x86: Rename X86_CR4_RDWRGSFS to X86_CR4_FSGSBASE
[deliverable/linux.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <trace/events/kvm.h>
52
53 #define CREATE_TRACE_POINTS
54 #include "trace.h"
55
56 #include <asm/debugreg.h>
57 #include <asm/msr.h>
58 #include <asm/desc.h>
59 #include <asm/mtrr.h>
60 #include <asm/mce.h>
61 #include <asm/i387.h>
62 #include <asm/fpu-internal.h> /* Ugh! */
63 #include <asm/xcr.h>
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
66
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
70
71 #define emul_to_vcpu(ctxt) \
72 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
73
74 /* EFER defaults:
75 * - enable syscall per default because its emulated by KVM
76 * - enable LME and LMA per default on 64 bit KVM
77 */
78 #ifdef CONFIG_X86_64
79 static
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
81 #else
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #endif
84
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
87
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
90
91 struct kvm_x86_ops *kvm_x86_ops;
92 EXPORT_SYMBOL_GPL(kvm_x86_ops);
93
94 static bool ignore_msrs = 0;
95 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
96
97 bool kvm_has_tsc_control;
98 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
99 u32 kvm_max_guest_tsc_khz;
100 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
101
102 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
103 static u32 tsc_tolerance_ppm = 250;
104 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
105
106 #define KVM_NR_SHARED_MSRS 16
107
108 struct kvm_shared_msrs_global {
109 int nr;
110 u32 msrs[KVM_NR_SHARED_MSRS];
111 };
112
113 struct kvm_shared_msrs {
114 struct user_return_notifier urn;
115 bool registered;
116 struct kvm_shared_msr_values {
117 u64 host;
118 u64 curr;
119 } values[KVM_NR_SHARED_MSRS];
120 };
121
122 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
123 static struct kvm_shared_msrs __percpu *shared_msrs;
124
125 struct kvm_stats_debugfs_item debugfs_entries[] = {
126 { "pf_fixed", VCPU_STAT(pf_fixed) },
127 { "pf_guest", VCPU_STAT(pf_guest) },
128 { "tlb_flush", VCPU_STAT(tlb_flush) },
129 { "invlpg", VCPU_STAT(invlpg) },
130 { "exits", VCPU_STAT(exits) },
131 { "io_exits", VCPU_STAT(io_exits) },
132 { "mmio_exits", VCPU_STAT(mmio_exits) },
133 { "signal_exits", VCPU_STAT(signal_exits) },
134 { "irq_window", VCPU_STAT(irq_window_exits) },
135 { "nmi_window", VCPU_STAT(nmi_window_exits) },
136 { "halt_exits", VCPU_STAT(halt_exits) },
137 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
138 { "hypercalls", VCPU_STAT(hypercalls) },
139 { "request_irq", VCPU_STAT(request_irq_exits) },
140 { "irq_exits", VCPU_STAT(irq_exits) },
141 { "host_state_reload", VCPU_STAT(host_state_reload) },
142 { "efer_reload", VCPU_STAT(efer_reload) },
143 { "fpu_reload", VCPU_STAT(fpu_reload) },
144 { "insn_emulation", VCPU_STAT(insn_emulation) },
145 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
146 { "irq_injections", VCPU_STAT(irq_injections) },
147 { "nmi_injections", VCPU_STAT(nmi_injections) },
148 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
149 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
150 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
151 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
152 { "mmu_flooded", VM_STAT(mmu_flooded) },
153 { "mmu_recycled", VM_STAT(mmu_recycled) },
154 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
155 { "mmu_unsync", VM_STAT(mmu_unsync) },
156 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
157 { "largepages", VM_STAT(lpages) },
158 { NULL }
159 };
160
161 u64 __read_mostly host_xcr0;
162
163 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
164
165 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
166 {
167 int i;
168 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
169 vcpu->arch.apf.gfns[i] = ~0;
170 }
171
172 static void kvm_on_user_return(struct user_return_notifier *urn)
173 {
174 unsigned slot;
175 struct kvm_shared_msrs *locals
176 = container_of(urn, struct kvm_shared_msrs, urn);
177 struct kvm_shared_msr_values *values;
178
179 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
180 values = &locals->values[slot];
181 if (values->host != values->curr) {
182 wrmsrl(shared_msrs_global.msrs[slot], values->host);
183 values->curr = values->host;
184 }
185 }
186 locals->registered = false;
187 user_return_notifier_unregister(urn);
188 }
189
190 static void shared_msr_update(unsigned slot, u32 msr)
191 {
192 u64 value;
193 unsigned int cpu = smp_processor_id();
194 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
195
196 /* only read, and nobody should modify it at this time,
197 * so don't need lock */
198 if (slot >= shared_msrs_global.nr) {
199 printk(KERN_ERR "kvm: invalid MSR slot!");
200 return;
201 }
202 rdmsrl_safe(msr, &value);
203 smsr->values[slot].host = value;
204 smsr->values[slot].curr = value;
205 }
206
207 void kvm_define_shared_msr(unsigned slot, u32 msr)
208 {
209 if (slot >= shared_msrs_global.nr)
210 shared_msrs_global.nr = slot + 1;
211 shared_msrs_global.msrs[slot] = msr;
212 /* we need ensured the shared_msr_global have been updated */
213 smp_wmb();
214 }
215 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
216
217 static void kvm_shared_msr_cpu_online(void)
218 {
219 unsigned i;
220
221 for (i = 0; i < shared_msrs_global.nr; ++i)
222 shared_msr_update(i, shared_msrs_global.msrs[i]);
223 }
224
225 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
226 {
227 unsigned int cpu = smp_processor_id();
228 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
229
230 if (((value ^ smsr->values[slot].curr) & mask) == 0)
231 return;
232 smsr->values[slot].curr = value;
233 wrmsrl(shared_msrs_global.msrs[slot], value);
234 if (!smsr->registered) {
235 smsr->urn.on_user_return = kvm_on_user_return;
236 user_return_notifier_register(&smsr->urn);
237 smsr->registered = true;
238 }
239 }
240 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
241
242 static void drop_user_return_notifiers(void *ignore)
243 {
244 unsigned int cpu = smp_processor_id();
245 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
246
247 if (smsr->registered)
248 kvm_on_user_return(&smsr->urn);
249 }
250
251 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
252 {
253 return vcpu->arch.apic_base;
254 }
255 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
256
257 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
258 {
259 /* TODO: reserve bits check */
260 kvm_lapic_set_base(vcpu, data);
261 }
262 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
263
264 asmlinkage void kvm_spurious_fault(void)
265 {
266 /* Fault while not rebooting. We want the trace. */
267 BUG();
268 }
269 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
270
271 #define EXCPT_BENIGN 0
272 #define EXCPT_CONTRIBUTORY 1
273 #define EXCPT_PF 2
274
275 static int exception_class(int vector)
276 {
277 switch (vector) {
278 case PF_VECTOR:
279 return EXCPT_PF;
280 case DE_VECTOR:
281 case TS_VECTOR:
282 case NP_VECTOR:
283 case SS_VECTOR:
284 case GP_VECTOR:
285 return EXCPT_CONTRIBUTORY;
286 default:
287 break;
288 }
289 return EXCPT_BENIGN;
290 }
291
292 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
293 unsigned nr, bool has_error, u32 error_code,
294 bool reinject)
295 {
296 u32 prev_nr;
297 int class1, class2;
298
299 kvm_make_request(KVM_REQ_EVENT, vcpu);
300
301 if (!vcpu->arch.exception.pending) {
302 queue:
303 vcpu->arch.exception.pending = true;
304 vcpu->arch.exception.has_error_code = has_error;
305 vcpu->arch.exception.nr = nr;
306 vcpu->arch.exception.error_code = error_code;
307 vcpu->arch.exception.reinject = reinject;
308 return;
309 }
310
311 /* to check exception */
312 prev_nr = vcpu->arch.exception.nr;
313 if (prev_nr == DF_VECTOR) {
314 /* triple fault -> shutdown */
315 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
316 return;
317 }
318 class1 = exception_class(prev_nr);
319 class2 = exception_class(nr);
320 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
321 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
322 /* generate double fault per SDM Table 5-5 */
323 vcpu->arch.exception.pending = true;
324 vcpu->arch.exception.has_error_code = true;
325 vcpu->arch.exception.nr = DF_VECTOR;
326 vcpu->arch.exception.error_code = 0;
327 } else
328 /* replace previous exception with a new one in a hope
329 that instruction re-execution will regenerate lost
330 exception */
331 goto queue;
332 }
333
334 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
335 {
336 kvm_multiple_exception(vcpu, nr, false, 0, false);
337 }
338 EXPORT_SYMBOL_GPL(kvm_queue_exception);
339
340 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
341 {
342 kvm_multiple_exception(vcpu, nr, false, 0, true);
343 }
344 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
345
346 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
347 {
348 if (err)
349 kvm_inject_gp(vcpu, 0);
350 else
351 kvm_x86_ops->skip_emulated_instruction(vcpu);
352 }
353 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
354
355 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
356 {
357 ++vcpu->stat.pf_guest;
358 vcpu->arch.cr2 = fault->address;
359 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
360 }
361 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
362
363 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
364 {
365 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
366 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
367 else
368 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
369 }
370
371 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
372 {
373 atomic_inc(&vcpu->arch.nmi_queued);
374 kvm_make_request(KVM_REQ_NMI, vcpu);
375 }
376 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
377
378 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
379 {
380 kvm_multiple_exception(vcpu, nr, true, error_code, false);
381 }
382 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
383
384 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
385 {
386 kvm_multiple_exception(vcpu, nr, true, error_code, true);
387 }
388 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
389
390 /*
391 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
392 * a #GP and return false.
393 */
394 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
395 {
396 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
397 return true;
398 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
399 return false;
400 }
401 EXPORT_SYMBOL_GPL(kvm_require_cpl);
402
403 /*
404 * This function will be used to read from the physical memory of the currently
405 * running guest. The difference to kvm_read_guest_page is that this function
406 * can read from guest physical or from the guest's guest physical memory.
407 */
408 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
409 gfn_t ngfn, void *data, int offset, int len,
410 u32 access)
411 {
412 gfn_t real_gfn;
413 gpa_t ngpa;
414
415 ngpa = gfn_to_gpa(ngfn);
416 real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
417 if (real_gfn == UNMAPPED_GVA)
418 return -EFAULT;
419
420 real_gfn = gpa_to_gfn(real_gfn);
421
422 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
423 }
424 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
425
426 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
427 void *data, int offset, int len, u32 access)
428 {
429 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
430 data, offset, len, access);
431 }
432
433 /*
434 * Load the pae pdptrs. Return true is they are all valid.
435 */
436 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
437 {
438 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
439 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
440 int i;
441 int ret;
442 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
443
444 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
445 offset * sizeof(u64), sizeof(pdpte),
446 PFERR_USER_MASK|PFERR_WRITE_MASK);
447 if (ret < 0) {
448 ret = 0;
449 goto out;
450 }
451 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
452 if (is_present_gpte(pdpte[i]) &&
453 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
454 ret = 0;
455 goto out;
456 }
457 }
458 ret = 1;
459
460 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
461 __set_bit(VCPU_EXREG_PDPTR,
462 (unsigned long *)&vcpu->arch.regs_avail);
463 __set_bit(VCPU_EXREG_PDPTR,
464 (unsigned long *)&vcpu->arch.regs_dirty);
465 out:
466
467 return ret;
468 }
469 EXPORT_SYMBOL_GPL(load_pdptrs);
470
471 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
472 {
473 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
474 bool changed = true;
475 int offset;
476 gfn_t gfn;
477 int r;
478
479 if (is_long_mode(vcpu) || !is_pae(vcpu))
480 return false;
481
482 if (!test_bit(VCPU_EXREG_PDPTR,
483 (unsigned long *)&vcpu->arch.regs_avail))
484 return true;
485
486 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
487 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
488 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
489 PFERR_USER_MASK | PFERR_WRITE_MASK);
490 if (r < 0)
491 goto out;
492 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
493 out:
494
495 return changed;
496 }
497
498 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
499 {
500 unsigned long old_cr0 = kvm_read_cr0(vcpu);
501 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
502 X86_CR0_CD | X86_CR0_NW;
503
504 cr0 |= X86_CR0_ET;
505
506 #ifdef CONFIG_X86_64
507 if (cr0 & 0xffffffff00000000UL)
508 return 1;
509 #endif
510
511 cr0 &= ~CR0_RESERVED_BITS;
512
513 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
514 return 1;
515
516 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
517 return 1;
518
519 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
520 #ifdef CONFIG_X86_64
521 if ((vcpu->arch.efer & EFER_LME)) {
522 int cs_db, cs_l;
523
524 if (!is_pae(vcpu))
525 return 1;
526 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
527 if (cs_l)
528 return 1;
529 } else
530 #endif
531 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
532 kvm_read_cr3(vcpu)))
533 return 1;
534 }
535
536 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
537 return 1;
538
539 kvm_x86_ops->set_cr0(vcpu, cr0);
540
541 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
542 kvm_clear_async_pf_completion_queue(vcpu);
543 kvm_async_pf_hash_reset(vcpu);
544 }
545
546 if ((cr0 ^ old_cr0) & update_bits)
547 kvm_mmu_reset_context(vcpu);
548 return 0;
549 }
550 EXPORT_SYMBOL_GPL(kvm_set_cr0);
551
552 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
553 {
554 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
555 }
556 EXPORT_SYMBOL_GPL(kvm_lmsw);
557
558 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
559 {
560 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
561 !vcpu->guest_xcr0_loaded) {
562 /* kvm_set_xcr() also depends on this */
563 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
564 vcpu->guest_xcr0_loaded = 1;
565 }
566 }
567
568 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
569 {
570 if (vcpu->guest_xcr0_loaded) {
571 if (vcpu->arch.xcr0 != host_xcr0)
572 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
573 vcpu->guest_xcr0_loaded = 0;
574 }
575 }
576
577 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
578 {
579 u64 xcr0;
580
581 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
582 if (index != XCR_XFEATURE_ENABLED_MASK)
583 return 1;
584 xcr0 = xcr;
585 if (kvm_x86_ops->get_cpl(vcpu) != 0)
586 return 1;
587 if (!(xcr0 & XSTATE_FP))
588 return 1;
589 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
590 return 1;
591 if (xcr0 & ~host_xcr0)
592 return 1;
593 kvm_put_guest_xcr0(vcpu);
594 vcpu->arch.xcr0 = xcr0;
595 return 0;
596 }
597
598 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
599 {
600 if (__kvm_set_xcr(vcpu, index, xcr)) {
601 kvm_inject_gp(vcpu, 0);
602 return 1;
603 }
604 return 0;
605 }
606 EXPORT_SYMBOL_GPL(kvm_set_xcr);
607
608 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
609 {
610 unsigned long old_cr4 = kvm_read_cr4(vcpu);
611 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
612 X86_CR4_PAE | X86_CR4_SMEP;
613 if (cr4 & CR4_RESERVED_BITS)
614 return 1;
615
616 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
617 return 1;
618
619 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
620 return 1;
621
622 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
623 return 1;
624
625 if (is_long_mode(vcpu)) {
626 if (!(cr4 & X86_CR4_PAE))
627 return 1;
628 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
629 && ((cr4 ^ old_cr4) & pdptr_bits)
630 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
631 kvm_read_cr3(vcpu)))
632 return 1;
633
634 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
635 if (!guest_cpuid_has_pcid(vcpu))
636 return 1;
637
638 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
639 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
640 return 1;
641 }
642
643 if (kvm_x86_ops->set_cr4(vcpu, cr4))
644 return 1;
645
646 if (((cr4 ^ old_cr4) & pdptr_bits) ||
647 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
648 kvm_mmu_reset_context(vcpu);
649
650 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
651 kvm_update_cpuid(vcpu);
652
653 return 0;
654 }
655 EXPORT_SYMBOL_GPL(kvm_set_cr4);
656
657 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
658 {
659 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
660 kvm_mmu_sync_roots(vcpu);
661 kvm_mmu_flush_tlb(vcpu);
662 return 0;
663 }
664
665 if (is_long_mode(vcpu)) {
666 if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) {
667 if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
668 return 1;
669 } else
670 if (cr3 & CR3_L_MODE_RESERVED_BITS)
671 return 1;
672 } else {
673 if (is_pae(vcpu)) {
674 if (cr3 & CR3_PAE_RESERVED_BITS)
675 return 1;
676 if (is_paging(vcpu) &&
677 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
678 return 1;
679 }
680 /*
681 * We don't check reserved bits in nonpae mode, because
682 * this isn't enforced, and VMware depends on this.
683 */
684 }
685
686 /*
687 * Does the new cr3 value map to physical memory? (Note, we
688 * catch an invalid cr3 even in real-mode, because it would
689 * cause trouble later on when we turn on paging anyway.)
690 *
691 * A real CPU would silently accept an invalid cr3 and would
692 * attempt to use it - with largely undefined (and often hard
693 * to debug) behavior on the guest side.
694 */
695 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
696 return 1;
697 vcpu->arch.cr3 = cr3;
698 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
699 vcpu->arch.mmu.new_cr3(vcpu);
700 return 0;
701 }
702 EXPORT_SYMBOL_GPL(kvm_set_cr3);
703
704 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
705 {
706 if (cr8 & CR8_RESERVED_BITS)
707 return 1;
708 if (irqchip_in_kernel(vcpu->kvm))
709 kvm_lapic_set_tpr(vcpu, cr8);
710 else
711 vcpu->arch.cr8 = cr8;
712 return 0;
713 }
714 EXPORT_SYMBOL_GPL(kvm_set_cr8);
715
716 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
717 {
718 if (irqchip_in_kernel(vcpu->kvm))
719 return kvm_lapic_get_cr8(vcpu);
720 else
721 return vcpu->arch.cr8;
722 }
723 EXPORT_SYMBOL_GPL(kvm_get_cr8);
724
725 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
726 {
727 unsigned long dr7;
728
729 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
730 dr7 = vcpu->arch.guest_debug_dr7;
731 else
732 dr7 = vcpu->arch.dr7;
733 kvm_x86_ops->set_dr7(vcpu, dr7);
734 vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK);
735 }
736
737 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
738 {
739 switch (dr) {
740 case 0 ... 3:
741 vcpu->arch.db[dr] = val;
742 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
743 vcpu->arch.eff_db[dr] = val;
744 break;
745 case 4:
746 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
747 return 1; /* #UD */
748 /* fall through */
749 case 6:
750 if (val & 0xffffffff00000000ULL)
751 return -1; /* #GP */
752 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
753 break;
754 case 5:
755 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
756 return 1; /* #UD */
757 /* fall through */
758 default: /* 7 */
759 if (val & 0xffffffff00000000ULL)
760 return -1; /* #GP */
761 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
762 kvm_update_dr7(vcpu);
763 break;
764 }
765
766 return 0;
767 }
768
769 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
770 {
771 int res;
772
773 res = __kvm_set_dr(vcpu, dr, val);
774 if (res > 0)
775 kvm_queue_exception(vcpu, UD_VECTOR);
776 else if (res < 0)
777 kvm_inject_gp(vcpu, 0);
778
779 return res;
780 }
781 EXPORT_SYMBOL_GPL(kvm_set_dr);
782
783 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
784 {
785 switch (dr) {
786 case 0 ... 3:
787 *val = vcpu->arch.db[dr];
788 break;
789 case 4:
790 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
791 return 1;
792 /* fall through */
793 case 6:
794 *val = vcpu->arch.dr6;
795 break;
796 case 5:
797 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
798 return 1;
799 /* fall through */
800 default: /* 7 */
801 *val = vcpu->arch.dr7;
802 break;
803 }
804
805 return 0;
806 }
807
808 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
809 {
810 if (_kvm_get_dr(vcpu, dr, val)) {
811 kvm_queue_exception(vcpu, UD_VECTOR);
812 return 1;
813 }
814 return 0;
815 }
816 EXPORT_SYMBOL_GPL(kvm_get_dr);
817
818 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
819 {
820 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
821 u64 data;
822 int err;
823
824 err = kvm_pmu_read_pmc(vcpu, ecx, &data);
825 if (err)
826 return err;
827 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
828 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
829 return err;
830 }
831 EXPORT_SYMBOL_GPL(kvm_rdpmc);
832
833 /*
834 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
835 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
836 *
837 * This list is modified at module load time to reflect the
838 * capabilities of the host cpu. This capabilities test skips MSRs that are
839 * kvm-specific. Those are put in the beginning of the list.
840 */
841
842 #define KVM_SAVE_MSRS_BEGIN 10
843 static u32 msrs_to_save[] = {
844 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
845 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
846 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
847 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
848 MSR_KVM_PV_EOI_EN,
849 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
850 MSR_STAR,
851 #ifdef CONFIG_X86_64
852 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
853 #endif
854 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
855 };
856
857 static unsigned num_msrs_to_save;
858
859 static const u32 emulated_msrs[] = {
860 MSR_IA32_TSC_ADJUST,
861 MSR_IA32_TSCDEADLINE,
862 MSR_IA32_MISC_ENABLE,
863 MSR_IA32_MCG_STATUS,
864 MSR_IA32_MCG_CTL,
865 };
866
867 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
868 {
869 if (efer & efer_reserved_bits)
870 return false;
871
872 if (efer & EFER_FFXSR) {
873 struct kvm_cpuid_entry2 *feat;
874
875 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
876 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
877 return false;
878 }
879
880 if (efer & EFER_SVME) {
881 struct kvm_cpuid_entry2 *feat;
882
883 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
884 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
885 return false;
886 }
887
888 return true;
889 }
890 EXPORT_SYMBOL_GPL(kvm_valid_efer);
891
892 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
893 {
894 u64 old_efer = vcpu->arch.efer;
895
896 if (!kvm_valid_efer(vcpu, efer))
897 return 1;
898
899 if (is_paging(vcpu)
900 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
901 return 1;
902
903 efer &= ~EFER_LMA;
904 efer |= vcpu->arch.efer & EFER_LMA;
905
906 kvm_x86_ops->set_efer(vcpu, efer);
907
908 /* Update reserved bits */
909 if ((efer ^ old_efer) & EFER_NX)
910 kvm_mmu_reset_context(vcpu);
911
912 return 0;
913 }
914
915 void kvm_enable_efer_bits(u64 mask)
916 {
917 efer_reserved_bits &= ~mask;
918 }
919 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
920
921
922 /*
923 * Writes msr value into into the appropriate "register".
924 * Returns 0 on success, non-0 otherwise.
925 * Assumes vcpu_load() was already called.
926 */
927 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
928 {
929 return kvm_x86_ops->set_msr(vcpu, msr);
930 }
931
932 /*
933 * Adapt set_msr() to msr_io()'s calling convention
934 */
935 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
936 {
937 struct msr_data msr;
938
939 msr.data = *data;
940 msr.index = index;
941 msr.host_initiated = true;
942 return kvm_set_msr(vcpu, &msr);
943 }
944
945 #ifdef CONFIG_X86_64
946 struct pvclock_gtod_data {
947 seqcount_t seq;
948
949 struct { /* extract of a clocksource struct */
950 int vclock_mode;
951 cycle_t cycle_last;
952 cycle_t mask;
953 u32 mult;
954 u32 shift;
955 } clock;
956
957 /* open coded 'struct timespec' */
958 u64 monotonic_time_snsec;
959 time_t monotonic_time_sec;
960 };
961
962 static struct pvclock_gtod_data pvclock_gtod_data;
963
964 static void update_pvclock_gtod(struct timekeeper *tk)
965 {
966 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
967
968 write_seqcount_begin(&vdata->seq);
969
970 /* copy pvclock gtod data */
971 vdata->clock.vclock_mode = tk->clock->archdata.vclock_mode;
972 vdata->clock.cycle_last = tk->clock->cycle_last;
973 vdata->clock.mask = tk->clock->mask;
974 vdata->clock.mult = tk->mult;
975 vdata->clock.shift = tk->shift;
976
977 vdata->monotonic_time_sec = tk->xtime_sec
978 + tk->wall_to_monotonic.tv_sec;
979 vdata->monotonic_time_snsec = tk->xtime_nsec
980 + (tk->wall_to_monotonic.tv_nsec
981 << tk->shift);
982 while (vdata->monotonic_time_snsec >=
983 (((u64)NSEC_PER_SEC) << tk->shift)) {
984 vdata->monotonic_time_snsec -=
985 ((u64)NSEC_PER_SEC) << tk->shift;
986 vdata->monotonic_time_sec++;
987 }
988
989 write_seqcount_end(&vdata->seq);
990 }
991 #endif
992
993
994 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
995 {
996 int version;
997 int r;
998 struct pvclock_wall_clock wc;
999 struct timespec boot;
1000
1001 if (!wall_clock)
1002 return;
1003
1004 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1005 if (r)
1006 return;
1007
1008 if (version & 1)
1009 ++version; /* first time write, random junk */
1010
1011 ++version;
1012
1013 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1014
1015 /*
1016 * The guest calculates current wall clock time by adding
1017 * system time (updated by kvm_guest_time_update below) to the
1018 * wall clock specified here. guest system time equals host
1019 * system time for us, thus we must fill in host boot time here.
