6bd19c7abc6581e6785947e2146a472564dd42f2
[deliverable/linux.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/module.h>
39 #include <linux/mman.h>
40 #include <linux/highmem.h>
41 #include <linux/iommu.h>
42 #include <linux/intel-iommu.h>
43 #include <linux/cpufreq.h>
44 #include <linux/user-return-notifier.h>
45 #include <linux/srcu.h>
46 #include <linux/slab.h>
47 #include <linux/perf_event.h>
48 #include <linux/uaccess.h>
49 #include <linux/hash.h>
50 #include <linux/pci.h>
51 #include <linux/timekeeper_internal.h>
52 #include <linux/pvclock_gtod.h>
53 #include <trace/events/kvm.h>
54
55 #define CREATE_TRACE_POINTS
56 #include "trace.h"
57
58 #include <asm/debugreg.h>
59 #include <asm/msr.h>
60 #include <asm/desc.h>
61 #include <asm/mce.h>
62 #include <linux/kernel_stat.h>
63 #include <asm/fpu/internal.h> /* Ugh! */
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
66
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
70
71 #define emul_to_vcpu(ctxt) \
72 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
73
74 /* EFER defaults:
75 * - enable syscall per default because its emulated by KVM
76 * - enable LME and LMA per default on 64 bit KVM
77 */
78 #ifdef CONFIG_X86_64
79 static
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
81 #else
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #endif
84
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
87
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
90 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
91
92 struct kvm_x86_ops *kvm_x86_ops;
93 EXPORT_SYMBOL_GPL(kvm_x86_ops);
94
95 static bool ignore_msrs = 0;
96 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
97
98 unsigned int min_timer_period_us = 500;
99 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
100
101 static bool __read_mostly kvmclock_periodic_sync = true;
102 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
103
104 bool kvm_has_tsc_control;
105 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
106 u32 kvm_max_guest_tsc_khz;
107 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
108
109 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
110 static u32 tsc_tolerance_ppm = 250;
111 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
112
113 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
114 unsigned int lapic_timer_advance_ns = 0;
115 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
116
117 static bool backwards_tsc_observed = false;
118
119 #define KVM_NR_SHARED_MSRS 16
120
121 struct kvm_shared_msrs_global {
122 int nr;
123 u32 msrs[KVM_NR_SHARED_MSRS];
124 };
125
126 struct kvm_shared_msrs {
127 struct user_return_notifier urn;
128 bool registered;
129 struct kvm_shared_msr_values {
130 u64 host;
131 u64 curr;
132 } values[KVM_NR_SHARED_MSRS];
133 };
134
135 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
136 static struct kvm_shared_msrs __percpu *shared_msrs;
137
138 struct kvm_stats_debugfs_item debugfs_entries[] = {
139 { "pf_fixed", VCPU_STAT(pf_fixed) },
140 { "pf_guest", VCPU_STAT(pf_guest) },
141 { "tlb_flush", VCPU_STAT(tlb_flush) },
142 { "invlpg", VCPU_STAT(invlpg) },
143 { "exits", VCPU_STAT(exits) },
144 { "io_exits", VCPU_STAT(io_exits) },
145 { "mmio_exits", VCPU_STAT(mmio_exits) },
146 { "signal_exits", VCPU_STAT(signal_exits) },
147 { "irq_window", VCPU_STAT(irq_window_exits) },
148 { "nmi_window", VCPU_STAT(nmi_window_exits) },
149 { "halt_exits", VCPU_STAT(halt_exits) },
150 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
151 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
152 { "hypercalls", VCPU_STAT(hypercalls) },
153 { "request_irq", VCPU_STAT(request_irq_exits) },
154 { "irq_exits", VCPU_STAT(irq_exits) },
155 { "host_state_reload", VCPU_STAT(host_state_reload) },
156 { "efer_reload", VCPU_STAT(efer_reload) },
157 { "fpu_reload", VCPU_STAT(fpu_reload) },
158 { "insn_emulation", VCPU_STAT(insn_emulation) },
159 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
160 { "irq_injections", VCPU_STAT(irq_injections) },
161 { "nmi_injections", VCPU_STAT(nmi_injections) },
162 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
163 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
164 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
165 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
166 { "mmu_flooded", VM_STAT(mmu_flooded) },
167 { "mmu_recycled", VM_STAT(mmu_recycled) },
168 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
169 { "mmu_unsync", VM_STAT(mmu_unsync) },
170 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
171 { "largepages", VM_STAT(lpages) },
172 { NULL }
173 };
174
175 u64 __read_mostly host_xcr0;
176
177 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
178
179 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
180 {
181 int i;
182 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
183 vcpu->arch.apf.gfns[i] = ~0;
184 }
185
186 static void kvm_on_user_return(struct user_return_notifier *urn)
187 {
188 unsigned slot;
189 struct kvm_shared_msrs *locals
190 = container_of(urn, struct kvm_shared_msrs, urn);
191 struct kvm_shared_msr_values *values;
192
193 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
194 values = &locals->values[slot];
195 if (values->host != values->curr) {
196 wrmsrl(shared_msrs_global.msrs[slot], values->host);
197 values->curr = values->host;
198 }
199 }
200 locals->registered = false;
201 user_return_notifier_unregister(urn);
202 }
203
204 static void shared_msr_update(unsigned slot, u32 msr)
205 {
206 u64 value;
207 unsigned int cpu = smp_processor_id();
208 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
209
210 /* only read, and nobody should modify it at this time,
211 * so don't need lock */
212 if (slot >= shared_msrs_global.nr) {
213 printk(KERN_ERR "kvm: invalid MSR slot!");
214 return;
215 }
216 rdmsrl_safe(msr, &value);
217 smsr->values[slot].host = value;
218 smsr->values[slot].curr = value;
219 }
220
221 void kvm_define_shared_msr(unsigned slot, u32 msr)
222 {
223 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
224 if (slot >= shared_msrs_global.nr)
225 shared_msrs_global.nr = slot + 1;
226 shared_msrs_global.msrs[slot] = msr;
227 /* we need ensured the shared_msr_global have been updated */
228 smp_wmb();
229 }
230 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
231
232 static void kvm_shared_msr_cpu_online(void)
233 {
234 unsigned i;
235
236 for (i = 0; i < shared_msrs_global.nr; ++i)
237 shared_msr_update(i, shared_msrs_global.msrs[i]);
238 }
239
240 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
241 {
242 unsigned int cpu = smp_processor_id();
243 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
244 int err;
245
246 if (((value ^ smsr->values[slot].curr) & mask) == 0)
247 return 0;
248 smsr->values[slot].curr = value;
249 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
250 if (err)
251 return 1;
252
253 if (!smsr->registered) {
254 smsr->urn.on_user_return = kvm_on_user_return;
255 user_return_notifier_register(&smsr->urn);
256 smsr->registered = true;
257 }
258 return 0;
259 }
260 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
261
262 static void drop_user_return_notifiers(void)
263 {
264 unsigned int cpu = smp_processor_id();
265 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
266
267 if (smsr->registered)
268 kvm_on_user_return(&smsr->urn);
269 }
270
271 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
272 {
273 return vcpu->arch.apic_base;
274 }
275 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
276
277 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
278 {
279 u64 old_state = vcpu->arch.apic_base &
280 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
281 u64 new_state = msr_info->data &
282 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
283 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
284 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
285
286 if (!msr_info->host_initiated &&
287 ((msr_info->data & reserved_bits) != 0 ||
288 new_state == X2APIC_ENABLE ||
289 (new_state == MSR_IA32_APICBASE_ENABLE &&
290 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
291 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
292 old_state == 0)))
293 return 1;
294
295 kvm_lapic_set_base(vcpu, msr_info->data);
296 return 0;
297 }
298 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
299
300 asmlinkage __visible void kvm_spurious_fault(void)
301 {
302 /* Fault while not rebooting. We want the trace. */
303 BUG();
304 }
305 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
306
307 #define EXCPT_BENIGN 0
308 #define EXCPT_CONTRIBUTORY 1
309 #define EXCPT_PF 2
310
311 static int exception_class(int vector)
312 {
313 switch (vector) {
314 case PF_VECTOR:
315 return EXCPT_PF;
316 case DE_VECTOR:
317 case TS_VECTOR:
318 case NP_VECTOR:
319 case SS_VECTOR:
320 case GP_VECTOR:
321 return EXCPT_CONTRIBUTORY;
322 default:
323 break;
324 }
325 return EXCPT_BENIGN;
326 }
327
328 #define EXCPT_FAULT 0
329 #define EXCPT_TRAP 1
330 #define EXCPT_ABORT 2
331 #define EXCPT_INTERRUPT 3
332
333 static int exception_type(int vector)
334 {
335 unsigned int mask;
336
337 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
338 return EXCPT_INTERRUPT;
339
340 mask = 1 << vector;
341
342 /* #DB is trap, as instruction watchpoints are handled elsewhere */
343 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
344 return EXCPT_TRAP;
345
346 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
347 return EXCPT_ABORT;
348
349 /* Reserved exceptions will result in fault */
350 return EXCPT_FAULT;
351 }
352
353 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
354 unsigned nr, bool has_error, u32 error_code,
355 bool reinject)
356 {
357 u32 prev_nr;
358 int class1, class2;
359
360 kvm_make_request(KVM_REQ_EVENT, vcpu);
361
362 if (!vcpu->arch.exception.pending) {
363 queue:
364 if (has_error && !is_protmode(vcpu))
365 has_error = false;
366 vcpu->arch.exception.pending = true;
367 vcpu->arch.exception.has_error_code = has_error;
368 vcpu->arch.exception.nr = nr;
369 vcpu->arch.exception.error_code = error_code;
370 vcpu->arch.exception.reinject = reinject;
371 return;
372 }
373
374 /* to check exception */
375 prev_nr = vcpu->arch.exception.nr;
376 if (prev_nr == DF_VECTOR) {
377 /* triple fault -> shutdown */
378 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
379 return;
380 }
381 class1 = exception_class(prev_nr);
382 class2 = exception_class(nr);
383 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
384 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
385 /* generate double fault per SDM Table 5-5 */
386 vcpu->arch.exception.pending = true;
387 vcpu->arch.exception.has_error_code = true;
388 vcpu->arch.exception.nr = DF_VECTOR;
389 vcpu->arch.exception.error_code = 0;
390 } else
391 /* replace previous exception with a new one in a hope
392 that instruction re-execution will regenerate lost
393 exception */
394 goto queue;
395 }
396
397 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
398 {
399 kvm_multiple_exception(vcpu, nr, false, 0, false);
400 }
401 EXPORT_SYMBOL_GPL(kvm_queue_exception);
402
403 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
404 {
405 kvm_multiple_exception(vcpu, nr, false, 0, true);
406 }
407 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
408
409 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
410 {
411 if (err)
412 kvm_inject_gp(vcpu, 0);
413 else
414 kvm_x86_ops->skip_emulated_instruction(vcpu);
415 }
416 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
417
418 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
419 {
420 ++vcpu->stat.pf_guest;
421 vcpu->arch.cr2 = fault->address;
422 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
423 }
424 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
425
426 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
427 {
428 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
429 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
430 else
431 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
432
433 return fault->nested_page_fault;
434 }
435
436 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
437 {
438 atomic_inc(&vcpu->arch.nmi_queued);
439 kvm_make_request(KVM_REQ_NMI, vcpu);
440 }
441 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
442
443 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
444 {
445 kvm_multiple_exception(vcpu, nr, true, error_code, false);
446 }
447 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
448
449 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
450 {
451 kvm_multiple_exception(vcpu, nr, true, error_code, true);
452 }
453 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
454
455 /*
456 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
457 * a #GP and return false.
458 */
459 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
460 {
461 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
462 return true;
463 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
464 return false;
465 }
466 EXPORT_SYMBOL_GPL(kvm_require_cpl);
467
468 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
469 {
470 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
471 return true;
472
473 kvm_queue_exception(vcpu, UD_VECTOR);
474 return false;
475 }
476 EXPORT_SYMBOL_GPL(kvm_require_dr);
477
478 /*
479 * This function will be used to read from the physical memory of the currently
480 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
481 * can read from guest physical or from the guest's guest physical memory.
482 */
483 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
484 gfn_t ngfn, void *data, int offset, int len,
485 u32 access)
486 {
487 struct x86_exception exception;
488 gfn_t real_gfn;
489 gpa_t ngpa;
490
491 ngpa = gfn_to_gpa(ngfn);
492 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
493 if (real_gfn == UNMAPPED_GVA)
494 return -EFAULT;
495
496 real_gfn = gpa_to_gfn(real_gfn);
497
498 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
499 }
500 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
501
502 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
503 void *data, int offset, int len, u32 access)
504 {
505 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
506 data, offset, len, access);
507 }
508
509 /*
510 * Load the pae pdptrs. Return true is they are all valid.
511 */
512 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
513 {
514 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
515 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
516 int i;
517 int ret;
518 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
519
520 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
521 offset * sizeof(u64), sizeof(pdpte),
522 PFERR_USER_MASK|PFERR_WRITE_MASK);
523 if (ret < 0) {
524 ret = 0;
525 goto out;
526 }
527 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
528 if (is_present_gpte(pdpte[i]) &&
529 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
530 ret = 0;
531 goto out;
532 }
533 }
534 ret = 1;
535
536 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
537 __set_bit(VCPU_EXREG_PDPTR,
538 (unsigned long *)&vcpu->arch.regs_avail);
539 __set_bit(VCPU_EXREG_PDPTR,
540 (unsigned long *)&vcpu->arch.regs_dirty);
541 out:
542
543 return ret;
544 }
545 EXPORT_SYMBOL_GPL(load_pdptrs);
546
547 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
548 {
549 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
550 bool changed = true;
551 int offset;
552 gfn_t gfn;
553 int r;
554
555 if (is_long_mode(vcpu) || !is_pae(vcpu))
556 return false;
557
558 if (!test_bit(VCPU_EXREG_PDPTR,
559 (unsigned long *)&vcpu->arch.regs_avail))
560 return true;
561
562 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
563 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
564 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
565 PFERR_USER_MASK | PFERR_WRITE_MASK);
566 if (r < 0)
567 goto out;
568 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
569 out:
570
571 return changed;
572 }
573
574 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
575 {
576 unsigned long old_cr0 = kvm_read_cr0(vcpu);
577 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
578
579 cr0 |= X86_CR0_ET;
580
581 #ifdef CONFIG_X86_64
582 if (cr0 & 0xffffffff00000000UL)
583 return 1;
584 #endif
585
586 cr0 &= ~CR0_RESERVED_BITS;
587
588 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
589 return 1;
590
591 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
592 return 1;
593
594 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
595 #ifdef CONFIG_X86_64
596 if ((vcpu->arch.efer & EFER_LME)) {
597 int cs_db, cs_l;
598
599 if (!is_pae(vcpu))
600 return 1;
601 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
602 if (cs_l)
603 return 1;
604 } else
605 #endif
606 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
607 kvm_read_cr3(vcpu)))
608 return 1;
609 }
610
611 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
612 return 1;
613
614 kvm_x86_ops->set_cr0(vcpu, cr0);
615
616 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
617 kvm_clear_async_pf_completion_queue(vcpu);
618 kvm_async_pf_hash_reset(vcpu);
619 }
620
621 if ((cr0 ^ old_cr0) & update_bits)
622 kvm_mmu_reset_context(vcpu);
623
624 if ((cr0 ^ old_cr0) & X86_CR0_CD)
625 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
626
627 return 0;
628 }
629 EXPORT_SYMBOL_GPL(kvm_set_cr0);
630
631 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
632 {
633 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
634 }
635 EXPORT_SYMBOL_GPL(kvm_lmsw);
636
637 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
638 {
639 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
640 !vcpu->guest_xcr0_loaded) {
641 /* kvm_set_xcr() also depends on this */
642 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
643 vcpu->guest_xcr0_loaded = 1;
644 }
645 }
646
647 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
648 {
649 if (vcpu->guest_xcr0_loaded) {
650 if (vcpu->arch.xcr0 != host_xcr0)
651 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
652 vcpu->guest_xcr0_loaded = 0;
653 }
654 }
655
656 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
657 {
658 u64 xcr0 = xcr;
659 u64 old_xcr0 = vcpu->arch.xcr0;
660 u64 valid_bits;
661
662 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
663 if (index != XCR_XFEATURE_ENABLED_MASK)
664 return 1;
665 if (!(xcr0 & XSTATE_FP))
666 return 1;
667 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
668 return 1;
669
670 /*
671 * Do not allow the guest to set bits that we do not support
672 * saving. However, xcr0 bit 0 is always set, even if the
673 * emulated CPU does not support XSAVE (see fx_init).
674 */
675 valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
676 if (xcr0 & ~valid_bits)
677 return 1;
678
679 if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR)))
680 return 1;
681
682 if (xcr0 & XSTATE_AVX512) {
683 if (!(xcr0 & XSTATE_YMM))
684 return 1;
685 if ((xcr0 & XSTATE_AVX512) != XSTATE_AVX512)
686 return 1;
687 }
688 kvm_put_guest_xcr0(vcpu);
689 vcpu->arch.xcr0 = xcr0;
690
691 if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK)
692 kvm_update_cpuid(vcpu);
693 return 0;
694 }
695
696 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
697 {
698 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
699 __kvm_set_xcr(vcpu, index, xcr)) {
700 kvm_inject_gp(vcpu, 0);
701 return 1;
702 }
703 return 0;
704 }
705 EXPORT_SYMBOL_GPL(kvm_set_xcr);
706
707 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
708 {
709 unsigned long old_cr4 = kvm_read_cr4(vcpu);
710 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
711 X86_CR4_SMEP | X86_CR4_SMAP;
712
713 if (cr4 & CR4_RESERVED_BITS)
714 return 1;
715
716 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
717 return 1;
718
719 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
720 return 1;
721
722 if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
723 return 1;
724
725 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
726 return 1;
727
728 if (is_long_mode(vcpu)) {
729 if (!(cr4 & X86_CR4_PAE))
730 return 1;
731 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
732 && ((cr4 ^ old_cr4) & pdptr_bits)
733 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
734 kvm_read_cr3(vcpu)))
735 return 1;
736
737 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
738 if (!guest_cpuid_has_pcid(vcpu))
739 return 1;
740
741 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
742 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
743 return 1;
744 }
745
746 if (kvm_x86_ops->set_cr4(vcpu, cr4))
747 return 1;
748
749 if (((cr4 ^ old_cr4) & pdptr_bits) ||
750 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
751 kvm_mmu_reset_context(vcpu);
752
753 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
754 kvm_update_cpuid(vcpu);
755
756 return 0;
757 }
758 EXPORT_SYMBOL_GPL(kvm_set_cr4);
759
760 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
761 {
762 #ifdef CONFIG_X86_64
763 cr3 &= ~CR3_PCID_INVD;
764 #endif
765
766 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
767 kvm_mmu_sync_roots(vcpu);
768 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
769 return 0;
770 }
771
772 if (is_long_mode(vcpu)) {
773 if (cr3 & CR3_L_MODE_RESERVED_BITS)
774 return 1;
775 } else if (is_pae(vcpu) && is_paging(vcpu) &&
776 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
777 return 1;
778
779 vcpu->arch.cr3 = cr3;
780 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
781 kvm_mmu_new_cr3(vcpu);
782 return 0;
783 }
784 EXPORT_SYMBOL_GPL(kvm_set_cr3);
785
786 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
787 {
788 if (cr8 & CR8_RESERVED_BITS)
789 return 1;
790 if (irqchip_in_kernel(vcpu->kvm))
791 kvm_lapic_set_tpr(vcpu, cr8);
792 else
793 vcpu->arch.cr8 = cr8;
794 return 0;
795 }
796 EXPORT_SYMBOL_GPL(kvm_set_cr8);
797
798 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
799 {
800 if (irqchip_in_kernel(vcpu->kvm))
801 return kvm_lapic_get_cr8(vcpu);
802 else
803 return vcpu->arch.cr8;
804 }
805 EXPORT_SYMBOL_GPL(kvm_get_cr8);
806
807 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
808 {
809 int i;
810
811 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
812 for (i = 0; i < KVM_NR_DB_REGS; i++)
813 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
814 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
815 }
816 }
817
818 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
819 {
820 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
821 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
822 }
823
824 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
825 {
826 unsigned long dr7;
827
828 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
829 dr7 = vcpu->arch.guest_debug_dr7;
830 else
831 dr7 = vcpu->arch.dr7;
832 kvm_x86_ops->set_dr7(vcpu, dr7);
833 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
834 if (dr7 & DR7_BP_EN_MASK)
835 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
836 }
837
838 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
839 {
840 u64 fixed = DR6_FIXED_1;
841
842 if (!guest_cpuid_has_rtm(vcpu))
843 fixed |= DR6_RTM;
844 return fixed;
845 }
846
847 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
848 {
849 switch (dr) {
850 case 0 ... 3:
851 vcpu->arch.db[dr] = val;
852 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
853 vcpu->arch.eff_db[dr] = val;
854 break;
855 case 4:
856 /* fall through */
857 case 6:
858 if (val & 0xffffffff00000000ULL)
859 return -1; /* #GP */
860 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
861 kvm_update_dr6(vcpu);
862 break;
863 case 5:
864 /* fall through */
865 default: /* 7 */
866 if (val & 0xffffffff00000000ULL)
867 return -1; /* #GP */
868 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
869 kvm_update_dr7(vcpu);
870 break;
871 }
872
873 return 0;
874 }
875
876 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
877 {
878 if (__kvm_set_dr(vcpu, dr, val)) {
879 kvm_inject_gp(vcpu, 0);
880 return 1;
881 }
882 return 0;
883 }
884 EXPORT_SYMBOL_GPL(kvm_set_dr);
885
886 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
887 {
888 switch (dr) {
889 case 0 ... 3:
890 *val = vcpu->arch.db[dr];
891 break;
892 case 4:
893 /* fall through */
894 case 6:
895 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
896 *val = vcpu->arch.dr6;
897 else
898 *val = kvm_x86_ops->get_dr6(vcpu);
899 break;
900 case 5:
901 /* fall through */
902 default: /* 7 */
903 *val = vcpu->arch.dr7;
904 break;
905 }
906 return 0;
907 }
908 EXPORT_SYMBOL_GPL(kvm_get_dr);
909
910 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
911 {
912 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
913 u64 data;
914 int err;
915
916 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
917 if (err)
918 return err;
919 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
920 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
921 return err;
922 }
923 EXPORT_SYMBOL_GPL(kvm_rdpmc);
924
925 /*
926 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
927 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
928 *
929 * This list is modified at module load time to reflect the
930 * capabilities of the host cpu. This capabilities test skips MSRs that are
931 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
932 * may depend on host virtualization features rather than host cpu features.
933 */
934
935 static u32 msrs_to_save[] = {
936 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
937 MSR_STAR,
938 #ifdef CONFIG_X86_64
939 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
940 #endif
941 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
942 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
943 };
944
945 static unsigned num_msrs_to_save;
946
947 static u32 emulated_msrs[] = {
948 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
949 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
950 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
951 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
952 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
953 MSR_KVM_PV_EOI_EN,
954
955 MSR_IA32_TSC_ADJUST,
956 MSR_IA32_TSCDEADLINE,
957 MSR_IA32_MISC_ENABLE,
958 MSR_IA32_MCG_STATUS,
959 MSR_IA32_MCG_CTL,
960 MSR_IA32_SMBASE,
961 };
962
963 static unsigned num_emulated_msrs;
964
965 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
966 {
967 if (efer & efer_reserved_bits)
968 return false;
969
970 if (efer & EFER_FFXSR) {
971 struct kvm_cpuid_entry2 *feat;
972
973 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
974 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
975 return false;
976 }
977
978 if (efer & EFER_SVME) {
979 struct kvm_cpuid_entry2 *feat;
980
981 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
982 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
983 return false;
984 }
985
986 return true;
987 }
988 EXPORT_SYMBOL_GPL(kvm_valid_efer);
989
990 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
991 {
992 u64 old_efer = vcpu->arch.efer;
993
994 if (!kvm_valid_efer(vcpu, efer))
995 return 1;
996
997 if (is_paging(vcpu)
998 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
999 return 1;
1000
1001 efer &= ~EFER_LMA;
1002 efer |= vcpu->arch.efer & EFER_LMA;
1003
1004 kvm_x86_ops->set_efer(vcpu, efer);
1005
1006 /* Update reserved bits */
1007 if ((efer ^ old_efer) & EFER_NX)
1008 kvm_mmu_reset_context(vcpu);
1009
1010 return 0;
1011 }
1012
1013 void kvm_enable_efer_bits(u64 mask)
1014 {
1015 efer_reserved_bits &= ~mask;
1016 }
1017 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1018
1019 /*
1020 * Writes msr value into into the appropriate "register".
