62596d373a49a53c5f5c79247679619b7eb2b90b
[deliverable/linux.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affilates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/module.h>
36 #include <linux/mman.h>
37 #include <linux/highmem.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/cpufreq.h>
41 #include <linux/user-return-notifier.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/perf_event.h>
45 #include <linux/uaccess.h>
46 #include <trace/events/kvm.h>
47
48 #define CREATE_TRACE_POINTS
49 #include "trace.h"
50
51 #include <asm/debugreg.h>
52 #include <asm/msr.h>
53 #include <asm/desc.h>
54 #include <asm/mtrr.h>
55 #include <asm/mce.h>
56 #include <asm/i387.h>
57 #include <asm/xcr.h>
58
59 #define MAX_IO_MSRS 256
60 #define CR0_RESERVED_BITS \
61 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
62 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
63 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
64 #define CR4_RESERVED_BITS \
65 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
66 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
67 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
68 | X86_CR4_OSXSAVE \
69 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
70
71 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
72
73 #define KVM_MAX_MCE_BANKS 32
74 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
75
76 /* EFER defaults:
77 * - enable syscall per default because its emulated by KVM
78 * - enable LME and LMA per default on 64 bit KVM
79 */
80 #ifdef CONFIG_X86_64
81 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
82 #else
83 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
84 #endif
85
86 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
87 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
88
89 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
90 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
91 struct kvm_cpuid_entry2 __user *entries);
92
93 struct kvm_x86_ops *kvm_x86_ops;
94 EXPORT_SYMBOL_GPL(kvm_x86_ops);
95
96 int ignore_msrs = 0;
97 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
98
99 #define KVM_NR_SHARED_MSRS 16
100
101 struct kvm_shared_msrs_global {
102 int nr;
103 u32 msrs[KVM_NR_SHARED_MSRS];
104 };
105
106 struct kvm_shared_msrs {
107 struct user_return_notifier urn;
108 bool registered;
109 struct kvm_shared_msr_values {
110 u64 host;
111 u64 curr;
112 } values[KVM_NR_SHARED_MSRS];
113 };
114
115 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
116 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
117
118 struct kvm_stats_debugfs_item debugfs_entries[] = {
119 { "pf_fixed", VCPU_STAT(pf_fixed) },
120 { "pf_guest", VCPU_STAT(pf_guest) },
121 { "tlb_flush", VCPU_STAT(tlb_flush) },
122 { "invlpg", VCPU_STAT(invlpg) },
123 { "exits", VCPU_STAT(exits) },
124 { "io_exits", VCPU_STAT(io_exits) },
125 { "mmio_exits", VCPU_STAT(mmio_exits) },
126 { "signal_exits", VCPU_STAT(signal_exits) },
127 { "irq_window", VCPU_STAT(irq_window_exits) },
128 { "nmi_window", VCPU_STAT(nmi_window_exits) },
129 { "halt_exits", VCPU_STAT(halt_exits) },
130 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
131 { "hypercalls", VCPU_STAT(hypercalls) },
132 { "request_irq", VCPU_STAT(request_irq_exits) },
133 { "irq_exits", VCPU_STAT(irq_exits) },
134 { "host_state_reload", VCPU_STAT(host_state_reload) },
135 { "efer_reload", VCPU_STAT(efer_reload) },
136 { "fpu_reload", VCPU_STAT(fpu_reload) },
137 { "insn_emulation", VCPU_STAT(insn_emulation) },
138 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
139 { "irq_injections", VCPU_STAT(irq_injections) },
140 { "nmi_injections", VCPU_STAT(nmi_injections) },
141 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
142 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
143 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
144 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
145 { "mmu_flooded", VM_STAT(mmu_flooded) },
146 { "mmu_recycled", VM_STAT(mmu_recycled) },
147 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
148 { "mmu_unsync", VM_STAT(mmu_unsync) },
149 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
150 { "largepages", VM_STAT(lpages) },
151 { NULL }
152 };
153
154 u64 __read_mostly host_xcr0;
155
156 static inline u32 bit(int bitno)
157 {
158 return 1 << (bitno & 31);
159 }
160
161 static void kvm_on_user_return(struct user_return_notifier *urn)
162 {
163 unsigned slot;
164 struct kvm_shared_msrs *locals
165 = container_of(urn, struct kvm_shared_msrs, urn);
166 struct kvm_shared_msr_values *values;
167
168 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
169 values = &locals->values[slot];
170 if (values->host != values->curr) {
171 wrmsrl(shared_msrs_global.msrs[slot], values->host);
172 values->curr = values->host;
173 }
174 }
175 locals->registered = false;
176 user_return_notifier_unregister(urn);
177 }
178
179 static void shared_msr_update(unsigned slot, u32 msr)
180 {
181 struct kvm_shared_msrs *smsr;
182 u64 value;
183
184 smsr = &__get_cpu_var(shared_msrs);
185 /* only read, and nobody should modify it at this time,
186 * so don't need lock */
187 if (slot >= shared_msrs_global.nr) {
188 printk(KERN_ERR "kvm: invalid MSR slot!");
189 return;
190 }
191 rdmsrl_safe(msr, &value);
192 smsr->values[slot].host = value;
193 smsr->values[slot].curr = value;
194 }
195
196 void kvm_define_shared_msr(unsigned slot, u32 msr)
197 {
198 if (slot >= shared_msrs_global.nr)
199 shared_msrs_global.nr = slot + 1;
200 shared_msrs_global.msrs[slot] = msr;
201 /* we need ensured the shared_msr_global have been updated */
202 smp_wmb();
203 }
204 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
205
206 static void kvm_shared_msr_cpu_online(void)
207 {
208 unsigned i;
209
210 for (i = 0; i < shared_msrs_global.nr; ++i)
211 shared_msr_update(i, shared_msrs_global.msrs[i]);
212 }
213
214 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
215 {
216 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
217
218 if (((value ^ smsr->values[slot].curr) & mask) == 0)
219 return;
220 smsr->values[slot].curr = value;
221 wrmsrl(shared_msrs_global.msrs[slot], value);
222 if (!smsr->registered) {
223 smsr->urn.on_user_return = kvm_on_user_return;
224 user_return_notifier_register(&smsr->urn);
225 smsr->registered = true;
226 }
227 }
228 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
229
230 static void drop_user_return_notifiers(void *ignore)
231 {
232 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
233
234 if (smsr->registered)
235 kvm_on_user_return(&smsr->urn);
236 }
237
238 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
239 {
240 if (irqchip_in_kernel(vcpu->kvm))
241 return vcpu->arch.apic_base;
242 else
243 return vcpu->arch.apic_base;
244 }
245 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
246
247 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
248 {
249 /* TODO: reserve bits check */
250 if (irqchip_in_kernel(vcpu->kvm))
251 kvm_lapic_set_base(vcpu, data);
252 else
253 vcpu->arch.apic_base = data;
254 }
255 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
256
257 #define EXCPT_BENIGN 0
258 #define EXCPT_CONTRIBUTORY 1
259 #define EXCPT_PF 2
260
261 static int exception_class(int vector)
262 {
263 switch (vector) {
264 case PF_VECTOR:
265 return EXCPT_PF;
266 case DE_VECTOR:
267 case TS_VECTOR:
268 case NP_VECTOR:
269 case SS_VECTOR:
270 case GP_VECTOR:
271 return EXCPT_CONTRIBUTORY;
272 default:
273 break;
274 }
275 return EXCPT_BENIGN;
276 }
277
278 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
279 unsigned nr, bool has_error, u32 error_code,
280 bool reinject)
281 {
282 u32 prev_nr;
283 int class1, class2;
284
285 if (!vcpu->arch.exception.pending) {
286 queue:
287 vcpu->arch.exception.pending = true;
288 vcpu->arch.exception.has_error_code = has_error;
289 vcpu->arch.exception.nr = nr;
290 vcpu->arch.exception.error_code = error_code;
291 vcpu->arch.exception.reinject = reinject;
292 return;
293 }
294
295 /* to check exception */
296 prev_nr = vcpu->arch.exception.nr;
297 if (prev_nr == DF_VECTOR) {
298 /* triple fault -> shutdown */
299 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
300 return;
301 }
302 class1 = exception_class(prev_nr);
303 class2 = exception_class(nr);
304 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
305 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
306 /* generate double fault per SDM Table 5-5 */
307 vcpu->arch.exception.pending = true;
308 vcpu->arch.exception.has_error_code = true;
309 vcpu->arch.exception.nr = DF_VECTOR;
310 vcpu->arch.exception.error_code = 0;
311 } else
312 /* replace previous exception with a new one in a hope
313 that instruction re-execution will regenerate lost
314 exception */
315 goto queue;
316 }
317
318 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
319 {
320 kvm_multiple_exception(vcpu, nr, false, 0, false);
321 }
322 EXPORT_SYMBOL_GPL(kvm_queue_exception);
323
324 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
325 {
326 kvm_multiple_exception(vcpu, nr, false, 0, true);
327 }
328 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
329
330 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
331 u32 error_code)
332 {
333 ++vcpu->stat.pf_guest;
334 vcpu->arch.cr2 = addr;
335 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
336 }
337
338 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
339 {
340 vcpu->arch.nmi_pending = 1;
341 }
342 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
343
344 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
345 {
346 kvm_multiple_exception(vcpu, nr, true, error_code, false);
347 }
348 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
349
350 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
351 {
352 kvm_multiple_exception(vcpu, nr, true, error_code, true);
353 }
354 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
355
356 /*
357 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
358 * a #GP and return false.
359 */
360 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
361 {
362 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
363 return true;
364 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
365 return false;
366 }
367 EXPORT_SYMBOL_GPL(kvm_require_cpl);
368
369 /*
370 * Load the pae pdptrs. Return true is they are all valid.
371 */
372 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
373 {
374 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
375 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
376 int i;
377 int ret;
378 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
379
380 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
381 offset * sizeof(u64), sizeof(pdpte));
382 if (ret < 0) {
383 ret = 0;
384 goto out;
385 }
386 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
387 if (is_present_gpte(pdpte[i]) &&
388 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
389 ret = 0;
390 goto out;
391 }
392 }
393 ret = 1;
394
395 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
396 __set_bit(VCPU_EXREG_PDPTR,
397 (unsigned long *)&vcpu->arch.regs_avail);
398 __set_bit(VCPU_EXREG_PDPTR,
399 (unsigned long *)&vcpu->arch.regs_dirty);
400 out:
401
402 return ret;
403 }
404 EXPORT_SYMBOL_GPL(load_pdptrs);
405
406 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
407 {
408 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
409 bool changed = true;
410 int r;
411
412 if (is_long_mode(vcpu) || !is_pae(vcpu))
413 return false;
414
415 if (!test_bit(VCPU_EXREG_PDPTR,
416 (unsigned long *)&vcpu->arch.regs_avail))
417 return true;
418
419 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
420 if (r < 0)
421 goto out;
422 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
423 out:
424
425 return changed;
426 }
427
428 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
429 {
430 unsigned long old_cr0 = kvm_read_cr0(vcpu);
431 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
432 X86_CR0_CD | X86_CR0_NW;
433
434 cr0 |= X86_CR0_ET;
435
436 #ifdef CONFIG_X86_64
437 if (cr0 & 0xffffffff00000000UL)
438 return 1;
439 #endif
440
441 cr0 &= ~CR0_RESERVED_BITS;
442
443 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
444 return 1;
445
446 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
447 return 1;
448
449 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
450 #ifdef CONFIG_X86_64
451 if ((vcpu->arch.efer & EFER_LME)) {
452 int cs_db, cs_l;
453
454 if (!is_pae(vcpu))
455 return 1;
456 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
457 if (cs_l)
458 return 1;
459 } else
460 #endif
461 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3))
462 return 1;
463 }
464
465 kvm_x86_ops->set_cr0(vcpu, cr0);
466
467 if ((cr0 ^ old_cr0) & update_bits)
468 kvm_mmu_reset_context(vcpu);
469 return 0;
470 }
471 EXPORT_SYMBOL_GPL(kvm_set_cr0);
472
473 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
474 {
475 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
476 }
477 EXPORT_SYMBOL_GPL(kvm_lmsw);
478
479 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
480 {
481 u64 xcr0;
482
483 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
484 if (index != XCR_XFEATURE_ENABLED_MASK)
485 return 1;
486 xcr0 = xcr;
487 if (kvm_x86_ops->get_cpl(vcpu) != 0)
488 return 1;
489 if (!(xcr0 & XSTATE_FP))
490 return 1;
491 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
492 return 1;
493 if (xcr0 & ~host_xcr0)
494 return 1;
495 vcpu->arch.xcr0 = xcr0;
496 vcpu->guest_xcr0_loaded = 0;
497 return 0;
498 }
499
500 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
501 {
502 if (__kvm_set_xcr(vcpu, index, xcr)) {
503 kvm_inject_gp(vcpu, 0);
504 return 1;
505 }
506 return 0;
507 }
508 EXPORT_SYMBOL_GPL(kvm_set_xcr);
509
510 static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
511 {
512 struct kvm_cpuid_entry2 *best;
513
514 best = kvm_find_cpuid_entry(vcpu, 1, 0);
515 return best && (best->ecx & bit(X86_FEATURE_XSAVE));
516 }
517
518 static void update_cpuid(struct kvm_vcpu *vcpu)
519 {
520 struct kvm_cpuid_entry2 *best;
521
522 best = kvm_find_cpuid_entry(vcpu, 1, 0);
523 if (!best)
524 return;
525
526 /* Update OSXSAVE bit */
527 if (cpu_has_xsave && best->function == 0x1) {
528 best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
529 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
530 best->ecx |= bit(X86_FEATURE_OSXSAVE);
531 }
532 }
533
534 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
535 {
536 unsigned long old_cr4 = kvm_read_cr4(vcpu);
537 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
538
539 if (cr4 & CR4_RESERVED_BITS)
540 return 1;
541
542 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
543 return 1;
544
545 if (is_long_mode(vcpu)) {
546 if (!(cr4 & X86_CR4_PAE))
547 return 1;
548 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
549 && ((cr4 ^ old_cr4) & pdptr_bits)
550 && !load_pdptrs(vcpu, vcpu->arch.cr3))
551 return 1;
552
553 if (cr4 & X86_CR4_VMXE)
554 return 1;
555
556 kvm_x86_ops->set_cr4(vcpu, cr4);
557
558 if ((cr4 ^ old_cr4) & pdptr_bits)
559 kvm_mmu_reset_context(vcpu);
560
561 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
562 update_cpuid(vcpu);
563
564 return 0;
565 }
566 EXPORT_SYMBOL_GPL(kvm_set_cr4);
567
568 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
569 {
570 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
571 kvm_mmu_sync_roots(vcpu);
572 kvm_mmu_flush_tlb(vcpu);
573 return 0;
574 }
575
576 if (is_long_mode(vcpu)) {
577 if (cr3 & CR3_L_MODE_RESERVED_BITS)
578 return 1;
579 } else {
580 if (is_pae(vcpu)) {
581 if (cr3 & CR3_PAE_RESERVED_BITS)
582 return 1;
583 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3))
584 return 1;
585 }
586 /*
587 * We don't check reserved bits in nonpae mode, because
588 * this isn't enforced, and VMware depends on this.
589 */
590 }
591
592 /*
593 * Does the new cr3 value map to physical memory? (Note, we
594 * catch an invalid cr3 even in real-mode, because it would
595 * cause trouble later on when we turn on paging anyway.)
596 *
597 * A real CPU would silently accept an invalid cr3 and would
598 * attempt to use it - with largely undefined (and often hard
599 * to debug) behavior on the guest side.
600 */
601 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
602 return 1;
603 vcpu->arch.cr3 = cr3;
604 vcpu->arch.mmu.new_cr3(vcpu);
605 return 0;
606 }
607 EXPORT_SYMBOL_GPL(kvm_set_cr3);
608
609 int __kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
610 {
611 if (cr8 & CR8_RESERVED_BITS)
612 return 1;
613 if (irqchip_in_kernel(vcpu->kvm))
614 kvm_lapic_set_tpr(vcpu, cr8);
615 else
616 vcpu->arch.cr8 = cr8;
617 return 0;
618 }
619
620 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
621 {
622 if (__kvm_set_cr8(vcpu, cr8))
623 kvm_inject_gp(vcpu, 0);
624 }
625 EXPORT_SYMBOL_GPL(kvm_set_cr8);
626
627 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
628 {
629 if (irqchip_in_kernel(vcpu->kvm))
630 return kvm_lapic_get_cr8(vcpu);
631 else
632 return vcpu->arch.cr8;
633 }
634 EXPORT_SYMBOL_GPL(kvm_get_cr8);
635
636 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
637 {
638 switch (dr) {
639 case 0 ... 3:
640 vcpu->arch.db[dr] = val;
641 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
642 vcpu->arch.eff_db[dr] = val;
643 break;
644 case 4:
645 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
646 return 1; /* #UD */
647 /* fall through */
648 case 6:
649 if (val & 0xffffffff00000000ULL)
650 return -1; /* #GP */
651 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
652 break;
653 case 5:
654 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
655 return 1; /* #UD */
656 /* fall through */
657 default: /* 7 */
658 if (val & 0xffffffff00000000ULL)
659 return -1; /* #GP */
660 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
661 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
662 kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
663 vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
664 }
665 break;
666 }
667
668 return 0;
669 }
670
671 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
672 {
673 int res;
674
675 res = __kvm_set_dr(vcpu, dr, val);
676 if (res > 0)
677 kvm_queue_exception(vcpu, UD_VECTOR);
678 else if (res < 0)
679 kvm_inject_gp(vcpu, 0);
680
681 return res;
682 }
683 EXPORT_SYMBOL_GPL(kvm_set_dr);
684
685 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
686 {
687 switch (dr) {
688 case 0 ... 3:
689 *val = vcpu->arch.db[dr];
690 break;
691 case 4:
692 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
693 return 1;
694 /* fall through */
695 case 6:
696 *val = vcpu->arch.dr6;
697 break;
698 case 5:
699 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
700 return 1;
701 /* fall through */
702 default: /* 7 */
703 *val = vcpu->arch.dr7;
704 break;
705 }
706
707 return 0;
708 }
709
710 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
711 {
712 if (_kvm_get_dr(vcpu, dr, val)) {
713 kvm_queue_exception(vcpu, UD_VECTOR);
714 return 1;
715 }
716 return 0;
717 }
718 EXPORT_SYMBOL_GPL(kvm_get_dr);
719
720 /*
721 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
722 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
723 *
724 * This list is modified at module load time to reflect the
725 * capabilities of the host cpu. This capabilities test skips MSRs that are
726 * kvm-specific. Those are put in the beginning of the list.
727 */
728
729 #define KVM_SAVE_MSRS_BEGIN 7
730 static u32 msrs_to_save[] = {
731 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
732 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
733 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
734 HV_X64_MSR_APIC_ASSIST_PAGE,
735 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
736 MSR_K6_STAR,
737 #ifdef CONFIG_X86_64
738 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
739 #endif
740 MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
741 };
742
743 static unsigned num_msrs_to_save;
744
745 static u32 emulated_msrs[] = {
746 MSR_IA32_MISC_ENABLE,
747 };
748
749 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
750 {
751 u64 old_efer = vcpu->arch.efer;
752
753 if (efer & efer_reserved_bits)
754 return 1;
755
756 if (is_paging(vcpu)
757 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
758 return 1;
759
760 if (efer & EFER_FFXSR) {
761 struct kvm_cpuid_entry2 *feat;
762
763 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
764 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
765 return 1;
766 }
767
768 if (efer & EFER_SVME) {
769 struct kvm_cpuid_entry2 *feat;
770
771 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
772 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
773 return 1;
774 }
775
776 efer &= ~EFER_LMA;
777 efer |= vcpu->arch.efer & EFER_LMA;
778
779 kvm_x86_ops->set_efer(vcpu, efer);
780
781 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
782 kvm_mmu_reset_context(vcpu);
783
784 /* Update reserved bits */
785 if ((efer ^ old_efer) & EFER_NX)
786 kvm_mmu_reset_context(vcpu);
787
788 return 0;
789 }
790
791 void kvm_enable_efer_bits(u64 mask)
792 {
793 efer_reserved_bits &= ~mask;
794 }
795 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
796
797
798 /*
799 * Writes msr value into into the appropriate "register".
