPORT_SYMBOL_GPL(emulator_read_std);
1914
1915 static int emulator_read_emulated(unsigned long addr,
1916 void *val,
1917 unsigned int bytes,
1918 struct kvm_vcpu *vcpu)
1919 {
1920 struct kvm_io_device *mmio_dev;
1921 gpa_t gpa;
1922
1923 if (vcpu->mmio_read_completed) {
1924 memcpy(val, vcpu->mmio_data, bytes);
1925 vcpu->mmio_read_completed = 0;
1926 return X86EMUL_CONTINUE;
1927 }
1928
1929 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1930
1931 /* For APIC access vmexit */
1932 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1933 goto mmio;
1934
1935 if (emulator_read_std(addr, val, bytes, vcpu)
1936 == X86EMUL_CONTINUE)
1937 return X86EMUL_CONTINUE;
1938 if (gpa == UNMAPPED_GVA)
1939 return X86EMUL_PROPAGATE_FAULT;
1940
1941 mmio:
1942 /*
1943 * Is this MMIO handled locally?
1944 */
1945 mutex_lock(&vcpu->kvm->lock);
1946 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
1947 if (mmio_dev) {
1948 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1949 mutex_unlock(&vcpu->kvm->lock);
1950 return X86EMUL_CONTINUE;
1951 }
1952 mutex_unlock(&vcpu->kvm->lock);
1953
1954 vcpu->mmio_needed = 1;
1955 vcpu->mmio_phys_addr = gpa;
1956 vcpu->mmio_size = bytes;
1957 vcpu->mmio_is_write = 0;
1958
1959 return X86EMUL_UNHANDLEABLE;
1960 }
1961
1962 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1963 const void *val, int bytes)
1964 {
1965 int ret;
1966
1967 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
1968 if (ret < 0)
1969 return 0;
1970 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
1971 return 1;
1972 }
1973
1974 static int emulator_write_emulated_onepage(unsigned long addr,
1975 const void *val,
1976 unsigned int bytes,
1977 struct kvm_vcpu *vcpu)
1978 {
1979 struct kvm_io_device *mmio_dev;
1980 gpa_t gpa;
1981
1982 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1983
1984 if (gpa == UNMAPPED_GVA) {
1985 kvm_inject_page_fault(vcpu, addr, 2);
1986 return X86EMUL_PROPAGATE_FAULT;
1987 }
1988
1989 /* For APIC access vmexit */
1990 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1991 goto mmio;
1992
1993 if (emulator_write_phys(vcpu, gpa, val, bytes))
1994 return X86EMUL_CONTINUE;
1995
1996 mmio:
1997 /*
1998 * Is this MMIO handled locally?
1999 */
2000 mutex_lock(&vcpu->kvm->lock);
2001 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
2002 if (mmio_dev) {
2003 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
2004 mutex_unlock(&vcpu->kvm->lock);
2005 return X86EMUL_CONTINUE;
2006 }
2007 mutex_unlock(&vcpu->kvm->lock);
2008
2009 vcpu->mmio_needed = 1;
2010 vcpu->mmio_phys_addr = gpa;
2011 vcpu->mmio_size = bytes;
2012 vcpu->mmio_is_write = 1;
2013 memcpy(vcpu->mmio_data, val, bytes);
2014
2015 return X86EMUL_CONTINUE;
2016 }
2017
2018 int emulator_write_emulated(unsigned long addr,
2019 const void *val,
2020 unsigned int bytes,
2021 struct kvm_vcpu *vcpu)
2022 {
2023 /* Crossing a page boundary? */
2024 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
2025 int rc, now;
2026
2027 now = -addr & ~PAGE_MASK;
2028 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
2029 if (rc != X86EMUL_CONTINUE)
2030 return rc;
2031 addr += now;
2032 val += now;
2033 bytes -= now;
2034 }
2035 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
2036 }
2037 EXPORT_SYMBOL_GPL(emulator_write_emulated);
2038
2039 static int emulator_cmpxchg_emulated(unsigned long addr,
2040 const void *old,
2041 const void *new,
2042 unsigned int bytes,
2043 struct kvm_vcpu *vcpu)
2044 {
2045 static int reported;
2046
2047 if (!reported) {
2048 reported = 1;
2049 printk(KERN_WARNING "kvm: emulating exchange as write\n");
2050 }
2051 #ifndef CONFIG_X86_64
2052 /* guests cmpxchg8b have to be emulated atomically */
2053 if (bytes == 8) {
2054 gpa_t gpa;
2055 struct page *page;
2056 char *kaddr;
2057 u64 val;
2058
2059 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2060
2061 if (gpa == UNMAPPED_GVA ||
2062 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2063 goto emul_write;
2064
2065 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2066 goto emul_write;
2067
2068 val = *(u64 *)new;
2069
2070 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2071
2072 kaddr = kmap_atomic(page, KM_USER0);
2073 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2074 kunmap_atomic(kaddr, KM_USER0);
2075 kvm_release_page_dirty(page);
2076 }
2077 emul_write:
2078 #endif
2079
2080 return emulator_write_emulated(addr, new, bytes, vcpu);
2081 }
2082
2083 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2084 {
2085 return kvm_x86_ops->get_segment_base(vcpu, seg);
2086 }
2087
2088 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2089 {
2090 kvm_mmu_invlpg(vcpu, address);
2091 return X86EMUL_CONTINUE;
2092 }
2093
2094 int emulate_clts(struct kvm_vcpu *vcpu)
2095 {
2096 KVMTRACE_0D(CLTS, vcpu, handler);
2097 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2098 return X86EMUL_CONTINUE;
2099 }
2100
2101 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2102 {
2103 struct kvm_vcpu *vcpu = ctxt->vcpu;
2104
2105 switch (dr) {
2106 case 0 ... 3:
2107 *dest = kvm_x86_ops->get_dr(vcpu, dr);
2108 return X86EMUL_CONTINUE;
2109 default:
2110 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2111 return X86EMUL_UNHANDLEABLE;
2112 }
2113 }
2114
2115 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2116 {
2117 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2118 int exception;
2119
2120 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2121 if (exception) {
2122 /* FIXME: better handling */
2123 return X86EMUL_UNHANDLEABLE;
2124 }
2125 return X86EMUL_CONTINUE;
2126 }
2127
2128 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2129 {
2130 u8 opcodes[4];
2131 unsigned long rip = kvm_rip_read(vcpu);
2132 unsigned long rip_linear;
2133
2134 if (!printk_ratelimit())
2135 return;
2136
2137 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2138
2139 emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
2140
2141 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2142 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2143 }
2144 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2145
2146 static struct x86_emulate_ops emulate_ops = {
2147 .read_std = emulator_read_std,
2148 .read_emulated = emulator_read_emulated,
2149 .write_emulated = emulator_write_emulated,
2150 .cmpxchg_emulated = emulator_cmpxchg_emulated,
2151 };
2152
2153 static void cache_all_regs(struct kvm_vcpu *vcpu)
2154 {
2155 kvm_register_read(vcpu, VCPU_REGS_RAX);
2156 kvm_register_read(vcpu, VCPU_REGS_RSP);
2157 kvm_register_read(vcpu, VCPU_REGS_RIP);
2158 vcpu->arch.regs_dirty = ~0;
2159 }
2160
2161 int emulate_instruction(struct kvm_vcpu *vcpu,
2162 struct kvm_run *run,
2163 unsigned long cr2,
2164 u16 error_code,
2165 int emulation_type)
2166 {
2167 int r;
2168 struct decode_cache *c;
2169
2170 kvm_clear_exception_queue(vcpu);
2171 vcpu->arch.mmio_fault_cr2 = cr2;
2172 /*
2173 * TODO: fix x86_emulate.c to use guest_read/write_register
2174 * instead of direct ->regs accesses, can save hundred cycles
2175 * on Intel for instructions that don't read/change RSP, for
2176 * for example.
