KVM: Add save/restore supporting of in kernel PIT
[deliverable/linux.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 *
8 * Authors:
9 * Avi Kivity <avi@qumranet.com>
10 * Yaniv Kamay <yaniv@qumranet.com>
11 *
12 * This work is licensed under the terms of the GNU GPL, version 2. See
13 * the COPYING file in the top-level directory.
14 *
15 */
16
17 #include <linux/kvm_host.h>
18 #include "irq.h"
19 #include "mmu.h"
20 #include "i8254.h"
21
22 #include <linux/clocksource.h>
23 #include <linux/kvm.h>
24 #include <linux/fs.h>
25 #include <linux/vmalloc.h>
26 #include <linux/module.h>
27 #include <linux/mman.h>
28 #include <linux/highmem.h>
29
30 #include <asm/uaccess.h>
31 #include <asm/msr.h>
32 #include <asm/desc.h>
33
34 #define MAX_IO_MSRS 256
35 #define CR0_RESERVED_BITS \
36 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
37 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
38 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
39 #define CR4_RESERVED_BITS \
40 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
41 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
42 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
43 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
44
45 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
46 /* EFER defaults:
47 * - enable syscall per default because its emulated by KVM
48 * - enable LME and LMA per default on 64 bit KVM
49 */
50 #ifdef CONFIG_X86_64
51 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
52 #else
53 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
54 #endif
55
56 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
57 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
58
59 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
60 struct kvm_cpuid_entry2 __user *entries);
61
62 struct kvm_x86_ops *kvm_x86_ops;
63
64 struct kvm_stats_debugfs_item debugfs_entries[] = {
65 { "pf_fixed", VCPU_STAT(pf_fixed) },
66 { "pf_guest", VCPU_STAT(pf_guest) },
67 { "tlb_flush", VCPU_STAT(tlb_flush) },
68 { "invlpg", VCPU_STAT(invlpg) },
69 { "exits", VCPU_STAT(exits) },
70 { "io_exits", VCPU_STAT(io_exits) },
71 { "mmio_exits", VCPU_STAT(mmio_exits) },
72 { "signal_exits", VCPU_STAT(signal_exits) },
73 { "irq_window", VCPU_STAT(irq_window_exits) },
74 { "halt_exits", VCPU_STAT(halt_exits) },
75 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
76 { "hypercalls", VCPU_STAT(hypercalls) },
77 { "request_irq", VCPU_STAT(request_irq_exits) },
78 { "irq_exits", VCPU_STAT(irq_exits) },
79 { "host_state_reload", VCPU_STAT(host_state_reload) },
80 { "efer_reload", VCPU_STAT(efer_reload) },
81 { "fpu_reload", VCPU_STAT(fpu_reload) },
82 { "insn_emulation", VCPU_STAT(insn_emulation) },
83 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
84 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
85 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
86 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
87 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
88 { "mmu_flooded", VM_STAT(mmu_flooded) },
89 { "mmu_recycled", VM_STAT(mmu_recycled) },
90 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
91 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
92 { "largepages", VM_STAT(lpages) },
93 { NULL }
94 };
95
96
97 unsigned long segment_base(u16 selector)
98 {
99 struct descriptor_table gdt;
100 struct desc_struct *d;
101 unsigned long table_base;
102 unsigned long v;
103
104 if (selector == 0)
105 return 0;
106
107 asm("sgdt %0" : "=m"(gdt));
108 table_base = gdt.base;
109
110 if (selector & 4) { /* from ldt */
111 u16 ldt_selector;
112
113 asm("sldt %0" : "=g"(ldt_selector));
114 table_base = segment_base(ldt_selector);
115 }
116 d = (struct desc_struct *)(table_base + (selector & ~7));
117 v = d->base0 | ((unsigned long)d->base1 << 16) |
118 ((unsigned long)d->base2 << 24);
119 #ifdef CONFIG_X86_64
120 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
121 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
122 #endif
123 return v;
124 }
125 EXPORT_SYMBOL_GPL(segment_base);
126
127 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
128 {
129 if (irqchip_in_kernel(vcpu->kvm))
130 return vcpu->arch.apic_base;
131 else
132 return vcpu->arch.apic_base;
133 }
134 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
135
136 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
137 {
138 /* TODO: reserve bits check */
139 if (irqchip_in_kernel(vcpu->kvm))
140 kvm_lapic_set_base(vcpu, data);
141 else
142 vcpu->arch.apic_base = data;
143 }
144 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
145
146 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
147 {
148 WARN_ON(vcpu->arch.exception.pending);
149 vcpu->arch.exception.pending = true;
150 vcpu->arch.exception.has_error_code = false;
151 vcpu->arch.exception.nr = nr;
152 }
153 EXPORT_SYMBOL_GPL(kvm_queue_exception);
154
155 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
156 u32 error_code)
157 {
158 ++vcpu->stat.pf_guest;
159 if (vcpu->arch.exception.pending) {
160 if (vcpu->arch.exception.nr == PF_VECTOR) {
161 printk(KERN_DEBUG "kvm: inject_page_fault:"
162 " double fault 0x%lx\n", addr);
163 vcpu->arch.exception.nr = DF_VECTOR;
164 vcpu->arch.exception.error_code = 0;
165 } else if (vcpu->arch.exception.nr == DF_VECTOR) {
166 /* triple fault -> shutdown */
167 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
168 }
169 return;
170 }
171 vcpu->arch.cr2 = addr;
172 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
173 }
174
175 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
176 {
177 WARN_ON(vcpu->arch.exception.pending);
178 vcpu->arch.exception.pending = true;
179 vcpu->arch.exception.has_error_code = true;
180 vcpu->arch.exception.nr = nr;
181 vcpu->arch.exception.error_code = error_code;
182 }
183 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
184
185 static void __queue_exception(struct kvm_vcpu *vcpu)
186 {
187 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
188 vcpu->arch.exception.has_error_code,
189 vcpu->arch.exception.error_code);
190 }
191
192 /*
193 * Load the pae pdptrs. Return true is they are all valid.
194 */
195 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
196 {
197 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
198 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
199 int i;
200 int ret;
201 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
202
203 down_read(&vcpu->kvm->slots_lock);
204 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
205 offset * sizeof(u64), sizeof(pdpte));
206 if (ret < 0) {
207 ret = 0;
208 goto out;
209 }
210 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
211 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
212 ret = 0;
213 goto out;
214 }
215 }
216 ret = 1;
217
218 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
219 out:
220 up_read(&vcpu->kvm->slots_lock);
221
222 return ret;
223 }
224 EXPORT_SYMBOL_GPL(load_pdptrs);
225
226 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
227 {
228 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
229 bool changed = true;
230 int r;
231
232 if (is_long_mode(vcpu) || !is_pae(vcpu))
233 return false;
234
235 down_read(&vcpu->kvm->slots_lock);
236 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
237 if (r < 0)
238 goto out;
239 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
240 out:
241 up_read(&vcpu->kvm->slots_lock);
242
243 return changed;
244 }
245
246 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
247 {
248 if (cr0 & CR0_RESERVED_BITS) {
249 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
250 cr0, vcpu->arch.cr0);
251 kvm_inject_gp(vcpu, 0);
252 return;
253 }
254
255 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
256 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
257 kvm_inject_gp(vcpu, 0);
258 return;
259 }
260
261 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
262 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
263 "and a clear PE flag\n");
264 kvm_inject_gp(vcpu, 0);
265 return;
266 }
267
268 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
269 #ifdef CONFIG_X86_64
270 if ((vcpu->arch.shadow_efer & EFER_LME)) {
271 int cs_db, cs_l;
272
273 if (!is_pae(vcpu)) {
274 printk(KERN_DEBUG "set_cr0: #GP, start paging "
275 "in long mode while PAE is disabled\n");
276 kvm_inject_gp(vcpu, 0);
277 return;
278 }
279 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
280 if (cs_l) {
281 printk(KERN_DEBUG "set_cr0: #GP, start paging "
282 "in long mode while CS.L == 1\n");
283 kvm_inject_gp(vcpu, 0);
284 return;
285
286 }
287 } else
288 #endif
289 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
290 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
291 "reserved bits\n");
292 kvm_inject_gp(vcpu, 0);
293 return;
294 }
295
296 }
297
298 kvm_x86_ops->set_cr0(vcpu, cr0);
299 vcpu->arch.cr0 = cr0;
300
301 kvm_mmu_reset_context(vcpu);
302 return;
303 }
304 EXPORT_SYMBOL_GPL(kvm_set_cr0);
305
306 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
307 {
308 kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
309 }
310 EXPORT_SYMBOL_GPL(kvm_lmsw);
311
312 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
313 {
314 if (cr4 & CR4_RESERVED_BITS) {
315 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
316 kvm_inject_gp(vcpu, 0);
317 return;
318 }
319
320 if (is_long_mode(vcpu)) {
321 if (!(cr4 & X86_CR4_PAE)) {
322 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
323 "in long mode\n");
324 kvm_inject_gp(vcpu, 0);
325 return;
326 }
327 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
328 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
329 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
330 kvm_inject_gp(vcpu, 0);
331 return;
332 }
333
334 if (cr4 & X86_CR4_VMXE) {
335 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
336 kvm_inject_gp(vcpu, 0);
337 return;
338 }
339 kvm_x86_ops->set_cr4(vcpu, cr4);
340 vcpu->arch.cr4 = cr4;
341 kvm_mmu_reset_context(vcpu);
342 }
343 EXPORT_SYMBOL_GPL(kvm_set_cr4);
344
345 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
346 {
347 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
348 kvm_mmu_flush_tlb(vcpu);
349 return;
350 }
351
352 if (is_long_mode(vcpu)) {
353 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
354 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
355 kvm_inject_gp(vcpu, 0);
356 return;
357 }
358 } else {
359 if (is_pae(vcpu)) {
360 if (cr3 & CR3_PAE_RESERVED_BITS) {
361 printk(KERN_DEBUG
362 "set_cr3: #GP, reserved bits\n");
363 kvm_inject_gp(vcpu, 0);
364 return;
365 }
366 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
367 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
368 "reserved bits\n");
369 kvm_inject_gp(vcpu, 0);
370 return;
371 }
372 }
373 /*
374 * We don't check reserved bits in nonpae mode, because
375 * this isn't enforced, and VMware depends on this.
376 */
377 }
378
379 down_read(&vcpu->kvm->slots_lock);
380 /*
381 * Does the new cr3 value map to physical memory? (Note, we
382 * catch an invalid cr3 even in real-mode, because it would
383 * cause trouble later on when we turn on paging anyway.)
384 *
385 * A real CPU would silently accept an invalid cr3 and would
386 * attempt to use it - with largely undefined (and often hard
387 * to debug) behavior on the guest side.
388 */
389 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
390 kvm_inject_gp(vcpu, 0);
391 else {
392 vcpu->arch.cr3 = cr3;
393 vcpu->arch.mmu.new_cr3(vcpu);
394 }
395 up_read(&vcpu->kvm->slots_lock);
396 }
397 EXPORT_SYMBOL_GPL(kvm_set_cr3);
398
399 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
400 {
401 if (cr8 & CR8_RESERVED_BITS) {
402 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
403 kvm_inject_gp(vcpu, 0);
404 return;
405 }
406 if (irqchip_in_kernel(vcpu->kvm))
407 kvm_lapic_set_tpr(vcpu, cr8);
408 else
409 vcpu->arch.cr8 = cr8;
410 }
411 EXPORT_SYMBOL_GPL(kvm_set_cr8);
412
413 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
414 {
415 if (irqchip_in_kernel(vcpu->kvm))
416 return kvm_lapic_get_cr8(vcpu);
417 else
418 return vcpu->arch.cr8;
419 }
420 EXPORT_SYMBOL_GPL(kvm_get_cr8);
421
422 /*
423 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
424 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
425 *
426 * This list is modified at module load time to reflect the
427 * capabilities of the host cpu.
428 */
429 static u32 msrs_to_save[] = {
430 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
431 MSR_K6_STAR,
432 #ifdef CONFIG_X86_64
433 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
434 #endif
435 MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
436 MSR_IA32_PERF_STATUS,
437 };
438
439 static unsigned num_msrs_to_save;
440
441 static u32 emulated_msrs[] = {
442 MSR_IA32_MISC_ENABLE,
443 };
444
445 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
446 {
447 if (efer & efer_reserved_bits) {
448 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
449 efer);
450 kvm_inject_gp(vcpu, 0);
451 return;
452 }
453
454 if (is_paging(vcpu)
455 && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
456 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
457 kvm_inject_gp(vcpu, 0);
458 return;
459 }
460
461 kvm_x86_ops->set_efer(vcpu, efer);
462
463 efer &= ~EFER_LMA;
464 efer |= vcpu->arch.shadow_efer & EFER_LMA;
465
466 vcpu->arch.shadow_efer = efer;
467 }
468
469 void kvm_enable_efer_bits(u64 mask)
470 {
471 efer_reserved_bits &= ~mask;
472 }
473 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
474
475
476 /*
477 * Writes msr value into into the appropriate "register".