800 * Returns 0 on success, non-0 otherwise.
801 * Assumes vcpu_load() was already called.
802 */
803 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
804 {
805 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
806 }
807
808 /*
809 * Adapt set_msr() to msr_io()'s calling convention
810 */
811 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
812 {
813 return kvm_set_msr(vcpu, index, *data);
814 }
815
816 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
817 {
818 int version;
819 int r;
820 struct pvclock_wall_clock wc;
821 struct timespec boot;
822
823 if (!wall_clock)
824 return;
825
826 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
827 if (r)
828 return;
829
830 if (version & 1)
831 ++version; /* first time write, random junk */
832
833 ++version;
834
835 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
836
837 /*
838 * The guest calculates current wall clock time by adding
839 * system time (updated by kvm_write_guest_time below) to the
840 * wall clock specified here. guest system time equals host
841 * system time for us, thus we must fill in host boot time here.
842 */
843 getboottime(&boot);
844
845 wc.sec = boot.tv_sec;
846 wc.nsec = boot.tv_nsec;
847 wc.version = version;
848
849 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
850
851 version++;
852 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
853 }
854
855 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
856 {
857 uint32_t quotient, remainder;
858
859 /* Don't try to replace with do_div(), this one calculates
860 * "(dividend << 32) / divisor" */
861 __asm__ ( "divl %4"
862 : "=a" (quotient), "=d" (remainder)
863 : "0" (0), "1" (dividend), "r" (divisor) );
864 return quotient;
865 }
866
867 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
868 {
869 uint64_t nsecs = 1000000000LL;
870 int32_t shift = 0;
871 uint64_t tps64;
872 uint32_t tps32;
873
874 tps64 = tsc_khz * 1000LL;
875 while (tps64 > nsecs*2) {
876 tps64 >>= 1;
877 shift--;
878 }
879
880 tps32 = (uint32_t)tps64;
881 while (tps32 <= (uint32_t)nsecs) {
882 tps32 <<= 1;
883 shift++;
884 }
885
886 hv_clock->tsc_shift = shift;
887 hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
888
889 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
890 __func__, tsc_khz, hv_clock->tsc_shift,
891 hv_clock->tsc_to_system_mul);
892 }
893
894 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
895
896 static void kvm_write_guest_time(struct kvm_vcpu *v)
897 {
898 struct timespec ts;
899 unsigned long flags;
900 struct kvm_vcpu_arch *vcpu = &v->arch;
901 void *shared_kaddr;
902 unsigned long this_tsc_khz;
903
904 if ((!vcpu->time_page))
905 return;
906
907 this_tsc_khz = get_cpu_var(cpu_tsc_khz);
908 if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
909 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
910 vcpu->hv_clock_tsc_khz = this_tsc_khz;
911 }
912 put_cpu_var(cpu_tsc_khz);
913
914 /* Keep irq disabled to prevent changes to the clock */
915 local_irq_save(flags);
916 kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
917 ktime_get_ts(&ts);
918 monotonic_to_bootbased(&ts);
919 local_irq_restore(flags);
920
921 /* With all the info we got, fill in the values */
922
923 vcpu->hv_clock.system_time = ts.tv_nsec +
924 (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
925
926 vcpu->hv_clock.flags = 0;
927
928 /*
929 * The interface expects us to write an even number signaling that the
930 * update is finished. Since the guest won't see the intermediate
931 * state, we just increase by 2 at the end.
932 */
933 vcpu->hv_clock.version += 2;
934
935 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
936
937 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
938 sizeof(vcpu->hv_clock));
939
940 kunmap_atomic(shared_kaddr, KM_USER0);
941
942 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
943 }
944
945 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
946 {
947 struct kvm_vcpu_arch *vcpu = &v->arch;
948
949 if (!vcpu->time_page)
950 return 0;
951 set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
952 return 1;
953 }
954
955 static bool msr_mtrr_valid(unsigned msr)
956 {
957 switch (msr) {
958 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
959 case MSR_MTRRfix64K_00000:
960 case MSR_MTRRfix16K_80000:
961 case MSR_MTRRfix16K_A0000:
962 case MSR_MTRRfix4K_C0000:
963 case MSR_MTRRfix4K_C8000:
964 case MSR_MTRRfix4K_D0000:
965 case MSR_MTRRfix4K_D8000:
966 case MSR_MTRRfix4K_E0000:
967 case MSR_MTRRfix4K_E8000:
968 case MSR_MTRRfix4K_F0000:
969 case MSR_MTRRfix4K_F8000:
970 case MSR_MTRRdefType:
971 case MSR_IA32_CR_PAT:
972 return true;
973 case 0x2f8:
974 return true;
975 }
976 return false;
977 }
978
979 static bool valid_pat_type(unsigned t)
980 {
981 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
982 }
983
984 static bool valid_mtrr_type(unsigned t)
985 {
986 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
987 }
988
989 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
990 {
991 int i;
992
993 if (!msr_mtrr_valid(msr))
994 return false;
995
996 if (msr == MSR_IA32_CR_PAT) {
997 for (i = 0; i < 8; i++)
998 if (!valid_pat_type((data >> (i * 8)) & 0xff))
999 return false;
1000 return true;
1001 } else if (msr == MSR_MTRRdefType) {
1002 if (data & ~0xcff)
1003 return false;
1004 return valid_mtrr_type(data & 0xff);
1005 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1006 for (i = 0; i < 8 ; i++)
1007 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1008 return false;
1009 return true;
1010 }
1011
1012 /* variable MTRRs */
1013 return valid_mtrr_type(data & 0xff);
1014 }
1015
1016 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1017 {
1018 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1019
1020 if (!mtrr_valid(vcpu, msr, data))
1021 return 1;
1022
1023 if (msr == MSR_MTRRdefType) {
1024 vcpu->arch.mtrr_state.def_type = data;
1025 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1026 } else if (msr == MSR_MTRRfix64K_00000)
1027 p[0] = data;
1028 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1029 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1030 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1031 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1032 else if (msr == MSR_IA32_CR_PAT)
1033 vcpu->arch.pat = data;
1034 else { /* Variable MTRRs */
1035 int idx, is_mtrr_mask;
1036 u64 *pt;
1037
1038 idx = (msr - 0x200) / 2;
1039 is_mtrr_mask = msr - 0x200 - 2 * idx;
1040 if (!is_mtrr_mask)
1041 pt =
1042 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1043 else
1044 pt =
1045 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1046 *pt = data;
1047 }
1048
1049 kvm_mmu_reset_context(vcpu);
1050 return 0;
1051 }
1052
1053 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1054 {
1055 u64 mcg_cap = vcpu->arch.mcg_cap;
1056 unsigned bank_num = mcg_cap & 0xff;
1057
1058 switch (msr) {
1059 case MSR_IA32_MCG_STATUS:
1060 vcpu->arch.mcg_status = data;
1061 break;
1062 case MSR_IA32_MCG_CTL:
1063 if (!(mcg_cap & MCG_CTL_P))
1064 return 1;
1065 if (data != 0 && data != ~(u64)0)
1066 return -1;
1067 vcpu->arch.mcg_ctl = data;
1068 break;
1069 default:
1070 if (msr >= MSR_IA32_MC0_CTL &&
1071 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1072 u32 offset = msr - MSR_IA32_MC0_CTL;
1073 /* only 0 or all 1s can be written to IA32_MCi_CTL
1074 * some Linux kernels though clear bit 10 in bank 4 to
1075 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1076 * this to avoid an uncatched #GP in the guest
1077 */
1078 if ((offset & 0x3) == 0 &&
1079 data != 0 && (data | (1 << 10)) != ~(u64)0)
1080 return -1;
1081 vcpu->arch.mce_banks[offset] = data;
1082 break;
1083 }
1084 return 1;
1085 }
1086 return 0;
1087 }
1088
1089 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1090 {
1091 struct kvm *kvm = vcpu->kvm;
1092 int lm = is_long_mode(vcpu);
1093 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1094 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1095 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1096 : kvm->arch.xen_hvm_config.blob_size_32;
1097 u32 page_num = data & ~PAGE_MASK;
1098 u64 page_addr = data & PAGE_MASK;
1099 u8 *page;
1100 int r;
1101
1102 r = -E2BIG;
1103 if (page_num >= blob_size)
1104 goto out;
1105 r = -ENOMEM;
1106 page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1107 if (!page)
1108 goto out;
1109 r = -EFAULT;
1110 if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1111 goto out_free;
1112 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1113 goto out_free;
1114 r = 0;
1115 out_free:
1116 kfree(page);
1117 out:
1118 return r;
1119 }
1120
1121 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1122 {
1123 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1124 }
1125
1126 static bool kvm_hv_msr_partition_wide(u32 msr)
1127 {
1128 bool r = false;
1129 switch (msr) {
1130 case HV_X64_MSR_GUEST_OS_ID:
1131 case HV_X64_MSR_HYPERCALL:
1132 r = true;
1133 break;
1134 }
1135
1136 return r;
1137 }
1138
1139 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1140 {
1141 struct kvm *kvm = vcpu->kvm;
1142
1143 switch (msr) {
1144 case HV_X64_MSR_GUEST_OS_ID:
1145 kvm->arch.hv_guest_os_id = data;
1146 /* setting guest os id to zero disables hypercall page */
1147 if (!kvm->arch.hv_guest_os_id)
1148 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1149 break;
1150 case HV_X64_MSR_HYPERCALL: {
1151 u64 gfn;
1152 unsigned long addr;
1153 u8 instructions[4];
1154
1155 /* if guest os id is not set hypercall should remain disabled */
1156 if (!kvm->arch.hv_guest_os_id)
1157 break;
1158 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1159 kvm->arch.hv_hypercall = data;
1160 break;
1161 }
1162 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1163 addr = gfn_to_hva(kvm, gfn);
1164 if (kvm_is_error_hva(addr))
1165 return 1;
1166 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1167 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1168 if (copy_to_user((void __user *)addr, instructions, 4))
1169 return 1;
1170 kvm->arch.hv_hypercall = data;
1171 break;
1172 }
1173 default:
1174 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1175 "data 0x%llx\n", msr, data);
1176 return 1;
1177 }
1178 return 0;
1179 }
1180
1181 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1182 {
1183 switch (msr) {
1184 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1185 unsigned long addr;
1186
1187 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1188 vcpu->arch.hv_vapic = data;
1189 break;
1190 }
1191 addr = gfn_to_hva(vcpu->kvm, data >>
1192 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1193 if (kvm_is_error_hva(addr))
1194 return 1;
1195 if (clear_user((void __user *)addr, PAGE_SIZE))
1196 return 1;
1197 vcpu->arch.hv_vapic = data;
1198 break;
1199 }
1200 case HV_X64_MSR_EOI:
1201 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1202 case HV_X64_MSR_ICR:
1203 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1204 case HV_X64_MSR_TPR:
1205 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1206 default:
1207 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1208 "data 0x%llx\n", msr, data);
1209 return 1;
1210 }
1211
1212 return 0;
1213 }
1214
1215 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1216 {
1217 switch (msr) {
1218 case MSR_EFER:
1219 return set_efer(vcpu, data);
1220 case MSR_K7_HWCR:
1221 data &= ~(u64)0x40; /* ignore flush filter disable */
1222 data &= ~(u64)0x100; /* ignore ignne emulation enable */
1223 if (data != 0) {
1224 pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1225 data);
1226 return 1;
1227 }
1228 break;
1229 case MSR_FAM10H_MMIO_CONF_BASE:
1230 if (data != 0) {
1231 pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1232 "0x%llx\n", data);
1233 return 1;
1234 }
1235 break;
1236 case MSR_AMD64_NB_CFG:
1237 break;
1238 case MSR_IA32_DEBUGCTLMSR:
1239 if (!data) {
1240 /* We support the non-activated case already */
1241 break;
1242 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1243 /* Values other than LBR and BTF are vendor-specific,
1244 thus reserved and should throw a #GP */
1245 return 1;
1246 }
1247 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1248 __func__, data);
1249 break;
1250 case MSR_IA32_UCODE_REV:
1251 case MSR_IA32_UCODE_WRITE:
1252 case MSR_VM_HSAVE_PA:
1253 case MSR_AMD64_PATCH_LOADER:
1254 break;
1255 case 0x200 ... 0x2ff:
1256 return set_msr_mtrr(vcpu, msr, data);
1257 case MSR_IA32_APICBASE:
1258 kvm_set_apic_base(vcpu, data);
1259 break;
1260 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1261 return kvm_x2apic_msr_write(vcpu, msr, data);
1262 case MSR_IA32_MISC_ENABLE:
1263 vcpu->arch.ia32_misc_enable_msr = data;
1264 break;
1265 case MSR_KVM_WALL_CLOCK_NEW:
1266 case MSR_KVM_WALL_CLOCK:
1267 vcpu->kvm->arch.wall_clock = data;
1268 kvm_write_wall_clock(vcpu->kvm, data);
1269 break;
1270 case MSR_KVM_SYSTEM_TIME_NEW:
1271 case MSR_KVM_SYSTEM_TIME: {
1272 if (vcpu->arch.time_page) {
1273 kvm_release_page_dirty(vcpu->arch.time_page);
1274 vcpu->arch.time_page = NULL;
1275 }
1276
1277 vcpu->arch.time = data;
1278
1279 /* we verify if the enable bit is set... */
1280 if (!(data & 1))
1281 break;
1282
1283 /* ...but clean it before doing the actual write */
1284 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1285
1286 vcpu->arch.time_page =
1287 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1288
1289 if (is_error_page(vcpu->arch.time_page)) {
1290 kvm_release_page_clean(vcpu->arch.time_page);
1291 vcpu->arch.time_page = NULL;
1292 }
1293
1294 kvm_request_guest_time_update(vcpu);
1295 break;
1296 }
1297 case MSR_IA32_MCG_CTL:
1298 case MSR_IA32_MCG_STATUS:
1299 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1300 return set_msr_mce(vcpu, msr, data);
1301
1302 /* Performance counters are not protected by a CPUID bit,
1303 * so we should check all of them in the generic path for the sake of
1304 * cross vendor migration.
1305 * Writing a zero into the event select MSRs disables them,
1306 * which we perfectly emulate ;-). Any other value should be at least
1307 * reported, some guests depend on them.
1308 */
1309 case MSR_P6_EVNTSEL0:
1310 case MSR_P6_EVNTSEL1:
1311 case MSR_K7_EVNTSEL0:
1312 case MSR_K7_EVNTSEL1:
1313 case MSR_K7_EVNTSEL2:
1314 case MSR_K7_EVNTSEL3:
1315 if (data != 0)
1316 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1317 "0x%x data 0x%llx\n", msr, data);
1318 break;
1319 /* at least RHEL 4 unconditionally writes to the perfctr registers,
1320 * so we ignore writes to make it happy.
1321 */
1322 case MSR_P6_PERFCTR0:
1323 case MSR_P6_PERFCTR1:
1324 case MSR_K7_PERFCTR0:
1325 case MSR_K7_PERFCTR1:
1326 case MSR_K7_PERFCTR2:
1327 case MSR_K7_PERFCTR3:
1328 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1329 "0x%x data 0x%llx\n", msr, data);
1330 break;
1331 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1332 if (kvm_hv_msr_partition_wide(msr)) {
1333 int r;
1334 mutex_lock(&vcpu->kvm->lock);
1335 r = set_msr_hyperv_pw(vcpu, msr, data);
1336 mutex_unlock(&vcpu->kvm->lock);
1337 return r;
1338 } else
1339 return set_msr_hyperv(vcpu, msr, data);
1340 break;
1341 default:
1342 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1343 return xen_hvm_config(vcpu, data);
1344 if (!ignore_msrs) {
1345 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1346 msr, data);
1347 return 1;
1348 } else {
1349 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1350 msr, data);
1351 break;
1352 }
1353 }
1354 return 0;
1355 }
1356 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1357
1358
1359 /*
1360 * Reads an msr value (of 'msr_index') into 'pdata'.
1361 * Returns 0 on success, non-0 otherwise.
1362 * Assumes vcpu_load() was already called.