1020 */
1021 getboottime(&boot);
1022
1023 if (kvm->arch.kvmclock_offset) {
1024 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1025 boot = timespec_sub(boot, ts);
1026 }
1027 wc.sec = boot.tv_sec;
1028 wc.nsec = boot.tv_nsec;
1029 wc.version = version;
1030
1031 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1032
1033 version++;
1034 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1035 }
1036
1037 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1038 {
1039 uint32_t quotient, remainder;
1040
1041 /* Don't try to replace with do_div(), this one calculates
1042 * "(dividend << 32) / divisor" */
1043 __asm__ ( "divl %4"
1044 : "=a" (quotient), "=d" (remainder)
1045 : "0" (0), "1" (dividend), "r" (divisor) );
1046 return quotient;
1047 }
1048
1049 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1050 s8 *pshift, u32 *pmultiplier)
1051 {
1052 uint64_t scaled64;
1053 int32_t shift = 0;
1054 uint64_t tps64;
1055 uint32_t tps32;
1056
1057 tps64 = base_khz * 1000LL;
1058 scaled64 = scaled_khz * 1000LL;
1059 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1060 tps64 >>= 1;
1061 shift--;
1062 }
1063
1064 tps32 = (uint32_t)tps64;
1065 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1066 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1067 scaled64 >>= 1;
1068 else
1069 tps32 <<= 1;
1070 shift++;
1071 }
1072
1073 *pshift = shift;
1074 *pmultiplier = div_frac(scaled64, tps32);
1075
1076 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1077 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1078 }
1079
1080 static inline u64 get_kernel_ns(void)
1081 {
1082 struct timespec ts;
1083
1084 WARN_ON(preemptible());
1085 ktime_get_ts(&ts);
1086 monotonic_to_bootbased(&ts);
1087 return timespec_to_ns(&ts);
1088 }
1089
1090 #ifdef CONFIG_X86_64
1091 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1092 #endif
1093
1094 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1095 unsigned long max_tsc_khz;
1096
1097 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1098 {
1099 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1100 vcpu->arch.virtual_tsc_shift);
1101 }
1102
1103 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1104 {
1105 u64 v = (u64)khz * (1000000 + ppm);
1106 do_div(v, 1000000);
1107 return v;
1108 }
1109
1110 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1111 {
1112 u32 thresh_lo, thresh_hi;
1113 int use_scaling = 0;
1114
1115 /* tsc_khz can be zero if TSC calibration fails */
1116 if (this_tsc_khz == 0)
1117 return;
1118
1119 /* Compute a scale to convert nanoseconds in TSC cycles */
1120 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1121 &vcpu->arch.virtual_tsc_shift,
1122 &vcpu->arch.virtual_tsc_mult);
1123 vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1124
1125 /*
1126 * Compute the variation in TSC rate which is acceptable
1127 * within the range of tolerance and decide if the
1128 * rate being applied is within that bounds of the hardware
1129 * rate. If so, no scaling or compensation need be done.
1130 */
1131 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1132 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1133 if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1134 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1135 use_scaling = 1;
1136 }
1137 kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1138 }
1139
1140 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1141 {
1142 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1143 vcpu->arch.virtual_tsc_mult,
1144 vcpu->arch.virtual_tsc_shift);
1145 tsc += vcpu->arch.this_tsc_write;
1146 return tsc;
1147 }
1148
1149 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1150 {
1151 #ifdef CONFIG_X86_64
1152 bool vcpus_matched;
1153 bool do_request = false;
1154 struct kvm_arch *ka = &vcpu->kvm->arch;
1155 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1156
1157 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1158 atomic_read(&vcpu->kvm->online_vcpus));
1159
1160 if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
1161 if (!ka->use_master_clock)
1162 do_request = 1;
1163
1164 if (!vcpus_matched && ka->use_master_clock)
1165 do_request = 1;
1166
1167 if (do_request)
1168 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1169
1170 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1171 atomic_read(&vcpu->kvm->online_vcpus),
1172 ka->use_master_clock, gtod->clock.vclock_mode);
1173 #endif
1174 }
1175
1176 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1177 {
1178 u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1179 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1180 }
1181
1182 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1183 {
1184 struct kvm *kvm = vcpu->kvm;
1185 u64 offset, ns, elapsed;
1186 unsigned long flags;
1187 s64 usdiff;
1188 bool matched;
1189 u64 data = msr->data;
1190
1191 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1192 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1193 ns = get_kernel_ns();
1194 elapsed = ns - kvm->arch.last_tsc_nsec;
1195
1196 if (vcpu->arch.virtual_tsc_khz) {
1197 /* n.b - signed multiplication and division required */
1198 usdiff = data - kvm->arch.last_tsc_write;
1199 #ifdef CONFIG_X86_64
1200 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1201 #else
1202 /* do_div() only does unsigned */
1203 asm("idivl %2; xor %%edx, %%edx"
1204 : "=A"(usdiff)
1205 : "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz));
1206 #endif
1207 do_div(elapsed, 1000);
1208 usdiff -= elapsed;
1209 if (usdiff < 0)
1210 usdiff = -usdiff;
1211 } else
1212 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1213
1214 /*
1215 * Special case: TSC write with a small delta (1 second) of virtual
1216 * cycle time against real time is interpreted as an attempt to
1217 * synchronize the CPU.
1218 *
1219 * For a reliable TSC, we can match TSC offsets, and for an unstable
1220 * TSC, we add elapsed time in this computation. We could let the
1221 * compensation code attempt to catch up if we fall behind, but
1222 * it's better to try to match offsets from the beginning.
1223 */
1224 if (usdiff < USEC_PER_SEC &&
1225 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1226 if (!check_tsc_unstable()) {
1227 offset = kvm->arch.cur_tsc_offset;
1228 pr_debug("kvm: matched tsc offset for %llu\n", data);
1229 } else {
1230 u64 delta = nsec_to_cycles(vcpu, elapsed);
1231 data += delta;
1232 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1233 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1234 }
1235 matched = true;
1236 } else {
1237 /*
1238 * We split periods of matched TSC writes into generations.
1239 * For each generation, we track the original measured
1240 * nanosecond time, offset, and write, so if TSCs are in
1241 * sync, we can match exact offset, and if not, we can match
1242 * exact software computation in compute_guest_tsc()
1243 *
1244 * These values are tracked in kvm->arch.cur_xxx variables.
1245 */
1246 kvm->arch.cur_tsc_generation++;
1247 kvm->arch.cur_tsc_nsec = ns;
1248 kvm->arch.cur_tsc_write = data;
1249 kvm->arch.cur_tsc_offset = offset;
1250 matched = false;
1251 pr_debug("kvm: new tsc generation %u, clock %llu\n",
1252 kvm->arch.cur_tsc_generation, data);
1253 }
1254
1255 /*
1256 * We also track th most recent recorded KHZ, write and time to
1257 * allow the matching interval to be extended at each write.
1258 */
1259 kvm->arch.last_tsc_nsec = ns;
1260 kvm->arch.last_tsc_write = data;
1261 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1262
1263 /* Reset of TSC must disable overshoot protection below */
1264 vcpu->arch.hv_clock.tsc_timestamp = 0;
1265 vcpu->arch.last_guest_tsc = data;
1266
1267 /* Keep track of which generation this VCPU has synchronized to */
1268 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1269 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1270 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1271
1272 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1273 update_ia32_tsc_adjust_msr(vcpu, offset);
1274 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1275 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1276
1277 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1278 if (matched)
1279 kvm->arch.nr_vcpus_matched_tsc++;
1280 else
1281 kvm->arch.nr_vcpus_matched_tsc = 0;
1282
1283 kvm_track_tsc_matching(vcpu);
1284 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1285 }
1286
1287 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1288
1289 #ifdef CONFIG_X86_64
1290
1291 static cycle_t read_tsc(void)
1292 {
1293 cycle_t ret;
1294 u64 last;
1295
1296 /*
1297 * Empirically, a fence (of type that depends on the CPU)
1298 * before rdtsc is enough to ensure that rdtsc is ordered
1299 * with respect to loads. The various CPU manuals are unclear
1300 * as to whether rdtsc can be reordered with later loads,
1301 * but no one has ever seen it happen.
1302 */
1303 rdtsc_barrier();
1304 ret = (cycle_t)vget_cycles();
1305
1306 last = pvclock_gtod_data.clock.cycle_last;
1307
1308 if (likely(ret >= last))
1309 return ret;
1310
1311 /*
1312 * GCC likes to generate cmov here, but this branch is extremely
1313 * predictable (it's just a funciton of time and the likely is
1314 * very likely) and there's a data dependence, so force GCC
1315 * to generate a branch instead. I don't barrier() because
1316 * we don't actually need a barrier, and if this function
1317 * ever gets inlined it will generate worse code.
1318 */
1319 asm volatile ("");
1320 return last;
1321 }
1322
1323 static inline u64 vgettsc(cycle_t *cycle_now)
1324 {
1325 long v;
1326 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1327
1328 *cycle_now = read_tsc();
1329
1330 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1331 return v * gtod->clock.mult;
1332 }
1333
1334 static int do_monotonic(struct timespec *ts, cycle_t *cycle_now)
1335 {
1336 unsigned long seq;
1337 u64 ns;
1338 int mode;
1339 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1340
1341 ts->tv_nsec = 0;
1342 do {
1343 seq = read_seqcount_begin(&gtod->seq);
1344 mode = gtod->clock.vclock_mode;
1345 ts->tv_sec = gtod->monotonic_time_sec;
1346 ns = gtod->monotonic_time_snsec;
1347 ns += vgettsc(cycle_now);
1348 ns >>= gtod->clock.shift;
1349 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1350 timespec_add_ns(ts, ns);
1351
1352 return mode;
1353 }
1354
1355 /* returns true if host is using tsc clocksource */
1356 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1357 {
1358 struct timespec ts;
1359
1360 /* checked again under seqlock below */
1361 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1362 return false;
1363
1364 if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC)
1365 return false;
1366
1367 monotonic_to_bootbased(&ts);
1368 *kernel_ns = timespec_to_ns(&ts);
1369
1370 return true;
1371 }
1372 #endif
1373
1374 /*
1375 *
1376 * Assuming a stable TSC across physical CPUS, and a stable TSC
1377 * across virtual CPUs, the following condition is possible.
1378 * Each numbered line represents an event visible to both
1379 * CPUs at the next numbered event.
1380 *
1381 * "timespecX" represents host monotonic time. "tscX" represents
1382 * RDTSC value.
1383 *
1384 * VCPU0 on CPU0 | VCPU1 on CPU1
1385 *
1386 * 1. read timespec0,tsc0
1387 * 2. | timespec1 = timespec0 + N
1388 * | tsc1 = tsc0 + M
1389 * 3. transition to guest | transition to guest
1390 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1391 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1392 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1393 *
1394 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1395 *
1396 * - ret0 < ret1
1397 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1398 * ...
1399 * - 0 < N - M => M < N
1400 *
1401 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1402 * always the case (the difference between two distinct xtime instances
1403 * might be smaller then the difference between corresponding TSC reads,
1404 * when updating guest vcpus pvclock areas).
1405 *
1406 * To avoid that problem, do not allow visibility of distinct
1407 * system_timestamp/tsc_timestamp values simultaneously: use a master
1408 * copy of host monotonic time values. Update that master copy
1409 * in lockstep.
1410 *
1411 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1412 *
1413 */
1414
1415 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1416 {
1417 #ifdef CONFIG_X86_64
1418 struct kvm_arch *ka = &kvm->arch;
1419 int vclock_mode;
1420 bool host_tsc_clocksource, vcpus_matched;
1421
1422 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1423 atomic_read(&kvm->online_vcpus));
1424
1425 /*
1426 * If the host uses TSC clock, then passthrough TSC as stable
1427 * to the guest.
1428 */
1429 host_tsc_clocksource = kvm_get_time_and_clockread(
1430 &ka->master_kernel_ns,
1431 &ka->master_cycle_now);
1432
1433 ka->use_master_clock = host_tsc_clocksource & vcpus_matched;
1434
1435 if (ka->use_master_clock)
1436 atomic_set(&kvm_guest_has_master_clock, 1);
1437
1438 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1439 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1440 vcpus_matched);
1441 #endif
1442 }
1443
1444 static int kvm_guest_time_update(struct kvm_vcpu *v)
1445 {
1446 unsigned long flags, this_tsc_khz;
1447 struct kvm_vcpu_arch *vcpu = &v->arch;
1448 struct kvm_arch *ka = &v->kvm->arch;
1449 s64 kernel_ns, max_kernel_ns;
1450 u64 tsc_timestamp, host_tsc;
1451 struct pvclock_vcpu_time_info guest_hv_clock;
1452 u8 pvclock_flags;
1453 bool use_master_clock;
1454
1455 kernel_ns = 0;
1456 host_tsc = 0;
1457
1458 /*
1459 * If the host uses TSC clock, then passthrough TSC as stable
1460 * to the guest.
1461 */
1462 spin_lock(&ka->pvclock_gtod_sync_lock);
1463 use_master_clock = ka->use_master_clock;
1464 if (use_master_clock) {
1465 host_tsc = ka->master_cycle_now;
1466 kernel_ns = ka->master_kernel_ns;
1467 }
1468 spin_unlock(&ka->pvclock_gtod_sync_lock);
1469
1470 /* Keep irq disabled to prevent changes to the clock */
1471 local_irq_save(flags);
1472 this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1473 if (unlikely(this_tsc_khz == 0)) {
1474 local_irq_restore(flags);
1475 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1476 return 1;
1477 }
1478 if (!use_master_clock) {
1479 host_tsc = native_read_tsc();
1480 kernel_ns = get_kernel_ns();
1481 }
1482
1483 tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1484
1485 /*
1486 * We may have to catch up the TSC to match elapsed wall clock
1487 * time for two reasons, even if kvmclock is used.
1488 * 1) CPU could have been running below the maximum TSC rate
1489 * 2) Broken TSC compensation resets the base at each VCPU
1490 * entry to avoid unknown leaps of TSC even when running
1491 * again on the same CPU. This may cause apparent elapsed
1492 * time to disappear, and the guest to stand still or run
1493 * very slowly.
1494 */
1495 if (vcpu->tsc_catchup) {
1496 u64 tsc = compute_guest_tsc(v, kernel_ns);
1497 if (tsc > tsc_timestamp) {
1498 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1499 tsc_timestamp = tsc;
1500 }
1501 }
1502
1503 local_irq_restore(flags);
1504
1505 if (!vcpu->pv_time_enabled)
1506 return 0;
1507
1508 /*
1509 * Time as measured by the TSC may go backwards when resetting the base
1510 * tsc_timestamp. The reason for this is that the TSC resolution is
1511 * higher than the resolution of the other clock scales. Thus, many
1512 * possible measurments of the TSC correspond to one measurement of any
1513 * other clock, and so a spread of values is possible. This is not a
1514 * problem for the computation of the nanosecond clock; with TSC rates
1515 * around 1GHZ, there can only be a few cycles which correspond to one
1516 * nanosecond value, and any path through this code will inevitably
1517 * take longer than that. However, with the kernel_ns value itself,
1518 * the precision may be much lower, down to HZ granularity. If the
1519 * first sampling of TSC against kernel_ns ends in the low part of the
1520 * range, and the second in the high end of the range, we can get:
1521 *
1522 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1523 *
1524 * As the sampling errors potentially range in the thousands of cycles,
1525 * it is possible such a time value has already been observed by the
1526 * guest. To protect against this, we must compute the system time as
1527 * observed by the guest and ensure the new system time is greater.
1528 */
1529 max_kernel_ns = 0;
1530 if (vcpu->hv_clock.tsc_timestamp) {
1531 max_kernel_ns = vcpu->last_guest_tsc -
1532 vcpu->hv_clock.tsc_timestamp;
1533 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1534 vcpu->hv_clock.tsc_to_system_mul,
1535 vcpu->hv_clock.tsc_shift);
1536 max_kernel_ns += vcpu->last_kernel_ns;
1537 }
1538
1539 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1540 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1541 &vcpu->hv_clock.tsc_shift,
1542 &vcpu->hv_clock.tsc_to_system_mul);
1543 vcpu->hw_tsc_khz = this_tsc_khz;
1544 }
1545
1546 /* with a master <monotonic time, tsc value> tuple,
1547 * pvclock clock reads always increase at the (scaled) rate
1548 * of guest TSC - no need to deal with sampling errors.
1549 */
1550 if (!use_master_clock) {
1551 if (max_kernel_ns > kernel_ns)
1552 kernel_ns = max_kernel_ns;
1553 }
1554 /* With all the info we got, fill in the values */
1555 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1556 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1557 vcpu->last_kernel_ns = kernel_ns;
1558 vcpu->last_guest_tsc = tsc_timestamp;
1559
1560 /*
1561 * The interface expects us to write an even number signaling that the
1562 * update is finished. Since the guest won't see the intermediate
1563 * state, we just increase by 2 at the end.
1564 */
1565 vcpu->hv_clock.version += 2;
1566
1567 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1568 &guest_hv_clock, sizeof(guest_hv_clock))))
1569 return 0;
1570
1571 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1572 pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1573
1574 if (vcpu->pvclock_set_guest_stopped_request) {
1575 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1576 vcpu->pvclock_set_guest_stopped_request = false;
1577 }
1578
1579 /* If the host uses TSC clocksource, then it is stable */
1580 if (use_master_clock)
1581 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1582
1583 vcpu->hv_clock.flags = pvclock_flags;
1584
1585 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1586 &vcpu->hv_clock,
1587 sizeof(vcpu->hv_clock));
1588 return 0;
1589 }
1590
1591 static bool msr_mtrr_valid(unsigned msr)
1592 {
1593 switch (msr) {
1594 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1595 case MSR_MTRRfix64K_00000:
1596 case MSR_MTRRfix16K_80000:
1597 case MSR_MTRRfix16K_A0000:
1598 case MSR_MTRRfix4K_C0000:
1599 case MSR_MTRRfix4K_C8000:
1600 case MSR_MTRRfix4K_D0000:
1601 case MSR_MTRRfix4K_D8000:
1602 case MSR_MTRRfix4K_E0000:
1603 case MSR_MTRRfix4K_E8000:
1604 case MSR_MTRRfix4K_F0000:
1605 case MSR_MTRRfix4K_F8000:
1606 case MSR_MTRRdefType:
1607 case MSR_IA32_CR_PAT:
1608 return true;
1609 case 0x2f8:
1610 return true;
1611 }
1612 return false;
1613 }
1614
1615 static bool valid_pat_type(unsigned t)
1616 {
1617 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1618 }
1619
1620 static bool valid_mtrr_type(unsigned t)
1621 {
1622 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1623 }
1624
1625 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1626 {
1627 int i;
1628
1629 if (!msr_mtrr_valid(msr))
1630 return false;
1631
1632 if (msr == MSR_IA32_CR_PAT) {
1633 for (i = 0; i < 8; i++)
1634 if (!valid_pat_type((data >> (i * 8)) & 0xff))
1635 return false;
1636 return true;
1637 } else if (msr == MSR_MTRRdefType) {
1638 if (data & ~0xcff)
1639 return false;
1640 return valid_mtrr_type(data & 0xff);
1641 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1642 for (i = 0; i < 8 ; i++)
1643 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1644 return false;
1645 return true;
1646 }
1647
1648 /* variable MTRRs */
1649 return valid_mtrr_type(data & 0xff);
1650 }
1651
1652 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1653 {
1654 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1655
1656 if (!mtrr_valid(vcpu, msr, data))
1657 return 1;
1658
1659 if (msr == MSR_MTRRdefType) {
1660 vcpu->arch.mtrr_state.def_type = data;
1661 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1662 } else if (msr == MSR_MTRRfix64K_00000)
1663 p[0] = data;
1664 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1665 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1666 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1667 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1668 else if (msr == MSR_IA32_CR_PAT)
1669 vcpu->arch.pat = data;
1670 else { /* Variable MTRRs */
1671 int idx, is_mtrr_mask;
1672 u64 *pt;
1673
1674 idx = (msr - 0x200) / 2;
1675 is_mtrr_mask = msr - 0x200 - 2 * idx;
1676 if (!is_mtrr_mask)
1677 pt =
1678 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1679 else
1680 pt =
1681 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1682 *pt = data;
1683 }
1684
1685 kvm_mmu_reset_context(vcpu);
1686 return 0;
1687 }
1688
1689 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1690 {
1691 u64 mcg_cap = vcpu->arch.mcg_cap;
1692 unsigned bank_num = mcg_cap & 0xff;
1693
1694 switch (msr) {
1695 case MSR_IA32_MCG_STATUS:
1696 vcpu->arch.mcg_status = data;
1697 break;
1698 case MSR_IA32_MCG_CTL:
1699 if (!(mcg_cap & MCG_CTL_P))
1700 return 1;
1701 if (data != 0 && data != ~(u64)0)
1702 return -1;
1703 vcpu->arch.mcg_ctl = data;
1704 break;
1705 default:
1706 if (msr >= MSR_IA32_MC0_CTL &&
1707 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1708 u32 offset = msr - MSR_IA32_MC0_CTL;
1709 /* only 0 or all 1s can be written to IA32_MCi_CTL
1710 * some Linux kernels though clear bit 10 in bank 4 to
1711 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1712 * this to avoid an uncatched #GP in the guest
1713 */
1714 if ((offset & 0x3) == 0 &&
1715 data != 0 && (data | (1 << 10)) != ~(u64)0)
1716 return -1;
1717 vcpu->arch.mce_banks[offset] = data;
1718 break;
1719 }
1720 return 1;
1721 }
1722 return 0;
1723 }
1724
1725 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1726 {
1727 struct kvm *kvm = vcpu->kvm;
1728 int lm = is_long_mode(vcpu);
1729 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1730 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1731 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1732 : kvm->arch.xen_hvm_config.blob_size_32;
1733 u32 page_num = data & ~PAGE_MASK;
1734 u64 page_addr = data & PAGE_MASK;
1735 u8 *page;
1736 int r;
1737
1738 r = -E2BIG;
1739 if (page_num >= blob_size)
1740 goto out;
1741 r = -ENOMEM;
1742 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1743 if (IS_ERR(page)) {
1744 r = PTR_ERR(page);
1745 goto out;
1746 }
1747 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1748 goto out_free;
1749 r = 0;
1750 out_free:
1751 kfree(page);
1752 out:
1753 return r;
1754 }
1755
1756 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1757 {
1758 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1759 }
1760
1761 static bool kvm_hv_msr_partition_wide(u32 msr)
1762 {
1763 bool r = false;
1764 switch (msr) {
1765 case HV_X64_MSR_GUEST_OS_ID:
1766 case HV_X64_MSR_HYPERCALL:
1767 r = true;
1768 break;
1769 }
1770
1771 return r;
1772 }
1773
1774 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1775 {
1776 struct kvm *kvm = vcpu->kvm;
1777
1778 switch (msr) {
1779 case HV_X64_MSR_GUEST_OS_ID:
1780 kvm->arch.hv_guest_os_id = data;
1781 /* setting guest os id to zero disables hypercall page */
1782 if (!kvm->arch.hv_guest_os_id)
1783 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1784 break;
1785 case HV_X64_MSR_HYPERCALL: {
1786 u64 gfn;
1787 unsigned long addr;
1788 u8 instructions[4];
1789
1790 /* if guest os id is not set hypercall should remain disabled */
1791 if (!kvm->arch.hv_guest_os_id)
1792 break;
1793 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1794 kvm->arch.hv_hypercall = data;
1795 break;
1796 }
1797 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1798 addr = gfn_to_hva(kvm, gfn);
1799 if (kvm_is_error_hva(addr))
1800 return 1;
1801 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1802 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1803 if (__copy_to_user((void __user *)addr, instructions, 4))
1804 return 1;
1805 kvm->arch.hv_hypercall = data;
1806 break;
1807 }
1808 default:
1809 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1810 "data 0x%llx\n", msr, data);
1811 return 1;
1812 }
1813 return 0;
1814 }
1815
1816 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1817 {
1818 switch (msr) {
1819 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1820 unsigned long addr;
1821
1822 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1823 vcpu->arch.hv_vapic = data;
1824 break;
1825 }
1826 addr = gfn_to_hva(vcpu->kvm, data >>
1827 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1828 if (kvm_is_error_hva(addr))
1829 return 1;
1830 if (__clear_user((void __user *)addr, PAGE_SIZE))
1831 return 1;
1832 vcpu->arch.hv_vapic = data;
1833 break;
1834 }
1835 case HV_X64_MSR_EOI:
1836 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1837 case HV_X64_MSR_ICR:
1838 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1839 case HV_X64_MSR_TPR:
1840 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1841 default:
1842 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1843 "data 0x%llx\n", msr, data);
1844 return 1;
1845 }
1846
1847 return 0;
1848 }
1849
1850 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1851 {
1852 gpa_t gpa = data & ~0x3f;
1853
1854 /* Bits 2:5 are reserved, Should be zero */
1855 if (data & 0x3c)
1856 return 1;
1857
1858 vcpu->arch.apf.msr_val = data;
1859
1860 if (!(data & KVM_ASYNC_PF_ENABLED)) {
1861 kvm_clear_async_pf_completion_queue(vcpu);
1862 kvm_async_pf_hash_reset(vcpu);
1863 return 0;
1864 }
1865
1866 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1867 sizeof(u32)))
1868 return 1;
1869
1870 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1871 kvm_async_pf_wakeup_all(vcpu);
1872 return 0;
1873 }
1874
1875 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1876 {
1877 vcpu->arch.pv_time_enabled = false;
1878 }
1879
1880 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1881 {
1882 u64 delta;
1883
1884 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1885 return;
1886
1887 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1888 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1889 vcpu->arch.st.accum_steal = delta;
1890 }
1891
1892 static void record_steal_time(struct kvm_vcpu *vcpu)
1893 {
1894 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1895 return;
1896
1897 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1898 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1899 return;
1900
1901 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1902 vcpu->arch.st.steal.version += 2;
1903 vcpu->arch.st.accum_steal = 0;
1904
1905 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1906 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1907 }
1908
1909 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1910 {
1911 bool pr = false;
1912 u32 msr = msr_info->index;
1913 u64 data = msr_info->data;
1914
1915 switch (msr) {
1916 case MSR_AMD64_NB_CFG:
1917 case MSR_IA32_UCODE_REV:
1918 case MSR_IA32_UCODE_WRITE:
1919 case MSR_VM_HSAVE_PA:
1920 case MSR_AMD64_PATCH_LOADER:
1921 case MSR_AMD64_BU_CFG2:
1922 break;
1923
1924 case MSR_EFER:
1925 return set_efer(vcpu, data);
1926 case MSR_K7_HWCR:
1927 data &= ~(u64)0x40; /* ignore flush filter disable */
1928 data &= ~(u64)0x100; /* ignore ignne emulation enable */
1929 data &= ~(u64)0x8; /* ignore TLB cache disable */
1930 if (data != 0) {
1931 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1932 data);
1933 return 1;
1934 }
1935 break;
1936 case MSR_FAM10H_MMIO_CONF_BASE:
1937 if (data != 0) {
1938 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1939 "0x%llx\n", data);
1940 return 1;
1941 }
1942 break;
1943 case MSR_IA32_DEBUGCTLMSR:
1944 if (!data) {
1945 /* We support the non-activated case already */
1946 break;
1947 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1948 /* Values other than LBR and BTF are vendor-specific,
1949 thus reserved and should throw a #GP */
1950 return 1;
1951 }
1952 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1953 __func__, data);
1954 break;
1955 case 0x200 ... 0x2ff:
1956 return set_msr_mtrr(vcpu, msr, data);
1957 case MSR_IA32_APICBASE:
1958 kvm_set_apic_base(vcpu, data);
1959 break;
1960 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1961 return kvm_x2apic_msr_write(vcpu, msr, data);
1962 case MSR_IA32_TSCDEADLINE:
1963 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1964 break;
1965 case MSR_IA32_TSC_ADJUST:
1966 if (guest_cpuid_has_tsc_adjust(vcpu)) {
1967 if (!msr_info->host_initiated) {
1968 u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
1969 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
1970 }
1971 vcpu->arch.ia32_tsc_adjust_msr = data;
1972 }
1973 break;
1974 case MSR_IA32_MISC_ENABLE:
1975 vcpu->arch.ia32_misc_enable_msr = data;
1976 break;
1977 case MSR_KVM_WALL_CLOCK_NEW:
1978 case MSR_KVM_WALL_CLOCK:
1979 vcpu->kvm->arch.wall_clock = data;
1980 kvm_write_wall_clock(vcpu->kvm, data);
1981 break;
1982 case MSR_KVM_SYSTEM_TIME_NEW:
1983 case MSR_KVM_SYSTEM_TIME: {
1984 u64 gpa_offset;
1985 kvmclock_reset(vcpu);
1986
1987 vcpu->arch.time = data;
1988 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1989
1990 /* we verify if the enable bit is set... */
1991 if (!(data & 1))
1992 break;
1993
1994 gpa_offset = data & ~(PAGE_MASK | 1);
1995
1996 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
1997 &vcpu->arch.pv_time, data & ~1ULL,
1998 sizeof(struct pvclock_vcpu_time_info)))
1999 vcpu->arch.pv_time_enabled = false;
2000 else
2001 vcpu->arch.pv_time_enabled = true;
2002
2003 break;
2004 }
2005 case MSR_KVM_ASYNC_PF_EN:
2006 if (kvm_pv_enable_async_pf(vcpu, data))
2007 return 1;
2008 break;
2009 case MSR_KVM_STEAL_TIME:
2010
2011 if (unlikely(!sched_info_on()))
2012 return 1;
2013
2014 if (data & KVM_STEAL_RESERVED_MASK)
2015 return 1;
2016
2017 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2018 data & KVM_STEAL_VALID_BITS,
2019 sizeof(struct kvm_steal_time)))
2020 return 1;
2021
2022 vcpu->arch.st.msr_val = data;
2023
2024 if (!(data & KVM_MSR_ENABLED))
2025 break;
2026
2027 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2028
2029 preempt_disable();
2030 accumulate_steal_time(vcpu);
2031 preempt_enable();
2032
2033 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2034
2035 break;
2036 case MSR_KVM_PV_EOI_EN:
2037 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2038 return 1;
2039 break;
2040
2041 case MSR_IA32_MCG_CTL:
2042 case MSR_IA32_MCG_STATUS:
2043 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2044 return set_msr_mce(vcpu, msr, data);
2045
2046 /* Performance counters are not protected by a CPUID bit,
2047 * so we should check all of them in the generic path for the sake of
2048 * cross vendor migration.