1021 * Returns 0 on success, non-0 otherwise.
1022 * Assumes vcpu_load() was already called.
1023 */
1024 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1025 {
1026 switch (msr->index) {
1027 case MSR_FS_BASE:
1028 case MSR_GS_BASE:
1029 case MSR_KERNEL_GS_BASE:
1030 case MSR_CSTAR:
1031 case MSR_LSTAR:
1032 if (is_noncanonical_address(msr->data))
1033 return 1;
1034 break;
1035 case MSR_IA32_SYSENTER_EIP:
1036 case MSR_IA32_SYSENTER_ESP:
1037 /*
1038 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1039 * non-canonical address is written on Intel but not on
1040 * AMD (which ignores the top 32-bits, because it does
1041 * not implement 64-bit SYSENTER).
1042 *
1043 * 64-bit code should hence be able to write a non-canonical
1044 * value on AMD. Making the address canonical ensures that
1045 * vmentry does not fail on Intel after writing a non-canonical
1046 * value, and that something deterministic happens if the guest
1047 * invokes 64-bit SYSENTER.
1048 */
1049 msr->data = get_canonical(msr->data);
1050 }
1051 return kvm_x86_ops->set_msr(vcpu, msr);
1052 }
1053 EXPORT_SYMBOL_GPL(kvm_set_msr);
1054
1055 /*
1056 * Adapt set_msr() to msr_io()'s calling convention
1057 */
1058 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1059 {
1060 struct msr_data msr;
1061 int r;
1062
1063 msr.index = index;
1064 msr.host_initiated = true;
1065 r = kvm_get_msr(vcpu, &msr);
1066 if (r)
1067 return r;
1068
1069 *data = msr.data;
1070 return 0;
1071 }
1072
1073 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1074 {
1075 struct msr_data msr;
1076
1077 msr.data = *data;
1078 msr.index = index;
1079 msr.host_initiated = true;
1080 return kvm_set_msr(vcpu, &msr);
1081 }
1082
1083 #ifdef CONFIG_X86_64
1084 struct pvclock_gtod_data {
1085 seqcount_t seq;
1086
1087 struct { /* extract of a clocksource struct */
1088 int vclock_mode;
1089 cycle_t cycle_last;
1090 cycle_t mask;
1091 u32 mult;
1092 u32 shift;
1093 } clock;
1094
1095 u64 boot_ns;
1096 u64 nsec_base;
1097 };
1098
1099 static struct pvclock_gtod_data pvclock_gtod_data;
1100
1101 static void update_pvclock_gtod(struct timekeeper *tk)
1102 {
1103 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1104 u64 boot_ns;
1105
1106 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1107
1108 write_seqcount_begin(&vdata->seq);
1109
1110 /* copy pvclock gtod data */
1111 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
1112 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1113 vdata->clock.mask = tk->tkr_mono.mask;
1114 vdata->clock.mult = tk->tkr_mono.mult;
1115 vdata->clock.shift = tk->tkr_mono.shift;
1116
1117 vdata->boot_ns = boot_ns;
1118 vdata->nsec_base = tk->tkr_mono.xtime_nsec;
1119
1120 write_seqcount_end(&vdata->seq);
1121 }
1122 #endif
1123
1124 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1125 {
1126 /*
1127 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1128 * vcpu_enter_guest. This function is only called from
1129 * the physical CPU that is running vcpu.
1130 */
1131 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1132 }
1133
1134 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1135 {
1136 int version;
1137 int r;
1138 struct pvclock_wall_clock wc;
1139 struct timespec boot;
1140
1141 if (!wall_clock)
1142 return;
1143
1144 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1145 if (r)
1146 return;
1147
1148 if (version & 1)
1149 ++version; /* first time write, random junk */
1150
1151 ++version;
1152
1153 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1154
1155 /*
1156 * The guest calculates current wall clock time by adding
1157 * system time (updated by kvm_guest_time_update below) to the
1158 * wall clock specified here. guest system time equals host
1159 * system time for us, thus we must fill in host boot time here.
1160 */
1161 getboottime(&boot);
1162
1163 if (kvm->arch.kvmclock_offset) {
1164 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1165 boot = timespec_sub(boot, ts);
1166 }
1167 wc.sec = boot.tv_sec;
1168 wc.nsec = boot.tv_nsec;
1169 wc.version = version;
1170
1171 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1172
1173 version++;
1174 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1175 }
1176
1177 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1178 {
1179 uint32_t quotient, remainder;
1180
1181 /* Don't try to replace with do_div(), this one calculates
1182 * "(dividend << 32) / divisor" */
1183 __asm__ ( "divl %4"
1184 : "=a" (quotient), "=d" (remainder)
1185 : "0" (0), "1" (dividend), "r" (divisor) );
1186 return quotient;
1187 }
1188
1189 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1190 s8 *pshift, u32 *pmultiplier)
1191 {
1192 uint64_t scaled64;
1193 int32_t shift = 0;
1194 uint64_t tps64;
1195 uint32_t tps32;
1196
1197 tps64 = base_khz * 1000LL;
1198 scaled64 = scaled_khz * 1000LL;
1199 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1200 tps64 >>= 1;
1201 shift--;
1202 }
1203
1204 tps32 = (uint32_t)tps64;
1205 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1206 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1207 scaled64 >>= 1;
1208 else
1209 tps32 <<= 1;
1210 shift++;
1211 }
1212
1213 *pshift = shift;
1214 *pmultiplier = div_frac(scaled64, tps32);
1215
1216 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1217 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1218 }
1219
1220 static inline u64 get_kernel_ns(void)
1221 {
1222 return ktime_get_boot_ns();
1223 }
1224
1225 #ifdef CONFIG_X86_64
1226 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1227 #endif
1228
1229 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1230 static unsigned long max_tsc_khz;
1231
1232 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1233 {
1234 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1235 vcpu->arch.virtual_tsc_shift);
1236 }
1237
1238 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1239 {
1240 u64 v = (u64)khz * (1000000 + ppm);
1241 do_div(v, 1000000);
1242 return v;
1243 }
1244
1245 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1246 {
1247 u32 thresh_lo, thresh_hi;
1248 int use_scaling = 0;
1249
1250 /* tsc_khz can be zero if TSC calibration fails */
1251 if (this_tsc_khz == 0)
1252 return;
1253
1254 /* Compute a scale to convert nanoseconds in TSC cycles */
1255 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1256 &vcpu->arch.virtual_tsc_shift,
1257 &vcpu->arch.virtual_tsc_mult);
1258 vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1259
1260 /*
1261 * Compute the variation in TSC rate which is acceptable
1262 * within the range of tolerance and decide if the
1263 * rate being applied is within that bounds of the hardware
1264 * rate. If so, no scaling or compensation need be done.
1265 */
1266 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1267 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1268 if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1269 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1270 use_scaling = 1;
1271 }
1272 kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1273 }
1274
1275 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1276 {
1277 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1278 vcpu->arch.virtual_tsc_mult,
1279 vcpu->arch.virtual_tsc_shift);
1280 tsc += vcpu->arch.this_tsc_write;
1281 return tsc;
1282 }
1283
1284 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1285 {
1286 #ifdef CONFIG_X86_64
1287 bool vcpus_matched;
1288 struct kvm_arch *ka = &vcpu->kvm->arch;
1289 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1290
1291 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1292 atomic_read(&vcpu->kvm->online_vcpus));
1293
1294 /*
1295 * Once the masterclock is enabled, always perform request in
1296 * order to update it.
1297 *
1298 * In order to enable masterclock, the host clocksource must be TSC
1299 * and the vcpus need to have matched TSCs. When that happens,
1300 * perform request to enable masterclock.
1301 */
1302 if (ka->use_master_clock ||
1303 (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1304 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1305
1306 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1307 atomic_read(&vcpu->kvm->online_vcpus),
1308 ka->use_master_clock, gtod->clock.vclock_mode);
1309 #endif
1310 }
1311
1312 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1313 {
1314 u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1315 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1316 }
1317
1318 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1319 {
1320 struct kvm *kvm = vcpu->kvm;
1321 u64 offset, ns, elapsed;
1322 unsigned long flags;
1323 s64 usdiff;
1324 bool matched;
1325 bool already_matched;
1326 u64 data = msr->data;
1327
1328 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1329 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1330 ns = get_kernel_ns();
1331 elapsed = ns - kvm->arch.last_tsc_nsec;
1332
1333 if (vcpu->arch.virtual_tsc_khz) {
1334 int faulted = 0;
1335
1336 /* n.b - signed multiplication and division required */
1337 usdiff = data - kvm->arch.last_tsc_write;
1338 #ifdef CONFIG_X86_64
1339 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1340 #else
1341 /* do_div() only does unsigned */
1342 asm("1: idivl %[divisor]\n"
1343 "2: xor %%edx, %%edx\n"
1344 " movl $0, %[faulted]\n"
1345 "3:\n"
1346 ".section .fixup,\"ax\"\n"
1347 "4: movl $1, %[faulted]\n"
1348 " jmp 3b\n"
1349 ".previous\n"
1350
1351 _ASM_EXTABLE(1b, 4b)
1352
1353 : "=A"(usdiff), [faulted] "=r" (faulted)
1354 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1355
1356 #endif
1357 do_div(elapsed, 1000);
1358 usdiff -= elapsed;
1359 if (usdiff < 0)
1360 usdiff = -usdiff;
1361
1362 /* idivl overflow => difference is larger than USEC_PER_SEC */
1363 if (faulted)
1364 usdiff = USEC_PER_SEC;
1365 } else
1366 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1367
1368 /*
1369 * Special case: TSC write with a small delta (1 second) of virtual
1370 * cycle time against real time is interpreted as an attempt to
1371 * synchronize the CPU.
1372 *
1373 * For a reliable TSC, we can match TSC offsets, and for an unstable
1374 * TSC, we add elapsed time in this computation. We could let the
1375 * compensation code attempt to catch up if we fall behind, but
1376 * it's better to try to match offsets from the beginning.
1377 */
1378 if (usdiff < USEC_PER_SEC &&
1379 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1380 if (!check_tsc_unstable()) {
1381 offset = kvm->arch.cur_tsc_offset;
1382 pr_debug("kvm: matched tsc offset for %llu\n", data);
1383 } else {
1384 u64 delta = nsec_to_cycles(vcpu, elapsed);
1385 data += delta;
1386 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1387 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1388 }
1389 matched = true;
1390 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1391 } else {
1392 /*
1393 * We split periods of matched TSC writes into generations.
1394 * For each generation, we track the original measured
1395 * nanosecond time, offset, and write, so if TSCs are in
1396 * sync, we can match exact offset, and if not, we can match
1397 * exact software computation in compute_guest_tsc()
1398 *
1399 * These values are tracked in kvm->arch.cur_xxx variables.
1400 */
1401 kvm->arch.cur_tsc_generation++;
1402 kvm->arch.cur_tsc_nsec = ns;
1403 kvm->arch.cur_tsc_write = data;
1404 kvm->arch.cur_tsc_offset = offset;
1405 matched = false;
1406 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1407 kvm->arch.cur_tsc_generation, data);
1408 }
1409
1410 /*
1411 * We also track th most recent recorded KHZ, write and time to
1412 * allow the matching interval to be extended at each write.
1413 */
1414 kvm->arch.last_tsc_nsec = ns;
1415 kvm->arch.last_tsc_write = data;
1416 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1417
1418 vcpu->arch.last_guest_tsc = data;
1419
1420 /* Keep track of which generation this VCPU has synchronized to */
1421 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1422 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1423 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1424
1425 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1426 update_ia32_tsc_adjust_msr(vcpu, offset);
1427 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1428 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1429
1430 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1431 if (!matched) {
1432 kvm->arch.nr_vcpus_matched_tsc = 0;
1433 } else if (!already_matched) {
1434 kvm->arch.nr_vcpus_matched_tsc++;
1435 }
1436
1437 kvm_track_tsc_matching(vcpu);
1438 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1439 }
1440
1441 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1442
1443 #ifdef CONFIG_X86_64
1444
1445 static cycle_t read_tsc(void)
1446 {
1447 cycle_t ret;
1448 u64 last;
1449
1450 /*
1451 * Empirically, a fence (of type that depends on the CPU)
1452 * before rdtsc is enough to ensure that rdtsc is ordered
1453 * with respect to loads. The various CPU manuals are unclear
1454 * as to whether rdtsc can be reordered with later loads,
1455 * but no one has ever seen it happen.
1456 */
1457 rdtsc_barrier();
1458 ret = (cycle_t)vget_cycles();
1459
1460 last = pvclock_gtod_data.clock.cycle_last;
1461
1462 if (likely(ret >= last))
1463 return ret;
1464
1465 /*
1466 * GCC likes to generate cmov here, but this branch is extremely
1467 * predictable (it's just a funciton of time and the likely is
1468 * very likely) and there's a data dependence, so force GCC
1469 * to generate a branch instead. I don't barrier() because
1470 * we don't actually need a barrier, and if this function
1471 * ever gets inlined it will generate worse code.
1472 */
1473 asm volatile ("");
1474 return last;
1475 }
1476
1477 static inline u64 vgettsc(cycle_t *cycle_now)
1478 {
1479 long v;
1480 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1481
1482 *cycle_now = read_tsc();
1483
1484 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1485 return v * gtod->clock.mult;
1486 }
1487
1488 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1489 {
1490 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1491 unsigned long seq;
1492 int mode;
1493 u64 ns;
1494
1495 do {
1496 seq = read_seqcount_begin(&gtod->seq);
1497 mode = gtod->clock.vclock_mode;
1498 ns = gtod->nsec_base;
1499 ns += vgettsc(cycle_now);
1500 ns >>= gtod->clock.shift;
1501 ns += gtod->boot_ns;
1502 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1503 *t = ns;
1504
1505 return mode;
1506 }
1507
1508 /* returns true if host is using tsc clocksource */
1509 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1510 {
1511 /* checked again under seqlock below */
1512 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1513 return false;
1514
1515 return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1516 }
1517 #endif
1518
1519 /*
1520 *
1521 * Assuming a stable TSC across physical CPUS, and a stable TSC
1522 * across virtual CPUs, the following condition is possible.
1523 * Each numbered line represents an event visible to both
1524 * CPUs at the next numbered event.
1525 *
1526 * "timespecX" represents host monotonic time. "tscX" represents
1527 * RDTSC value.
1528 *
1529 * VCPU0 on CPU0 | VCPU1 on CPU1
1530 *
1531 * 1. read timespec0,tsc0
1532 * 2. | timespec1 = timespec0 + N
1533 * | tsc1 = tsc0 + M
1534 * 3. transition to guest | transition to guest
1535 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1536 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1537 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1538 *
1539 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1540 *
1541 * - ret0 < ret1
1542 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1543 * ...
1544 * - 0 < N - M => M < N
1545 *
1546 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1547 * always the case (the difference between two distinct xtime instances
1548 * might be smaller then the difference between corresponding TSC reads,
1549 * when updating guest vcpus pvclock areas).
1550 *
1551 * To avoid that problem, do not allow visibility of distinct
1552 * system_timestamp/tsc_timestamp values simultaneously: use a master
1553 * copy of host monotonic time values. Update that master copy
1554 * in lockstep.
1555 *
1556 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1557 *
1558 */
1559
1560 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1561 {
1562 #ifdef CONFIG_X86_64
1563 struct kvm_arch *ka = &kvm->arch;
1564 int vclock_mode;
1565 bool host_tsc_clocksource, vcpus_matched;
1566
1567 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1568 atomic_read(&kvm->online_vcpus));
1569
1570 /*
1571 * If the host uses TSC clock, then passthrough TSC as stable
1572 * to the guest.
1573 */
1574 host_tsc_clocksource = kvm_get_time_and_clockread(
1575 &ka->master_kernel_ns,
1576 &ka->master_cycle_now);
1577
1578 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1579 && !backwards_tsc_observed
1580 && !ka->boot_vcpu_runs_old_kvmclock;
1581
1582 if (ka->use_master_clock)
1583 atomic_set(&kvm_guest_has_master_clock, 1);
1584
1585 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1586 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1587 vcpus_matched);
1588 #endif
1589 }
1590
1591 static void kvm_gen_update_masterclock(struct kvm *kvm)
1592 {
1593 #ifdef CONFIG_X86_64
1594 int i;
1595 struct kvm_vcpu *vcpu;
1596 struct kvm_arch *ka = &kvm->arch;
1597
1598 spin_lock(&ka->pvclock_gtod_sync_lock);
1599 kvm_make_mclock_inprogress_request(kvm);
1600 /* no guest entries from this point */
1601 pvclock_update_vm_gtod_copy(kvm);
1602
1603 kvm_for_each_vcpu(i, vcpu, kvm)
1604 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1605
1606 /* guest entries allowed */
1607 kvm_for_each_vcpu(i, vcpu, kvm)
1608 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1609
1610 spin_unlock(&ka->pvclock_gtod_sync_lock);
1611 #endif
1612 }
1613
1614 static int kvm_guest_time_update(struct kvm_vcpu *v)
1615 {
1616 unsigned long flags, this_tsc_khz;
1617 struct kvm_vcpu_arch *vcpu = &v->arch;
1618 struct kvm_arch *ka = &v->kvm->arch;
1619 s64 kernel_ns;
1620 u64 tsc_timestamp, host_tsc;
1621 struct pvclock_vcpu_time_info guest_hv_clock;
1622 u8 pvclock_flags;
1623 bool use_master_clock;
1624
1625 kernel_ns = 0;
1626 host_tsc = 0;
1627
1628 /*
1629 * If the host uses TSC clock, then passthrough TSC as stable
1630 * to the guest.
1631 */
1632 spin_lock(&ka->pvclock_gtod_sync_lock);
1633 use_master_clock = ka->use_master_clock;
1634 if (use_master_clock) {
1635 host_tsc = ka->master_cycle_now;
1636 kernel_ns = ka->master_kernel_ns;
1637 }
1638 spin_unlock(&ka->pvclock_gtod_sync_lock);
1639
1640 /* Keep irq disabled to prevent changes to the clock */
1641 local_irq_save(flags);
1642 this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1643 if (unlikely(this_tsc_khz == 0)) {
1644 local_irq_restore(flags);
1645 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1646 return 1;
1647 }
1648 if (!use_master_clock) {
1649 host_tsc = native_read_tsc();
1650 kernel_ns = get_kernel_ns();
1651 }
1652
1653 tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1654
1655 /*
1656 * We may have to catch up the TSC to match elapsed wall clock
1657 * time for two reasons, even if kvmclock is used.
1658 * 1) CPU could have been running below the maximum TSC rate
1659 * 2) Broken TSC compensation resets the base at each VCPU
1660 * entry to avoid unknown leaps of TSC even when running
1661 * again on the same CPU. This may cause apparent elapsed
1662 * time to disappear, and the guest to stand still or run
1663 * very slowly.
1664 */
1665 if (vcpu->tsc_catchup) {
1666 u64 tsc = compute_guest_tsc(v, kernel_ns);
1667 if (tsc > tsc_timestamp) {
1668 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1669 tsc_timestamp = tsc;
1670 }
1671 }
1672
1673 local_irq_restore(flags);
1674
1675 if (!vcpu->pv_time_enabled)
1676 return 0;
1677
1678 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1679 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1680 &vcpu->hv_clock.tsc_shift,
1681 &vcpu->hv_clock.tsc_to_system_mul);
1682 vcpu->hw_tsc_khz = this_tsc_khz;
1683 }
1684
1685 /* With all the info we got, fill in the values */
1686 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1687 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1688 vcpu->last_guest_tsc = tsc_timestamp;
1689
1690 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1691 &guest_hv_clock, sizeof(guest_hv_clock))))
1692 return 0;
1693
1694 /* This VCPU is paused, but it's legal for a guest to read another
1695 * VCPU's kvmclock, so we really have to follow the specification where
1696 * it says that version is odd if data is being modified, and even after
1697 * it is consistent.
1698 *
1699 * Version field updates must be kept separate. This is because
1700 * kvm_write_guest_cached might use a "rep movs" instruction, and
1701 * writes within a string instruction are weakly ordered. So there
1702 * are three writes overall.
1703 *
1704 * As a small optimization, only write the version field in the first
1705 * and third write. The vcpu->pv_time cache is still valid, because the
1706 * version field is the first in the struct.
1707 */
1708 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1709
1710 vcpu->hv_clock.version = guest_hv_clock.version + 1;
1711 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1712 &vcpu->hv_clock,
1713 sizeof(vcpu->hv_clock.version));
1714
1715 smp_wmb();
1716
1717 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1718 pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1719
1720 if (vcpu->pvclock_set_guest_stopped_request) {
1721 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1722 vcpu->pvclock_set_guest_stopped_request = false;
1723 }
1724
1725 pvclock_flags |= PVCLOCK_COUNTS_FROM_ZERO;
1726
1727 /* If the host uses TSC clocksource, then it is stable */
1728 if (use_master_clock)
1729 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1730
1731 vcpu->hv_clock.flags = pvclock_flags;
1732
1733 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1734
1735 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1736 &vcpu->hv_clock,
1737 sizeof(vcpu->hv_clock));
1738
1739 smp_wmb();
1740
1741 vcpu->hv_clock.version++;
1742 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1743 &vcpu->hv_clock,
1744 sizeof(vcpu->hv_clock.version));
1745 return 0;
1746 }
1747
1748 /*
1749 * kvmclock updates which are isolated to a given vcpu, such as
1750 * vcpu->cpu migration, should not allow system_timestamp from
1751 * the rest of the vcpus to remain static. Otherwise ntp frequency
1752 * correction applies to one vcpu's system_timestamp but not
1753 * the others.
1754 *
1755 * So in those cases, request a kvmclock update for all vcpus.
1756 * We need to rate-limit these requests though, as they can
1757 * considerably slow guests that have a large number of vcpus.
1758 * The time for a remote vcpu to update its kvmclock is bound
1759 * by the delay we use to rate-limit the updates.