1363 */
1364 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1365 {
1366 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1367 }
1368
1369 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1370 {
1371 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1372
1373 if (!msr_mtrr_valid(msr))
1374 return 1;
1375
1376 if (msr == MSR_MTRRdefType)
1377 *pdata = vcpu->arch.mtrr_state.def_type +
1378 (vcpu->arch.mtrr_state.enabled << 10);
1379 else if (msr == MSR_MTRRfix64K_00000)
1380 *pdata = p[0];
1381 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1382 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1383 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1384 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1385 else if (msr == MSR_IA32_CR_PAT)
1386 *pdata = vcpu->arch.pat;
1387 else { /* Variable MTRRs */
1388 int idx, is_mtrr_mask;
1389 u64 *pt;
1390
1391 idx = (msr - 0x200) / 2;
1392 is_mtrr_mask = msr - 0x200 - 2 * idx;
1393 if (!is_mtrr_mask)
1394 pt =
1395 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1396 else
1397 pt =
1398 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1399 *pdata = *pt;
1400 }
1401
1402 return 0;
1403 }
1404
1405 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1406 {
1407 u64 data;
1408 u64 mcg_cap = vcpu->arch.mcg_cap;
1409 unsigned bank_num = mcg_cap & 0xff;
1410
1411 switch (msr) {
1412 case MSR_IA32_P5_MC_ADDR:
1413 case MSR_IA32_P5_MC_TYPE:
1414 data = 0;
1415 break;
1416 case MSR_IA32_MCG_CAP:
1417 data = vcpu->arch.mcg_cap;
1418 break;
1419 case MSR_IA32_MCG_CTL:
1420 if (!(mcg_cap & MCG_CTL_P))
1421 return 1;
1422 data = vcpu->arch.mcg_ctl;
1423 break;
1424 case MSR_IA32_MCG_STATUS:
1425 data = vcpu->arch.mcg_status;
1426 break;
1427 default:
1428 if (msr >= MSR_IA32_MC0_CTL &&
1429 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1430 u32 offset = msr - MSR_IA32_MC0_CTL;
1431 data = vcpu->arch.mce_banks[offset];
1432 break;
1433 }
1434 return 1;
1435 }
1436 *pdata = data;
1437 return 0;
1438 }
1439
1440 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1441 {
1442 u64 data = 0;
1443 struct kvm *kvm = vcpu->kvm;
1444
1445 switch (msr) {
1446 case HV_X64_MSR_GUEST_OS_ID:
1447 data = kvm->arch.hv_guest_os_id;
1448 break;
1449 case HV_X64_MSR_HYPERCALL:
1450 data = kvm->arch.hv_hypercall;
1451 break;
1452 default:
1453 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1454 return 1;
1455 }
1456
1457 *pdata = data;
1458 return 0;
1459 }
1460
1461 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1462 {
1463 u64 data = 0;
1464
1465 switch (msr) {
1466 case HV_X64_MSR_VP_INDEX: {
1467 int r;
1468 struct kvm_vcpu *v;
1469 kvm_for_each_vcpu(r, v, vcpu->kvm)
1470 if (v == vcpu)
1471 data = r;
1472 break;
1473 }
1474 case HV_X64_MSR_EOI:
1475 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1476 case HV_X64_MSR_ICR:
1477 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1478 case HV_X64_MSR_TPR:
1479 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1480 default:
1481 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1482 return 1;
1483 }
1484 *pdata = data;
1485 return 0;
1486 }
1487
1488 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1489 {
1490 u64 data;
1491
1492 switch (msr) {
1493 case MSR_IA32_PLATFORM_ID:
1494 case MSR_IA32_UCODE_REV:
1495 case MSR_IA32_EBL_CR_POWERON:
1496 case MSR_IA32_DEBUGCTLMSR:
1497 case MSR_IA32_LASTBRANCHFROMIP:
1498 case MSR_IA32_LASTBRANCHTOIP:
1499 case MSR_IA32_LASTINTFROMIP:
1500 case MSR_IA32_LASTINTTOIP:
1501 case MSR_K8_SYSCFG:
1502 case MSR_K7_HWCR:
1503 case MSR_VM_HSAVE_PA:
1504 case MSR_P6_PERFCTR0:
1505 case MSR_P6_PERFCTR1:
1506 case MSR_P6_EVNTSEL0:
1507 case MSR_P6_EVNTSEL1:
1508 case MSR_K7_EVNTSEL0:
1509 case MSR_K7_PERFCTR0:
1510 case MSR_K8_INT_PENDING_MSG:
1511 case MSR_AMD64_NB_CFG:
1512 case MSR_FAM10H_MMIO_CONF_BASE:
1513 data = 0;
1514 break;
1515 case MSR_MTRRcap:
1516 data = 0x500 | KVM_NR_VAR_MTRR;
1517 break;
1518 case 0x200 ... 0x2ff:
1519 return get_msr_mtrr(vcpu, msr, pdata);
1520 case 0xcd: /* fsb frequency */
1521 data = 3;
1522 break;
1523 case MSR_IA32_APICBASE:
1524 data = kvm_get_apic_base(vcpu);
1525 break;
1526 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1527 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1528 break;
1529 case MSR_IA32_MISC_ENABLE:
1530 data = vcpu->arch.ia32_misc_enable_msr;
1531 break;
1532 case MSR_IA32_PERF_STATUS:
1533 /* TSC increment by tick */
1534 data = 1000ULL;
1535 /* CPU multiplier */
1536 data |= (((uint64_t)4ULL) << 40);
1537 break;
1538 case MSR_EFER:
1539 data = vcpu->arch.efer;
1540 break;
1541 case MSR_KVM_WALL_CLOCK:
1542 case MSR_KVM_WALL_CLOCK_NEW:
1543 data = vcpu->kvm->arch.wall_clock;
1544 break;
1545 case MSR_KVM_SYSTEM_TIME:
1546 case MSR_KVM_SYSTEM_TIME_NEW:
1547 data = vcpu->arch.time;
1548 break;
1549 case MSR_IA32_P5_MC_ADDR:
1550 case MSR_IA32_P5_MC_TYPE:
1551 case MSR_IA32_MCG_CAP:
1552 case MSR_IA32_MCG_CTL:
1553 case MSR_IA32_MCG_STATUS:
1554 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1555 return get_msr_mce(vcpu, msr, pdata);
1556 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1557 if (kvm_hv_msr_partition_wide(msr)) {
1558 int r;
1559 mutex_lock(&vcpu->kvm->lock);
1560 r = get_msr_hyperv_pw(vcpu, msr, pdata);
1561 mutex_unlock(&vcpu->kvm->lock);
1562 return r;
1563 } else
1564 return get_msr_hyperv(vcpu, msr, pdata);
1565 break;
1566 default:
1567 if (!ignore_msrs) {
1568 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1569 return 1;
1570 } else {
1571 pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1572 data = 0;
1573 }
1574 break;
1575 }
1576 *pdata = data;
1577 return 0;
1578 }
1579 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1580
1581 /*
1582 * Read or write a bunch of msrs. All parameters are kernel addresses.
1583 *
1584 * @return number of msrs set successfully.
1585 */
1586 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1587 struct kvm_msr_entry *entries,
1588 int (*do_msr)(struct kvm_vcpu *vcpu,
1589 unsigned index, u64 *data))
1590 {
1591 int i, idx;
1592
1593 idx = srcu_read_lock(&vcpu->kvm->srcu);
1594 for (i = 0; i < msrs->nmsrs; ++i)
1595 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1596 break;
1597 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1598
1599 return i;
1600 }
1601
1602 /*
1603 * Read or write a bunch of msrs. Parameters are user addresses.
1604 *
1605 * @return number of msrs set successfully.
1606 */
1607 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1608 int (*do_msr)(struct kvm_vcpu *vcpu,
1609 unsigned index, u64 *data),
1610 int writeback)
1611 {
1612 struct kvm_msrs msrs;
1613 struct kvm_msr_entry *entries;
1614 int r, n;
1615 unsigned size;
1616
1617 r = -EFAULT;
1618 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1619 goto out;
1620
1621 r = -E2BIG;
1622 if (msrs.nmsrs >= MAX_IO_MSRS)
1623 goto out;
1624
1625 r = -ENOMEM;
1626 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1627 entries = kmalloc(size, GFP_KERNEL);
1628 if (!entries)
1629 goto out;
1630
1631 r = -EFAULT;
1632 if (copy_from_user(entries, user_msrs->entries, size))
1633 goto out_free;
1634
1635 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1636 if (r < 0)
1637 goto out_free;
1638
1639 r = -EFAULT;
1640 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1641 goto out_free;
1642
1643 r = n;
1644
1645 out_free:
1646 kfree(entries);
1647 out:
1648 return r;
1649 }
1650
1651 int kvm_dev_ioctl_check_extension(long ext)
1652 {
1653 int r;
1654
1655 switch (ext) {
1656 case KVM_CAP_IRQCHIP:
1657 case KVM_CAP_HLT:
1658 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1659 case KVM_CAP_SET_TSS_ADDR:
1660 case KVM_CAP_EXT_CPUID:
1661 case KVM_CAP_CLOCKSOURCE:
1662 case KVM_CAP_PIT:
1663 case KVM_CAP_NOP_IO_DELAY:
1664 case KVM_CAP_MP_STATE:
1665 case KVM_CAP_SYNC_MMU:
1666 case KVM_CAP_REINJECT_CONTROL:
1667 case KVM_CAP_IRQ_INJECT_STATUS:
1668 case KVM_CAP_ASSIGN_DEV_IRQ:
1669 case KVM_CAP_IRQFD:
1670 case KVM_CAP_IOEVENTFD:
1671 case KVM_CAP_PIT2:
1672 case KVM_CAP_PIT_STATE2:
1673 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1674 case KVM_CAP_XEN_HVM:
1675 case KVM_CAP_ADJUST_CLOCK:
1676 case KVM_CAP_VCPU_EVENTS:
1677 case KVM_CAP_HYPERV:
1678 case KVM_CAP_HYPERV_VAPIC:
1679 case KVM_CAP_HYPERV_SPIN:
1680 case KVM_CAP_PCI_SEGMENT:
1681 case KVM_CAP_DEBUGREGS:
1682 case KVM_CAP_X86_ROBUST_SINGLESTEP:
1683 case KVM_CAP_XSAVE:
1684 r = 1;
1685 break;
1686 case KVM_CAP_COALESCED_MMIO:
1687 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1688 break;
1689 case KVM_CAP_VAPIC:
1690 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1691 break;
1692 case KVM_CAP_NR_VCPUS:
1693 r = KVM_MAX_VCPUS;
1694 break;
1695 case KVM_CAP_NR_MEMSLOTS:
1696 r = KVM_MEMORY_SLOTS;
1697 break;
1698 case KVM_CAP_PV_MMU: /* obsolete */
1699 r = 0;
1700 break;
1701 case KVM_CAP_IOMMU:
1702 r = iommu_found();
1703 break;
1704 case KVM_CAP_MCE:
1705 r = KVM_MAX_MCE_BANKS;
1706 break;
1707 case KVM_CAP_XCRS:
1708 r = cpu_has_xsave;
1709 break;
1710 default:
1711 r = 0;
1712 break;
1713 }
1714 return r;
1715
1716 }
1717
1718 long kvm_arch_dev_ioctl(struct file *filp,
1719 unsigned int ioctl, unsigned long arg)
1720 {
1721 void __user *argp = (void __user *)arg;
1722 long r;
1723
1724 switch (ioctl) {
1725 case KVM_GET_MSR_INDEX_LIST: {
1726 struct kvm_msr_list __user *user_msr_list = argp;
1727 struct kvm_msr_list msr_list;
1728 unsigned n;
1729
1730 r = -EFAULT;
1731 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1732 goto out;
1733 n = msr_list.nmsrs;
1734 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1735 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1736 goto out;
1737 r = -E2BIG;
1738 if (n < msr_list.nmsrs)
1739 goto out;
1740 r = -EFAULT;
1741 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1742 num_msrs_to_save * sizeof(u32)))
1743 goto out;
1744 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1745 &emulated_msrs,
1746 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1747 goto out;
1748 r = 0;
1749 break;
1750 }
1751 case KVM_GET_SUPPORTED_CPUID: {
1752 struct kvm_cpuid2 __user *cpuid_arg = argp;
1753 struct kvm_cpuid2 cpuid;
1754
1755 r = -EFAULT;
1756 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1757 goto out;
1758 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1759 cpuid_arg->entries);
1760 if (r)
1761 goto out;
1762
1763 r = -EFAULT;
1764 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1765 goto out;
1766 r = 0;
1767 break;
1768 }
1769 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1770 u64 mce_cap;
1771
1772 mce_cap = KVM_MCE_CAP_SUPPORTED;
1773 r = -EFAULT;
1774 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1775 goto out;
1776 r = 0;
1777 break;
1778 }
1779 default:
1780 r = -EINVAL;
1781 }
1782 out:
1783 return r;
1784 }
1785
1786 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1787 {
1788 kvm_x86_ops->vcpu_load(vcpu, cpu);
1789 if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) {
1790 unsigned long khz = cpufreq_quick_get(cpu);
1791 if (!khz)
1792 khz = tsc_khz;
1793 per_cpu(cpu_tsc_khz, cpu) = khz;
1794 }
1795 kvm_request_guest_time_update(vcpu);
1796 }
1797
1798 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1799 {
1800 kvm_x86_ops->vcpu_put(vcpu);
1801 kvm_put_guest_fpu(vcpu);
1802 }
1803
1804 static int is_efer_nx(void)
1805 {
1806 unsigned long long efer = 0;
1807
1808 rdmsrl_safe(MSR_EFER, &efer);
1809 return efer & EFER_NX;
1810 }
1811
1812 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1813 {
1814 int i;
1815 struct kvm_cpuid_entry2 *e, *entry;
1816
1817 entry = NULL;
1818 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1819 e = &vcpu->arch.cpuid_entries[i];
1820 if (e->function == 0x80000001) {
1821 entry = e;
1822 break;
1823 }
1824 }
1825 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1826 entry->edx &= ~(1 << 20);
1827 printk(KERN_INFO "kvm: guest NX capability removed\n");
1828 }
1829 }
1830
1831 /* when an old userspace process fills a new kernel module */
1832 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1833 struct kvm_cpuid *cpuid,
1834 struct kvm_cpuid_entry __user *entries)
1835 {
1836 int r, i;
1837 struct kvm_cpuid_entry *cpuid_entries;
1838
1839 r = -E2BIG;
1840 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1841 goto out;
1842 r = -ENOMEM;
1843 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1844 if (!cpuid_entries)
1845 goto out;
1846 r = -EFAULT;
1847 if (copy_from_user(cpuid_entries, entries,
1848 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1849 goto out_free;
1850 for (i = 0; i < cpuid->nent; i++) {
1851 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1852 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1853 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1854 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1855 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1856 vcpu->arch.cpuid_entries[i].index = 0;
1857 vcpu->arch.cpuid_entries[i].flags = 0;
1858 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1859 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1860 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1861 }
1862 vcpu->arch.cpuid_nent = cpuid->nent;
1863 cpuid_fix_nx_cap(vcpu);
1864 r = 0;
1865 kvm_apic_set_version(vcpu);
1866 kvm_x86_ops->cpuid_update(vcpu);
1867 update_cpuid(vcpu);
1868
1869 out_free:
1870 vfree(cpuid_entries);
1871 out:
1872 return r;
1873 }
1874
1875 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1876 struct kvm_cpuid2 *cpuid,
1877 struct kvm_cpuid_entry2 __user *entries)
1878 {
1879 int r;
1880
1881 r = -E2BIG;
1882 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1883 goto out;
1884 r = -EFAULT;
1885 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1886 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1887 goto out;
1888 vcpu->arch.cpuid_nent = cpuid->nent;
1889 kvm_apic_set_version(vcpu);
1890 kvm_x86_ops->cpuid_update(vcpu);
1891 update_cpuid(vcpu);
1892 return 0;
1893
1894 out:
1895 return r;
1896 }
1897
1898 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1899 struct kvm_cpuid2 *cpuid,
1900 struct kvm_cpuid_entry2 __user *entries)
1901 {
1902 int r;
1903
1904 r = -E2BIG;
1905 if (cpuid->nent < vcpu->arch.cpuid_nent)
1906 goto out;
1907 r = -EFAULT;
1908 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1909 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1910 goto out;
1911 return 0;
1912
1913 out:
1914 cpuid->nent = vcpu->arch.cpuid_nent;
1915 return r;
1916 }
1917
1918 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1919 u32 index)
1920 {
1921 entry->function = function;
1922 entry->index = index;
1923 cpuid_count(entry->function, entry->index,
1924 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1925 entry->flags = 0;
1926 }
1927
1928 #define F(x) bit(X86_FEATURE_##x)
1929
1930 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1931 u32 index, int *nent, int maxnent)
1932 {
1933 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
1934 #ifdef CONFIG_X86_64
1935 unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
1936 ? F(GBPAGES) : 0;
1937 unsigned f_lm = F(LM);
1938 #else
1939 unsigned f_gbpages = 0;
1940 unsigned f_lm = 0;
1941 #endif
1942 unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
1943
1944 /* cpuid 1.edx */
1945 const u32 kvm_supported_word0_x86_features =
1946 F(FPU) | F(VME) | F(DE) | F(PSE) |
1947 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1948 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
1949 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1950 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
1951 0 /* Reserved, DS, ACPI */ | F(MMX) |
1952 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
1953 0 /* HTT, TM, Reserved, PBE */;
1954 /* cpuid 0x80000001.edx */
1955 const u32 kvm_supported_word1_x86_features =
1956 F(FPU) | F(VME) | F(DE) | F(PSE) |
1957 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1958 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
1959 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1960 F(PAT) | F(PSE36) | 0 /* Reserved */ |
1961 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
1962 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
1963 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
1964 /* cpuid 1.ecx */
1965 const u32 kvm_supported_word4_x86_features =
1966 F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
1967 0 /* DS-CPL, VMX, SMX, EST */ |
1968 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1969 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
1970 0 /* Reserved, DCA */ | F(XMM4_1) |
1971 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
1972 0 /* Reserved, AES */ | F(XSAVE) | 0 /* OSXSAVE */;
1973 /* cpuid 0x80000001.ecx */
1974 const u32 kvm_supported_word6_x86_features =
1975 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
1976 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
1977 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
1978 0 /* SKINIT */ | 0 /* WDT */;
1979
1980 /* all calls to cpuid_count() should be made on the same cpu */
1981 get_cpu();
1982 do_cpuid_1_ent(entry, function, index);
1983 ++*nent;
1984
1985 switch (function) {
1986 case 0:
1987 entry->eax = min(entry->eax, (u32)0xd);
1988 break;
1989 case 1:
1990 entry->edx &= kvm_supported_word0_x86_features;
1991 entry->ecx &= kvm_supported_word4_x86_features;
1992 /* we support x2apic emulation even if host does not support
1993 * it since we emulate x2apic in software */
1994 entry->ecx |= F(X2APIC);
1995 break;
1996 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1997 * may return different values. This forces us to get_cpu() before
1998 * issuing the first command, and also to emulate this annoying behavior
1999 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
2000 case 2: {
2001 int t, times = entry->eax & 0xff;
2002
2003 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2004 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2005 for (t = 1; t < times && *nent < maxnent; ++t) {
2006 do_cpuid_1_ent(&entry[t], function, 0);
2007 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2008 ++*nent;
2009 }
2010 break;
2011 }
2012 /* function 4 and 0xb have additional index. */
2013 case 4: {
2014 int i, cache_type;
2015
2016 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2017 /* read more entries until cache_type is zero */
2018 for (i = 1; *nent < maxnent; ++i) {
2019 cache_type = entry[i - 1].eax & 0x1f;
2020 if (!cache_type)
2021 break;
2022 do_cpuid_1_ent(&entry[i], function, i);
2023 entry[i].flags |=
2024 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2025 ++*nent;
2026 }
2027 break;
2028 }
2029 case 0xb: {
2030 int i, level_type;
2031
2032 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2033 /* read more entries until level_type is zero */
2034 for (i = 1; *nent < maxnent; ++i) {
2035 level_type = entry[i - 1].ecx & 0xff00;
2036 if (!level_type)
2037 break;
2038 do_cpuid_1_ent(&entry[i], function, i);
2039 entry[i].flags |=
2040 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2041 ++*nent;
2042 }
2043 break;
2044 }
2045 case 0xd: {
2046 int i;
2047
2048 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2049 for (i = 1; *nent < maxnent; ++i) {
2050 if (entry[i - 1].eax == 0 && i != 2)
2051 break;
2052 do_cpuid_1_ent(&entry[i], function, i);
2053 entry[i].flags |=
2054 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2055 ++*nent;
2056 }
2057 break;
2058 }
2059 case KVM_CPUID_SIGNATURE: {
2060 char signature[12] = "KVMKVMKVM\0\0";
2061 u32 *sigptr = (u32 *)signature;
2062 entry->eax = 0;
2063 entry->ebx = sigptr[0];
2064 entry->ecx = sigptr[1];
2065 entry->edx = sigptr[2];
2066 break;
2067 }
2068 case KVM_CPUID_FEATURES:
2069 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
2070 (1 << KVM_FEATURE_NOP_IO_DELAY) |
2071 (1 << KVM_FEATURE_CLOCKSOURCE2) |
2072 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
2073 entry->ebx = 0;
2074 entry->ecx = 0;
2075 entry->edx = 0;
2076 break;
2077 case 0x80000000:
2078 entry->eax = min(entry->eax, 0x8000001a);
2079 break;
2080 case 0x80000001:
2081 entry->edx &= kvm_supported_word1_x86_features;
2082 entry->ecx &= kvm_supported_word6_x86_features;
2083 break;
2084 }
2085
2086 kvm_x86_ops->set_supported_cpuid(function, entry);
2087
2088 put_cpu();
2089 }
2090
2091 #undef F
2092
2093 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
2094 struct kvm_cpuid_entry2 __user *entries)
2095 {
2096 struct kvm_cpuid_entry2 *cpuid_entries;
2097 int limit, nent = 0, r = -E2BIG;
2098 u32 func;
2099
2100 if (cpuid->nent < 1)
2101 goto out;