2177 */
2178 cache_all_regs(vcpu);
2179
2180 vcpu->mmio_is_write = 0;
2181 vcpu->arch.pio.string = 0;
2182
2183 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2184 int cs_db, cs_l;
2185 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2186
2187 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2188 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2189 vcpu->arch.emulate_ctxt.mode =
2190 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2191 ? X86EMUL_MODE_REAL : cs_l
2192 ? X86EMUL_MODE_PROT64 : cs_db
2193 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2194
2195 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2196
2197 /* Reject the instructions other than VMCALL/VMMCALL when
2198 * try to emulate invalid opcode */
2199 c = &vcpu->arch.emulate_ctxt.decode;
2200 if ((emulation_type & EMULTYPE_TRAP_UD) &&
2201 (!(c->twobyte && c->b == 0x01 &&
2202 (c->modrm_reg == 0 || c->modrm_reg == 3) &&
2203 c->modrm_mod == 3 && c->modrm_rm == 1)))
2204 return EMULATE_FAIL;
2205
2206 ++vcpu->stat.insn_emulation;
2207 if (r) {
2208 ++vcpu->stat.insn_emulation_fail;
2209 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2210 return EMULATE_DONE;
2211 return EMULATE_FAIL;
2212 }
2213 }
2214
2215 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2216
2217 if (vcpu->arch.pio.string)
2218 return EMULATE_DO_MMIO;
2219
2220 if ((r || vcpu->mmio_is_write) && run) {
2221 run->exit_reason = KVM_EXIT_MMIO;
2222 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2223 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2224 run->mmio.len = vcpu->mmio_size;
2225 run->mmio.is_write = vcpu->mmio_is_write;
2226 }
2227
2228 if (r) {
2229 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2230 return EMULATE_DONE;
2231 if (!vcpu->mmio_needed) {
2232 kvm_report_emulation_failure(vcpu, "mmio");
2233 return EMULATE_FAIL;
2234 }
2235 return EMULATE_DO_MMIO;
2236 }
2237
2238 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2239
2240 if (vcpu->mmio_is_write) {
2241 vcpu->mmio_needed = 0;
2242 return EMULATE_DO_MMIO;
2243 }
2244
2245 return EMULATE_DONE;
2246 }
2247 EXPORT_SYMBOL_GPL(emulate_instruction);
2248
2249 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
2250 {
2251 int i;
2252
2253 for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
2254 if (vcpu->arch.pio.guest_pages[i]) {
2255 kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
2256 vcpu->arch.pio.guest_pages[i] = NULL;
2257 }
2258 }
2259
2260 static int pio_copy_data(struct kvm_vcpu *vcpu)
2261 {
2262 void *p = vcpu->arch.pio_data;
2263 void *q;
2264 unsigned bytes;
2265 int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
2266
2267 q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
2268 PAGE_KERNEL);
2269 if (!q) {
2270 free_pio_guest_pages(vcpu);
2271 return -ENOMEM;
2272 }
2273 q += vcpu->arch.pio.guest_page_offset;
2274 bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2275 if (vcpu->arch.pio.in)
2276 memcpy(q, p, bytes);
2277 else
2278 memcpy(p, q, bytes);
2279 q -= vcpu->arch.pio.guest_page_offset;
2280 vunmap(q);
2281 free_pio_guest_pages(vcpu);
2282 return 0;
2283 }
2284
2285 int complete_pio(struct kvm_vcpu *vcpu)
2286 {
2287 struct kvm_pio_request *io = &vcpu->arch.pio;
2288 long delta;
2289 int r;
2290 unsigned long val;
2291
2292 if (!io->string) {
2293 if (io->in) {
2294 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2295 memcpy(&val, vcpu->arch.pio_data, io->size);
2296 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
2297 }
2298 } else {
2299 if (io->in) {
2300 r = pio_copy_data(vcpu);
2301 if (r)
2302 return r;
2303 }
2304
2305 delta = 1;
2306 if (io->rep) {
2307 delta *= io->cur_count;
2308 /*
2309 * The size of the register should really depend on
2310 * current address size.
2311 */
2312 val = kvm_register_read(vcpu, VCPU_REGS_RCX);
2313 val -= delta;
2314 kvm_register_write(vcpu, VCPU_REGS_RCX, val);
2315 }
2316 if (io->down)
2317 delta = -delta;
2318 delta *= io->size;
2319 if (io->in) {
2320 val = kvm_register_read(vcpu, VCPU_REGS_RDI);
2321 val += delta;
2322 kvm_register_write(vcpu, VCPU_REGS_RDI, val);
2323 } else {
2324 val = kvm_register_read(vcpu, VCPU_REGS_RSI);
2325 val += delta;
2326 kvm_register_write(vcpu, VCPU_REGS_RSI, val);
2327 }
2328 }
2329
2330 io->count -= io->cur_count;
2331 io->cur_count = 0;
2332
2333 return 0;
2334 }
2335
2336 static void kernel_pio(struct kvm_io_device *pio_dev,
2337 struct kvm_vcpu *vcpu,
2338 void *pd)
2339 {
2340 /* TODO: String I/O for in kernel device */
2341
2342 mutex_lock(&vcpu->kvm->lock);
2343 if (vcpu->arch.pio.in)
2344 kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
2345 vcpu->arch.pio.size,
2346 pd);
2347 else
2348 kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
2349 vcpu->arch.pio.size,
2350 pd);
2351 mutex_unlock(&vcpu->kvm->lock);
2352 }
2353
2354 static void pio_string_write(struct kvm_io_device *pio_dev,
2355 struct kvm_vcpu *vcpu)
2356 {
2357 struct kvm_pio_request *io = &vcpu->arch.pio;
2358 void *pd = vcpu->arch.pio_data;
2359 int i;
2360
2361 mutex_lock(&vcpu->kvm->lock);
2362 for (i = 0; i < io->cur_count; i++) {
2363 kvm_iodevice_write(pio_dev, io->port,
2364 io->size,
2365 pd);
2366 pd += io->size;
2367 }
2368 mutex_unlock(&vcpu->kvm->lock);
2369 }
2370
2371 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2372 gpa_t addr, int len,
2373 int is_write)
2374 {
2375 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
2376 }
2377
2378 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2379 int size, unsigned port)
2380 {
2381 struct kvm_io_device *pio_dev;
2382 unsigned long val;
2383
2384 vcpu->run->exit_reason = KVM_EXIT_IO;
2385 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2386 vcpu->run->io.size = vcpu->arch.pio.size = size;
2387 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2388 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2389 vcpu->run->io.port = vcpu->arch.pio.port = port;
2390 vcpu->arch.pio.in = in;
2391 vcpu->arch.pio.string = 0;
2392 vcpu->arch.pio.down = 0;
2393 vcpu->arch.pio.guest_page_offset = 0;
2394 vcpu->arch.pio.rep = 0;
2395
2396 if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2397 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2398 handler);
2399 else
2400 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2401 handler);
2402
2403 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2404 memcpy(vcpu->arch.pio_data, &val, 4);
2405
2406 kvm_x86_ops->skip_emulated_instruction(vcpu);
2407
2408 pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
2409 if (pio_dev) {
2410 kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2411 complete_pio(vcpu);
2412 return 1;
2413 }
2414 return 0;
2415 }
2416 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2417
2418 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2419 int size, unsigned long count, int down,
2420 gva_t address, int rep, unsigned port)
2421 {
2422 unsigned now, in_page;
2423 int i, ret = 0;
2424 int nr_pages = 1;
2425 struct page *page;
2426 struct kvm_io_device *pio_dev;
2427
2428 vcpu->run->exit_reason = KVM_EXIT_IO;
2429 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2430 vcpu->run->io.size = vcpu->arch.pio.size = size;
2431 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2432 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2433 vcpu->run->io.port = vcpu->arch.pio.port = port;
2434 vcpu->arch.pio.in = in;
2435 vcpu->arch.pio.string = 1;
2436 vcpu->arch.pio.down = down;
2437 vcpu->arch.pio.guest_page_offset = offset_in_page(address);
2438 vcpu->arch.pio.rep = rep;
2439
2440 if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2441 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2442 handler);
2443 else
2444 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2445 handler);
2446
2447 if (!count) {
2448 kvm_x86_ops->skip_emulated_instruction(vcpu);
2449 return 1;
2450 }
2451
2452 if (!down)
2453 in_page = PAGE_SIZE - offset_in_page(address);
2454 else
2455 in_page = offset_in_page(address) + size;
2456 now = min(count, (unsigned long)in_page / size);
2457 if (!now) {
2458 /*
2459 * String I/O straddles page boundary. Pin two guest pages
2460 * so that we satisfy atomicity constraints. Do just one
2461 * transaction to avoid complexity.