1760 */
1761
1762 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1763
1764 static void kvmclock_update_fn(struct work_struct *work)
1765 {
1766 int i;
1767 struct delayed_work *dwork = to_delayed_work(work);
1768 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1769 kvmclock_update_work);
1770 struct kvm *kvm = container_of(ka, struct kvm, arch);
1771 struct kvm_vcpu *vcpu;
1772
1773 kvm_for_each_vcpu(i, vcpu, kvm) {
1774 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1775 kvm_vcpu_kick(vcpu);
1776 }
1777 }
1778
1779 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1780 {
1781 struct kvm *kvm = v->kvm;
1782
1783 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1784 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1785 KVMCLOCK_UPDATE_DELAY);
1786 }
1787
1788 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1789
1790 static void kvmclock_sync_fn(struct work_struct *work)
1791 {
1792 struct delayed_work *dwork = to_delayed_work(work);
1793 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1794 kvmclock_sync_work);
1795 struct kvm *kvm = container_of(ka, struct kvm, arch);
1796
1797 if (!kvmclock_periodic_sync)
1798 return;
1799
1800 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1801 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1802 KVMCLOCK_SYNC_PERIOD);
1803 }
1804
1805 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1806 {
1807 u64 mcg_cap = vcpu->arch.mcg_cap;
1808 unsigned bank_num = mcg_cap & 0xff;
1809
1810 switch (msr) {
1811 case MSR_IA32_MCG_STATUS:
1812 vcpu->arch.mcg_status = data;
1813 break;
1814 case MSR_IA32_MCG_CTL:
1815 if (!(mcg_cap & MCG_CTL_P))
1816 return 1;
1817 if (data != 0 && data != ~(u64)0)
1818 return -1;
1819 vcpu->arch.mcg_ctl = data;
1820 break;
1821 default:
1822 if (msr >= MSR_IA32_MC0_CTL &&
1823 msr < MSR_IA32_MCx_CTL(bank_num)) {
1824 u32 offset = msr - MSR_IA32_MC0_CTL;
1825 /* only 0 or all 1s can be written to IA32_MCi_CTL
1826 * some Linux kernels though clear bit 10 in bank 4 to
1827 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1828 * this to avoid an uncatched #GP in the guest
1829 */
1830 if ((offset & 0x3) == 0 &&
1831 data != 0 && (data | (1 << 10)) != ~(u64)0)
1832 return -1;
1833 vcpu->arch.mce_banks[offset] = data;
1834 break;
1835 }
1836 return 1;
1837 }
1838 return 0;
1839 }
1840
1841 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1842 {
1843 struct kvm *kvm = vcpu->kvm;
1844 int lm = is_long_mode(vcpu);
1845 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1846 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1847 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1848 : kvm->arch.xen_hvm_config.blob_size_32;
1849 u32 page_num = data & ~PAGE_MASK;
1850 u64 page_addr = data & PAGE_MASK;
1851 u8 *page;
1852 int r;
1853
1854 r = -E2BIG;
1855 if (page_num >= blob_size)
1856 goto out;
1857 r = -ENOMEM;
1858 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1859 if (IS_ERR(page)) {
1860 r = PTR_ERR(page);
1861 goto out;
1862 }
1863 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
1864 goto out_free;
1865 r = 0;
1866 out_free:
1867 kfree(page);
1868 out:
1869 return r;
1870 }
1871
1872 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1873 {
1874 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1875 }
1876
1877 static bool kvm_hv_msr_partition_wide(u32 msr)
1878 {
1879 bool r = false;
1880 switch (msr) {
1881 case HV_X64_MSR_GUEST_OS_ID:
1882 case HV_X64_MSR_HYPERCALL:
1883 case HV_X64_MSR_REFERENCE_TSC:
1884 case HV_X64_MSR_TIME_REF_COUNT:
1885 r = true;
1886 break;
1887 }
1888
1889 return r;
1890 }
1891
1892 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1893 {
1894 struct kvm *kvm = vcpu->kvm;
1895
1896 switch (msr) {
1897 case HV_X64_MSR_GUEST_OS_ID:
1898 kvm->arch.hv_guest_os_id = data;
1899 /* setting guest os id to zero disables hypercall page */
1900 if (!kvm->arch.hv_guest_os_id)
1901 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1902 break;
1903 case HV_X64_MSR_HYPERCALL: {
1904 u64 gfn;
1905 unsigned long addr;
1906 u8 instructions[4];
1907
1908 /* if guest os id is not set hypercall should remain disabled */
1909 if (!kvm->arch.hv_guest_os_id)
1910 break;
1911 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1912 kvm->arch.hv_hypercall = data;
1913 break;
1914 }
1915 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1916 addr = gfn_to_hva(kvm, gfn);
1917 if (kvm_is_error_hva(addr))
1918 return 1;
1919 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1920 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1921 if (__copy_to_user((void __user *)addr, instructions, 4))
1922 return 1;
1923 kvm->arch.hv_hypercall = data;
1924 mark_page_dirty(kvm, gfn);
1925 break;
1926 }
1927 case HV_X64_MSR_REFERENCE_TSC: {
1928 u64 gfn;
1929 HV_REFERENCE_TSC_PAGE tsc_ref;
1930 memset(&tsc_ref, 0, sizeof(tsc_ref));
1931 kvm->arch.hv_tsc_page = data;
1932 if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1933 break;
1934 gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1935 if (kvm_write_guest(kvm, gfn << HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT,
1936 &tsc_ref, sizeof(tsc_ref)))
1937 return 1;
1938 mark_page_dirty(kvm, gfn);
1939 break;
1940 }
1941 default:
1942 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1943 "data 0x%llx\n", msr, data);
1944 return 1;
1945 }
1946 return 0;
1947 }
1948
1949 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1950 {
1951 switch (msr) {
1952 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1953 u64 gfn;
1954 unsigned long addr;
1955
1956 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1957 vcpu->arch.hv_vapic = data;
1958 if (kvm_lapic_enable_pv_eoi(vcpu, 0))
1959 return 1;
1960 break;
1961 }
1962 gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT;
1963 addr = kvm_vcpu_gfn_to_hva(vcpu, gfn);
1964 if (kvm_is_error_hva(addr))
1965 return 1;
1966 if (__clear_user((void __user *)addr, PAGE_SIZE))
1967 return 1;
1968 vcpu->arch.hv_vapic = data;
1969 kvm_vcpu_mark_page_dirty(vcpu, gfn);
1970 if (kvm_lapic_enable_pv_eoi(vcpu, gfn_to_gpa(gfn) | KVM_MSR_ENABLED))
1971 return 1;
1972 break;
1973 }
1974 case HV_X64_MSR_EOI:
1975 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1976 case HV_X64_MSR_ICR:
1977 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1978 case HV_X64_MSR_TPR:
1979 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1980 default:
1981 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1982 "data 0x%llx\n", msr, data);
1983 return 1;
1984 }
1985
1986 return 0;
1987 }
1988
1989 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1990 {
1991 gpa_t gpa = data & ~0x3f;
1992
1993 /* Bits 2:5 are reserved, Should be zero */
1994 if (data & 0x3c)
1995 return 1;
1996
1997 vcpu->arch.apf.msr_val = data;
1998
1999 if (!(data & KVM_ASYNC_PF_ENABLED)) {
2000 kvm_clear_async_pf_completion_queue(vcpu);
2001 kvm_async_pf_hash_reset(vcpu);
2002 return 0;
2003 }
2004
2005 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2006 sizeof(u32)))
2007 return 1;
2008
2009 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2010 kvm_async_pf_wakeup_all(vcpu);
2011 return 0;
2012 }
2013
2014 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2015 {
2016 vcpu->arch.pv_time_enabled = false;
2017 }
2018
2019 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
2020 {
2021 u64 delta;
2022
2023 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2024 return;
2025
2026 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2027 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2028 vcpu->arch.st.accum_steal = delta;
2029 }
2030
2031 static void record_steal_time(struct kvm_vcpu *vcpu)
2032 {
2033 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2034 return;
2035
2036 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2037 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2038 return;
2039
2040 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2041 vcpu->arch.st.steal.version += 2;
2042 vcpu->arch.st.accum_steal = 0;
2043
2044 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2045 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2046 }
2047
2048 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2049 {
2050 bool pr = false;
2051 u32 msr = msr_info->index;
2052 u64 data = msr_info->data;
2053
2054 switch (msr) {
2055 case MSR_AMD64_NB_CFG:
2056 case MSR_IA32_UCODE_REV:
2057 case MSR_IA32_UCODE_WRITE:
2058 case MSR_VM_HSAVE_PA:
2059 case MSR_AMD64_PATCH_LOADER:
2060 case MSR_AMD64_BU_CFG2:
2061 break;
2062
2063 case MSR_EFER:
2064 return set_efer(vcpu, data);
2065 case MSR_K7_HWCR:
2066 data &= ~(u64)0x40; /* ignore flush filter disable */
2067 data &= ~(u64)0x100; /* ignore ignne emulation enable */
2068 data &= ~(u64)0x8; /* ignore TLB cache disable */
2069 data &= ~(u64)0x40000; /* ignore Mc status write enable */
2070 if (data != 0) {
2071 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2072 data);
2073 return 1;
2074 }
2075 break;
2076 case MSR_FAM10H_MMIO_CONF_BASE:
2077 if (data != 0) {
2078 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2079 "0x%llx\n", data);
2080 return 1;
2081 }
2082 break;
2083 case MSR_IA32_DEBUGCTLMSR:
2084 if (!data) {
2085 /* We support the non-activated case already */
2086 break;
2087 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2088 /* Values other than LBR and BTF are vendor-specific,
2089 thus reserved and should throw a #GP */
2090 return 1;
2091 }
2092 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2093 __func__, data);
2094 break;
2095 case 0x200 ... 0x2ff:
2096 return kvm_mtrr_set_msr(vcpu, msr, data);
2097 case MSR_IA32_APICBASE:
2098 return kvm_set_apic_base(vcpu, msr_info);
2099 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2100 return kvm_x2apic_msr_write(vcpu, msr, data);
2101 case MSR_IA32_TSCDEADLINE:
2102 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2103 break;
2104 case MSR_IA32_TSC_ADJUST:
2105 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2106 if (!msr_info->host_initiated) {
2107 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2108 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2109 }
2110 vcpu->arch.ia32_tsc_adjust_msr = data;
2111 }
2112 break;
2113 case MSR_IA32_MISC_ENABLE:
2114 vcpu->arch.ia32_misc_enable_msr = data;
2115 break;
2116 case MSR_IA32_SMBASE:
2117 if (!msr_info->host_initiated)
2118 return 1;
2119 vcpu->arch.smbase = data;
2120 break;
2121 case MSR_KVM_WALL_CLOCK_NEW:
2122 case MSR_KVM_WALL_CLOCK:
2123 vcpu->kvm->arch.wall_clock = data;
2124 kvm_write_wall_clock(vcpu->kvm, data);
2125 break;
2126 case MSR_KVM_SYSTEM_TIME_NEW:
2127 case MSR_KVM_SYSTEM_TIME: {
2128 u64 gpa_offset;
2129 struct kvm_arch *ka = &vcpu->kvm->arch;
2130
2131 kvmclock_reset(vcpu);
2132
2133 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2134 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2135
2136 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2137 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2138 &vcpu->requests);
2139
2140 ka->boot_vcpu_runs_old_kvmclock = tmp;
2141
2142 ka->kvmclock_offset = -get_kernel_ns();
2143 }
2144
2145 vcpu->arch.time = data;
2146 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2147
2148 /* we verify if the enable bit is set... */
2149 if (!(data & 1))
2150 break;
2151
2152 gpa_offset = data & ~(PAGE_MASK | 1);
2153
2154 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2155 &vcpu->arch.pv_time, data & ~1ULL,
2156 sizeof(struct pvclock_vcpu_time_info)))
2157 vcpu->arch.pv_time_enabled = false;
2158 else
2159 vcpu->arch.pv_time_enabled = true;
2160
2161 break;
2162 }
2163 case MSR_KVM_ASYNC_PF_EN:
2164 if (kvm_pv_enable_async_pf(vcpu, data))
2165 return 1;
2166 break;
2167 case MSR_KVM_STEAL_TIME:
2168
2169 if (unlikely(!sched_info_on()))
2170 return 1;
2171
2172 if (data & KVM_STEAL_RESERVED_MASK)
2173 return 1;
2174
2175 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2176 data & KVM_STEAL_VALID_BITS,
2177 sizeof(struct kvm_steal_time)))
2178 return 1;
2179
2180 vcpu->arch.st.msr_val = data;
2181
2182 if (!(data & KVM_MSR_ENABLED))
2183 break;
2184
2185 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2186
2187 preempt_disable();
2188 accumulate_steal_time(vcpu);
2189 preempt_enable();
2190
2191 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2192
2193 break;
2194 case MSR_KVM_PV_EOI_EN:
2195 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2196 return 1;
2197 break;
2198
2199 case MSR_IA32_MCG_CTL:
2200 case MSR_IA32_MCG_STATUS:
2201 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2202 return set_msr_mce(vcpu, msr, data);
2203
2204 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2205 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2206 pr = true; /* fall through */
2207 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2208 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2209 if (kvm_pmu_is_valid_msr(vcpu, msr))
2210 return kvm_pmu_set_msr(vcpu, msr_info);
2211
2212 if (pr || data != 0)
2213 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2214 "0x%x data 0x%llx\n", msr, data);
2215 break;
2216 case MSR_K7_CLK_CTL:
2217 /*
2218 * Ignore all writes to this no longer documented MSR.
2219 * Writes are only relevant for old K7 processors,
2220 * all pre-dating SVM, but a recommended workaround from
2221 * AMD for these chips. It is possible to specify the
2222 * affected processor models on the command line, hence
2223 * the need to ignore the workaround.
2224 */
2225 break;
2226 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2227 if (kvm_hv_msr_partition_wide(msr)) {
2228 int r;
2229 mutex_lock(&vcpu->kvm->lock);
2230 r = set_msr_hyperv_pw(vcpu, msr, data);
2231 mutex_unlock(&vcpu->kvm->lock);
2232 return r;
2233 } else
2234 return set_msr_hyperv(vcpu, msr, data);
2235 break;
2236 case MSR_IA32_BBL_CR_CTL3:
2237 /* Drop writes to this legacy MSR -- see rdmsr
2238 * counterpart for further detail.
2239 */
2240 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2241 break;
2242 case MSR_AMD64_OSVW_ID_LENGTH:
2243 if (!guest_cpuid_has_osvw(vcpu))
2244 return 1;
2245 vcpu->arch.osvw.length = data;
2246 break;
2247 case MSR_AMD64_OSVW_STATUS:
2248 if (!guest_cpuid_has_osvw(vcpu))
2249 return 1;
2250 vcpu->arch.osvw.status = data;
2251 break;
2252 default:
2253 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2254 return xen_hvm_config(vcpu, data);
2255 if (kvm_pmu_is_valid_msr(vcpu, msr))
2256 return kvm_pmu_set_msr(vcpu, msr_info);
2257 if (!ignore_msrs) {
2258 vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2259 msr, data);
2260 return 1;
2261 } else {
2262 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2263 msr, data);
2264 break;
2265 }
2266 }
2267 return 0;
2268 }
2269 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2270
2271
2272 /*
2273 * Reads an msr value (of 'msr_index') into 'pdata'.
2274 * Returns 0 on success, non-0 otherwise.
2275 * Assumes vcpu_load() was already called.
2276 */
2277 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2278 {
2279 return kvm_x86_ops->get_msr(vcpu, msr);
2280 }
2281 EXPORT_SYMBOL_GPL(kvm_get_msr);
2282
2283 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2284 {
2285 u64 data;
2286 u64 mcg_cap = vcpu->arch.mcg_cap;
2287 unsigned bank_num = mcg_cap & 0xff;
2288
2289 switch (msr) {
2290 case MSR_IA32_P5_MC_ADDR:
2291 case MSR_IA32_P5_MC_TYPE:
2292 data = 0;
2293 break;
2294 case MSR_IA32_MCG_CAP:
2295 data = vcpu->arch.mcg_cap;
2296 break;
2297 case MSR_IA32_MCG_CTL:
2298 if (!(mcg_cap & MCG_CTL_P))
2299 return 1;
2300 data = vcpu->arch.mcg_ctl;
2301 break;
2302 case MSR_IA32_MCG_STATUS:
2303 data = vcpu->arch.mcg_status;
2304 break;
2305 default:
2306 if (msr >= MSR_IA32_MC0_CTL &&
2307 msr < MSR_IA32_MCx_CTL(bank_num)) {
2308 u32 offset = msr - MSR_IA32_MC0_CTL;
2309 data = vcpu->arch.mce_banks[offset];
2310 break;
2311 }
2312 return 1;
2313 }
2314 *pdata = data;
2315 return 0;
2316 }
2317
2318 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2319 {
2320 u64 data = 0;
2321 struct kvm *kvm = vcpu->kvm;
2322
2323 switch (msr) {
2324 case HV_X64_MSR_GUEST_OS_ID:
2325 data = kvm->arch.hv_guest_os_id;
2326 break;
2327 case HV_X64_MSR_HYPERCALL:
2328 data = kvm->arch.hv_hypercall;
2329 break;
2330 case HV_X64_MSR_TIME_REF_COUNT: {
2331 data =
2332 div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100);
2333 break;
2334 }
2335 case HV_X64_MSR_REFERENCE_TSC:
2336 data = kvm->arch.hv_tsc_page;
2337 break;
2338 default:
2339 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2340 return 1;
2341 }
2342
2343 *pdata = data;
2344 return 0;
2345 }
2346
2347 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2348 {
2349 u64 data = 0;
2350
2351 switch (msr) {
2352 case HV_X64_MSR_VP_INDEX: {
2353 int r;
2354 struct kvm_vcpu *v;
2355 kvm_for_each_vcpu(r, v, vcpu->kvm) {
2356 if (v == vcpu) {
2357 data = r;
2358 break;
2359 }
2360 }
2361 break;
2362 }
2363 case HV_X64_MSR_EOI:
2364 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2365 case HV_X64_MSR_ICR:
2366 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2367 case HV_X64_MSR_TPR:
2368 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2369 case HV_X64_MSR_APIC_ASSIST_PAGE:
2370 data = vcpu->arch.hv_vapic;
2371 break;
2372 default:
2373 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2374 return 1;
2375 }
2376 *pdata = data;
2377 return 0;
2378 }
2379
2380 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2381 {
2382 switch (msr_info->index) {
2383 case MSR_IA32_PLATFORM_ID:
2384 case MSR_IA32_EBL_CR_POWERON:
2385 case MSR_IA32_DEBUGCTLMSR:
2386 case MSR_IA32_LASTBRANCHFROMIP:
2387 case MSR_IA32_LASTBRANCHTOIP:
2388 case MSR_IA32_LASTINTFROMIP:
2389 case MSR_IA32_LASTINTTOIP:
2390 case MSR_K8_SYSCFG:
2391 case MSR_K7_HWCR:
2392 case MSR_VM_HSAVE_PA:
2393 case MSR_K8_INT_PENDING_MSG:
2394 case MSR_AMD64_NB_CFG:
2395 case MSR_FAM10H_MMIO_CONF_BASE:
2396 case MSR_AMD64_BU_CFG2:
2397 msr_info->data = 0;
2398 break;
2399 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2400 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2401 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2402 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2403 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2404 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2405 msr_info->data = 0;
2406 break;
2407 case MSR_IA32_UCODE_REV:
2408 msr_info->data = 0x100000000ULL;
2409 break;
2410 case MSR_MTRRcap:
2411 case 0x200 ... 0x2ff:
2412 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2413 case 0xcd: /* fsb frequency */
2414 msr_info->data = 3;
2415 break;
2416 /*
2417 * MSR_EBC_FREQUENCY_ID
2418 * Conservative value valid for even the basic CPU models.
2419 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2420 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2421 * and 266MHz for model 3, or 4. Set Core Clock
2422 * Frequency to System Bus Frequency Ratio to 1 (bits
2423 * 31:24) even though these are only valid for CPU
2424 * models > 2, however guests may end up dividing or
2425 * multiplying by zero otherwise.
2426 */
2427 case MSR_EBC_FREQUENCY_ID:
2428 msr_info->data = 1 << 24;
2429 break;
2430 case MSR_IA32_APICBASE:
2431 msr_info->data = kvm_get_apic_base(vcpu);
2432 break;
2433 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2434 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2435 break;
2436 case MSR_IA32_TSCDEADLINE:
2437 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2438 break;
2439 case MSR_IA32_TSC_ADJUST:
2440 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2441 break;
2442 case MSR_IA32_MISC_ENABLE:
2443 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2444 break;
2445 case MSR_IA32_SMBASE:
2446 if (!msr_info->host_initiated)
2447 return 1;
2448 msr_info->data = vcpu->arch.smbase;
2449 break;
2450 case MSR_IA32_PERF_STATUS:
2451 /* TSC increment by tick */
2452 msr_info->data = 1000ULL;
2453 /* CPU multiplier */
2454 msr_info->data |= (((uint64_t)4ULL) << 40);
2455 break;
2456 case MSR_EFER:
2457 msr_info->data = vcpu->arch.efer;
2458 break;
2459 case MSR_KVM_WALL_CLOCK:
2460 case MSR_KVM_WALL_CLOCK_NEW:
2461 msr_info->data = vcpu->kvm->arch.wall_clock;
2462 break;
2463 case MSR_KVM_SYSTEM_TIME:
2464 case MSR_KVM_SYSTEM_TIME_NEW:
2465 msr_info->data = vcpu->arch.time;
2466 break;
2467 case MSR_KVM_ASYNC_PF_EN:
2468 msr_info->data = vcpu->arch.apf.msr_val;
2469 break;
2470 case MSR_KVM_STEAL_TIME:
2471 msr_info->data = vcpu->arch.st.msr_val;
2472 break;
2473 case MSR_KVM_PV_EOI_EN:
2474 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2475 break;
2476 case MSR_IA32_P5_MC_ADDR:
2477 case MSR_IA32_P5_MC_TYPE:
2478 case MSR_IA32_MCG_CAP:
2479 case MSR_IA32_MCG_CTL:
2480 case MSR_IA32_MCG_STATUS:
2481 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2482 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2483 case MSR_K7_CLK_CTL:
2484 /*
2485 * Provide expected ramp-up count for K7. All other
2486 * are set to zero, indicating minimum divisors for
2487 * every field.
2488 *
2489 * This prevents guest kernels on AMD host with CPU
2490 * type 6, model 8 and higher from exploding due to
2491 * the rdmsr failing.
2492 */
2493 msr_info->data = 0x20000000;
2494 break;
2495 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2496 if (kvm_hv_msr_partition_wide(msr_info->index)) {
2497 int r;
2498 mutex_lock(&vcpu->kvm->lock);
2499 r = get_msr_hyperv_pw(vcpu, msr_info->index, &msr_info->data);
2500 mutex_unlock(&vcpu->kvm->lock);
2501 return r;
2502 } else
2503 return get_msr_hyperv(vcpu, msr_info->index, &msr_info->data);
2504 break;
2505 case MSR_IA32_BBL_CR_CTL3:
2506 /* This legacy MSR exists but isn't fully documented in current
2507 * silicon. It is however accessed by winxp in very narrow
2508 * scenarios where it sets bit #19, itself documented as
2509 * a "reserved" bit. Best effort attempt to source coherent
2510 * read data here should the balance of the register be
2511 * interpreted by the guest:
2512 *
2513 * L2 cache control register 3: 64GB range, 256KB size,
2514 * enabled, latency 0x1, configured
2515 */
2516 msr_info->data = 0xbe702111;
2517 break;
2518 case MSR_AMD64_OSVW_ID_LENGTH:
2519 if (!guest_cpuid_has_osvw(vcpu))
2520 return 1;
2521 msr_info->data = vcpu->arch.osvw.length;
2522 break;
2523 case MSR_AMD64_OSVW_STATUS:
2524 if (!guest_cpuid_has_osvw(vcpu))
2525 return 1;
2526 msr_info->data = vcpu->arch.osvw.status;
2527 break;
2528 default:
2529 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2530 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2531 if (!ignore_msrs) {
2532 vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2533 return 1;
2534 } else {
2535 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2536 msr_info->data = 0;
2537 }
2538 break;
2539 }
2540 return 0;
2541 }
2542 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2543
2544 /*
2545 * Read or write a bunch of msrs. All parameters are kernel addresses.
2546 *
2547 * @return number of msrs set successfully.