2049 * Writing a zero into the event select MSRs disables them,
2050 * which we perfectly emulate ;-). Any other value should be at least
2051 * reported, some guests depend on them.
2052 */
2053 case MSR_K7_EVNTSEL0:
2054 case MSR_K7_EVNTSEL1:
2055 case MSR_K7_EVNTSEL2:
2056 case MSR_K7_EVNTSEL3:
2057 if (data != 0)
2058 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2059 "0x%x data 0x%llx\n", msr, data);
2060 break;
2061 /* at least RHEL 4 unconditionally writes to the perfctr registers,
2062 * so we ignore writes to make it happy.
2063 */
2064 case MSR_K7_PERFCTR0:
2065 case MSR_K7_PERFCTR1:
2066 case MSR_K7_PERFCTR2:
2067 case MSR_K7_PERFCTR3:
2068 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2069 "0x%x data 0x%llx\n", msr, data);
2070 break;
2071 case MSR_P6_PERFCTR0:
2072 case MSR_P6_PERFCTR1:
2073 pr = true;
2074 case MSR_P6_EVNTSEL0:
2075 case MSR_P6_EVNTSEL1:
2076 if (kvm_pmu_msr(vcpu, msr))
2077 return kvm_pmu_set_msr(vcpu, msr_info);
2078
2079 if (pr || data != 0)
2080 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2081 "0x%x data 0x%llx\n", msr, data);
2082 break;
2083 case MSR_K7_CLK_CTL:
2084 /*
2085 * Ignore all writes to this no longer documented MSR.
2086 * Writes are only relevant for old K7 processors,
2087 * all pre-dating SVM, but a recommended workaround from
2088 * AMD for these chips. It is possible to specify the
2089 * affected processor models on the command line, hence
2090 * the need to ignore the workaround.
2091 */
2092 break;
2093 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2094 if (kvm_hv_msr_partition_wide(msr)) {
2095 int r;
2096 mutex_lock(&vcpu->kvm->lock);
2097 r = set_msr_hyperv_pw(vcpu, msr, data);
2098 mutex_unlock(&vcpu->kvm->lock);
2099 return r;
2100 } else
2101 return set_msr_hyperv(vcpu, msr, data);
2102 break;
2103 case MSR_IA32_BBL_CR_CTL3:
2104 /* Drop writes to this legacy MSR -- see rdmsr
2105 * counterpart for further detail.
2106 */
2107 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2108 break;
2109 case MSR_AMD64_OSVW_ID_LENGTH:
2110 if (!guest_cpuid_has_osvw(vcpu))
2111 return 1;
2112 vcpu->arch.osvw.length = data;
2113 break;
2114 case MSR_AMD64_OSVW_STATUS:
2115 if (!guest_cpuid_has_osvw(vcpu))
2116 return 1;
2117 vcpu->arch.osvw.status = data;
2118 break;
2119 default:
2120 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2121 return xen_hvm_config(vcpu, data);
2122 if (kvm_pmu_msr(vcpu, msr))
2123 return kvm_pmu_set_msr(vcpu, msr_info);
2124 if (!ignore_msrs) {
2125 vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2126 msr, data);
2127 return 1;
2128 } else {
2129 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2130 msr, data);
2131 break;
2132 }
2133 }
2134 return 0;
2135 }
2136 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2137
2138
2139 /*
2140 * Reads an msr value (of 'msr_index') into 'pdata'.
2141 * Returns 0 on success, non-0 otherwise.
2142 * Assumes vcpu_load() was already called.
2143 */
2144 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2145 {
2146 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2147 }
2148
2149 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2150 {
2151 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2152
2153 if (!msr_mtrr_valid(msr))
2154 return 1;
2155
2156 if (msr == MSR_MTRRdefType)
2157 *pdata = vcpu->arch.mtrr_state.def_type +
2158 (vcpu->arch.mtrr_state.enabled << 10);
2159 else if (msr == MSR_MTRRfix64K_00000)
2160 *pdata = p[0];
2161 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2162 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2163 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2164 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2165 else if (msr == MSR_IA32_CR_PAT)
2166 *pdata = vcpu->arch.pat;
2167 else { /* Variable MTRRs */
2168 int idx, is_mtrr_mask;
2169 u64 *pt;
2170
2171 idx = (msr - 0x200) / 2;
2172 is_mtrr_mask = msr - 0x200 - 2 * idx;
2173 if (!is_mtrr_mask)
2174 pt =
2175 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2176 else
2177 pt =
2178 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2179 *pdata = *pt;
2180 }
2181
2182 return 0;
2183 }
2184
2185 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2186 {
2187 u64 data;
2188 u64 mcg_cap = vcpu->arch.mcg_cap;
2189 unsigned bank_num = mcg_cap & 0xff;
2190
2191 switch (msr) {
2192 case MSR_IA32_P5_MC_ADDR:
2193 case MSR_IA32_P5_MC_TYPE:
2194 data = 0;
2195 break;
2196 case MSR_IA32_MCG_CAP:
2197 data = vcpu->arch.mcg_cap;
2198 break;
2199 case MSR_IA32_MCG_CTL:
2200 if (!(mcg_cap & MCG_CTL_P))
2201 return 1;
2202 data = vcpu->arch.mcg_ctl;
2203 break;
2204 case MSR_IA32_MCG_STATUS:
2205 data = vcpu->arch.mcg_status;
2206 break;
2207 default:
2208 if (msr >= MSR_IA32_MC0_CTL &&
2209 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
2210 u32 offset = msr - MSR_IA32_MC0_CTL;
2211 data = vcpu->arch.mce_banks[offset];
2212 break;
2213 }
2214 return 1;
2215 }
2216 *pdata = data;
2217 return 0;
2218 }
2219
2220 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2221 {
2222 u64 data = 0;
2223 struct kvm *kvm = vcpu->kvm;
2224
2225 switch (msr) {
2226 case HV_X64_MSR_GUEST_OS_ID:
2227 data = kvm->arch.hv_guest_os_id;
2228 break;
2229 case HV_X64_MSR_HYPERCALL:
2230 data = kvm->arch.hv_hypercall;
2231 break;
2232 default:
2233 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2234 return 1;
2235 }
2236
2237 *pdata = data;
2238 return 0;
2239 }
2240
2241 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2242 {
2243 u64 data = 0;
2244
2245 switch (msr) {
2246 case HV_X64_MSR_VP_INDEX: {
2247 int r;
2248 struct kvm_vcpu *v;
2249 kvm_for_each_vcpu(r, v, vcpu->kvm)
2250 if (v == vcpu)
2251 data = r;
2252 break;
2253 }
2254 case HV_X64_MSR_EOI:
2255 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2256 case HV_X64_MSR_ICR:
2257 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2258 case HV_X64_MSR_TPR:
2259 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2260 case HV_X64_MSR_APIC_ASSIST_PAGE:
2261 data = vcpu->arch.hv_vapic;
2262 break;
2263 default:
2264 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2265 return 1;
2266 }
2267 *pdata = data;
2268 return 0;
2269 }
2270
2271 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2272 {
2273 u64 data;
2274
2275 switch (msr) {
2276 case MSR_IA32_PLATFORM_ID:
2277 case MSR_IA32_EBL_CR_POWERON:
2278 case MSR_IA32_DEBUGCTLMSR:
2279 case MSR_IA32_LASTBRANCHFROMIP:
2280 case MSR_IA32_LASTBRANCHTOIP:
2281 case MSR_IA32_LASTINTFROMIP:
2282 case MSR_IA32_LASTINTTOIP:
2283 case MSR_K8_SYSCFG:
2284 case MSR_K7_HWCR:
2285 case MSR_VM_HSAVE_PA:
2286 case MSR_K7_EVNTSEL0:
2287 case MSR_K7_PERFCTR0:
2288 case MSR_K8_INT_PENDING_MSG:
2289 case MSR_AMD64_NB_CFG:
2290 case MSR_FAM10H_MMIO_CONF_BASE:
2291 case MSR_AMD64_BU_CFG2:
2292 data = 0;
2293 break;
2294 case MSR_P6_PERFCTR0:
2295 case MSR_P6_PERFCTR1:
2296 case MSR_P6_EVNTSEL0:
2297 case MSR_P6_EVNTSEL1:
2298 if (kvm_pmu_msr(vcpu, msr))
2299 return kvm_pmu_get_msr(vcpu, msr, pdata);
2300 data = 0;
2301 break;
2302 case MSR_IA32_UCODE_REV:
2303 data = 0x100000000ULL;
2304 break;
2305 case MSR_MTRRcap:
2306 data = 0x500 | KVM_NR_VAR_MTRR;
2307 break;
2308 case 0x200 ... 0x2ff:
2309 return get_msr_mtrr(vcpu, msr, pdata);
2310 case 0xcd: /* fsb frequency */
2311 data = 3;
2312 break;
2313 /*
2314 * MSR_EBC_FREQUENCY_ID
2315 * Conservative value valid for even the basic CPU models.
2316 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2317 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2318 * and 266MHz for model 3, or 4. Set Core Clock
2319 * Frequency to System Bus Frequency Ratio to 1 (bits
2320 * 31:24) even though these are only valid for CPU
2321 * models > 2, however guests may end up dividing or
2322 * multiplying by zero otherwise.
2323 */
2324 case MSR_EBC_FREQUENCY_ID:
2325 data = 1 << 24;
2326 break;
2327 case MSR_IA32_APICBASE:
2328 data = kvm_get_apic_base(vcpu);
2329 break;
2330 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2331 return kvm_x2apic_msr_read(vcpu, msr, pdata);
2332 break;
2333 case MSR_IA32_TSCDEADLINE:
2334 data = kvm_get_lapic_tscdeadline_msr(vcpu);
2335 break;
2336 case MSR_IA32_TSC_ADJUST:
2337 data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2338 break;
2339 case MSR_IA32_MISC_ENABLE:
2340 data = vcpu->arch.ia32_misc_enable_msr;
2341 break;
2342 case MSR_IA32_PERF_STATUS:
2343 /* TSC increment by tick */
2344 data = 1000ULL;
2345 /* CPU multiplier */
2346 data |= (((uint64_t)4ULL) << 40);
2347 break;
2348 case MSR_EFER:
2349 data = vcpu->arch.efer;
2350 break;
2351 case MSR_KVM_WALL_CLOCK:
2352 case MSR_KVM_WALL_CLOCK_NEW:
2353 data = vcpu->kvm->arch.wall_clock;
2354 break;
2355 case MSR_KVM_SYSTEM_TIME:
2356 case MSR_KVM_SYSTEM_TIME_NEW:
2357 data = vcpu->arch.time;
2358 break;
2359 case MSR_KVM_ASYNC_PF_EN:
2360 data = vcpu->arch.apf.msr_val;
2361 break;
2362 case MSR_KVM_STEAL_TIME:
2363 data = vcpu->arch.st.msr_val;
2364 break;
2365 case MSR_KVM_PV_EOI_EN:
2366 data = vcpu->arch.pv_eoi.msr_val;
2367 break;
2368 case MSR_IA32_P5_MC_ADDR:
2369 case MSR_IA32_P5_MC_TYPE:
2370 case MSR_IA32_MCG_CAP:
2371 case MSR_IA32_MCG_CTL:
2372 case MSR_IA32_MCG_STATUS:
2373 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2374 return get_msr_mce(vcpu, msr, pdata);
2375 case MSR_K7_CLK_CTL:
2376 /*
2377 * Provide expected ramp-up count for K7. All other
2378 * are set to zero, indicating minimum divisors for
2379 * every field.
2380 *
2381 * This prevents guest kernels on AMD host with CPU
2382 * type 6, model 8 and higher from exploding due to
2383 * the rdmsr failing.
2384 */
2385 data = 0x20000000;
2386 break;
2387 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2388 if (kvm_hv_msr_partition_wide(msr)) {
2389 int r;
2390 mutex_lock(&vcpu->kvm->lock);
2391 r = get_msr_hyperv_pw(vcpu, msr, pdata);
2392 mutex_unlock(&vcpu->kvm->lock);
2393 return r;
2394 } else
2395 return get_msr_hyperv(vcpu, msr, pdata);
2396 break;
2397 case MSR_IA32_BBL_CR_CTL3:
2398 /* This legacy MSR exists but isn't fully documented in current
2399 * silicon. It is however accessed by winxp in very narrow
2400 * scenarios where it sets bit #19, itself documented as
2401 * a "reserved" bit. Best effort attempt to source coherent
2402 * read data here should the balance of the register be
2403 * interpreted by the guest:
2404 *
2405 * L2 cache control register 3: 64GB range, 256KB size,
2406 * enabled, latency 0x1, configured
2407 */
2408 data = 0xbe702111;
2409 break;
2410 case MSR_AMD64_OSVW_ID_LENGTH:
2411 if (!guest_cpuid_has_osvw(vcpu))
2412 return 1;
2413 data = vcpu->arch.osvw.length;
2414 break;
2415 case MSR_AMD64_OSVW_STATUS:
2416 if (!guest_cpuid_has_osvw(vcpu))
2417 return 1;
2418 data = vcpu->arch.osvw.status;
2419 break;
2420 default:
2421 if (kvm_pmu_msr(vcpu, msr))
2422 return kvm_pmu_get_msr(vcpu, msr, pdata);
2423 if (!ignore_msrs) {
2424 vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2425 return 1;
2426 } else {
2427 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2428 data = 0;
2429 }
2430 break;
2431 }
2432 *pdata = data;
2433 return 0;
2434 }
2435 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2436
2437 /*
2438 * Read or write a bunch of msrs. All parameters are kernel addresses.
2439 *
2440 * @return number of msrs set successfully.
2441 */
2442 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2443 struct kvm_msr_entry *entries,
2444 int (*do_msr)(struct kvm_vcpu *vcpu,
2445 unsigned index, u64 *data))
2446 {
2447 int i, idx;
2448
2449 idx = srcu_read_lock(&vcpu->kvm->srcu);
2450 for (i = 0; i < msrs->nmsrs; ++i)
2451 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2452 break;
2453 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2454
2455 return i;
2456 }
2457
2458 /*
2459 * Read or write a bunch of msrs. Parameters are user addresses.
2460 *
2461 * @return number of msrs set successfully.