2462 */
2463 nr_pages = 2;
2464 now = 1;
2465 }
2466 if (down) {
2467 /*
2468 * String I/O in reverse. Yuck. Kill the guest, fix later.
2469 */
2470 pr_unimpl(vcpu, "guest string pio down\n");
2471 kvm_inject_gp(vcpu, 0);
2472 return 1;
2473 }
2474 vcpu->run->io.count = now;
2475 vcpu->arch.pio.cur_count = now;
2476
2477 if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2478 kvm_x86_ops->skip_emulated_instruction(vcpu);
2479
2480 for (i = 0; i < nr_pages; ++i) {
2481 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
2482 vcpu->arch.pio.guest_pages[i] = page;
2483 if (!page) {
2484 kvm_inject_gp(vcpu, 0);
2485 free_pio_guest_pages(vcpu);
2486 return 1;
2487 }
2488 }
2489
2490 pio_dev = vcpu_find_pio_dev(vcpu, port,
2491 vcpu->arch.pio.cur_count,
2492 !vcpu->arch.pio.in);
2493 if (!vcpu->arch.pio.in) {
2494 /* string PIO write */
2495 ret = pio_copy_data(vcpu);
2496 if (ret >= 0 && pio_dev) {
2497 pio_string_write(pio_dev, vcpu);
2498 complete_pio(vcpu);
2499 if (vcpu->arch.pio.count == 0)
2500 ret = 1;
2501 }
2502 } else if (pio_dev)
2503 pr_unimpl(vcpu, "no string pio read support yet, "
2504 "port %x size %d count %ld\n",
2505 port, size, count);
2506
2507 return ret;
2508 }
2509 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2510
2511 int kvm_arch_init(void *opaque)
2512 {
2513 int r;
2514 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
2515
2516 if (kvm_x86_ops) {
2517 printk(KERN_ERR "kvm: already loaded the other module\n");
2518 r = -EEXIST;
2519 goto out;
2520 }
2521
2522 if (!ops->cpu_has_kvm_support()) {
2523 printk(KERN_ERR "kvm: no hardware support\n");
2524 r = -EOPNOTSUPP;
2525 goto out;
2526 }
2527 if (ops->disabled_by_bios()) {
2528 printk(KERN_ERR "kvm: disabled by bios\n");
2529 r = -EOPNOTSUPP;
2530 goto out;
2531 }
2532
2533 r = kvm_mmu_module_init();
2534 if (r)
2535 goto out;
2536
2537 kvm_init_msr_list();
2538
2539 kvm_x86_ops = ops;
2540 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2541 kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
2542 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
2543 PT_DIRTY_MASK, PT64_NX_MASK, 0);
2544 return 0;
2545
2546 out:
2547 return r;
2548 }
2549
2550 void kvm_arch_exit(void)
2551 {
2552 kvm_x86_ops = NULL;
2553 kvm_mmu_module_exit();
2554 }
2555
2556 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
2557 {
2558 ++vcpu->stat.halt_exits;
2559 KVMTRACE_0D(HLT, vcpu, handler);
2560 if (irqchip_in_kernel(vcpu->kvm)) {
2561 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
2562 return 1;
2563 } else {
2564 vcpu->run->exit_reason = KVM_EXIT_HLT;
2565 return 0;
2566 }
2567 }
2568 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
2569
2570 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
2571 unsigned long a1)
2572 {
2573 if (is_long_mode(vcpu))
2574 return a0;
2575 else
2576 return a0 | ((gpa_t)a1 << 32);
2577 }
2578
2579 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
2580 {
2581 unsigned long nr, a0, a1, a2, a3, ret;
2582 int r = 1;
2583
2584 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
2585 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
2586 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
2587 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
2588 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
2589
2590 KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
2591
2592 if (!is_long_mode(vcpu)) {
2593 nr &= 0xFFFFFFFF;
2594 a0 &= 0xFFFFFFFF;
2595 a1 &= 0xFFFFFFFF;
2596 a2 &= 0xFFFFFFFF;
2597 a3 &= 0xFFFFFFFF;
2598 }
2599
2600 switch (nr) {
2601 case KVM_HC_VAPIC_POLL_IRQ:
2602 ret = 0;
2603 break;
2604 case KVM_HC_MMU_OP:
2605 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
2606 break;
2607 default:
2608 ret = -KVM_ENOSYS;
2609 break;
2610 }
2611 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
2612 ++vcpu->stat.hypercalls;
2613 return r;
2614 }
2615 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
2616
2617 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
2618 {
2619 char instruction[3];
2620 int ret = 0;
2621 unsigned long rip = kvm_rip_read(vcpu);
2622
2623
2624 /*
2625 * Blow out the MMU to ensure that no other VCPU has an active mapping
2626 * to ensure that the updated hypercall appears atomically across all
2627 * VCPUs.
2628 */
2629 kvm_mmu_zap_all(vcpu->kvm);
2630
2631 kvm_x86_ops->patch_hypercall(vcpu, instruction);
2632 if (emulator_write_emulated(rip, instruction, 3, vcpu)
2633 != X86EMUL_CONTINUE)
2634 ret = -EFAULT;
2635
2636 return ret;
2637 }
2638
2639 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
2640 {
2641 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
2642 }
2643
2644 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2645 {
2646 struct descriptor_table dt = { limit, base };
2647
2648 kvm_x86_ops->set_gdt(vcpu, &dt);
2649 }
2650
2651 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2652 {
2653 struct descriptor_table dt = { limit, base };
2654
2655 kvm_x86_ops->set_idt(vcpu, &dt);
2656 }
2657
2658 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
2659 unsigned long *rflags)
2660 {
2661 kvm_lmsw(vcpu, msw);
2662 *rflags = kvm_x86_ops->get_rflags(vcpu);
2663 }
2664
2665 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
2666 {
2667 unsigned long value;
2668
2669 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2670 switch (cr) {
2671 case 0:
2672 value = vcpu->arch.cr0;
2673 break;
2674 case 2:
2675 value = vcpu->arch.cr2;
2676 break;
2677 case 3:
2678 value = vcpu->arch.cr3;
2679 break;
2680 case 4:
2681 value = vcpu->arch.cr4;
2682 break;
2683 case 8:
2684 value = kvm_get_cr8(vcpu);
2685 break;
2686 default:
2687 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2688 return 0;
2689 }
2690 KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
2691 (u32)((u64)value >> 32), handler);
2692
2693 return value;
2694 }
2695
2696 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
2697 unsigned long *rflags)
2698 {
2699 KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
2700 (u32)((u64)val >> 32), handler);
2701
2702 switch (cr) {
2703 case 0:
2704 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2705 *rflags = kvm_x86_ops->get_rflags(vcpu);
2706 break;
2707 case 2:
2708 vcpu->arch.cr2 = val;
2709 break;
2710 case 3:
2711 kvm_set_cr3(vcpu, val);
2712 break;
2713 case 4:
2714 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2715 break;
2716 case 8:
2717 kvm_set_cr8(vcpu, val & 0xfUL);
2718 break;
2719 default:
2720 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2721 }
2722 }
2723
2724 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
2725 {
2726 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
2727 int j, nent = vcpu->arch.cpuid_nent;
2728
2729 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
2730 /* when no next entry is found, the current entry[i] is reselected */
2731 for (j = i + 1; j == i; j = (j + 1) % nent) {
2732 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2733 if (ej->function == e->function) {
2734 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2735 return j;
2736 }
2737 }
2738 return 0; /* silence gcc, even though control never reaches here */
2739 }
2740
2741 /* find an entry with matching function, matching index (if needed), and that
2742 * should be read next (if it's stateful) */
2743 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
2744 u32 function, u32 index)
2745 {
2746 if (e->function != function)
2747 return 0;
2748 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
2749 return 0;
2750 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
2751 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
2752 return 0;
2753 return 1;
2754 }
2755
2756 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
2757 {
2758 int i;
2759 u32 function, index;
2760 struct kvm_cpuid_entry2 *e, *best;
2761
2762 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
2763 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
2764 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
2765 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
2766 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
2767 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
2768 best = NULL;
2769 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2770 e = &vcpu->arch.cpuid_entries[i];
2771 if (is_matching_cpuid_entry(e, function, index)) {
2772 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
2773 move_to_next_stateful_cpuid_entry(vcpu, i);
2774 best = e;
2775 break;
2776 }
2777 /*
2778 * Both basic or both extended?