478 * Returns 0 on success, non-0 otherwise.
479 * Assumes vcpu_load() was already called.
480 */
481 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
482 {
483 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
484 }
485
486 /*
487 * Adapt set_msr() to msr_io()'s calling convention
488 */
489 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
490 {
491 return kvm_set_msr(vcpu, index, *data);
492 }
493
494 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
495 {
496 static int version;
497 struct kvm_wall_clock wc;
498 struct timespec wc_ts;
499
500 if (!wall_clock)
501 return;
502
503 version++;
504
505 down_read(&kvm->slots_lock);
506 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
507
508 wc_ts = current_kernel_time();
509 wc.wc_sec = wc_ts.tv_sec;
510 wc.wc_nsec = wc_ts.tv_nsec;
511 wc.wc_version = version;
512
513 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
514
515 version++;
516 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
517 up_read(&kvm->slots_lock);
518 }
519
520 static void kvm_write_guest_time(struct kvm_vcpu *v)
521 {
522 struct timespec ts;
523 unsigned long flags;
524 struct kvm_vcpu_arch *vcpu = &v->arch;
525 void *shared_kaddr;
526
527 if ((!vcpu->time_page))
528 return;
529
530 /* Keep irq disabled to prevent changes to the clock */
531 local_irq_save(flags);
532 kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
533 &vcpu->hv_clock.tsc_timestamp);
534 ktime_get_ts(&ts);
535 local_irq_restore(flags);
536
537 /* With all the info we got, fill in the values */
538
539 vcpu->hv_clock.system_time = ts.tv_nsec +
540 (NSEC_PER_SEC * (u64)ts.tv_sec);
541 /*
542 * The interface expects us to write an even number signaling that the
543 * update is finished. Since the guest won't see the intermediate
544 * state, we just write "2" at the end
545 */
546 vcpu->hv_clock.version = 2;
547
548 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
549
550 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
551 sizeof(vcpu->hv_clock));
552
553 kunmap_atomic(shared_kaddr, KM_USER0);
554
555 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
556 }
557
558
559 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
560 {
561 switch (msr) {
562 case MSR_EFER:
563 set_efer(vcpu, data);
564 break;
565 case MSR_IA32_MC0_STATUS:
566 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
567 __func__, data);
568 break;
569 case MSR_IA32_MCG_STATUS:
570 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
571 __func__, data);
572 break;
573 case MSR_IA32_MCG_CTL:
574 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
575 __func__, data);
576 break;
577 case MSR_IA32_UCODE_REV:
578 case MSR_IA32_UCODE_WRITE:
579 case 0x200 ... 0x2ff: /* MTRRs */
580 break;
581 case MSR_IA32_APICBASE:
582 kvm_set_apic_base(vcpu, data);
583 break;
584 case MSR_IA32_MISC_ENABLE:
585 vcpu->arch.ia32_misc_enable_msr = data;
586 break;
587 case MSR_KVM_WALL_CLOCK:
588 vcpu->kvm->arch.wall_clock = data;
589 kvm_write_wall_clock(vcpu->kvm, data);
590 break;
591 case MSR_KVM_SYSTEM_TIME: {
592 if (vcpu->arch.time_page) {
593 kvm_release_page_dirty(vcpu->arch.time_page);
594 vcpu->arch.time_page = NULL;
595 }
596
597 vcpu->arch.time = data;
598
599 /* we verify if the enable bit is set... */
600 if (!(data & 1))
601 break;
602
603 /* ...but clean it before doing the actual write */
604 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
605
606 vcpu->arch.hv_clock.tsc_to_system_mul =
607 clocksource_khz2mult(tsc_khz, 22);
608 vcpu->arch.hv_clock.tsc_shift = 22;
609
610 down_read(&current->mm->mmap_sem);
611 down_read(&vcpu->kvm->slots_lock);
612 vcpu->arch.time_page =
613 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
614 up_read(&vcpu->kvm->slots_lock);
615 up_read(&current->mm->mmap_sem);
616
617 if (is_error_page(vcpu->arch.time_page)) {
618 kvm_release_page_clean(vcpu->arch.time_page);
619 vcpu->arch.time_page = NULL;
620 }
621
622 kvm_write_guest_time(vcpu);
623 break;
624 }
625 default:
626 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
627 return 1;
628 }
629 return 0;
630 }
631 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
632
633
634 /*
635 * Reads an msr value (of 'msr_index') into 'pdata'.
636 * Returns 0 on success, non-0 otherwise.
637 * Assumes vcpu_load() was already called.
638 */
639 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
640 {
641 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
642 }
643
644 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
645 {
646 u64 data;
647
648 switch (msr) {
649 case 0xc0010010: /* SYSCFG */
650 case 0xc0010015: /* HWCR */
651 case MSR_IA32_PLATFORM_ID:
652 case MSR_IA32_P5_MC_ADDR:
653 case MSR_IA32_P5_MC_TYPE:
654 case MSR_IA32_MC0_CTL:
655 case MSR_IA32_MCG_STATUS:
656 case MSR_IA32_MCG_CAP:
657 case MSR_IA32_MCG_CTL:
658 case MSR_IA32_MC0_MISC:
659 case MSR_IA32_MC0_MISC+4:
660 case MSR_IA32_MC0_MISC+8:
661 case MSR_IA32_MC0_MISC+12:
662 case MSR_IA32_MC0_MISC+16:
663 case MSR_IA32_UCODE_REV:
664 case MSR_IA32_EBL_CR_POWERON:
665 /* MTRR registers */
666 case 0xfe:
667 case 0x200 ... 0x2ff:
668 data = 0;
669 break;
670 case 0xcd: /* fsb frequency */
671 data = 3;
672 break;
673 case MSR_IA32_APICBASE:
674 data = kvm_get_apic_base(vcpu);
675 break;
676 case MSR_IA32_MISC_ENABLE:
677 data = vcpu->arch.ia32_misc_enable_msr;
678 break;
679 case MSR_IA32_PERF_STATUS:
680 /* TSC increment by tick */
681 data = 1000ULL;
682 /* CPU multiplier */
683 data |= (((uint64_t)4ULL) << 40);
684 break;
685 case MSR_EFER:
686 data = vcpu->arch.shadow_efer;
687 break;
688 case MSR_KVM_WALL_CLOCK:
689 data = vcpu->kvm->arch.wall_clock;
690 break;
691 case MSR_KVM_SYSTEM_TIME:
692 data = vcpu->arch.time;
693 break;
694 default:
695 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
696 return 1;
697 }
698 *pdata = data;
699 return 0;
700 }
701 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
702
703 /*
704 * Read or write a bunch of msrs. All parameters are kernel addresses.
705 *
706 * @return number of msrs set successfully.
707 */
708 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
709 struct kvm_msr_entry *entries,
710 int (*do_msr)(struct kvm_vcpu *vcpu,
711 unsigned index, u64 *data))
712 {
713 int i;
714
715 vcpu_load(vcpu);
716
717 for (i = 0; i < msrs->nmsrs; ++i)
718 if (do_msr(vcpu, entries[i].index, &entries[i].data))
719 break;
720
721 vcpu_put(vcpu);
722
723 return i;
724 }
725
726 /*
727 * Read or write a bunch of msrs. Parameters are user addresses.
728 *
729 * @return number of msrs set successfully.
730 */
731 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
732 int (*do_msr)(struct kvm_vcpu *vcpu,
733 unsigned index, u64 *data),
734 int writeback)
735 {
736 struct kvm_msrs msrs;
737 struct kvm_msr_entry *entries;
738 int r, n;
739 unsigned size;
740
741 r = -EFAULT;
742 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
743 goto out;
744
745 r = -E2BIG;
746 if (msrs.nmsrs >= MAX_IO_MSRS)
747 goto out;
748
749 r = -ENOMEM;
750 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
751 entries = vmalloc(size);
752 if (!entries)
753 goto out;
754
755 r = -EFAULT;
756 if (copy_from_user(entries, user_msrs->entries, size))
757 goto out_free;
758
759 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
760 if (r < 0)
761 goto out_free;
762
763 r = -EFAULT;
764 if (writeback && copy_to_user(user_msrs->entries, entries, size))
765 goto out_free;
766
767 r = n;
768
769 out_free:
770 vfree(entries);
771 out:
772 return r;
773 }
774
775 /*
776 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
777 * cached on it.
778 */
779 void decache_vcpus_on_cpu(int cpu)
780 {
781 struct kvm *vm;
782 struct kvm_vcpu *vcpu;
783 int i;
784
785 spin_lock(&kvm_lock);
786 list_for_each_entry(vm, &vm_list, vm_list)
787 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
788 vcpu = vm->vcpus[i];
789 if (!vcpu)
790 continue;
791 /*
792 * If the vcpu is locked, then it is running on some
793 * other cpu and therefore it is not cached on the
794 * cpu in question.
795 *
796 * If it's not locked, check the last cpu it executed
797 * on.
798 */
799 if (mutex_trylock(&vcpu->mutex)) {
800 if (vcpu->cpu == cpu) {
801 kvm_x86_ops->vcpu_decache(vcpu);
802 vcpu->cpu = -1;
803 }
804 mutex_unlock(&vcpu->mutex);
805 }
806 }
807 spin_unlock(&kvm_lock);
808 }
809
810 int kvm_dev_ioctl_check_extension(long ext)
811 {
812 int r;
813
814 switch (ext) {
815 case KVM_CAP_IRQCHIP:
816 case KVM_CAP_HLT:
817 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
818 case KVM_CAP_USER_MEMORY:
819 case KVM_CAP_SET_TSS_ADDR:
820 case KVM_CAP_EXT_CPUID:
821 case KVM_CAP_CLOCKSOURCE:
822 case KVM_CAP_PIT:
823 r = 1;
824 break;
825 case KVM_CAP_VAPIC:
826 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
827 break;
828 case KVM_CAP_NR_VCPUS:
829 r = KVM_MAX_VCPUS;
830 break;
831 case KVM_CAP_NR_MEMSLOTS:
832 r = KVM_MEMORY_SLOTS;
833 break;
834 default:
835 r = 0;
836 break;
837 }
838 return r;
839
840 }
841
842 long kvm_arch_dev_ioctl(struct file *filp,
843 unsigned int ioctl, unsigned long arg)
844 {
845 void __user *argp = (void __user *)arg;
846 long r;
847
848 switch (ioctl) {
849 case KVM_GET_MSR_INDEX_LIST: {
850 struct kvm_msr_list __user *user_msr_list = argp;
851 struct kvm_msr_list msr_list;
852 unsigned n;
853
854 r = -EFAULT;
855 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
856 goto out;
857 n = msr_list.nmsrs;
858 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
859 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
860 goto out;
861 r = -E2BIG;
862 if (n < num_msrs_to_save)
863 goto out;
864 r = -EFAULT;
865 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
866 num_msrs_to_save * sizeof(u32)))
867 goto out;
868 if (copy_to_user(user_msr_list->indices
869 + num_msrs_to_save * sizeof(u32),
870 &emulated_msrs,
871 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
872 goto out;
873 r = 0;
874 break;
875 }
876 case KVM_GET_SUPPORTED_CPUID: {
877 struct kvm_cpuid2 __user *cpuid_arg = argp;
878 struct kvm_cpuid2 cpuid;
879
880 r = -EFAULT;
881 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
882 goto out;
883 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
884 cpuid_arg->entries);
885 if (r)
886 goto out;
887
888 r = -EFAULT;
889 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
890 goto out;
891 r = 0;
892 break;
893 }
894 default:
895 r = -EINVAL;
896 }
897 out:
898 return r;
899 }
900
901 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
902 {
903 kvm_x86_ops->vcpu_load(vcpu, cpu);
904 kvm_write_guest_time(vcpu);
905 }
906
907 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
908 {
909 kvm_x86_ops->vcpu_put(vcpu);
910 kvm_put_guest_fpu(vcpu);
911 }
912
913 static int is_efer_nx(void)
914 {
915 u64 efer;
916
917 rdmsrl(MSR_EFER, efer);
918 return efer & EFER_NX;
919 }
920
921 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
922 {
923 int i;
924 struct kvm_cpuid_entry2 *e, *entry;
925
926 entry = NULL;
927 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
928 e = &vcpu->arch.cpuid_entries[i];
929 if (e->function == 0x80000001) {
930 entry = e;
931 break;
932 }
933 }
934 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
935 entry->edx &= ~(1 << 20);
936 printk(KERN_INFO "kvm: guest NX capability removed\n");
937 }
938 }
939
940 /* when an old userspace process fills a new kernel module */
941 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
942 struct kvm_cpuid *cpuid,
943 struct kvm_cpuid_entry __user *entries)
944 {
945 int r, i;
946 struct kvm_cpuid_entry *cpuid_entries;
947
948 r = -E2BIG;
949 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
950 goto out;
951 r = -ENOMEM;
952 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
953 if (!cpuid_entries)
954 goto out;
955 r = -EFAULT;
956 if (copy_from_user(cpuid_entries, entries,
957 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
958 goto out_free;
959 for (i = 0; i < cpuid->nent; i++) {
960 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
961 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
962 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
963 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