2548 */
2549 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2550 struct kvm_msr_entry *entries,
2551 int (*do_msr)(struct kvm_vcpu *vcpu,
2552 unsigned index, u64 *data))
2553 {
2554 int i, idx;
2555
2556 idx = srcu_read_lock(&vcpu->kvm->srcu);
2557 for (i = 0; i < msrs->nmsrs; ++i)
2558 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2559 break;
2560 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2561
2562 return i;
2563 }
2564
2565 /*
2566 * Read or write a bunch of msrs. Parameters are user addresses.
2567 *
2568 * @return number of msrs set successfully.
2569 */
2570 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2571 int (*do_msr)(struct kvm_vcpu *vcpu,
2572 unsigned index, u64 *data),
2573 int writeback)
2574 {
2575 struct kvm_msrs msrs;
2576 struct kvm_msr_entry *entries;
2577 int r, n;
2578 unsigned size;
2579
2580 r = -EFAULT;
2581 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2582 goto out;
2583
2584 r = -E2BIG;
2585 if (msrs.nmsrs >= MAX_IO_MSRS)
2586 goto out;
2587
2588 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2589 entries = memdup_user(user_msrs->entries, size);
2590 if (IS_ERR(entries)) {
2591 r = PTR_ERR(entries);
2592 goto out;
2593 }
2594
2595 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2596 if (r < 0)
2597 goto out_free;
2598
2599 r = -EFAULT;
2600 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2601 goto out_free;
2602
2603 r = n;
2604
2605 out_free:
2606 kfree(entries);
2607 out:
2608 return r;
2609 }
2610
2611 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2612 {
2613 int r;
2614
2615 switch (ext) {
2616 case KVM_CAP_IRQCHIP:
2617 case KVM_CAP_HLT:
2618 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2619 case KVM_CAP_SET_TSS_ADDR:
2620 case KVM_CAP_EXT_CPUID:
2621 case KVM_CAP_EXT_EMUL_CPUID:
2622 case KVM_CAP_CLOCKSOURCE:
2623 case KVM_CAP_PIT:
2624 case KVM_CAP_NOP_IO_DELAY:
2625 case KVM_CAP_MP_STATE:
2626 case KVM_CAP_SYNC_MMU:
2627 case KVM_CAP_USER_NMI:
2628 case KVM_CAP_REINJECT_CONTROL:
2629 case KVM_CAP_IRQ_INJECT_STATUS:
2630 case KVM_CAP_IOEVENTFD:
2631 case KVM_CAP_IOEVENTFD_NO_LENGTH:
2632 case KVM_CAP_PIT2:
2633 case KVM_CAP_PIT_STATE2:
2634 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2635 case KVM_CAP_XEN_HVM:
2636 case KVM_CAP_ADJUST_CLOCK:
2637 case KVM_CAP_VCPU_EVENTS:
2638 case KVM_CAP_HYPERV:
2639 case KVM_CAP_HYPERV_VAPIC:
2640 case KVM_CAP_HYPERV_SPIN:
2641 case KVM_CAP_PCI_SEGMENT:
2642 case KVM_CAP_DEBUGREGS:
2643 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2644 case KVM_CAP_XSAVE:
2645 case KVM_CAP_ASYNC_PF:
2646 case KVM_CAP_GET_TSC_KHZ:
2647 case KVM_CAP_KVMCLOCK_CTRL:
2648 case KVM_CAP_READONLY_MEM:
2649 case KVM_CAP_HYPERV_TIME:
2650 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2651 case KVM_CAP_TSC_DEADLINE_TIMER:
2652 case KVM_CAP_ENABLE_CAP_VM:
2653 case KVM_CAP_DISABLE_QUIRKS:
2654 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2655 case KVM_CAP_ASSIGN_DEV_IRQ:
2656 case KVM_CAP_PCI_2_3:
2657 #endif
2658 r = 1;
2659 break;
2660 case KVM_CAP_X86_SMM:
2661 /* SMBASE is usually relocated above 1M on modern chipsets,
2662 * and SMM handlers might indeed rely on 4G segment limits,
2663 * so do not report SMM to be available if real mode is
2664 * emulated via vm86 mode. Still, do not go to great lengths
2665 * to avoid userspace's usage of the feature, because it is a
2666 * fringe case that is not enabled except via specific settings
2667 * of the module parameters.
2668 */
2669 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2670 break;
2671 case KVM_CAP_COALESCED_MMIO:
2672 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2673 break;
2674 case KVM_CAP_VAPIC:
2675 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2676 break;
2677 case KVM_CAP_NR_VCPUS:
2678 r = KVM_SOFT_MAX_VCPUS;
2679 break;
2680 case KVM_CAP_MAX_VCPUS:
2681 r = KVM_MAX_VCPUS;
2682 break;
2683 case KVM_CAP_NR_MEMSLOTS:
2684 r = KVM_USER_MEM_SLOTS;
2685 break;
2686 case KVM_CAP_PV_MMU: /* obsolete */
2687 r = 0;
2688 break;
2689 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2690 case KVM_CAP_IOMMU:
2691 r = iommu_present(&pci_bus_type);
2692 break;
2693 #endif
2694 case KVM_CAP_MCE:
2695 r = KVM_MAX_MCE_BANKS;
2696 break;
2697 case KVM_CAP_XCRS:
2698 r = cpu_has_xsave;
2699 break;
2700 case KVM_CAP_TSC_CONTROL:
2701 r = kvm_has_tsc_control;
2702 break;
2703 default:
2704 r = 0;
2705 break;
2706 }
2707 return r;
2708
2709 }
2710
2711 long kvm_arch_dev_ioctl(struct file *filp,
2712 unsigned int ioctl, unsigned long arg)
2713 {
2714 void __user *argp = (void __user *)arg;
2715 long r;
2716
2717 switch (ioctl) {
2718 case KVM_GET_MSR_INDEX_LIST: {
2719 struct kvm_msr_list __user *user_msr_list = argp;
2720 struct kvm_msr_list msr_list;
2721 unsigned n;
2722
2723 r = -EFAULT;
2724 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2725 goto out;
2726 n = msr_list.nmsrs;
2727 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2728 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2729 goto out;
2730 r = -E2BIG;
2731 if (n < msr_list.nmsrs)
2732 goto out;
2733 r = -EFAULT;
2734 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2735 num_msrs_to_save * sizeof(u32)))
2736 goto out;
2737 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2738 &emulated_msrs,
2739 num_emulated_msrs * sizeof(u32)))
2740 goto out;
2741 r = 0;
2742 break;
2743 }
2744 case KVM_GET_SUPPORTED_CPUID:
2745 case KVM_GET_EMULATED_CPUID: {
2746 struct kvm_cpuid2 __user *cpuid_arg = argp;
2747 struct kvm_cpuid2 cpuid;
2748
2749 r = -EFAULT;
2750 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2751 goto out;
2752
2753 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2754 ioctl);
2755 if (r)
2756 goto out;
2757
2758 r = -EFAULT;
2759 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2760 goto out;
2761 r = 0;
2762 break;
2763 }
2764 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2765 u64 mce_cap;
2766
2767 mce_cap = KVM_MCE_CAP_SUPPORTED;
2768 r = -EFAULT;
2769 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2770 goto out;
2771 r = 0;
2772 break;
2773 }
2774 default:
2775 r = -EINVAL;
2776 }
2777 out:
2778 return r;
2779 }
2780
2781 static void wbinvd_ipi(void *garbage)
2782 {
2783 wbinvd();
2784 }
2785
2786 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2787 {
2788 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2789 }
2790
2791 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2792 {
2793 /* Address WBINVD may be executed by guest */
2794 if (need_emulate_wbinvd(vcpu)) {
2795 if (kvm_x86_ops->has_wbinvd_exit())
2796 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2797 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2798 smp_call_function_single(vcpu->cpu,
2799 wbinvd_ipi, NULL, 1);
2800 }
2801
2802 kvm_x86_ops->vcpu_load(vcpu, cpu);
2803
2804 /* Apply any externally detected TSC adjustments (due to suspend) */
2805 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2806 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2807 vcpu->arch.tsc_offset_adjustment = 0;
2808 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2809 }
2810
2811 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2812 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2813 native_read_tsc() - vcpu->arch.last_host_tsc;
2814 if (tsc_delta < 0)
2815 mark_tsc_unstable("KVM discovered backwards TSC");
2816 if (check_tsc_unstable()) {
2817 u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2818 vcpu->arch.last_guest_tsc);
2819 kvm_x86_ops->write_tsc_offset(vcpu, offset);
2820 vcpu->arch.tsc_catchup = 1;
2821 }
2822 /*
2823 * On a host with synchronized TSC, there is no need to update
2824 * kvmclock on vcpu->cpu migration
2825 */
2826 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2827 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2828 if (vcpu->cpu != cpu)
2829 kvm_migrate_timers(vcpu);
2830 vcpu->cpu = cpu;
2831 }
2832
2833 accumulate_steal_time(vcpu);
2834 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2835 }
2836
2837 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2838 {
2839 kvm_x86_ops->vcpu_put(vcpu);
2840 kvm_put_guest_fpu(vcpu);
2841 vcpu->arch.last_host_tsc = native_read_tsc();
2842 }
2843
2844 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2845 struct kvm_lapic_state *s)
2846 {
2847 kvm_x86_ops->sync_pir_to_irr(vcpu);
2848 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2849
2850 return 0;
2851 }
2852
2853 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2854 struct kvm_lapic_state *s)
2855 {
2856 kvm_apic_post_state_restore(vcpu, s);
2857 update_cr8_intercept(vcpu);
2858
2859 return 0;
2860 }
2861
2862 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2863 struct kvm_interrupt *irq)
2864 {
2865 if (irq->irq >= KVM_NR_INTERRUPTS)
2866 return -EINVAL;
2867 if (irqchip_in_kernel(vcpu->kvm))
2868 return -ENXIO;
2869
2870 kvm_queue_interrupt(vcpu, irq->irq, false);
2871 kvm_make_request(KVM_REQ_EVENT, vcpu);
2872
2873 return 0;
2874 }
2875
2876 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2877 {
2878 kvm_inject_nmi(vcpu);
2879
2880 return 0;
2881 }
2882
2883 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2884 {
2885 kvm_make_request(KVM_REQ_SMI, vcpu);
2886
2887 return 0;
2888 }
2889
2890 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2891 struct kvm_tpr_access_ctl *tac)
2892 {
2893 if (tac->flags)
2894 return -EINVAL;
2895 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2896 return 0;
2897 }
2898
2899 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2900 u64 mcg_cap)
2901 {
2902 int r;
2903 unsigned bank_num = mcg_cap & 0xff, bank;
2904
2905 r = -EINVAL;
2906 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2907 goto out;
2908 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2909 goto out;
2910 r = 0;
2911 vcpu->arch.mcg_cap = mcg_cap;
2912 /* Init IA32_MCG_CTL to all 1s */
2913 if (mcg_cap & MCG_CTL_P)
2914 vcpu->arch.mcg_ctl = ~(u64)0;
2915 /* Init IA32_MCi_CTL to all 1s */
2916 for (bank = 0; bank < bank_num; bank++)
2917 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2918 out:
2919 return r;
2920 }
2921
2922 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2923 struct kvm_x86_mce *mce)
2924 {
2925 u64 mcg_cap = vcpu->arch.mcg_cap;
2926 unsigned bank_num = mcg_cap & 0xff;
2927 u64 *banks = vcpu->arch.mce_banks;
2928
2929 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2930 return -EINVAL;
2931 /*
2932 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2933 * reporting is disabled
2934 */
2935 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2936 vcpu->arch.mcg_ctl != ~(u64)0)
2937 return 0;
2938 banks += 4 * mce->bank;
2939 /*
2940 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2941 * reporting is disabled for the bank
2942 */
2943 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2944 return 0;
2945 if (mce->status & MCI_STATUS_UC) {
2946 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2947 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2948 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2949 return 0;
2950 }
2951 if (banks[1] & MCI_STATUS_VAL)
2952 mce->status |= MCI_STATUS_OVER;
2953 banks[2] = mce->addr;
2954 banks[3] = mce->misc;
2955 vcpu->arch.mcg_status = mce->mcg_status;
2956 banks[1] = mce->status;
2957 kvm_queue_exception(vcpu, MC_VECTOR);
2958 } else if (!(banks[1] & MCI_STATUS_VAL)
2959 || !(banks[1] & MCI_STATUS_UC)) {
2960 if (banks[1] & MCI_STATUS_VAL)
2961 mce->status |= MCI_STATUS_OVER;
2962 banks[2] = mce->addr;
2963 banks[3] = mce->misc;
2964 banks[1] = mce->status;
2965 } else
2966 banks[1] |= MCI_STATUS_OVER;
2967 return 0;
2968 }
2969
2970 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2971 struct kvm_vcpu_events *events)
2972 {
2973 process_nmi(vcpu);
2974 events->exception.injected =
2975 vcpu->arch.exception.pending &&
2976 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2977 events->exception.nr = vcpu->arch.exception.nr;
2978 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2979 events->exception.pad = 0;
2980 events->exception.error_code = vcpu->arch.exception.error_code;
2981
2982 events->interrupt.injected =
2983 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2984 events->interrupt.nr = vcpu->arch.interrupt.nr;
2985 events->interrupt.soft = 0;
2986 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
2987
2988 events->nmi.injected = vcpu->arch.nmi_injected;
2989 events->nmi.pending = vcpu->arch.nmi_pending != 0;
2990 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2991 events->nmi.pad = 0;
2992
2993 events->sipi_vector = 0; /* never valid when reporting to user space */
2994
2995 events->smi.smm = is_smm(vcpu);
2996 events->smi.pending = vcpu->arch.smi_pending;
2997 events->smi.smm_inside_nmi =
2998 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
2999 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3000
3001 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3002 | KVM_VCPUEVENT_VALID_SHADOW
3003 | KVM_VCPUEVENT_VALID_SMM);
3004 memset(&events->reserved, 0, sizeof(events->reserved));
3005 }
3006
3007 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3008 struct kvm_vcpu_events *events)
3009 {
3010 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3011 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3012 | KVM_VCPUEVENT_VALID_SHADOW
3013 | KVM_VCPUEVENT_VALID_SMM))
3014 return -EINVAL;
3015
3016 process_nmi(vcpu);
3017 vcpu->arch.exception.pending = events->exception.injected;
3018 vcpu->arch.exception.nr = events->exception.nr;
3019 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3020 vcpu->arch.exception.error_code = events->exception.error_code;
3021
3022 vcpu->arch.interrupt.pending = events->interrupt.injected;
3023 vcpu->arch.interrupt.nr = events->interrupt.nr;
3024 vcpu->arch.interrupt.soft = events->interrupt.soft;
3025 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3026 kvm_x86_ops->set_interrupt_shadow(vcpu,
3027 events->interrupt.shadow);
3028
3029 vcpu->arch.nmi_injected = events->nmi.injected;
3030 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3031 vcpu->arch.nmi_pending = events->nmi.pending;
3032 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3033
3034 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3035 kvm_vcpu_has_lapic(vcpu))
3036 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3037
3038 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3039 if (events->smi.smm)
3040 vcpu->arch.hflags |= HF_SMM_MASK;
3041 else
3042 vcpu->arch.hflags &= ~HF_SMM_MASK;
3043 vcpu->arch.smi_pending = events->smi.pending;
3044 if (events->smi.smm_inside_nmi)
3045 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3046 else
3047 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3048 if (kvm_vcpu_has_lapic(vcpu)) {
3049 if (events->smi.latched_init)
3050 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3051 else
3052 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3053 }
3054 }
3055
3056 kvm_make_request(KVM_REQ_EVENT, vcpu);
3057
3058 return 0;
3059 }
3060
3061 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3062 struct kvm_debugregs *dbgregs)
3063 {
3064 unsigned long val;
3065
3066 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3067 kvm_get_dr(vcpu, 6, &val);
3068 dbgregs->dr6 = val;
3069 dbgregs->dr7 = vcpu->arch.dr7;
3070 dbgregs->flags = 0;
3071 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3072 }
3073
3074 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3075 struct kvm_debugregs *dbgregs)
3076 {
3077 if (dbgregs->flags)
3078 return -EINVAL;
3079
3080 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3081 kvm_update_dr0123(vcpu);
3082 vcpu->arch.dr6 = dbgregs->dr6;
3083 kvm_update_dr6(vcpu);
3084 vcpu->arch.dr7 = dbgregs->dr7;
3085 kvm_update_dr7(vcpu);
3086
3087 return 0;
3088 }
3089
3090 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3091
3092 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3093 {
3094 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3095 u64 xstate_bv = xsave->header.xfeatures;
3096 u64 valid;
3097
3098 /*
3099 * Copy legacy XSAVE area, to avoid complications with CPUID
3100 * leaves 0 and 1 in the loop below.
3101 */
3102 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3103
3104 /* Set XSTATE_BV */
3105 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3106
3107 /*
3108 * Copy each region from the possibly compacted offset to the
3109 * non-compacted offset.
3110 */
3111 valid = xstate_bv & ~XSTATE_FPSSE;
3112 while (valid) {
3113 u64 feature = valid & -valid;
3114 int index = fls64(feature) - 1;
3115 void *src = get_xsave_addr(xsave, feature);
3116
3117 if (src) {
3118 u32 size, offset, ecx, edx;
3119 cpuid_count(XSTATE_CPUID, index,
3120 &size, &offset, &ecx, &edx);
3121 memcpy(dest + offset, src, size);
3122 }
3123
3124 valid -= feature;
3125 }
3126 }
3127
3128 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3129 {
3130 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3131 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3132 u64 valid;
3133
3134 /*
3135 * Copy legacy XSAVE area, to avoid complications with CPUID
3136 * leaves 0 and 1 in the loop below.
3137 */
3138 memcpy(xsave, src, XSAVE_HDR_OFFSET);
3139
3140 /* Set XSTATE_BV and possibly XCOMP_BV. */
3141 xsave->header.xfeatures = xstate_bv;
3142 if (cpu_has_xsaves)
3143 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3144
3145 /*
3146 * Copy each region from the non-compacted offset to the
3147 * possibly compacted offset.
3148 */
3149 valid = xstate_bv & ~XSTATE_FPSSE;
3150 while (valid) {
3151 u64 feature = valid & -valid;
3152 int index = fls64(feature) - 1;
3153 void *dest = get_xsave_addr(xsave, feature);
3154
3155 if (dest) {
3156 u32 size, offset, ecx, edx;
3157 cpuid_count(XSTATE_CPUID, index,
3158 &size, &offset, &ecx, &edx);
3159 memcpy(dest, src + offset, size);
3160 } else
3161 WARN_ON_ONCE(1);
3162
3163 valid -= feature;
3164 }
3165 }
3166
3167 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3168 struct kvm_xsave *guest_xsave)
3169 {
3170 if (cpu_has_xsave) {
3171 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3172 fill_xsave((u8 *) guest_xsave->region, vcpu);
3173 } else {
3174 memcpy(guest_xsave->region,
3175 &vcpu->arch.guest_fpu.state.fxsave,
3176 sizeof(struct fxregs_state));
3177 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3178 XSTATE_FPSSE;
3179 }
3180 }
3181
3182 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3183 struct kvm_xsave *guest_xsave)
3184 {
3185 u64 xstate_bv =
3186 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3187
3188 if (cpu_has_xsave) {
3189 /*
3190 * Here we allow setting states that are not present in
3191 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3192 * with old userspace.
3193 */
3194 if (xstate_bv & ~kvm_supported_xcr0())
3195 return -EINVAL;
3196 load_xsave(vcpu, (u8 *)guest_xsave->region);
3197 } else {
3198 if (xstate_bv & ~XSTATE_FPSSE)
3199 return -EINVAL;
3200 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3201 guest_xsave->region, sizeof(struct fxregs_state));
3202 }
3203 return 0;
3204 }
3205
3206 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3207 struct kvm_xcrs *guest_xcrs)
3208 {
3209 if (!cpu_has_xsave) {
3210 guest_xcrs->nr_xcrs = 0;
3211 return;
3212 }
3213
3214 guest_xcrs->nr_xcrs = 1;
3215 guest_xcrs->flags = 0;
3216 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3217 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3218 }
3219
3220 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3221 struct kvm_xcrs *guest_xcrs)
3222 {
3223 int i, r = 0;
3224
3225 if (!cpu_has_xsave)
3226 return -EINVAL;
3227
3228 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3229 return -EINVAL;
3230
3231 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3232 /* Only support XCR0 currently */
3233 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3234 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3235 guest_xcrs->xcrs[i].value);
3236 break;
3237 }
3238 if (r)
3239 r = -EINVAL;
3240 return r;
3241 }
3242
3243 /*
3244 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3245 * stopped by the hypervisor. This function will be called from the host only.
3246 * EINVAL is returned when the host attempts to set the flag for a guest that
3247 * does not support pv clocks.