2779 */
2780 if (((e->function ^ function) & 0x80000000) == 0)
2781 if (!best || e->function > best->function)
2782 best = e;
2783 }
2784 if (best) {
2785 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
2786 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
2787 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
2788 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
2789 }
2790 kvm_x86_ops->skip_emulated_instruction(vcpu);
2791 KVMTRACE_5D(CPUID, vcpu, function,
2792 (u32)kvm_register_read(vcpu, VCPU_REGS_RAX),
2793 (u32)kvm_register_read(vcpu, VCPU_REGS_RBX),
2794 (u32)kvm_register_read(vcpu, VCPU_REGS_RCX),
2795 (u32)kvm_register_read(vcpu, VCPU_REGS_RDX), handler);
2796 }
2797 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
2798
2799 /*
2800 * Check if userspace requested an interrupt window, and that the
2801 * interrupt window is open.
2802 *
2803 * No need to exit to userspace if we already have an interrupt queued.
2804 */
2805 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
2806 struct kvm_run *kvm_run)
2807 {
2808 return (!vcpu->arch.irq_summary &&
2809 kvm_run->request_interrupt_window &&
2810 vcpu->arch.interrupt_window_open &&
2811 (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
2812 }
2813
2814 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
2815 struct kvm_run *kvm_run)
2816 {
2817 kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
2818 kvm_run->cr8 = kvm_get_cr8(vcpu);
2819 kvm_run->apic_base = kvm_get_apic_base(vcpu);
2820 if (irqchip_in_kernel(vcpu->kvm))
2821 kvm_run->ready_for_interrupt_injection = 1;
2822 else
2823 kvm_run->ready_for_interrupt_injection =
2824 (vcpu->arch.interrupt_window_open &&
2825 vcpu->arch.irq_summary == 0);
2826 }
2827
2828 static void vapic_enter(struct kvm_vcpu *vcpu)
2829 {
2830 struct kvm_lapic *apic = vcpu->arch.apic;
2831 struct page *page;
2832
2833 if (!apic || !apic->vapic_addr)
2834 return;
2835
2836 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2837
2838 vcpu->arch.apic->vapic_page = page;
2839 }
2840
2841 static void vapic_exit(struct kvm_vcpu *vcpu)
2842 {
2843 struct kvm_lapic *apic = vcpu->arch.apic;
2844
2845 if (!apic || !apic->vapic_addr)
2846 return;
2847
2848 down_read(&vcpu->kvm->slots_lock);
2849 kvm_release_page_dirty(apic->vapic_page);
2850 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2851 up_read(&vcpu->kvm->slots_lock);
2852 }
2853
2854 static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2855 {
2856 int r;
2857
2858 if (vcpu->requests)
2859 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
2860 kvm_mmu_unload(vcpu);
2861
2862 r = kvm_mmu_reload(vcpu);
2863 if (unlikely(r))
2864 goto out;
2865
2866 if (vcpu->requests) {
2867 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
2868 __kvm_migrate_timers(vcpu);
2869 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
2870 kvm_mmu_sync_roots(vcpu);
2871 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
2872 kvm_x86_ops->tlb_flush(vcpu);
2873 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
2874 &vcpu->requests)) {
2875 kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
2876 r = 0;
2877 goto out;
2878 }
2879 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
2880 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2881 r = 0;
2882 goto out;
2883 }
2884 }
2885
2886 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
2887 kvm_inject_pending_timer_irqs(vcpu);
2888
2889 preempt_disable();
2890
2891 kvm_x86_ops->prepare_guest_switch(vcpu);
2892 kvm_load_guest_fpu(vcpu);
2893
2894 local_irq_disable();
2895
2896 if (vcpu->requests || need_resched() || signal_pending(current)) {
2897 local_irq_enable();
2898 preempt_enable();
2899 r = 1;
2900 goto out;
2901 }
2902
2903 if (vcpu->guest_debug.enabled)
2904 kvm_x86_ops->guest_debug_pre(vcpu);
2905
2906 vcpu->guest_mode = 1;
2907 /*
2908 * Make sure that guest_mode assignment won't happen after
2909 * testing the pending IRQ vector bitmap.
2910 */
2911 smp_wmb();
2912
2913 if (vcpu->arch.exception.pending)
2914 __queue_exception(vcpu);
2915 else if (irqchip_in_kernel(vcpu->kvm))
2916 kvm_x86_ops->inject_pending_irq(vcpu);
2917 else
2918 kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
2919
2920 kvm_lapic_sync_to_vapic(vcpu);
2921
2922 up_read(&vcpu->kvm->slots_lock);
2923
2924 kvm_guest_enter();
2925
2926
2927 KVMTRACE_0D(VMENTRY, vcpu, entryexit);
2928 kvm_x86_ops->run(vcpu, kvm_run);
2929
2930 vcpu->guest_mode = 0;
2931 local_irq_enable();
2932
2933 ++vcpu->stat.exits;
2934
2935 /*
2936 * We must have an instruction between local_irq_enable() and
2937 * kvm_guest_exit(), so the timer interrupt isn't delayed by
2938 * the interrupt shadow. The stat.exits increment will do nicely.