964 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
965 vcpu->arch.cpuid_entries[i].index = 0;
966 vcpu->arch.cpuid_entries[i].flags = 0;
967 vcpu->arch.cpuid_entries[i].padding[0] = 0;
968 vcpu->arch.cpuid_entries[i].padding[1] = 0;
969 vcpu->arch.cpuid_entries[i].padding[2] = 0;
970 }
971 vcpu->arch.cpuid_nent = cpuid->nent;
972 cpuid_fix_nx_cap(vcpu);
973 r = 0;
974
975 out_free:
976 vfree(cpuid_entries);
977 out:
978 return r;
979 }
980
981 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
982 struct kvm_cpuid2 *cpuid,
983 struct kvm_cpuid_entry2 __user *entries)
984 {
985 int r;
986
987 r = -E2BIG;
988 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
989 goto out;
990 r = -EFAULT;
991 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
992 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
993 goto out;
994 vcpu->arch.cpuid_nent = cpuid->nent;
995 return 0;
996
997 out:
998 return r;
999 }
1000
1001 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1002 struct kvm_cpuid2 *cpuid,
1003 struct kvm_cpuid_entry2 __user *entries)
1004 {
1005 int r;
1006
1007 r = -E2BIG;
1008 if (cpuid->nent < vcpu->arch.cpuid_nent)
1009 goto out;
1010 r = -EFAULT;
1011 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1012 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1013 goto out;
1014 return 0;
1015
1016 out:
1017 cpuid->nent = vcpu->arch.cpuid_nent;
1018 return r;
1019 }
1020
1021 static inline u32 bit(int bitno)
1022 {
1023 return 1 << (bitno & 31);
1024 }
1025
1026 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1027 u32 index)
1028 {
1029 entry->function = function;
1030 entry->index = index;
1031 cpuid_count(entry->function, entry->index,
1032 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1033 entry->flags = 0;
1034 }
1035
1036 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1037 u32 index, int *nent, int maxnent)
1038 {
1039 const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
1040 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1041 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1042 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1043 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1044 bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
1045 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1046 bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
1047 bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
1048 bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
1049 const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
1050 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1051 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1052 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1053 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1054 bit(X86_FEATURE_PGE) |
1055 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1056 bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
1057 bit(X86_FEATURE_SYSCALL) |
1058 (bit(X86_FEATURE_NX) && is_efer_nx()) |
1059 #ifdef CONFIG_X86_64
1060 bit(X86_FEATURE_LM) |
1061 #endif
1062 bit(X86_FEATURE_MMXEXT) |
1063 bit(X86_FEATURE_3DNOWEXT) |
1064 bit(X86_FEATURE_3DNOW);
1065 const u32 kvm_supported_word3_x86_features =
1066 bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
1067 const u32 kvm_supported_word6_x86_features =
1068 bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);
1069
1070 /* all func 2 cpuid_count() should be called on the same cpu */
1071 get_cpu();
1072 do_cpuid_1_ent(entry, function, index);
1073 ++*nent;
1074
1075 switch (function) {
1076 case 0:
1077 entry->eax = min(entry->eax, (u32)0xb);
1078 break;
1079 case 1:
1080 entry->edx &= kvm_supported_word0_x86_features;
1081 entry->ecx &= kvm_supported_word3_x86_features;
1082 break;
1083 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1084 * may return different values. This forces us to get_cpu() before
1085 * issuing the first command, and also to emulate this annoying behavior
1086 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1087 case 2: {
1088 int t, times = entry->eax & 0xff;
1089
1090 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1091 for (t = 1; t < times && *nent < maxnent; ++t) {
1092 do_cpuid_1_ent(&entry[t], function, 0);
1093 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1094 ++*nent;
1095 }
1096 break;
1097 }
1098 /* function 4 and 0xb have additional index. */
1099 case 4: {
1100 int i, cache_type;
1101
1102 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1103 /* read more entries until cache_type is zero */
1104 for (i = 1; *nent < maxnent; ++i) {
1105 cache_type = entry[i - 1].eax & 0x1f;
1106 if (!cache_type)
1107 break;
1108 do_cpuid_1_ent(&entry[i], function, i);
1109 entry[i].flags |=
1110 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1111 ++*nent;
1112 }
1113 break;
1114 }
1115 case 0xb: {
1116 int i, level_type;
1117
1118 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1119 /* read more entries until level_type is zero */
1120 for (i = 1; *nent < maxnent; ++i) {
1121 level_type = entry[i - 1].ecx & 0xff;
1122 if (!level_type)
1123 break;
1124 do_cpuid_1_ent(&entry[i], function, i);
1125 entry[i].flags |=
1126 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1127 ++*nent;
1128 }
1129 break;
1130 }
1131 case 0x80000000:
1132 entry->eax = min(entry->eax, 0x8000001a);
1133 break;
1134 case 0x80000001:
1135 entry->edx &= kvm_supported_word1_x86_features;
1136 entry->ecx &= kvm_supported_word6_x86_features;
1137 break;
1138 }
1139 put_cpu();
1140 }
1141
1142 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1143 struct kvm_cpuid_entry2 __user *entries)
1144 {
1145 struct kvm_cpuid_entry2 *cpuid_entries;
1146 int limit, nent = 0, r = -E2BIG;
1147 u32 func;
1148
1149 if (cpuid->nent < 1)
1150 goto out;
1151 r = -ENOMEM;
1152 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1153 if (!cpuid_entries)
1154 goto out;
1155
1156 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1157 limit = cpuid_entries[0].eax;
1158 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1159 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1160 &nent, cpuid->nent);
1161 r = -E2BIG;
1162 if (nent >= cpuid->nent)
1163 goto out_free;
1164
1165 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1166 limit = cpuid_entries[nent - 1].eax;
1167 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1168 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1169 &nent, cpuid->nent);
1170 r = -EFAULT;
1171 if (copy_to_user(entries, cpuid_entries,
1172 nent * sizeof(struct kvm_cpuid_entry2)))
1173 goto out_free;
1174 cpuid->nent = nent;
1175 r = 0;
1176
1177 out_free:
1178 vfree(cpuid_entries);
1179 out:
1180 return r;
1181 }
1182
1183 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1184 struct kvm_lapic_state *s)
1185 {
1186 vcpu_load(vcpu);
1187 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1188 vcpu_put(vcpu);
1189
1190 return 0;
1191 }
1192
1193 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1194 struct kvm_lapic_state *s)
1195 {
1196 vcpu_load(vcpu);
1197 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1198 kvm_apic_post_state_restore(vcpu);
1199 vcpu_put(vcpu);
1200
1201 return 0;
1202 }
1203
1204 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1205 struct kvm_interrupt *irq)
1206 {
1207 if (irq->irq < 0 || irq->irq >= 256)
1208 return -EINVAL;
1209 if (irqchip_in_kernel(vcpu->kvm))
1210 return -ENXIO;
1211 vcpu_load(vcpu);
1212
1213 set_bit(irq->irq, vcpu->arch.irq_pending);
1214 set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1215
1216 vcpu_put(vcpu);
1217
1218 return 0;
1219 }
1220
1221 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1222 struct kvm_tpr_access_ctl *tac)
1223 {
1224 if (tac->flags)
1225 return -EINVAL;
1226 vcpu->arch.tpr_access_reporting = !!tac->enabled;
1227 return 0;
1228 }
1229
1230 long kvm_arch_vcpu_ioctl(struct file *filp,
1231 unsigned int ioctl, unsigned long arg)
1232 {
1233 struct kvm_vcpu *vcpu = filp->private_data;
1234 void __user *argp = (void __user *)arg;
1235 int r;
1236
1237 switch (ioctl) {
1238 case KVM_GET_LAPIC: {
1239 struct kvm_lapic_state lapic;
1240
1241 memset(&lapic, 0, sizeof lapic);
1242 r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
1243 if (r)
1244 goto out;
1245 r = -EFAULT;
1246 if (copy_to_user(argp, &lapic, sizeof lapic))
1247 goto out;
1248 r = 0;
1249 break;
1250 }
1251 case KVM_SET_LAPIC: {
1252 struct kvm_lapic_state lapic;
1253
1254 r = -EFAULT;
1255 if (copy_from_user(&lapic, argp, sizeof lapic))
1256 goto out;
1257 r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
1258 if (r)
1259 goto out;
1260 r = 0;
1261 break;
1262 }
1263 case KVM_INTERRUPT: {
1264 struct kvm_interrupt irq;
1265
1266 r = -EFAULT;
1267 if (copy_from_user(&irq, argp, sizeof irq))
1268 goto out;
1269 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1270 if (r)
1271 goto out;
1272 r = 0;
1273 break;
1274 }
1275 case KVM_SET_CPUID: {
1276 struct kvm_cpuid __user *cpuid_arg = argp;
1277 struct kvm_cpuid cpuid;
1278
1279 r = -EFAULT;
1280 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1281 goto out;
1282 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1283 if (r)
1284 goto out;
1285 break;
1286 }
1287 case KVM_SET_CPUID2: {
1288 struct kvm_cpuid2 __user *cpuid_arg = argp;
1289 struct kvm_cpuid2 cpuid;
1290
1291 r = -EFAULT;
1292 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1293 goto out;
1294 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1295 cpuid_arg->entries);
1296 if (r)
1297 goto out;
1298 break;
1299 }
1300 case KVM_GET_CPUID2: {
1301 struct kvm_cpuid2 __user *cpuid_arg = argp;
1302 struct kvm_cpuid2 cpuid;
1303
1304 r = -EFAULT;
1305 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1306 goto out;
1307 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1308 cpuid_arg->entries);
1309 if (r)
1310 goto out;
1311 r = -EFAULT;
1312 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1313 goto out;
1314 r = 0;
1315 break;
1316 }
1317 case KVM_GET_MSRS:
1318 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1319 break;
1320 case KVM_SET_MSRS:
1321 r = msr_io(vcpu, argp, do_set_msr, 0);
1322 break;
1323 case KVM_TPR_ACCESS_REPORTING: {
1324 struct kvm_tpr_access_ctl tac;
1325
1326 r = -EFAULT;
1327 if (copy_from_user(&tac, argp, sizeof tac))
1328 goto out;
1329 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1330 if (r)
1331 goto out;
1332 r = -EFAULT;
1333 if (copy_to_user(argp, &tac, sizeof tac))
1334 goto out;
1335 r = 0;
1336 break;
1337 };
1338 case KVM_SET_VAPIC_ADDR: {
1339 struct kvm_vapic_addr va;
1340
1341 r = -EINVAL;
1342 if (!irqchip_in_kernel(vcpu->kvm))
1343 goto out;
1344 r = -EFAULT;
1345 if (copy_from_user(&va, argp, sizeof va))
1346 goto out;
1347 r = 0;
1348 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1349 break;
1350 }
1351 default:
1352 r = -EINVAL;
1353 }
1354 out:
1355 return r;
1356 }
1357
1358 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1359 {
1360 int ret;
1361
1362 if (addr > (unsigned int)(-3 * PAGE_SIZE))
1363 return -1;
1364 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1365 return ret;
1366 }
1367
1368 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1369 u32 kvm_nr_mmu_pages)
1370 {
1371 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1372 return -EINVAL;
1373
1374 down_write(&kvm->slots_lock);
1375
1376 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1377 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1378
1379 up_write(&kvm->slots_lock);
1380 return 0;
1381 }
1382
1383 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1384 {
1385 return kvm->arch.n_alloc_mmu_pages;
1386 }
1387
1388 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1389 {
1390 int i;
1391 struct kvm_mem_alias *alias;
1392
1393 for (i = 0; i < kvm->arch.naliases; ++i) {
1394 alias = &kvm->arch.aliases[i];
1395 if (gfn >= alias->base_gfn
1396 && gfn < alias->base_gfn + alias->npages)
1397 return alias->target_gfn + gfn - alias->base_gfn;
1398 }
1399 return gfn;
1400 }
1401
1402 /*
1403 * Set a new alias region. Aliases map a portion of physical memory into
1404 * another portion. This is useful for memory windows, for example the PC
1405 * VGA region.