2102 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2103 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
2104 r = -ENOMEM;
2105 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
2106 if (!cpuid_entries)
2107 goto out;
2108
2109 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
2110 limit = cpuid_entries[0].eax;
2111 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
2112 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2113 &nent, cpuid->nent);
2114 r = -E2BIG;
2115 if (nent >= cpuid->nent)
2116 goto out_free;
2117
2118 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
2119 limit = cpuid_entries[nent - 1].eax;
2120 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
2121 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2122 &nent, cpuid->nent);
2123
2124
2125
2126 r = -E2BIG;
2127 if (nent >= cpuid->nent)
2128 goto out_free;
2129
2130 do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
2131 cpuid->nent);
2132
2133 r = -E2BIG;
2134 if (nent >= cpuid->nent)
2135 goto out_free;
2136
2137 do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
2138 cpuid->nent);
2139
2140 r = -E2BIG;
2141 if (nent >= cpuid->nent)
2142 goto out_free;
2143
2144 r = -EFAULT;
2145 if (copy_to_user(entries, cpuid_entries,
2146 nent * sizeof(struct kvm_cpuid_entry2)))
2147 goto out_free;
2148 cpuid->nent = nent;
2149 r = 0;
2150
2151 out_free:
2152 vfree(cpuid_entries);
2153 out:
2154 return r;
2155 }
2156
2157 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2158 struct kvm_lapic_state *s)
2159 {
2160 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2161
2162 return 0;
2163 }
2164
2165 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2166 struct kvm_lapic_state *s)
2167 {
2168 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2169 kvm_apic_post_state_restore(vcpu);
2170 update_cr8_intercept(vcpu);
2171
2172 return 0;
2173 }
2174
2175 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2176 struct kvm_interrupt *irq)
2177 {
2178 if (irq->irq < 0 || irq->irq >= 256)
2179 return -EINVAL;
2180 if (irqchip_in_kernel(vcpu->kvm))
2181 return -ENXIO;
2182
2183 kvm_queue_interrupt(vcpu, irq->irq, false);
2184
2185 return 0;
2186 }
2187
2188 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2189 {
2190 kvm_inject_nmi(vcpu);
2191
2192 return 0;
2193 }
2194
2195 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2196 struct kvm_tpr_access_ctl *tac)
2197 {
2198 if (tac->flags)
2199 return -EINVAL;
2200 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2201 return 0;
2202 }
2203
2204 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2205 u64 mcg_cap)
2206 {
2207 int r;
2208 unsigned bank_num = mcg_cap & 0xff, bank;
2209
2210 r = -EINVAL;
2211 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2212 goto out;
2213 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2214 goto out;
2215 r = 0;
2216 vcpu->arch.mcg_cap = mcg_cap;
2217 /* Init IA32_MCG_CTL to all 1s */
2218 if (mcg_cap & MCG_CTL_P)
2219 vcpu->arch.mcg_ctl = ~(u64)0;
2220 /* Init IA32_MCi_CTL to all 1s */
2221 for (bank = 0; bank < bank_num; bank++)
2222 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2223 out:
2224 return r;
2225 }
2226
2227 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2228 struct kvm_x86_mce *mce)
2229 {
2230 u64 mcg_cap = vcpu->arch.mcg_cap;
2231 unsigned bank_num = mcg_cap & 0xff;
2232 u64 *banks = vcpu->arch.mce_banks;
2233
2234 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2235 return -EINVAL;
2236 /*
2237 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2238 * reporting is disabled
2239 */
2240 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2241 vcpu->arch.mcg_ctl != ~(u64)0)
2242 return 0;
2243 banks += 4 * mce->bank;
2244 /*
2245 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2246 * reporting is disabled for the bank
2247 */
2248 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2249 return 0;
2250 if (mce->status & MCI_STATUS_UC) {
2251 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2252 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2253 printk(KERN_DEBUG "kvm: set_mce: "
2254 "injects mce exception while "
2255 "previous one is in progress!\n");
2256 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
2257 return 0;
2258 }
2259 if (banks[1] & MCI_STATUS_VAL)
2260 mce->status |= MCI_STATUS_OVER;
2261 banks[2] = mce->addr;
2262 banks[3] = mce->misc;
2263 vcpu->arch.mcg_status = mce->mcg_status;
2264 banks[1] = mce->status;
2265 kvm_queue_exception(vcpu, MC_VECTOR);
2266 } else if (!(banks[1] & MCI_STATUS_VAL)
2267 || !(banks[1] & MCI_STATUS_UC)) {
2268 if (banks[1] & MCI_STATUS_VAL)
2269 mce->status |= MCI_STATUS_OVER;
2270 banks[2] = mce->addr;
2271 banks[3] = mce->misc;
2272 banks[1] = mce->status;
2273 } else
2274 banks[1] |= MCI_STATUS_OVER;
2275 return 0;
2276 }
2277
2278 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2279 struct kvm_vcpu_events *events)
2280 {
2281 events->exception.injected =
2282 vcpu->arch.exception.pending &&
2283 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2284 events->exception.nr = vcpu->arch.exception.nr;
2285 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2286 events->exception.error_code = vcpu->arch.exception.error_code;
2287
2288 events->interrupt.injected =
2289 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2290 events->interrupt.nr = vcpu->arch.interrupt.nr;
2291 events->interrupt.soft = 0;
2292 events->interrupt.shadow =
2293 kvm_x86_ops->get_interrupt_shadow(vcpu,
2294 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2295
2296 events->nmi.injected = vcpu->arch.nmi_injected;
2297 events->nmi.pending = vcpu->arch.nmi_pending;
2298 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2299
2300 events->sipi_vector = vcpu->arch.sipi_vector;
2301
2302 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2303 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2304 | KVM_VCPUEVENT_VALID_SHADOW);
2305 }
2306
2307 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2308 struct kvm_vcpu_events *events)
2309 {
2310 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2311 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2312 | KVM_VCPUEVENT_VALID_SHADOW))
2313 return -EINVAL;
2314
2315 vcpu->arch.exception.pending = events->exception.injected;
2316 vcpu->arch.exception.nr = events->exception.nr;
2317 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2318 vcpu->arch.exception.error_code = events->exception.error_code;
2319
2320 vcpu->arch.interrupt.pending = events->interrupt.injected;
2321 vcpu->arch.interrupt.nr = events->interrupt.nr;
2322 vcpu->arch.interrupt.soft = events->interrupt.soft;
2323 if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
2324 kvm_pic_clear_isr_ack(vcpu->kvm);
2325 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2326 kvm_x86_ops->set_interrupt_shadow(vcpu,
2327 events->interrupt.shadow);
2328
2329 vcpu->arch.nmi_injected = events->nmi.injected;
2330 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2331 vcpu->arch.nmi_pending = events->nmi.pending;
2332 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2333
2334 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2335 vcpu->arch.sipi_vector = events->sipi_vector;
2336
2337 return 0;
2338 }
2339
2340 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2341 struct kvm_debugregs *dbgregs)
2342 {
2343 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2344 dbgregs->dr6 = vcpu->arch.dr6;
2345 dbgregs->dr7 = vcpu->arch.dr7;
2346 dbgregs->flags = 0;
2347 }
2348
2349 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2350 struct kvm_debugregs *dbgregs)
2351 {
2352 if (dbgregs->flags)
2353 return -EINVAL;
2354
2355 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2356 vcpu->arch.dr6 = dbgregs->dr6;
2357 vcpu->arch.dr7 = dbgregs->dr7;
2358
2359 return 0;
2360 }
2361
2362 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2363 struct kvm_xsave *guest_xsave)
2364 {
2365 if (cpu_has_xsave)
2366 memcpy(guest_xsave->region,
2367 &vcpu->arch.guest_fpu.state->xsave,
2368 sizeof(struct xsave_struct));
2369 else {
2370 memcpy(guest_xsave->region,
2371 &vcpu->arch.guest_fpu.state->fxsave,
2372 sizeof(struct i387_fxsave_struct));
2373 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2374 XSTATE_FPSSE;
2375 }
2376 }
2377
2378 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2379 struct kvm_xsave *guest_xsave)
2380 {
2381 u64 xstate_bv =
2382 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2383
2384 if (cpu_has_xsave)
2385 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2386 guest_xsave->region, sizeof(struct xsave_struct));
2387 else {
2388 if (xstate_bv & ~XSTATE_FPSSE)
2389 return -EINVAL;
2390 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2391 guest_xsave->region, sizeof(struct i387_fxsave_struct));
2392 }
2393 return 0;
2394 }
2395
2396 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2397 struct kvm_xcrs *guest_xcrs)
2398 {
2399 if (!cpu_has_xsave) {
2400 guest_xcrs->nr_xcrs = 0;
2401 return;
2402 }
2403
2404 guest_xcrs->nr_xcrs = 1;
2405 guest_xcrs->flags = 0;
2406 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2407 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2408 }
2409
2410 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2411 struct kvm_xcrs *guest_xcrs)
2412 {
2413 int i, r = 0;
2414
2415 if (!cpu_has_xsave)
2416 return -EINVAL;
2417
2418 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2419 return -EINVAL;
2420
2421 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2422 /* Only support XCR0 currently */
2423 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2424 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2425 guest_xcrs->xcrs[0].value);
2426 break;
2427 }
2428 if (r)
2429 r = -EINVAL;
2430 return r;
2431 }
2432
2433 long kvm_arch_vcpu_ioctl(struct file *filp,
2434 unsigned int ioctl, unsigned long arg)
2435 {
2436 struct kvm_vcpu *vcpu = filp->private_data;
2437 void __user *argp = (void __user *)arg;
2438 int r;
2439 union {
2440 struct kvm_lapic_state *lapic;
2441 struct kvm_xsave *xsave;
2442 struct kvm_xcrs *xcrs;
2443 void *buffer;
2444 } u;
2445
2446 u.buffer = NULL;
2447 switch (ioctl) {
2448 case KVM_GET_LAPIC: {
2449 r = -EINVAL;
2450 if (!vcpu->arch.apic)
2451 goto out;
2452 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2453
2454 r = -ENOMEM;
2455 if (!u.lapic)
2456 goto out;
2457 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2458 if (r)
2459 goto out;
2460 r = -EFAULT;
2461 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2462 goto out;
2463 r = 0;
2464 break;
2465 }
2466 case KVM_SET_LAPIC: {
2467 r = -EINVAL;
2468 if (!vcpu->arch.apic)
2469 goto out;
2470 u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2471 r = -ENOMEM;
2472 if (!u.lapic)
2473 goto out;
2474 r = -EFAULT;
2475 if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
2476 goto out;
2477 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2478 if (r)
2479 goto out;
2480 r = 0;
2481 break;
2482 }
2483 case KVM_INTERRUPT: {
2484 struct kvm_interrupt irq;
2485
2486 r = -EFAULT;
2487 if (copy_from_user(&irq, argp, sizeof irq))
2488 goto out;
2489 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2490 if (r)
2491 goto out;
2492 r = 0;
2493 break;
2494 }
2495 case KVM_NMI: {
2496 r = kvm_vcpu_ioctl_nmi(vcpu);
2497 if (r)
2498 goto out;
2499 r = 0;
2500 break;
2501 }
2502 case KVM_SET_CPUID: {
2503 struct kvm_cpuid __user *cpuid_arg = argp;
2504 struct kvm_cpuid cpuid;
2505
2506 r = -EFAULT;
2507 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2508 goto out;
2509 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2510 if (r)
2511 goto out;
2512 break;
2513 }
2514 case KVM_SET_CPUID2: {
2515 struct kvm_cpuid2 __user *cpuid_arg = argp;
2516 struct kvm_cpuid2 cpuid;
2517
2518 r = -EFAULT;
2519 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2520 goto out;
2521 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2522 cpuid_arg->entries);
2523 if (r)
2524 goto out;
2525 break;
2526 }
2527 case KVM_GET_CPUID2: {
2528 struct kvm_cpuid2 __user *cpuid_arg = argp;
2529 struct kvm_cpuid2 cpuid;
2530
2531 r = -EFAULT;
2532 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2533 goto out;
2534 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2535 cpuid_arg->entries);
2536 if (r)
2537 goto out;
2538 r = -EFAULT;
2539 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2540 goto out;
2541 r = 0;
2542 break;
2543 }
2544 case KVM_GET_MSRS:
2545 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2546 break;
2547 case KVM_SET_MSRS:
2548 r = msr_io(vcpu, argp, do_set_msr, 0);
2549 break;
2550 case KVM_TPR_ACCESS_REPORTING: {
2551 struct kvm_tpr_access_ctl tac;
2552
2553 r = -EFAULT;
2554 if (copy_from_user(&tac, argp, sizeof tac))
2555 goto out;
2556 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2557 if (r)
2558 goto out;
2559 r = -EFAULT;
2560 if (copy_to_user(argp, &tac, sizeof tac))
2561 goto out;
2562 r = 0;
2563 break;
2564 };
2565 case KVM_SET_VAPIC_ADDR: {
2566 struct kvm_vapic_addr va;
2567
2568 r = -EINVAL;
2569 if (!irqchip_in_kernel(vcpu->kvm))
2570 goto out;
2571 r = -EFAULT;
2572 if (copy_from_user(&va, argp, sizeof va))
2573 goto out;
2574 r = 0;
2575 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2576 break;
2577 }
2578 case KVM_X86_SETUP_MCE: {
2579 u64 mcg_cap;
2580
2581 r = -EFAULT;
2582 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2583 goto out;
2584 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2585 break;
2586 }
2587 case KVM_X86_SET_MCE: {
2588 struct kvm_x86_mce mce;
2589
2590 r = -EFAULT;
2591 if (copy_from_user(&mce, argp, sizeof mce))
2592 goto out;
2593 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2594 break;
2595 }
2596 case KVM_GET_VCPU_EVENTS: {
2597 struct kvm_vcpu_events events;
2598
2599 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2600
2601 r = -EFAULT;
2602 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2603 break;
2604 r = 0;
2605 break;
2606 }
2607 case KVM_SET_VCPU_EVENTS: {
2608 struct kvm_vcpu_events events;
2609
2610 r = -EFAULT;
2611 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2612 break;
2613
2614 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2615 break;
2616 }
2617 case KVM_GET_DEBUGREGS: {
2618 struct kvm_debugregs dbgregs;
2619
2620 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2621
2622 r = -EFAULT;
2623 if (copy_to_user(argp, &dbgregs,
2624 sizeof(struct kvm_debugregs)))
2625 break;
2626 r = 0;
2627 break;
2628 }
2629 case KVM_SET_DEBUGREGS: {
2630 struct kvm_debugregs dbgregs;
2631
2632 r = -EFAULT;
2633 if (copy_from_user(&dbgregs, argp,
2634 sizeof(struct kvm_debugregs)))
2635 break;
2636
2637 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2638 break;
2639 }
2640 case KVM_GET_XSAVE: {
2641 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2642 r = -ENOMEM;
2643 if (!u.xsave)
2644 break;
2645
2646 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2647
2648 r = -EFAULT;
2649 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2650 break;
2651 r = 0;
2652 break;
2653 }
2654 case KVM_SET_XSAVE: {
2655 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2656 r = -ENOMEM;
2657 if (!u.xsave)
2658 break;
2659
2660 r = -EFAULT;
2661 if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
2662 break;
2663
2664 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2665 break;
2666 }
2667 case KVM_GET_XCRS: {
2668 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2669 r = -ENOMEM;
2670 if (!u.xcrs)
2671 break;
2672
2673 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
2674
2675 r = -EFAULT;
2676 if (copy_to_user(argp, u.xcrs,
2677 sizeof(struct kvm_xcrs)))
2678 break;
2679 r = 0;
2680 break;
2681 }
2682 case KVM_SET_XCRS: {
2683 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2684 r = -ENOMEM;
2685 if (!u.xcrs)
2686 break;
2687
2688 r = -EFAULT;
2689 if (copy_from_user(u.xcrs, argp,
2690 sizeof(struct kvm_xcrs)))
2691 break;
2692
2693 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
2694 break;
2695 }
2696 default:
2697 r = -EINVAL;
2698 }
2699 out:
2700 kfree(u.buffer);
2701 return r;
2702 }
2703
2704 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2705 {
2706 int ret;
2707
2708 if (addr > (unsigned int)(-3 * PAGE_SIZE))
2709 return -1;
2710 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2711 return ret;
2712 }
2713
2714 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2715 u64 ident_addr)
2716 {
2717 kvm->arch.ept_identity_map_addr = ident_addr;
2718 return 0;
2719 }
2720
2721 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2722 u32 kvm_nr_mmu_pages)
2723 {
2724 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2725 return -EINVAL;
2726
2727 mutex_lock(&kvm->slots_lock);
2728 spin_lock(&kvm->mmu_lock);
2729
2730 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2731 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2732
2733 spin_unlock(&kvm->mmu_lock);
2734 mutex_unlock(&kvm->slots_lock);
2735 return 0;
2736 }
2737
2738 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2739 {
2740 return kvm->arch.n_alloc_mmu_pages;
2741 }
2742
2743 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2744 {
2745 int r;
2746
2747 r = 0;
2748 switch (chip->chip_id) {
2749 case KVM_IRQCHIP_PIC_MASTER:
2750 memcpy(&chip->chip.pic,
2751 &pic_irqchip(kvm)->pics[0],
2752 sizeof(struct kvm_pic_state));
2753 break;
2754 case KVM_IRQCHIP_PIC_SLAVE:
2755 memcpy(&chip->chip.pic,
2756 &pic_irqchip(kvm)->pics[1],
2757 sizeof(struct kvm_pic_state));
2758 break;
2759 case KVM_IRQCHIP_IOAPIC:
2760 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2761 break;
2762 default:
2763 r = -EINVAL;
2764 break;
2765 }
2766 return r;
2767 }
2768
2769 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2770 {
2771 int r;
2772
2773 r = 0;
2774 switch (chip->chip_id) {
2775 case KVM_IRQCHIP_PIC_MASTER:
2776 raw_spin_lock(&pic_irqchip(kvm)->lock);
2777 memcpy(&pic_irqchip(kvm)->pics[0],
2778 &chip->chip.pic,
2779 sizeof(struct kvm_pic_state));
2780 raw_spin_unlock(&pic_irqchip(kvm)->lock);
2781 break;
2782 case KVM_IRQCHIP_PIC_SLAVE:
2783 raw_spin_lock(&pic_irqchip(kvm)->lock);
2784 memcpy(&pic_irqchip(kvm)->pics[1],
2785 &chip->chip.pic,
2786 sizeof(struct kvm_pic_state));
2787 raw_spin_unlock(&pic_irqchip(kvm)->lock);
2788 break;
2789 case KVM_IRQCHIP_IOAPIC:
2790 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
2791 break;
2792 default:
2793 r = -EINVAL;
2794 break;
2795 }
2796 kvm_pic_update_irq(pic_irqchip(kvm));
2797 return r;
2798 }
2799
2800 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2801 {
2802 int r = 0;
2803
2804 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2805 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2806 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2807 return r;
2808 }
2809
2810 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2811 {
2812 int r = 0;
2813
2814 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2815 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2816 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2817 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2818 return r;
2819 }
2820
2821 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2822 {
2823 int r = 0;
2824
2825 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2826 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2827 sizeof(ps->channels));
2828 ps->flags = kvm->arch.vpit->pit_state.flags;
2829 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2830 return r;
2831 }
2832
2833 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2834 {
2835 int r = 0, start = 0;
2836 u32 prev_legacy, cur_legacy;
2837 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2838 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2839 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2840 if (!prev_legacy && cur_legacy)
2841 start = 1;
2842 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2843 sizeof(kvm->arch.vpit->pit_state.channels));
2844 kvm->arch.vpit->pit_state.flags = ps->flags;
2845 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2846 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2847 return r;
2848 }
2849
2850 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2851 struct kvm_reinject_control *control)
2852 {
2853 if (!kvm->arch.vpit)
2854 return -ENXIO;
2855 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2856 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2857 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2858 return 0;
2859 }
2860
2861 /*
2862 * Get (and clear) the dirty memory log for a memory slot.