2939 * But we need to prevent reordering, hence this barrier():
2940 */
2941 barrier();
2942
2943 kvm_guest_exit();
2944
2945 preempt_enable();
2946
2947 down_read(&vcpu->kvm->slots_lock);
2948
2949 /*
2950 * Profile KVM exit RIPs:
2951 */
2952 if (unlikely(prof_on == KVM_PROFILING)) {
2953 unsigned long rip = kvm_rip_read(vcpu);
2954 profile_hit(KVM_PROFILING, (void *)rip);
2955 }
2956
2957 if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
2958 vcpu->arch.exception.pending = false;
2959
2960 kvm_lapic_sync_from_vapic(vcpu);
2961
2962 r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
2963 out:
2964 return r;
2965 }
2966
2967 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2968 {
2969 int r;
2970
2971 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
2972 pr_debug("vcpu %d received sipi with vector # %x\n",
2973 vcpu->vcpu_id, vcpu->arch.sipi_vector);
2974 kvm_lapic_reset(vcpu);
2975 r = kvm_x86_ops->vcpu_reset(vcpu);
2976 if (r)
2977 return r;
2978 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
2979 }
2980
2981 down_read(&vcpu->kvm->slots_lock);
2982 vapic_enter(vcpu);
2983
2984 r = 1;
2985 while (r > 0) {
2986 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
2987 r = vcpu_enter_guest(vcpu, kvm_run);
2988 else {
2989 up_read(&vcpu->kvm->slots_lock);
2990 kvm_vcpu_block(vcpu);
2991 down_read(&vcpu->kvm->slots_lock);
2992 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
2993 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
2994 vcpu->arch.mp_state =
2995 KVM_MP_STATE_RUNNABLE;
2996 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
2997 r = -EINTR;
2998 }
2999
3000 if (r > 0) {
3001 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
3002 r = -EINTR;
3003 kvm_run->exit_reason = KVM_EXIT_INTR;
3004 ++vcpu->stat.request_irq_exits;
3005 }
3006 if (signal_pending(current)) {
3007 r = -EINTR;
3008 kvm_run->exit_reason = KVM_EXIT_INTR;
3009 ++vcpu->stat.signal_exits;
3010 }
3011 if (need_resched()) {
3012 up_read(&vcpu->kvm->slots_lock);
3013 kvm_resched(vcpu);
3014 down_read(&vcpu->kvm->slots_lock);
3015 }
3016 }
3017 }
3018
3019 up_read(&vcpu->kvm->slots_lock);
3020 post_kvm_run_save(vcpu, kvm_run);
3021
3022 vapic_exit(vcpu);
3023
3024 return r;
3025 }
3026
3027 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3028 {
3029 int r;
3030 sigset_t sigsaved;
3031
3032 vcpu_load(vcpu);
3033
3034 if (vcpu->sigset_active)
3035 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
3036
3037 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
3038 kvm_vcpu_block(vcpu);
3039 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
3040 r = -EAGAIN;
3041 goto out;
3042 }
3043
3044 /* re-sync apic's tpr */
3045 if (!irqchip_in_kernel(vcpu->kvm))
3046 kvm_set_cr8(vcpu, kvm_run->cr8);
3047
3048 if (vcpu->arch.pio.cur_count) {
3049 r = complete_pio(vcpu);
3050 if (r)
3051 goto out;
3052 }
3053 #if CONFIG_HAS_IOMEM
3054 if (vcpu->mmio_needed) {
3055 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
3056 vcpu->mmio_read_completed = 1;
3057 vcpu->mmio_needed = 0;
3058
3059 down_read(&vcpu->kvm->slots_lock);
3060 r = emulate_instruction(vcpu, kvm_run,
3061 vcpu->arch.mmio_fault_cr2, 0,
3062 EMULTYPE_NO_DECODE);
3063 up_read(&vcpu->kvm->slots_lock);
3064 if (r == EMULATE_DO_MMIO) {
3065 /*
3066 * Read-modify-write. Back to userspace.
3067 */
3068 r = 0;
3069 goto out;
3070 }
3071 }
3072 #endif
3073 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
3074 kvm_register_write(vcpu, VCPU_REGS_RAX,
3075 kvm_run->hypercall.ret);
3076
3077 r = __vcpu_run(vcpu, kvm_run);
3078
3079 out:
3080 if (vcpu->sigset_active)
3081 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
3082
3083 vcpu_put(vcpu);
3084 return r;
3085 }
3086
3087 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3088 {
3089 vcpu_load(vcpu);
3090
3091 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3092 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3093 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3094 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3095 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3096 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3097 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3098 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3099 #ifdef CONFIG_X86_64
3100 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
3101 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
3102 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
3103 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
3104 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
3105 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
3106 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
3107 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
3108 #endif
3109
3110 regs->rip = kvm_rip_read(vcpu);
3111 regs->rflags = kvm_x86_ops->get_rflags(vcpu);
3112
3113 /*
3114 * Don't leak debug flags in case they were set for guest debugging
3115 */
3116 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
3117 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
3118
3119 vcpu_put(vcpu);
3120
3121 return 0;
3122 }
3123
3124 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3125 {
3126 vcpu_load(vcpu);
3127
3128 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
3129 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
3130 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
3131 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
3132 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
3133 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
3134 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
3135 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
3136 #ifdef CONFIG_X86_64
3137 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
3138 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
3139 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
3140 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
3141 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
3142 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
3143 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
3144 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
3145
3146 #endif
3147
3148 kvm_rip_write(vcpu, regs->rip);
3149 kvm_x86_ops->set_rflags(vcpu, regs->rflags);
3150
3151
3152 vcpu->arch.exception.pending = false;
3153
3154 vcpu_put(vcpu);
3155
3156 return 0;
3157 }
3158
3159 void kvm_get_segment(struct kvm_vcpu *vcpu,
3160 struct kvm_segment *var, int seg)
3161 {
3162 kvm_x86_ops->get_segment(vcpu, var, seg);
3163 }
3164
3165 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3166 {
3167 struct kvm_segment cs;
3168
3169 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3170 *db = cs.db;
3171 *l = cs.l;
3172 }
3173 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3174
3175 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3176 struct kvm_sregs *sregs)
3177 {
3178 struct descriptor_table dt;
3179 int pending_vec;
3180
3181 vcpu_load(vcpu);
3182
3183 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3184 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3185 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3186 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3187 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3188 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3189
3190 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3191 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3192
3193 kvm_x86_ops->get_idt(vcpu, &dt);
3194 sregs->idt.limit = dt.limit;
3195 sregs->idt.base = dt.base;
3196 kvm_x86_ops->get_gdt(vcpu, &dt);
3197 sregs->gdt.limit = dt.limit;
3198 sregs->gdt.base = dt.base;
3199
3200 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3201 sregs->cr0 = vcpu->arch.cr0;
3202 sregs->cr2 = vcpu->arch.cr2;
3203 sregs->cr3 = vcpu->arch.cr3;
3204 sregs->cr4 = vcpu->arch.cr4;
3205 sregs->cr8 = kvm_get_cr8(vcpu);
3206 sregs->efer = vcpu->arch.shadow_efer;
3207 sregs->apic_base = kvm_get_apic_base(vcpu);
3208
3209 if (irqchip_in_kernel(vcpu->kvm)) {
3210 memset(sregs->interrupt_bitmap, 0,
3211 sizeof sregs->interrupt_bitmap);
3212 pending_vec = kvm_x86_ops->get_irq(vcpu);
3213 if (pending_vec >= 0)
3214 set_bit(pending_vec,
3215 (unsigned long *)sregs->interrupt_bitmap);
3216 } else
3217 memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
3218 sizeof sregs->interrupt_bitmap);
3219
3220 vcpu_put(vcpu);
3221
3222 return 0;
3223 }
3224
3225 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3226 struct kvm_mp_state *mp_state)
3227 {
3228 vcpu_load(vcpu);
3229 mp_state->mp_state = vcpu->arch.mp_state;
3230 vcpu_put(vcpu);
3231 return 0;
3232 }
3233
3234 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3235 struct kvm_mp_state *mp_state)
3236 {
3237 vcpu_load(vcpu);
3238 vcpu->arch.mp_state = mp_state->mp_state;
3239 vcpu_put(vcpu);
3240 return 0;
3241 }
3242
3243 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3244 struct kvm_segment *var, int seg)
3245 {
3246 kvm_x86_ops->set_segment(vcpu, var, seg);
3247 }
3248
3249 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
3250 struct kvm_segment *kvm_desct)
3251 {
3252 kvm_desct->base = seg_desc->base0;
3253 kvm_desct->base |= seg_desc->base1 << 16;
3254 kvm_desct->base |= seg_desc->base2 << 24;
3255 kvm_desct->limit = seg_desc->limit0;
3256 kvm_desct->limit |= seg_desc->limit << 16;
3257 if (seg_desc->g) {
3258 kvm_desct->limit <<= 12;
3259 kvm_desct->limit |= 0xfff;
3260 }
3261 kvm_desct->selector = selector;
3262 kvm_desct->type = seg_desc->type;
3263 kvm_desct->present = seg_desc->p;
3264 kvm_desct->dpl = seg_desc->dpl;
3265 kvm_desct->db = seg_desc->d;
3266 kvm_desct->s = seg_desc->s;
3267 kvm_desct->l = seg_desc->l;
3268 kvm_desct->g = seg_desc->g;
3269 kvm_desct->avl = seg_desc->avl;
3270 if (!selector)
3271 kvm_desct->unusable = 1;
3272 else
3273 kvm_desct->unusable = 0;