2462 */
2463 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2464 int (*do_msr)(struct kvm_vcpu *vcpu,
2465 unsigned index, u64 *data),
2466 int writeback)
2467 {
2468 struct kvm_msrs msrs;
2469 struct kvm_msr_entry *entries;
2470 int r, n;
2471 unsigned size;
2472
2473 r = -EFAULT;
2474 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2475 goto out;
2476
2477 r = -E2BIG;
2478 if (msrs.nmsrs >= MAX_IO_MSRS)
2479 goto out;
2480
2481 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2482 entries = memdup_user(user_msrs->entries, size);
2483 if (IS_ERR(entries)) {
2484 r = PTR_ERR(entries);
2485 goto out;
2486 }
2487
2488 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2489 if (r < 0)
2490 goto out_free;
2491
2492 r = -EFAULT;
2493 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2494 goto out_free;
2495
2496 r = n;
2497
2498 out_free:
2499 kfree(entries);
2500 out:
2501 return r;
2502 }
2503
2504 int kvm_dev_ioctl_check_extension(long ext)
2505 {
2506 int r;
2507
2508 switch (ext) {
2509 case KVM_CAP_IRQCHIP:
2510 case KVM_CAP_HLT:
2511 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2512 case KVM_CAP_SET_TSS_ADDR:
2513 case KVM_CAP_EXT_CPUID:
2514 case KVM_CAP_CLOCKSOURCE:
2515 case KVM_CAP_PIT:
2516 case KVM_CAP_NOP_IO_DELAY:
2517 case KVM_CAP_MP_STATE:
2518 case KVM_CAP_SYNC_MMU:
2519 case KVM_CAP_USER_NMI:
2520 case KVM_CAP_REINJECT_CONTROL:
2521 case KVM_CAP_IRQ_INJECT_STATUS:
2522 case KVM_CAP_IRQFD:
2523 case KVM_CAP_IOEVENTFD:
2524 case KVM_CAP_PIT2:
2525 case KVM_CAP_PIT_STATE2:
2526 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2527 case KVM_CAP_XEN_HVM:
2528 case KVM_CAP_ADJUST_CLOCK:
2529 case KVM_CAP_VCPU_EVENTS:
2530 case KVM_CAP_HYPERV:
2531 case KVM_CAP_HYPERV_VAPIC:
2532 case KVM_CAP_HYPERV_SPIN:
2533 case KVM_CAP_PCI_SEGMENT:
2534 case KVM_CAP_DEBUGREGS:
2535 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2536 case KVM_CAP_XSAVE:
2537 case KVM_CAP_ASYNC_PF:
2538 case KVM_CAP_GET_TSC_KHZ:
2539 case KVM_CAP_KVMCLOCK_CTRL:
2540 case KVM_CAP_READONLY_MEM:
2541 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2542 case KVM_CAP_ASSIGN_DEV_IRQ:
2543 case KVM_CAP_PCI_2_3:
2544 #endif
2545 r = 1;
2546 break;
2547 case KVM_CAP_COALESCED_MMIO:
2548 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2549 break;
2550 case KVM_CAP_VAPIC:
2551 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2552 break;
2553 case KVM_CAP_NR_VCPUS:
2554 r = KVM_SOFT_MAX_VCPUS;
2555 break;
2556 case KVM_CAP_MAX_VCPUS:
2557 r = KVM_MAX_VCPUS;
2558 break;
2559 case KVM_CAP_NR_MEMSLOTS:
2560 r = KVM_USER_MEM_SLOTS;
2561 break;
2562 case KVM_CAP_PV_MMU: /* obsolete */
2563 r = 0;
2564 break;
2565 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2566 case KVM_CAP_IOMMU:
2567 r = iommu_present(&pci_bus_type);
2568 break;
2569 #endif
2570 case KVM_CAP_MCE:
2571 r = KVM_MAX_MCE_BANKS;
2572 break;
2573 case KVM_CAP_XCRS:
2574 r = cpu_has_xsave;
2575 break;
2576 case KVM_CAP_TSC_CONTROL:
2577 r = kvm_has_tsc_control;
2578 break;
2579 case KVM_CAP_TSC_DEADLINE_TIMER:
2580 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2581 break;
2582 default:
2583 r = 0;
2584 break;
2585 }
2586 return r;
2587
2588 }
2589
2590 long kvm_arch_dev_ioctl(struct file *filp,
2591 unsigned int ioctl, unsigned long arg)
2592 {
2593 void __user *argp = (void __user *)arg;
2594 long r;
2595
2596 switch (ioctl) {
2597 case KVM_GET_MSR_INDEX_LIST: {
2598 struct kvm_msr_list __user *user_msr_list = argp;
2599 struct kvm_msr_list msr_list;
2600 unsigned n;
2601
2602 r = -EFAULT;
2603 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2604 goto out;
2605 n = msr_list.nmsrs;
2606 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2607 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2608 goto out;
2609 r = -E2BIG;
2610 if (n < msr_list.nmsrs)
2611 goto out;
2612 r = -EFAULT;
2613 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2614 num_msrs_to_save * sizeof(u32)))
2615 goto out;
2616 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2617 &emulated_msrs,
2618 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2619 goto out;
2620 r = 0;
2621 break;
2622 }
2623 case KVM_GET_SUPPORTED_CPUID: {
2624 struct kvm_cpuid2 __user *cpuid_arg = argp;
2625 struct kvm_cpuid2 cpuid;
2626
2627 r = -EFAULT;
2628 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2629 goto out;
2630 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2631 cpuid_arg->entries);
2632 if (r)
2633 goto out;
2634
2635 r = -EFAULT;
2636 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2637 goto out;
2638 r = 0;
2639 break;
2640 }
2641 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2642 u64 mce_cap;
2643
2644 mce_cap = KVM_MCE_CAP_SUPPORTED;
2645 r = -EFAULT;
2646 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2647 goto out;
2648 r = 0;
2649 break;
2650 }
2651 default:
2652 r = -EINVAL;
2653 }
2654 out:
2655 return r;
2656 }
2657
2658 static void wbinvd_ipi(void *garbage)
2659 {
2660 wbinvd();
2661 }
2662
2663 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2664 {
2665 return vcpu->kvm->arch.iommu_domain &&
2666 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2667 }
2668
2669 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2670 {
2671 /* Address WBINVD may be executed by guest */
2672 if (need_emulate_wbinvd(vcpu)) {
2673 if (kvm_x86_ops->has_wbinvd_exit())
2674 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2675 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2676 smp_call_function_single(vcpu->cpu,
2677 wbinvd_ipi, NULL, 1);
2678 }
2679
2680 kvm_x86_ops->vcpu_load(vcpu, cpu);
2681
2682 /* Apply any externally detected TSC adjustments (due to suspend) */
2683 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2684 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2685 vcpu->arch.tsc_offset_adjustment = 0;
2686 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2687 }
2688
2689 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2690 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2691 native_read_tsc() - vcpu->arch.last_host_tsc;
2692 if (tsc_delta < 0)
2693 mark_tsc_unstable("KVM discovered backwards TSC");
2694 if (check_tsc_unstable()) {
2695 u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2696 vcpu->arch.last_guest_tsc);
2697 kvm_x86_ops->write_tsc_offset(vcpu, offset);
2698 vcpu->arch.tsc_catchup = 1;
2699 }
2700 /*
2701 * On a host with synchronized TSC, there is no need to update
2702 * kvmclock on vcpu->cpu migration
2703 */
2704 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2705 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2706 if (vcpu->cpu != cpu)
2707 kvm_migrate_timers(vcpu);
2708 vcpu->cpu = cpu;
2709 }
2710
2711 accumulate_steal_time(vcpu);
2712 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2713 }
2714
2715 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2716 {
2717 kvm_x86_ops->vcpu_put(vcpu);
2718 kvm_put_guest_fpu(vcpu);
2719 vcpu->arch.last_host_tsc = native_read_tsc();
2720 }
2721
2722 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2723 struct kvm_lapic_state *s)
2724 {
2725 kvm_x86_ops->sync_pir_to_irr(vcpu);
2726 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2727
2728 return 0;
2729 }
2730
2731 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2732 struct kvm_lapic_state *s)
2733 {
2734 kvm_apic_post_state_restore(vcpu, s);
2735 update_cr8_intercept(vcpu);
2736
2737 return 0;
2738 }
2739
2740 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2741 struct kvm_interrupt *irq)
2742 {
2743 if (irq->irq >= KVM_NR_INTERRUPTS)
2744 return -EINVAL;
2745 if (irqchip_in_kernel(vcpu->kvm))
2746 return -ENXIO;
2747
2748 kvm_queue_interrupt(vcpu, irq->irq, false);
2749 kvm_make_request(KVM_REQ_EVENT, vcpu);
2750
2751 return 0;
2752 }
2753
2754 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2755 {
2756 kvm_inject_nmi(vcpu);
2757
2758 return 0;
2759 }
2760
2761 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2762 struct kvm_tpr_access_ctl *tac)
2763 {
2764 if (tac->flags)
2765 return -EINVAL;
2766 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2767 return 0;
2768 }
2769
2770 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2771 u64 mcg_cap)
2772 {
2773 int r;
2774 unsigned bank_num = mcg_cap & 0xff, bank;
2775
2776 r = -EINVAL;
2777 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2778 goto out;
2779 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2780 goto out;
2781 r = 0;
2782 vcpu->arch.mcg_cap = mcg_cap;
2783 /* Init IA32_MCG_CTL to all 1s */
2784 if (mcg_cap & MCG_CTL_P)
2785 vcpu->arch.mcg_ctl = ~(u64)0;
2786 /* Init IA32_MCi_CTL to all 1s */
2787 for (bank = 0; bank < bank_num; bank++)
2788 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2789 out:
2790 return r;
2791 }
2792
2793 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2794 struct kvm_x86_mce *mce)
2795 {
2796 u64 mcg_cap = vcpu->arch.mcg_cap;
2797 unsigned bank_num = mcg_cap & 0xff;
2798 u64 *banks = vcpu->arch.mce_banks;
2799
2800 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2801 return -EINVAL;
2802 /*
2803 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2804 * reporting is disabled
2805 */
2806 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2807 vcpu->arch.mcg_ctl != ~(u64)0)
2808 return 0;
2809 banks += 4 * mce->bank;
2810 /*
2811 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2812 * reporting is disabled for the bank
2813 */
2814 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2815 return 0;
2816 if (mce->status & MCI_STATUS_UC) {
2817 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2818 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2819 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2820 return 0;
2821 }
2822 if (banks[1] & MCI_STATUS_VAL)
2823 mce->status |= MCI_STATUS_OVER;
2824 banks[2] = mce->addr;
2825 banks[3] = mce->misc;
2826 vcpu->arch.mcg_status = mce->mcg_status;
2827 banks[1] = mce->status;
2828 kvm_queue_exception(vcpu, MC_VECTOR);
2829 } else if (!(banks[1] & MCI_STATUS_VAL)
2830 || !(banks[1] & MCI_STATUS_UC)) {
2831 if (banks[1] & MCI_STATUS_VAL)
2832 mce->status |= MCI_STATUS_OVER;
2833 banks[2] = mce->addr;
2834 banks[3] = mce->misc;
2835 banks[1] = mce->status;
2836 } else
2837 banks[1] |= MCI_STATUS_OVER;
2838 return 0;
2839 }
2840
2841 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2842 struct kvm_vcpu_events *events)
2843 {
2844 process_nmi(vcpu);
2845 events->exception.injected =
2846 vcpu->arch.exception.pending &&
2847 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2848 events->exception.nr = vcpu->arch.exception.nr;
2849 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2850 events->exception.pad = 0;
2851 events->exception.error_code = vcpu->arch.exception.error_code;
2852
2853 events->interrupt.injected =
2854 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2855 events->interrupt.nr = vcpu->arch.interrupt.nr;
2856 events->interrupt.soft = 0;
2857 events->interrupt.shadow =
2858 kvm_x86_ops->get_interrupt_shadow(vcpu,
2859 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2860
2861 events->nmi.injected = vcpu->arch.nmi_injected;
2862 events->nmi.pending = vcpu->arch.nmi_pending != 0;
2863 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2864 events->nmi.pad = 0;
2865
2866 events->sipi_vector = 0; /* never valid when reporting to user space */
2867
2868 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2869 | KVM_VCPUEVENT_VALID_SHADOW);
2870 memset(&events->reserved, 0, sizeof(events->reserved));
2871 }
2872
2873 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2874 struct kvm_vcpu_events *events)
2875 {
2876 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2877 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2878 | KVM_VCPUEVENT_VALID_SHADOW))
2879 return -EINVAL;
2880
2881 process_nmi(vcpu);
2882 vcpu->arch.exception.pending = events->exception.injected;
2883 vcpu->arch.exception.nr = events->exception.nr;
2884 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2885 vcpu->arch.exception.error_code = events->exception.error_code;
2886
2887 vcpu->arch.interrupt.pending = events->interrupt.injected;
2888 vcpu->arch.interrupt.nr = events->interrupt.nr;
2889 vcpu->arch.interrupt.soft = events->interrupt.soft;
2890 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2891 kvm_x86_ops->set_interrupt_shadow(vcpu,
2892 events->interrupt.shadow);
2893
2894 vcpu->arch.nmi_injected = events->nmi.injected;
2895 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2896 vcpu->arch.nmi_pending = events->nmi.pending;
2897 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2898
2899 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2900 kvm_vcpu_has_lapic(vcpu))
2901 vcpu->arch.apic->sipi_vector = events->sipi_vector;
2902
2903 kvm_make_request(KVM_REQ_EVENT, vcpu);
2904
2905 return 0;
2906 }
2907
2908 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2909 struct kvm_debugregs *dbgregs)
2910 {
2911 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2912 dbgregs->dr6 = vcpu->arch.dr6;
2913 dbgregs->dr7 = vcpu->arch.dr7;
2914 dbgregs->flags = 0;
2915 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2916 }
2917
2918 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2919 struct kvm_debugregs *dbgregs)
2920 {
2921 if (dbgregs->flags)
2922 return -EINVAL;
2923
2924 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2925 vcpu->arch.dr6 = dbgregs->dr6;
2926 vcpu->arch.dr7 = dbgregs->dr7;
2927
2928 return 0;
2929 }
2930
2931 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2932 struct kvm_xsave *guest_xsave)
2933 {
2934 if (cpu_has_xsave)
2935 memcpy(guest_xsave->region,
2936 &vcpu->arch.guest_fpu.state->xsave,
2937 xstate_size);
2938 else {
2939 memcpy(guest_xsave->region,
2940 &vcpu->arch.guest_fpu.state->fxsave,
2941 sizeof(struct i387_fxsave_struct));
2942 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2943 XSTATE_FPSSE;
2944 }
2945 }
2946
2947 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2948 struct kvm_xsave *guest_xsave)
2949 {
2950 u64 xstate_bv =
2951 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2952
2953 if (cpu_has_xsave)
2954 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2955 guest_xsave->region, xstate_size);
2956 else {
2957 if (xstate_bv & ~XSTATE_FPSSE)
2958 return -EINVAL;
2959 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2960 guest_xsave->region, sizeof(struct i387_fxsave_struct));
2961 }
2962 return 0;
2963 }
2964
2965 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2966 struct kvm_xcrs *guest_xcrs)
2967 {
2968 if (!cpu_has_xsave) {
2969 guest_xcrs->nr_xcrs = 0;
2970 return;
2971 }
2972
2973 guest_xcrs->nr_xcrs = 1;
2974 guest_xcrs->flags = 0;
2975 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2976 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2977 }
2978
2979 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2980 struct kvm_xcrs *guest_xcrs)
2981 {
2982 int i, r = 0;
2983
2984 if (!cpu_has_xsave)
2985 return -EINVAL;
2986
2987 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2988 return -EINVAL;
2989
2990 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2991 /* Only support XCR0 currently */
2992 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2993 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2994 guest_xcrs->xcrs[0].value);
2995 break;
2996 }
2997 if (r)
2998 r = -EINVAL;
2999 return r;
3000 }
3001
3002 /*
3003 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3004 * stopped by the hypervisor. This function will be called from the host only.
3005 * EINVAL is returned when the host attempts to set the flag for a guest that
3006 * does not support pv clocks.
3007 */
3008 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3009 {
3010 if (!vcpu->arch.pv_time_enabled)
3011 return -EINVAL;
3012 vcpu->arch.pvclock_set_guest_stopped_request = true;
3013 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3014 return 0;
3015 }
3016
3017 long kvm_arch_vcpu_ioctl(struct file *filp,
3018 unsigned int ioctl, unsigned long arg)
3019 {
3020 struct kvm_vcpu *vcpu = filp->private_data;
3021 void __user *argp = (void __user *)arg;
3022 int r;
3023 union {
3024 struct kvm_lapic_state *lapic;
3025 struct kvm_xsave *xsave;
3026 struct kvm_xcrs *xcrs;
3027 void *buffer;
3028 } u;
3029
3030 u.buffer = NULL;
3031 switch (ioctl) {
3032 case KVM_GET_LAPIC: {
3033 r = -EINVAL;
3034 if (!vcpu->arch.apic)
3035 goto out;
3036 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3037
3038 r = -ENOMEM;
3039 if (!u.lapic)
3040 goto out;
3041 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3042 if (r)
3043 goto out;
3044 r = -EFAULT;
3045 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3046 goto out;
3047 r = 0;
3048 break;
3049 }
3050 case KVM_SET_LAPIC: {
3051 r = -EINVAL;
3052 if (!vcpu->arch.apic)
3053 goto out;
3054 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3055 if (IS_ERR(u.lapic))
3056 return PTR_ERR(u.lapic);
3057
3058 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3059 break;
3060 }
3061 case KVM_INTERRUPT: {
3062 struct kvm_interrupt irq;
3063
3064 r = -EFAULT;
3065 if (copy_from_user(&irq, argp, sizeof irq))
3066 goto out;
3067 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3068 break;
3069 }
3070 case KVM_NMI: {
3071 r = kvm_vcpu_ioctl_nmi(vcpu);
3072 break;
3073 }
3074 case KVM_SET_CPUID: {
3075 struct kvm_cpuid __user *cpuid_arg = argp;
3076 struct kvm_cpuid cpuid;
3077
3078 r = -EFAULT;
3079 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3080 goto out;
3081 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3082 break;
3083 }
3084 case KVM_SET_CPUID2: {
3085 struct kvm_cpuid2 __user *cpuid_arg = argp;
3086 struct kvm_cpuid2 cpuid;
3087
3088 r = -EFAULT;
3089 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3090 goto out;
3091 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3092 cpuid_arg->entries);
3093 break;
3094 }
3095 case KVM_GET_CPUID2: {
3096 struct kvm_cpuid2 __user *cpuid_arg = argp;
3097 struct kvm_cpuid2 cpuid;
3098
3099 r = -EFAULT;
3100 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3101 goto out;
3102 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3103 cpuid_arg->entries);
3104 if (r)
3105 goto out;
3106 r = -EFAULT;
3107 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3108 goto out;
3109 r = 0;
3110 break;
3111 }
3112 case KVM_GET_MSRS:
3113 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3114 break;
3115 case KVM_SET_MSRS:
3116 r = msr_io(vcpu, argp, do_set_msr, 0);
3117 break;
3118 case KVM_TPR_ACCESS_REPORTING: {
3119 struct kvm_tpr_access_ctl tac;
3120
3121 r = -EFAULT;
3122 if (copy_from_user(&tac, argp, sizeof tac))
3123 goto out;
3124 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3125 if (r)
3126 goto out;
3127 r = -EFAULT;
3128 if (copy_to_user(argp, &tac, sizeof tac))
3129 goto out;
3130 r = 0;
3131 break;
3132 };
3133 case KVM_SET_VAPIC_ADDR: {
3134 struct kvm_vapic_addr va;
3135
3136 r = -EINVAL;
3137 if (!irqchip_in_kernel(vcpu->kvm))
3138 goto out;
3139 r = -EFAULT;
3140 if (copy_from_user(&va, argp, sizeof va))
3141 goto out;
3142 r = 0;
3143 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3144 break;
3145 }
3146 case KVM_X86_SETUP_MCE: {
3147 u64 mcg_cap;
3148
3149 r = -EFAULT;
3150 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3151 goto out;
3152 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3153 break;
3154 }
3155 case KVM_X86_SET_MCE: {
3156 struct kvm_x86_mce mce;
3157
3158 r = -EFAULT;
3159 if (copy_from_user(&mce, argp, sizeof mce))
3160 goto out;
3161 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3162 break;
3163 }
3164 case KVM_GET_VCPU_EVENTS: {
3165 struct kvm_vcpu_events events;
3166
3167 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3168
3169 r = -EFAULT;
3170 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3171 break;
3172 r = 0;
3173 break;
3174 }
3175 case KVM_SET_VCPU_EVENTS: {
3176 struct kvm_vcpu_events events;
3177
3178 r = -EFAULT;
3179 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3180 break;
3181
3182 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3183 break;
3184 }
3185 case KVM_GET_DEBUGREGS: {
3186 struct kvm_debugregs dbgregs;
3187
3188 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3189
3190 r = -EFAULT;
3191 if (copy_to_user(argp, &dbgregs,
3192 sizeof(struct kvm_debugregs)))
3193 break;
3194 r = 0;
3195 break;
3196 }
3197 case KVM_SET_DEBUGREGS: {
3198 struct kvm_debugregs dbgregs;
3199
3200 r = -EFAULT;
3201 if (copy_from_user(&dbgregs, argp,
3202 sizeof(struct kvm_debugregs)))
3203 break;
3204
3205 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3206 break;
3207 }
3208 case KVM_GET_XSAVE: {
3209 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3210 r = -ENOMEM;
3211 if (!u.xsave)
3212 break;
3213
3214 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3215
3216 r = -EFAULT;
3217 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3218 break;
3219 r = 0;
3220 break;
3221 }
3222 case KVM_SET_XSAVE: {
3223 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3224 if (IS_ERR(u.xsave))
3225 return PTR_ERR(u.xsave);
3226
3227 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3228 break;
3229 }
3230 case KVM_GET_XCRS: {
3231 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3232 r = -ENOMEM;
3233 if (!u.xcrs)
3234 break;
3235
3236 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3237
3238 r = -EFAULT;
3239 if (copy_to_user(argp, u.xcrs,
3240 sizeof(struct kvm_xcrs)))
3241 break;
3242 r = 0;
3243 break;
3244 }
3245 case KVM_SET_XCRS: {
3246 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3247 if (IS_ERR(u.xcrs))
3248 return PTR_ERR(u.xcrs);
3249
3250 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3251 break;
3252 }
3253 case KVM_SET_TSC_KHZ: {
3254 u32 user_tsc_khz;
3255
3256 r = -EINVAL;
3257 user_tsc_khz = (u32)arg;
3258
3259 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3260 goto out;
3261
3262 if (user_tsc_khz == 0)
3263 user_tsc_khz = tsc_khz;
3264
3265 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3266
3267 r = 0;
3268 goto out;
3269 }
3270 case KVM_GET_TSC_KHZ: {
3271 r = vcpu->arch.virtual_tsc_khz;
3272 goto out;
3273 }
3274 case KVM_KVMCLOCK_CTRL: {
3275 r = kvm_set_guest_paused(vcpu);
3276 goto out;
3277 }
3278 default:
3279 r = -EINVAL;
3280 }
3281 out:
3282 kfree(u.buffer);
3283 return r;
3284 }
3285
3286 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3287 {
3288 return VM_FAULT_SIGBUS;
3289 }
3290
3291 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3292 {
3293 int ret;
3294
3295 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3296 return -EINVAL;
3297 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3298 return ret;
3299 }
3300
3301 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3302 u64 ident_addr)
3303 {
3304 kvm->arch.ept_identity_map_addr = ident_addr;
3305 return 0;
3306 }
3307
3308 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3309 u32 kvm_nr_mmu_pages)
3310 {
3311 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3312 return -EINVAL;
3313
3314 mutex_lock(&kvm->slots_lock);
3315
3316 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3317 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3318
3319 mutex_unlock(&kvm->slots_lock);
3320 return 0;
3321 }
3322
3323 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3324 {
3325 return kvm->arch.n_max_mmu_pages;
3326 }
3327
3328 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3329 {
3330 int r;
3331
3332 r = 0;
3333 switch (chip->chip_id) {
3334 case KVM_IRQCHIP_PIC_MASTER:
3335 memcpy(&chip->chip.pic,
3336 &pic_irqchip(kvm)->pics[0],
3337 sizeof(struct kvm_pic_state));
3338 break;
3339 case KVM_IRQCHIP_PIC_SLAVE:
3340 memcpy(&chip->chip.pic,
3341 &pic_irqchip(kvm)->pics[1],
3342 sizeof(struct kvm_pic_state));
3343 break;
3344 case KVM_IRQCHIP_IOAPIC:
3345 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3346 break;
3347 default:
3348 r = -EINVAL;
3349 break;
3350 }
3351 return r;
3352 }
3353
3354 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3355 {
3356 int r;
3357
3358 r = 0;
3359 switch (chip->chip_id) {
3360 case KVM_IRQCHIP_PIC_MASTER:
3361 spin_lock(&pic_irqchip(kvm)->lock);
3362 memcpy(&pic_irqchip(kvm)->pics[0],
3363 &chip->chip.pic,
3364 sizeof(struct kvm_pic_state));
3365 spin_unlock(&pic_irqchip(kvm)->lock);
3366 break;
3367 case KVM_IRQCHIP_PIC_SLAVE:
3368 spin_lock(&pic_irqchip(kvm)->lock);
3369 memcpy(&pic_irqchip(kvm)->pics[1],
3370 &chip->chip.pic,
3371 sizeof(struct kvm_pic_state));
3372 spin_unlock(&pic_irqchip(kvm)->lock);
3373 break;
3374 case KVM_IRQCHIP_IOAPIC:
3375 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3376 break;
3377 default:
3378 r = -EINVAL;
3379 break;
3380 }
3381 kvm_pic_update_irq(pic_irqchip(kvm));
3382 return r;
3383 }
3384
3385 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3386 {
3387 int r = 0;
3388
3389 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3390 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3391 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3392 return r;
3393 }
3394
3395 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3396 {
3397 int r = 0;
3398
3399 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3400 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3401 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3402 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3403 return r;
3404 }
3405
3406 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3407 {
3408 int r = 0;
3409
3410 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3411 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3412 sizeof(ps->channels));
3413 ps->flags = kvm->arch.vpit->pit_state.flags;
3414 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3415 memset(&ps->reserved, 0, sizeof(ps->reserved));
3416 return r;
3417 }
3418
3419 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3420 {
3421 int r = 0, start = 0;
3422 u32 prev_legacy, cur_legacy;
3423 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3424 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3425 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3426 if (!prev_legacy && cur_legacy)
3427 start = 1;
3428 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3429 sizeof(kvm->arch.vpit->pit_state.channels));
3430 kvm->arch.vpit->pit_state.flags = ps->flags;
3431 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3432 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3433 return r;
3434 }
3435
3436 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3437 struct kvm_reinject_control *control)
3438 {
3439 if (!kvm->arch.vpit)
3440 return -ENXIO;
3441 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3442 kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3443 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3444 return 0;
3445 }
3446
3447 /**
3448 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3449 * @kvm: kvm instance
3450 * @log: slot id and address to which we copy the log
3451 *
3452 * We need to keep it in mind that VCPU threads can write to the bitmap
3453 * concurrently. So, to avoid losing data, we keep the following order for
3454 * each bit:
3455 *
3456 * 1. Take a snapshot of the bit and clear it if needed.
3457 * 2. Write protect the corresponding page.
3458 * 3. Flush TLB's if needed.
3459 * 4. Copy the snapshot to the userspace.
3460 *
3461 * Between 2 and 3, the guest may write to the page using the remaining TLB
3462 * entry. This is not a problem because the page will be reported dirty at
3463 * step 4 using the snapshot taken before and step 3 ensures that successive
3464 * writes will be logged for the next call.
3465 */
3466 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3467 {
3468 int r;
3469 struct kvm_memory_slot *memslot;
3470 unsigned long n, i;
3471 unsigned long *dirty_bitmap;
3472 unsigned long *dirty_bitmap_buffer;
3473 bool is_dirty = false;
3474
3475 mutex_lock(&kvm->slots_lock);
3476
3477 r = -EINVAL;
3478 if (log->slot >= KVM_USER_MEM_SLOTS)
3479 goto out;
3480
3481 memslot = id_to_memslot(kvm->memslots, log->slot);
3482
3483 dirty_bitmap = memslot->dirty_bitmap;
3484 r = -ENOENT;
3485 if (!dirty_bitmap)
3486 goto out;
3487
3488 n = kvm_dirty_bitmap_bytes(memslot);
3489
3490 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3491 memset(dirty_bitmap_buffer, 0, n);
3492
3493 spin_lock(&kvm->mmu_lock);
3494
3495 for (i = 0; i < n / sizeof(long); i++) {
3496 unsigned long mask;
3497 gfn_t offset;
3498
3499 if (!dirty_bitmap[i])
3500 continue;
3501
3502 is_dirty = true;
3503
3504 mask = xchg(&dirty_bitmap[i], 0);
3505 dirty_bitmap_buffer[i] = mask;
3506
3507 offset = i * BITS_PER_LONG;
3508 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3509 }
3510 if (is_dirty)
3511 kvm_flush_remote_tlbs(kvm);
3512
3513 spin_unlock(&kvm->mmu_lock);
3514
3515 r = -EFAULT;
3516 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3517 goto out;
3518
3519 r = 0;
3520 out:
3521 mutex_unlock(&kvm->slots_lock);
3522 return r;
3523 }
3524
3525 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3526 bool line_status)
3527 {
3528 if (!irqchip_in_kernel(kvm))
3529 return -ENXIO;
3530
3531 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3532 irq_event->irq, irq_event->level,
3533 line_status);
3534 return 0;
3535 }
3536
3537 long kvm_arch_vm_ioctl(struct file *filp,
3538 unsigned int ioctl, unsigned long arg)
3539 {
3540 struct kvm *kvm = filp->private_data;
3541 void __user *argp = (void __user *)arg;
3542 int r = -ENOTTY;
3543 /*
3544 * This union makes it completely explicit to gcc-3.x
3545 * that these two variables' stack usage should be
3546 * combined, not added together.