2863 */
2864 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2865 struct kvm_dirty_log *log)
2866 {
2867 int r, i;
2868 struct kvm_memory_slot *memslot;
2869 unsigned long n;
2870 unsigned long is_dirty = 0;
2871
2872 mutex_lock(&kvm->slots_lock);
2873
2874 r = -EINVAL;
2875 if (log->slot >= KVM_MEMORY_SLOTS)
2876 goto out;
2877
2878 memslot = &kvm->memslots->memslots[log->slot];
2879 r = -ENOENT;
2880 if (!memslot->dirty_bitmap)
2881 goto out;
2882
2883 n = kvm_dirty_bitmap_bytes(memslot);
2884
2885 for (i = 0; !is_dirty && i < n/sizeof(long); i++)
2886 is_dirty = memslot->dirty_bitmap[i];
2887
2888 /* If nothing is dirty, don't bother messing with page tables. */
2889 if (is_dirty) {
2890 struct kvm_memslots *slots, *old_slots;
2891 unsigned long *dirty_bitmap;
2892
2893 spin_lock(&kvm->mmu_lock);
2894 kvm_mmu_slot_remove_write_access(kvm, log->slot);
2895 spin_unlock(&kvm->mmu_lock);
2896
2897 r = -ENOMEM;
2898 dirty_bitmap = vmalloc(n);
2899 if (!dirty_bitmap)
2900 goto out;
2901 memset(dirty_bitmap, 0, n);
2902
2903 r = -ENOMEM;
2904 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
2905 if (!slots) {
2906 vfree(dirty_bitmap);
2907 goto out;
2908 }
2909 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
2910 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
2911
2912 old_slots = kvm->memslots;
2913 rcu_assign_pointer(kvm->memslots, slots);
2914 synchronize_srcu_expedited(&kvm->srcu);
2915 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
2916 kfree(old_slots);
2917
2918 r = -EFAULT;
2919 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n)) {
2920 vfree(dirty_bitmap);
2921 goto out;
2922 }
2923 vfree(dirty_bitmap);
2924 } else {
2925 r = -EFAULT;
2926 if (clear_user(log->dirty_bitmap, n))
2927 goto out;
2928 }
2929
2930 r = 0;
2931 out:
2932 mutex_unlock(&kvm->slots_lock);
2933 return r;
2934 }
2935
2936 long kvm_arch_vm_ioctl(struct file *filp,
2937 unsigned int ioctl, unsigned long arg)
2938 {
2939 struct kvm *kvm = filp->private_data;
2940 void __user *argp = (void __user *)arg;
2941 int r = -ENOTTY;
2942 /*
2943 * This union makes it completely explicit to gcc-3.x
2944 * that these two variables' stack usage should be
2945 * combined, not added together.
2946 */
2947 union {
2948 struct kvm_pit_state ps;
2949 struct kvm_pit_state2 ps2;
2950 struct kvm_pit_config pit_config;
2951 } u;
2952
2953 switch (ioctl) {
2954 case KVM_SET_TSS_ADDR:
2955 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
2956 if (r < 0)
2957 goto out;
2958 break;
2959 case KVM_SET_IDENTITY_MAP_ADDR: {
2960 u64 ident_addr;
2961
2962 r = -EFAULT;
2963 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
2964 goto out;
2965 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
2966 if (r < 0)
2967 goto out;
2968 break;
2969 }
2970 case KVM_SET_MEMORY_REGION: {
2971 struct kvm_memory_region kvm_mem;
2972 struct kvm_userspace_memory_region kvm_userspace_mem;
2973
2974 r = -EFAULT;
2975 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2976 goto out;
2977 kvm_userspace_mem.slot = kvm_mem.slot;
2978 kvm_userspace_mem.flags = kvm_mem.flags;
2979 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
2980 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
2981 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
2982 if (r)
2983 goto out;
2984 break;
2985 }
2986 case KVM_SET_NR_MMU_PAGES:
2987 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
2988 if (r)
2989 goto out;
2990 break;
2991 case KVM_GET_NR_MMU_PAGES:
2992 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
2993 break;
2994 case KVM_CREATE_IRQCHIP: {
2995 struct kvm_pic *vpic;
2996
2997 mutex_lock(&kvm->lock);
2998 r = -EEXIST;
2999 if (kvm->arch.vpic)
3000 goto create_irqchip_unlock;
3001 r = -ENOMEM;
3002 vpic = kvm_create_pic(kvm);
3003 if (vpic) {
3004 r = kvm_ioapic_init(kvm);
3005 if (r) {
3006 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3007 &vpic->dev);
3008 kfree(vpic);
3009 goto create_irqchip_unlock;
3010 }
3011 } else
3012 goto create_irqchip_unlock;
3013 smp_wmb();
3014 kvm->arch.vpic = vpic;
3015 smp_wmb();
3016 r = kvm_setup_default_irq_routing(kvm);
3017 if (r) {
3018 mutex_lock(&kvm->irq_lock);
3019 kvm_ioapic_destroy(kvm);
3020 kvm_destroy_pic(kvm);
3021 mutex_unlock(&kvm->irq_lock);
3022 }
3023 create_irqchip_unlock:
3024 mutex_unlock(&kvm->lock);
3025 break;
3026 }
3027 case KVM_CREATE_PIT:
3028 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3029 goto create_pit;
3030 case KVM_CREATE_PIT2:
3031 r = -EFAULT;
3032 if (copy_from_user(&u.pit_config, argp,
3033 sizeof(struct kvm_pit_config)))
3034 goto out;
3035 create_pit:
3036 mutex_lock(&kvm->slots_lock);
3037 r = -EEXIST;
3038 if (kvm->arch.vpit)
3039 goto create_pit_unlock;
3040 r = -ENOMEM;
3041 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3042 if (kvm->arch.vpit)
3043 r = 0;
3044 create_pit_unlock:
3045 mutex_unlock(&kvm->slots_lock);
3046 break;
3047 case KVM_IRQ_LINE_STATUS:
3048 case KVM_IRQ_LINE: {
3049 struct kvm_irq_level irq_event;
3050
3051 r = -EFAULT;
3052 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3053 goto out;
3054 r = -ENXIO;
3055 if (irqchip_in_kernel(kvm)) {
3056 __s32 status;
3057 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3058 irq_event.irq, irq_event.level);
3059 if (ioctl == KVM_IRQ_LINE_STATUS) {
3060 r = -EFAULT;
3061 irq_event.status = status;
3062 if (copy_to_user(argp, &irq_event,
3063 sizeof irq_event))
3064 goto out;
3065 }
3066 r = 0;
3067 }
3068 break;
3069 }
3070 case KVM_GET_IRQCHIP: {
3071 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3072 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3073
3074 r = -ENOMEM;
3075 if (!chip)
3076 goto out;
3077 r = -EFAULT;
3078 if (copy_from_user(chip, argp, sizeof *chip))
3079 goto get_irqchip_out;
3080 r = -ENXIO;
3081 if (!irqchip_in_kernel(kvm))
3082 goto get_irqchip_out;
3083 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3084 if (r)
3085 goto get_irqchip_out;
3086 r = -EFAULT;
3087 if (copy_to_user(argp, chip, sizeof *chip))
3088 goto get_irqchip_out;
3089 r = 0;
3090 get_irqchip_out:
3091 kfree(chip);
3092 if (r)
3093 goto out;
3094 break;
3095 }
3096 case KVM_SET_IRQCHIP: {
3097 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3098 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3099
3100 r = -ENOMEM;
3101 if (!chip)
3102 goto out;
3103 r = -EFAULT;
3104 if (copy_from_user(chip, argp, sizeof *chip))
3105 goto set_irqchip_out;
3106 r = -ENXIO;
3107 if (!irqchip_in_kernel(kvm))
3108 goto set_irqchip_out;
3109 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3110 if (r)
3111 goto set_irqchip_out;
3112 r = 0;
3113 set_irqchip_out:
3114 kfree(chip);
3115 if (r)
3116 goto out;
3117 break;
3118 }
3119 case KVM_GET_PIT: {
3120 r = -EFAULT;
3121 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3122 goto out;
3123 r = -ENXIO;
3124 if (!kvm->arch.vpit)
3125 goto out;
3126 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3127 if (r)
3128 goto out;
3129 r = -EFAULT;
3130 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3131 goto out;
3132 r = 0;
3133 break;
3134 }
3135 case KVM_SET_PIT: {
3136 r = -EFAULT;
3137 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3138 goto out;
3139 r = -ENXIO;
3140 if (!kvm->arch.vpit)
3141 goto out;
3142 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3143 if (r)
3144 goto out;
3145 r = 0;
3146 break;
3147 }
3148 case KVM_GET_PIT2: {
3149 r = -ENXIO;
3150 if (!kvm->arch.vpit)
3151 goto out;
3152 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3153 if (r)
3154 goto out;
3155 r = -EFAULT;
3156 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3157 goto out;
3158 r = 0;
3159 break;
3160 }
3161 case KVM_SET_PIT2: {
3162 r = -EFAULT;
3163 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3164 goto out;
3165 r = -ENXIO;
3166 if (!kvm->arch.vpit)
3167 goto out;
3168 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3169 if (r)
3170 goto out;
3171 r = 0;
3172 break;
3173 }
3174 case KVM_REINJECT_CONTROL: {
3175 struct kvm_reinject_control control;
3176 r = -EFAULT;
3177 if (copy_from_user(&control, argp, sizeof(control)))
3178 goto out;
3179 r = kvm_vm_ioctl_reinject(kvm, &control);
3180 if (r)
3181 goto out;
3182 r = 0;
3183 break;
3184 }
3185 case KVM_XEN_HVM_CONFIG: {
3186 r = -EFAULT;
3187 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3188 sizeof(struct kvm_xen_hvm_config)))
3189 goto out;
3190 r = -EINVAL;
3191 if (kvm->arch.xen_hvm_config.flags)
3192 goto out;
3193 r = 0;
3194 break;
3195 }
3196 case KVM_SET_CLOCK: {
3197 struct timespec now;
3198 struct kvm_clock_data user_ns;
3199 u64 now_ns;
3200 s64 delta;
3201
3202 r = -EFAULT;
3203 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3204 goto out;
3205
3206 r = -EINVAL;
3207 if (user_ns.flags)
3208 goto out;
3209
3210 r = 0;
3211 ktime_get_ts(&now);
3212 now_ns = timespec_to_ns(&now);
3213 delta = user_ns.clock - now_ns;
3214 kvm->arch.kvmclock_offset = delta;
3215 break;
3216 }
3217 case KVM_GET_CLOCK: {
3218 struct timespec now;
3219 struct kvm_clock_data user_ns;
3220 u64 now_ns;
3221
3222 ktime_get_ts(&now);
3223 now_ns = timespec_to_ns(&now);
3224 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3225 user_ns.flags = 0;
3226
3227 r = -EFAULT;
3228 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3229 goto out;
3230 r = 0;
3231 break;
3232 }
3233
3234 default:
3235 ;
3236 }
3237 out:
3238 return r;
3239 }
3240
3241 static void kvm_init_msr_list(void)
3242 {
3243 u32 dummy[2];
3244 unsigned i, j;
3245
3246 /* skip the first msrs in the list. KVM-specific */
3247 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3248 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3249 continue;
3250 if (j < i)
3251 msrs_to_save[j] = msrs_to_save[i];
3252 j++;
3253 }
3254 num_msrs_to_save = j;
3255 }
3256
3257 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3258 const void *v)
3259 {
3260 if (vcpu->arch.apic &&
3261 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
3262 return 0;
3263
3264 return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3265 }
3266
3267 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3268 {
3269 if (vcpu->arch.apic &&
3270 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
3271 return 0;
3272
3273 return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3274 }
3275
3276 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3277 struct kvm_segment *var, int seg)
3278 {
3279 kvm_x86_ops->set_segment(vcpu, var, seg);
3280 }
3281
3282 void kvm_get_segment(struct kvm_vcpu *vcpu,
3283 struct kvm_segment *var, int seg)
3284 {
3285 kvm_x86_ops->get_segment(vcpu, var, seg);
3286 }
3287
3288 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3289 {
3290 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3291 return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3292 }
3293
3294 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3295 {
3296 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3297 access |= PFERR_FETCH_MASK;
3298 return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3299 }
3300
3301 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3302 {
3303 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3304 access |= PFERR_WRITE_MASK;
3305 return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3306 }
3307
3308 /* uses this to access any guest's mapped memory without checking CPL */
3309 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3310 {
3311 return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, 0, error);
3312 }
3313
3314 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3315 struct kvm_vcpu *vcpu, u32 access,
3316 u32 *error)
3317 {
3318 void *data = val;
3319 int r = X86EMUL_CONTINUE;
3320
3321 while (bytes) {
3322 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr, access, error);
3323 unsigned offset = addr & (PAGE_SIZE-1);
3324 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3325 int ret;
3326
3327 if (gpa == UNMAPPED_GVA) {
3328 r = X86EMUL_PROPAGATE_FAULT;
3329 goto out;
3330 }
3331 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3332 if (ret < 0) {
3333 r = X86EMUL_IO_NEEDED;
3334 goto out;
3335 }
3336
3337 bytes -= toread;
3338 data += toread;
3339 addr += toread;
3340 }
3341 out:
3342 return r;
3343 }
3344
3345 /* used for instruction fetching */
3346 static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
3347 struct kvm_vcpu *vcpu, u32 *error)
3348 {
3349 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3350 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3351 access | PFERR_FETCH_MASK, error);
3352 }
3353
3354 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
3355 struct kvm_vcpu *vcpu, u32 *error)
3356 {
3357 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3358 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3359 error);
3360 }
3361
3362 static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
3363 struct kvm_vcpu *vcpu, u32 *error)
3364 {
3365 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
3366 }
3367
3368 static int kvm_write_guest_virt_system(gva_t addr, void *val,
3369 unsigned int bytes,
3370 struct kvm_vcpu *vcpu,
3371 u32 *error)
3372 {
3373 void *data = val;
3374 int r = X86EMUL_CONTINUE;
3375
3376 while (bytes) {
3377 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr,
3378 PFERR_WRITE_MASK, error);
3379 unsigned offset = addr & (PAGE_SIZE-1);
3380 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3381 int ret;
3382
3383 if (gpa == UNMAPPED_GVA) {
3384 r = X86EMUL_PROPAGATE_FAULT;
3385 goto out;
3386 }
3387 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3388 if (ret < 0) {
3389 r = X86EMUL_IO_NEEDED;
3390 goto out;
3391 }
3392
3393 bytes -= towrite;
3394 data += towrite;
3395 addr += towrite;
3396 }
3397 out:
3398 return r;
3399 }
3400
3401 static int emulator_read_emulated(unsigned long addr,
3402 void *val,
3403 unsigned int bytes,
3404 unsigned int *error_code,
3405 struct kvm_vcpu *vcpu)
3406 {
3407 gpa_t gpa;
3408
3409 if (vcpu->mmio_read_completed) {
3410 memcpy(val, vcpu->mmio_data, bytes);
3411 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3412 vcpu->mmio_phys_addr, *(u64 *)val);
3413 vcpu->mmio_read_completed = 0;
3414 return X86EMUL_CONTINUE;
3415 }
3416
3417 gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, error_code);
3418
3419 if (gpa == UNMAPPED_GVA)
3420 return X86EMUL_PROPAGATE_FAULT;
3421
3422 /* For APIC access vmexit */
3423 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3424 goto mmio;
3425
3426 if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
3427 == X86EMUL_CONTINUE)
3428 return X86EMUL_CONTINUE;
3429
3430 mmio:
3431 /*
3432 * Is this MMIO handled locally?
3433 */
3434 if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
3435 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
3436 return X86EMUL_CONTINUE;
3437 }
3438
3439 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3440
3441 vcpu->mmio_needed = 1;
3442 vcpu->run->exit_reason = KVM_EXIT_MMIO;
3443 vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3444 vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3445 vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
3446
3447 return X86EMUL_IO_NEEDED;
3448 }
3449
3450 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3451 const void *val, int bytes)
3452 {
3453 int ret;
3454
3455 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3456 if (ret < 0)
3457 return 0;
3458 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3459 return 1;
3460 }
3461
3462 static int emulator_write_emulated_onepage(unsigned long addr,
3463 const void *val,
3464 unsigned int bytes,
3465 unsigned int *error_code,
3466 struct kvm_vcpu *vcpu)
3467 {
3468 gpa_t gpa;
3469
3470 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, error_code);
3471
3472 if (gpa == UNMAPPED_GVA)
3473 return X86EMUL_PROPAGATE_FAULT;
3474
3475 /* For APIC access vmexit */
3476 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3477 goto mmio;
3478
3479 if (emulator_write_phys(vcpu, gpa, val, bytes))
3480 return X86EMUL_CONTINUE;
3481
3482 mmio:
3483 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3484 /*
3485 * Is this MMIO handled locally?