3274 kvm_desct->padding = 0;
3275 }
3276
3277 static void get_segment_descritptor_dtable(struct kvm_vcpu *vcpu,
3278 u16 selector,
3279 struct descriptor_table *dtable)
3280 {
3281 if (selector & 1 << 2) {
3282 struct kvm_segment kvm_seg;
3283
3284 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
3285
3286 if (kvm_seg.unusable)
3287 dtable->limit = 0;
3288 else
3289 dtable->limit = kvm_seg.limit;
3290 dtable->base = kvm_seg.base;
3291 }
3292 else
3293 kvm_x86_ops->get_gdt(vcpu, dtable);
3294 }
3295
3296 /* allowed just for 8 bytes segments */
3297 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3298 struct desc_struct *seg_desc)
3299 {
3300 gpa_t gpa;
3301 struct descriptor_table dtable;
3302 u16 index = selector >> 3;
3303
3304 get_segment_descritptor_dtable(vcpu, selector, &dtable);
3305
3306 if (dtable.limit < index * 8 + 7) {
3307 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
3308 return 1;
3309 }
3310 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3311 gpa += index * 8;
3312 return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
3313 }
3314
3315 /* allowed just for 8 bytes segments */
3316 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3317 struct desc_struct *seg_desc)
3318 {
3319 gpa_t gpa;
3320 struct descriptor_table dtable;
3321 u16 index = selector >> 3;
3322
3323 get_segment_descritptor_dtable(vcpu, selector, &dtable);
3324
3325 if (dtable.limit < index * 8 + 7)
3326 return 1;
3327 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3328 gpa += index * 8;
3329 return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
3330 }
3331
3332 static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
3333 struct desc_struct *seg_desc)
3334 {
3335 u32 base_addr;
3336
3337 base_addr = seg_desc->base0;
3338 base_addr |= (seg_desc->base1 << 16);
3339 base_addr |= (seg_desc->base2 << 24);
3340
3341 return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
3342 }
3343
3344 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
3345 {
3346 struct kvm_segment kvm_seg;
3347
3348 kvm_get_segment(vcpu, &kvm_seg, seg);
3349 return kvm_seg.selector;
3350 }
3351
3352 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
3353 u16 selector,
3354 struct kvm_segment *kvm_seg)
3355 {
3356 struct desc_struct seg_desc;
3357
3358 if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
3359 return 1;
3360 seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
3361 return 0;
3362 }
3363
3364 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
3365 {
3366 struct kvm_segment segvar = {
3367 .base = selector << 4,
3368 .limit = 0xffff,
3369 .selector = selector,
3370 .type = 3,
3371 .present = 1,
3372 .dpl = 3,
3373 .db = 0,
3374 .s = 1,
3375 .l = 0,
3376 .g = 0,
3377 .avl = 0,
3378 .unusable = 0,
3379 };
3380 kvm_x86_ops->set_segment(vcpu, &segvar, seg);
3381 return 0;
3382 }
3383
3384 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3385 int type_bits, int seg)
3386 {
3387 struct kvm_segment kvm_seg;
3388
3389 if (!(vcpu->arch.cr0 & X86_CR0_PE))
3390 return kvm_load_realmode_segment(vcpu, selector, seg);
3391 if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
3392 return 1;
3393 kvm_seg.type |= type_bits;
3394
3395 if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
3396 seg != VCPU_SREG_LDTR)
3397 if (!kvm_seg.s)
3398 kvm_seg.unusable = 1;
3399
3400 kvm_set_segment(vcpu, &kvm_seg, seg);
3401 return 0;
3402 }
3403
3404 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
3405 struct tss_segment_32 *tss)
3406 {
3407 tss->cr3 = vcpu->arch.cr3;
3408 tss->eip = kvm_rip_read(vcpu);
3409 tss->eflags = kvm_x86_ops->get_rflags(vcpu);
3410 tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3411 tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3412 tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3413 tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3414 tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3415 tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3416 tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3417 tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3418 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3419 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3420 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3421 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3422 tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
3423 tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
3424 tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3425 tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3426 }
3427
3428 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
3429 struct tss_segment_32 *tss)
3430 {
3431 kvm_set_cr3(vcpu, tss->cr3);
3432
3433 kvm_rip_write(vcpu, tss->eip);
3434 kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
3435
3436 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
3437 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
3438 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
3439 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
3440 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
3441 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
3442 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
3443 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
3444
3445 if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
3446 return 1;
3447
3448 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3449 return 1;
3450
3451 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3452 return 1;
3453
3454 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3455 return 1;
3456
3457 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3458 return 1;
3459
3460 if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
3461 return 1;
3462
3463 if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
3464 return 1;
3465 return 0;
3466 }
3467
3468 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
3469 struct tss_segment_16 *tss)
3470 {
3471 tss->ip = kvm_rip_read(vcpu);
3472 tss->flag = kvm_x86_ops->get_rflags(vcpu);
3473 tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3474 tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3475 tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3476 tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3477 tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3478 tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3479 tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
3480 tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
3481
3482 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3483 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3484 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3485 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3486 tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3487 tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3488 }
3489
3490 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
3491 struct tss_segment_16 *tss)
3492 {
3493 kvm_rip_write(vcpu, tss->ip);
3494 kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
3495 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
3496 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
3497 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
3498 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
3499 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
3500 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
3501 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
3502 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
3503
3504 if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
3505 return 1;
3506
3507 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3508 return 1;
3509
3510 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3511 return 1;
3512
3513 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3514 return 1;
3515
3516 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3517 return 1;
3518 return 0;
3519 }
3520
3521 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
3522 u32 old_tss_base,
3523 struct desc_struct *nseg_desc)
3524 {
3525 struct tss_segment_16 tss_segment_16;
3526 int ret = 0;
3527
3528 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3529 sizeof tss_segment_16))
3530 goto out;
3531
3532 save_state_to_tss16(vcpu, &tss_segment_16);
3533
3534 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3535 sizeof tss_segment_16))
3536 goto out;
3537
3538 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3539 &tss_segment_16, sizeof tss_segment_16))
3540 goto out;
3541
3542 if (load_state_from_tss16(vcpu, &tss_segment_16))
3543 goto out;
3544
3545 ret = 1;
3546 out:
3547 return ret;
3548 }
3549
3550 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
3551 u32 old_tss_base,
3552 struct desc_struct *nseg_desc)
3553 {
3554 struct tss_segment_32 tss_segment_32;
3555 int ret = 0;
3556
3557 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3558 sizeof tss_segment_32))
3559 goto out;
3560
3561 save_state_to_tss32(vcpu, &tss_segment_32);
3562
3563 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3564 sizeof tss_segment_32))
3565 goto out;
3566
3567 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3568 &tss_segment_32, sizeof tss_segment_32))
3569 goto out;
3570
3571 if (load_state_from_tss32(vcpu, &tss_segment_32))
3572 goto out;
3573
3574 ret = 1;
3575 out:
3576 return ret;
3577 }
3578
3579 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
3580 {
3581 struct kvm_segment tr_seg;
3582 struct desc_struct cseg_desc;
3583 struct desc_struct nseg_desc;
3584 int ret = 0;
3585 u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
3586 u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
3587
3588 old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
3589
3590 /* FIXME: Handle errors. Failure to read either TSS or their
3591 * descriptors should generate a pagefault.