1406 */
1407 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1408 struct kvm_memory_alias *alias)
1409 {
1410 int r, n;
1411 struct kvm_mem_alias *p;
1412
1413 r = -EINVAL;
1414 /* General sanity checks */
1415 if (alias->memory_size & (PAGE_SIZE - 1))
1416 goto out;
1417 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1418 goto out;
1419 if (alias->slot >= KVM_ALIAS_SLOTS)
1420 goto out;
1421 if (alias->guest_phys_addr + alias->memory_size
1422 < alias->guest_phys_addr)
1423 goto out;
1424 if (alias->target_phys_addr + alias->memory_size
1425 < alias->target_phys_addr)
1426 goto out;
1427
1428 down_write(&kvm->slots_lock);
1429
1430 p = &kvm->arch.aliases[alias->slot];
1431 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1432 p->npages = alias->memory_size >> PAGE_SHIFT;
1433 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1434
1435 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1436 if (kvm->arch.aliases[n - 1].npages)
1437 break;
1438 kvm->arch.naliases = n;
1439
1440 kvm_mmu_zap_all(kvm);
1441
1442 up_write(&kvm->slots_lock);
1443
1444 return 0;
1445
1446 out:
1447 return r;
1448 }
1449
1450 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1451 {
1452 int r;
1453
1454 r = 0;
1455 switch (chip->chip_id) {
1456 case KVM_IRQCHIP_PIC_MASTER:
1457 memcpy(&chip->chip.pic,
1458 &pic_irqchip(kvm)->pics[0],
1459 sizeof(struct kvm_pic_state));
1460 break;
1461 case KVM_IRQCHIP_PIC_SLAVE:
1462 memcpy(&chip->chip.pic,
1463 &pic_irqchip(kvm)->pics[1],
1464 sizeof(struct kvm_pic_state));
1465 break;
1466 case KVM_IRQCHIP_IOAPIC:
1467 memcpy(&chip->chip.ioapic,
1468 ioapic_irqchip(kvm),
1469 sizeof(struct kvm_ioapic_state));
1470 break;
1471 default:
1472 r = -EINVAL;
1473 break;
1474 }
1475 return r;
1476 }
1477
1478 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1479 {
1480 int r;
1481
1482 r = 0;
1483 switch (chip->chip_id) {
1484 case KVM_IRQCHIP_PIC_MASTER:
1485 memcpy(&pic_irqchip(kvm)->pics[0],
1486 &chip->chip.pic,
1487 sizeof(struct kvm_pic_state));
1488 break;
1489 case KVM_IRQCHIP_PIC_SLAVE:
1490 memcpy(&pic_irqchip(kvm)->pics[1],
1491 &chip->chip.pic,
1492 sizeof(struct kvm_pic_state));
1493 break;
1494 case KVM_IRQCHIP_IOAPIC:
1495 memcpy(ioapic_irqchip(kvm),
1496 &chip->chip.ioapic,
1497 sizeof(struct kvm_ioapic_state));
1498 break;
1499 default:
1500 r = -EINVAL;
1501 break;
1502 }
1503 kvm_pic_update_irq(pic_irqchip(kvm));
1504 return r;
1505 }
1506
1507 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1508 {
1509 int r = 0;
1510
1511 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
1512 return r;
1513 }
1514
1515 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1516 {
1517 int r = 0;
1518
1519 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
1520 kvm_pit_load_count(kvm, 0, ps->channels[0].count);
1521 return r;
1522 }
1523
1524 /*
1525 * Get (and clear) the dirty memory log for a memory slot.
1526 */
1527 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1528 struct kvm_dirty_log *log)
1529 {
1530 int r;
1531 int n;
1532 struct kvm_memory_slot *memslot;
1533 int is_dirty = 0;
1534
1535 down_write(&kvm->slots_lock);
1536
1537 r = kvm_get_dirty_log(kvm, log, &is_dirty);
1538 if (r)
1539 goto out;
1540
1541 /* If nothing is dirty, don't bother messing with page tables. */
1542 if (is_dirty) {
1543 kvm_mmu_slot_remove_write_access(kvm, log->slot);
1544 kvm_flush_remote_tlbs(kvm);
1545 memslot = &kvm->memslots[log->slot];
1546 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1547 memset(memslot->dirty_bitmap, 0, n);
1548 }
1549 r = 0;
1550 out:
1551 up_write(&kvm->slots_lock);
1552 return r;
1553 }
1554
1555 long kvm_arch_vm_ioctl(struct file *filp,
1556 unsigned int ioctl, unsigned long arg)
1557 {
1558 struct kvm *kvm = filp->private_data;
1559 void __user *argp = (void __user *)arg;
1560 int r = -EINVAL;
1561
1562 switch (ioctl) {
1563 case KVM_SET_TSS_ADDR:
1564 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
1565 if (r < 0)
1566 goto out;
1567 break;
1568 case KVM_SET_MEMORY_REGION: {
1569 struct kvm_memory_region kvm_mem;
1570 struct kvm_userspace_memory_region kvm_userspace_mem;
1571
1572 r = -EFAULT;
1573 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
1574 goto out;
1575 kvm_userspace_mem.slot = kvm_mem.slot;
1576 kvm_userspace_mem.flags = kvm_mem.flags;
1577 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
1578 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
1579 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
1580 if (r)
1581 goto out;
1582 break;
1583 }
1584 case KVM_SET_NR_MMU_PAGES:
1585 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
1586 if (r)
1587 goto out;
1588 break;
1589 case KVM_GET_NR_MMU_PAGES:
1590 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
1591 break;
1592 case KVM_SET_MEMORY_ALIAS: {
1593 struct kvm_memory_alias alias;
1594
1595 r = -EFAULT;
1596 if (copy_from_user(&alias, argp, sizeof alias))
1597 goto out;
1598 r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
1599 if (r)
1600 goto out;
1601 break;
1602 }
1603 case KVM_CREATE_IRQCHIP:
1604 r = -ENOMEM;
1605 kvm->arch.vpic = kvm_create_pic(kvm);
1606 if (kvm->arch.vpic) {
1607 r = kvm_ioapic_init(kvm);
1608 if (r) {
1609 kfree(kvm->arch.vpic);
1610 kvm->arch.vpic = NULL;
1611 goto out;
1612 }
1613 } else
1614 goto out;
1615 break;
1616 case KVM_CREATE_PIT:
1617 r = -ENOMEM;
1618 kvm->arch.vpit = kvm_create_pit(kvm);
1619 if (kvm->arch.vpit)
1620 r = 0;
1621 break;
1622 case KVM_IRQ_LINE: {
1623 struct kvm_irq_level irq_event;
1624
1625 r = -EFAULT;
1626 if (copy_from_user(&irq_event, argp, sizeof irq_event))
1627 goto out;
1628 if (irqchip_in_kernel(kvm)) {
1629 mutex_lock(&kvm->lock);
1630 if (irq_event.irq < 16)
1631 kvm_pic_set_irq(pic_irqchip(kvm),
1632 irq_event.irq,
1633 irq_event.level);
1634 kvm_ioapic_set_irq(kvm->arch.vioapic,
1635 irq_event.irq,
1636 irq_event.level);
1637 mutex_unlock(&kvm->lock);
1638 r = 0;
1639 }
1640 break;
1641 }
1642 case KVM_GET_IRQCHIP: {
1643 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1644 struct kvm_irqchip chip;
1645
1646 r = -EFAULT;
1647 if (copy_from_user(&chip, argp, sizeof chip))
1648 goto out;
1649 r = -ENXIO;
1650 if (!irqchip_in_kernel(kvm))
1651 goto out;
1652 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
1653 if (r)
1654 goto out;
1655 r = -EFAULT;
1656 if (copy_to_user(argp, &chip, sizeof chip))
1657 goto out;
1658 r = 0;
1659 break;
1660 }
1661 case KVM_SET_IRQCHIP: {
1662 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1663 struct kvm_irqchip chip;
1664
1665 r = -EFAULT;
1666 if (copy_from_user(&chip, argp, sizeof chip))
1667 goto out;
1668 r = -ENXIO;
1669 if (!irqchip_in_kernel(kvm))
1670 goto out;
1671 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
1672 if (r)
1673 goto out;
1674 r = 0;
1675 break;
1676 }
1677 case KVM_GET_PIT: {
1678 struct kvm_pit_state ps;
1679 r = -EFAULT;
1680 if (copy_from_user(&ps, argp, sizeof ps))
1681 goto out;
1682 r = -ENXIO;
1683 if (!kvm->arch.vpit)
1684 goto out;
1685 r = kvm_vm_ioctl_get_pit(kvm, &ps);
1686 if (r)
1687 goto out;
1688 r = -EFAULT;
1689 if (copy_to_user(argp, &ps, sizeof ps))
1690 goto out;
1691 r = 0;
1692 break;
1693 }
1694 case KVM_SET_PIT: {
1695 struct kvm_pit_state ps;
1696 r = -EFAULT;
1697 if (copy_from_user(&ps, argp, sizeof ps))
1698 goto out;
1699 r = -ENXIO;
1700 if (!kvm->arch.vpit)
1701 goto out;
1702 r = kvm_vm_ioctl_set_pit(kvm, &ps);
1703 if (r)
1704 goto out;
1705 r = 0;
1706 break;
1707 }
1708 default:
1709 ;
1710 }
1711 out:
1712 return r;
1713 }
1714
1715 static void kvm_init_msr_list(void)
1716 {
1717 u32 dummy[2];
1718 unsigned i, j;
1719
1720 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
1721 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
1722 continue;
1723 if (j < i)
1724 msrs_to_save[j] = msrs_to_save[i];
1725 j++;
1726 }
1727 num_msrs_to_save = j;
1728 }
1729
1730 /*
1731 * Only apic need an MMIO device hook, so shortcut now..
1732 */
1733 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
1734 gpa_t addr)
1735 {
1736 struct kvm_io_device *dev;
1737
1738 if (vcpu->arch.apic) {
1739 dev = &vcpu->arch.apic->dev;
1740 if (dev->in_range(dev, addr))
1741 return dev;
1742 }
1743 return NULL;
1744 }
1745
1746
1747 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1748 gpa_t addr)
1749 {
1750 struct kvm_io_device *dev;
1751
1752 dev = vcpu_find_pervcpu_dev(vcpu, addr);
1753 if (dev == NULL)
1754 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
1755 return dev;
1756 }
1757
1758 int emulator_read_std(unsigned long addr,
1759 void *val,
1760 unsigned int bytes,
1761 struct kvm_vcpu *vcpu)
1762 {
1763 void *data = val;
1764 int r = X86EMUL_CONTINUE;
1765
1766 down_read(&vcpu->kvm->slots_lock);
1767 while (bytes) {
1768 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1769 unsigned offset = addr & (PAGE_SIZE-1);
1770 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
1771 int ret;
1772
1773 if (gpa == UNMAPPED_GVA) {
1774 r = X86EMUL_PROPAGATE_FAULT;
1775 goto out;
1776 }
1777 ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
1778 if (ret < 0) {
1779 r = X86EMUL_UNHANDLEABLE;
1780 goto out;
1781 }
1782
1783 bytes -= tocopy;
1784 data += tocopy;
1785 addr += tocopy;
1786 }
1787 out:
1788 up_read(&vcpu->kvm->slots_lock);
1789 return r;
1790 }
1791 EXPORT_SYMBOL_GPL(emulator_read_std);
1792
1793 static int emulator_read_emulated(unsigned long addr,
1794 void *val,
1795 unsigned int bytes,
1796 struct kvm_vcpu *vcpu)
1797 {
1798 struct kvm_io_device *mmio_dev;
1799 gpa_t gpa;
1800
1801 if (vcpu->mmio_read_completed) {
1802 memcpy(val, vcpu->mmio_data, bytes);
1803 vcpu->mmio_read_completed = 0;
1804 return X86EMUL_CONTINUE;
1805 }
1806
1807 down_read(&vcpu->kvm->slots_lock);
1808 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1809 up_read(&vcpu->kvm->slots_lock);
1810
1811 /* For APIC access vmexit */
1812 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1813 goto mmio;
1814
1815 if (emulator_read_std(addr, val, bytes, vcpu)
1816 == X86EMUL_CONTINUE)
1817 return X86EMUL_CONTINUE;
1818 if (gpa == UNMAPPED_GVA)
1819 return X86EMUL_PROPAGATE_FAULT;
1820
1821 mmio:
1822 /*
1823 * Is this MMIO handled locally?
1824 */
1825 mutex_lock(&vcpu->kvm->lock);
1826 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1827 if (mmio_dev) {
1828 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1829 mutex_unlock(&vcpu->kvm->lock);
1830 return X86EMUL_CONTINUE;
1831 }
1832 mutex_unlock(&vcpu->kvm->lock);
1833
1834 vcpu->mmio_needed = 1;
1835 vcpu->mmio_phys_addr = gpa;
1836 vcpu->mmio_size = bytes;
1837 vcpu->mmio_is_write = 0;
1838
1839 return X86EMUL_UNHANDLEABLE;
1840 }
1841
1842 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1843 const void *val, int bytes)
1844 {
1845 int ret;
1846
1847 down_read(&vcpu->kvm->slots_lock);
1848 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
1849 if (ret < 0) {
1850 up_read(&vcpu->kvm->slots_lock);
1851 return 0;
1852 }
1853 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
1854 up_read(&vcpu->kvm->slots_lock);
1855 return 1;
1856 }
1857
1858 static int emulator_write_emulated_onepage(unsigned long addr,
1859 const void *val,
1860 unsigned int bytes,
1861 struct kvm_vcpu *vcpu)
1862 {
1863 struct kvm_io_device *mmio_dev;
1864 gpa_t gpa;
1865
1866 down_read(&vcpu->kvm->slots_lock);
1867 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1868 up_read(&vcpu->kvm->slots_lock);
1869
1870 if (gpa == UNMAPPED_GVA) {
1871 kvm_inject_page_fault(vcpu, addr, 2);
1872 return X86EMUL_PROPAGATE_FAULT;
1873 }
1874
1875 /* For APIC access vmexit */
1876 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1877 goto mmio;
1878
1879 if (emulator_write_phys(vcpu, gpa, val, bytes))
1880 return X86EMUL_CONTINUE;
1881
1882 mmio:
1883 /*
1884 * Is this MMIO handled locally?