3486 */
3487 if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
3488 return X86EMUL_CONTINUE;
3489
3490 vcpu->mmio_needed = 1;
3491 vcpu->run->exit_reason = KVM_EXIT_MMIO;
3492 vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3493 vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3494 vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
3495 memcpy(vcpu->run->mmio.data, val, bytes);
3496
3497 return X86EMUL_CONTINUE;
3498 }
3499
3500 int emulator_write_emulated(unsigned long addr,
3501 const void *val,
3502 unsigned int bytes,
3503 unsigned int *error_code,
3504 struct kvm_vcpu *vcpu)
3505 {
3506 /* Crossing a page boundary? */
3507 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3508 int rc, now;
3509
3510 now = -addr & ~PAGE_MASK;
3511 rc = emulator_write_emulated_onepage(addr, val, now, error_code,
3512 vcpu);
3513 if (rc != X86EMUL_CONTINUE)
3514 return rc;
3515 addr += now;
3516 val += now;
3517 bytes -= now;
3518 }
3519 return emulator_write_emulated_onepage(addr, val, bytes, error_code,
3520 vcpu);
3521 }
3522
3523 #define CMPXCHG_TYPE(t, ptr, old, new) \
3524 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3525
3526 #ifdef CONFIG_X86_64
3527 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3528 #else
3529 # define CMPXCHG64(ptr, old, new) \
3530 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3531 #endif
3532
3533 static int emulator_cmpxchg_emulated(unsigned long addr,
3534 const void *old,
3535 const void *new,
3536 unsigned int bytes,
3537 unsigned int *error_code,
3538 struct kvm_vcpu *vcpu)
3539 {
3540 gpa_t gpa;
3541 struct page *page;
3542 char *kaddr;
3543 bool exchanged;
3544
3545 /* guests cmpxchg8b have to be emulated atomically */
3546 if (bytes > 8 || (bytes & (bytes - 1)))
3547 goto emul_write;
3548
3549 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3550
3551 if (gpa == UNMAPPED_GVA ||
3552 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3553 goto emul_write;
3554
3555 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3556 goto emul_write;
3557
3558 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3559
3560 kaddr = kmap_atomic(page, KM_USER0);
3561 kaddr += offset_in_page(gpa);
3562 switch (bytes) {
3563 case 1:
3564 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3565 break;
3566 case 2:
3567 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3568 break;
3569 case 4:
3570 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3571 break;
3572 case 8:
3573 exchanged = CMPXCHG64(kaddr, old, new);
3574 break;
3575 default:
3576 BUG();
3577 }
3578 kunmap_atomic(kaddr, KM_USER0);
3579 kvm_release_page_dirty(page);
3580
3581 if (!exchanged)
3582 return X86EMUL_CMPXCHG_FAILED;
3583
3584 kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
3585
3586 return X86EMUL_CONTINUE;
3587
3588 emul_write:
3589 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3590
3591 return emulator_write_emulated(addr, new, bytes, error_code, vcpu);
3592 }
3593
3594 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3595 {
3596 /* TODO: String I/O for in kernel device */
3597 int r;
3598
3599 if (vcpu->arch.pio.in)
3600 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3601 vcpu->arch.pio.size, pd);
3602 else
3603 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3604 vcpu->arch.pio.port, vcpu->arch.pio.size,
3605 pd);
3606 return r;
3607 }
3608
3609
3610 static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
3611 unsigned int count, struct kvm_vcpu *vcpu)
3612 {
3613 if (vcpu->arch.pio.count)
3614 goto data_avail;
3615
3616 trace_kvm_pio(1, port, size, 1);
3617
3618 vcpu->arch.pio.port = port;
3619 vcpu->arch.pio.in = 1;
3620 vcpu->arch.pio.count = count;
3621 vcpu->arch.pio.size = size;
3622
3623 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3624 data_avail:
3625 memcpy(val, vcpu->arch.pio_data, size * count);
3626 vcpu->arch.pio.count = 0;
3627 return 1;
3628 }
3629
3630 vcpu->run->exit_reason = KVM_EXIT_IO;
3631 vcpu->run->io.direction = KVM_EXIT_IO_IN;
3632 vcpu->run->io.size = size;
3633 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3634 vcpu->run->io.count = count;
3635 vcpu->run->io.port = port;
3636
3637 return 0;
3638 }
3639
3640 static int emulator_pio_out_emulated(int size, unsigned short port,
3641 const void *val, unsigned int count,
3642 struct kvm_vcpu *vcpu)
3643 {
3644 trace_kvm_pio(0, port, size, 1);
3645
3646 vcpu->arch.pio.port = port;
3647 vcpu->arch.pio.in = 0;
3648 vcpu->arch.pio.count = count;
3649 vcpu->arch.pio.size = size;
3650
3651 memcpy(vcpu->arch.pio_data, val, size * count);
3652
3653 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3654 vcpu->arch.pio.count = 0;
3655 return 1;
3656 }
3657
3658 vcpu->run->exit_reason = KVM_EXIT_IO;
3659 vcpu->run->io.direction = KVM_EXIT_IO_OUT;
3660 vcpu->run->io.size = size;
3661 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3662 vcpu->run->io.count = count;
3663 vcpu->run->io.port = port;
3664
3665 return 0;
3666 }
3667
3668 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
3669 {
3670 return kvm_x86_ops->get_segment_base(vcpu, seg);
3671 }
3672
3673 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
3674 {
3675 kvm_mmu_invlpg(vcpu, address);
3676 return X86EMUL_CONTINUE;
3677 }
3678
3679 int emulate_clts(struct kvm_vcpu *vcpu)
3680 {
3681 kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3682 kvm_x86_ops->fpu_activate(vcpu);
3683 return X86EMUL_CONTINUE;
3684 }
3685
3686 int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu)
3687 {
3688 return _kvm_get_dr(vcpu, dr, dest);
3689 }
3690
3691 int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu)
3692 {
3693
3694 return __kvm_set_dr(vcpu, dr, value);
3695 }
3696
3697 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3698 {
3699 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3700 }
3701
3702 static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
3703 {
3704 unsigned long value;
3705
3706 switch (cr) {
3707 case 0:
3708 value = kvm_read_cr0(vcpu);
3709 break;
3710 case 2:
3711 value = vcpu->arch.cr2;
3712 break;
3713 case 3:
3714 value = vcpu->arch.cr3;
3715 break;
3716 case 4:
3717 value = kvm_read_cr4(vcpu);
3718 break;
3719 case 8:
3720 value = kvm_get_cr8(vcpu);
3721 break;
3722 default:
3723 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3724 return 0;
3725 }
3726
3727 return value;
3728 }
3729
3730 static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
3731 {
3732 int res = 0;
3733
3734 switch (cr) {
3735 case 0:
3736 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
3737 break;
3738 case 2:
3739 vcpu->arch.cr2 = val;
3740 break;
3741 case 3:
3742 res = kvm_set_cr3(vcpu, val);
3743 break;
3744 case 4:
3745 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
3746 break;
3747 case 8:
3748 res = __kvm_set_cr8(vcpu, val & 0xfUL);
3749 break;
3750 default:
3751 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3752 res = -1;
3753 }
3754
3755 return res;
3756 }
3757
3758 static int emulator_get_cpl(struct kvm_vcpu *vcpu)
3759 {
3760 return kvm_x86_ops->get_cpl(vcpu);
3761 }
3762
3763 static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
3764 {
3765 kvm_x86_ops->get_gdt(vcpu, dt);
3766 }
3767
3768 static unsigned long emulator_get_cached_segment_base(int seg,
3769 struct kvm_vcpu *vcpu)
3770 {
3771 return get_segment_base(vcpu, seg);
3772 }
3773
3774 static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
3775 struct kvm_vcpu *vcpu)
3776 {
3777 struct kvm_segment var;
3778
3779 kvm_get_segment(vcpu, &var, seg);
3780
3781 if (var.unusable)
3782 return false;
3783
3784 if (var.g)
3785 var.limit >>= 12;
3786 set_desc_limit(desc, var.limit);
3787 set_desc_base(desc, (unsigned long)var.base);
3788 desc->type = var.type;
3789 desc->s = var.s;
3790 desc->dpl = var.dpl;
3791 desc->p = var.present;
3792 desc->avl = var.avl;
3793 desc->l = var.l;
3794 desc->d = var.db;
3795 desc->g = var.g;
3796
3797 return true;
3798 }
3799
3800 static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
3801 struct kvm_vcpu *vcpu)
3802 {
3803 struct kvm_segment var;
3804
3805 /* needed to preserve selector */
3806 kvm_get_segment(vcpu, &var, seg);
3807
3808 var.base = get_desc_base(desc);
3809 var.limit = get_desc_limit(desc);
3810 if (desc->g)
3811 var.limit = (var.limit << 12) | 0xfff;
3812 var.type = desc->type;
3813 var.present = desc->p;
3814 var.dpl = desc->dpl;
3815 var.db = desc->d;
3816 var.s = desc->s;
3817 var.l = desc->l;
3818 var.g = desc->g;
3819 var.avl = desc->avl;
3820 var.present = desc->p;
3821 var.unusable = !var.present;
3822 var.padding = 0;
3823
3824 kvm_set_segment(vcpu, &var, seg);
3825 return;
3826 }
3827
3828 static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
3829 {
3830 struct kvm_segment kvm_seg;
3831
3832 kvm_get_segment(vcpu, &kvm_seg, seg);
3833 return kvm_seg.selector;
3834 }
3835
3836 static void emulator_set_segment_selector(u16 sel, int seg,
3837 struct kvm_vcpu *vcpu)
3838 {
3839 struct kvm_segment kvm_seg;
3840
3841 kvm_get_segment(vcpu, &kvm_seg, seg);
3842 kvm_seg.selector = sel;
3843 kvm_set_segment(vcpu, &kvm_seg, seg);
3844 }
3845
3846 static struct x86_emulate_ops emulate_ops = {
3847 .read_std = kvm_read_guest_virt_system,
3848 .write_std = kvm_write_guest_virt_system,
3849 .fetch = kvm_fetch_guest_virt,
3850 .read_emulated = emulator_read_emulated,
3851 .write_emulated = emulator_write_emulated,
3852 .cmpxchg_emulated = emulator_cmpxchg_emulated,
3853 .pio_in_emulated = emulator_pio_in_emulated,
3854 .pio_out_emulated = emulator_pio_out_emulated,
3855 .get_cached_descriptor = emulator_get_cached_descriptor,
3856 .set_cached_descriptor = emulator_set_cached_descriptor,
3857 .get_segment_selector = emulator_get_segment_selector,
3858 .set_segment_selector = emulator_set_segment_selector,
3859 .get_cached_segment_base = emulator_get_cached_segment_base,
3860 .get_gdt = emulator_get_gdt,
3861 .get_cr = emulator_get_cr,
3862 .set_cr = emulator_set_cr,
3863 .cpl = emulator_get_cpl,
3864 .get_dr = emulator_get_dr,
3865 .set_dr = emulator_set_dr,
3866 .set_msr = kvm_set_msr,
3867 .get_msr = kvm_get_msr,
3868 };
3869
3870 static void cache_all_regs(struct kvm_vcpu *vcpu)
3871 {
3872 kvm_register_read(vcpu, VCPU_REGS_RAX);
3873 kvm_register_read(vcpu, VCPU_REGS_RSP);
3874 kvm_register_read(vcpu, VCPU_REGS_RIP);
3875 vcpu->arch.regs_dirty = ~0;
3876 }
3877
3878 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
3879 {
3880 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
3881 /*
3882 * an sti; sti; sequence only disable interrupts for the first
3883 * instruction. So, if the last instruction, be it emulated or
3884 * not, left the system with the INT_STI flag enabled, it
3885 * means that the last instruction is an sti. We should not
3886 * leave the flag on in this case. The same goes for mov ss
3887 */
3888 if (!(int_shadow & mask))
3889 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
3890 }
3891
3892 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
3893 {
3894 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
3895 if (ctxt->exception == PF_VECTOR)
3896 kvm_inject_page_fault(vcpu, ctxt->cr2, ctxt->error_code);
3897 else if (ctxt->error_code_valid)
3898 kvm_queue_exception_e(vcpu, ctxt->exception, ctxt->error_code);
3899 else
3900 kvm_queue_exception(vcpu, ctxt->exception);
3901 }
3902
3903 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
3904 {
3905 ++vcpu->stat.insn_emulation_fail;
3906 trace_kvm_emulate_insn_failed(vcpu);
3907 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3908 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3909 vcpu->run->internal.ndata = 0;
3910 kvm_queue_exception(vcpu, UD_VECTOR);
3911 return EMULATE_FAIL;
3912 }
3913
3914 int emulate_instruction(struct kvm_vcpu *vcpu,
3915 unsigned long cr2,
3916 u16 error_code,
3917 int emulation_type)
3918 {
3919 int r;
3920 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
3921
3922 kvm_clear_exception_queue(vcpu);
3923 vcpu->arch.mmio_fault_cr2 = cr2;
3924 /*
3925 * TODO: fix emulate.c to use guest_read/write_register
3926 * instead of direct ->regs accesses, can save hundred cycles
3927 * on Intel for instructions that don't read/change RSP, for
3928 * for example.
3929 */
3930 cache_all_regs(vcpu);
3931
3932 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
3933 int cs_db, cs_l;
3934 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
3935
3936 vcpu->arch.emulate_ctxt.vcpu = vcpu;
3937 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
3938 vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
3939 vcpu->arch.emulate_ctxt.mode =
3940 (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
3941 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
3942 ? X86EMUL_MODE_VM86 : cs_l
3943 ? X86EMUL_MODE_PROT64 : cs_db
3944 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
3945 memset(c, 0, sizeof(struct decode_cache));
3946 memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
3947 vcpu->arch.emulate_ctxt.interruptibility = 0;
3948 vcpu->arch.emulate_ctxt.exception = -1;
3949
3950 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
3951 trace_kvm_emulate_insn_start(vcpu);
3952
3953 /* Only allow emulation of specific instructions on #UD
3954 * (namely VMMCALL, sysenter, sysexit, syscall)*/
3955 if (emulation_type & EMULTYPE_TRAP_UD) {
3956 if (!c->twobyte)
3957 return EMULATE_FAIL;
3958 switch (c->b) {
3959 case 0x01: /* VMMCALL */
3960 if (c->modrm_mod != 3 || c->modrm_rm != 1)
3961 return EMULATE_FAIL;
3962 break;
3963 case 0x34: /* sysenter */
3964 case 0x35: /* sysexit */
3965 if (c->modrm_mod != 0 || c->modrm_rm != 0)
3966 return EMULATE_FAIL;
3967 break;
3968 case 0x05: /* syscall */
3969 if (c->modrm_mod != 0 || c->modrm_rm != 0)
3970 return EMULATE_FAIL;
3971 break;
3972 default:
3973 return EMULATE_FAIL;
3974 }
3975
3976 if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
3977 return EMULATE_FAIL;
3978 }
3979
3980 ++vcpu->stat.insn_emulation;
3981 if (r) {
3982 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
3983 return EMULATE_DONE;
3984 if (emulation_type & EMULTYPE_SKIP)
3985 return EMULATE_FAIL;
3986 return handle_emulation_failure(vcpu);
3987 }
3988 }
3989
3990 if (emulation_type & EMULTYPE_SKIP) {
3991 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
3992 return EMULATE_DONE;
3993 }
3994
3995 /* this is needed for vmware backdor interface to work since it
3996 changes registers values during IO operation */
3997 memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
3998
3999 restart:
4000 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
4001
4002 if (r) { /* emulation failed */
4003 /*
4004 * if emulation was due to access to shadowed page table
4005 * and it failed try to unshadow page and re-entetr the
4006 * guest to let CPU execute the instruction.
4007 */
4008 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
4009 return EMULATE_DONE;
4010
4011 return handle_emulation_failure(vcpu);
4012 }
4013
4014 toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility);
4015 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4016 memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4017 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4018
4019 if (vcpu->arch.emulate_ctxt.exception >= 0) {
4020 inject_emulated_exception(vcpu);
4021 return EMULATE_DONE;
4022 }
4023
4024 if (vcpu->arch.pio.count) {
4025 if (!vcpu->arch.pio.in)
4026 vcpu->arch.pio.count = 0;
4027 return EMULATE_DO_MMIO;
4028 }
4029
4030 if (vcpu->mmio_needed) {
4031 if (vcpu->mmio_is_write)
4032 vcpu->mmio_needed = 0;
4033 return EMULATE_DO_MMIO;
4034 }
4035
4036 if (vcpu->arch.emulate_ctxt.restart)
4037 goto restart;
4038
4039 return EMULATE_DONE;
4040 }
4041 EXPORT_SYMBOL_GPL(emulate_instruction);
4042
4043 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4044 {
4045 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4046 int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
4047 /* do not return to emulator after return from userspace */
4048 vcpu->arch.pio.count = 0;
4049 return ret;
4050 }
4051 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4052
4053 static void bounce_off(void *info)
4054 {
4055 /* nothing */
4056 }
4057
4058 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4059 void *data)
4060 {
4061 struct cpufreq_freqs *freq = data;
4062 struct kvm *kvm;
4063 struct kvm_vcpu *vcpu;
4064 int i, send_ipi = 0;
4065
4066 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4067 return 0;
4068 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4069 return 0;
4070 per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
4071
4072 spin_lock(&kvm_lock);
4073 list_for_each_entry(kvm, &vm_list, vm_list) {
4074 kvm_for_each_vcpu(i, vcpu, kvm) {
4075 if (vcpu->cpu != freq->cpu)
4076 continue;
4077 if (!kvm_request_guest_time_update(vcpu))
4078 continue;
4079 if (vcpu->cpu != smp_processor_id())
4080 send_ipi++;
4081 }
4082 }
4083 spin_unlock(&kvm_lock);
4084
4085 if (freq->old < freq->new && send_ipi) {
4086 /*
4087 * We upscale the frequency. Must make the guest
4088 * doesn't see old kvmclock values while running with
4089 * the new frequency, otherwise we risk the guest sees
4090 * time go backwards.
4091 *
4092 * In case we update the frequency for another cpu
4093 * (which might be in guest context) send an interrupt
4094 * to kick the cpu out of guest context. Next time
4095 * guest context is entered kvmclock will be updated,
4096 * so the guest will not see stale values.
4097 */
4098 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
4099 }
4100 return 0;
4101 }
4102
4103 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4104 .notifier_call = kvmclock_cpufreq_notifier
4105 };
4106
4107 static void kvm_timer_init(void)
4108 {
4109 int cpu;
4110
4111 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4112 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4113 CPUFREQ_TRANSITION_NOTIFIER);
4114 for_each_online_cpu(cpu) {
4115 unsigned long khz = cpufreq_get(cpu);
4116 if (!khz)
4117 khz = tsc_khz;
4118 per_cpu(cpu_tsc_khz, cpu) = khz;
4119 }
4120 } else {
4121 for_each_possible_cpu(cpu)
4122 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
4123 }
4124 }
4125
4126 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4127
4128 static int kvm_is_in_guest(void)
4129 {
4130 return percpu_read(current_vcpu) != NULL;
4131 }
4132
4133 static int kvm_is_user_mode(void)
4134 {
4135 int user_mode = 3;
4136
4137 if (percpu_read(current_vcpu))
4138 user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
4139
4140 return user_mode != 0;
4141 }
4142
4143 static unsigned long kvm_get_guest_ip(void)
4144 {
4145 unsigned long ip = 0;
4146
4147 if (percpu_read(current_vcpu))
4148 ip = kvm_rip_read(percpu_read(current_vcpu));
4149
4150 return ip;
4151 }
4152
4153 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4154 .is_in_guest = kvm_is_in_guest,
4155 .is_user_mode = kvm_is_user_mode,
4156 .get_guest_ip = kvm_get_guest_ip,
4157 };
4158
4159 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4160 {
4161 percpu_write(current_vcpu, vcpu);
4162 }
4163 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4164
4165 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4166 {
4167 percpu_write(current_vcpu, NULL);
4168 }
4169 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4170
4171 int kvm_arch_init(void *opaque)
4172 {
4173 int r;
4174 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4175
4176 if (kvm_x86_ops) {
4177 printk(KERN_ERR "kvm: already loaded the other module\n");
4178 r = -EEXIST;
4179 goto out;
4180 }
4181
4182 if (!ops->cpu_has_kvm_support()) {
4183 printk(KERN_ERR "kvm: no hardware support\n");
4184 r = -EOPNOTSUPP;
4185 goto out;
4186 }
4187 if (ops->disabled_by_bios()) {
4188 printk(KERN_ERR "kvm: disabled by bios\n");
4189 r = -EOPNOTSUPP;
4190 goto out;
4191 }
4192
4193 r = kvm_mmu_module_init();
4194 if (r)
4195 goto out;
4196
4197 kvm_init_msr_list();
4198
4199 kvm_x86_ops = ops;
4200 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
4201 kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
4202 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4203 PT_DIRTY_MASK, PT64_NX_MASK, 0);
4204
4205 kvm_timer_init();
4206
4207 perf_register_guest_info_callbacks(&kvm_guest_cbs);
4208
4209 if (cpu_has_xsave)
4210 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4211
4212 return 0;
4213
4214 out:
4215 return r;
4216 }
4217
4218 void kvm_arch_exit(void)
4219 {
4220 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4221
4222 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4223 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4224 CPUFREQ_TRANSITION_NOTIFIER);
4225 kvm_x86_ops = NULL;
4226 kvm_mmu_module_exit();
4227 }
4228
4229 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4230 {
4231 ++vcpu->stat.halt_exits;
4232 if (irqchip_in_kernel(vcpu->kvm)) {
4233 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4234 return 1;
4235 } else {
4236 vcpu->run->exit_reason = KVM_EXIT_HLT;
4237 return 0;
4238 }
4239 }
4240 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4241
4242 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
4243 unsigned long a1)
4244 {
4245 if (is_long_mode(vcpu))
4246 return a0;
4247 else
4248 return a0 | ((gpa_t)a1 << 32);
4249 }
4250
4251 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4252 {
4253 u64 param, ingpa, outgpa, ret;
4254 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4255 bool fast, longmode;
4256 int cs_db, cs_l;
4257
4258 /*
4259 * hypercall generates UD from non zero cpl and real mode
4260 * per HYPER-V spec
4261 */
4262 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4263 kvm_queue_exception(vcpu, UD_VECTOR);
4264 return 0;
4265 }
4266
4267 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4268 longmode = is_long_mode(vcpu) && cs_l == 1;
4269
4270 if (!longmode) {
4271 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4272 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4273 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4274 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4275 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4276 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4277 }
4278 #ifdef CONFIG_X86_64
4279 else {
4280 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4281 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4282 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4283 }
4284 #endif
4285
4286 code = param & 0xffff;
4287 fast = (param >> 16) & 0x1;
4288 rep_cnt = (param >> 32) & 0xfff;
4289 rep_idx = (param >> 48) & 0xfff;
4290
4291 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4292
4293 switch (code) {
4294 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4295 kvm_vcpu_on_spin(vcpu);
4296 break;
4297 default:
4298 res = HV_STATUS_INVALID_HYPERCALL_CODE;
4299 break;
4300 }
4301
4302 ret = res | (((u64)rep_done & 0xfff) << 32);
4303 if (longmode) {
4304 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4305 } else {
4306 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
4307 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
4308 }
4309
4310 return 1;
4311 }
4312
4313 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
4314 {
4315 unsigned long nr, a0, a1, a2, a3, ret;
4316 int r = 1;
4317
4318 if (kvm_hv_hypercall_enabled(vcpu->kvm))
4319 return kvm_hv_hypercall(vcpu);
4320
4321 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
4322 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
4323 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
4324 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
4325 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
4326
4327 trace_kvm_hypercall(nr, a0, a1, a2, a3);
4328
4329 if (!is_long_mode(vcpu)) {
4330 nr &= 0xFFFFFFFF;
4331 a0 &= 0xFFFFFFFF;
4332 a1 &= 0xFFFFFFFF;
4333 a2 &= 0xFFFFFFFF;
4334 a3 &= 0xFFFFFFFF;
4335 }
4336
4337 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
4338 ret = -KVM_EPERM;
4339 goto out;
4340 }
4341
4342 switch (nr) {
4343 case KVM_HC_VAPIC_POLL_IRQ:
4344 ret = 0;
4345 break;
4346 case KVM_HC_MMU_OP:
4347 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
4348 break;
4349 default:
4350 ret = -KVM_ENOSYS;
4351 break;
4352 }
4353 out:
4354 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4355 ++vcpu->stat.hypercalls;
4356 return r;
4357 }
4358 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
4359
4360 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
4361 {
4362 char instruction[3];
4363 unsigned long rip = kvm_rip_read(vcpu);
4364
4365 /*
4366 * Blow out the MMU to ensure that no other VCPU has an active mapping
4367 * to ensure that the updated hypercall appears atomically across all
4368 * VCPUs.