3547 */
3548 union {
3549 struct kvm_pit_state ps;
3550 struct kvm_pit_state2 ps2;
3551 struct kvm_pit_config pit_config;
3552 } u;
3553
3554 switch (ioctl) {
3555 case KVM_SET_TSS_ADDR:
3556 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3557 break;
3558 case KVM_SET_IDENTITY_MAP_ADDR: {
3559 u64 ident_addr;
3560
3561 r = -EFAULT;
3562 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3563 goto out;
3564 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3565 break;
3566 }
3567 case KVM_SET_NR_MMU_PAGES:
3568 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3569 break;
3570 case KVM_GET_NR_MMU_PAGES:
3571 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3572 break;
3573 case KVM_CREATE_IRQCHIP: {
3574 struct kvm_pic *vpic;
3575
3576 mutex_lock(&kvm->lock);
3577 r = -EEXIST;
3578 if (kvm->arch.vpic)
3579 goto create_irqchip_unlock;
3580 r = -EINVAL;
3581 if (atomic_read(&kvm->online_vcpus))
3582 goto create_irqchip_unlock;
3583 r = -ENOMEM;
3584 vpic = kvm_create_pic(kvm);
3585 if (vpic) {
3586 r = kvm_ioapic_init(kvm);
3587 if (r) {
3588 mutex_lock(&kvm->slots_lock);
3589 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3590 &vpic->dev_master);
3591 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3592 &vpic->dev_slave);
3593 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3594 &vpic->dev_eclr);
3595 mutex_unlock(&kvm->slots_lock);
3596 kfree(vpic);
3597 goto create_irqchip_unlock;
3598 }
3599 } else
3600 goto create_irqchip_unlock;
3601 smp_wmb();
3602 kvm->arch.vpic = vpic;
3603 smp_wmb();
3604 r = kvm_setup_default_irq_routing(kvm);
3605 if (r) {
3606 mutex_lock(&kvm->slots_lock);
3607 mutex_lock(&kvm->irq_lock);
3608 kvm_ioapic_destroy(kvm);
3609 kvm_destroy_pic(kvm);
3610 mutex_unlock(&kvm->irq_lock);
3611 mutex_unlock(&kvm->slots_lock);
3612 }
3613 create_irqchip_unlock:
3614 mutex_unlock(&kvm->lock);
3615 break;
3616 }
3617 case KVM_CREATE_PIT:
3618 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3619 goto create_pit;
3620 case KVM_CREATE_PIT2:
3621 r = -EFAULT;
3622 if (copy_from_user(&u.pit_config, argp,
3623 sizeof(struct kvm_pit_config)))
3624 goto out;
3625 create_pit:
3626 mutex_lock(&kvm->slots_lock);
3627 r = -EEXIST;
3628 if (kvm->arch.vpit)
3629 goto create_pit_unlock;
3630 r = -ENOMEM;
3631 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3632 if (kvm->arch.vpit)
3633 r = 0;
3634 create_pit_unlock:
3635 mutex_unlock(&kvm->slots_lock);
3636 break;
3637 case KVM_GET_IRQCHIP: {
3638 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3639 struct kvm_irqchip *chip;
3640
3641 chip = memdup_user(argp, sizeof(*chip));
3642 if (IS_ERR(chip)) {
3643 r = PTR_ERR(chip);
3644 goto out;
3645 }
3646
3647 r = -ENXIO;
3648 if (!irqchip_in_kernel(kvm))
3649 goto get_irqchip_out;
3650 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3651 if (r)
3652 goto get_irqchip_out;
3653 r = -EFAULT;
3654 if (copy_to_user(argp, chip, sizeof *chip))
3655 goto get_irqchip_out;
3656 r = 0;
3657 get_irqchip_out:
3658 kfree(chip);
3659 break;
3660 }
3661 case KVM_SET_IRQCHIP: {
3662 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3663 struct kvm_irqchip *chip;
3664
3665 chip = memdup_user(argp, sizeof(*chip));
3666 if (IS_ERR(chip)) {
3667 r = PTR_ERR(chip);
3668 goto out;
3669 }
3670
3671 r = -ENXIO;
3672 if (!irqchip_in_kernel(kvm))
3673 goto set_irqchip_out;
3674 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3675 if (r)
3676 goto set_irqchip_out;
3677 r = 0;
3678 set_irqchip_out:
3679 kfree(chip);
3680 break;
3681 }
3682 case KVM_GET_PIT: {
3683 r = -EFAULT;
3684 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3685 goto out;
3686 r = -ENXIO;
3687 if (!kvm->arch.vpit)
3688 goto out;
3689 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3690 if (r)
3691 goto out;
3692 r = -EFAULT;
3693 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3694 goto out;
3695 r = 0;
3696 break;
3697 }
3698 case KVM_SET_PIT: {
3699 r = -EFAULT;
3700 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3701 goto out;
3702 r = -ENXIO;
3703 if (!kvm->arch.vpit)
3704 goto out;
3705 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3706 break;
3707 }
3708 case KVM_GET_PIT2: {
3709 r = -ENXIO;
3710 if (!kvm->arch.vpit)
3711 goto out;
3712 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3713 if (r)
3714 goto out;
3715 r = -EFAULT;
3716 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3717 goto out;
3718 r = 0;
3719 break;
3720 }
3721 case KVM_SET_PIT2: {
3722 r = -EFAULT;
3723 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3724 goto out;
3725 r = -ENXIO;
3726 if (!kvm->arch.vpit)
3727 goto out;
3728 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3729 break;
3730 }
3731 case KVM_REINJECT_CONTROL: {
3732 struct kvm_reinject_control control;
3733 r = -EFAULT;
3734 if (copy_from_user(&control, argp, sizeof(control)))
3735 goto out;
3736 r = kvm_vm_ioctl_reinject(kvm, &control);
3737 break;
3738 }
3739 case KVM_XEN_HVM_CONFIG: {
3740 r = -EFAULT;
3741 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3742 sizeof(struct kvm_xen_hvm_config)))
3743 goto out;
3744 r = -EINVAL;
3745 if (kvm->arch.xen_hvm_config.flags)
3746 goto out;
3747 r = 0;
3748 break;
3749 }
3750 case KVM_SET_CLOCK: {
3751 struct kvm_clock_data user_ns;
3752 u64 now_ns;
3753 s64 delta;
3754
3755 r = -EFAULT;
3756 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3757 goto out;
3758
3759 r = -EINVAL;
3760 if (user_ns.flags)
3761 goto out;
3762
3763 r = 0;
3764 local_irq_disable();
3765 now_ns = get_kernel_ns();
3766 delta = user_ns.clock - now_ns;
3767 local_irq_enable();
3768 kvm->arch.kvmclock_offset = delta;
3769 break;
3770 }
3771 case KVM_GET_CLOCK: {
3772 struct kvm_clock_data user_ns;
3773 u64 now_ns;
3774
3775 local_irq_disable();
3776 now_ns = get_kernel_ns();
3777 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3778 local_irq_enable();
3779 user_ns.flags = 0;
3780 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3781
3782 r = -EFAULT;
3783 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3784 goto out;
3785 r = 0;
3786 break;
3787 }
3788
3789 default:
3790 ;
3791 }
3792 out:
3793 return r;
3794 }
3795
3796 static void kvm_init_msr_list(void)
3797 {
3798 u32 dummy[2];
3799 unsigned i, j;
3800
3801 /* skip the first msrs in the list. KVM-specific */
3802 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3803 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3804 continue;
3805 if (j < i)
3806 msrs_to_save[j] = msrs_to_save[i];
3807 j++;
3808 }
3809 num_msrs_to_save = j;
3810 }
3811
3812 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3813 const void *v)
3814 {
3815 int handled = 0;
3816 int n;
3817
3818 do {
3819 n = min(len, 8);
3820 if (!(vcpu->arch.apic &&
3821 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3822 && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3823 break;
3824 handled += n;
3825 addr += n;
3826 len -= n;
3827 v += n;
3828 } while (len);
3829
3830 return handled;
3831 }
3832
3833 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3834 {
3835 int handled = 0;
3836 int n;
3837
3838 do {
3839 n = min(len, 8);
3840 if (!(vcpu->arch.apic &&
3841 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3842 && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3843 break;
3844 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3845 handled += n;
3846 addr += n;
3847 len -= n;
3848 v += n;
3849 } while (len);
3850
3851 return handled;
3852 }
3853
3854 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3855 struct kvm_segment *var, int seg)
3856 {
3857 kvm_x86_ops->set_segment(vcpu, var, seg);
3858 }
3859
3860 void kvm_get_segment(struct kvm_vcpu *vcpu,
3861 struct kvm_segment *var, int seg)
3862 {
3863 kvm_x86_ops->get_segment(vcpu, var, seg);
3864 }
3865
3866 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3867 {
3868 gpa_t t_gpa;
3869 struct x86_exception exception;
3870
3871 BUG_ON(!mmu_is_nested(vcpu));
3872
3873 /* NPT walks are always user-walks */
3874 access |= PFERR_USER_MASK;
3875 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3876
3877 return t_gpa;
3878 }
3879
3880 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3881 struct x86_exception *exception)
3882 {
3883 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3884 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3885 }
3886
3887 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3888 struct x86_exception *exception)
3889 {
3890 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3891 access |= PFERR_FETCH_MASK;
3892 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3893 }
3894
3895 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3896 struct x86_exception *exception)
3897 {
3898 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3899 access |= PFERR_WRITE_MASK;
3900 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3901 }
3902
3903 /* uses this to access any guest's mapped memory without checking CPL */
3904 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3905 struct x86_exception *exception)
3906 {
3907 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3908 }
3909
3910 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3911 struct kvm_vcpu *vcpu, u32 access,
3912 struct x86_exception *exception)
3913 {
3914 void *data = val;
3915 int r = X86EMUL_CONTINUE;
3916
3917 while (bytes) {
3918 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3919 exception);
3920 unsigned offset = addr & (PAGE_SIZE-1);
3921 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3922 int ret;
3923
3924 if (gpa == UNMAPPED_GVA)
3925 return X86EMUL_PROPAGATE_FAULT;
3926 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3927 if (ret < 0) {
3928 r = X86EMUL_IO_NEEDED;
3929 goto out;
3930 }
3931
3932 bytes -= toread;
3933 data += toread;
3934 addr += toread;
3935 }
3936 out:
3937 return r;
3938 }
3939
3940 /* used for instruction fetching */
3941 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3942 gva_t addr, void *val, unsigned int bytes,
3943 struct x86_exception *exception)
3944 {
3945 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3946 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3947
3948 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3949 access | PFERR_FETCH_MASK,
3950 exception);
3951 }
3952
3953 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3954 gva_t addr, void *val, unsigned int bytes,
3955 struct x86_exception *exception)
3956 {
3957 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3958 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3959
3960 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3961 exception);
3962 }
3963 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
3964
3965 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3966 gva_t addr, void *val, unsigned int bytes,
3967 struct x86_exception *exception)
3968 {
3969 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3970 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3971 }
3972
3973 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3974 gva_t addr, void *val,
3975 unsigned int bytes,
3976 struct x86_exception *exception)
3977 {
3978 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3979 void *data = val;
3980 int r = X86EMUL_CONTINUE;
3981
3982 while (bytes) {
3983 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3984 PFERR_WRITE_MASK,
3985 exception);
3986 unsigned offset = addr & (PAGE_SIZE-1);
3987 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3988 int ret;
3989
3990 if (gpa == UNMAPPED_GVA)
3991 return X86EMUL_PROPAGATE_FAULT;
3992 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3993 if (ret < 0) {
3994 r = X86EMUL_IO_NEEDED;
3995 goto out;
3996 }
3997
3998 bytes -= towrite;
3999 data += towrite;
4000 addr += towrite;
4001 }
4002 out:
4003 return r;
4004 }
4005 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4006
4007 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4008 gpa_t *gpa, struct x86_exception *exception,
4009 bool write)
4010 {
4011 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4012 | (write ? PFERR_WRITE_MASK : 0);
4013
4014 if (vcpu_match_mmio_gva(vcpu, gva)
4015 && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) {
4016 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4017 (gva & (PAGE_SIZE - 1));
4018 trace_vcpu_match_mmio(gva, *gpa, write, false);
4019 return 1;
4020 }
4021
4022 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4023
4024 if (*gpa == UNMAPPED_GVA)
4025 return -1;
4026
4027 /* For APIC access vmexit */
4028 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4029 return 1;
4030
4031 if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4032 trace_vcpu_match_mmio(gva, *gpa, write, true);
4033 return 1;
4034 }
4035
4036 return 0;
4037 }
4038
4039 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4040 const void *val, int bytes)
4041 {
4042 int ret;
4043
4044 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4045 if (ret < 0)
4046 return 0;
4047 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4048 return 1;
4049 }
4050
4051 struct read_write_emulator_ops {
4052 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4053 int bytes);
4054 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4055 void *val, int bytes);
4056 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4057 int bytes, void *val);
4058 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4059 void *val, int bytes);
4060 bool write;
4061 };
4062
4063 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4064 {
4065 if (vcpu->mmio_read_completed) {
4066 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4067 vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4068 vcpu->mmio_read_completed = 0;
4069 return 1;
4070 }
4071
4072 return 0;
4073 }
4074
4075 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4076 void *val, int bytes)
4077 {
4078 return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4079 }
4080
4081 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4082 void *val, int bytes)
4083 {
4084 return emulator_write_phys(vcpu, gpa, val, bytes);
4085 }
4086
4087 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4088 {
4089 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4090 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4091 }
4092
4093 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4094 void *val, int bytes)
4095 {
4096 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4097 return X86EMUL_IO_NEEDED;
4098 }
4099
4100 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4101 void *val, int bytes)
4102 {
4103 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4104
4105 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4106 return X86EMUL_CONTINUE;
4107 }
4108
4109 static const struct read_write_emulator_ops read_emultor = {
4110 .read_write_prepare = read_prepare,
4111 .read_write_emulate = read_emulate,
4112 .read_write_mmio = vcpu_mmio_read,
4113 .read_write_exit_mmio = read_exit_mmio,
4114 };
4115
4116 static const struct read_write_emulator_ops write_emultor = {
4117 .read_write_emulate = write_emulate,
4118 .read_write_mmio = write_mmio,
4119 .read_write_exit_mmio = write_exit_mmio,
4120 .write = true,
4121 };
4122
4123 static int emulator_read_write_onepage(unsigned long addr, void *val,
4124 unsigned int bytes,
4125 struct x86_exception *exception,
4126 struct kvm_vcpu *vcpu,
4127 const struct read_write_emulator_ops *ops)
4128 {
4129 gpa_t gpa;
4130 int handled, ret;
4131 bool write = ops->write;
4132 struct kvm_mmio_fragment *frag;
4133
4134 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4135
4136 if (ret < 0)
4137 return X86EMUL_PROPAGATE_FAULT;
4138
4139 /* For APIC access vmexit */
4140 if (ret)
4141 goto mmio;
4142
4143 if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4144 return X86EMUL_CONTINUE;
4145
4146 mmio:
4147 /*
4148 * Is this MMIO handled locally?
4149 */
4150 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4151 if (handled == bytes)
4152 return X86EMUL_CONTINUE;
4153
4154 gpa += handled;
4155 bytes -= handled;
4156 val += handled;
4157
4158 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4159 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4160 frag->gpa = gpa;
4161 frag->data = val;
4162 frag->len = bytes;
4163 return X86EMUL_CONTINUE;
4164 }
4165
4166 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4167 void *val, unsigned int bytes,
4168 struct x86_exception *exception,
4169 const struct read_write_emulator_ops *ops)
4170 {
4171 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4172 gpa_t gpa;
4173 int rc;
4174
4175 if (ops->read_write_prepare &&
4176 ops->read_write_prepare(vcpu, val, bytes))
4177 return X86EMUL_CONTINUE;
4178
4179 vcpu->mmio_nr_fragments = 0;
4180
4181 /* Crossing a page boundary? */
4182 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4183 int now;
4184
4185 now = -addr & ~PAGE_MASK;
4186 rc = emulator_read_write_onepage(addr, val, now, exception,
4187 vcpu, ops);
4188
4189 if (rc != X86EMUL_CONTINUE)
4190 return rc;
4191 addr += now;
4192 val += now;
4193 bytes -= now;
4194 }
4195
4196 rc = emulator_read_write_onepage(addr, val, bytes, exception,
4197 vcpu, ops);
4198 if (rc != X86EMUL_CONTINUE)
4199 return rc;
4200
4201 if (!vcpu->mmio_nr_fragments)
4202 return rc;
4203
4204 gpa = vcpu->mmio_fragments[0].gpa;
4205
4206 vcpu->mmio_needed = 1;
4207 vcpu->mmio_cur_fragment = 0;
4208
4209 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4210 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4211 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4212 vcpu->run->mmio.phys_addr = gpa;
4213
4214 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4215 }
4216
4217 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4218 unsigned long addr,
4219 void *val,
4220 unsigned int bytes,
4221 struct x86_exception *exception)
4222 {
4223 return emulator_read_write(ctxt, addr, val, bytes,
4224 exception, &read_emultor);
4225 }
4226
4227 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4228 unsigned long addr,
4229 const void *val,
4230 unsigned int bytes,
4231 struct x86_exception *exception)
4232 {
4233 return emulator_read_write(ctxt, addr, (void *)val, bytes,
4234 exception, &write_emultor);
4235 }
4236
4237 #define CMPXCHG_TYPE(t, ptr, old, new) \
4238 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4239
4240 #ifdef CONFIG_X86_64
4241 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4242 #else
4243 # define CMPXCHG64(ptr, old, new) \
4244 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4245 #endif
4246
4247 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4248 unsigned long addr,
4249 const void *old,
4250 const void *new,
4251 unsigned int bytes,
4252 struct x86_exception *exception)
4253 {
4254 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4255 gpa_t gpa;
4256 struct page *page;
4257 char *kaddr;
4258 bool exchanged;
4259
4260 /* guests cmpxchg8b have to be emulated atomically */
4261 if (bytes > 8 || (bytes & (bytes - 1)))
4262 goto emul_write;
4263
4264 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4265
4266 if (gpa == UNMAPPED_GVA ||
4267 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4268 goto emul_write;
4269
4270 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4271 goto emul_write;
4272
4273 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4274 if (is_error_page(page))
4275 goto emul_write;
4276
4277 kaddr = kmap_atomic(page);
4278 kaddr += offset_in_page(gpa);
4279 switch (bytes) {
4280 case 1:
4281 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4282 break;
4283 case 2:
4284 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4285 break;
4286 case 4:
4287 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4288 break;
4289 case 8:
4290 exchanged = CMPXCHG64(kaddr, old, new);
4291 break;
4292 default:
4293 BUG();
4294 }
4295 kunmap_atomic(kaddr);
4296 kvm_release_page_dirty(page);
4297
4298 if (!exchanged)
4299 return X86EMUL_CMPXCHG_FAILED;
4300
4301 kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4302
4303 return X86EMUL_CONTINUE;
4304
4305 emul_write:
4306 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4307
4308 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4309 }
4310
4311 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4312 {
4313 /* TODO: String I/O for in kernel device */
4314 int r;
4315
4316 if (vcpu->arch.pio.in)
4317 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4318 vcpu->arch.pio.size, pd);
4319 else
4320 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4321 vcpu->arch.pio.port, vcpu->arch.pio.size,
4322 pd);
4323 return r;
4324 }
4325
4326 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4327 unsigned short port, void *val,
4328 unsigned int count, bool in)
4329 {
4330 trace_kvm_pio(!in, port, size, count);
4331
4332 vcpu->arch.pio.port = port;
4333 vcpu->arch.pio.in = in;
4334 vcpu->arch.pio.count = count;
4335 vcpu->arch.pio.size = size;
4336
4337 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4338 vcpu->arch.pio.count = 0;
4339 return 1;
4340 }
4341
4342 vcpu->run->exit_reason = KVM_EXIT_IO;
4343 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4344 vcpu->run->io.size = size;
4345 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4346 vcpu->run->io.count = count;
4347 vcpu->run->io.port = port;
4348
4349 return 0;
4350 }
4351
4352 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4353 int size, unsigned short port, void *val,
4354 unsigned int count)
4355 {
4356 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4357 int ret;
4358
4359 if (vcpu->arch.pio.count)
4360 goto data_avail;
4361
4362 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4363 if (ret) {
4364 data_avail:
4365 memcpy(val, vcpu->arch.pio_data, size * count);
4366 vcpu->arch.pio.count = 0;
4367 return 1;
4368 }
4369
4370 return 0;
4371 }
4372
4373 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4374 int size, unsigned short port,
4375 const void *val, unsigned int count)
4376 {
4377 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4378
4379 memcpy(vcpu->arch.pio_data, val, size * count);
4380 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4381 }
4382
4383 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4384 {
4385 return kvm_x86_ops->get_segment_base(vcpu, seg);
4386 }
4387
4388 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4389 {
4390 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4391 }
4392
4393 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4394 {
4395 if (!need_emulate_wbinvd(vcpu))
4396 return X86EMUL_CONTINUE;
4397
4398 if (kvm_x86_ops->has_wbinvd_exit()) {
4399 int cpu = get_cpu();
4400
4401 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4402 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4403 wbinvd_ipi, NULL, 1);
4404 put_cpu();
4405 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4406 } else
4407 wbinvd();
4408 return X86EMUL_CONTINUE;
4409 }
4410 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4411
4412 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4413 {
4414 kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4415 }
4416
4417 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4418 {
4419 return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4420 }
4421
4422 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4423 {
4424
4425 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4426 }
4427
4428 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4429 {
4430 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4431 }
4432
4433 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4434 {
4435 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4436 unsigned long value;
4437
4438 switch (cr) {
4439 case 0:
4440 value = kvm_read_cr0(vcpu);
4441 break;
4442 case 2:
4443 value = vcpu->arch.cr2;
4444 break;
4445 case 3:
4446 value = kvm_read_cr3(vcpu);
4447 break;
4448 case 4:
4449 value = kvm_read_cr4(vcpu);
4450 break;
4451 case 8:
4452 value = kvm_get_cr8(vcpu);
4453 break;
4454 default:
4455 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4456 return 0;
4457 }
4458
4459 return value;
4460 }
4461
4462 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4463 {
4464 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4465 int res = 0;
4466
4467 switch (cr) {
4468 case 0:
4469 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4470 break;
4471 case 2:
4472 vcpu->arch.cr2 = val;
4473 break;
4474 case 3:
4475 res = kvm_set_cr3(vcpu, val);
4476 break;
4477 case 4:
4478 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4479 break;
4480 case 8:
4481 res = kvm_set_cr8(vcpu, val);
4482 break;
4483 default:
4484 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4485 res = -1;
4486 }
4487
4488 return res;
4489 }
4490
4491 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4492 {
4493 kvm_set_rflags(emul_to_vcpu(ctxt), val);
4494 }
4495
4496 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4497 {
4498 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4499 }
4500
4501 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4502 {
4503 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4504 }
4505
4506 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4507 {
4508 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4509 }
4510
4511 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4512 {
4513 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4514 }
4515
4516 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4517 {
4518 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4519 }
4520
4521 static unsigned long emulator_get_cached_segment_base(
4522 struct x86_emulate_ctxt *ctxt, int seg)
4523 {
4524 return get_segment_base(emul_to_vcpu(ctxt), seg);
4525 }
4526
4527 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4528 struct desc_struct *desc, u32 *base3,
4529 int seg)
4530 {
4531 struct kvm_segment var;
4532
4533 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4534 *selector = var.selector;
4535
4536 if (var.unusable) {
4537 memset(desc, 0, sizeof(*desc));
4538 return false;
4539 }
4540
4541 if (var.g)
4542 var.limit >>= 12;
4543 set_desc_limit(desc, var.limit);
4544 set_desc_base(desc, (unsigned long)var.base);
4545 #ifdef CONFIG_X86_64
4546 if (base3)
4547 *base3 = var.base >> 32;
4548 #endif
4549 desc->type = var.type;
4550 desc->s = var.s;
4551 desc->dpl = var.dpl;
4552 desc->p = var.present;
4553 desc->avl = var.avl;
4554 desc->l = var.l;
4555 desc->d = var.db;
4556 desc->g = var.g;
4557
4558 return true;
4559 }
4560
4561 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4562 struct desc_struct *desc, u32 base3,
4563 int seg)
4564 {
4565 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4566 struct kvm_segment var;
4567
4568 var.selector = selector;
4569 var.base = get_desc_base(desc);
4570 #ifdef CONFIG_X86_64
4571 var.base |= ((u64)base3) << 32;
4572 #endif
4573 var.limit = get_desc_limit(desc);
4574 if (desc->g)
4575 var.limit = (var.limit << 12) | 0xfff;
4576 var.type = desc->type;
4577 var.present = desc->p;
4578 var.dpl = desc->dpl;
4579 var.db = desc->d;
4580 var.s = desc->s;
4581 var.l = desc->l;
4582 var.g = desc->g;
4583 var.avl = desc->avl;
4584 var.present = desc->p;
4585 var.unusable = !var.present;
4586 var.padding = 0;
4587
4588 kvm_set_segment(vcpu, &var, seg);
4589 return;
4590 }
4591
4592 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4593 u32 msr_index, u64 *pdata)
4594 {
4595 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4596 }
4597
4598 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4599 u32 msr_index, u64 data)
4600 {
4601 struct msr_data msr;
4602
4603 msr.data = data;
4604 msr.index = msr_index;
4605 msr.host_initiated = false;
4606 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4607 }
4608
4609 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4610 u32 pmc, u64 *pdata)
4611 {
4612 return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4613 }
4614
4615 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4616 {
4617 emul_to_vcpu(ctxt)->arch.halt_request = 1;
4618 }
4619
4620 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4621 {
4622 preempt_disable();
4623 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4624 /*
4625 * CR0.TS may reference the host fpu state, not the guest fpu state,
4626 * so it may be clear at this point.