1885 */
1886 mutex_lock(&vcpu->kvm->lock);
1887 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1888 if (mmio_dev) {
1889 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1890 mutex_unlock(&vcpu->kvm->lock);
1891 return X86EMUL_CONTINUE;
1892 }
1893 mutex_unlock(&vcpu->kvm->lock);
1894
1895 vcpu->mmio_needed = 1;
1896 vcpu->mmio_phys_addr = gpa;
1897 vcpu->mmio_size = bytes;
1898 vcpu->mmio_is_write = 1;
1899 memcpy(vcpu->mmio_data, val, bytes);
1900
1901 return X86EMUL_CONTINUE;
1902 }
1903
1904 int emulator_write_emulated(unsigned long addr,
1905 const void *val,
1906 unsigned int bytes,
1907 struct kvm_vcpu *vcpu)
1908 {
1909 /* Crossing a page boundary? */
1910 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
1911 int rc, now;
1912
1913 now = -addr & ~PAGE_MASK;
1914 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
1915 if (rc != X86EMUL_CONTINUE)
1916 return rc;
1917 addr += now;
1918 val += now;
1919 bytes -= now;
1920 }
1921 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
1922 }
1923 EXPORT_SYMBOL_GPL(emulator_write_emulated);
1924
1925 static int emulator_cmpxchg_emulated(unsigned long addr,
1926 const void *old,
1927 const void *new,
1928 unsigned int bytes,
1929 struct kvm_vcpu *vcpu)
1930 {
1931 static int reported;
1932
1933 if (!reported) {
1934 reported = 1;
1935 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1936 }
1937 #ifndef CONFIG_X86_64
1938 /* guests cmpxchg8b have to be emulated atomically */
1939 if (bytes == 8) {
1940 gpa_t gpa;
1941 struct page *page;
1942 char *kaddr;
1943 u64 val;
1944
1945 down_read(&vcpu->kvm->slots_lock);
1946 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1947
1948 if (gpa == UNMAPPED_GVA ||
1949 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1950 goto emul_write;
1951
1952 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
1953 goto emul_write;
1954
1955 val = *(u64 *)new;
1956
1957 down_read(&current->mm->mmap_sem);
1958 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1959 up_read(&current->mm->mmap_sem);
1960
1961 kaddr = kmap_atomic(page, KM_USER0);
1962 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
1963 kunmap_atomic(kaddr, KM_USER0);
1964 kvm_release_page_dirty(page);
1965 emul_write:
1966 up_read(&vcpu->kvm->slots_lock);
1967 }
1968 #endif
1969
1970 return emulator_write_emulated(addr, new, bytes, vcpu);
1971 }
1972
1973 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
1974 {
1975 return kvm_x86_ops->get_segment_base(vcpu, seg);
1976 }
1977
1978 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1979 {
1980 return X86EMUL_CONTINUE;
1981 }
1982
1983 int emulate_clts(struct kvm_vcpu *vcpu)
1984 {
1985 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
1986 return X86EMUL_CONTINUE;
1987 }
1988
1989 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
1990 {
1991 struct kvm_vcpu *vcpu = ctxt->vcpu;
1992
1993 switch (dr) {
1994 case 0 ... 3:
1995 *dest = kvm_x86_ops->get_dr(vcpu, dr);
1996 return X86EMUL_CONTINUE;
1997 default:
1998 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
1999 return X86EMUL_UNHANDLEABLE;
2000 }
2001 }
2002
2003 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2004 {
2005 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2006 int exception;
2007
2008 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2009 if (exception) {
2010 /* FIXME: better handling */
2011 return X86EMUL_UNHANDLEABLE;
2012 }
2013 return X86EMUL_CONTINUE;
2014 }
2015
2016 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2017 {
2018 static int reported;
2019 u8 opcodes[4];
2020 unsigned long rip = vcpu->arch.rip;
2021 unsigned long rip_linear;
2022
2023 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2024
2025 if (reported)
2026 return;
2027
2028 emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
2029
2030 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2031 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2032 reported = 1;
2033 }
2034 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2035
2036 static struct x86_emulate_ops emulate_ops = {
2037 .read_std = emulator_read_std,
2038 .read_emulated = emulator_read_emulated,
2039 .write_emulated = emulator_write_emulated,
2040 .cmpxchg_emulated = emulator_cmpxchg_emulated,
2041 };
2042
2043 int emulate_instruction(struct kvm_vcpu *vcpu,
2044 struct kvm_run *run,
2045 unsigned long cr2,
2046 u16 error_code,
2047 int emulation_type)
2048 {
2049 int r;
2050 struct decode_cache *c;
2051
2052 vcpu->arch.mmio_fault_cr2 = cr2;
2053 kvm_x86_ops->cache_regs(vcpu);
2054
2055 vcpu->mmio_is_write = 0;
2056 vcpu->arch.pio.string = 0;
2057
2058 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2059 int cs_db, cs_l;
2060 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2061
2062 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2063 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2064 vcpu->arch.emulate_ctxt.mode =
2065 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2066 ? X86EMUL_MODE_REAL : cs_l
2067 ? X86EMUL_MODE_PROT64 : cs_db
2068 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2069
2070 if (vcpu->arch.emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
2071 vcpu->arch.emulate_ctxt.cs_base = 0;
2072 vcpu->arch.emulate_ctxt.ds_base = 0;
2073 vcpu->arch.emulate_ctxt.es_base = 0;
2074 vcpu->arch.emulate_ctxt.ss_base = 0;
2075 } else {
2076 vcpu->arch.emulate_ctxt.cs_base =
2077 get_segment_base(vcpu, VCPU_SREG_CS);
2078 vcpu->arch.emulate_ctxt.ds_base =
2079 get_segment_base(vcpu, VCPU_SREG_DS);
2080 vcpu->arch.emulate_ctxt.es_base =
2081 get_segment_base(vcpu, VCPU_SREG_ES);
2082 vcpu->arch.emulate_ctxt.ss_base =
2083 get_segment_base(vcpu, VCPU_SREG_SS);
2084 }
2085
2086 vcpu->arch.emulate_ctxt.gs_base =
2087 get_segment_base(vcpu, VCPU_SREG_GS);
2088 vcpu->arch.emulate_ctxt.fs_base =
2089 get_segment_base(vcpu, VCPU_SREG_FS);
2090
2091 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2092
2093 /* Reject the instructions other than VMCALL/VMMCALL when
2094 * try to emulate invalid opcode */
2095 c = &vcpu->arch.emulate_ctxt.decode;
2096 if ((emulation_type & EMULTYPE_TRAP_UD) &&
2097 (!(c->twobyte && c->b == 0x01 &&
2098 (c->modrm_reg == 0 || c->modrm_reg == 3) &&
2099 c->modrm_mod == 3 && c->modrm_rm == 1)))
2100 return EMULATE_FAIL;
2101
2102 ++vcpu->stat.insn_emulation;
2103 if (r) {
2104 ++vcpu->stat.insn_emulation_fail;
2105 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2106 return EMULATE_DONE;
2107 return EMULATE_FAIL;
2108 }
2109 }
2110
2111 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2112
2113 if (vcpu->arch.pio.string)
2114 return EMULATE_DO_MMIO;
2115
2116 if ((r || vcpu->mmio_is_write) && run) {
2117 run->exit_reason = KVM_EXIT_MMIO;
2118 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2119 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2120 run->mmio.len = vcpu->mmio_size;
2121 run->mmio.is_write = vcpu->mmio_is_write;
2122 }
2123
2124 if (r) {
2125 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2126 return EMULATE_DONE;
2127 if (!vcpu->mmio_needed) {
2128 kvm_report_emulation_failure(vcpu, "mmio");
2129 return EMULATE_FAIL;
2130 }
2131 return EMULATE_DO_MMIO;
2132 }
2133
2134 kvm_x86_ops->decache_regs(vcpu);
2135 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2136
2137 if (vcpu->mmio_is_write) {
2138 vcpu->mmio_needed = 0;
2139 return EMULATE_DO_MMIO;
2140 }
2141
2142 return EMULATE_DONE;
2143 }
2144 EXPORT_SYMBOL_GPL(emulate_instruction);
2145
2146 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
2147 {
2148 int i;
2149
2150 for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
2151 if (vcpu->arch.pio.guest_pages[i]) {
2152 kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
2153 vcpu->arch.pio.guest_pages[i] = NULL;
2154 }
2155 }
2156
2157 static int pio_copy_data(struct kvm_vcpu *vcpu)
2158 {
2159 void *p = vcpu->arch.pio_data;
2160 void *q;
2161 unsigned bytes;
2162 int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
2163
2164 q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
2165 PAGE_KERNEL);
2166 if (!q) {
2167 free_pio_guest_pages(vcpu);
2168 return -ENOMEM;
2169 }
2170 q += vcpu->arch.pio.guest_page_offset;
2171 bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2172 if (vcpu->arch.pio.in)
2173 memcpy(q, p, bytes);
2174 else
2175 memcpy(p, q, bytes);
2176 q -= vcpu->arch.pio.guest_page_offset;
2177 vunmap(q);
2178 free_pio_guest_pages(vcpu);
2179 return 0;
2180 }
2181
2182 int complete_pio(struct kvm_vcpu *vcpu)
2183 {
2184 struct kvm_pio_request *io = &vcpu->arch.pio;
2185 long delta;
2186 int r;
2187
2188 kvm_x86_ops->cache_regs(vcpu);
2189
2190 if (!io->string) {
2191 if (io->in)
2192 memcpy(&vcpu->arch.regs[VCPU_REGS_RAX], vcpu->arch.pio_data,
2193 io->size);
2194 } else {
2195 if (io->in) {
2196 r = pio_copy_data(vcpu);
2197 if (r) {
2198 kvm_x86_ops->cache_regs(vcpu);
2199 return r;
2200 }
2201 }
2202
2203 delta = 1;
2204 if (io->rep) {
2205 delta *= io->cur_count;
2206 /*
2207 * The size of the register should really depend on
2208 * current address size.
2209 */
2210 vcpu->arch.regs[VCPU_REGS_RCX] -= delta;
2211 }
2212 if (io->down)
2213 delta = -delta;
2214 delta *= io->size;
2215 if (io->in)
2216 vcpu->arch.regs[VCPU_REGS_RDI] += delta;
2217 else
2218 vcpu->arch.regs[VCPU_REGS_RSI] += delta;
2219 }
2220
2221 kvm_x86_ops->decache_regs(vcpu);
2222
2223 io->count -= io->cur_count;
2224 io->cur_count = 0;
2225
2226 return 0;
2227 }
2228
2229 static void kernel_pio(struct kvm_io_device *pio_dev,
2230 struct kvm_vcpu *vcpu,
2231 void *pd)
2232 {
2233 /* TODO: String I/O for in kernel device */
2234
2235 mutex_lock(&vcpu->kvm->lock);
2236 if (vcpu->arch.pio.in)
2237 kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
2238 vcpu->arch.pio.size,
2239 pd);
2240 else
2241 kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
2242 vcpu->arch.pio.size,
2243 pd);
2244 mutex_unlock(&vcpu->kvm->lock);
2245 }
2246
2247 static void pio_string_write(struct kvm_io_device *pio_dev,
2248 struct kvm_vcpu *vcpu)
2249 {
2250 struct kvm_pio_request *io = &vcpu->arch.pio;
2251 void *pd = vcpu->arch.pio_data;
2252 int i;
2253
2254 mutex_lock(&vcpu->kvm->lock);
2255 for (i = 0; i < io->cur_count; i++) {
2256 kvm_iodevice_write(pio_dev, io->port,
2257 io->size,
2258 pd);
2259 pd += io->size;
2260 }
2261 mutex_unlock(&vcpu->kvm->lock);
2262 }
2263
2264 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2265 gpa_t addr)
2266 {
2267 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
2268 }
2269
2270 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2271 int size, unsigned port)
2272 {
2273 struct kvm_io_device *pio_dev;
2274
2275 vcpu->run->exit_reason = KVM_EXIT_IO;
2276 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2277 vcpu->run->io.size = vcpu->arch.pio.size = size;
2278 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2279 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2280 vcpu->run->io.port = vcpu->arch.pio.port = port;
2281 vcpu->arch.pio.in = in;
2282 vcpu->arch.pio.string = 0;
2283 vcpu->arch.pio.down = 0;
2284 vcpu->arch.pio.guest_page_offset = 0;
2285 vcpu->arch.pio.rep = 0;
2286
2287 kvm_x86_ops->cache_regs(vcpu);
2288 memcpy(vcpu->arch.pio_data, &vcpu->arch.regs[VCPU_REGS_RAX], 4);
2289 kvm_x86_ops->decache_regs(vcpu);
2290
2291 kvm_x86_ops->skip_emulated_instruction(vcpu);
2292
2293 pio_dev = vcpu_find_pio_dev(vcpu, port);
2294 if (pio_dev) {
2295 kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2296 complete_pio(vcpu);
2297 return 1;
2298 }
2299 return 0;
2300 }
2301 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2302
2303 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2304 int size, unsigned long count, int down,
2305 gva_t address, int rep, unsigned port)
2306 {
2307 unsigned now, in_page;
2308 int i, ret = 0;
2309 int nr_pages = 1;
2310 struct page *page;
2311 struct kvm_io_device *pio_dev;
2312
2313 vcpu->run->exit_reason = KVM_EXIT_IO;
2314 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2315 vcpu->run->io.size = vcpu->arch.pio.size = size;
2316 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2317 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2318 vcpu->run->io.port = vcpu->arch.pio.port = port;
2319 vcpu->arch.pio.in = in;
2320 vcpu->arch.pio.string = 1;
2321 vcpu->arch.pio.down = down;
2322 vcpu->arch.pio.guest_page_offset = offset_in_page(address);
2323 vcpu->arch.pio.rep = rep;
2324
2325 if (!count) {
2326 kvm_x86_ops->skip_emulated_instruction(vcpu);
2327 return 1;
2328 }
2329
2330 if (!down)
2331 in_page = PAGE_SIZE - offset_in_page(address);
2332 else
2333 in_page = offset_in_page(address) + size;
2334 now = min(count, (unsigned long)in_page / size);
2335 if (!now) {
2336 /*
2337 * String I/O straddles page boundary. Pin two guest pages
2338 * so that we satisfy atomicity constraints. Do just one
2339 * transaction to avoid complexity.