3248 */
3249 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3250 {
3251 if (!vcpu->arch.pv_time_enabled)
3252 return -EINVAL;
3253 vcpu->arch.pvclock_set_guest_stopped_request = true;
3254 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3255 return 0;
3256 }
3257
3258 long kvm_arch_vcpu_ioctl(struct file *filp,
3259 unsigned int ioctl, unsigned long arg)
3260 {
3261 struct kvm_vcpu *vcpu = filp->private_data;
3262 void __user *argp = (void __user *)arg;
3263 int r;
3264 union {
3265 struct kvm_lapic_state *lapic;
3266 struct kvm_xsave *xsave;
3267 struct kvm_xcrs *xcrs;
3268 void *buffer;
3269 } u;
3270
3271 u.buffer = NULL;
3272 switch (ioctl) {
3273 case KVM_GET_LAPIC: {
3274 r = -EINVAL;
3275 if (!vcpu->arch.apic)
3276 goto out;
3277 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3278
3279 r = -ENOMEM;
3280 if (!u.lapic)
3281 goto out;
3282 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3283 if (r)
3284 goto out;
3285 r = -EFAULT;
3286 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3287 goto out;
3288 r = 0;
3289 break;
3290 }
3291 case KVM_SET_LAPIC: {
3292 r = -EINVAL;
3293 if (!vcpu->arch.apic)
3294 goto out;
3295 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3296 if (IS_ERR(u.lapic))
3297 return PTR_ERR(u.lapic);
3298
3299 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3300 break;
3301 }
3302 case KVM_INTERRUPT: {
3303 struct kvm_interrupt irq;
3304
3305 r = -EFAULT;
3306 if (copy_from_user(&irq, argp, sizeof irq))
3307 goto out;
3308 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3309 break;
3310 }
3311 case KVM_NMI: {
3312 r = kvm_vcpu_ioctl_nmi(vcpu);
3313 break;
3314 }
3315 case KVM_SMI: {
3316 r = kvm_vcpu_ioctl_smi(vcpu);
3317 break;
3318 }
3319 case KVM_SET_CPUID: {
3320 struct kvm_cpuid __user *cpuid_arg = argp;
3321 struct kvm_cpuid cpuid;
3322
3323 r = -EFAULT;
3324 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3325 goto out;
3326 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3327 break;
3328 }
3329 case KVM_SET_CPUID2: {
3330 struct kvm_cpuid2 __user *cpuid_arg = argp;
3331 struct kvm_cpuid2 cpuid;
3332
3333 r = -EFAULT;
3334 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3335 goto out;
3336 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3337 cpuid_arg->entries);
3338 break;
3339 }
3340 case KVM_GET_CPUID2: {
3341 struct kvm_cpuid2 __user *cpuid_arg = argp;
3342 struct kvm_cpuid2 cpuid;
3343
3344 r = -EFAULT;
3345 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3346 goto out;
3347 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3348 cpuid_arg->entries);
3349 if (r)
3350 goto out;
3351 r = -EFAULT;
3352 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3353 goto out;
3354 r = 0;
3355 break;
3356 }
3357 case KVM_GET_MSRS:
3358 r = msr_io(vcpu, argp, do_get_msr, 1);
3359 break;
3360 case KVM_SET_MSRS:
3361 r = msr_io(vcpu, argp, do_set_msr, 0);
3362 break;
3363 case KVM_TPR_ACCESS_REPORTING: {
3364 struct kvm_tpr_access_ctl tac;
3365
3366 r = -EFAULT;
3367 if (copy_from_user(&tac, argp, sizeof tac))
3368 goto out;
3369 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3370 if (r)
3371 goto out;
3372 r = -EFAULT;
3373 if (copy_to_user(argp, &tac, sizeof tac))
3374 goto out;
3375 r = 0;
3376 break;
3377 };
3378 case KVM_SET_VAPIC_ADDR: {
3379 struct kvm_vapic_addr va;
3380
3381 r = -EINVAL;
3382 if (!irqchip_in_kernel(vcpu->kvm))
3383 goto out;
3384 r = -EFAULT;
3385 if (copy_from_user(&va, argp, sizeof va))
3386 goto out;
3387 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3388 break;
3389 }
3390 case KVM_X86_SETUP_MCE: {
3391 u64 mcg_cap;
3392
3393 r = -EFAULT;
3394 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3395 goto out;
3396 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3397 break;
3398 }
3399 case KVM_X86_SET_MCE: {
3400 struct kvm_x86_mce mce;
3401
3402 r = -EFAULT;
3403 if (copy_from_user(&mce, argp, sizeof mce))
3404 goto out;
3405 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3406 break;
3407 }
3408 case KVM_GET_VCPU_EVENTS: {
3409 struct kvm_vcpu_events events;
3410
3411 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3412
3413 r = -EFAULT;
3414 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3415 break;
3416 r = 0;
3417 break;
3418 }
3419 case KVM_SET_VCPU_EVENTS: {
3420 struct kvm_vcpu_events events;
3421
3422 r = -EFAULT;
3423 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3424 break;
3425
3426 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3427 break;
3428 }
3429 case KVM_GET_DEBUGREGS: {
3430 struct kvm_debugregs dbgregs;
3431
3432 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3433
3434 r = -EFAULT;
3435 if (copy_to_user(argp, &dbgregs,
3436 sizeof(struct kvm_debugregs)))
3437 break;
3438 r = 0;
3439 break;
3440 }
3441 case KVM_SET_DEBUGREGS: {
3442 struct kvm_debugregs dbgregs;
3443
3444 r = -EFAULT;
3445 if (copy_from_user(&dbgregs, argp,
3446 sizeof(struct kvm_debugregs)))
3447 break;
3448
3449 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3450 break;
3451 }
3452 case KVM_GET_XSAVE: {
3453 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3454 r = -ENOMEM;
3455 if (!u.xsave)
3456 break;
3457
3458 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3459
3460 r = -EFAULT;
3461 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3462 break;
3463 r = 0;
3464 break;
3465 }
3466 case KVM_SET_XSAVE: {
3467 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3468 if (IS_ERR(u.xsave))
3469 return PTR_ERR(u.xsave);
3470
3471 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3472 break;
3473 }
3474 case KVM_GET_XCRS: {
3475 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3476 r = -ENOMEM;
3477 if (!u.xcrs)
3478 break;
3479
3480 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3481
3482 r = -EFAULT;
3483 if (copy_to_user(argp, u.xcrs,
3484 sizeof(struct kvm_xcrs)))
3485 break;
3486 r = 0;
3487 break;
3488 }
3489 case KVM_SET_XCRS: {
3490 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3491 if (IS_ERR(u.xcrs))
3492 return PTR_ERR(u.xcrs);
3493
3494 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3495 break;
3496 }
3497 case KVM_SET_TSC_KHZ: {
3498 u32 user_tsc_khz;
3499
3500 r = -EINVAL;
3501 user_tsc_khz = (u32)arg;
3502
3503 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3504 goto out;
3505
3506 if (user_tsc_khz == 0)
3507 user_tsc_khz = tsc_khz;
3508
3509 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3510
3511 r = 0;
3512 goto out;
3513 }
3514 case KVM_GET_TSC_KHZ: {
3515 r = vcpu->arch.virtual_tsc_khz;
3516 goto out;
3517 }
3518 case KVM_KVMCLOCK_CTRL: {
3519 r = kvm_set_guest_paused(vcpu);
3520 goto out;
3521 }
3522 default:
3523 r = -EINVAL;
3524 }
3525 out:
3526 kfree(u.buffer);
3527 return r;
3528 }
3529
3530 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3531 {
3532 return VM_FAULT_SIGBUS;
3533 }
3534
3535 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3536 {
3537 int ret;
3538
3539 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3540 return -EINVAL;
3541 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3542 return ret;
3543 }
3544
3545 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3546 u64 ident_addr)
3547 {
3548 kvm->arch.ept_identity_map_addr = ident_addr;
3549 return 0;
3550 }
3551
3552 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3553 u32 kvm_nr_mmu_pages)
3554 {
3555 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3556 return -EINVAL;
3557
3558 mutex_lock(&kvm->slots_lock);
3559
3560 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3561 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3562
3563 mutex_unlock(&kvm->slots_lock);
3564 return 0;
3565 }
3566
3567 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3568 {
3569 return kvm->arch.n_max_mmu_pages;
3570 }
3571
3572 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3573 {
3574 int r;
3575
3576 r = 0;
3577 switch (chip->chip_id) {
3578 case KVM_IRQCHIP_PIC_MASTER:
3579 memcpy(&chip->chip.pic,
3580 &pic_irqchip(kvm)->pics[0],
3581 sizeof(struct kvm_pic_state));
3582 break;
3583 case KVM_IRQCHIP_PIC_SLAVE:
3584 memcpy(&chip->chip.pic,
3585 &pic_irqchip(kvm)->pics[1],
3586 sizeof(struct kvm_pic_state));
3587 break;
3588 case KVM_IRQCHIP_IOAPIC:
3589 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3590 break;
3591 default:
3592 r = -EINVAL;
3593 break;
3594 }
3595 return r;
3596 }
3597
3598 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3599 {
3600 int r;
3601
3602 r = 0;
3603 switch (chip->chip_id) {
3604 case KVM_IRQCHIP_PIC_MASTER:
3605 spin_lock(&pic_irqchip(kvm)->lock);
3606 memcpy(&pic_irqchip(kvm)->pics[0],
3607 &chip->chip.pic,
3608 sizeof(struct kvm_pic_state));
3609 spin_unlock(&pic_irqchip(kvm)->lock);
3610 break;
3611 case KVM_IRQCHIP_PIC_SLAVE:
3612 spin_lock(&pic_irqchip(kvm)->lock);
3613 memcpy(&pic_irqchip(kvm)->pics[1],
3614 &chip->chip.pic,
3615 sizeof(struct kvm_pic_state));
3616 spin_unlock(&pic_irqchip(kvm)->lock);
3617 break;
3618 case KVM_IRQCHIP_IOAPIC:
3619 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3620 break;
3621 default:
3622 r = -EINVAL;
3623 break;
3624 }
3625 kvm_pic_update_irq(pic_irqchip(kvm));
3626 return r;
3627 }
3628
3629 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3630 {
3631 int r = 0;
3632
3633 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3634 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3635 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3636 return r;
3637 }
3638
3639 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3640 {
3641 int r = 0;
3642
3643 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3644 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3645 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3646 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3647 return r;
3648 }
3649
3650 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3651 {
3652 int r = 0;
3653
3654 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3655 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3656 sizeof(ps->channels));
3657 ps->flags = kvm->arch.vpit->pit_state.flags;
3658 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3659 memset(&ps->reserved, 0, sizeof(ps->reserved));
3660 return r;
3661 }
3662
3663 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3664 {
3665 int r = 0, start = 0;
3666 u32 prev_legacy, cur_legacy;
3667 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3668 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3669 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3670 if (!prev_legacy && cur_legacy)
3671 start = 1;
3672 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3673 sizeof(kvm->arch.vpit->pit_state.channels));
3674 kvm->arch.vpit->pit_state.flags = ps->flags;
3675 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3676 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3677 return r;
3678 }
3679
3680 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3681 struct kvm_reinject_control *control)
3682 {
3683 if (!kvm->arch.vpit)
3684 return -ENXIO;
3685 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3686 kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3687 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3688 return 0;
3689 }
3690
3691 /**
3692 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3693 * @kvm: kvm instance
3694 * @log: slot id and address to which we copy the log
3695 *
3696 * Steps 1-4 below provide general overview of dirty page logging. See
3697 * kvm_get_dirty_log_protect() function description for additional details.
3698 *
3699 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3700 * always flush the TLB (step 4) even if previous step failed and the dirty
3701 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3702 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3703 * writes will be marked dirty for next log read.
3704 *
3705 * 1. Take a snapshot of the bit and clear it if needed.
3706 * 2. Write protect the corresponding page.
3707 * 3. Copy the snapshot to the userspace.
3708 * 4. Flush TLB's if needed.
3709 */
3710 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3711 {
3712 bool is_dirty = false;
3713 int r;
3714
3715 mutex_lock(&kvm->slots_lock);
3716
3717 /*
3718 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3719 */
3720 if (kvm_x86_ops->flush_log_dirty)
3721 kvm_x86_ops->flush_log_dirty(kvm);
3722
3723 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3724
3725 /*
3726 * All the TLBs can be flushed out of mmu lock, see the comments in
3727 * kvm_mmu_slot_remove_write_access().
3728 */
3729 lockdep_assert_held(&kvm->slots_lock);
3730 if (is_dirty)
3731 kvm_flush_remote_tlbs(kvm);
3732
3733 mutex_unlock(&kvm->slots_lock);
3734 return r;
3735 }
3736
3737 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3738 bool line_status)
3739 {
3740 if (!irqchip_in_kernel(kvm))
3741 return -ENXIO;
3742
3743 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3744 irq_event->irq, irq_event->level,
3745 line_status);
3746 return 0;
3747 }
3748
3749 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3750 struct kvm_enable_cap *cap)
3751 {
3752 int r;
3753
3754 if (cap->flags)
3755 return -EINVAL;
3756
3757 switch (cap->cap) {
3758 case KVM_CAP_DISABLE_QUIRKS:
3759 kvm->arch.disabled_quirks = cap->args[0];
3760 r = 0;
3761 break;
3762 default:
3763 r = -EINVAL;
3764 break;
3765 }
3766 return r;
3767 }
3768
3769 long kvm_arch_vm_ioctl(struct file *filp,
3770 unsigned int ioctl, unsigned long arg)
3771 {
3772 struct kvm *kvm = filp->private_data;
3773 void __user *argp = (void __user *)arg;
3774 int r = -ENOTTY;
3775 /*
3776 * This union makes it completely explicit to gcc-3.x
3777 * that these two variables' stack usage should be
3778 * combined, not added together.
3779 */
3780 union {
3781 struct kvm_pit_state ps;
3782 struct kvm_pit_state2 ps2;
3783 struct kvm_pit_config pit_config;
3784 } u;
3785
3786 switch (ioctl) {
3787 case KVM_SET_TSS_ADDR:
3788 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3789 break;
3790 case KVM_SET_IDENTITY_MAP_ADDR: {
3791 u64 ident_addr;
3792
3793 r = -EFAULT;
3794 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3795 goto out;
3796 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3797 break;
3798 }
3799 case KVM_SET_NR_MMU_PAGES:
3800 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3801 break;
3802 case KVM_GET_NR_MMU_PAGES:
3803 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3804 break;
3805 case KVM_CREATE_IRQCHIP: {
3806 struct kvm_pic *vpic;
3807
3808 mutex_lock(&kvm->lock);
3809 r = -EEXIST;
3810 if (kvm->arch.vpic)
3811 goto create_irqchip_unlock;
3812 r = -EINVAL;
3813 if (atomic_read(&kvm->online_vcpus))
3814 goto create_irqchip_unlock;
3815 r = -ENOMEM;
3816 vpic = kvm_create_pic(kvm);
3817 if (vpic) {
3818 r = kvm_ioapic_init(kvm);
3819 if (r) {
3820 mutex_lock(&kvm->slots_lock);
3821 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3822 &vpic->dev_master);
3823 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3824 &vpic->dev_slave);
3825 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3826 &vpic->dev_eclr);
3827 mutex_unlock(&kvm->slots_lock);
3828 kfree(vpic);
3829 goto create_irqchip_unlock;
3830 }
3831 } else
3832 goto create_irqchip_unlock;
3833 smp_wmb();
3834 kvm->arch.vpic = vpic;
3835 smp_wmb();
3836 r = kvm_setup_default_irq_routing(kvm);
3837 if (r) {
3838 mutex_lock(&kvm->slots_lock);
3839 mutex_lock(&kvm->irq_lock);
3840 kvm_ioapic_destroy(kvm);
3841 kvm_destroy_pic(kvm);
3842 mutex_unlock(&kvm->irq_lock);
3843 mutex_unlock(&kvm->slots_lock);
3844 }
3845 create_irqchip_unlock:
3846 mutex_unlock(&kvm->lock);
3847 break;
3848 }
3849 case KVM_CREATE_PIT:
3850 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3851 goto create_pit;
3852 case KVM_CREATE_PIT2:
3853 r = -EFAULT;
3854 if (copy_from_user(&u.pit_config, argp,
3855 sizeof(struct kvm_pit_config)))
3856 goto out;
3857 create_pit:
3858 mutex_lock(&kvm->slots_lock);
3859 r = -EEXIST;
3860 if (kvm->arch.vpit)
3861 goto create_pit_unlock;
3862 r = -ENOMEM;
3863 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3864 if (kvm->arch.vpit)
3865 r = 0;
3866 create_pit_unlock:
3867 mutex_unlock(&kvm->slots_lock);
3868 break;
3869 case KVM_GET_IRQCHIP: {
3870 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3871 struct kvm_irqchip *chip;
3872
3873 chip = memdup_user(argp, sizeof(*chip));
3874 if (IS_ERR(chip)) {
3875 r = PTR_ERR(chip);
3876 goto out;
3877 }
3878
3879 r = -ENXIO;
3880 if (!irqchip_in_kernel(kvm))
3881 goto get_irqchip_out;
3882 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3883 if (r)
3884 goto get_irqchip_out;
3885 r = -EFAULT;
3886 if (copy_to_user(argp, chip, sizeof *chip))
3887 goto get_irqchip_out;
3888 r = 0;
3889 get_irqchip_out:
3890 kfree(chip);
3891 break;
3892 }
3893 case KVM_SET_IRQCHIP: {
3894 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3895 struct kvm_irqchip *chip;
3896
3897 chip = memdup_user(argp, sizeof(*chip));
3898 if (IS_ERR(chip)) {
3899 r = PTR_ERR(chip);
3900 goto out;
3901 }
3902
3903 r = -ENXIO;
3904 if (!irqchip_in_kernel(kvm))
3905 goto set_irqchip_out;
3906 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3907 if (r)
3908 goto set_irqchip_out;
3909 r = 0;
3910 set_irqchip_out:
3911 kfree(chip);
3912 break;
3913 }
3914 case KVM_GET_PIT: {
3915 r = -EFAULT;
3916 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3917 goto out;
3918 r = -ENXIO;
3919 if (!kvm->arch.vpit)
3920 goto out;
3921 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3922 if (r)
3923 goto out;
3924 r = -EFAULT;
3925 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3926 goto out;
3927 r = 0;
3928 break;
3929 }
3930 case KVM_SET_PIT: {
3931 r = -EFAULT;
3932 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3933 goto out;
3934 r = -ENXIO;
3935 if (!kvm->arch.vpit)
3936 goto out;
3937 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3938 break;
3939 }
3940 case KVM_GET_PIT2: {
3941 r = -ENXIO;
3942 if (!kvm->arch.vpit)
3943 goto out;
3944 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3945 if (r)
3946 goto out;
3947 r = -EFAULT;
3948 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3949 goto out;
3950 r = 0;
3951 break;
3952 }
3953 case KVM_SET_PIT2: {
3954 r = -EFAULT;
3955 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3956 goto out;
3957 r = -ENXIO;
3958 if (!kvm->arch.vpit)
3959 goto out;
3960 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3961 break;
3962 }
3963 case KVM_REINJECT_CONTROL: {
3964 struct kvm_reinject_control control;
3965 r = -EFAULT;
3966 if (copy_from_user(&control, argp, sizeof(control)))
3967 goto out;
3968 r = kvm_vm_ioctl_reinject(kvm, &control);
3969 break;
3970 }
3971 case KVM_XEN_HVM_CONFIG: {
3972 r = -EFAULT;
3973 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3974 sizeof(struct kvm_xen_hvm_config)))
3975 goto out;
3976 r = -EINVAL;
3977 if (kvm->arch.xen_hvm_config.flags)
3978 goto out;
3979 r = 0;
3980 break;
3981 }
3982 case KVM_SET_CLOCK: {
3983 struct kvm_clock_data user_ns;
3984 u64 now_ns;
3985 s64 delta;
3986
3987 r = -EFAULT;
3988 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3989 goto out;
3990
3991 r = -EINVAL;
3992 if (user_ns.flags)
3993 goto out;
3994
3995 r = 0;
3996 local_irq_disable();
3997 now_ns = get_kernel_ns();
3998 delta = user_ns.clock - now_ns;
3999 local_irq_enable();
4000 kvm->arch.kvmclock_offset = delta;
4001 kvm_gen_update_masterclock(kvm);
4002 break;
4003 }
4004 case KVM_GET_CLOCK: {
4005 struct kvm_clock_data user_ns;
4006 u64 now_ns;
4007
4008 local_irq_disable();
4009 now_ns = get_kernel_ns();
4010 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
4011 local_irq_enable();
4012 user_ns.flags = 0;
4013 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4014
4015 r = -EFAULT;
4016 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4017 goto out;
4018 r = 0;
4019 break;
4020 }
4021 case KVM_ENABLE_CAP: {
4022 struct kvm_enable_cap cap;
4023
4024 r = -EFAULT;
4025 if (copy_from_user(&cap, argp, sizeof(cap)))
4026 goto out;
4027 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4028 break;
4029 }
4030 default:
4031 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4032 }
4033 out:
4034 return r;
4035 }
4036
4037 static void kvm_init_msr_list(void)
4038 {
4039 u32 dummy[2];
4040 unsigned i, j;
4041
4042 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4043 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4044 continue;
4045
4046 /*
4047 * Even MSRs that are valid in the host may not be exposed
4048 * to the guests in some cases. We could work around this
4049 * in VMX with the generic MSR save/load machinery, but it
4050 * is not really worthwhile since it will really only
4051 * happen with nested virtualization.
4052 */
4053 switch (msrs_to_save[i]) {
4054 case MSR_IA32_BNDCFGS:
4055 if (!kvm_x86_ops->mpx_supported())
4056 continue;
4057 break;
4058 default:
4059 break;
4060 }
4061
4062 if (j < i)
4063 msrs_to_save[j] = msrs_to_save[i];
4064 j++;
4065 }
4066 num_msrs_to_save = j;
4067
4068 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4069 switch (emulated_msrs[i]) {
4070 case MSR_IA32_SMBASE:
4071 if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4072 continue;
4073 break;
4074 default:
4075 break;
4076 }
4077
4078 if (j < i)
4079 emulated_msrs[j] = emulated_msrs[i];
4080 j++;
4081 }
4082 num_emulated_msrs = j;
4083 }
4084
4085 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4086 const void *v)
4087 {
4088 int handled = 0;
4089 int n;
4090
4091 do {
4092 n = min(len, 8);
4093 if (!(vcpu->arch.apic &&
4094 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4095 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4096 break;
4097 handled += n;
4098 addr += n;
4099 len -= n;
4100 v += n;
4101 } while (len);
4102
4103 return handled;
4104 }
4105
4106 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4107 {
4108 int handled = 0;
4109 int n;
4110
4111 do {
4112 n = min(len, 8);
4113 if (!(vcpu->arch.apic &&
4114 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4115 addr, n, v))
4116 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4117 break;
4118 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4119 handled += n;
4120 addr += n;
4121 len -= n;
4122 v += n;
4123 } while (len);
4124
4125 return handled;
4126 }
4127
4128 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4129 struct kvm_segment *var, int seg)
4130 {
4131 kvm_x86_ops->set_segment(vcpu, var, seg);
4132 }
4133
4134 void kvm_get_segment(struct kvm_vcpu *vcpu,
4135 struct kvm_segment *var, int seg)
4136 {
4137 kvm_x86_ops->get_segment(vcpu, var, seg);
4138 }
4139
4140 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4141 struct x86_exception *exception)
4142 {
4143 gpa_t t_gpa;
4144
4145 BUG_ON(!mmu_is_nested(vcpu));
4146
4147 /* NPT walks are always user-walks */
4148 access |= PFERR_USER_MASK;
4149 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4150
4151 return t_gpa;
4152 }
4153
4154 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4155 struct x86_exception *exception)
4156 {
4157 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4158 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4159 }
4160
4161 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4162 struct x86_exception *exception)
4163 {
4164 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4165 access |= PFERR_FETCH_MASK;
4166 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4167 }
4168
4169 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4170 struct x86_exception *exception)
4171 {
4172 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4173 access |= PFERR_WRITE_MASK;
4174 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4175 }
4176
4177 /* uses this to access any guest's mapped memory without checking CPL */
4178 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4179 struct x86_exception *exception)
4180 {
4181 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4182 }
4183
4184 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4185 struct kvm_vcpu *vcpu, u32 access,
4186 struct x86_exception *exception)
4187 {
4188 void *data = val;
4189 int r = X86EMUL_CONTINUE;
4190
4191 while (bytes) {
4192 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4193 exception);
4194 unsigned offset = addr & (PAGE_SIZE-1);
4195 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4196 int ret;
4197
4198 if (gpa == UNMAPPED_GVA)
4199 return X86EMUL_PROPAGATE_FAULT;
4200 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4201 offset, toread);
4202 if (ret < 0) {
4203 r = X86EMUL_IO_NEEDED;
4204 goto out;
4205 }
4206
4207 bytes -= toread;
4208 data += toread;
4209 addr += toread;
4210 }
4211 out:
4212 return r;
4213 }
4214
4215 /* used for instruction fetching */
4216 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4217 gva_t addr, void *val, unsigned int bytes,
4218 struct x86_exception *exception)
4219 {
4220 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4221 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4222 unsigned offset;
4223 int ret;
4224
4225 /* Inline kvm_read_guest_virt_helper for speed. */
4226 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4227 exception);
4228 if (unlikely(gpa == UNMAPPED_GVA))
4229 return X86EMUL_PROPAGATE_FAULT;
4230
4231 offset = addr & (PAGE_SIZE-1);
4232 if (WARN_ON(offset + bytes > PAGE_SIZE))
4233 bytes = (unsigned)PAGE_SIZE - offset;
4234 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4235 offset, bytes);
4236 if (unlikely(ret < 0))
4237 return X86EMUL_IO_NEEDED;
4238
4239 return X86EMUL_CONTINUE;
4240 }
4241
4242 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4243 gva_t addr, void *val, unsigned int bytes,
4244 struct x86_exception *exception)
4245 {
4246 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4247 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4248
4249 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4250 exception);
4251 }
4252 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4253
4254 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4255 gva_t addr, void *val, unsigned int bytes,
4256 struct x86_exception *exception)
4257 {
4258 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4259 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4260 }
4261
4262 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4263 gva_t addr, void *val,
4264 unsigned int bytes,
4265 struct x86_exception *exception)
4266 {
4267 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4268 void *data = val;
4269 int r = X86EMUL_CONTINUE;
4270
4271 while (bytes) {
4272 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4273 PFERR_WRITE_MASK,
4274 exception);
4275 unsigned offset = addr & (PAGE_SIZE-1);
4276 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4277 int ret;
4278
4279 if (gpa == UNMAPPED_GVA)
4280 return X86EMUL_PROPAGATE_FAULT;
4281 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4282 if (ret < 0) {
4283 r = X86EMUL_IO_NEEDED;
4284 goto out;
4285 }
4286
4287 bytes -= towrite;
4288 data += towrite;
4289 addr += towrite;
4290 }
4291 out:
4292 return r;
4293 }
4294 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4295
4296 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4297 gpa_t *gpa, struct x86_exception *exception,
4298 bool write)
4299 {
4300 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4301 | (write ? PFERR_WRITE_MASK : 0);
4302
4303 if (vcpu_match_mmio_gva(vcpu, gva)
4304 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4305 vcpu->arch.access, access)) {
4306 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4307 (gva & (PAGE_SIZE - 1));
4308 trace_vcpu_match_mmio(gva, *gpa, write, false);
4309 return 1;
4310 }
4311
4312 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4313
4314 if (*gpa == UNMAPPED_GVA)
4315 return -1;
4316
4317 /* For APIC access vmexit */
4318 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4319 return 1;
4320
4321 if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4322 trace_vcpu_match_mmio(gva, *gpa, write, true);
4323 return 1;
4324 }
4325
4326 return 0;
4327 }
4328
4329 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4330 const void *val, int bytes)
4331 {
4332 int ret;
4333
4334 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4335 if (ret < 0)
4336 return 0;
4337 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4338 return 1;
4339 }
4340
4341 struct read_write_emulator_ops {
4342 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4343 int bytes);
4344 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4345 void *val, int bytes);
4346 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4347 int bytes, void *val);
4348 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4349 void *val, int bytes);
4350 bool write;
4351 };
4352
4353 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4354 {
4355 if (vcpu->mmio_read_completed) {
4356 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4357 vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4358 vcpu->mmio_read_completed = 0;
4359 return 1;
4360 }
4361
4362 return 0;
4363 }
4364
4365 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4366 void *val, int bytes)
4367 {
4368 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4369 }
4370
4371 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4372 void *val, int bytes)
4373 {
4374 return emulator_write_phys(vcpu, gpa, val, bytes);
4375 }
4376
4377 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4378 {
4379 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4380 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4381 }
4382
4383 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4384 void *val, int bytes)
4385 {
4386 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4387 return X86EMUL_IO_NEEDED;
4388 }
4389
4390 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4391 void *val, int bytes)
4392 {
4393 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4394
4395 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4396 return X86EMUL_CONTINUE;
4397 }
4398
4399 static const struct read_write_emulator_ops read_emultor = {
4400 .read_write_prepare = read_prepare,
4401 .read_write_emulate = read_emulate,
4402 .read_write_mmio = vcpu_mmio_read,
4403 .read_write_exit_mmio = read_exit_mmio,
4404 };
4405
4406 static const struct read_write_emulator_ops write_emultor = {
4407 .read_write_emulate = write_emulate,
4408 .read_write_mmio = write_mmio,
4409 .read_write_exit_mmio = write_exit_mmio,
4410 .write = true,
4411 };
4412
4413 static int emulator_read_write_onepage(unsigned long addr, void *val,
4414 unsigned int bytes,
4415 struct x86_exception *exception,
4416 struct kvm_vcpu *vcpu,
4417 const struct read_write_emulator_ops *ops)
4418 {
4419 gpa_t gpa;
4420 int handled, ret;
4421 bool write = ops->write;
4422 struct kvm_mmio_fragment *frag;
4423
4424 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4425
4426 if (ret < 0)
4427 return X86EMUL_PROPAGATE_FAULT;
4428
4429 /* For APIC access vmexit */
4430 if (ret)
4431 goto mmio;
4432
4433 if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4434 return X86EMUL_CONTINUE;
4435
4436 mmio:
4437 /*
4438 * Is this MMIO handled locally?