4369 */
4370 kvm_mmu_zap_all(vcpu->kvm);
4371
4372 kvm_x86_ops->patch_hypercall(vcpu, instruction);
4373
4374 return emulator_write_emulated(rip, instruction, 3, NULL, vcpu);
4375 }
4376
4377 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4378 {
4379 struct desc_ptr dt = { limit, base };
4380
4381 kvm_x86_ops->set_gdt(vcpu, &dt);
4382 }
4383
4384 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4385 {
4386 struct desc_ptr dt = { limit, base };
4387
4388 kvm_x86_ops->set_idt(vcpu, &dt);
4389 }
4390
4391 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
4392 {
4393 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
4394 int j, nent = vcpu->arch.cpuid_nent;
4395
4396 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
4397 /* when no next entry is found, the current entry[i] is reselected */
4398 for (j = i + 1; ; j = (j + 1) % nent) {
4399 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
4400 if (ej->function == e->function) {
4401 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
4402 return j;
4403 }
4404 }
4405 return 0; /* silence gcc, even though control never reaches here */
4406 }
4407
4408 /* find an entry with matching function, matching index (if needed), and that
4409 * should be read next (if it's stateful) */
4410 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
4411 u32 function, u32 index)
4412 {
4413 if (e->function != function)
4414 return 0;
4415 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
4416 return 0;
4417 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
4418 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
4419 return 0;
4420 return 1;
4421 }
4422
4423 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
4424 u32 function, u32 index)
4425 {
4426 int i;
4427 struct kvm_cpuid_entry2 *best = NULL;
4428
4429 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
4430 struct kvm_cpuid_entry2 *e;
4431
4432 e = &vcpu->arch.cpuid_entries[i];
4433 if (is_matching_cpuid_entry(e, function, index)) {
4434 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
4435 move_to_next_stateful_cpuid_entry(vcpu, i);
4436 best = e;
4437 break;
4438 }
4439 /*
4440 * Both basic or both extended?
4441 */
4442 if (((e->function ^ function) & 0x80000000) == 0)
4443 if (!best || e->function > best->function)
4444 best = e;
4445 }
4446 return best;
4447 }
4448 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
4449
4450 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
4451 {
4452 struct kvm_cpuid_entry2 *best;
4453
4454 best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
4455 if (!best || best->eax < 0x80000008)
4456 goto not_found;
4457 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
4458 if (best)
4459 return best->eax & 0xff;
4460 not_found:
4461 return 36;
4462 }
4463
4464 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
4465 {
4466 u32 function, index;
4467 struct kvm_cpuid_entry2 *best;
4468
4469 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
4470 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4471 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
4472 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
4473 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
4474 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
4475 best = kvm_find_cpuid_entry(vcpu, function, index);
4476 if (best) {
4477 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
4478 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
4479 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
4480 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
4481 }
4482 kvm_x86_ops->skip_emulated_instruction(vcpu);
4483 trace_kvm_cpuid(function,
4484 kvm_register_read(vcpu, VCPU_REGS_RAX),
4485 kvm_register_read(vcpu, VCPU_REGS_RBX),
4486 kvm_register_read(vcpu, VCPU_REGS_RCX),
4487 kvm_register_read(vcpu, VCPU_REGS_RDX));
4488 }
4489 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
4490
4491 /*
4492 * Check if userspace requested an interrupt window, and that the
4493 * interrupt window is open.
4494 *
4495 * No need to exit to userspace if we already have an interrupt queued.
4496 */
4497 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
4498 {
4499 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
4500 vcpu->run->request_interrupt_window &&
4501 kvm_arch_interrupt_allowed(vcpu));
4502 }
4503
4504 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
4505 {
4506 struct kvm_run *kvm_run = vcpu->run;
4507
4508 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
4509 kvm_run->cr8 = kvm_get_cr8(vcpu);
4510 kvm_run->apic_base = kvm_get_apic_base(vcpu);
4511 if (irqchip_in_kernel(vcpu->kvm))
4512 kvm_run->ready_for_interrupt_injection = 1;
4513 else
4514 kvm_run->ready_for_interrupt_injection =
4515 kvm_arch_interrupt_allowed(vcpu) &&
4516 !kvm_cpu_has_interrupt(vcpu) &&
4517 !kvm_event_needs_reinjection(vcpu);
4518 }
4519
4520 static void vapic_enter(struct kvm_vcpu *vcpu)
4521 {
4522 struct kvm_lapic *apic = vcpu->arch.apic;
4523 struct page *page;
4524
4525 if (!apic || !apic->vapic_addr)
4526 return;
4527
4528 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4529
4530 vcpu->arch.apic->vapic_page = page;
4531 }
4532
4533 static void vapic_exit(struct kvm_vcpu *vcpu)
4534 {
4535 struct kvm_lapic *apic = vcpu->arch.apic;
4536 int idx;
4537
4538 if (!apic || !apic->vapic_addr)
4539 return;
4540
4541 idx = srcu_read_lock(&vcpu->kvm->srcu);
4542 kvm_release_page_dirty(apic->vapic_page);
4543 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4544 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4545 }
4546
4547 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
4548 {
4549 int max_irr, tpr;
4550
4551 if (!kvm_x86_ops->update_cr8_intercept)
4552 return;
4553
4554 if (!vcpu->arch.apic)
4555 return;
4556
4557 if (!vcpu->arch.apic->vapic_addr)
4558 max_irr = kvm_lapic_find_highest_irr(vcpu);
4559 else
4560 max_irr = -1;
4561
4562 if (max_irr != -1)
4563 max_irr >>= 4;
4564
4565 tpr = kvm_lapic_get_cr8(vcpu);
4566
4567 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
4568 }
4569
4570 static void inject_pending_event(struct kvm_vcpu *vcpu)
4571 {
4572 /* try to reinject previous events if any */
4573 if (vcpu->arch.exception.pending) {
4574 trace_kvm_inj_exception(vcpu->arch.exception.nr,
4575 vcpu->arch.exception.has_error_code,
4576 vcpu->arch.exception.error_code);
4577 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
4578 vcpu->arch.exception.has_error_code,
4579 vcpu->arch.exception.error_code,
4580 vcpu->arch.exception.reinject);
4581 return;
4582 }
4583
4584 if (vcpu->arch.nmi_injected) {
4585 kvm_x86_ops->set_nmi(vcpu);
4586 return;
4587 }
4588
4589 if (vcpu->arch.interrupt.pending) {
4590 kvm_x86_ops->set_irq(vcpu);
4591 return;
4592 }
4593
4594 /* try to inject new event if pending */
4595 if (vcpu->arch.nmi_pending) {
4596 if (kvm_x86_ops->nmi_allowed(vcpu)) {
4597 vcpu->arch.nmi_pending = false;
4598 vcpu->arch.nmi_injected = true;
4599 kvm_x86_ops->set_nmi(vcpu);
4600 }
4601 } else if (kvm_cpu_has_interrupt(vcpu)) {
4602 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
4603 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
4604 false);
4605 kvm_x86_ops->set_irq(vcpu);
4606 }
4607 }
4608 }
4609
4610 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
4611 {
4612 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
4613 !vcpu->guest_xcr0_loaded) {
4614 /* kvm_set_xcr() also depends on this */
4615 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
4616 vcpu->guest_xcr0_loaded = 1;
4617 }
4618 }
4619
4620 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
4621 {
4622 if (vcpu->guest_xcr0_loaded) {
4623 if (vcpu->arch.xcr0 != host_xcr0)
4624 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
4625 vcpu->guest_xcr0_loaded = 0;
4626 }
4627 }
4628
4629 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
4630 {
4631 int r;
4632 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
4633 vcpu->run->request_interrupt_window;
4634
4635 if (vcpu->requests)
4636 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
4637 kvm_mmu_unload(vcpu);
4638
4639 r = kvm_mmu_reload(vcpu);
4640 if (unlikely(r))
4641 goto out;
4642
4643 if (vcpu->requests) {
4644 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
4645 __kvm_migrate_timers(vcpu);
4646 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
4647 kvm_write_guest_time(vcpu);
4648 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
4649 kvm_mmu_sync_roots(vcpu);
4650 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
4651 kvm_x86_ops->tlb_flush(vcpu);
4652 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
4653 &vcpu->requests)) {
4654 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
4655 r = 0;
4656 goto out;
4657 }
4658 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
4659 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4660 r = 0;
4661 goto out;
4662 }
4663 if (test_and_clear_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests)) {
4664 vcpu->fpu_active = 0;
4665 kvm_x86_ops->fpu_deactivate(vcpu);
4666 }
4667 }
4668
4669 preempt_disable();
4670
4671 kvm_x86_ops->prepare_guest_switch(vcpu);
4672 if (vcpu->fpu_active)
4673 kvm_load_guest_fpu(vcpu);
4674 kvm_load_guest_xcr0(vcpu);
4675
4676 atomic_set(&vcpu->guest_mode, 1);
4677 smp_wmb();
4678
4679 local_irq_disable();
4680
4681 if (!atomic_read(&vcpu->guest_mode) || vcpu->requests
4682 || need_resched() || signal_pending(current)) {
4683 atomic_set(&vcpu->guest_mode, 0);
4684 smp_wmb();
4685 local_irq_enable();
4686 preempt_enable();
4687 r = 1;
4688 goto out;
4689 }
4690
4691 inject_pending_event(vcpu);
4692
4693 /* enable NMI/IRQ window open exits if needed */
4694 if (vcpu->arch.nmi_pending)
4695 kvm_x86_ops->enable_nmi_window(vcpu);
4696 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
4697 kvm_x86_ops->enable_irq_window(vcpu);
4698
4699 if (kvm_lapic_enabled(vcpu)) {
4700 update_cr8_intercept(vcpu);
4701 kvm_lapic_sync_to_vapic(vcpu);
4702 }
4703
4704 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4705
4706 kvm_guest_enter();
4707
4708 if (unlikely(vcpu->arch.switch_db_regs)) {
4709 set_debugreg(0, 7);
4710 set_debugreg(vcpu->arch.eff_db[0], 0);
4711 set_debugreg(vcpu->arch.eff_db[1], 1);
4712 set_debugreg(vcpu->arch.eff_db[2], 2);
4713 set_debugreg(vcpu->arch.eff_db[3], 3);
4714 }
4715
4716 trace_kvm_entry(vcpu->vcpu_id);
4717 kvm_x86_ops->run(vcpu);
4718
4719 /*
4720 * If the guest has used debug registers, at least dr7
4721 * will be disabled while returning to the host.
4722 * If we don't have active breakpoints in the host, we don't
4723 * care about the messed up debug address registers. But if
4724 * we have some of them active, restore the old state.
4725 */
4726 if (hw_breakpoint_active())
4727 hw_breakpoint_restore();
4728
4729 atomic_set(&vcpu->guest_mode, 0);
4730 smp_wmb();
4731 local_irq_enable();
4732
4733 ++vcpu->stat.exits;
4734
4735 /*
4736 * We must have an instruction between local_irq_enable() and
4737 * kvm_guest_exit(), so the timer interrupt isn't delayed by
4738 * the interrupt shadow. The stat.exits increment will do nicely.
4739 * But we need to prevent reordering, hence this barrier():
4740 */
4741 barrier();
4742
4743 kvm_guest_exit();
4744
4745 preempt_enable();
4746
4747 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4748
4749 /*
4750 * Profile KVM exit RIPs:
4751 */
4752 if (unlikely(prof_on == KVM_PROFILING)) {
4753 unsigned long rip = kvm_rip_read(vcpu);
4754 profile_hit(KVM_PROFILING, (void *)rip);
4755 }
4756
4757
4758 kvm_lapic_sync_from_vapic(vcpu);
4759
4760 r = kvm_x86_ops->handle_exit(vcpu);
4761 out:
4762 return r;
4763 }
4764
4765
4766 static int __vcpu_run(struct kvm_vcpu *vcpu)
4767 {
4768 int r;
4769 struct kvm *kvm = vcpu->kvm;
4770
4771 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
4772 pr_debug("vcpu %d received sipi with vector # %x\n",
4773 vcpu->vcpu_id, vcpu->arch.sipi_vector);
4774 kvm_lapic_reset(vcpu);
4775 r = kvm_arch_vcpu_reset(vcpu);
4776 if (r)
4777 return r;
4778 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4779 }
4780
4781 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4782 vapic_enter(vcpu);
4783
4784 r = 1;
4785 while (r > 0) {
4786 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
4787 r = vcpu_enter_guest(vcpu);
4788 else {
4789 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4790 kvm_vcpu_block(vcpu);
4791 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4792 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
4793 {
4794 switch(vcpu->arch.mp_state) {
4795 case KVM_MP_STATE_HALTED:
4796 vcpu->arch.mp_state =
4797 KVM_MP_STATE_RUNNABLE;
4798 case KVM_MP_STATE_RUNNABLE:
4799 break;
4800 case KVM_MP_STATE_SIPI_RECEIVED:
4801 default:
4802 r = -EINTR;
4803 break;
4804 }
4805 }
4806 }
4807
4808 if (r <= 0)
4809 break;
4810
4811 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
4812 if (kvm_cpu_has_pending_timer(vcpu))
4813 kvm_inject_pending_timer_irqs(vcpu);
4814
4815 if (dm_request_for_irq_injection(vcpu)) {
4816 r = -EINTR;
4817 vcpu->run->exit_reason = KVM_EXIT_INTR;
4818 ++vcpu->stat.request_irq_exits;
4819 }
4820 if (signal_pending(current)) {
4821 r = -EINTR;
4822 vcpu->run->exit_reason = KVM_EXIT_INTR;
4823 ++vcpu->stat.signal_exits;
4824 }
4825 if (need_resched()) {
4826 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4827 kvm_resched(vcpu);
4828 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4829 }
4830 }
4831
4832 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4833
4834 vapic_exit(vcpu);
4835
4836 return r;
4837 }
4838
4839 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
4840 {
4841 int r;
4842 sigset_t sigsaved;
4843
4844 if (vcpu->sigset_active)
4845 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
4846
4847 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
4848 kvm_vcpu_block(vcpu);
4849 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
4850 r = -EAGAIN;
4851 goto out;
4852 }
4853
4854 /* re-sync apic's tpr */
4855 if (!irqchip_in_kernel(vcpu->kvm))
4856 kvm_set_cr8(vcpu, kvm_run->cr8);
4857
4858 if (vcpu->arch.pio.count || vcpu->mmio_needed ||
4859 vcpu->arch.emulate_ctxt.restart) {
4860 if (vcpu->mmio_needed) {
4861 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
4862 vcpu->mmio_read_completed = 1;
4863 vcpu->mmio_needed = 0;
4864 }
4865 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4866 r = emulate_instruction(vcpu, 0, 0, EMULTYPE_NO_DECODE);
4867 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4868 if (r != EMULATE_DONE) {
4869 r = 0;
4870 goto out;
4871 }
4872 }
4873 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
4874 kvm_register_write(vcpu, VCPU_REGS_RAX,
4875 kvm_run->hypercall.ret);
4876
4877 r = __vcpu_run(vcpu);
4878
4879 out:
4880 post_kvm_run_save(vcpu);
4881 if (vcpu->sigset_active)
4882 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
4883
4884 return r;
4885 }
4886
4887 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4888 {
4889 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4890 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4891 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4892 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4893 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4894 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4895 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4896 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4897 #ifdef CONFIG_X86_64
4898 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
4899 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
4900 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
4901 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
4902 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
4903 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
4904 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
4905 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
4906 #endif
4907
4908 regs->rip = kvm_rip_read(vcpu);
4909 regs->rflags = kvm_get_rflags(vcpu);
4910
4911 return 0;
4912 }
4913
4914 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4915 {
4916 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
4917 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
4918 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
4919 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
4920 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
4921 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
4922 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
4923 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
4924 #ifdef CONFIG_X86_64
4925 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
4926 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
4927 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
4928 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
4929 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
4930 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
4931 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
4932 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
4933 #endif
4934
4935 kvm_rip_write(vcpu, regs->rip);
4936 kvm_set_rflags(vcpu, regs->rflags);
4937
4938 vcpu->arch.exception.pending = false;
4939
4940 return 0;
4941 }
4942
4943 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4944 {
4945 struct kvm_segment cs;
4946
4947 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
4948 *db = cs.db;
4949 *l = cs.l;
4950 }
4951 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
4952
4953 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
4954 struct kvm_sregs *sregs)
4955 {
4956 struct desc_ptr dt;
4957
4958 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4959 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4960 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4961 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4962 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4963 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4964
4965 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4966 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4967
4968 kvm_x86_ops->get_idt(vcpu, &dt);
4969 sregs->idt.limit = dt.size;
4970 sregs->idt.base = dt.address;
4971 kvm_x86_ops->get_gdt(vcpu, &dt);
4972 sregs->gdt.limit = dt.size;
4973 sregs->gdt.base = dt.address;
4974
4975 sregs->cr0 = kvm_read_cr0(vcpu);
4976 sregs->cr2 = vcpu->arch.cr2;
4977 sregs->cr3 = vcpu->arch.cr3;
4978 sregs->cr4 = kvm_read_cr4(vcpu);
4979 sregs->cr8 = kvm_get_cr8(vcpu);
4980 sregs->efer = vcpu->arch.efer;
4981 sregs->apic_base = kvm_get_apic_base(vcpu);
4982
4983 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
4984
4985 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
4986 set_bit(vcpu->arch.interrupt.nr,
4987 (unsigned long *)sregs->interrupt_bitmap);
4988
4989 return 0;
4990 }
4991
4992 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
4993 struct kvm_mp_state *mp_state)
4994 {
4995 mp_state->mp_state = vcpu->arch.mp_state;
4996 return 0;
4997 }
4998
4999 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5000 struct kvm_mp_state *mp_state)
5001 {
5002 vcpu->arch.mp_state = mp_state->mp_state;
5003 return 0;
5004 }
5005
5006 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
5007 bool has_error_code, u32 error_code)
5008 {
5009 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
5010 int cs_db, cs_l, ret;
5011 cache_all_regs(vcpu);
5012
5013 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5014
5015 vcpu->arch.emulate_ctxt.vcpu = vcpu;
5016 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
5017 vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
5018 vcpu->arch.emulate_ctxt.mode =
5019 (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
5020 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
5021 ? X86EMUL_MODE_VM86 : cs_l
5022 ? X86EMUL_MODE_PROT64 : cs_db
5023 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
5024 memset(c, 0, sizeof(struct decode_cache));
5025 memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
5026
5027 ret = emulator_task_switch(&vcpu->arch.emulate_ctxt, &emulate_ops,
5028 tss_selector, reason, has_error_code,
5029 error_code);
5030
5031 if (ret)
5032 return EMULATE_FAIL;
5033
5034 memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
5035 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
5036 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
5037 return EMULATE_DONE;
5038 }
5039 EXPORT_SYMBOL_GPL(kvm_task_switch);
5040
5041 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5042 struct kvm_sregs *sregs)
5043 {
5044 int mmu_reset_needed = 0;
5045 int pending_vec, max_bits;
5046 struct desc_ptr dt;
5047
5048 dt.size = sregs->idt.limit;
5049 dt.address = sregs->idt.base;
5050 kvm_x86_ops->set_idt(vcpu, &dt);
5051 dt.size = sregs->gdt.limit;
5052 dt.address = sregs->gdt.base;
5053 kvm_x86_ops->set_gdt(vcpu, &dt);
5054
5055 vcpu->arch.cr2 = sregs->cr2;
5056 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
5057 vcpu->arch.cr3 = sregs->cr3;
5058
5059 kvm_set_cr8(vcpu, sregs->cr8);
5060
5061 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5062 kvm_x86_ops->set_efer(vcpu, sregs->efer);
5063 kvm_set_apic_base(vcpu, sregs->apic_base);
5064
5065 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5066 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5067 vcpu->arch.cr0 = sregs->cr0;
5068
5069 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5070 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5071 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5072 load_pdptrs(vcpu, vcpu->arch.cr3);
5073 mmu_reset_needed = 1;
5074 }
5075
5076 if (mmu_reset_needed)
5077 kvm_mmu_reset_context(vcpu);
5078
5079 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5080 pending_vec = find_first_bit(
5081 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5082 if (pending_vec < max_bits) {
5083 kvm_queue_interrupt(vcpu, pending_vec, false);
5084 pr_debug("Set back pending irq %d\n", pending_vec);
5085 if (irqchip_in_kernel(vcpu->kvm))
5086 kvm_pic_clear_isr_ack(vcpu->kvm);
5087 }
5088
5089 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5090 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5091 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5092 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5093 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5094 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5095
5096 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5097 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5098
5099 update_cr8_intercept(vcpu);
5100
5101 /* Older userspace won't unhalt the vcpu on reset. */
5102 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5103 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5104 !is_protmode(vcpu))
5105 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5106
5107 return 0;
5108 }
5109
5110 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5111 struct kvm_guest_debug *dbg)
5112 {
5113 unsigned long rflags;
5114 int i, r;
5115
5116 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5117 r = -EBUSY;
5118 if (vcpu->arch.exception.pending)
5119 goto out;
5120 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5121 kvm_queue_exception(vcpu, DB_VECTOR);
5122 else
5123 kvm_queue_exception(vcpu, BP_VECTOR);
5124 }
5125
5126 /*
5127 * Read rflags as long as potentially injected trace flags are still
5128 * filtered out.