4627 */
4628 clts();
4629 }
4630
4631 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4632 {
4633 preempt_enable();
4634 }
4635
4636 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4637 struct x86_instruction_info *info,
4638 enum x86_intercept_stage stage)
4639 {
4640 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4641 }
4642
4643 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4644 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4645 {
4646 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4647 }
4648
4649 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4650 {
4651 return kvm_register_read(emul_to_vcpu(ctxt), reg);
4652 }
4653
4654 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4655 {
4656 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4657 }
4658
4659 static const struct x86_emulate_ops emulate_ops = {
4660 .read_gpr = emulator_read_gpr,
4661 .write_gpr = emulator_write_gpr,
4662 .read_std = kvm_read_guest_virt_system,
4663 .write_std = kvm_write_guest_virt_system,
4664 .fetch = kvm_fetch_guest_virt,
4665 .read_emulated = emulator_read_emulated,
4666 .write_emulated = emulator_write_emulated,
4667 .cmpxchg_emulated = emulator_cmpxchg_emulated,
4668 .invlpg = emulator_invlpg,
4669 .pio_in_emulated = emulator_pio_in_emulated,
4670 .pio_out_emulated = emulator_pio_out_emulated,
4671 .get_segment = emulator_get_segment,
4672 .set_segment = emulator_set_segment,
4673 .get_cached_segment_base = emulator_get_cached_segment_base,
4674 .get_gdt = emulator_get_gdt,
4675 .get_idt = emulator_get_idt,
4676 .set_gdt = emulator_set_gdt,
4677 .set_idt = emulator_set_idt,
4678 .get_cr = emulator_get_cr,
4679 .set_cr = emulator_set_cr,
4680 .set_rflags = emulator_set_rflags,
4681 .cpl = emulator_get_cpl,
4682 .get_dr = emulator_get_dr,
4683 .set_dr = emulator_set_dr,
4684 .set_msr = emulator_set_msr,
4685 .get_msr = emulator_get_msr,
4686 .read_pmc = emulator_read_pmc,
4687 .halt = emulator_halt,
4688 .wbinvd = emulator_wbinvd,
4689 .fix_hypercall = emulator_fix_hypercall,
4690 .get_fpu = emulator_get_fpu,
4691 .put_fpu = emulator_put_fpu,
4692 .intercept = emulator_intercept,
4693 .get_cpuid = emulator_get_cpuid,
4694 };
4695
4696 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4697 {
4698 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4699 /*
4700 * an sti; sti; sequence only disable interrupts for the first
4701 * instruction. So, if the last instruction, be it emulated or
4702 * not, left the system with the INT_STI flag enabled, it
4703 * means that the last instruction is an sti. We should not
4704 * leave the flag on in this case. The same goes for mov ss
4705 */
4706 if (!(int_shadow & mask))
4707 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4708 }
4709
4710 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4711 {
4712 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4713 if (ctxt->exception.vector == PF_VECTOR)
4714 kvm_propagate_fault(vcpu, &ctxt->exception);
4715 else if (ctxt->exception.error_code_valid)
4716 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4717 ctxt->exception.error_code);
4718 else
4719 kvm_queue_exception(vcpu, ctxt->exception.vector);
4720 }
4721
4722 static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
4723 {
4724 memset(&ctxt->twobyte, 0,
4725 (void *)&ctxt->_regs - (void *)&ctxt->twobyte);
4726
4727 ctxt->fetch.start = 0;
4728 ctxt->fetch.end = 0;
4729 ctxt->io_read.pos = 0;
4730 ctxt->io_read.end = 0;
4731 ctxt->mem_read.pos = 0;
4732 ctxt->mem_read.end = 0;
4733 }
4734
4735 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4736 {
4737 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4738 int cs_db, cs_l;
4739
4740 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4741
4742 ctxt->eflags = kvm_get_rflags(vcpu);
4743 ctxt->eip = kvm_rip_read(vcpu);
4744 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4745 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
4746 cs_l ? X86EMUL_MODE_PROT64 :
4747 cs_db ? X86EMUL_MODE_PROT32 :
4748 X86EMUL_MODE_PROT16;
4749 ctxt->guest_mode = is_guest_mode(vcpu);
4750
4751 init_decode_cache(ctxt);
4752 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4753 }
4754
4755 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4756 {
4757 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4758 int ret;
4759
4760 init_emulate_ctxt(vcpu);
4761
4762 ctxt->op_bytes = 2;
4763 ctxt->ad_bytes = 2;
4764 ctxt->_eip = ctxt->eip + inc_eip;
4765 ret = emulate_int_real(ctxt, irq);
4766
4767 if (ret != X86EMUL_CONTINUE)
4768 return EMULATE_FAIL;
4769
4770 ctxt->eip = ctxt->_eip;
4771 kvm_rip_write(vcpu, ctxt->eip);
4772 kvm_set_rflags(vcpu, ctxt->eflags);
4773
4774 if (irq == NMI_VECTOR)
4775 vcpu->arch.nmi_pending = 0;
4776 else
4777 vcpu->arch.interrupt.pending = false;
4778
4779 return EMULATE_DONE;
4780 }
4781 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4782
4783 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4784 {
4785 int r = EMULATE_DONE;
4786
4787 ++vcpu->stat.insn_emulation_fail;
4788 trace_kvm_emulate_insn_failed(vcpu);
4789 if (!is_guest_mode(vcpu)) {
4790 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4791 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4792 vcpu->run->internal.ndata = 0;
4793 r = EMULATE_FAIL;
4794 }
4795 kvm_queue_exception(vcpu, UD_VECTOR);
4796
4797 return r;
4798 }
4799
4800 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
4801 bool write_fault_to_shadow_pgtable,
4802 int emulation_type)
4803 {
4804 gpa_t gpa = cr2;
4805 pfn_t pfn;
4806
4807 if (emulation_type & EMULTYPE_NO_REEXECUTE)
4808 return false;
4809
4810 if (!vcpu->arch.mmu.direct_map) {
4811 /*
4812 * Write permission should be allowed since only
4813 * write access need to be emulated.
4814 */
4815 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4816
4817 /*
4818 * If the mapping is invalid in guest, let cpu retry
4819 * it to generate fault.
4820 */
4821 if (gpa == UNMAPPED_GVA)
4822 return true;
4823 }
4824
4825 /*
4826 * Do not retry the unhandleable instruction if it faults on the
4827 * readonly host memory, otherwise it will goto a infinite loop:
4828 * retry instruction -> write #PF -> emulation fail -> retry
4829 * instruction -> ...
4830 */
4831 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4832
4833 /*
4834 * If the instruction failed on the error pfn, it can not be fixed,
4835 * report the error to userspace.
4836 */
4837 if (is_error_noslot_pfn(pfn))
4838 return false;
4839
4840 kvm_release_pfn_clean(pfn);
4841
4842 /* The instructions are well-emulated on direct mmu. */
4843 if (vcpu->arch.mmu.direct_map) {
4844 unsigned int indirect_shadow_pages;
4845
4846 spin_lock(&vcpu->kvm->mmu_lock);
4847 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
4848 spin_unlock(&vcpu->kvm->mmu_lock);
4849
4850 if (indirect_shadow_pages)
4851 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4852
4853 return true;
4854 }
4855
4856 /*
4857 * if emulation was due to access to shadowed page table
4858 * and it failed try to unshadow page and re-enter the
4859 * guest to let CPU execute the instruction.
4860 */
4861 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4862
4863 /*
4864 * If the access faults on its page table, it can not
4865 * be fixed by unprotecting shadow page and it should
4866 * be reported to userspace.
4867 */
4868 return !write_fault_to_shadow_pgtable;
4869 }
4870
4871 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4872 unsigned long cr2, int emulation_type)
4873 {
4874 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4875 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4876
4877 last_retry_eip = vcpu->arch.last_retry_eip;
4878 last_retry_addr = vcpu->arch.last_retry_addr;
4879
4880 /*
4881 * If the emulation is caused by #PF and it is non-page_table
4882 * writing instruction, it means the VM-EXIT is caused by shadow
4883 * page protected, we can zap the shadow page and retry this
4884 * instruction directly.
4885 *
4886 * Note: if the guest uses a non-page-table modifying instruction
4887 * on the PDE that points to the instruction, then we will unmap
4888 * the instruction and go to an infinite loop. So, we cache the
4889 * last retried eip and the last fault address, if we meet the eip
4890 * and the address again, we can break out of the potential infinite
4891 * loop.
4892 */
4893 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4894
4895 if (!(emulation_type & EMULTYPE_RETRY))
4896 return false;
4897
4898 if (x86_page_table_writing_insn(ctxt))
4899 return false;
4900
4901 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4902 return false;
4903
4904 vcpu->arch.last_retry_eip = ctxt->eip;
4905 vcpu->arch.last_retry_addr = cr2;
4906
4907 if (!vcpu->arch.mmu.direct_map)
4908 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4909
4910 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4911
4912 return true;
4913 }
4914
4915 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
4916 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
4917
4918 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4919 unsigned long cr2,
4920 int emulation_type,
4921 void *insn,
4922 int insn_len)
4923 {
4924 int r;
4925 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4926 bool writeback = true;
4927 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
4928
4929 /*
4930 * Clear write_fault_to_shadow_pgtable here to ensure it is
4931 * never reused.
4932 */
4933 vcpu->arch.write_fault_to_shadow_pgtable = false;
4934 kvm_clear_exception_queue(vcpu);
4935
4936 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4937 init_emulate_ctxt(vcpu);
4938 ctxt->interruptibility = 0;
4939 ctxt->have_exception = false;
4940 ctxt->perm_ok = false;
4941
4942 ctxt->only_vendor_specific_insn
4943 = emulation_type & EMULTYPE_TRAP_UD;
4944
4945 r = x86_decode_insn(ctxt, insn, insn_len);
4946
4947 trace_kvm_emulate_insn_start(vcpu);
4948 ++vcpu->stat.insn_emulation;
4949 if (r != EMULATION_OK) {
4950 if (emulation_type & EMULTYPE_TRAP_UD)
4951 return EMULATE_FAIL;
4952 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
4953 emulation_type))
4954 return EMULATE_DONE;
4955 if (emulation_type & EMULTYPE_SKIP)
4956 return EMULATE_FAIL;
4957 return handle_emulation_failure(vcpu);
4958 }
4959 }
4960
4961 if (emulation_type & EMULTYPE_SKIP) {
4962 kvm_rip_write(vcpu, ctxt->_eip);
4963 return EMULATE_DONE;
4964 }
4965
4966 if (retry_instruction(ctxt, cr2, emulation_type))
4967 return EMULATE_DONE;
4968
4969 /* this is needed for vmware backdoor interface to work since it
4970 changes registers values during IO operation */
4971 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4972 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4973 emulator_invalidate_register_cache(ctxt);
4974 }
4975
4976 restart:
4977 r = x86_emulate_insn(ctxt);
4978
4979 if (r == EMULATION_INTERCEPTED)
4980 return EMULATE_DONE;
4981
4982 if (r == EMULATION_FAILED) {
4983 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
4984 emulation_type))
4985 return EMULATE_DONE;
4986
4987 return handle_emulation_failure(vcpu);
4988 }
4989
4990 if (ctxt->have_exception) {
4991 inject_emulated_exception(vcpu);
4992 r = EMULATE_DONE;
4993 } else if (vcpu->arch.pio.count) {
4994 if (!vcpu->arch.pio.in)
4995 vcpu->arch.pio.count = 0;
4996 else {
4997 writeback = false;
4998 vcpu->arch.complete_userspace_io = complete_emulated_pio;
4999 }
5000 r = EMULATE_DO_MMIO;
5001 } else if (vcpu->mmio_needed) {
5002 if (!vcpu->mmio_is_write)
5003 writeback = false;
5004 r = EMULATE_DO_MMIO;
5005 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5006 } else if (r == EMULATION_RESTART)
5007 goto restart;
5008 else
5009 r = EMULATE_DONE;
5010
5011 if (writeback) {
5012 toggle_interruptibility(vcpu, ctxt->interruptibility);
5013 kvm_set_rflags(vcpu, ctxt->eflags);
5014 kvm_make_request(KVM_REQ_EVENT, vcpu);
5015 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5016 kvm_rip_write(vcpu, ctxt->eip);
5017 } else
5018 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5019
5020 return r;
5021 }
5022 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5023
5024 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5025 {
5026 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5027 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5028 size, port, &val, 1);
5029 /* do not return to emulator after return from userspace */
5030 vcpu->arch.pio.count = 0;
5031 return ret;
5032 }
5033 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5034
5035 static void tsc_bad(void *info)
5036 {
5037 __this_cpu_write(cpu_tsc_khz, 0);
5038 }
5039
5040 static void tsc_khz_changed(void *data)
5041 {
5042 struct cpufreq_freqs *freq = data;
5043 unsigned long khz = 0;
5044
5045 if (data)
5046 khz = freq->new;
5047 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5048 khz = cpufreq_quick_get(raw_smp_processor_id());
5049 if (!khz)
5050 khz = tsc_khz;
5051 __this_cpu_write(cpu_tsc_khz, khz);
5052 }
5053
5054 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5055 void *data)
5056 {
5057 struct cpufreq_freqs *freq = data;
5058 struct kvm *kvm;
5059 struct kvm_vcpu *vcpu;
5060 int i, send_ipi = 0;
5061
5062 /*
5063 * We allow guests to temporarily run on slowing clocks,
5064 * provided we notify them after, or to run on accelerating
5065 * clocks, provided we notify them before. Thus time never
5066 * goes backwards.
5067 *
5068 * However, we have a problem. We can't atomically update
5069 * the frequency of a given CPU from this function; it is
5070 * merely a notifier, which can be called from any CPU.
5071 * Changing the TSC frequency at arbitrary points in time
5072 * requires a recomputation of local variables related to
5073 * the TSC for each VCPU. We must flag these local variables
5074 * to be updated and be sure the update takes place with the
5075 * new frequency before any guests proceed.
5076 *
5077 * Unfortunately, the combination of hotplug CPU and frequency
5078 * change creates an intractable locking scenario; the order
5079 * of when these callouts happen is undefined with respect to
5080 * CPU hotplug, and they can race with each other. As such,
5081 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5082 * undefined; you can actually have a CPU frequency change take
5083 * place in between the computation of X and the setting of the
5084 * variable. To protect against this problem, all updates of
5085 * the per_cpu tsc_khz variable are done in an interrupt
5086 * protected IPI, and all callers wishing to update the value
5087 * must wait for a synchronous IPI to complete (which is trivial
5088 * if the caller is on the CPU already). This establishes the
5089 * necessary total order on variable updates.
5090 *
5091 * Note that because a guest time update may take place
5092 * anytime after the setting of the VCPU's request bit, the
5093 * correct TSC value must be set before the request. However,
5094 * to ensure the update actually makes it to any guest which
5095 * starts running in hardware virtualization between the set
5096 * and the acquisition of the spinlock, we must also ping the
5097 * CPU after setting the request bit.
5098 *
5099 */
5100
5101 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5102 return 0;
5103 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5104 return 0;
5105
5106 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5107
5108 raw_spin_lock(&kvm_lock);
5109 list_for_each_entry(kvm, &vm_list, vm_list) {
5110 kvm_for_each_vcpu(i, vcpu, kvm) {
5111 if (vcpu->cpu != freq->cpu)
5112 continue;
5113 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5114 if (vcpu->cpu != smp_processor_id())
5115 send_ipi = 1;
5116 }
5117 }
5118 raw_spin_unlock(&kvm_lock);
5119
5120 if (freq->old < freq->new && send_ipi) {
5121 /*
5122 * We upscale the frequency. Must make the guest
5123 * doesn't see old kvmclock values while running with
5124 * the new frequency, otherwise we risk the guest sees
5125 * time go backwards.
5126 *
5127 * In case we update the frequency for another cpu
5128 * (which might be in guest context) send an interrupt
5129 * to kick the cpu out of guest context. Next time
5130 * guest context is entered kvmclock will be updated,
5131 * so the guest will not see stale values.
5132 */
5133 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5134 }
5135 return 0;
5136 }
5137
5138 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5139 .notifier_call = kvmclock_cpufreq_notifier
5140 };
5141
5142 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5143 unsigned long action, void *hcpu)
5144 {
5145 unsigned int cpu = (unsigned long)hcpu;
5146
5147 switch (action) {
5148 case CPU_ONLINE:
5149 case CPU_DOWN_FAILED:
5150 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5151 break;
5152 case CPU_DOWN_PREPARE:
5153 smp_call_function_single(cpu, tsc_bad, NULL, 1);
5154 break;
5155 }
5156 return NOTIFY_OK;
5157 }
5158
5159 static struct notifier_block kvmclock_cpu_notifier_block = {
5160 .notifier_call = kvmclock_cpu_notifier,
5161 .priority = -INT_MAX
5162 };
5163
5164 static void kvm_timer_init(void)
5165 {
5166 int cpu;
5167
5168 max_tsc_khz = tsc_khz;
5169 register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5170 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5171 #ifdef CONFIG_CPU_FREQ
5172 struct cpufreq_policy policy;
5173 memset(&policy, 0, sizeof(policy));
5174 cpu = get_cpu();
5175 cpufreq_get_policy(&policy, cpu);
5176 if (policy.cpuinfo.max_freq)
5177 max_tsc_khz = policy.cpuinfo.max_freq;
5178 put_cpu();
5179 #endif
5180 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5181 CPUFREQ_TRANSITION_NOTIFIER);
5182 }
5183 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5184 for_each_online_cpu(cpu)
5185 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5186 }
5187
5188 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5189
5190 int kvm_is_in_guest(void)
5191 {
5192 return __this_cpu_read(current_vcpu) != NULL;
5193 }
5194
5195 static int kvm_is_user_mode(void)
5196 {
5197 int user_mode = 3;
5198
5199 if (__this_cpu_read(current_vcpu))
5200 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5201
5202 return user_mode != 0;
5203 }
5204
5205 static unsigned long kvm_get_guest_ip(void)
5206 {
5207 unsigned long ip = 0;
5208
5209 if (__this_cpu_read(current_vcpu))
5210 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5211
5212 return ip;
5213 }
5214
5215 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5216 .is_in_guest = kvm_is_in_guest,
5217 .is_user_mode = kvm_is_user_mode,
5218 .get_guest_ip = kvm_get_guest_ip,
5219 };
5220
5221 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5222 {
5223 __this_cpu_write(current_vcpu, vcpu);
5224 }
5225 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5226
5227 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5228 {
5229 __this_cpu_write(current_vcpu, NULL);
5230 }
5231 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5232
5233 static void kvm_set_mmio_spte_mask(void)
5234 {
5235 u64 mask;
5236 int maxphyaddr = boot_cpu_data.x86_phys_bits;
5237
5238 /*
5239 * Set the reserved bits and the present bit of an paging-structure
5240 * entry to generate page fault with PFER.RSV = 1.
5241 */
5242 mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
5243 mask |= 1ull;
5244
5245 #ifdef CONFIG_X86_64
5246 /*
5247 * If reserved bit is not supported, clear the present bit to disable
5248 * mmio page fault.
5249 */
5250 if (maxphyaddr == 52)
5251 mask &= ~1ull;
5252 #endif
5253
5254 kvm_mmu_set_mmio_spte_mask(mask);
5255 }
5256
5257 #ifdef CONFIG_X86_64
5258 static void pvclock_gtod_update_fn(struct work_struct *work)
5259 {
5260 struct kvm *kvm;
5261
5262 struct kvm_vcpu *vcpu;
5263 int i;
5264
5265 raw_spin_lock(&kvm_lock);
5266 list_for_each_entry(kvm, &vm_list, vm_list)
5267 kvm_for_each_vcpu(i, vcpu, kvm)
5268 set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests);
5269 atomic_set(&kvm_guest_has_master_clock, 0);
5270 raw_spin_unlock(&kvm_lock);
5271 }
5272
5273 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5274
5275 /*
5276 * Notification about pvclock gtod data update.
5277 */
5278 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5279 void *priv)
5280 {
5281 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5282 struct timekeeper *tk = priv;
5283
5284 update_pvclock_gtod(tk);
5285
5286 /* disable master clock if host does not trust, or does not
5287 * use, TSC clocksource
5288 */
5289 if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5290 atomic_read(&kvm_guest_has_master_clock) != 0)
5291 queue_work(system_long_wq, &pvclock_gtod_work);
5292
5293 return 0;
5294 }
5295
5296 static struct notifier_block pvclock_gtod_notifier = {
5297 .notifier_call = pvclock_gtod_notify,
5298 };
5299 #endif
5300
5301 int kvm_arch_init(void *opaque)
5302 {
5303 int r;
5304 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
5305
5306 if (kvm_x86_ops) {
5307 printk(KERN_ERR "kvm: already loaded the other module\n");
5308 r = -EEXIST;
5309 goto out;
5310 }
5311
5312 if (!ops->cpu_has_kvm_support()) {
5313 printk(KERN_ERR "kvm: no hardware support\n");
5314 r = -EOPNOTSUPP;
5315 goto out;
5316 }
5317 if (ops->disabled_by_bios()) {
5318 printk(KERN_ERR "kvm: disabled by bios\n");
5319 r = -EOPNOTSUPP;
5320 goto out;
5321 }
5322
5323 r = -ENOMEM;
5324 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5325 if (!shared_msrs) {
5326 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5327 goto out;
5328 }
5329
5330 r = kvm_mmu_module_init();
5331 if (r)
5332 goto out_free_percpu;
5333
5334 kvm_set_mmio_spte_mask();
5335 kvm_init_msr_list();
5336
5337 kvm_x86_ops = ops;
5338 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5339 PT_DIRTY_MASK, PT64_NX_MASK, 0);
5340
5341 kvm_timer_init();
5342
5343 perf_register_guest_info_callbacks(&kvm_guest_cbs);
5344
5345 if (cpu_has_xsave)
5346 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5347
5348 kvm_lapic_init();
5349 #ifdef CONFIG_X86_64
5350 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5351 #endif
5352
5353 return 0;
5354
5355 out_free_percpu:
5356 free_percpu(shared_msrs);
5357 out:
5358 return r;
5359 }
5360
5361 void kvm_arch_exit(void)
5362 {
5363 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5364
5365 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5366 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5367 CPUFREQ_TRANSITION_NOTIFIER);
5368 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5369 #ifdef CONFIG_X86_64
5370 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5371 #endif
5372 kvm_x86_ops = NULL;
5373 kvm_mmu_module_exit();
5374 free_percpu(shared_msrs);
5375 }
5376
5377 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5378 {
5379 ++vcpu->stat.halt_exits;
5380 if (irqchip_in_kernel(vcpu->kvm)) {
5381 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5382 return 1;
5383 } else {
5384 vcpu->run->exit_reason = KVM_EXIT_HLT;
5385 return 0;
5386 }
5387 }
5388 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5389
5390 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5391 {
5392 u64 param, ingpa, outgpa, ret;
5393 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5394 bool fast, longmode;
5395 int cs_db, cs_l;
5396
5397 /*
5398 * hypercall generates UD from non zero cpl and real mode
5399 * per HYPER-V spec
5400 */
5401 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5402 kvm_queue_exception(vcpu, UD_VECTOR);
5403 return 0;
5404 }
5405
5406 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5407 longmode = is_long_mode(vcpu) && cs_l == 1;
5408
5409 if (!longmode) {
5410 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5411 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5412 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5413 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5414 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5415 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5416 }
5417 #ifdef CONFIG_X86_64
5418 else {
5419 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5420 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5421 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5422 }
5423 #endif
5424
5425 code = param & 0xffff;
5426 fast = (param >> 16) & 0x1;
5427 rep_cnt = (param >> 32) & 0xfff;
5428 rep_idx = (param >> 48) & 0xfff;
5429
5430 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5431
5432 switch (code) {
5433 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5434 kvm_vcpu_on_spin(vcpu);
5435 break;
5436 default:
5437 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5438 break;
5439 }
5440
5441 ret = res | (((u64)rep_done & 0xfff) << 32);
5442 if (longmode) {
5443 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5444 } else {
5445 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5446 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5447 }
5448
5449 return 1;
5450 }
5451
5452 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5453 {
5454 unsigned long nr, a0, a1, a2, a3, ret;
5455 int r = 1;
5456
5457 if (kvm_hv_hypercall_enabled(vcpu->kvm))
5458 return kvm_hv_hypercall(vcpu);
5459
5460 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5461 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5462 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5463 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5464 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5465
5466 trace_kvm_hypercall(nr, a0, a1, a2, a3);
5467
5468 if (!is_long_mode(vcpu)) {
5469 nr &= 0xFFFFFFFF;
5470 a0 &= 0xFFFFFFFF;
5471 a1 &= 0xFFFFFFFF;
5472 a2 &= 0xFFFFFFFF;
5473 a3 &= 0xFFFFFFFF;
5474 }
5475
5476 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5477 ret = -KVM_EPERM;
5478 goto out;
5479 }
5480
5481 switch (nr) {
5482 case KVM_HC_VAPIC_POLL_IRQ:
5483 ret = 0;
5484 break;
5485 default:
5486 ret = -KVM_ENOSYS;
5487 break;
5488 }
5489 out:
5490 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5491 ++vcpu->stat.hypercalls;
5492 return r;
5493 }
5494 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5495
5496 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5497 {
5498 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5499 char instruction[3];
5500 unsigned long rip = kvm_rip_read(vcpu);
5501
5502 /*
5503 * Blow out the MMU to ensure that no other VCPU has an active mapping
5504 * to ensure that the updated hypercall appears atomically across all
5505 * VCPUs.