4439 */
4440 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4441 if (handled == bytes)
4442 return X86EMUL_CONTINUE;
4443
4444 gpa += handled;
4445 bytes -= handled;
4446 val += handled;
4447
4448 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4449 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4450 frag->gpa = gpa;
4451 frag->data = val;
4452 frag->len = bytes;
4453 return X86EMUL_CONTINUE;
4454 }
4455
4456 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4457 unsigned long addr,
4458 void *val, unsigned int bytes,
4459 struct x86_exception *exception,
4460 const struct read_write_emulator_ops *ops)
4461 {
4462 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4463 gpa_t gpa;
4464 int rc;
4465
4466 if (ops->read_write_prepare &&
4467 ops->read_write_prepare(vcpu, val, bytes))
4468 return X86EMUL_CONTINUE;
4469
4470 vcpu->mmio_nr_fragments = 0;
4471
4472 /* Crossing a page boundary? */
4473 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4474 int now;
4475
4476 now = -addr & ~PAGE_MASK;
4477 rc = emulator_read_write_onepage(addr, val, now, exception,
4478 vcpu, ops);
4479
4480 if (rc != X86EMUL_CONTINUE)
4481 return rc;
4482 addr += now;
4483 if (ctxt->mode != X86EMUL_MODE_PROT64)
4484 addr = (u32)addr;
4485 val += now;
4486 bytes -= now;
4487 }
4488
4489 rc = emulator_read_write_onepage(addr, val, bytes, exception,
4490 vcpu, ops);
4491 if (rc != X86EMUL_CONTINUE)
4492 return rc;
4493
4494 if (!vcpu->mmio_nr_fragments)
4495 return rc;
4496
4497 gpa = vcpu->mmio_fragments[0].gpa;
4498
4499 vcpu->mmio_needed = 1;
4500 vcpu->mmio_cur_fragment = 0;
4501
4502 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4503 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4504 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4505 vcpu->run->mmio.phys_addr = gpa;
4506
4507 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4508 }
4509
4510 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4511 unsigned long addr,
4512 void *val,
4513 unsigned int bytes,
4514 struct x86_exception *exception)
4515 {
4516 return emulator_read_write(ctxt, addr, val, bytes,
4517 exception, &read_emultor);
4518 }
4519
4520 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4521 unsigned long addr,
4522 const void *val,
4523 unsigned int bytes,
4524 struct x86_exception *exception)
4525 {
4526 return emulator_read_write(ctxt, addr, (void *)val, bytes,
4527 exception, &write_emultor);
4528 }
4529
4530 #define CMPXCHG_TYPE(t, ptr, old, new) \
4531 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4532
4533 #ifdef CONFIG_X86_64
4534 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4535 #else
4536 # define CMPXCHG64(ptr, old, new) \
4537 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4538 #endif
4539
4540 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4541 unsigned long addr,
4542 const void *old,
4543 const void *new,
4544 unsigned int bytes,
4545 struct x86_exception *exception)
4546 {
4547 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4548 gpa_t gpa;
4549 struct page *page;
4550 char *kaddr;
4551 bool exchanged;
4552
4553 /* guests cmpxchg8b have to be emulated atomically */
4554 if (bytes > 8 || (bytes & (bytes - 1)))
4555 goto emul_write;
4556
4557 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4558
4559 if (gpa == UNMAPPED_GVA ||
4560 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4561 goto emul_write;
4562
4563 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4564 goto emul_write;
4565
4566 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4567 if (is_error_page(page))
4568 goto emul_write;
4569
4570 kaddr = kmap_atomic(page);
4571 kaddr += offset_in_page(gpa);
4572 switch (bytes) {
4573 case 1:
4574 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4575 break;
4576 case 2:
4577 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4578 break;
4579 case 4:
4580 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4581 break;
4582 case 8:
4583 exchanged = CMPXCHG64(kaddr, old, new);
4584 break;
4585 default:
4586 BUG();
4587 }
4588 kunmap_atomic(kaddr);
4589 kvm_release_page_dirty(page);
4590
4591 if (!exchanged)
4592 return X86EMUL_CMPXCHG_FAILED;
4593
4594 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4595 kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4596
4597 return X86EMUL_CONTINUE;
4598
4599 emul_write:
4600 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4601
4602 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4603 }
4604
4605 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4606 {
4607 /* TODO: String I/O for in kernel device */
4608 int r;
4609
4610 if (vcpu->arch.pio.in)
4611 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4612 vcpu->arch.pio.size, pd);
4613 else
4614 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4615 vcpu->arch.pio.port, vcpu->arch.pio.size,
4616 pd);
4617 return r;
4618 }
4619
4620 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4621 unsigned short port, void *val,
4622 unsigned int count, bool in)
4623 {
4624 vcpu->arch.pio.port = port;
4625 vcpu->arch.pio.in = in;
4626 vcpu->arch.pio.count = count;
4627 vcpu->arch.pio.size = size;
4628
4629 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4630 vcpu->arch.pio.count = 0;
4631 return 1;
4632 }
4633
4634 vcpu->run->exit_reason = KVM_EXIT_IO;
4635 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4636 vcpu->run->io.size = size;
4637 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4638 vcpu->run->io.count = count;
4639 vcpu->run->io.port = port;
4640
4641 return 0;
4642 }
4643
4644 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4645 int size, unsigned short port, void *val,
4646 unsigned int count)
4647 {
4648 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4649 int ret;
4650
4651 if (vcpu->arch.pio.count)
4652 goto data_avail;
4653
4654 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4655 if (ret) {
4656 data_avail:
4657 memcpy(val, vcpu->arch.pio_data, size * count);
4658 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4659 vcpu->arch.pio.count = 0;
4660 return 1;
4661 }
4662
4663 return 0;
4664 }
4665
4666 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4667 int size, unsigned short port,
4668 const void *val, unsigned int count)
4669 {
4670 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4671
4672 memcpy(vcpu->arch.pio_data, val, size * count);
4673 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4674 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4675 }
4676
4677 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4678 {
4679 return kvm_x86_ops->get_segment_base(vcpu, seg);
4680 }
4681
4682 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4683 {
4684 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4685 }
4686
4687 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4688 {
4689 if (!need_emulate_wbinvd(vcpu))
4690 return X86EMUL_CONTINUE;
4691
4692 if (kvm_x86_ops->has_wbinvd_exit()) {
4693 int cpu = get_cpu();
4694
4695 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4696 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4697 wbinvd_ipi, NULL, 1);
4698 put_cpu();
4699 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4700 } else
4701 wbinvd();
4702 return X86EMUL_CONTINUE;
4703 }
4704
4705 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4706 {
4707 kvm_x86_ops->skip_emulated_instruction(vcpu);
4708 return kvm_emulate_wbinvd_noskip(vcpu);
4709 }
4710 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4711
4712
4713
4714 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4715 {
4716 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4717 }
4718
4719 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4720 unsigned long *dest)
4721 {
4722 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4723 }
4724
4725 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4726 unsigned long value)
4727 {
4728
4729 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4730 }
4731
4732 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4733 {
4734 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4735 }
4736
4737 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4738 {
4739 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4740 unsigned long value;
4741
4742 switch (cr) {
4743 case 0:
4744 value = kvm_read_cr0(vcpu);
4745 break;
4746 case 2:
4747 value = vcpu->arch.cr2;
4748 break;
4749 case 3:
4750 value = kvm_read_cr3(vcpu);
4751 break;
4752 case 4:
4753 value = kvm_read_cr4(vcpu);
4754 break;
4755 case 8:
4756 value = kvm_get_cr8(vcpu);
4757 break;
4758 default:
4759 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4760 return 0;
4761 }
4762
4763 return value;
4764 }
4765
4766 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4767 {
4768 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4769 int res = 0;
4770
4771 switch (cr) {
4772 case 0:
4773 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4774 break;
4775 case 2:
4776 vcpu->arch.cr2 = val;
4777 break;
4778 case 3:
4779 res = kvm_set_cr3(vcpu, val);
4780 break;
4781 case 4:
4782 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4783 break;
4784 case 8:
4785 res = kvm_set_cr8(vcpu, val);
4786 break;
4787 default:
4788 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4789 res = -1;
4790 }
4791
4792 return res;
4793 }
4794
4795 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4796 {
4797 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4798 }
4799
4800 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4801 {
4802 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4803 }
4804
4805 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4806 {
4807 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4808 }
4809
4810 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4811 {
4812 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4813 }
4814
4815 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4816 {
4817 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4818 }
4819
4820 static unsigned long emulator_get_cached_segment_base(
4821 struct x86_emulate_ctxt *ctxt, int seg)
4822 {
4823 return get_segment_base(emul_to_vcpu(ctxt), seg);
4824 }
4825
4826 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4827 struct desc_struct *desc, u32 *base3,
4828 int seg)
4829 {
4830 struct kvm_segment var;
4831
4832 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4833 *selector = var.selector;
4834
4835 if (var.unusable) {
4836 memset(desc, 0, sizeof(*desc));
4837 return false;
4838 }
4839
4840 if (var.g)
4841 var.limit >>= 12;
4842 set_desc_limit(desc, var.limit);
4843 set_desc_base(desc, (unsigned long)var.base);
4844 #ifdef CONFIG_X86_64
4845 if (base3)
4846 *base3 = var.base >> 32;
4847 #endif
4848 desc->type = var.type;
4849 desc->s = var.s;
4850 desc->dpl = var.dpl;
4851 desc->p = var.present;
4852 desc->avl = var.avl;
4853 desc->l = var.l;
4854 desc->d = var.db;
4855 desc->g = var.g;
4856
4857 return true;
4858 }
4859
4860 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4861 struct desc_struct *desc, u32 base3,
4862 int seg)
4863 {
4864 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4865 struct kvm_segment var;
4866
4867 var.selector = selector;
4868 var.base = get_desc_base(desc);
4869 #ifdef CONFIG_X86_64
4870 var.base |= ((u64)base3) << 32;
4871 #endif
4872 var.limit = get_desc_limit(desc);
4873 if (desc->g)
4874 var.limit = (var.limit << 12) | 0xfff;
4875 var.type = desc->type;
4876 var.dpl = desc->dpl;
4877 var.db = desc->d;
4878 var.s = desc->s;
4879 var.l = desc->l;
4880 var.g = desc->g;
4881 var.avl = desc->avl;
4882 var.present = desc->p;
4883 var.unusable = !var.present;
4884 var.padding = 0;
4885
4886 kvm_set_segment(vcpu, &var, seg);
4887 return;
4888 }
4889
4890 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4891 u32 msr_index, u64 *pdata)
4892 {
4893 struct msr_data msr;
4894 int r;
4895
4896 msr.index = msr_index;
4897 msr.host_initiated = false;
4898 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
4899 if (r)
4900 return r;
4901
4902 *pdata = msr.data;
4903 return 0;
4904 }
4905
4906 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4907 u32 msr_index, u64 data)
4908 {
4909 struct msr_data msr;
4910
4911 msr.data = data;
4912 msr.index = msr_index;
4913 msr.host_initiated = false;
4914 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4915 }
4916
4917 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
4918 {
4919 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4920
4921 return vcpu->arch.smbase;
4922 }
4923
4924 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
4925 {
4926 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4927
4928 vcpu->arch.smbase = smbase;
4929 }
4930
4931 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4932 u32 pmc)
4933 {
4934 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
4935 }
4936
4937 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4938 u32 pmc, u64 *pdata)
4939 {
4940 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
4941 }
4942
4943 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4944 {
4945 emul_to_vcpu(ctxt)->arch.halt_request = 1;
4946 }
4947
4948 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4949 {
4950 preempt_disable();
4951 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4952 /*
4953 * CR0.TS may reference the host fpu state, not the guest fpu state,
4954 * so it may be clear at this point.
4955 */
4956 clts();
4957 }
4958
4959 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4960 {
4961 preempt_enable();
4962 }
4963
4964 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4965 struct x86_instruction_info *info,
4966 enum x86_intercept_stage stage)
4967 {
4968 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4969 }
4970
4971 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4972 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4973 {
4974 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4975 }
4976
4977 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4978 {
4979 return kvm_register_read(emul_to_vcpu(ctxt), reg);
4980 }
4981
4982 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4983 {
4984 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4985 }
4986
4987 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
4988 {
4989 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
4990 }
4991
4992 static const struct x86_emulate_ops emulate_ops = {
4993 .read_gpr = emulator_read_gpr,
4994 .write_gpr = emulator_write_gpr,
4995 .read_std = kvm_read_guest_virt_system,
4996 .write_std = kvm_write_guest_virt_system,
4997 .fetch = kvm_fetch_guest_virt,
4998 .read_emulated = emulator_read_emulated,
4999 .write_emulated = emulator_write_emulated,
5000 .cmpxchg_emulated = emulator_cmpxchg_emulated,
5001 .invlpg = emulator_invlpg,
5002 .pio_in_emulated = emulator_pio_in_emulated,
5003 .pio_out_emulated = emulator_pio_out_emulated,
5004 .get_segment = emulator_get_segment,
5005 .set_segment = emulator_set_segment,
5006 .get_cached_segment_base = emulator_get_cached_segment_base,
5007 .get_gdt = emulator_get_gdt,
5008 .get_idt = emulator_get_idt,
5009 .set_gdt = emulator_set_gdt,
5010 .set_idt = emulator_set_idt,
5011 .get_cr = emulator_get_cr,
5012 .set_cr = emulator_set_cr,
5013 .cpl = emulator_get_cpl,
5014 .get_dr = emulator_get_dr,
5015 .set_dr = emulator_set_dr,
5016 .get_smbase = emulator_get_smbase,
5017 .set_smbase = emulator_set_smbase,
5018 .set_msr = emulator_set_msr,
5019 .get_msr = emulator_get_msr,
5020 .check_pmc = emulator_check_pmc,
5021 .read_pmc = emulator_read_pmc,
5022 .halt = emulator_halt,
5023 .wbinvd = emulator_wbinvd,
5024 .fix_hypercall = emulator_fix_hypercall,
5025 .get_fpu = emulator_get_fpu,
5026 .put_fpu = emulator_put_fpu,
5027 .intercept = emulator_intercept,
5028 .get_cpuid = emulator_get_cpuid,
5029 .set_nmi_mask = emulator_set_nmi_mask,
5030 };
5031
5032 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5033 {
5034 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5035 /*
5036 * an sti; sti; sequence only disable interrupts for the first
5037 * instruction. So, if the last instruction, be it emulated or
5038 * not, left the system with the INT_STI flag enabled, it
5039 * means that the last instruction is an sti. We should not
5040 * leave the flag on in this case. The same goes for mov ss
5041 */
5042 if (int_shadow & mask)
5043 mask = 0;
5044 if (unlikely(int_shadow || mask)) {
5045 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5046 if (!mask)
5047 kvm_make_request(KVM_REQ_EVENT, vcpu);
5048 }
5049 }
5050
5051 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5052 {
5053 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5054 if (ctxt->exception.vector == PF_VECTOR)
5055 return kvm_propagate_fault(vcpu, &ctxt->exception);
5056
5057 if (ctxt->exception.error_code_valid)
5058 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5059 ctxt->exception.error_code);
5060 else
5061 kvm_queue_exception(vcpu, ctxt->exception.vector);
5062 return false;
5063 }
5064
5065 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5066 {
5067 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5068 int cs_db, cs_l;
5069
5070 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5071
5072 ctxt->eflags = kvm_get_rflags(vcpu);
5073 ctxt->eip = kvm_rip_read(vcpu);
5074 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
5075 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
5076 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
5077 cs_db ? X86EMUL_MODE_PROT32 :
5078 X86EMUL_MODE_PROT16;
5079 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5080 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5081 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5082 ctxt->emul_flags = vcpu->arch.hflags;
5083
5084 init_decode_cache(ctxt);
5085 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5086 }
5087
5088 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5089 {
5090 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5091 int ret;
5092
5093 init_emulate_ctxt(vcpu);
5094
5095 ctxt->op_bytes = 2;
5096 ctxt->ad_bytes = 2;
5097 ctxt->_eip = ctxt->eip + inc_eip;
5098 ret = emulate_int_real(ctxt, irq);
5099
5100 if (ret != X86EMUL_CONTINUE)
5101 return EMULATE_FAIL;
5102
5103 ctxt->eip = ctxt->_eip;
5104 kvm_rip_write(vcpu, ctxt->eip);
5105 kvm_set_rflags(vcpu, ctxt->eflags);
5106
5107 if (irq == NMI_VECTOR)
5108 vcpu->arch.nmi_pending = 0;
5109 else
5110 vcpu->arch.interrupt.pending = false;
5111
5112 return EMULATE_DONE;
5113 }
5114 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5115
5116 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5117 {
5118 int r = EMULATE_DONE;
5119
5120 ++vcpu->stat.insn_emulation_fail;
5121 trace_kvm_emulate_insn_failed(vcpu);
5122 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5123 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5124 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5125 vcpu->run->internal.ndata = 0;
5126 r = EMULATE_FAIL;
5127 }
5128 kvm_queue_exception(vcpu, UD_VECTOR);
5129
5130 return r;
5131 }
5132
5133 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5134 bool write_fault_to_shadow_pgtable,
5135 int emulation_type)
5136 {
5137 gpa_t gpa = cr2;
5138 pfn_t pfn;
5139
5140 if (emulation_type & EMULTYPE_NO_REEXECUTE)
5141 return false;
5142
5143 if (!vcpu->arch.mmu.direct_map) {
5144 /*
5145 * Write permission should be allowed since only
5146 * write access need to be emulated.
5147 */
5148 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5149
5150 /*
5151 * If the mapping is invalid in guest, let cpu retry
5152 * it to generate fault.
5153 */
5154 if (gpa == UNMAPPED_GVA)
5155 return true;
5156 }
5157
5158 /*
5159 * Do not retry the unhandleable instruction if it faults on the
5160 * readonly host memory, otherwise it will goto a infinite loop:
5161 * retry instruction -> write #PF -> emulation fail -> retry
5162 * instruction -> ...
5163 */
5164 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5165
5166 /*
5167 * If the instruction failed on the error pfn, it can not be fixed,
5168 * report the error to userspace.
5169 */
5170 if (is_error_noslot_pfn(pfn))
5171 return false;
5172
5173 kvm_release_pfn_clean(pfn);
5174
5175 /* The instructions are well-emulated on direct mmu. */
5176 if (vcpu->arch.mmu.direct_map) {
5177 unsigned int indirect_shadow_pages;
5178
5179 spin_lock(&vcpu->kvm->mmu_lock);
5180 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5181 spin_unlock(&vcpu->kvm->mmu_lock);
5182
5183 if (indirect_shadow_pages)
5184 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5185
5186 return true;
5187 }
5188
5189 /*
5190 * if emulation was due to access to shadowed page table
5191 * and it failed try to unshadow page and re-enter the
5192 * guest to let CPU execute the instruction.
5193 */
5194 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5195
5196 /*
5197 * If the access faults on its page table, it can not
5198 * be fixed by unprotecting shadow page and it should
5199 * be reported to userspace.
5200 */
5201 return !write_fault_to_shadow_pgtable;
5202 }
5203
5204 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5205 unsigned long cr2, int emulation_type)
5206 {
5207 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5208 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5209
5210 last_retry_eip = vcpu->arch.last_retry_eip;
5211 last_retry_addr = vcpu->arch.last_retry_addr;
5212
5213 /*
5214 * If the emulation is caused by #PF and it is non-page_table
5215 * writing instruction, it means the VM-EXIT is caused by shadow
5216 * page protected, we can zap the shadow page and retry this
5217 * instruction directly.
5218 *
5219 * Note: if the guest uses a non-page-table modifying instruction
5220 * on the PDE that points to the instruction, then we will unmap
5221 * the instruction and go to an infinite loop. So, we cache the
5222 * last retried eip and the last fault address, if we meet the eip
5223 * and the address again, we can break out of the potential infinite
5224 * loop.