2340 */
2341 nr_pages = 2;
2342 now = 1;
2343 }
2344 if (down) {
2345 /*
2346 * String I/O in reverse. Yuck. Kill the guest, fix later.
2347 */
2348 pr_unimpl(vcpu, "guest string pio down\n");
2349 kvm_inject_gp(vcpu, 0);
2350 return 1;
2351 }
2352 vcpu->run->io.count = now;
2353 vcpu->arch.pio.cur_count = now;
2354
2355 if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2356 kvm_x86_ops->skip_emulated_instruction(vcpu);
2357
2358 for (i = 0; i < nr_pages; ++i) {
2359 down_read(&vcpu->kvm->slots_lock);
2360 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
2361 vcpu->arch.pio.guest_pages[i] = page;
2362 up_read(&vcpu->kvm->slots_lock);
2363 if (!page) {
2364 kvm_inject_gp(vcpu, 0);
2365 free_pio_guest_pages(vcpu);
2366 return 1;
2367 }
2368 }
2369
2370 pio_dev = vcpu_find_pio_dev(vcpu, port);
2371 if (!vcpu->arch.pio.in) {
2372 /* string PIO write */
2373 ret = pio_copy_data(vcpu);
2374 if (ret >= 0 && pio_dev) {
2375 pio_string_write(pio_dev, vcpu);
2376 complete_pio(vcpu);
2377 if (vcpu->arch.pio.count == 0)
2378 ret = 1;
2379 }
2380 } else if (pio_dev)
2381 pr_unimpl(vcpu, "no string pio read support yet, "
2382 "port %x size %d count %ld\n",
2383 port, size, count);
2384
2385 return ret;
2386 }
2387 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2388
2389 int kvm_arch_init(void *opaque)
2390 {
2391 int r;
2392 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
2393
2394 if (kvm_x86_ops) {
2395 printk(KERN_ERR "kvm: already loaded the other module\n");
2396 r = -EEXIST;
2397 goto out;
2398 }
2399
2400 if (!ops->cpu_has_kvm_support()) {
2401 printk(KERN_ERR "kvm: no hardware support\n");
2402 r = -EOPNOTSUPP;
2403 goto out;
2404 }
2405 if (ops->disabled_by_bios()) {
2406 printk(KERN_ERR "kvm: disabled by bios\n");
2407 r = -EOPNOTSUPP;
2408 goto out;
2409 }
2410
2411 r = kvm_mmu_module_init();
2412 if (r)
2413 goto out;
2414
2415 kvm_init_msr_list();
2416
2417 kvm_x86_ops = ops;
2418 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2419 return 0;
2420
2421 out:
2422 return r;
2423 }
2424
2425 void kvm_arch_exit(void)
2426 {
2427 kvm_x86_ops = NULL;
2428 kvm_mmu_module_exit();
2429 }
2430
2431 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
2432 {
2433 ++vcpu->stat.halt_exits;
2434 if (irqchip_in_kernel(vcpu->kvm)) {
2435 vcpu->arch.mp_state = VCPU_MP_STATE_HALTED;
2436 kvm_vcpu_block(vcpu);
2437 if (vcpu->arch.mp_state != VCPU_MP_STATE_RUNNABLE)
2438 return -EINTR;
2439 return 1;
2440 } else {
2441 vcpu->run->exit_reason = KVM_EXIT_HLT;
2442 return 0;
2443 }
2444 }
2445 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
2446
2447 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
2448 {
2449 unsigned long nr, a0, a1, a2, a3, ret;
2450
2451 kvm_x86_ops->cache_regs(vcpu);
2452
2453 nr = vcpu->arch.regs[VCPU_REGS_RAX];
2454 a0 = vcpu->arch.regs[VCPU_REGS_RBX];
2455 a1 = vcpu->arch.regs[VCPU_REGS_RCX];
2456 a2 = vcpu->arch.regs[VCPU_REGS_RDX];
2457 a3 = vcpu->arch.regs[VCPU_REGS_RSI];
2458
2459 if (!is_long_mode(vcpu)) {
2460 nr &= 0xFFFFFFFF;
2461 a0 &= 0xFFFFFFFF;
2462 a1 &= 0xFFFFFFFF;
2463 a2 &= 0xFFFFFFFF;
2464 a3 &= 0xFFFFFFFF;
2465 }
2466
2467 switch (nr) {
2468 case KVM_HC_VAPIC_POLL_IRQ:
2469 ret = 0;
2470 break;
2471 default:
2472 ret = -KVM_ENOSYS;
2473 break;
2474 }
2475 vcpu->arch.regs[VCPU_REGS_RAX] = ret;
2476 kvm_x86_ops->decache_regs(vcpu);
2477 ++vcpu->stat.hypercalls;
2478 return 0;
2479 }
2480 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
2481
2482 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
2483 {
2484 char instruction[3];
2485 int ret = 0;
2486
2487
2488 /*
2489 * Blow out the MMU to ensure that no other VCPU has an active mapping
2490 * to ensure that the updated hypercall appears atomically across all
2491 * VCPUs.
2492 */
2493 kvm_mmu_zap_all(vcpu->kvm);
2494
2495 kvm_x86_ops->cache_regs(vcpu);
2496 kvm_x86_ops->patch_hypercall(vcpu, instruction);
2497 if (emulator_write_emulated(vcpu->arch.rip, instruction, 3, vcpu)
2498 != X86EMUL_CONTINUE)
2499 ret = -EFAULT;
2500
2501 return ret;
2502 }
2503
2504 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
2505 {
2506 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
2507 }
2508
2509 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2510 {
2511 struct descriptor_table dt = { limit, base };
2512
2513 kvm_x86_ops->set_gdt(vcpu, &dt);
2514 }
2515
2516 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2517 {
2518 struct descriptor_table dt = { limit, base };
2519
2520 kvm_x86_ops->set_idt(vcpu, &dt);
2521 }
2522
2523 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
2524 unsigned long *rflags)
2525 {
2526 kvm_lmsw(vcpu, msw);
2527 *rflags = kvm_x86_ops->get_rflags(vcpu);
2528 }
2529
2530 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
2531 {
2532 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2533 switch (cr) {
2534 case 0:
2535 return vcpu->arch.cr0;
2536 case 2:
2537 return vcpu->arch.cr2;
2538 case 3:
2539 return vcpu->arch.cr3;
2540 case 4:
2541 return vcpu->arch.cr4;
2542 case 8:
2543 return kvm_get_cr8(vcpu);
2544 default:
2545 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2546 return 0;
2547 }
2548 }
2549
2550 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
2551 unsigned long *rflags)
2552 {
2553 switch (cr) {
2554 case 0:
2555 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2556 *rflags = kvm_x86_ops->get_rflags(vcpu);
2557 break;
2558 case 2:
2559 vcpu->arch.cr2 = val;
2560 break;
2561 case 3:
2562 kvm_set_cr3(vcpu, val);
2563 break;
2564 case 4:
2565 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2566 break;
2567 case 8:
2568 kvm_set_cr8(vcpu, val & 0xfUL);
2569 break;
2570 default:
2571 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2572 }
2573 }
2574
2575 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
2576 {
2577 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
2578 int j, nent = vcpu->arch.cpuid_nent;
2579
2580 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
2581 /* when no next entry is found, the current entry[i] is reselected */
2582 for (j = i + 1; j == i; j = (j + 1) % nent) {
2583 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2584 if (ej->function == e->function) {
2585 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2586 return j;
2587 }
2588 }
2589 return 0; /* silence gcc, even though control never reaches here */
2590 }
2591
2592 /* find an entry with matching function, matching index (if needed), and that
2593 * should be read next (if it's stateful) */
2594 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
2595 u32 function, u32 index)
2596 {
2597 if (e->function != function)
2598 return 0;
2599 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
2600 return 0;
2601 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
2602 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
2603 return 0;
2604 return 1;
2605 }
2606
2607 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
2608 {
2609 int i;
2610 u32 function, index;
2611 struct kvm_cpuid_entry2 *e, *best;
2612
2613 kvm_x86_ops->cache_regs(vcpu);
2614 function = vcpu->arch.regs[VCPU_REGS_RAX];
2615 index = vcpu->arch.regs[VCPU_REGS_RCX];
2616 vcpu->arch.regs[VCPU_REGS_RAX] = 0;
2617 vcpu->arch.regs[VCPU_REGS_RBX] = 0;
2618 vcpu->arch.regs[VCPU_REGS_RCX] = 0;
2619 vcpu->arch.regs[VCPU_REGS_RDX] = 0;
2620 best = NULL;
2621 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2622 e = &vcpu->arch.cpuid_entries[i];
2623 if (is_matching_cpuid_entry(e, function, index)) {
2624 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
2625 move_to_next_stateful_cpuid_entry(vcpu, i);
2626 best = e;
2627 break;
2628 }
2629 /*
2630 * Both basic or both extended?
2631 */
2632 if (((e->function ^ function) & 0x80000000) == 0)
2633 if (!best || e->function > best->function)
2634 best = e;
2635 }
2636 if (best) {
2637 vcpu->arch.regs[VCPU_REGS_RAX] = best->eax;
2638 vcpu->arch.regs[VCPU_REGS_RBX] = best->ebx;
2639 vcpu->arch.regs[VCPU_REGS_RCX] = best->ecx;
2640 vcpu->arch.regs[VCPU_REGS_RDX] = best->edx;
2641 }
2642 kvm_x86_ops->decache_regs(vcpu);
2643 kvm_x86_ops->skip_emulated_instruction(vcpu);
2644 }
2645 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
2646
2647 /*
2648 * Check if userspace requested an interrupt window, and that the
2649 * interrupt window is open.
2650 *
2651 * No need to exit to userspace if we already have an interrupt queued.