5506 */
5507 kvm_mmu_zap_all(vcpu->kvm);
5508
5509 kvm_x86_ops->patch_hypercall(vcpu, instruction);
5510
5511 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5512 }
5513
5514 /*
5515 * Check if userspace requested an interrupt window, and that the
5516 * interrupt window is open.
5517 *
5518 * No need to exit to userspace if we already have an interrupt queued.
5519 */
5520 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5521 {
5522 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5523 vcpu->run->request_interrupt_window &&
5524 kvm_arch_interrupt_allowed(vcpu));
5525 }
5526
5527 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5528 {
5529 struct kvm_run *kvm_run = vcpu->run;
5530
5531 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5532 kvm_run->cr8 = kvm_get_cr8(vcpu);
5533 kvm_run->apic_base = kvm_get_apic_base(vcpu);
5534 if (irqchip_in_kernel(vcpu->kvm))
5535 kvm_run->ready_for_interrupt_injection = 1;
5536 else
5537 kvm_run->ready_for_interrupt_injection =
5538 kvm_arch_interrupt_allowed(vcpu) &&
5539 !kvm_cpu_has_interrupt(vcpu) &&
5540 !kvm_event_needs_reinjection(vcpu);
5541 }
5542
5543 static int vapic_enter(struct kvm_vcpu *vcpu)
5544 {
5545 struct kvm_lapic *apic = vcpu->arch.apic;
5546 struct page *page;
5547
5548 if (!apic || !apic->vapic_addr)
5549 return 0;
5550
5551 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5552 if (is_error_page(page))
5553 return -EFAULT;
5554
5555 vcpu->arch.apic->vapic_page = page;
5556 return 0;
5557 }
5558
5559 static void vapic_exit(struct kvm_vcpu *vcpu)
5560 {
5561 struct kvm_lapic *apic = vcpu->arch.apic;
5562 int idx;
5563
5564 if (!apic || !apic->vapic_addr)
5565 return;
5566
5567 idx = srcu_read_lock(&vcpu->kvm->srcu);
5568 kvm_release_page_dirty(apic->vapic_page);
5569 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5570 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5571 }
5572
5573 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5574 {
5575 int max_irr, tpr;
5576
5577 if (!kvm_x86_ops->update_cr8_intercept)
5578 return;
5579
5580 if (!vcpu->arch.apic)
5581 return;
5582
5583 if (!vcpu->arch.apic->vapic_addr)
5584 max_irr = kvm_lapic_find_highest_irr(vcpu);
5585 else
5586 max_irr = -1;
5587
5588 if (max_irr != -1)
5589 max_irr >>= 4;
5590
5591 tpr = kvm_lapic_get_cr8(vcpu);
5592
5593 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5594 }
5595
5596 static void inject_pending_event(struct kvm_vcpu *vcpu)
5597 {
5598 /* try to reinject previous events if any */
5599 if (vcpu->arch.exception.pending) {
5600 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5601 vcpu->arch.exception.has_error_code,
5602 vcpu->arch.exception.error_code);
5603 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5604 vcpu->arch.exception.has_error_code,
5605 vcpu->arch.exception.error_code,
5606 vcpu->arch.exception.reinject);
5607 return;
5608 }
5609
5610 if (vcpu->arch.nmi_injected) {
5611 kvm_x86_ops->set_nmi(vcpu);
5612 return;
5613 }
5614
5615 if (vcpu->arch.interrupt.pending) {
5616 kvm_x86_ops->set_irq(vcpu);
5617 return;
5618 }
5619
5620 /* try to inject new event if pending */
5621 if (vcpu->arch.nmi_pending) {
5622 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5623 --vcpu->arch.nmi_pending;
5624 vcpu->arch.nmi_injected = true;
5625 kvm_x86_ops->set_nmi(vcpu);
5626 }
5627 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
5628 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5629 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5630 false);
5631 kvm_x86_ops->set_irq(vcpu);
5632 }
5633 }
5634 }
5635
5636 static void process_nmi(struct kvm_vcpu *vcpu)
5637 {
5638 unsigned limit = 2;
5639
5640 /*
5641 * x86 is limited to one NMI running, and one NMI pending after it.
5642 * If an NMI is already in progress, limit further NMIs to just one.
5643 * Otherwise, allow two (and we'll inject the first one immediately).
5644 */
5645 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5646 limit = 1;
5647
5648 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5649 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5650 kvm_make_request(KVM_REQ_EVENT, vcpu);
5651 }
5652
5653 static void kvm_gen_update_masterclock(struct kvm *kvm)
5654 {
5655 #ifdef CONFIG_X86_64
5656 int i;
5657 struct kvm_vcpu *vcpu;
5658 struct kvm_arch *ka = &kvm->arch;
5659
5660 spin_lock(&ka->pvclock_gtod_sync_lock);
5661 kvm_make_mclock_inprogress_request(kvm);
5662 /* no guest entries from this point */
5663 pvclock_update_vm_gtod_copy(kvm);
5664
5665 kvm_for_each_vcpu(i, vcpu, kvm)
5666 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
5667
5668 /* guest entries allowed */
5669 kvm_for_each_vcpu(i, vcpu, kvm)
5670 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
5671
5672 spin_unlock(&ka->pvclock_gtod_sync_lock);
5673 #endif
5674 }
5675
5676 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
5677 {
5678 u64 eoi_exit_bitmap[4];
5679 u32 tmr[8];
5680
5681 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
5682 return;
5683
5684 memset(eoi_exit_bitmap, 0, 32);
5685 memset(tmr, 0, 32);
5686
5687 kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
5688 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
5689 kvm_apic_update_tmr(vcpu, tmr);
5690 }
5691
5692 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5693 {
5694 int r;
5695 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5696 vcpu->run->request_interrupt_window;
5697 bool req_immediate_exit = false;
5698
5699 if (vcpu->requests) {
5700 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5701 kvm_mmu_unload(vcpu);
5702 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5703 __kvm_migrate_timers(vcpu);
5704 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
5705 kvm_gen_update_masterclock(vcpu->kvm);
5706 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5707 r = kvm_guest_time_update(vcpu);
5708 if (unlikely(r))
5709 goto out;
5710 }
5711 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5712 kvm_mmu_sync_roots(vcpu);
5713 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5714 kvm_x86_ops->tlb_flush(vcpu);
5715 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5716 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5717 r = 0;
5718 goto out;
5719 }
5720 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5721 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5722 r = 0;
5723 goto out;
5724 }
5725 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5726 vcpu->fpu_active = 0;
5727 kvm_x86_ops->fpu_deactivate(vcpu);
5728 }
5729 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5730 /* Page is swapped out. Do synthetic halt */
5731 vcpu->arch.apf.halted = true;
5732 r = 1;
5733 goto out;
5734 }
5735 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5736 record_steal_time(vcpu);
5737 if (kvm_check_request(KVM_REQ_NMI, vcpu))
5738 process_nmi(vcpu);
5739 if (kvm_check_request(KVM_REQ_PMU, vcpu))
5740 kvm_handle_pmu_event(vcpu);
5741 if (kvm_check_request(KVM_REQ_PMI, vcpu))
5742 kvm_deliver_pmi(vcpu);
5743 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
5744 vcpu_scan_ioapic(vcpu);
5745 }
5746
5747 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5748 kvm_apic_accept_events(vcpu);
5749 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
5750 r = 1;
5751 goto out;
5752 }
5753
5754 inject_pending_event(vcpu);
5755
5756 /* enable NMI/IRQ window open exits if needed */
5757 if (vcpu->arch.nmi_pending)
5758 req_immediate_exit =
5759 kvm_x86_ops->enable_nmi_window(vcpu) != 0;
5760 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
5761 req_immediate_exit =
5762 kvm_x86_ops->enable_irq_window(vcpu) != 0;
5763
5764 if (kvm_lapic_enabled(vcpu)) {
5765 /*
5766 * Update architecture specific hints for APIC
5767 * virtual interrupt delivery.
5768 */
5769 if (kvm_x86_ops->hwapic_irr_update)
5770 kvm_x86_ops->hwapic_irr_update(vcpu,
5771 kvm_lapic_find_highest_irr(vcpu));
5772 update_cr8_intercept(vcpu);
5773 kvm_lapic_sync_to_vapic(vcpu);
5774 }
5775 }
5776
5777 r = kvm_mmu_reload(vcpu);
5778 if (unlikely(r)) {
5779 goto cancel_injection;
5780 }
5781
5782 preempt_disable();
5783
5784 kvm_x86_ops->prepare_guest_switch(vcpu);
5785 if (vcpu->fpu_active)
5786 kvm_load_guest_fpu(vcpu);
5787 kvm_load_guest_xcr0(vcpu);
5788
5789 vcpu->mode = IN_GUEST_MODE;
5790
5791 /* We should set ->mode before check ->requests,
5792 * see the comment in make_all_cpus_request.
5793 */
5794 smp_mb();
5795
5796 local_irq_disable();
5797
5798 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5799 || need_resched() || signal_pending(current)) {
5800 vcpu->mode = OUTSIDE_GUEST_MODE;
5801 smp_wmb();
5802 local_irq_enable();
5803 preempt_enable();
5804 r = 1;
5805 goto cancel_injection;
5806 }
5807
5808 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5809
5810 if (req_immediate_exit)
5811 smp_send_reschedule(vcpu->cpu);
5812
5813 kvm_guest_enter();
5814
5815 if (unlikely(vcpu->arch.switch_db_regs)) {
5816 set_debugreg(0, 7);
5817 set_debugreg(vcpu->arch.eff_db[0], 0);
5818 set_debugreg(vcpu->arch.eff_db[1], 1);
5819 set_debugreg(vcpu->arch.eff_db[2], 2);
5820 set_debugreg(vcpu->arch.eff_db[3], 3);
5821 }
5822
5823 trace_kvm_entry(vcpu->vcpu_id);
5824 kvm_x86_ops->run(vcpu);
5825
5826 /*
5827 * If the guest has used debug registers, at least dr7
5828 * will be disabled while returning to the host.
5829 * If we don't have active breakpoints in the host, we don't
5830 * care about the messed up debug address registers. But if
5831 * we have some of them active, restore the old state.
5832 */
5833 if (hw_breakpoint_active())
5834 hw_breakpoint_restore();
5835
5836 vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
5837 native_read_tsc());
5838
5839 vcpu->mode = OUTSIDE_GUEST_MODE;
5840 smp_wmb();
5841
5842 /* Interrupt is enabled by handle_external_intr() */
5843 kvm_x86_ops->handle_external_intr(vcpu);
5844
5845 ++vcpu->stat.exits;
5846
5847 /*
5848 * We must have an instruction between local_irq_enable() and
5849 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5850 * the interrupt shadow. The stat.exits increment will do nicely.
5851 * But we need to prevent reordering, hence this barrier():
5852 */
5853 barrier();
5854
5855 kvm_guest_exit();
5856
5857 preempt_enable();
5858
5859 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5860
5861 /*
5862 * Profile KVM exit RIPs:
5863 */
5864 if (unlikely(prof_on == KVM_PROFILING)) {
5865 unsigned long rip = kvm_rip_read(vcpu);
5866 profile_hit(KVM_PROFILING, (void *)rip);
5867 }
5868
5869 if (unlikely(vcpu->arch.tsc_always_catchup))
5870 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5871
5872 if (vcpu->arch.apic_attention)
5873 kvm_lapic_sync_from_vapic(vcpu);
5874
5875 r = kvm_x86_ops->handle_exit(vcpu);
5876 return r;
5877
5878 cancel_injection:
5879 kvm_x86_ops->cancel_injection(vcpu);
5880 if (unlikely(vcpu->arch.apic_attention))
5881 kvm_lapic_sync_from_vapic(vcpu);
5882 out:
5883 return r;
5884 }
5885
5886
5887 static int __vcpu_run(struct kvm_vcpu *vcpu)
5888 {
5889 int r;
5890 struct kvm *kvm = vcpu->kvm;
5891
5892 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5893 r = vapic_enter(vcpu);
5894 if (r) {
5895 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5896 return r;
5897 }
5898
5899 r = 1;
5900 while (r > 0) {
5901 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5902 !vcpu->arch.apf.halted)
5903 r = vcpu_enter_guest(vcpu);
5904 else {
5905 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5906 kvm_vcpu_block(vcpu);
5907 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5908 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
5909 kvm_apic_accept_events(vcpu);
5910 switch(vcpu->arch.mp_state) {
5911 case KVM_MP_STATE_HALTED:
5912 vcpu->arch.mp_state =
5913 KVM_MP_STATE_RUNNABLE;
5914 case KVM_MP_STATE_RUNNABLE:
5915 vcpu->arch.apf.halted = false;
5916 break;
5917 case KVM_MP_STATE_INIT_RECEIVED:
5918 break;
5919 default:
5920 r = -EINTR;
5921 break;
5922 }
5923 }
5924 }
5925
5926 if (r <= 0)
5927 break;
5928
5929 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5930 if (kvm_cpu_has_pending_timer(vcpu))
5931 kvm_inject_pending_timer_irqs(vcpu);
5932
5933 if (dm_request_for_irq_injection(vcpu)) {
5934 r = -EINTR;
5935 vcpu->run->exit_reason = KVM_EXIT_INTR;
5936 ++vcpu->stat.request_irq_exits;
5937 }
5938
5939 kvm_check_async_pf_completion(vcpu);
5940
5941 if (signal_pending(current)) {
5942 r = -EINTR;
5943 vcpu->run->exit_reason = KVM_EXIT_INTR;
5944 ++vcpu->stat.signal_exits;
5945 }
5946 if (need_resched()) {
5947 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5948 kvm_resched(vcpu);
5949 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5950 }
5951 }
5952
5953 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5954
5955 vapic_exit(vcpu);
5956
5957 return r;
5958 }
5959
5960 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
5961 {
5962 int r;
5963 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5964 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5965 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5966 if (r != EMULATE_DONE)
5967 return 0;
5968 return 1;
5969 }
5970
5971 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
5972 {
5973 BUG_ON(!vcpu->arch.pio.count);
5974
5975 return complete_emulated_io(vcpu);
5976 }
5977
5978 /*
5979 * Implements the following, as a state machine:
5980 *
5981 * read:
5982 * for each fragment
5983 * for each mmio piece in the fragment
5984 * write gpa, len
5985 * exit
5986 * copy data
5987 * execute insn
5988 *
5989 * write:
5990 * for each fragment
5991 * for each mmio piece in the fragment
5992 * write gpa, len
5993 * copy data
5994 * exit
5995 */
5996 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
5997 {
5998 struct kvm_run *run = vcpu->run;
5999 struct kvm_mmio_fragment *frag;
6000 unsigned len;
6001
6002 BUG_ON(!vcpu->mmio_needed);
6003
6004 /* Complete previous fragment */
6005 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6006 len = min(8u, frag->len);
6007 if (!vcpu->mmio_is_write)
6008 memcpy(frag->data, run->mmio.data, len);
6009
6010 if (frag->len <= 8) {
6011 /* Switch to the next fragment. */
6012 frag++;
6013 vcpu->mmio_cur_fragment++;
6014 } else {
6015 /* Go forward to the next mmio piece. */
6016 frag->data += len;
6017 frag->gpa += len;
6018 frag->len -= len;
6019 }
6020
6021 if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
6022 vcpu->mmio_needed = 0;
6023 if (vcpu->mmio_is_write)
6024 return 1;
6025 vcpu->mmio_read_completed = 1;
6026 return complete_emulated_io(vcpu);
6027 }
6028
6029 run->exit_reason = KVM_EXIT_MMIO;
6030 run->mmio.phys_addr = frag->gpa;
6031 if (vcpu->mmio_is_write)
6032 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6033 run->mmio.len = min(8u, frag->len);
6034 run->mmio.is_write = vcpu->mmio_is_write;
6035 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6036 return 0;
6037 }
6038
6039
6040 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6041 {
6042 int r;
6043 sigset_t sigsaved;
6044
6045 if (!tsk_used_math(current) && init_fpu(current))
6046 return -ENOMEM;
6047
6048 if (vcpu->sigset_active)
6049 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6050
6051 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6052 kvm_vcpu_block(vcpu);
6053 kvm_apic_accept_events(vcpu);
6054 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6055 r = -EAGAIN;
6056 goto out;
6057 }
6058
6059 /* re-sync apic's tpr */
6060 if (!irqchip_in_kernel(vcpu->kvm)) {
6061 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6062 r = -EINVAL;
6063 goto out;
6064 }
6065 }
6066
6067 if (unlikely(vcpu->arch.complete_userspace_io)) {
6068 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6069 vcpu->arch.complete_userspace_io = NULL;
6070 r = cui(vcpu);
6071 if (r <= 0)
6072 goto out;
6073 } else
6074 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6075
6076 r = __vcpu_run(vcpu);
6077
6078 out:
6079 post_kvm_run_save(vcpu);
6080 if (vcpu->sigset_active)
6081 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6082
6083 return r;
6084 }
6085
6086 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6087 {
6088 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6089 /*
6090 * We are here if userspace calls get_regs() in the middle of
6091 * instruction emulation. Registers state needs to be copied
6092 * back from emulation context to vcpu. Userspace shouldn't do
6093 * that usually, but some bad designed PV devices (vmware
6094 * backdoor interface) need this to work
6095 */
6096 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6097 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6098 }
6099 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6100 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6101 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6102 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6103 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6104 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6105 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6106 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6107 #ifdef CONFIG_X86_64
6108 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6109 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6110 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6111 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6112 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6113 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6114 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6115 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6116 #endif
6117
6118 regs->rip = kvm_rip_read(vcpu);
6119 regs->rflags = kvm_get_rflags(vcpu);
6120
6121 return 0;
6122 }
6123
6124 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6125 {
6126 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6127 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6128
6129 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6130 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6131 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6132 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6133 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6134 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6135 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6136 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6137 #ifdef CONFIG_X86_64
6138 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6139 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6140 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6141 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6142 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6143 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6144 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6145 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6146 #endif
6147
6148 kvm_rip_write(vcpu, regs->rip);
6149 kvm_set_rflags(vcpu, regs->rflags);
6150
6151 vcpu->arch.exception.pending = false;
6152
6153 kvm_make_request(KVM_REQ_EVENT, vcpu);
6154
6155 return 0;
6156 }
6157
6158 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6159 {
6160 struct kvm_segment cs;
6161
6162 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6163 *db = cs.db;
6164 *l = cs.l;
6165 }
6166 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6167
6168 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6169 struct kvm_sregs *sregs)
6170 {
6171 struct desc_ptr dt;
6172
6173 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6174 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6175 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6176 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6177 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6178 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6179
6180 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6181 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6182
6183 kvm_x86_ops->get_idt(vcpu, &dt);
6184 sregs->idt.limit = dt.size;
6185 sregs->idt.base = dt.address;
6186 kvm_x86_ops->get_gdt(vcpu, &dt);
6187 sregs->gdt.limit = dt.size;
6188 sregs->gdt.base = dt.address;
6189
6190 sregs->cr0 = kvm_read_cr0(vcpu);
6191 sregs->cr2 = vcpu->arch.cr2;
6192 sregs->cr3 = kvm_read_cr3(vcpu);
6193 sregs->cr4 = kvm_read_cr4(vcpu);
6194 sregs->cr8 = kvm_get_cr8(vcpu);
6195 sregs->efer = vcpu->arch.efer;
6196 sregs->apic_base = kvm_get_apic_base(vcpu);
6197
6198 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6199
6200 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6201 set_bit(vcpu->arch.interrupt.nr,
6202 (unsigned long *)sregs->interrupt_bitmap);
6203
6204 return 0;
6205 }
6206
6207 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6208 struct kvm_mp_state *mp_state)
6209 {
6210 kvm_apic_accept_events(vcpu);
6211 mp_state->mp_state = vcpu->arch.mp_state;
6212 return 0;
6213 }
6214
6215 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6216 struct kvm_mp_state *mp_state)
6217 {
6218 if (!kvm_vcpu_has_lapic(vcpu) &&
6219 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6220 return -EINVAL;
6221
6222 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6223 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6224 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6225 } else
6226 vcpu->arch.mp_state = mp_state->mp_state;
6227 kvm_make_request(KVM_REQ_EVENT, vcpu);
6228 return 0;
6229 }
6230
6231 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6232 int reason, bool has_error_code, u32 error_code)
6233 {
6234 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6235 int ret;
6236
6237 init_emulate_ctxt(vcpu);
6238
6239 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6240 has_error_code, error_code);
6241
6242 if (ret)
6243 return EMULATE_FAIL;
6244
6245 kvm_rip_write(vcpu, ctxt->eip);
6246 kvm_set_rflags(vcpu, ctxt->eflags);
6247 kvm_make_request(KVM_REQ_EVENT, vcpu);
6248 return EMULATE_DONE;
6249 }
6250 EXPORT_SYMBOL_GPL(kvm_task_switch);
6251
6252 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6253 struct kvm_sregs *sregs)
6254 {
6255 int mmu_reset_needed = 0;
6256 int pending_vec, max_bits, idx;
6257 struct desc_ptr dt;
6258
6259 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6260 return -EINVAL;
6261
6262 dt.size = sregs->idt.limit;
6263 dt.address = sregs->idt.base;
6264 kvm_x86_ops->set_idt(vcpu, &dt);
6265 dt.size = sregs->gdt.limit;
6266 dt.address = sregs->gdt.base;
6267 kvm_x86_ops->set_gdt(vcpu, &dt);
6268
6269 vcpu->arch.cr2 = sregs->cr2;
6270 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6271 vcpu->arch.cr3 = sregs->cr3;
6272 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6273
6274 kvm_set_cr8(vcpu, sregs->cr8);
6275
6276 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6277 kvm_x86_ops->set_efer(vcpu, sregs->efer);
6278 kvm_set_apic_base(vcpu, sregs->apic_base);
6279
6280 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6281 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6282 vcpu->arch.cr0 = sregs->cr0;
6283
6284 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6285 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6286 if (sregs->cr4 & X86_CR4_OSXSAVE)
6287 kvm_update_cpuid(vcpu);
6288
6289 idx = srcu_read_lock(&vcpu->kvm->srcu);
6290 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6291 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6292 mmu_reset_needed = 1;
6293 }
6294 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6295
6296 if (mmu_reset_needed)
6297 kvm_mmu_reset_context(vcpu);
6298
6299 max_bits = KVM_NR_INTERRUPTS;
6300 pending_vec = find_first_bit(
6301 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6302 if (pending_vec < max_bits) {
6303 kvm_queue_interrupt(vcpu, pending_vec, false);
6304 pr_debug("Set back pending irq %d\n", pending_vec);
6305 }
6306
6307 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6308 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6309 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6310 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6311 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6312 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6313
6314 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6315 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6316
6317 update_cr8_intercept(vcpu);
6318
6319 /* Older userspace won't unhalt the vcpu on reset. */
6320 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6321 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6322 !is_protmode(vcpu))
6323 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6324
6325 kvm_make_request(KVM_REQ_EVENT, vcpu);
6326
6327 return 0;
6328 }
6329
6330 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6331 struct kvm_guest_debug *dbg)
6332 {
6333 unsigned long rflags;
6334 int i, r;
6335
6336 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6337 r = -EBUSY;
6338 if (vcpu->arch.exception.pending)
6339 goto out;
6340 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6341 kvm_queue_exception(vcpu, DB_VECTOR);
6342 else
6343 kvm_queue_exception(vcpu, BP_VECTOR);
6344 }
6345
6346 /*
6347 * Read rflags as long as potentially injected trace flags are still
6348 * filtered out.
6349 */
6350 rflags = kvm_get_rflags(vcpu);
6351
6352 vcpu->guest_debug = dbg->control;
6353 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6354 vcpu->guest_debug = 0;
6355
6356 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6357 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6358 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6359 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6360 } else {
6361 for (i = 0; i < KVM_NR_DB_REGS; i++)
6362 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6363 }
6364 kvm_update_dr7(vcpu);
6365
6366 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6367 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6368 get_segment_base(vcpu, VCPU_SREG_CS);
6369
6370 /*
6371 * Trigger an rflags update that will inject or remove the trace
6372 * flags.
6373 */
6374 kvm_set_rflags(vcpu, rflags);
6375
6376 kvm_x86_ops->update_db_bp_intercept(vcpu);
6377
6378 r = 0;
6379
6380 out:
6381
6382 return r;
6383 }
6384
6385 /*
6386 * Translate a guest virtual address to a guest physical address.