5225 */
5226 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5227
5228 if (!(emulation_type & EMULTYPE_RETRY))
5229 return false;
5230
5231 if (x86_page_table_writing_insn(ctxt))
5232 return false;
5233
5234 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5235 return false;
5236
5237 vcpu->arch.last_retry_eip = ctxt->eip;
5238 vcpu->arch.last_retry_addr = cr2;
5239
5240 if (!vcpu->arch.mmu.direct_map)
5241 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5242
5243 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5244
5245 return true;
5246 }
5247
5248 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5249 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5250
5251 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5252 {
5253 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5254 /* This is a good place to trace that we are exiting SMM. */
5255 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5256
5257 if (unlikely(vcpu->arch.smi_pending)) {
5258 kvm_make_request(KVM_REQ_SMI, vcpu);
5259 vcpu->arch.smi_pending = 0;
5260 } else {
5261 /* Process a latched INIT, if any. */
5262 kvm_make_request(KVM_REQ_EVENT, vcpu);
5263 }
5264 }
5265
5266 kvm_mmu_reset_context(vcpu);
5267 }
5268
5269 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5270 {
5271 unsigned changed = vcpu->arch.hflags ^ emul_flags;
5272
5273 vcpu->arch.hflags = emul_flags;
5274
5275 if (changed & HF_SMM_MASK)
5276 kvm_smm_changed(vcpu);
5277 }
5278
5279 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5280 unsigned long *db)
5281 {
5282 u32 dr6 = 0;
5283 int i;
5284 u32 enable, rwlen;
5285
5286 enable = dr7;
5287 rwlen = dr7 >> 16;
5288 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5289 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5290 dr6 |= (1 << i);
5291 return dr6;
5292 }
5293
5294 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5295 {
5296 struct kvm_run *kvm_run = vcpu->run;
5297
5298 /*
5299 * rflags is the old, "raw" value of the flags. The new value has
5300 * not been saved yet.
5301 *
5302 * This is correct even for TF set by the guest, because "the
5303 * processor will not generate this exception after the instruction
5304 * that sets the TF flag".
5305 */
5306 if (unlikely(rflags & X86_EFLAGS_TF)) {
5307 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5308 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5309 DR6_RTM;
5310 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5311 kvm_run->debug.arch.exception = DB_VECTOR;
5312 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5313 *r = EMULATE_USER_EXIT;
5314 } else {
5315 vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5316 /*
5317 * "Certain debug exceptions may clear bit 0-3. The
5318 * remaining contents of the DR6 register are never
5319 * cleared by the processor".
5320 */
5321 vcpu->arch.dr6 &= ~15;
5322 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5323 kvm_queue_exception(vcpu, DB_VECTOR);
5324 }
5325 }
5326 }
5327
5328 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5329 {
5330 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5331 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5332 struct kvm_run *kvm_run = vcpu->run;
5333 unsigned long eip = kvm_get_linear_rip(vcpu);
5334 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5335 vcpu->arch.guest_debug_dr7,
5336 vcpu->arch.eff_db);
5337
5338 if (dr6 != 0) {
5339 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5340 kvm_run->debug.arch.pc = eip;
5341 kvm_run->debug.arch.exception = DB_VECTOR;
5342 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5343 *r = EMULATE_USER_EXIT;
5344 return true;
5345 }
5346 }
5347
5348 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5349 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5350 unsigned long eip = kvm_get_linear_rip(vcpu);
5351 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5352 vcpu->arch.dr7,
5353 vcpu->arch.db);
5354
5355 if (dr6 != 0) {
5356 vcpu->arch.dr6 &= ~15;
5357 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5358 kvm_queue_exception(vcpu, DB_VECTOR);
5359 *r = EMULATE_DONE;
5360 return true;
5361 }
5362 }
5363
5364 return false;
5365 }
5366
5367 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5368 unsigned long cr2,
5369 int emulation_type,
5370 void *insn,
5371 int insn_len)
5372 {
5373 int r;
5374 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5375 bool writeback = true;
5376 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5377
5378 /*
5379 * Clear write_fault_to_shadow_pgtable here to ensure it is
5380 * never reused.
5381 */
5382 vcpu->arch.write_fault_to_shadow_pgtable = false;
5383 kvm_clear_exception_queue(vcpu);
5384
5385 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5386 init_emulate_ctxt(vcpu);
5387
5388 /*
5389 * We will reenter on the same instruction since
5390 * we do not set complete_userspace_io. This does not
5391 * handle watchpoints yet, those would be handled in
5392 * the emulate_ops.
5393 */
5394 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5395 return r;
5396
5397 ctxt->interruptibility = 0;
5398 ctxt->have_exception = false;
5399 ctxt->exception.vector = -1;
5400 ctxt->perm_ok = false;
5401
5402 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5403
5404 r = x86_decode_insn(ctxt, insn, insn_len);
5405
5406 trace_kvm_emulate_insn_start(vcpu);
5407 ++vcpu->stat.insn_emulation;
5408 if (r != EMULATION_OK) {
5409 if (emulation_type & EMULTYPE_TRAP_UD)
5410 return EMULATE_FAIL;
5411 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5412 emulation_type))
5413 return EMULATE_DONE;
5414 if (emulation_type & EMULTYPE_SKIP)
5415 return EMULATE_FAIL;
5416 return handle_emulation_failure(vcpu);
5417 }
5418 }
5419
5420 if (emulation_type & EMULTYPE_SKIP) {
5421 kvm_rip_write(vcpu, ctxt->_eip);
5422 if (ctxt->eflags & X86_EFLAGS_RF)
5423 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5424 return EMULATE_DONE;
5425 }
5426
5427 if (retry_instruction(ctxt, cr2, emulation_type))
5428 return EMULATE_DONE;
5429
5430 /* this is needed for vmware backdoor interface to work since it
5431 changes registers values during IO operation */
5432 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5433 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5434 emulator_invalidate_register_cache(ctxt);
5435 }
5436
5437 restart:
5438 r = x86_emulate_insn(ctxt);
5439
5440 if (r == EMULATION_INTERCEPTED)
5441 return EMULATE_DONE;
5442
5443 if (r == EMULATION_FAILED) {
5444 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5445 emulation_type))
5446 return EMULATE_DONE;
5447
5448 return handle_emulation_failure(vcpu);
5449 }
5450
5451 if (ctxt->have_exception) {
5452 r = EMULATE_DONE;
5453 if (inject_emulated_exception(vcpu))
5454 return r;
5455 } else if (vcpu->arch.pio.count) {
5456 if (!vcpu->arch.pio.in) {
5457 /* FIXME: return into emulator if single-stepping. */
5458 vcpu->arch.pio.count = 0;
5459 } else {
5460 writeback = false;
5461 vcpu->arch.complete_userspace_io = complete_emulated_pio;
5462 }
5463 r = EMULATE_USER_EXIT;
5464 } else if (vcpu->mmio_needed) {
5465 if (!vcpu->mmio_is_write)
5466 writeback = false;
5467 r = EMULATE_USER_EXIT;
5468 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5469 } else if (r == EMULATION_RESTART)
5470 goto restart;
5471 else
5472 r = EMULATE_DONE;
5473
5474 if (writeback) {
5475 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5476 toggle_interruptibility(vcpu, ctxt->interruptibility);
5477 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5478 if (vcpu->arch.hflags != ctxt->emul_flags)
5479 kvm_set_hflags(vcpu, ctxt->emul_flags);
5480 kvm_rip_write(vcpu, ctxt->eip);
5481 if (r == EMULATE_DONE)
5482 kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5483 if (!ctxt->have_exception ||
5484 exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5485 __kvm_set_rflags(vcpu, ctxt->eflags);
5486
5487 /*
5488 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5489 * do nothing, and it will be requested again as soon as
5490 * the shadow expires. But we still need to check here,
5491 * because POPF has no interrupt shadow.
5492 */
5493 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5494 kvm_make_request(KVM_REQ_EVENT, vcpu);
5495 } else
5496 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5497
5498 return r;
5499 }
5500 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5501
5502 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5503 {
5504 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5505 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5506 size, port, &val, 1);
5507 /* do not return to emulator after return from userspace */
5508 vcpu->arch.pio.count = 0;
5509 return ret;
5510 }
5511 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5512
5513 static void tsc_bad(void *info)
5514 {
5515 __this_cpu_write(cpu_tsc_khz, 0);
5516 }
5517
5518 static void tsc_khz_changed(void *data)
5519 {
5520 struct cpufreq_freqs *freq = data;
5521 unsigned long khz = 0;
5522
5523 if (data)
5524 khz = freq->new;
5525 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5526 khz = cpufreq_quick_get(raw_smp_processor_id());
5527 if (!khz)
5528 khz = tsc_khz;
5529 __this_cpu_write(cpu_tsc_khz, khz);
5530 }
5531
5532 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5533 void *data)
5534 {
5535 struct cpufreq_freqs *freq = data;
5536 struct kvm *kvm;
5537 struct kvm_vcpu *vcpu;
5538 int i, send_ipi = 0;
5539
5540 /*
5541 * We allow guests to temporarily run on slowing clocks,
5542 * provided we notify them after, or to run on accelerating
5543 * clocks, provided we notify them before. Thus time never
5544 * goes backwards.
5545 *
5546 * However, we have a problem. We can't atomically update
5547 * the frequency of a given CPU from this function; it is
5548 * merely a notifier, which can be called from any CPU.
5549 * Changing the TSC frequency at arbitrary points in time
5550 * requires a recomputation of local variables related to
5551 * the TSC for each VCPU. We must flag these local variables
5552 * to be updated and be sure the update takes place with the
5553 * new frequency before any guests proceed.
5554 *
5555 * Unfortunately, the combination of hotplug CPU and frequency
5556 * change creates an intractable locking scenario; the order
5557 * of when these callouts happen is undefined with respect to
5558 * CPU hotplug, and they can race with each other. As such,
5559 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5560 * undefined; you can actually have a CPU frequency change take
5561 * place in between the computation of X and the setting of the
5562 * variable. To protect against this problem, all updates of
5563 * the per_cpu tsc_khz variable are done in an interrupt
5564 * protected IPI, and all callers wishing to update the value
5565 * must wait for a synchronous IPI to complete (which is trivial
5566 * if the caller is on the CPU already). This establishes the
5567 * necessary total order on variable updates.
5568 *
5569 * Note that because a guest time update may take place
5570 * anytime after the setting of the VCPU's request bit, the
5571 * correct TSC value must be set before the request. However,
5572 * to ensure the update actually makes it to any guest which
5573 * starts running in hardware virtualization between the set
5574 * and the acquisition of the spinlock, we must also ping the
5575 * CPU after setting the request bit.
5576 *
5577 */
5578
5579 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5580 return 0;
5581 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5582 return 0;
5583
5584 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5585
5586 spin_lock(&kvm_lock);
5587 list_for_each_entry(kvm, &vm_list, vm_list) {
5588 kvm_for_each_vcpu(i, vcpu, kvm) {
5589 if (vcpu->cpu != freq->cpu)
5590 continue;
5591 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5592 if (vcpu->cpu != smp_processor_id())
5593 send_ipi = 1;
5594 }
5595 }
5596 spin_unlock(&kvm_lock);
5597
5598 if (freq->old < freq->new && send_ipi) {
5599 /*
5600 * We upscale the frequency. Must make the guest
5601 * doesn't see old kvmclock values while running with
5602 * the new frequency, otherwise we risk the guest sees
5603 * time go backwards.
5604 *
5605 * In case we update the frequency for another cpu
5606 * (which might be in guest context) send an interrupt
5607 * to kick the cpu out of guest context. Next time
5608 * guest context is entered kvmclock will be updated,
5609 * so the guest will not see stale values.
5610 */
5611 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5612 }
5613 return 0;
5614 }
5615
5616 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5617 .notifier_call = kvmclock_cpufreq_notifier
5618 };
5619
5620 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5621 unsigned long action, void *hcpu)
5622 {
5623 unsigned int cpu = (unsigned long)hcpu;
5624
5625 switch (action) {
5626 case CPU_ONLINE:
5627 case CPU_DOWN_FAILED:
5628 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5629 break;
5630 case CPU_DOWN_PREPARE:
5631 smp_call_function_single(cpu, tsc_bad, NULL, 1);
5632 break;
5633 }
5634 return NOTIFY_OK;
5635 }
5636
5637 static struct notifier_block kvmclock_cpu_notifier_block = {
5638 .notifier_call = kvmclock_cpu_notifier,
5639 .priority = -INT_MAX
5640 };
5641
5642 static void kvm_timer_init(void)
5643 {
5644 int cpu;
5645
5646 max_tsc_khz = tsc_khz;
5647
5648 cpu_notifier_register_begin();
5649 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5650 #ifdef CONFIG_CPU_FREQ
5651 struct cpufreq_policy policy;
5652 memset(&policy, 0, sizeof(policy));
5653 cpu = get_cpu();
5654 cpufreq_get_policy(&policy, cpu);
5655 if (policy.cpuinfo.max_freq)
5656 max_tsc_khz = policy.cpuinfo.max_freq;
5657 put_cpu();
5658 #endif
5659 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5660 CPUFREQ_TRANSITION_NOTIFIER);
5661 }
5662 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5663 for_each_online_cpu(cpu)
5664 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5665
5666 __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5667 cpu_notifier_register_done();
5668
5669 }
5670
5671 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5672
5673 int kvm_is_in_guest(void)
5674 {
5675 return __this_cpu_read(current_vcpu) != NULL;
5676 }
5677
5678 static int kvm_is_user_mode(void)
5679 {
5680 int user_mode = 3;
5681
5682 if (__this_cpu_read(current_vcpu))
5683 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5684
5685 return user_mode != 0;
5686 }
5687
5688 static unsigned long kvm_get_guest_ip(void)
5689 {
5690 unsigned long ip = 0;
5691
5692 if (__this_cpu_read(current_vcpu))
5693 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5694
5695 return ip;
5696 }
5697
5698 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5699 .is_in_guest = kvm_is_in_guest,
5700 .is_user_mode = kvm_is_user_mode,
5701 .get_guest_ip = kvm_get_guest_ip,
5702 };
5703
5704 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5705 {
5706 __this_cpu_write(current_vcpu, vcpu);
5707 }
5708 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5709
5710 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5711 {
5712 __this_cpu_write(current_vcpu, NULL);
5713 }
5714 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5715
5716 static void kvm_set_mmio_spte_mask(void)
5717 {
5718 u64 mask;
5719 int maxphyaddr = boot_cpu_data.x86_phys_bits;
5720
5721 /*
5722 * Set the reserved bits and the present bit of an paging-structure
5723 * entry to generate page fault with PFER.RSV = 1.
5724 */
5725 /* Mask the reserved physical address bits. */
5726 mask = rsvd_bits(maxphyaddr, 51);
5727
5728 /* Bit 62 is always reserved for 32bit host. */
5729 mask |= 0x3ull << 62;
5730
5731 /* Set the present bit. */
5732 mask |= 1ull;
5733
5734 #ifdef CONFIG_X86_64
5735 /*
5736 * If reserved bit is not supported, clear the present bit to disable
5737 * mmio page fault.
5738 */
5739 if (maxphyaddr == 52)
5740 mask &= ~1ull;
5741 #endif
5742
5743 kvm_mmu_set_mmio_spte_mask(mask);
5744 }
5745
5746 #ifdef CONFIG_X86_64
5747 static void pvclock_gtod_update_fn(struct work_struct *work)
5748 {
5749 struct kvm *kvm;
5750
5751 struct kvm_vcpu *vcpu;
5752 int i;
5753
5754 spin_lock(&kvm_lock);
5755 list_for_each_entry(kvm, &vm_list, vm_list)
5756 kvm_for_each_vcpu(i, vcpu, kvm)
5757 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5758 atomic_set(&kvm_guest_has_master_clock, 0);
5759 spin_unlock(&kvm_lock);
5760 }
5761
5762 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5763
5764 /*
5765 * Notification about pvclock gtod data update.
5766 */
5767 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5768 void *priv)
5769 {
5770 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5771 struct timekeeper *tk = priv;
5772
5773 update_pvclock_gtod(tk);
5774
5775 /* disable master clock if host does not trust, or does not
5776 * use, TSC clocksource
5777 */
5778 if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5779 atomic_read(&kvm_guest_has_master_clock) != 0)
5780 queue_work(system_long_wq, &pvclock_gtod_work);
5781
5782 return 0;
5783 }
5784
5785 static struct notifier_block pvclock_gtod_notifier = {
5786 .notifier_call = pvclock_gtod_notify,
5787 };
5788 #endif
5789
5790 int kvm_arch_init(void *opaque)
5791 {
5792 int r;
5793 struct kvm_x86_ops *ops = opaque;
5794
5795 if (kvm_x86_ops) {
5796 printk(KERN_ERR "kvm: already loaded the other module\n");
5797 r = -EEXIST;
5798 goto out;
5799 }
5800
5801 if (!ops->cpu_has_kvm_support()) {
5802 printk(KERN_ERR "kvm: no hardware support\n");
5803 r = -EOPNOTSUPP;
5804 goto out;
5805 }
5806 if (ops->disabled_by_bios()) {
5807 printk(KERN_ERR "kvm: disabled by bios\n");
5808 r = -EOPNOTSUPP;
5809 goto out;
5810 }
5811
5812 r = -ENOMEM;
5813 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5814 if (!shared_msrs) {
5815 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5816 goto out;
5817 }
5818
5819 r = kvm_mmu_module_init();
5820 if (r)
5821 goto out_free_percpu;
5822
5823 kvm_set_mmio_spte_mask();
5824
5825 kvm_x86_ops = ops;
5826
5827 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5828 PT_DIRTY_MASK, PT64_NX_MASK, 0);
5829
5830 kvm_timer_init();
5831
5832 perf_register_guest_info_callbacks(&kvm_guest_cbs);
5833
5834 if (cpu_has_xsave)
5835 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5836
5837 kvm_lapic_init();
5838 #ifdef CONFIG_X86_64
5839 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5840 #endif
5841
5842 return 0;
5843
5844 out_free_percpu:
5845 free_percpu(shared_msrs);
5846 out:
5847 return r;
5848 }
5849
5850 void kvm_arch_exit(void)
5851 {
5852 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5853
5854 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5855 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5856 CPUFREQ_TRANSITION_NOTIFIER);
5857 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5858 #ifdef CONFIG_X86_64
5859 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5860 #endif
5861 kvm_x86_ops = NULL;
5862 kvm_mmu_module_exit();
5863 free_percpu(shared_msrs);
5864 }
5865
5866 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5867 {
5868 ++vcpu->stat.halt_exits;
5869 if (irqchip_in_kernel(vcpu->kvm)) {
5870 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5871 return 1;
5872 } else {
5873 vcpu->run->exit_reason = KVM_EXIT_HLT;
5874 return 0;
5875 }
5876 }
5877 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5878
5879 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5880 {
5881 kvm_x86_ops->skip_emulated_instruction(vcpu);
5882 return kvm_vcpu_halt(vcpu);
5883 }
5884 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5885
5886 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5887 {
5888 u64 param, ingpa, outgpa, ret;
5889 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5890 bool fast, longmode;
5891
5892 /*
5893 * hypercall generates UD from non zero cpl and real mode
5894 * per HYPER-V spec
5895 */
5896 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5897 kvm_queue_exception(vcpu, UD_VECTOR);
5898 return 0;
5899 }
5900
5901 longmode = is_64_bit_mode(vcpu);
5902
5903 if (!longmode) {
5904 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5905 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5906 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5907 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5908 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5909 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5910 }
5911 #ifdef CONFIG_X86_64
5912 else {
5913 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5914 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5915 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5916 }
5917 #endif
5918
5919 code = param & 0xffff;
5920 fast = (param >> 16) & 0x1;
5921 rep_cnt = (param >> 32) & 0xfff;
5922 rep_idx = (param >> 48) & 0xfff;
5923
5924 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5925
5926 switch (code) {
5927 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5928 kvm_vcpu_on_spin(vcpu);
5929 break;
5930 default:
5931 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5932 break;
5933 }
5934
5935 ret = res | (((u64)rep_done & 0xfff) << 32);
5936 if (longmode) {
5937 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5938 } else {
5939 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5940 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5941 }
5942
5943 return 1;
5944 }
5945
5946 /*
5947 * kvm_pv_kick_cpu_op: Kick a vcpu.
5948 *
5949 * @apicid - apicid of vcpu to be kicked.
5950 */
5951 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5952 {
5953 struct kvm_lapic_irq lapic_irq;
5954
5955 lapic_irq.shorthand = 0;
5956 lapic_irq.dest_mode = 0;
5957 lapic_irq.dest_id = apicid;
5958 lapic_irq.msi_redir_hint = false;
5959
5960 lapic_irq.delivery_mode = APIC_DM_REMRD;
5961 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5962 }
5963
5964 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5965 {
5966 unsigned long nr, a0, a1, a2, a3, ret;
5967 int op_64_bit, r = 1;
5968
5969 kvm_x86_ops->skip_emulated_instruction(vcpu);
5970
5971 if (kvm_hv_hypercall_enabled(vcpu->kvm))
5972 return kvm_hv_hypercall(vcpu);
5973
5974 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5975 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5976 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5977 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5978 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5979
5980 trace_kvm_hypercall(nr, a0, a1, a2, a3);
5981
5982 op_64_bit = is_64_bit_mode(vcpu);
5983 if (!op_64_bit) {
5984 nr &= 0xFFFFFFFF;
5985 a0 &= 0xFFFFFFFF;
5986 a1 &= 0xFFFFFFFF;
5987 a2 &= 0xFFFFFFFF;
5988 a3 &= 0xFFFFFFFF;
5989 }
5990
5991 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5992 ret = -KVM_EPERM;
5993 goto out;
5994 }
5995
5996 switch (nr) {
5997 case KVM_HC_VAPIC_POLL_IRQ:
5998 ret = 0;
5999 break;
6000 case KVM_HC_KICK_CPU:
6001 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6002 ret = 0;
6003 break;
6004 default:
6005 ret = -KVM_ENOSYS;
6006 break;
6007 }
6008 out:
6009 if (!op_64_bit)
6010 ret = (u32)ret;
6011 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6012 ++vcpu->stat.hypercalls;
6013 return r;
6014 }
6015 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6016
6017 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6018 {
6019 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6020 char instruction[3];
6021 unsigned long rip = kvm_rip_read(vcpu);
6022
6023 kvm_x86_ops->patch_hypercall(vcpu, instruction);
6024
6025 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
6026 }
6027
6028 /*
6029 * Check if userspace requested an interrupt window, and that the
6030 * interrupt window is open.
6031 *
6032 * No need to exit to userspace if we already have an interrupt queued.
6033 */
6034 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6035 {
6036 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
6037 vcpu->run->request_interrupt_window &&
6038 kvm_arch_interrupt_allowed(vcpu));
6039 }
6040
6041 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6042 {
6043 struct kvm_run *kvm_run = vcpu->run;
6044
6045 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6046 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6047 kvm_run->cr8 = kvm_get_cr8(vcpu);
6048 kvm_run->apic_base = kvm_get_apic_base(vcpu);
6049 if (irqchip_in_kernel(vcpu->kvm))
6050 kvm_run->ready_for_interrupt_injection = 1;
6051 else
6052 kvm_run->ready_for_interrupt_injection =
6053 kvm_arch_interrupt_allowed(vcpu) &&
6054 !kvm_cpu_has_interrupt(vcpu) &&
6055 !kvm_event_needs_reinjection(vcpu);
6056 }
6057
6058 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6059 {
6060 int max_irr, tpr;
6061
6062 if (!kvm_x86_ops->update_cr8_intercept)
6063 return;
6064
6065 if (!vcpu->arch.apic)
6066 return;
6067
6068 if (!vcpu->arch.apic->vapic_addr)
6069 max_irr = kvm_lapic_find_highest_irr(vcpu);
6070 else
6071 max_irr = -1;
6072
6073 if (max_irr != -1)
6074 max_irr >>= 4;
6075
6076 tpr = kvm_lapic_get_cr8(vcpu);
6077
6078 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6079 }
6080
6081 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6082 {
6083 int r;
6084
6085 /* try to reinject previous events if any */
6086 if (vcpu->arch.exception.pending) {
6087 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6088 vcpu->arch.exception.has_error_code,
6089 vcpu->arch.exception.error_code);
6090
6091 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6092 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6093 X86_EFLAGS_RF);
6094
6095 if (vcpu->arch.exception.nr == DB_VECTOR &&
6096 (vcpu->arch.dr7 & DR7_GD)) {
6097 vcpu->arch.dr7 &= ~DR7_GD;
6098 kvm_update_dr7(vcpu);
6099 }
6100
6101 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6102 vcpu->arch.exception.has_error_code,
6103 vcpu->arch.exception.error_code,
6104 vcpu->arch.exception.reinject);
6105 return 0;
6106 }
6107
6108 if (vcpu->arch.nmi_injected) {
6109 kvm_x86_ops->set_nmi(vcpu);
6110 return 0;
6111 }
6112
6113 if (vcpu->arch.interrupt.pending) {
6114 kvm_x86_ops->set_irq(vcpu);
6115 return 0;
6116 }
6117
6118 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6119 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6120 if (r != 0)
6121 return r;
6122 }
6123
6124 /* try to inject new event if pending */
6125 if (vcpu->arch.nmi_pending) {
6126 if (kvm_x86_ops->nmi_allowed(vcpu)) {
6127 --vcpu->arch.nmi_pending;
6128 vcpu->arch.nmi_injected = true;
6129 kvm_x86_ops->set_nmi(vcpu);
6130 }
6131 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6132 /*
6133 * Because interrupts can be injected asynchronously, we are
6134 * calling check_nested_events again here to avoid a race condition.