2652 */
2653 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
2654 struct kvm_run *kvm_run)
2655 {
2656 return (!vcpu->arch.irq_summary &&
2657 kvm_run->request_interrupt_window &&
2658 vcpu->arch.interrupt_window_open &&
2659 (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
2660 }
2661
2662 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
2663 struct kvm_run *kvm_run)
2664 {
2665 kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
2666 kvm_run->cr8 = kvm_get_cr8(vcpu);
2667 kvm_run->apic_base = kvm_get_apic_base(vcpu);
2668 if (irqchip_in_kernel(vcpu->kvm))
2669 kvm_run->ready_for_interrupt_injection = 1;
2670 else
2671 kvm_run->ready_for_interrupt_injection =
2672 (vcpu->arch.interrupt_window_open &&
2673 vcpu->arch.irq_summary == 0);
2674 }
2675
2676 static void vapic_enter(struct kvm_vcpu *vcpu)
2677 {
2678 struct kvm_lapic *apic = vcpu->arch.apic;
2679 struct page *page;
2680
2681 if (!apic || !apic->vapic_addr)
2682 return;
2683
2684 down_read(&current->mm->mmap_sem);
2685 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2686 up_read(&current->mm->mmap_sem);
2687
2688 vcpu->arch.apic->vapic_page = page;
2689 }
2690
2691 static void vapic_exit(struct kvm_vcpu *vcpu)
2692 {
2693 struct kvm_lapic *apic = vcpu->arch.apic;
2694
2695 if (!apic || !apic->vapic_addr)
2696 return;
2697
2698 kvm_release_page_dirty(apic->vapic_page);
2699 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2700 }
2701
2702 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2703 {
2704 int r;
2705
2706 if (unlikely(vcpu->arch.mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
2707 pr_debug("vcpu %d received sipi with vector # %x\n",
2708 vcpu->vcpu_id, vcpu->arch.sipi_vector);
2709 kvm_lapic_reset(vcpu);
2710 r = kvm_x86_ops->vcpu_reset(vcpu);
2711 if (r)
2712 return r;
2713 vcpu->arch.mp_state = VCPU_MP_STATE_RUNNABLE;
2714 }
2715
2716 vapic_enter(vcpu);
2717
2718 preempted:
2719 if (vcpu->guest_debug.enabled)
2720 kvm_x86_ops->guest_debug_pre(vcpu);
2721
2722 again:
2723 if (vcpu->requests)
2724 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
2725 kvm_mmu_unload(vcpu);
2726
2727 r = kvm_mmu_reload(vcpu);
2728 if (unlikely(r))
2729 goto out;
2730
2731 if (vcpu->requests) {
2732 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
2733 __kvm_migrate_apic_timer(vcpu);
2734 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
2735 &vcpu->requests)) {
2736 kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
2737 r = 0;
2738 goto out;
2739 }
2740 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
2741 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2742 r = 0;
2743 goto out;
2744 }
2745 }
2746
2747 kvm_inject_pending_timer_irqs(vcpu);
2748
2749 preempt_disable();
2750
2751 kvm_x86_ops->prepare_guest_switch(vcpu);
2752 kvm_load_guest_fpu(vcpu);
2753
2754 local_irq_disable();
2755
2756 if (need_resched()) {
2757 local_irq_enable();
2758 preempt_enable();
2759 r = 1;
2760 goto out;
2761 }
2762
2763 if (vcpu->requests)
2764 if (test_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests)) {
2765 local_irq_enable();
2766 preempt_enable();
2767 r = 1;
2768 goto out;
2769 }
2770
2771 if (signal_pending(current)) {
2772 local_irq_enable();
2773 preempt_enable();
2774 r = -EINTR;
2775 kvm_run->exit_reason = KVM_EXIT_INTR;
2776 ++vcpu->stat.signal_exits;
2777 goto out;
2778 }
2779
2780 if (vcpu->arch.exception.pending)
2781 __queue_exception(vcpu);
2782 else if (irqchip_in_kernel(vcpu->kvm))
2783 kvm_x86_ops->inject_pending_irq(vcpu);
2784 else
2785 kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
2786
2787 kvm_lapic_sync_to_vapic(vcpu);
2788
2789 vcpu->guest_mode = 1;
2790 kvm_guest_enter();
2791
2792 if (vcpu->requests)
2793 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
2794 kvm_x86_ops->tlb_flush(vcpu);
2795
2796 kvm_x86_ops->run(vcpu, kvm_run);
2797
2798 vcpu->guest_mode = 0;
2799 local_irq_enable();
2800
2801 ++vcpu->stat.exits;
2802
2803 /*
2804 * We must have an instruction between local_irq_enable() and
2805 * kvm_guest_exit(), so the timer interrupt isn't delayed by
2806 * the interrupt shadow. The stat.exits increment will do nicely.
2807 * But we need to prevent reordering, hence this barrier():
2808 */
2809 barrier();
2810
2811 kvm_guest_exit();
2812
2813 preempt_enable();
2814
2815 /*
2816 * Profile KVM exit RIPs:
2817 */
2818 if (unlikely(prof_on == KVM_PROFILING)) {
2819 kvm_x86_ops->cache_regs(vcpu);
2820 profile_hit(KVM_PROFILING, (void *)vcpu->arch.rip);
2821 }
2822
2823 if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
2824 vcpu->arch.exception.pending = false;
2825
2826 kvm_lapic_sync_from_vapic(vcpu);
2827
2828 r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
2829
2830 if (r > 0) {
2831 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
2832 r = -EINTR;
2833 kvm_run->exit_reason = KVM_EXIT_INTR;
2834 ++vcpu->stat.request_irq_exits;
2835 goto out;
2836 }
2837 if (!need_resched())
2838 goto again;
2839 }
2840
2841 out:
2842 if (r > 0) {
2843 kvm_resched(vcpu);
2844 goto preempted;
2845 }
2846
2847 post_kvm_run_save(vcpu, kvm_run);
2848
2849 vapic_exit(vcpu);
2850
2851 return r;
2852 }
2853
2854 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2855 {
2856 int r;
2857 sigset_t sigsaved;
2858
2859 vcpu_load(vcpu);
2860
2861 if (unlikely(vcpu->arch.mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
2862 kvm_vcpu_block(vcpu);
2863 vcpu_put(vcpu);
2864 return -EAGAIN;
2865 }
2866
2867 if (vcpu->sigset_active)
2868 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
2869
2870 /* re-sync apic's tpr */
2871 if (!irqchip_in_kernel(vcpu->kvm))
2872 kvm_set_cr8(vcpu, kvm_run->cr8);
2873
2874 if (vcpu->arch.pio.cur_count) {
2875 r = complete_pio(vcpu);
2876 if (r)
2877 goto out;
2878 }
2879 #if CONFIG_HAS_IOMEM
2880 if (vcpu->mmio_needed) {
2881 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
2882 vcpu->mmio_read_completed = 1;
2883 vcpu->mmio_needed = 0;
2884 r = emulate_instruction(vcpu, kvm_run,
2885 vcpu->arch.mmio_fault_cr2, 0,
2886 EMULTYPE_NO_DECODE);
2887 if (r == EMULATE_DO_MMIO) {
2888 /*
2889 * Read-modify-write. Back to userspace.
2890 */
2891 r = 0;
2892 goto out;
2893 }
2894 }
2895 #endif
2896 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
2897 kvm_x86_ops->cache_regs(vcpu);
2898 vcpu->arch.regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
2899 kvm_x86_ops->decache_regs(vcpu);
2900 }
2901
2902 r = __vcpu_run(vcpu, kvm_run);
2903
2904 out:
2905 if (vcpu->sigset_active)
2906 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2907
2908 vcpu_put(vcpu);
2909 return r;
2910 }
2911
2912 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
2913 {
2914 vcpu_load(vcpu);
2915
2916 kvm_x86_ops->cache_regs(vcpu);
2917
2918 regs->rax = vcpu->arch.regs[VCPU_REGS_RAX];
2919 regs->rbx = vcpu->arch.regs[VCPU_REGS_RBX];
2920 regs->rcx = vcpu->arch.regs[VCPU_REGS_RCX];
2921 regs->rdx = vcpu->arch.regs[VCPU_REGS_RDX];
2922 regs->rsi = vcpu->arch.regs[VCPU_REGS_RSI];
2923 regs->rdi = vcpu->arch.regs[VCPU_REGS_RDI];
2924 regs->rsp = vcpu->arch.regs[VCPU_REGS_RSP];
2925 regs->rbp = vcpu->arch.regs[VCPU_REGS_RBP];
2926 #ifdef CONFIG_X86_64
2927 regs->r8 = vcpu->arch.regs[VCPU_REGS_R8];
2928 regs->r9 = vcpu->arch.regs[VCPU_REGS_R9];
2929 regs->r10 = vcpu->arch.regs[VCPU_REGS_R10];
2930 regs->r11 = vcpu->arch.regs[VCPU_REGS_R11];
2931 regs->r12 = vcpu->arch.regs[VCPU_REGS_R12];
2932 regs->r13 = vcpu->arch.regs[VCPU_REGS_R13];
2933 regs->r14 = vcpu->arch.regs[VCPU_REGS_R14];
2934 regs->r15 = vcpu->arch.regs[VCPU_REGS_R15];
2935 #endif
2936
2937 regs->rip = vcpu->arch.rip;
2938 regs->rflags = kvm_x86_ops->get_rflags(vcpu);
2939
2940 /*
2941 * Don't leak debug flags in case they were set for guest debugging
2942 */
2943 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
2944 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
2945
2946 vcpu_put(vcpu);
2947
2948 return 0;
2949 }
2950
2951 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
2952 {
2953 vcpu_load(vcpu);
2954
2955 vcpu->arch.regs[VCPU_REGS_RAX] = regs->rax;
2956 vcpu->arch.regs[VCPU_REGS_RBX] = regs->rbx;
2957 vcpu->arch.regs[VCPU_REGS_RCX] = regs->rcx;
2958 vcpu->arch.regs[VCPU_REGS_RDX] = regs->rdx;
2959 vcpu->arch.regs[VCPU_REGS_RSI] = regs->rsi;
2960 vcpu->arch.regs[VCPU_REGS_RDI] = regs->rdi;
2961 vcpu->arch.regs[VCPU_REGS_RSP] = regs->rsp;
2962 vcpu->arch.regs[VCPU_REGS_RBP] = regs->rbp;
2963 #ifdef CONFIG_X86_64
2964 vcpu->arch.regs[VCPU_REGS_R8] = regs->r8;
2965 vcpu->arch.regs[VCPU_REGS_R9] = regs->r9;
2966 vcpu->arch.regs[VCPU_REGS_R10] = regs->r10;
2967 vcpu->arch.regs[VCPU_REGS_R11] = regs->r11;
2968 vcpu->arch.regs[VCPU_REGS_R12] = regs->r12;
2969 vcpu->arch.regs[VCPU_REGS_R13] = regs->r13;
2970 vcpu->arch.regs[VCPU_REGS_R14] = regs->r14;
2971 vcpu->arch.regs[VCPU_REGS_R15] = regs->r15;
2972 #endif
2973
2974 vcpu->arch.rip = regs->rip;
2975 kvm_x86_ops->set_rflags(vcpu, regs->rflags);
2976
2977 kvm_x86_ops->decache_regs(vcpu);
2978
2979 vcpu_put(vcpu);
2980
2981 return 0;
2982 }
2983
2984 static void get_segment(struct kvm_vcpu *vcpu,
2985 struct kvm_segment *var, int seg)
2986 {
2987 kvm_x86_ops->get_segment(vcpu, var, seg);
2988 }
2989
2990 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
2991 {
2992 struct kvm_segment cs;
2993
2994 get_segment(vcpu, &cs, VCPU_SREG_CS);
2995 *db = cs.db;
2996 *l = cs.l;
2997 }
2998 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
2999
3000 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3001 struct kvm_sregs *sregs)
3002 {
3003 struct descriptor_table dt;
3004 int pending_vec;
3005
3006 vcpu_load(vcpu);
3007
3008 get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3009 get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3010 get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3011 get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3012 get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3013 get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3014
3015 get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3016 get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3017
3018 kvm_x86_ops->get_idt(vcpu, &dt);
3019 sregs->idt.limit = dt.limit;
3020 sregs->idt.base = dt.base;
3021 kvm_x86_ops->get_gdt(vcpu, &dt);
3022 sregs->gdt.limit = dt.limit;
3023 sregs->gdt.base = dt.base;
3024
3025 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3026 sregs->cr0 = vcpu->arch.cr0;
3027 sregs->cr2 = vcpu->arch.cr2;
3028 sregs->cr3 = vcpu->arch.cr3;
3029 sregs->cr4 = vcpu->arch.cr4;
3030 sregs->cr8 = kvm_get_cr8(vcpu);
3031 sregs->efer = vcpu->arch.shadow_efer;
3032 sregs->apic_base = kvm_get_apic_base(vcpu);
3033
3034 if (irqchip_in_kernel(vcpu->kvm)) {
3035 memset(sregs->interrupt_bitmap, 0,
3036 sizeof sregs->interrupt_bitmap);
3037 pending_vec = kvm_x86_ops->get_irq(vcpu);
3038 if (pending_vec >= 0)
3039 set_bit(pending_vec,
3040 (unsigned long *)sregs->interrupt_bitmap);
3041 } else
3042 memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
3043 sizeof sregs->interrupt_bitmap);
3044
3045 vcpu_put(vcpu);
3046
3047 return 0;
3048 }
3049
3050 static void set_segment(struct kvm_vcpu *vcpu,
3051 struct kvm_segment *var, int seg)
3052 {
3053 kvm_x86_ops->set_segment(vcpu, var, seg);
3054 }
3055
3056 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
3057 struct kvm_sregs *sregs)
3058 {
3059 int mmu_reset_needed = 0;
3060 int i, pending_vec, max_bits;
3061 struct descriptor_table dt;
3062
3063 vcpu_load(vcpu);
3064
3065 dt.limit = sregs->idt.limit;
3066 dt.base = sregs->idt.base;
3067 kvm_x86_ops->set_idt(vcpu, &dt);
3068 dt.limit = sregs->gdt.limit;
3069 dt.base = sregs->gdt.base;
3070 kvm_x86_ops->set_gdt(vcpu, &dt);
3071
3072 vcpu->arch.cr2 = sregs->cr2;
3073 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
3074 vcpu->arch.cr3 = sregs->cr3;
3075
3076 kvm_set_cr8(vcpu, sregs->cr8);
3077
3078 mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
3079 kvm_x86_ops->set_efer(vcpu, sregs->efer);
3080 kvm_set_apic_base(vcpu, sregs->apic_base);
3081
3082 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3083
3084 mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
3085 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
3086 vcpu->arch.cr0 = sregs->cr0;
3087
3088 mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
3089 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
3090 if (!is_long_mode(vcpu) && is_pae(vcpu))
3091 load_pdptrs(vcpu, vcpu->arch.cr3);
3092
3093 if (mmu_reset_needed)
3094 kvm_mmu_reset_context(vcpu);
3095
3096 if (!irqchip_in_kernel(vcpu->kvm)) {
3097 memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
3098 sizeof vcpu->arch.irq_pending);
3099 vcpu->arch.irq_summary = 0;
3100 for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
3101 if (vcpu->arch.irq_pending[i])
3102 __set_bit(i, &vcpu->arch.irq_summary);
3103 } else {
3104 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
3105 pending_vec = find_first_bit(
3106 (const unsigned long *)sregs->interrupt_bitmap,
3107 max_bits);
3108 /* Only pending external irq is handled here */
3109 if (pending_vec < max_bits) {
3110 kvm_x86_ops->set_irq(vcpu, pending_vec);
3111 pr_debug("Set back pending irq %d\n",
3112 pending_vec);
3113 }
3114 }
3115
3116 set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3117 set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3118 set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3119 set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3120 set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3121 set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3122
3123 set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3124 set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3125
3126 vcpu_put(vcpu);
3127
3128 return 0;
3129 }
3130
3131 int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
3132 struct kvm_debug_guest *dbg)
3133 {
3134 int r;
3135
3136 vcpu_load(vcpu);
3137
3138 r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
3139
3140 vcpu_put(vcpu);
3141
3142 return r;
3143 }
3144
3145 /*
3146 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
3147 * we have asm/x86/processor.h
3148 */
3149 struct fxsave {
3150 u16 cwd;
3151 u16 swd;
3152 u16 twd;
3153 u16 fop;
3154 u64 rip;
3155 u64 rdp;
3156 u32 mxcsr;
3157 u32 mxcsr_mask;
3158 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
3159 #ifdef CONFIG_X86_64
3160 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
3161 #else
3162 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
3163 #endif
3164 };
3165
3166 /*
3167 * Translate a guest virtual address to a guest physical address.