3592 */
3593 if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
3594 goto out;
3595
3596 if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
3597 goto out;
3598
3599 if (reason != TASK_SWITCH_IRET) {
3600 int cpl;
3601
3602 cpl = kvm_x86_ops->get_cpl(vcpu);
3603 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
3604 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
3605 return 1;
3606 }
3607 }
3608
3609 if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
3610 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
3611 return 1;
3612 }
3613
3614 if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
3615 cseg_desc.type &= ~(1 << 1); //clear the B flag
3616 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
3617 }
3618
3619 if (reason == TASK_SWITCH_IRET) {
3620 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3621 kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
3622 }
3623
3624 kvm_x86_ops->skip_emulated_instruction(vcpu);
3625
3626 if (nseg_desc.type & 8)
3627 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_base,
3628 &nseg_desc);
3629 else
3630 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_base,
3631 &nseg_desc);
3632
3633 if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
3634 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3635 kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
3636 }
3637
3638 if (reason != TASK_SWITCH_IRET) {
3639 nseg_desc.type |= (1 << 1);
3640 save_guest_segment_descriptor(vcpu, tss_selector,
3641 &nseg_desc);
3642 }
3643
3644 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
3645 seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
3646 tr_seg.type = 11;
3647 kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
3648 out:
3649 return ret;
3650 }
3651 EXPORT_SYMBOL_GPL(kvm_task_switch);
3652
3653 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
3654 struct kvm_sregs *sregs)
3655 {
3656 int mmu_reset_needed = 0;
3657 int i, pending_vec, max_bits;
3658 struct descriptor_table dt;
3659
3660 vcpu_load(vcpu);
3661
3662 dt.limit = sregs->idt.limit;
3663 dt.base = sregs->idt.base;
3664 kvm_x86_ops->set_idt(vcpu, &dt);
3665 dt.limit = sregs->gdt.limit;
3666 dt.base = sregs->gdt.base;
3667 kvm_x86_ops->set_gdt(vcpu, &dt);
3668
3669 vcpu->arch.cr2 = sregs->cr2;
3670 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
3671 vcpu->arch.cr3 = sregs->cr3;
3672
3673 kvm_set_cr8(vcpu, sregs->cr8);
3674
3675 mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
3676 kvm_x86_ops->set_efer(vcpu, sregs->efer);
3677 kvm_set_apic_base(vcpu, sregs->apic_base);
3678
3679 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3680
3681 mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
3682 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
3683 vcpu->arch.cr0 = sregs->cr0;
3684
3685 mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
3686 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
3687 if (!is_long_mode(vcpu) && is_pae(vcpu))
3688 load_pdptrs(vcpu, vcpu->arch.cr3);
3689
3690 if (mmu_reset_needed)
3691 kvm_mmu_reset_context(vcpu);
3692
3693 if (!irqchip_in_kernel(vcpu->kvm)) {
3694 memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
3695 sizeof vcpu->arch.irq_pending);
3696 vcpu->arch.irq_summary = 0;
3697 for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
3698 if (vcpu->arch.irq_pending[i])
3699 __set_bit(i, &vcpu->arch.irq_summary);
3700 } else {
3701 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
3702 pending_vec = find_first_bit(
3703 (const unsigned long *)sregs->interrupt_bitmap,
3704 max_bits);
3705 /* Only pending external irq is handled here */
3706 if (pending_vec < max_bits) {
3707 kvm_x86_ops->set_irq(vcpu, pending_vec);
3708 pr_debug("Set back pending irq %d\n",
3709 pending_vec);
3710 }
3711 kvm_pic_clear_isr_ack(vcpu->kvm);
3712 }
3713
3714 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3715 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3716 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3717 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3718 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3719 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3720
3721 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3722 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3723
3724 /* Older userspace won't unhalt the vcpu on reset. */
3725 if (vcpu->vcpu_id == 0 && kvm_rip_read(vcpu) == 0xfff0 &&
3726 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
3727 !(vcpu->arch.cr0 & X86_CR0_PE))
3728 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3729
3730 vcpu_put(vcpu);
3731
3732 return 0;
3733 }
3734
3735 int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
3736 struct kvm_debug_guest *dbg)
3737 {
3738 int r;
3739
3740 vcpu_load(vcpu);
3741
3742 r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
3743
3744 vcpu_put(vcpu);
3745
3746 return r;
3747 }
3748
3749 /*
3750 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
3751 * we have asm/x86/processor.h
3752 */
3753 struct fxsave {
3754 u16 cwd;
3755 u16 swd;
3756 u16 twd;
3757 u16 fop;
3758 u64 rip;
3759 u64 rdp;
3760 u32 mxcsr;
3761 u32 mxcsr_mask;
3762 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
3763 #ifdef CONFIG_X86_64
3764 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
3765 #else
3766 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
3767 #endif
3768 };
3769
3770 /*
3771 * Translate a guest virtual address to a guest physical address.
3772 */
3773 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
3774 struct kvm_translation *tr)
3775 {
3776 unsigned long vaddr = tr->linear_address;
3777 gpa_t gpa;
3778
3779 vcpu_load(vcpu);
3780 down_read(&vcpu->kvm->slots_lock);
3781 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
3782 up_read(&vcpu->kvm->slots_lock);
3783 tr->physical_address = gpa;
3784 tr->valid = gpa != UNMAPPED_GVA;
3785 tr->writeable = 1;
3786 tr->usermode = 0;
3787 vcpu_put(vcpu);
3788
3789 return 0;
3790 }
3791
3792 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
3793 {
3794 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3795
3796 vcpu_load(vcpu);
3797
3798 memcpy(fpu->fpr, fxsave->st_space, 128);
3799 fpu->fcw = fxsave->cwd;
3800 fpu->fsw = fxsave->swd;
3801 fpu->ftwx = fxsave->twd;
3802 fpu->last_opcode = fxsave->fop;
3803 fpu->last_ip = fxsave->rip;
3804 fpu->last_dp = fxsave->rdp;
3805 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
3806
3807 vcpu_put(vcpu);
3808
3809 return 0;
3810 }
3811
3812 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
3813 {
3814 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3815
3816 vcpu_load(vcpu);
3817
3818 memcpy(fxsave->st_space, fpu->fpr, 128);
3819 fxsave->cwd = fpu->fcw;
3820 fxsave->swd = fpu->fsw;
3821 fxsave->twd = fpu->ftwx;
3822 fxsave->fop = fpu->last_opcode;
3823 fxsave->rip = fpu->last_ip;
3824 fxsave->rdp = fpu->last_dp;
3825 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
3826
3827 vcpu_put(vcpu);
3828
3829 return 0;
3830 }
3831
3832 void fx_init(struct kvm_vcpu *vcpu)
3833 {
3834 unsigned after_mxcsr_mask;
3835
3836 /*
3837 * Touch the fpu the first time in non atomic context as if
3838 * this is the first fpu instruction the exception handler
3839 * will fire before the instruction returns and it'll have to
3840 * allocate ram with GFP_KERNEL.