6387 */
6388 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6389 struct kvm_translation *tr)
6390 {
6391 unsigned long vaddr = tr->linear_address;
6392 gpa_t gpa;
6393 int idx;
6394
6395 idx = srcu_read_lock(&vcpu->kvm->srcu);
6396 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6397 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6398 tr->physical_address = gpa;
6399 tr->valid = gpa != UNMAPPED_GVA;
6400 tr->writeable = 1;
6401 tr->usermode = 0;
6402
6403 return 0;
6404 }
6405
6406 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6407 {
6408 struct i387_fxsave_struct *fxsave =
6409 &vcpu->arch.guest_fpu.state->fxsave;
6410
6411 memcpy(fpu->fpr, fxsave->st_space, 128);
6412 fpu->fcw = fxsave->cwd;
6413 fpu->fsw = fxsave->swd;
6414 fpu->ftwx = fxsave->twd;
6415 fpu->last_opcode = fxsave->fop;
6416 fpu->last_ip = fxsave->rip;
6417 fpu->last_dp = fxsave->rdp;
6418 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6419
6420 return 0;
6421 }
6422
6423 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6424 {
6425 struct i387_fxsave_struct *fxsave =
6426 &vcpu->arch.guest_fpu.state->fxsave;
6427
6428 memcpy(fxsave->st_space, fpu->fpr, 128);
6429 fxsave->cwd = fpu->fcw;
6430 fxsave->swd = fpu->fsw;
6431 fxsave->twd = fpu->ftwx;
6432 fxsave->fop = fpu->last_opcode;
6433 fxsave->rip = fpu->last_ip;
6434 fxsave->rdp = fpu->last_dp;
6435 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6436
6437 return 0;
6438 }
6439
6440 int fx_init(struct kvm_vcpu *vcpu)
6441 {
6442 int err;
6443
6444 err = fpu_alloc(&vcpu->arch.guest_fpu);
6445 if (err)
6446 return err;
6447
6448 fpu_finit(&vcpu->arch.guest_fpu);
6449
6450 /*
6451 * Ensure guest xcr0 is valid for loading
6452 */
6453 vcpu->arch.xcr0 = XSTATE_FP;
6454
6455 vcpu->arch.cr0 |= X86_CR0_ET;
6456
6457 return 0;
6458 }
6459 EXPORT_SYMBOL_GPL(fx_init);
6460
6461 static void fx_free(struct kvm_vcpu *vcpu)
6462 {
6463 fpu_free(&vcpu->arch.guest_fpu);
6464 }
6465
6466 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6467 {
6468 if (vcpu->guest_fpu_loaded)
6469 return;
6470
6471 /*
6472 * Restore all possible states in the guest,
6473 * and assume host would use all available bits.
6474 * Guest xcr0 would be loaded later.
6475 */
6476 kvm_put_guest_xcr0(vcpu);
6477 vcpu->guest_fpu_loaded = 1;
6478 __kernel_fpu_begin();
6479 fpu_restore_checking(&vcpu->arch.guest_fpu);
6480 trace_kvm_fpu(1);
6481 }
6482
6483 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6484 {
6485 kvm_put_guest_xcr0(vcpu);
6486
6487 if (!vcpu->guest_fpu_loaded)
6488 return;
6489
6490 vcpu->guest_fpu_loaded = 0;
6491 fpu_save_init(&vcpu->arch.guest_fpu);
6492 __kernel_fpu_end();
6493 ++vcpu->stat.fpu_reload;
6494 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6495 trace_kvm_fpu(0);
6496 }
6497
6498 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6499 {
6500 kvmclock_reset(vcpu);
6501
6502 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6503 fx_free(vcpu);
6504 kvm_x86_ops->vcpu_free(vcpu);
6505 }
6506
6507 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6508 unsigned int id)
6509 {
6510 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6511 printk_once(KERN_WARNING
6512 "kvm: SMP vm created on host with unstable TSC; "
6513 "guest TSC will not be reliable\n");
6514 return kvm_x86_ops->vcpu_create(kvm, id);
6515 }
6516
6517 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6518 {
6519 int r;
6520
6521 vcpu->arch.mtrr_state.have_fixed = 1;
6522 r = vcpu_load(vcpu);
6523 if (r)
6524 return r;
6525 kvm_vcpu_reset(vcpu);
6526 r = kvm_mmu_setup(vcpu);
6527 vcpu_put(vcpu);
6528
6529 return r;
6530 }
6531
6532 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
6533 {
6534 int r;
6535 struct msr_data msr;
6536
6537 r = vcpu_load(vcpu);
6538 if (r)
6539 return r;
6540 msr.data = 0x0;
6541 msr.index = MSR_IA32_TSC;
6542 msr.host_initiated = true;
6543 kvm_write_tsc(vcpu, &msr);
6544 vcpu_put(vcpu);
6545
6546 return r;
6547 }
6548
6549 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6550 {
6551 int r;
6552 vcpu->arch.apf.msr_val = 0;
6553
6554 r = vcpu_load(vcpu);
6555 BUG_ON(r);
6556 kvm_mmu_unload(vcpu);
6557 vcpu_put(vcpu);
6558
6559 fx_free(vcpu);
6560 kvm_x86_ops->vcpu_free(vcpu);
6561 }
6562
6563 void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
6564 {
6565 atomic_set(&vcpu->arch.nmi_queued, 0);
6566 vcpu->arch.nmi_pending = 0;
6567 vcpu->arch.nmi_injected = false;
6568
6569 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6570 vcpu->arch.dr6 = DR6_FIXED_1;
6571 vcpu->arch.dr7 = DR7_FIXED_1;
6572 kvm_update_dr7(vcpu);
6573
6574 kvm_make_request(KVM_REQ_EVENT, vcpu);
6575 vcpu->arch.apf.msr_val = 0;
6576 vcpu->arch.st.msr_val = 0;
6577
6578 kvmclock_reset(vcpu);
6579
6580 kvm_clear_async_pf_completion_queue(vcpu);
6581 kvm_async_pf_hash_reset(vcpu);
6582 vcpu->arch.apf.halted = false;
6583
6584 kvm_pmu_reset(vcpu);
6585
6586 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
6587 vcpu->arch.regs_avail = ~0;
6588 vcpu->arch.regs_dirty = ~0;
6589
6590 kvm_x86_ops->vcpu_reset(vcpu);
6591 }
6592
6593 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector)
6594 {
6595 struct kvm_segment cs;
6596
6597 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6598 cs.selector = vector << 8;
6599 cs.base = vector << 12;
6600 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6601 kvm_rip_write(vcpu, 0);
6602 }
6603
6604 int kvm_arch_hardware_enable(void *garbage)
6605 {
6606 struct kvm *kvm;
6607 struct kvm_vcpu *vcpu;
6608 int i;
6609 int ret;
6610 u64 local_tsc;
6611 u64 max_tsc = 0;
6612 bool stable, backwards_tsc = false;
6613
6614 kvm_shared_msr_cpu_online();
6615 ret = kvm_x86_ops->hardware_enable(garbage);
6616 if (ret != 0)
6617 return ret;
6618
6619 local_tsc = native_read_tsc();
6620 stable = !check_tsc_unstable();
6621 list_for_each_entry(kvm, &vm_list, vm_list) {
6622 kvm_for_each_vcpu(i, vcpu, kvm) {
6623 if (!stable && vcpu->cpu == smp_processor_id())
6624 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6625 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6626 backwards_tsc = true;
6627 if (vcpu->arch.last_host_tsc > max_tsc)
6628 max_tsc = vcpu->arch.last_host_tsc;
6629 }
6630 }
6631 }
6632
6633 /*
6634 * Sometimes, even reliable TSCs go backwards. This happens on
6635 * platforms that reset TSC during suspend or hibernate actions, but
6636 * maintain synchronization. We must compensate. Fortunately, we can
6637 * detect that condition here, which happens early in CPU bringup,
6638 * before any KVM threads can be running. Unfortunately, we can't
6639 * bring the TSCs fully up to date with real time, as we aren't yet far
6640 * enough into CPU bringup that we know how much real time has actually
6641 * elapsed; our helper function, get_kernel_ns() will be using boot
6642 * variables that haven't been updated yet.
6643 *
6644 * So we simply find the maximum observed TSC above, then record the
6645 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
6646 * the adjustment will be applied. Note that we accumulate
6647 * adjustments, in case multiple suspend cycles happen before some VCPU
6648 * gets a chance to run again. In the event that no KVM threads get a
6649 * chance to run, we will miss the entire elapsed period, as we'll have
6650 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6651 * loose cycle time. This isn't too big a deal, since the loss will be
6652 * uniform across all VCPUs (not to mention the scenario is extremely
6653 * unlikely). It is possible that a second hibernate recovery happens
6654 * much faster than a first, causing the observed TSC here to be
6655 * smaller; this would require additional padding adjustment, which is
6656 * why we set last_host_tsc to the local tsc observed here.
6657 *
6658 * N.B. - this code below runs only on platforms with reliable TSC,
6659 * as that is the only way backwards_tsc is set above. Also note
6660 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6661 * have the same delta_cyc adjustment applied if backwards_tsc
6662 * is detected. Note further, this adjustment is only done once,
6663 * as we reset last_host_tsc on all VCPUs to stop this from being
6664 * called multiple times (one for each physical CPU bringup).
6665 *
6666 * Platforms with unreliable TSCs don't have to deal with this, they
6667 * will be compensated by the logic in vcpu_load, which sets the TSC to
6668 * catchup mode. This will catchup all VCPUs to real time, but cannot
6669 * guarantee that they stay in perfect synchronization.
6670 */
6671 if (backwards_tsc) {
6672 u64 delta_cyc = max_tsc - local_tsc;
6673 list_for_each_entry(kvm, &vm_list, vm_list) {
6674 kvm_for_each_vcpu(i, vcpu, kvm) {
6675 vcpu->arch.tsc_offset_adjustment += delta_cyc;
6676 vcpu->arch.last_host_tsc = local_tsc;
6677 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
6678 &vcpu->requests);
6679 }
6680
6681 /*
6682 * We have to disable TSC offset matching.. if you were
6683 * booting a VM while issuing an S4 host suspend....
6684 * you may have some problem. Solving this issue is
6685 * left as an exercise to the reader.
6686 */
6687 kvm->arch.last_tsc_nsec = 0;
6688 kvm->arch.last_tsc_write = 0;
6689 }
6690
6691 }
6692 return 0;
6693 }
6694
6695 void kvm_arch_hardware_disable(void *garbage)
6696 {
6697 kvm_x86_ops->hardware_disable(garbage);
6698 drop_user_return_notifiers(garbage);
6699 }
6700
6701 int kvm_arch_hardware_setup(void)
6702 {
6703 return kvm_x86_ops->hardware_setup();
6704 }
6705
6706 void kvm_arch_hardware_unsetup(void)
6707 {
6708 kvm_x86_ops->hardware_unsetup();
6709 }
6710
6711 void kvm_arch_check_processor_compat(void *rtn)
6712 {
6713 kvm_x86_ops->check_processor_compatibility(rtn);
6714 }
6715
6716 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6717 {
6718 return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6719 }
6720
6721 struct static_key kvm_no_apic_vcpu __read_mostly;
6722
6723 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6724 {
6725 struct page *page;
6726 struct kvm *kvm;
6727 int r;
6728
6729 BUG_ON(vcpu->kvm == NULL);
6730 kvm = vcpu->kvm;
6731
6732 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6733 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6734 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6735 else
6736 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6737
6738 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6739 if (!page) {
6740 r = -ENOMEM;
6741 goto fail;
6742 }
6743 vcpu->arch.pio_data = page_address(page);
6744
6745 kvm_set_tsc_khz(vcpu, max_tsc_khz);
6746
6747 r = kvm_mmu_create(vcpu);
6748 if (r < 0)
6749 goto fail_free_pio_data;
6750
6751 if (irqchip_in_kernel(kvm)) {
6752 r = kvm_create_lapic(vcpu);
6753 if (r < 0)
6754 goto fail_mmu_destroy;
6755 } else
6756 static_key_slow_inc(&kvm_no_apic_vcpu);
6757
6758 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6759 GFP_KERNEL);
6760 if (!vcpu->arch.mce_banks) {
6761 r = -ENOMEM;
6762 goto fail_free_lapic;
6763 }
6764 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6765
6766 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
6767 r = -ENOMEM;
6768 goto fail_free_mce_banks;
6769 }
6770
6771 r = fx_init(vcpu);
6772 if (r)
6773 goto fail_free_wbinvd_dirty_mask;
6774
6775 vcpu->arch.ia32_tsc_adjust_msr = 0x0;
6776 vcpu->arch.pv_time_enabled = false;
6777 kvm_async_pf_hash_reset(vcpu);
6778 kvm_pmu_init(vcpu);
6779
6780 return 0;
6781 fail_free_wbinvd_dirty_mask:
6782 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6783 fail_free_mce_banks:
6784 kfree(vcpu->arch.mce_banks);
6785 fail_free_lapic:
6786 kvm_free_lapic(vcpu);
6787 fail_mmu_destroy:
6788 kvm_mmu_destroy(vcpu);
6789 fail_free_pio_data:
6790 free_page((unsigned long)vcpu->arch.pio_data);
6791 fail:
6792 return r;
6793 }
6794
6795 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6796 {
6797 int idx;
6798
6799 kvm_pmu_destroy(vcpu);
6800 kfree(vcpu->arch.mce_banks);
6801 kvm_free_lapic(vcpu);
6802 idx = srcu_read_lock(&vcpu->kvm->srcu);
6803 kvm_mmu_destroy(vcpu);
6804 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6805 free_page((unsigned long)vcpu->arch.pio_data);
6806 if (!irqchip_in_kernel(vcpu->kvm))
6807 static_key_slow_dec(&kvm_no_apic_vcpu);
6808 }
6809
6810 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6811 {
6812 if (type)
6813 return -EINVAL;
6814
6815 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6816 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6817
6818 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6819 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6820 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
6821 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
6822 &kvm->arch.irq_sources_bitmap);
6823
6824 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6825 mutex_init(&kvm->arch.apic_map_lock);
6826 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
6827
6828 pvclock_update_vm_gtod_copy(kvm);
6829
6830 return 0;
6831 }
6832
6833 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6834 {
6835 int r;
6836 r = vcpu_load(vcpu);
6837 BUG_ON(r);
6838 kvm_mmu_unload(vcpu);
6839 vcpu_put(vcpu);
6840 }
6841
6842 static void kvm_free_vcpus(struct kvm *kvm)
6843 {
6844 unsigned int i;
6845 struct kvm_vcpu *vcpu;
6846
6847 /*
6848 * Unpin any mmu pages first.
6849 */
6850 kvm_for_each_vcpu(i, vcpu, kvm) {
6851 kvm_clear_async_pf_completion_queue(vcpu);
6852 kvm_unload_vcpu_mmu(vcpu);
6853 }
6854 kvm_for_each_vcpu(i, vcpu, kvm)
6855 kvm_arch_vcpu_free(vcpu);
6856
6857 mutex_lock(&kvm->lock);
6858 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6859 kvm->vcpus[i] = NULL;
6860
6861 atomic_set(&kvm->online_vcpus, 0);
6862 mutex_unlock(&kvm->lock);
6863 }
6864
6865 void kvm_arch_sync_events(struct kvm *kvm)
6866 {
6867 kvm_free_all_assigned_devices(kvm);
6868 kvm_free_pit(kvm);
6869 }
6870
6871 void kvm_arch_destroy_vm(struct kvm *kvm)
6872 {
6873 if (current->mm == kvm->mm) {
6874 /*
6875 * Free memory regions allocated on behalf of userspace,
6876 * unless the the memory map has changed due to process exit
6877 * or fd copying.
6878 */
6879 struct kvm_userspace_memory_region mem;
6880 memset(&mem, 0, sizeof(mem));
6881 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
6882 kvm_set_memory_region(kvm, &mem);
6883
6884 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
6885 kvm_set_memory_region(kvm, &mem);
6886
6887 mem.slot = TSS_PRIVATE_MEMSLOT;
6888 kvm_set_memory_region(kvm, &mem);
6889 }
6890 kvm_iommu_unmap_guest(kvm);
6891 kfree(kvm->arch.vpic);
6892 kfree(kvm->arch.vioapic);
6893 kvm_free_vcpus(kvm);
6894 if (kvm->arch.apic_access_page)
6895 put_page(kvm->arch.apic_access_page);
6896 if (kvm->arch.ept_identity_pagetable)
6897 put_page(kvm->arch.ept_identity_pagetable);
6898 kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
6899 }
6900
6901 void kvm_arch_free_memslot(struct kvm_memory_slot *free,
6902 struct kvm_memory_slot *dont)
6903 {
6904 int i;
6905
6906 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6907 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
6908 kvm_kvfree(free->arch.rmap[i]);
6909 free->arch.rmap[i] = NULL;
6910 }
6911 if (i == 0)
6912 continue;
6913
6914 if (!dont || free->arch.lpage_info[i - 1] !=
6915 dont->arch.lpage_info[i - 1]) {
6916 kvm_kvfree(free->arch.lpage_info[i - 1]);
6917 free->arch.lpage_info[i - 1] = NULL;
6918 }
6919 }
6920 }
6921
6922 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
6923 {
6924 int i;
6925
6926 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6927 unsigned long ugfn;
6928 int lpages;
6929 int level = i + 1;
6930
6931 lpages = gfn_to_index(slot->base_gfn + npages - 1,
6932 slot->base_gfn, level) + 1;
6933
6934 slot->arch.rmap[i] =
6935 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
6936 if (!slot->arch.rmap[i])
6937 goto out_free;
6938 if (i == 0)
6939 continue;
6940
6941 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
6942 sizeof(*slot->arch.lpage_info[i - 1]));
6943 if (!slot->arch.lpage_info[i - 1])
6944 goto out_free;
6945
6946 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
6947 slot->arch.lpage_info[i - 1][0].write_count = 1;
6948 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
6949 slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
6950 ugfn = slot->userspace_addr >> PAGE_SHIFT;
6951 /*
6952 * If the gfn and userspace address are not aligned wrt each
6953 * other, or if explicitly asked to, disable large page
6954 * support for this slot
6955 */
6956 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
6957 !kvm_largepages_enabled()) {
6958 unsigned long j;
6959
6960 for (j = 0; j < lpages; ++j)
6961 slot->arch.lpage_info[i - 1][j].write_count = 1;
6962 }
6963 }
6964
6965 return 0;
6966
6967 out_free:
6968 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6969 kvm_kvfree(slot->arch.rmap[i]);
6970 slot->arch.rmap[i] = NULL;
6971 if (i == 0)
6972 continue;
6973
6974 kvm_kvfree(slot->arch.lpage_info[i - 1]);
6975 slot->arch.lpage_info[i - 1] = NULL;
6976 }
6977 return -ENOMEM;
6978 }
6979
6980 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6981 struct kvm_memory_slot *memslot,
6982 struct kvm_userspace_memory_region *mem,
6983 enum kvm_mr_change change)
6984 {
6985 /*
6986 * Only private memory slots need to be mapped here since
6987 * KVM_SET_MEMORY_REGION ioctl is no longer supported.
6988 */
6989 if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
6990 unsigned long userspace_addr;
6991
6992 /*
6993 * MAP_SHARED to prevent internal slot pages from being moved
6994 * by fork()/COW.
6995 */
6996 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
6997 PROT_READ | PROT_WRITE,
6998 MAP_SHARED | MAP_ANONYMOUS, 0);
6999
7000 if (IS_ERR((void *)userspace_addr))
7001 return PTR_ERR((void *)userspace_addr);
7002
7003 memslot->userspace_addr = userspace_addr;
7004 }
7005
7006 return 0;
7007 }
7008
7009 void kvm_arch_commit_memory_region(struct kvm *kvm,
7010 struct kvm_userspace_memory_region *mem,
7011 const struct kvm_memory_slot *old,
7012 enum kvm_mr_change change)
7013 {
7014
7015 int nr_mmu_pages = 0;
7016
7017 if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7018 int ret;
7019
7020 ret = vm_munmap(old->userspace_addr,
7021 old->npages * PAGE_SIZE);
7022 if (ret < 0)
7023 printk(KERN_WARNING
7024 "kvm_vm_ioctl_set_memory_region: "
7025 "failed to munmap memory\n");
7026 }
7027
7028 if (!kvm->arch.n_requested_mmu_pages)
7029 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7030
7031 if (nr_mmu_pages)
7032 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7033 /*
7034 * Write protect all pages for dirty logging.
7035 * Existing largepage mappings are destroyed here and new ones will
7036 * not be created until the end of the logging.
7037 */
7038 if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES))
7039 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
7040 /*
7041 * If memory slot is created, or moved, we need to clear all
7042 * mmio sptes.
7043 */
7044 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
7045 kvm_mmu_zap_mmio_sptes(kvm);
7046 kvm_reload_remote_mmus(kvm);
7047 }
7048 }
7049
7050 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7051 {
7052 kvm_mmu_zap_all(kvm);
7053 kvm_reload_remote_mmus(kvm);
7054 }
7055
7056 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7057 struct kvm_memory_slot *slot)
7058 {
7059 kvm_arch_flush_shadow_all(kvm);
7060 }
7061
7062 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7063 {
7064 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7065 !vcpu->arch.apf.halted)
7066 || !list_empty_careful(&vcpu->async_pf.done)
7067 || kvm_apic_has_events(vcpu)
7068 || atomic_read(&vcpu->arch.nmi_queued) ||
7069 (kvm_arch_interrupt_allowed(vcpu) &&
7070 kvm_cpu_has_interrupt(vcpu));
7071 }
7072
7073 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7074 {
7075 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7076 }
7077
7078 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7079 {
7080 return kvm_x86_ops->interrupt_allowed(vcpu);
7081 }
7082
7083 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7084 {
7085 unsigned long current_rip = kvm_rip_read(vcpu) +
7086 get_segment_base(vcpu, VCPU_SREG_CS);
7087
7088 return current_rip == linear_rip;
7089 }
7090 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7091
7092 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7093 {
7094 unsigned long rflags;
7095
7096 rflags = kvm_x86_ops->get_rflags(vcpu);
7097 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7098 rflags &= ~X86_EFLAGS_TF;
7099 return rflags;
7100 }
7101 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7102
7103 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7104 {
7105 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7106 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7107 rflags |= X86_EFLAGS_TF;
7108 kvm_x86_ops->set_rflags(vcpu, rflags);
7109 kvm_make_request(KVM_REQ_EVENT, vcpu);
7110 }
7111 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7112
7113 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7114 {
7115 int r;
7116
7117 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7118 is_error_page(work->page))
7119 return;
7120
7121 r = kvm_mmu_reload(vcpu);
7122 if (unlikely(r))
7123 return;
7124
7125 if (!vcpu->arch.mmu.direct_map &&
7126 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7127 return;
7128
7129 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7130 }
7131
7132 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7133 {
7134 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7135 }
7136
7137 static inline u32 kvm_async_pf_next_probe(u32 key)
7138 {
7139 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7140 }
7141
7142 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7143 {
7144 u32 key = kvm_async_pf_hash_fn(gfn);
7145
7146 while (vcpu->arch.apf.gfns[key] != ~0)
7147 key = kvm_async_pf_next_probe(key);
7148
7149 vcpu->arch.apf.gfns[key] = gfn;
7150 }
7151
7152 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7153 {
7154 int i;
7155 u32 key = kvm_async_pf_hash_fn(gfn);
7156
7157 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7158 (vcpu->arch.apf.gfns[key] != gfn &&
7159 vcpu->arch.apf.gfns[key] != ~0); i++)
7160 key = kvm_async_pf_next_probe(key);
7161
7162 return key;
7163 }
7164
7165 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7166 {
7167 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7168 }
7169
7170 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7171 {
7172 u32 i, j, k;
7173
7174 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7175 while (true) {
7176 vcpu->arch.apf.gfns[i] = ~0;
7177 do {
7178 j = kvm_async_pf_next_probe(j);
7179 if (vcpu->arch.apf.gfns[j] == ~0)
7180 return;
7181 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7182 /*
7183 * k lies cyclically in ]i,j]
7184 * | i.k.j |
7185 * |....j i.k.| or |.k..j i...|
7186 */
7187 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7188 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7189 i = j;
7190 }
7191 }
7192
7193 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7194 {
7195
7196 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7197 sizeof(val));
7198 }
7199
7200 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7201 struct kvm_async_pf *work)
7202 {
7203 struct x86_exception fault;
7204
7205 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7206 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7207
7208 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7209 (vcpu->arch.apf.send_user_only &&
7210 kvm_x86_ops->get_cpl(vcpu) == 0))
7211 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7212 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7213 fault.vector = PF_VECTOR;
7214 fault.error_code_valid = true;
7215 fault.error_code = 0;
7216 fault.nested_page_fault = false;
7217 fault.address = work->arch.token;
7218 kvm_inject_page_fault(vcpu, &fault);
7219 }
7220 }
7221
7222 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7223 struct kvm_async_pf *work)
7224 {
7225 struct x86_exception fault;
7226
7227 trace_kvm_async_pf_ready(work->arch.token, work->gva);
7228 if (is_error_page(work->page))
7229 work->arch.token = ~0; /* broadcast wakeup */
7230 else
7231 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7232
7233 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7234 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7235 fault.vector = PF_VECTOR;
7236 fault.error_code_valid = true;
7237 fault.error_code = 0;
7238 fault.nested_page_fault = false;
7239 fault.address = work->arch.token;
7240 kvm_inject_page_fault(vcpu, &fault);
7241 }
7242 vcpu->arch.apf.halted = false;
7243 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7244 }
7245
7246 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7247 {
7248 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7249 return true;
7250 else
7251 return !kvm_event_needs_reinjection(vcpu) &&
7252 kvm_x86_ops->interrupt_allowed(vcpu);
7253 }
7254
7255 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7256 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7257 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7258 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7259 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7260 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7261 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7262 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7263 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7264 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7265 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7266 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
This page took 0.350299 seconds and 5 git commands to generate.