5129 */
5130 rflags = kvm_get_rflags(vcpu);
5131
5132 vcpu->guest_debug = dbg->control;
5133 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5134 vcpu->guest_debug = 0;
5135
5136 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5137 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5138 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5139 vcpu->arch.switch_db_regs =
5140 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5141 } else {
5142 for (i = 0; i < KVM_NR_DB_REGS; i++)
5143 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5144 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5145 }
5146
5147 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5148 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5149 get_segment_base(vcpu, VCPU_SREG_CS);
5150
5151 /*
5152 * Trigger an rflags update that will inject or remove the trace
5153 * flags.
5154 */
5155 kvm_set_rflags(vcpu, rflags);
5156
5157 kvm_x86_ops->set_guest_debug(vcpu, dbg);
5158
5159 r = 0;
5160
5161 out:
5162
5163 return r;
5164 }
5165
5166 /*
5167 * Translate a guest virtual address to a guest physical address.
5168 */
5169 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5170 struct kvm_translation *tr)
5171 {
5172 unsigned long vaddr = tr->linear_address;
5173 gpa_t gpa;
5174 int idx;
5175
5176 idx = srcu_read_lock(&vcpu->kvm->srcu);
5177 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5178 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5179 tr->physical_address = gpa;
5180 tr->valid = gpa != UNMAPPED_GVA;
5181 tr->writeable = 1;
5182 tr->usermode = 0;
5183
5184 return 0;
5185 }
5186
5187 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5188 {
5189 struct i387_fxsave_struct *fxsave =
5190 &vcpu->arch.guest_fpu.state->fxsave;
5191
5192 memcpy(fpu->fpr, fxsave->st_space, 128);
5193 fpu->fcw = fxsave->cwd;
5194 fpu->fsw = fxsave->swd;
5195 fpu->ftwx = fxsave->twd;
5196 fpu->last_opcode = fxsave->fop;
5197 fpu->last_ip = fxsave->rip;
5198 fpu->last_dp = fxsave->rdp;
5199 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5200
5201 return 0;
5202 }
5203
5204 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5205 {
5206 struct i387_fxsave_struct *fxsave =
5207 &vcpu->arch.guest_fpu.state->fxsave;
5208
5209 memcpy(fxsave->st_space, fpu->fpr, 128);
5210 fxsave->cwd = fpu->fcw;
5211 fxsave->swd = fpu->fsw;
5212 fxsave->twd = fpu->ftwx;
5213 fxsave->fop = fpu->last_opcode;
5214 fxsave->rip = fpu->last_ip;
5215 fxsave->rdp = fpu->last_dp;
5216 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5217
5218 return 0;
5219 }
5220
5221 int fx_init(struct kvm_vcpu *vcpu)
5222 {
5223 int err;
5224
5225 err = fpu_alloc(&vcpu->arch.guest_fpu);
5226 if (err)
5227 return err;
5228
5229 fpu_finit(&vcpu->arch.guest_fpu);
5230
5231 /*
5232 * Ensure guest xcr0 is valid for loading
5233 */
5234 vcpu->arch.xcr0 = XSTATE_FP;
5235
5236 vcpu->arch.cr0 |= X86_CR0_ET;
5237
5238 return 0;
5239 }
5240 EXPORT_SYMBOL_GPL(fx_init);
5241
5242 static void fx_free(struct kvm_vcpu *vcpu)
5243 {
5244 fpu_free(&vcpu->arch.guest_fpu);
5245 }
5246
5247 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5248 {
5249 if (vcpu->guest_fpu_loaded)
5250 return;
5251
5252 /*
5253 * Restore all possible states in the guest,
5254 * and assume host would use all available bits.
5255 * Guest xcr0 would be loaded later.
5256 */
5257 kvm_put_guest_xcr0(vcpu);
5258 vcpu->guest_fpu_loaded = 1;
5259 unlazy_fpu(current);
5260 fpu_restore_checking(&vcpu->arch.guest_fpu);
5261 trace_kvm_fpu(1);
5262 }
5263
5264 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5265 {
5266 kvm_put_guest_xcr0(vcpu);
5267
5268 if (!vcpu->guest_fpu_loaded)
5269 return;
5270
5271 vcpu->guest_fpu_loaded = 0;
5272 fpu_save_init(&vcpu->arch.guest_fpu);
5273 ++vcpu->stat.fpu_reload;
5274 set_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests);
5275 trace_kvm_fpu(0);
5276 }
5277
5278 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5279 {
5280 if (vcpu->arch.time_page) {
5281 kvm_release_page_dirty(vcpu->arch.time_page);
5282 vcpu->arch.time_page = NULL;
5283 }
5284
5285 fx_free(vcpu);
5286 kvm_x86_ops->vcpu_free(vcpu);
5287 }
5288
5289 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5290 unsigned int id)
5291 {
5292 return kvm_x86_ops->vcpu_create(kvm, id);
5293 }
5294
5295 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5296 {
5297 int r;
5298
5299 vcpu->arch.mtrr_state.have_fixed = 1;
5300 vcpu_load(vcpu);
5301 r = kvm_arch_vcpu_reset(vcpu);
5302 if (r == 0)
5303 r = kvm_mmu_setup(vcpu);
5304 vcpu_put(vcpu);
5305 if (r < 0)
5306 goto free_vcpu;
5307
5308 return 0;
5309 free_vcpu:
5310 kvm_x86_ops->vcpu_free(vcpu);
5311 return r;
5312 }
5313
5314 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5315 {
5316 vcpu_load(vcpu);
5317 kvm_mmu_unload(vcpu);
5318 vcpu_put(vcpu);
5319
5320 fx_free(vcpu);
5321 kvm_x86_ops->vcpu_free(vcpu);
5322 }
5323
5324 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5325 {
5326 vcpu->arch.nmi_pending = false;
5327 vcpu->arch.nmi_injected = false;
5328
5329 vcpu->arch.switch_db_regs = 0;
5330 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5331 vcpu->arch.dr6 = DR6_FIXED_1;
5332 vcpu->arch.dr7 = DR7_FIXED_1;
5333
5334 return kvm_x86_ops->vcpu_reset(vcpu);
5335 }
5336
5337 int kvm_arch_hardware_enable(void *garbage)
5338 {
5339 /*
5340 * Since this may be called from a hotplug notifcation,
5341 * we can't get the CPU frequency directly.
5342 */
5343 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5344 int cpu = raw_smp_processor_id();
5345 per_cpu(cpu_tsc_khz, cpu) = 0;
5346 }
5347
5348 kvm_shared_msr_cpu_online();
5349
5350 return kvm_x86_ops->hardware_enable(garbage);
5351 }
5352
5353 void kvm_arch_hardware_disable(void *garbage)
5354 {
5355 kvm_x86_ops->hardware_disable(garbage);
5356 drop_user_return_notifiers(garbage);
5357 }
5358
5359 int kvm_arch_hardware_setup(void)
5360 {
5361 return kvm_x86_ops->hardware_setup();
5362 }
5363
5364 void kvm_arch_hardware_unsetup(void)
5365 {
5366 kvm_x86_ops->hardware_unsetup();
5367 }
5368
5369 void kvm_arch_check_processor_compat(void *rtn)
5370 {
5371 kvm_x86_ops->check_processor_compatibility(rtn);
5372 }
5373
5374 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5375 {
5376 struct page *page;
5377 struct kvm *kvm;
5378 int r;
5379
5380 BUG_ON(vcpu->kvm == NULL);
5381 kvm = vcpu->kvm;
5382
5383 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5384 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5385 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5386 else
5387 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5388
5389 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5390 if (!page) {
5391 r = -ENOMEM;
5392 goto fail;
5393 }
5394 vcpu->arch.pio_data = page_address(page);
5395
5396 r = kvm_mmu_create(vcpu);
5397 if (r < 0)
5398 goto fail_free_pio_data;
5399
5400 if (irqchip_in_kernel(kvm)) {
5401 r = kvm_create_lapic(vcpu);
5402 if (r < 0)
5403 goto fail_mmu_destroy;
5404 }
5405
5406 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5407 GFP_KERNEL);
5408 if (!vcpu->arch.mce_banks) {
5409 r = -ENOMEM;
5410 goto fail_free_lapic;
5411 }
5412 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5413
5414 return 0;
5415 fail_free_lapic:
5416 kvm_free_lapic(vcpu);
5417 fail_mmu_destroy:
5418 kvm_mmu_destroy(vcpu);
5419 fail_free_pio_data:
5420 free_page((unsigned long)vcpu->arch.pio_data);
5421 fail:
5422 return r;
5423 }
5424
5425 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
5426 {
5427 int idx;
5428
5429 kfree(vcpu->arch.mce_banks);
5430 kvm_free_lapic(vcpu);
5431 idx = srcu_read_lock(&vcpu->kvm->srcu);
5432 kvm_mmu_destroy(vcpu);
5433 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5434 free_page((unsigned long)vcpu->arch.pio_data);
5435 }
5436
5437 struct kvm *kvm_arch_create_vm(void)
5438 {
5439 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
5440
5441 if (!kvm)
5442 return ERR_PTR(-ENOMEM);
5443
5444 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5445 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
5446
5447 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5448 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
5449
5450 rdtscll(kvm->arch.vm_init_tsc);
5451
5452 return kvm;
5453 }
5454
5455 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
5456 {
5457 vcpu_load(vcpu);
5458 kvm_mmu_unload(vcpu);
5459 vcpu_put(vcpu);
5460 }
5461
5462 static void kvm_free_vcpus(struct kvm *kvm)
5463 {
5464 unsigned int i;
5465 struct kvm_vcpu *vcpu;
5466
5467 /*
5468 * Unpin any mmu pages first.
5469 */
5470 kvm_for_each_vcpu(i, vcpu, kvm)
5471 kvm_unload_vcpu_mmu(vcpu);
5472 kvm_for_each_vcpu(i, vcpu, kvm)
5473 kvm_arch_vcpu_free(vcpu);
5474
5475 mutex_lock(&kvm->lock);
5476 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
5477 kvm->vcpus[i] = NULL;
5478
5479 atomic_set(&kvm->online_vcpus, 0);
5480 mutex_unlock(&kvm->lock);
5481 }
5482
5483 void kvm_arch_sync_events(struct kvm *kvm)
5484 {
5485 kvm_free_all_assigned_devices(kvm);
5486 }
5487
5488 void kvm_arch_destroy_vm(struct kvm *kvm)
5489 {
5490 kvm_iommu_unmap_guest(kvm);
5491 kvm_free_pit(kvm);
5492 kfree(kvm->arch.vpic);
5493 kfree(kvm->arch.vioapic);
5494 kvm_free_vcpus(kvm);
5495 kvm_free_physmem(kvm);
5496 if (kvm->arch.apic_access_page)
5497 put_page(kvm->arch.apic_access_page);
5498 if (kvm->arch.ept_identity_pagetable)
5499 put_page(kvm->arch.ept_identity_pagetable);
5500 cleanup_srcu_struct(&kvm->srcu);
5501 kfree(kvm);
5502 }
5503
5504 int kvm_arch_prepare_memory_region(struct kvm *kvm,
5505 struct kvm_memory_slot *memslot,
5506 struct kvm_memory_slot old,
5507 struct kvm_userspace_memory_region *mem,
5508 int user_alloc)
5509 {
5510 int npages = memslot->npages;
5511
5512 /*To keep backward compatibility with older userspace,
5513 *x86 needs to hanlde !user_alloc case.
5514 */
5515 if (!user_alloc) {
5516 if (npages && !old.rmap) {
5517 unsigned long userspace_addr;
5518
5519 down_write(&current->mm->mmap_sem);
5520 userspace_addr = do_mmap(NULL, 0,
5521 npages * PAGE_SIZE,
5522 PROT_READ | PROT_WRITE,
5523 MAP_PRIVATE | MAP_ANONYMOUS,
5524 0);
5525 up_write(&current->mm->mmap_sem);
5526
5527 if (IS_ERR((void *)userspace_addr))
5528 return PTR_ERR((void *)userspace_addr);
5529
5530 memslot->userspace_addr = userspace_addr;
5531 }
5532 }
5533
5534
5535 return 0;
5536 }
5537
5538 void kvm_arch_commit_memory_region(struct kvm *kvm,
5539 struct kvm_userspace_memory_region *mem,
5540 struct kvm_memory_slot old,
5541 int user_alloc)
5542 {
5543
5544 int npages = mem->memory_size >> PAGE_SHIFT;
5545
5546 if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
5547 int ret;
5548
5549 down_write(&current->mm->mmap_sem);
5550 ret = do_munmap(current->mm, old.userspace_addr,
5551 old.npages * PAGE_SIZE);
5552 up_write(&current->mm->mmap_sem);
5553 if (ret < 0)
5554 printk(KERN_WARNING
5555 "kvm_vm_ioctl_set_memory_region: "
5556 "failed to munmap memory\n");
5557 }
5558
5559 spin_lock(&kvm->mmu_lock);
5560 if (!kvm->arch.n_requested_mmu_pages) {
5561 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
5562 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
5563 }
5564
5565 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
5566 spin_unlock(&kvm->mmu_lock);
5567 }
5568
5569 void kvm_arch_flush_shadow(struct kvm *kvm)
5570 {
5571 kvm_mmu_zap_all(kvm);
5572 kvm_reload_remote_mmus(kvm);
5573 }
5574
5575 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
5576 {
5577 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
5578 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
5579 || vcpu->arch.nmi_pending ||
5580 (kvm_arch_interrupt_allowed(vcpu) &&
5581 kvm_cpu_has_interrupt(vcpu));
5582 }
5583
5584 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
5585 {
5586 int me;
5587 int cpu = vcpu->cpu;
5588
5589 if (waitqueue_active(&vcpu->wq)) {
5590 wake_up_interruptible(&vcpu->wq);
5591 ++vcpu->stat.halt_wakeup;
5592 }
5593
5594 me = get_cpu();
5595 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
5596 if (atomic_xchg(&vcpu->guest_mode, 0))
5597 smp_send_reschedule(cpu);
5598 put_cpu();
5599 }
5600
5601 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
5602 {
5603 return kvm_x86_ops->interrupt_allowed(vcpu);
5604 }
5605
5606 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
5607 {
5608 unsigned long current_rip = kvm_rip_read(vcpu) +
5609 get_segment_base(vcpu, VCPU_SREG_CS);
5610
5611 return current_rip == linear_rip;
5612 }
5613 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
5614
5615 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
5616 {
5617 unsigned long rflags;
5618
5619 rflags = kvm_x86_ops->get_rflags(vcpu);
5620 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5621 rflags &= ~X86_EFLAGS_TF;
5622 return rflags;
5623 }
5624 EXPORT_SYMBOL_GPL(kvm_get_rflags);
5625
5626 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
5627 {
5628 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
5629 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
5630 rflags |= X86_EFLAGS_TF;
5631 kvm_x86_ops->set_rflags(vcpu, rflags);
5632 }
5633 EXPORT_SYMBOL_GPL(kvm_set_rflags);
5634
5635 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
5636 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
5637 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
5638 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
5639 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
5640 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
5641 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
5642 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
5643 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
5644 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
5645 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
5646 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
This page took 0.138331 seconds and 4 git commands to generate.