3841 */
3842 if (!used_math())
3843 kvm_fx_save(&vcpu->arch.host_fx_image);
3844
3845 /* Initialize guest FPU by resetting ours and saving into guest's */
3846 preempt_disable();
3847 kvm_fx_save(&vcpu->arch.host_fx_image);
3848 kvm_fx_finit();
3849 kvm_fx_save(&vcpu->arch.guest_fx_image);
3850 kvm_fx_restore(&vcpu->arch.host_fx_image);
3851 preempt_enable();
3852
3853 vcpu->arch.cr0 |= X86_CR0_ET;
3854 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
3855 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
3856 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
3857 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
3858 }
3859 EXPORT_SYMBOL_GPL(fx_init);
3860
3861 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
3862 {
3863 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
3864 return;
3865
3866 vcpu->guest_fpu_loaded = 1;
3867 kvm_fx_save(&vcpu->arch.host_fx_image);
3868 kvm_fx_restore(&vcpu->arch.guest_fx_image);
3869 }
3870 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
3871
3872 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
3873 {
3874 if (!vcpu->guest_fpu_loaded)
3875 return;
3876
3877 vcpu->guest_fpu_loaded = 0;
3878 kvm_fx_save(&vcpu->arch.guest_fx_image);
3879 kvm_fx_restore(&vcpu->arch.host_fx_image);
3880 ++vcpu->stat.fpu_reload;
3881 }
3882 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
3883
3884 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
3885 {
3886 kvm_x86_ops->vcpu_free(vcpu);
3887 }
3888
3889 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
3890 unsigned int id)
3891 {
3892 return kvm_x86_ops->vcpu_create(kvm, id);
3893 }
3894
3895 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
3896 {
3897 int r;
3898
3899 /* We do fxsave: this must be aligned. */
3900 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
3901
3902 vcpu_load(vcpu);
3903 r = kvm_arch_vcpu_reset(vcpu);
3904 if (r == 0)
3905 r = kvm_mmu_setup(vcpu);
3906 vcpu_put(vcpu);
3907 if (r < 0)
3908 goto free_vcpu;
3909
3910 return 0;
3911 free_vcpu:
3912 kvm_x86_ops->vcpu_free(vcpu);
3913 return r;
3914 }
3915
3916 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
3917 {
3918 vcpu_load(vcpu);
3919 kvm_mmu_unload(vcpu);
3920 vcpu_put(vcpu);
3921
3922 kvm_x86_ops->vcpu_free(vcpu);
3923 }
3924
3925 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
3926 {
3927 return kvm_x86_ops->vcpu_reset(vcpu);
3928 }
3929
3930 void kvm_arch_hardware_enable(void *garbage)
3931 {
3932 kvm_x86_ops->hardware_enable(garbage);
3933 }
3934
3935 void kvm_arch_hardware_disable(void *garbage)
3936 {
3937 kvm_x86_ops->hardware_disable(garbage);
3938 }
3939
3940 int kvm_arch_hardware_setup(void)
3941 {
3942 return kvm_x86_ops->hardware_setup();
3943 }
3944
3945 void kvm_arch_hardware_unsetup(void)
3946 {
3947 kvm_x86_ops->hardware_unsetup();
3948 }
3949
3950 void kvm_arch_check_processor_compat(void *rtn)
3951 {
3952 kvm_x86_ops->check_processor_compatibility(rtn);
3953 }
3954
3955 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
3956 {
3957 struct page *page;
3958 struct kvm *kvm;
3959 int r;
3960
3961 BUG_ON(vcpu->kvm == NULL);
3962 kvm = vcpu->kvm;
3963
3964 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3965 if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
3966 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3967 else
3968 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
3969
3970 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3971 if (!page) {
3972 r = -ENOMEM;
3973 goto fail;
3974 }
3975 vcpu->arch.pio_data = page_address(page);
3976
3977 r = kvm_mmu_create(vcpu);
3978 if (r < 0)
3979 goto fail_free_pio_data;
3980
3981 if (irqchip_in_kernel(kvm)) {
3982 r = kvm_create_lapic(vcpu);
3983 if (r < 0)
3984 goto fail_mmu_destroy;
3985 }
3986
3987 return 0;
3988
3989 fail_mmu_destroy:
3990 kvm_mmu_destroy(vcpu);
3991 fail_free_pio_data:
3992 free_page((unsigned long)vcpu->arch.pio_data);
3993 fail:
3994 return r;
3995 }
3996
3997 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
3998 {
3999 kvm_free_lapic(vcpu);
4000 down_read(&vcpu->kvm->slots_lock);
4001 kvm_mmu_destroy(vcpu);
4002 up_read(&vcpu->kvm->slots_lock);
4003 free_page((unsigned long)vcpu->arch.pio_data);
4004 }
4005
4006 struct kvm *kvm_arch_create_vm(void)
4007 {
4008 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
4009
4010 if (!kvm)
4011 return ERR_PTR(-ENOMEM);
4012
4013 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
4014 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
4015
4016 return kvm;
4017 }
4018
4019 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
4020 {
4021 vcpu_load(vcpu);
4022 kvm_mmu_unload(vcpu);
4023 vcpu_put(vcpu);
4024 }
4025
4026 static void kvm_free_vcpus(struct kvm *kvm)
4027 {
4028 unsigned int i;
4029
4030 /*
4031 * Unpin any mmu pages first.
4032 */
4033 for (i = 0; i < KVM_MAX_VCPUS; ++i)
4034 if (kvm->vcpus[i])
4035 kvm_unload_vcpu_mmu(kvm->vcpus[i]);
4036 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
4037 if (kvm->vcpus[i]) {
4038 kvm_arch_vcpu_free(kvm->vcpus[i]);
4039 kvm->vcpus[i] = NULL;
4040 }
4041 }
4042
4043 }
4044
4045 void kvm_arch_destroy_vm(struct kvm *kvm)
4046 {
4047 kvm_iommu_unmap_guest(kvm);
4048 kvm_free_all_assigned_devices(kvm);
4049 kvm_free_pit(kvm);
4050 kfree(kvm->arch.vpic);
4051 kfree(kvm->arch.vioapic);
4052 kvm_free_vcpus(kvm);
4053 kvm_free_physmem(kvm);
4054 if (kvm->arch.apic_access_page)
4055 put_page(kvm->arch.apic_access_page);
4056 if (kvm->arch.ept_identity_pagetable)
4057 put_page(kvm->arch.ept_identity_pagetable);
4058 kfree(kvm);
4059 }
4060
4061 int kvm_arch_set_memory_region(struct kvm *kvm,
4062 struct kvm_userspace_memory_region *mem,
4063 struct kvm_memory_slot old,
4064 int user_alloc)
4065 {
4066 int npages = mem->memory_size >> PAGE_SHIFT;
4067 struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
4068
4069 /*To keep backward compatibility with older userspace,
4070 *x86 needs to hanlde !user_alloc case.
4071 */
4072 if (!user_alloc) {
4073 if (npages && !old.rmap) {
4074 unsigned long userspace_addr;
4075
4076 down_write(&current->mm->mmap_sem);
4077 userspace_addr = do_mmap(NULL, 0,
4078 npages * PAGE_SIZE,
4079 PROT_READ | PROT_WRITE,
4080 MAP_PRIVATE | MAP_ANONYMOUS,
4081 0);
4082 up_write(&current->mm->mmap_sem);
4083
4084 if (IS_ERR((void *)userspace_addr))
4085 return PTR_ERR((void *)userspace_addr);
4086
4087 /* set userspace_addr atomically for kvm_hva_to_rmapp */
4088 spin_lock(&kvm->mmu_lock);
4089 memslot->userspace_addr = userspace_addr;
4090 spin_unlock(&kvm->mmu_lock);
4091 } else {
4092 if (!old.user_alloc && old.rmap) {
4093 int ret;
4094
4095 down_write(&current->mm->mmap_sem);
4096 ret = do_munmap(current->mm, old.userspace_addr,
4097 old.npages * PAGE_SIZE);
4098 up_write(&current->mm->mmap_sem);
4099 if (ret < 0)
4100 printk(KERN_WARNING
4101 "kvm_vm_ioctl_set_memory_region: "
4102 "failed to munmap memory\n");
4103 }
4104 }
4105 }
4106
4107 if (!kvm->arch.n_requested_mmu_pages) {
4108 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
4109 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
4110 }
4111
4112 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
4113 kvm_flush_remote_tlbs(kvm);
4114
4115 return 0;
4116 }
4117
4118 void kvm_arch_flush_shadow(struct kvm *kvm)
4119 {
4120 kvm_mmu_zap_all(kvm);
4121 }
4122
4123 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
4124 {
4125 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
4126 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED;
4127 }
4128
4129 static void vcpu_kick_intr(void *info)
4130 {
4131 #ifdef DEBUG
4132 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
4133 printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
4134 #endif
4135 }
4136
4137 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
4138 {
4139 int ipi_pcpu = vcpu->cpu;
4140 int cpu = get_cpu();
4141
4142 if (waitqueue_active(&vcpu->wq)) {
4143 wake_up_interruptible(&vcpu->wq);
4144 ++vcpu->stat.halt_wakeup;
4145 }
4146 /*
4147 * We may be called synchronously with irqs disabled in guest mode,
4148 * So need not to call smp_call_function_single() in that case.
4149 */
4150 if (vcpu->guest_mode && vcpu->cpu != cpu)
4151 smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
4152 put_cpu();
4153 }
This page took 0.114966 seconds and 5 git commands to generate.