3168 */
3169 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
3170 struct kvm_translation *tr)
3171 {
3172 unsigned long vaddr = tr->linear_address;
3173 gpa_t gpa;
3174
3175 vcpu_load(vcpu);
3176 down_read(&vcpu->kvm->slots_lock);
3177 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
3178 up_read(&vcpu->kvm->slots_lock);
3179 tr->physical_address = gpa;
3180 tr->valid = gpa != UNMAPPED_GVA;
3181 tr->writeable = 1;
3182 tr->usermode = 0;
3183 vcpu_put(vcpu);
3184
3185 return 0;
3186 }
3187
3188 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
3189 {
3190 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3191
3192 vcpu_load(vcpu);
3193
3194 memcpy(fpu->fpr, fxsave->st_space, 128);
3195 fpu->fcw = fxsave->cwd;
3196 fpu->fsw = fxsave->swd;
3197 fpu->ftwx = fxsave->twd;
3198 fpu->last_opcode = fxsave->fop;
3199 fpu->last_ip = fxsave->rip;
3200 fpu->last_dp = fxsave->rdp;
3201 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
3202
3203 vcpu_put(vcpu);
3204
3205 return 0;
3206 }
3207
3208 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
3209 {
3210 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3211
3212 vcpu_load(vcpu);
3213
3214 memcpy(fxsave->st_space, fpu->fpr, 128);
3215 fxsave->cwd = fpu->fcw;
3216 fxsave->swd = fpu->fsw;
3217 fxsave->twd = fpu->ftwx;
3218 fxsave->fop = fpu->last_opcode;
3219 fxsave->rip = fpu->last_ip;
3220 fxsave->rdp = fpu->last_dp;
3221 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
3222
3223 vcpu_put(vcpu);
3224
3225 return 0;
3226 }
3227
3228 void fx_init(struct kvm_vcpu *vcpu)
3229 {
3230 unsigned after_mxcsr_mask;
3231
3232 /* Initialize guest FPU by resetting ours and saving into guest's */
3233 preempt_disable();
3234 fx_save(&vcpu->arch.host_fx_image);
3235 fpu_init();
3236 fx_save(&vcpu->arch.guest_fx_image);
3237 fx_restore(&vcpu->arch.host_fx_image);
3238 preempt_enable();
3239
3240 vcpu->arch.cr0 |= X86_CR0_ET;
3241 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
3242 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
3243 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
3244 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
3245 }
3246 EXPORT_SYMBOL_GPL(fx_init);
3247
3248 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
3249 {
3250 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
3251 return;
3252
3253 vcpu->guest_fpu_loaded = 1;
3254 fx_save(&vcpu->arch.host_fx_image);
3255 fx_restore(&vcpu->arch.guest_fx_image);
3256 }
3257 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
3258
3259 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
3260 {
3261 if (!vcpu->guest_fpu_loaded)
3262 return;
3263
3264 vcpu->guest_fpu_loaded = 0;
3265 fx_save(&vcpu->arch.guest_fx_image);
3266 fx_restore(&vcpu->arch.host_fx_image);
3267 ++vcpu->stat.fpu_reload;
3268 }
3269 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
3270
3271 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
3272 {
3273 kvm_x86_ops->vcpu_free(vcpu);
3274 }
3275
3276 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
3277 unsigned int id)
3278 {
3279 return kvm_x86_ops->vcpu_create(kvm, id);
3280 }
3281
3282 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
3283 {
3284 int r;
3285
3286 /* We do fxsave: this must be aligned. */
3287 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
3288
3289 vcpu_load(vcpu);
3290 r = kvm_arch_vcpu_reset(vcpu);
3291 if (r == 0)
3292 r = kvm_mmu_setup(vcpu);
3293 vcpu_put(vcpu);
3294 if (r < 0)
3295 goto free_vcpu;
3296
3297 return 0;
3298 free_vcpu:
3299 kvm_x86_ops->vcpu_free(vcpu);
3300 return r;
3301 }
3302
3303 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
3304 {
3305 vcpu_load(vcpu);
3306 kvm_mmu_unload(vcpu);
3307 vcpu_put(vcpu);
3308
3309 kvm_x86_ops->vcpu_free(vcpu);
3310 }
3311
3312 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
3313 {
3314 return kvm_x86_ops->vcpu_reset(vcpu);
3315 }
3316
3317 void kvm_arch_hardware_enable(void *garbage)
3318 {
3319 kvm_x86_ops->hardware_enable(garbage);
3320 }
3321
3322 void kvm_arch_hardware_disable(void *garbage)
3323 {
3324 kvm_x86_ops->hardware_disable(garbage);
3325 }
3326
3327 int kvm_arch_hardware_setup(void)
3328 {
3329 return kvm_x86_ops->hardware_setup();
3330 }
3331
3332 void kvm_arch_hardware_unsetup(void)
3333 {
3334 kvm_x86_ops->hardware_unsetup();
3335 }
3336
3337 void kvm_arch_check_processor_compat(void *rtn)
3338 {
3339 kvm_x86_ops->check_processor_compatibility(rtn);
3340 }
3341
3342 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
3343 {
3344 struct page *page;
3345 struct kvm *kvm;
3346 int r;
3347
3348 BUG_ON(vcpu->kvm == NULL);
3349 kvm = vcpu->kvm;
3350
3351 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3352 if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
3353 vcpu->arch.mp_state = VCPU_MP_STATE_RUNNABLE;
3354 else
3355 vcpu->arch.mp_state = VCPU_MP_STATE_UNINITIALIZED;
3356
3357 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3358 if (!page) {
3359 r = -ENOMEM;
3360 goto fail;
3361 }
3362 vcpu->arch.pio_data = page_address(page);
3363
3364 r = kvm_mmu_create(vcpu);
3365 if (r < 0)
3366 goto fail_free_pio_data;
3367
3368 if (irqchip_in_kernel(kvm)) {
3369 r = kvm_create_lapic(vcpu);
3370 if (r < 0)
3371 goto fail_mmu_destroy;
3372 }
3373
3374 return 0;
3375
3376 fail_mmu_destroy:
3377 kvm_mmu_destroy(vcpu);
3378 fail_free_pio_data:
3379 free_page((unsigned long)vcpu->arch.pio_data);
3380 fail:
3381 return r;
3382 }
3383
3384 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
3385 {
3386 kvm_free_lapic(vcpu);
3387 kvm_mmu_destroy(vcpu);
3388 free_page((unsigned long)vcpu->arch.pio_data);
3389 }
3390
3391 struct kvm *kvm_arch_create_vm(void)
3392 {
3393 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
3394
3395 if (!kvm)
3396 return ERR_PTR(-ENOMEM);
3397
3398 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
3399
3400 return kvm;
3401 }
3402
3403 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
3404 {
3405 vcpu_load(vcpu);
3406 kvm_mmu_unload(vcpu);
3407 vcpu_put(vcpu);
3408 }
3409
3410 static void kvm_free_vcpus(struct kvm *kvm)
3411 {
3412 unsigned int i;
3413
3414 /*
3415 * Unpin any mmu pages first.
3416 */
3417 for (i = 0; i < KVM_MAX_VCPUS; ++i)
3418 if (kvm->vcpus[i])
3419 kvm_unload_vcpu_mmu(kvm->vcpus[i]);
3420 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3421 if (kvm->vcpus[i]) {
3422 kvm_arch_vcpu_free(kvm->vcpus[i]);
3423 kvm->vcpus[i] = NULL;
3424 }
3425 }
3426
3427 }
3428
3429 void kvm_arch_destroy_vm(struct kvm *kvm)
3430 {
3431 kvm_free_pit(kvm);
3432 kfree(kvm->arch.vpic);
3433 kfree(kvm->arch.vioapic);
3434 kvm_free_vcpus(kvm);
3435 kvm_free_physmem(kvm);
3436 kfree(kvm);
3437 }
3438
3439 int kvm_arch_set_memory_region(struct kvm *kvm,
3440 struct kvm_userspace_memory_region *mem,
3441 struct kvm_memory_slot old,
3442 int user_alloc)
3443 {
3444 int npages = mem->memory_size >> PAGE_SHIFT;
3445 struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
3446
3447 /*To keep backward compatibility with older userspace,
3448 *x86 needs to hanlde !user_alloc case.
3449 */
3450 if (!user_alloc) {
3451 if (npages && !old.rmap) {
3452 down_write(&current->mm->mmap_sem);
3453 memslot->userspace_addr = do_mmap(NULL, 0,
3454 npages * PAGE_SIZE,
3455 PROT_READ | PROT_WRITE,
3456 MAP_SHARED | MAP_ANONYMOUS,
3457 0);
3458 up_write(&current->mm->mmap_sem);
3459
3460 if (IS_ERR((void *)memslot->userspace_addr))
3461 return PTR_ERR((void *)memslot->userspace_addr);
3462 } else {
3463 if (!old.user_alloc && old.rmap) {
3464 int ret;
3465
3466 down_write(&current->mm->mmap_sem);
3467 ret = do_munmap(current->mm, old.userspace_addr,
3468 old.npages * PAGE_SIZE);
3469 up_write(&current->mm->mmap_sem);
3470 if (ret < 0)
3471 printk(KERN_WARNING
3472 "kvm_vm_ioctl_set_memory_region: "
3473 "failed to munmap memory\n");
3474 }
3475 }
3476 }
3477
3478 if (!kvm->arch.n_requested_mmu_pages) {
3479 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
3480 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
3481 }
3482
3483 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
3484 kvm_flush_remote_tlbs(kvm);
3485
3486 return 0;
3487 }
3488
3489 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
3490 {
3491 return vcpu->arch.mp_state == VCPU_MP_STATE_RUNNABLE
3492 || vcpu->arch.mp_state == VCPU_MP_STATE_SIPI_RECEIVED;
3493 }
3494
3495 static void vcpu_kick_intr(void *info)
3496 {
3497 #ifdef DEBUG
3498 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
3499 printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
3500 #endif
3501 }
3502
3503 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3504 {
3505 int ipi_pcpu = vcpu->cpu;
3506
3507 if (waitqueue_active(&vcpu->wq)) {
3508 wake_up_interruptible(&vcpu->wq);
3509 ++vcpu->stat.halt_wakeup;
3510 }
3511 if (vcpu->guest_mode)
3512 smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0, 0);
3513 }
This page took 0.106982 seconds and 5 git commands to generate.