6135 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6136 * proposal and current concerns. Perhaps we should be setting
6137 * KVM_REQ_EVENT only on certain events and not unconditionally?
6138 */
6139 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6140 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6141 if (r != 0)
6142 return r;
6143 }
6144 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6145 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6146 false);
6147 kvm_x86_ops->set_irq(vcpu);
6148 }
6149 }
6150 return 0;
6151 }
6152
6153 static void process_nmi(struct kvm_vcpu *vcpu)
6154 {
6155 unsigned limit = 2;
6156
6157 /*
6158 * x86 is limited to one NMI running, and one NMI pending after it.
6159 * If an NMI is already in progress, limit further NMIs to just one.
6160 * Otherwise, allow two (and we'll inject the first one immediately).
6161 */
6162 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6163 limit = 1;
6164
6165 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6166 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6167 kvm_make_request(KVM_REQ_EVENT, vcpu);
6168 }
6169
6170 #define put_smstate(type, buf, offset, val) \
6171 *(type *)((buf) + (offset) - 0x7e00) = val
6172
6173 static u32 process_smi_get_segment_flags(struct kvm_segment *seg)
6174 {
6175 u32 flags = 0;
6176 flags |= seg->g << 23;
6177 flags |= seg->db << 22;
6178 flags |= seg->l << 21;
6179 flags |= seg->avl << 20;
6180 flags |= seg->present << 15;
6181 flags |= seg->dpl << 13;
6182 flags |= seg->s << 12;
6183 flags |= seg->type << 8;
6184 return flags;
6185 }
6186
6187 static void process_smi_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6188 {
6189 struct kvm_segment seg;
6190 int offset;
6191
6192 kvm_get_segment(vcpu, &seg, n);
6193 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6194
6195 if (n < 3)
6196 offset = 0x7f84 + n * 12;
6197 else
6198 offset = 0x7f2c + (n - 3) * 12;
6199
6200 put_smstate(u32, buf, offset + 8, seg.base);
6201 put_smstate(u32, buf, offset + 4, seg.limit);
6202 put_smstate(u32, buf, offset, process_smi_get_segment_flags(&seg));
6203 }
6204
6205 static void process_smi_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6206 {
6207 struct kvm_segment seg;
6208 int offset;
6209 u16 flags;
6210
6211 kvm_get_segment(vcpu, &seg, n);
6212 offset = 0x7e00 + n * 16;
6213
6214 flags = process_smi_get_segment_flags(&seg) >> 8;
6215 put_smstate(u16, buf, offset, seg.selector);
6216 put_smstate(u16, buf, offset + 2, flags);
6217 put_smstate(u32, buf, offset + 4, seg.limit);
6218 put_smstate(u64, buf, offset + 8, seg.base);
6219 }
6220
6221 static void process_smi_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6222 {
6223 struct desc_ptr dt;
6224 struct kvm_segment seg;
6225 unsigned long val;
6226 int i;
6227
6228 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6229 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6230 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6231 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6232
6233 for (i = 0; i < 8; i++)
6234 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6235
6236 kvm_get_dr(vcpu, 6, &val);
6237 put_smstate(u32, buf, 0x7fcc, (u32)val);
6238 kvm_get_dr(vcpu, 7, &val);
6239 put_smstate(u32, buf, 0x7fc8, (u32)val);
6240
6241 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6242 put_smstate(u32, buf, 0x7fc4, seg.selector);
6243 put_smstate(u32, buf, 0x7f64, seg.base);
6244 put_smstate(u32, buf, 0x7f60, seg.limit);
6245 put_smstate(u32, buf, 0x7f5c, process_smi_get_segment_flags(&seg));
6246
6247 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6248 put_smstate(u32, buf, 0x7fc0, seg.selector);
6249 put_smstate(u32, buf, 0x7f80, seg.base);
6250 put_smstate(u32, buf, 0x7f7c, seg.limit);
6251 put_smstate(u32, buf, 0x7f78, process_smi_get_segment_flags(&seg));
6252
6253 kvm_x86_ops->get_gdt(vcpu, &dt);
6254 put_smstate(u32, buf, 0x7f74, dt.address);
6255 put_smstate(u32, buf, 0x7f70, dt.size);
6256
6257 kvm_x86_ops->get_idt(vcpu, &dt);
6258 put_smstate(u32, buf, 0x7f58, dt.address);
6259 put_smstate(u32, buf, 0x7f54, dt.size);
6260
6261 for (i = 0; i < 6; i++)
6262 process_smi_save_seg_32(vcpu, buf, i);
6263
6264 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6265
6266 /* revision id */
6267 put_smstate(u32, buf, 0x7efc, 0x00020000);
6268 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6269 }
6270
6271 static void process_smi_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6272 {
6273 #ifdef CONFIG_X86_64
6274 struct desc_ptr dt;
6275 struct kvm_segment seg;
6276 unsigned long val;
6277 int i;
6278
6279 for (i = 0; i < 16; i++)
6280 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6281
6282 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6283 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6284
6285 kvm_get_dr(vcpu, 6, &val);
6286 put_smstate(u64, buf, 0x7f68, val);
6287 kvm_get_dr(vcpu, 7, &val);
6288 put_smstate(u64, buf, 0x7f60, val);
6289
6290 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6291 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6292 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6293
6294 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6295
6296 /* revision id */
6297 put_smstate(u32, buf, 0x7efc, 0x00020064);
6298
6299 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6300
6301 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6302 put_smstate(u16, buf, 0x7e90, seg.selector);
6303 put_smstate(u16, buf, 0x7e92, process_smi_get_segment_flags(&seg) >> 8);
6304 put_smstate(u32, buf, 0x7e94, seg.limit);
6305 put_smstate(u64, buf, 0x7e98, seg.base);
6306
6307 kvm_x86_ops->get_idt(vcpu, &dt);
6308 put_smstate(u32, buf, 0x7e84, dt.size);
6309 put_smstate(u64, buf, 0x7e88, dt.address);
6310
6311 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6312 put_smstate(u16, buf, 0x7e70, seg.selector);
6313 put_smstate(u16, buf, 0x7e72, process_smi_get_segment_flags(&seg) >> 8);
6314 put_smstate(u32, buf, 0x7e74, seg.limit);
6315 put_smstate(u64, buf, 0x7e78, seg.base);
6316
6317 kvm_x86_ops->get_gdt(vcpu, &dt);
6318 put_smstate(u32, buf, 0x7e64, dt.size);
6319 put_smstate(u64, buf, 0x7e68, dt.address);
6320
6321 for (i = 0; i < 6; i++)
6322 process_smi_save_seg_64(vcpu, buf, i);
6323 #else
6324 WARN_ON_ONCE(1);
6325 #endif
6326 }
6327
6328 static void process_smi(struct kvm_vcpu *vcpu)
6329 {
6330 struct kvm_segment cs, ds;
6331 char buf[512];
6332 u32 cr0;
6333
6334 if (is_smm(vcpu)) {
6335 vcpu->arch.smi_pending = true;
6336 return;
6337 }
6338
6339 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6340 vcpu->arch.hflags |= HF_SMM_MASK;
6341 memset(buf, 0, 512);
6342 if (guest_cpuid_has_longmode(vcpu))
6343 process_smi_save_state_64(vcpu, buf);
6344 else
6345 process_smi_save_state_32(vcpu, buf);
6346
6347 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6348
6349 if (kvm_x86_ops->get_nmi_mask(vcpu))
6350 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6351 else
6352 kvm_x86_ops->set_nmi_mask(vcpu, true);
6353
6354 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6355 kvm_rip_write(vcpu, 0x8000);
6356
6357 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6358 kvm_x86_ops->set_cr0(vcpu, cr0);
6359 vcpu->arch.cr0 = cr0;
6360
6361 kvm_x86_ops->set_cr4(vcpu, 0);
6362
6363 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6364
6365 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6366 cs.base = vcpu->arch.smbase;
6367
6368 ds.selector = 0;
6369 ds.base = 0;
6370
6371 cs.limit = ds.limit = 0xffffffff;
6372 cs.type = ds.type = 0x3;
6373 cs.dpl = ds.dpl = 0;
6374 cs.db = ds.db = 0;
6375 cs.s = ds.s = 1;
6376 cs.l = ds.l = 0;
6377 cs.g = ds.g = 1;
6378 cs.avl = ds.avl = 0;
6379 cs.present = ds.present = 1;
6380 cs.unusable = ds.unusable = 0;
6381 cs.padding = ds.padding = 0;
6382
6383 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6384 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6385 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6386 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6387 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6388 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6389
6390 if (guest_cpuid_has_longmode(vcpu))
6391 kvm_x86_ops->set_efer(vcpu, 0);
6392
6393 kvm_update_cpuid(vcpu);
6394 kvm_mmu_reset_context(vcpu);
6395 }
6396
6397 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6398 {
6399 u64 eoi_exit_bitmap[4];
6400 u32 tmr[8];
6401
6402 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6403 return;
6404
6405 memset(eoi_exit_bitmap, 0, 32);
6406 memset(tmr, 0, 32);
6407
6408 kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
6409 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6410 kvm_apic_update_tmr(vcpu, tmr);
6411 }
6412
6413 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6414 {
6415 ++vcpu->stat.tlb_flush;
6416 kvm_x86_ops->tlb_flush(vcpu);
6417 }
6418
6419 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6420 {
6421 struct page *page = NULL;
6422
6423 if (!irqchip_in_kernel(vcpu->kvm))
6424 return;
6425
6426 if (!kvm_x86_ops->set_apic_access_page_addr)
6427 return;
6428
6429 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6430 if (is_error_page(page))
6431 return;
6432 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6433
6434 /*
6435 * Do not pin apic access page in memory, the MMU notifier
6436 * will call us again if it is migrated or swapped out.
6437 */
6438 put_page(page);
6439 }
6440 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6441
6442 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6443 unsigned long address)
6444 {
6445 /*
6446 * The physical address of apic access page is stored in the VMCS.
6447 * Update it when it becomes invalid.
6448 */
6449 if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6450 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6451 }
6452
6453 /*
6454 * Returns 1 to let vcpu_run() continue the guest execution loop without
6455 * exiting to the userspace. Otherwise, the value will be returned to the
6456 * userspace.
6457 */
6458 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6459 {
6460 int r;
6461 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
6462 vcpu->run->request_interrupt_window;
6463 bool req_immediate_exit = false;
6464
6465 if (vcpu->requests) {
6466 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6467 kvm_mmu_unload(vcpu);
6468 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6469 __kvm_migrate_timers(vcpu);
6470 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6471 kvm_gen_update_masterclock(vcpu->kvm);
6472 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6473 kvm_gen_kvmclock_update(vcpu);
6474 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6475 r = kvm_guest_time_update(vcpu);
6476 if (unlikely(r))
6477 goto out;
6478 }
6479 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6480 kvm_mmu_sync_roots(vcpu);
6481 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6482 kvm_vcpu_flush_tlb(vcpu);
6483 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6484 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6485 r = 0;
6486 goto out;
6487 }
6488 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6489 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6490 r = 0;
6491 goto out;
6492 }
6493 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6494 vcpu->fpu_active = 0;
6495 kvm_x86_ops->fpu_deactivate(vcpu);
6496 }
6497 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6498 /* Page is swapped out. Do synthetic halt */
6499 vcpu->arch.apf.halted = true;
6500 r = 1;
6501 goto out;
6502 }
6503 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6504 record_steal_time(vcpu);
6505 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6506 process_smi(vcpu);
6507 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6508 process_nmi(vcpu);
6509 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6510 kvm_pmu_handle_event(vcpu);
6511 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6512 kvm_pmu_deliver_pmi(vcpu);
6513 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6514 vcpu_scan_ioapic(vcpu);
6515 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6516 kvm_vcpu_reload_apic_access_page(vcpu);
6517 }
6518
6519 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6520 kvm_apic_accept_events(vcpu);
6521 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6522 r = 1;
6523 goto out;
6524 }
6525
6526 if (inject_pending_event(vcpu, req_int_win) != 0)
6527 req_immediate_exit = true;
6528 /* enable NMI/IRQ window open exits if needed */
6529 else if (vcpu->arch.nmi_pending)
6530 kvm_x86_ops->enable_nmi_window(vcpu);
6531 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6532 kvm_x86_ops->enable_irq_window(vcpu);
6533
6534 if (kvm_lapic_enabled(vcpu)) {
6535 /*
6536 * Update architecture specific hints for APIC
6537 * virtual interrupt delivery.
6538 */
6539 if (kvm_x86_ops->hwapic_irr_update)
6540 kvm_x86_ops->hwapic_irr_update(vcpu,
6541 kvm_lapic_find_highest_irr(vcpu));
6542 update_cr8_intercept(vcpu);
6543 kvm_lapic_sync_to_vapic(vcpu);
6544 }
6545 }
6546
6547 r = kvm_mmu_reload(vcpu);
6548 if (unlikely(r)) {
6549 goto cancel_injection;
6550 }
6551
6552 preempt_disable();
6553
6554 kvm_x86_ops->prepare_guest_switch(vcpu);
6555 if (vcpu->fpu_active)
6556 kvm_load_guest_fpu(vcpu);
6557 kvm_load_guest_xcr0(vcpu);
6558
6559 vcpu->mode = IN_GUEST_MODE;
6560
6561 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6562
6563 /* We should set ->mode before check ->requests,
6564 * see the comment in make_all_cpus_request.
6565 */
6566 smp_mb__after_srcu_read_unlock();
6567
6568 local_irq_disable();
6569
6570 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6571 || need_resched() || signal_pending(current)) {
6572 vcpu->mode = OUTSIDE_GUEST_MODE;
6573 smp_wmb();
6574 local_irq_enable();
6575 preempt_enable();
6576 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6577 r = 1;
6578 goto cancel_injection;
6579 }
6580
6581 if (req_immediate_exit)
6582 smp_send_reschedule(vcpu->cpu);
6583
6584 __kvm_guest_enter();
6585
6586 if (unlikely(vcpu->arch.switch_db_regs)) {
6587 set_debugreg(0, 7);
6588 set_debugreg(vcpu->arch.eff_db[0], 0);
6589 set_debugreg(vcpu->arch.eff_db[1], 1);
6590 set_debugreg(vcpu->arch.eff_db[2], 2);
6591 set_debugreg(vcpu->arch.eff_db[3], 3);
6592 set_debugreg(vcpu->arch.dr6, 6);
6593 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6594 }
6595
6596 trace_kvm_entry(vcpu->vcpu_id);
6597 wait_lapic_expire(vcpu);
6598 kvm_x86_ops->run(vcpu);
6599
6600 /*
6601 * Do this here before restoring debug registers on the host. And
6602 * since we do this before handling the vmexit, a DR access vmexit
6603 * can (a) read the correct value of the debug registers, (b) set
6604 * KVM_DEBUGREG_WONT_EXIT again.
6605 */
6606 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6607 int i;
6608
6609 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6610 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6611 for (i = 0; i < KVM_NR_DB_REGS; i++)
6612 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6613 }
6614
6615 /*
6616 * If the guest has used debug registers, at least dr7
6617 * will be disabled while returning to the host.
6618 * If we don't have active breakpoints in the host, we don't
6619 * care about the messed up debug address registers. But if
6620 * we have some of them active, restore the old state.
6621 */
6622 if (hw_breakpoint_active())
6623 hw_breakpoint_restore();
6624
6625 vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
6626 native_read_tsc());
6627
6628 vcpu->mode = OUTSIDE_GUEST_MODE;
6629 smp_wmb();
6630
6631 /* Interrupt is enabled by handle_external_intr() */
6632 kvm_x86_ops->handle_external_intr(vcpu);
6633
6634 ++vcpu->stat.exits;
6635
6636 /*
6637 * We must have an instruction between local_irq_enable() and
6638 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6639 * the interrupt shadow. The stat.exits increment will do nicely.
6640 * But we need to prevent reordering, hence this barrier():
6641 */
6642 barrier();
6643
6644 kvm_guest_exit();
6645
6646 preempt_enable();
6647
6648 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6649
6650 /*
6651 * Profile KVM exit RIPs:
6652 */
6653 if (unlikely(prof_on == KVM_PROFILING)) {
6654 unsigned long rip = kvm_rip_read(vcpu);
6655 profile_hit(KVM_PROFILING, (void *)rip);
6656 }
6657
6658 if (unlikely(vcpu->arch.tsc_always_catchup))
6659 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6660
6661 if (vcpu->arch.apic_attention)
6662 kvm_lapic_sync_from_vapic(vcpu);
6663
6664 r = kvm_x86_ops->handle_exit(vcpu);
6665 return r;
6666
6667 cancel_injection:
6668 kvm_x86_ops->cancel_injection(vcpu);
6669 if (unlikely(vcpu->arch.apic_attention))
6670 kvm_lapic_sync_from_vapic(vcpu);
6671 out:
6672 return r;
6673 }
6674
6675 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6676 {
6677 if (!kvm_arch_vcpu_runnable(vcpu)) {
6678 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6679 kvm_vcpu_block(vcpu);
6680 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6681 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6682 return 1;
6683 }
6684
6685 kvm_apic_accept_events(vcpu);
6686 switch(vcpu->arch.mp_state) {
6687 case KVM_MP_STATE_HALTED:
6688 vcpu->arch.pv.pv_unhalted = false;
6689 vcpu->arch.mp_state =
6690 KVM_MP_STATE_RUNNABLE;
6691 case KVM_MP_STATE_RUNNABLE:
6692 vcpu->arch.apf.halted = false;
6693 break;
6694 case KVM_MP_STATE_INIT_RECEIVED:
6695 break;
6696 default:
6697 return -EINTR;
6698 break;
6699 }
6700 return 1;
6701 }
6702
6703 static int vcpu_run(struct kvm_vcpu *vcpu)
6704 {
6705 int r;
6706 struct kvm *kvm = vcpu->kvm;
6707
6708 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6709
6710 for (;;) {
6711 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6712 !vcpu->arch.apf.halted)
6713 r = vcpu_enter_guest(vcpu);
6714 else
6715 r = vcpu_block(kvm, vcpu);
6716 if (r <= 0)
6717 break;
6718
6719 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6720 if (kvm_cpu_has_pending_timer(vcpu))
6721 kvm_inject_pending_timer_irqs(vcpu);
6722
6723 if (dm_request_for_irq_injection(vcpu)) {
6724 r = -EINTR;
6725 vcpu->run->exit_reason = KVM_EXIT_INTR;
6726 ++vcpu->stat.request_irq_exits;
6727 break;
6728 }
6729
6730 kvm_check_async_pf_completion(vcpu);
6731
6732 if (signal_pending(current)) {
6733 r = -EINTR;
6734 vcpu->run->exit_reason = KVM_EXIT_INTR;
6735 ++vcpu->stat.signal_exits;
6736 break;
6737 }
6738 if (need_resched()) {
6739 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6740 cond_resched();
6741 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6742 }
6743 }
6744
6745 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6746
6747 return r;
6748 }
6749
6750 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6751 {
6752 int r;
6753 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6754 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6755 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6756 if (r != EMULATE_DONE)
6757 return 0;
6758 return 1;
6759 }
6760
6761 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6762 {
6763 BUG_ON(!vcpu->arch.pio.count);
6764
6765 return complete_emulated_io(vcpu);
6766 }
6767
6768 /*
6769 * Implements the following, as a state machine:
6770 *
6771 * read:
6772 * for each fragment
6773 * for each mmio piece in the fragment
6774 * write gpa, len
6775 * exit
6776 * copy data
6777 * execute insn
6778 *
6779 * write:
6780 * for each fragment
6781 * for each mmio piece in the fragment
6782 * write gpa, len
6783 * copy data
6784 * exit
6785 */
6786 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6787 {
6788 struct kvm_run *run = vcpu->run;
6789 struct kvm_mmio_fragment *frag;
6790 unsigned len;
6791
6792 BUG_ON(!vcpu->mmio_needed);
6793
6794 /* Complete previous fragment */
6795 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6796 len = min(8u, frag->len);
6797 if (!vcpu->mmio_is_write)
6798 memcpy(frag->data, run->mmio.data, len);
6799
6800 if (frag->len <= 8) {
6801 /* Switch to the next fragment. */
6802 frag++;
6803 vcpu->mmio_cur_fragment++;
6804 } else {
6805 /* Go forward to the next mmio piece. */
6806 frag->data += len;
6807 frag->gpa += len;
6808 frag->len -= len;
6809 }
6810
6811 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6812 vcpu->mmio_needed = 0;
6813
6814 /* FIXME: return into emulator if single-stepping. */
6815 if (vcpu->mmio_is_write)
6816 return 1;
6817 vcpu->mmio_read_completed = 1;
6818 return complete_emulated_io(vcpu);
6819 }
6820
6821 run->exit_reason = KVM_EXIT_MMIO;
6822 run->mmio.phys_addr = frag->gpa;
6823 if (vcpu->mmio_is_write)
6824 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6825 run->mmio.len = min(8u, frag->len);
6826 run->mmio.is_write = vcpu->mmio_is_write;
6827 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6828 return 0;
6829 }
6830
6831
6832 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6833 {
6834 struct fpu *fpu = &current->thread.fpu;
6835 int r;
6836 sigset_t sigsaved;
6837
6838 fpu__activate_curr(fpu);
6839
6840 if (vcpu->sigset_active)
6841 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6842
6843 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6844 kvm_vcpu_block(vcpu);
6845 kvm_apic_accept_events(vcpu);
6846 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6847 r = -EAGAIN;
6848 goto out;
6849 }
6850
6851 /* re-sync apic's tpr */
6852 if (!irqchip_in_kernel(vcpu->kvm)) {
6853 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6854 r = -EINVAL;
6855 goto out;
6856 }
6857 }
6858
6859 if (unlikely(vcpu->arch.complete_userspace_io)) {
6860 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6861 vcpu->arch.complete_userspace_io = NULL;
6862 r = cui(vcpu);
6863 if (r <= 0)
6864 goto out;
6865 } else
6866 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6867
6868 r = vcpu_run(vcpu);
6869
6870 out:
6871 post_kvm_run_save(vcpu);
6872 if (vcpu->sigset_active)
6873 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6874
6875 return r;
6876 }
6877
6878 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6879 {
6880 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6881 /*
6882 * We are here if userspace calls get_regs() in the middle of
6883 * instruction emulation. Registers state needs to be copied
6884 * back from emulation context to vcpu. Userspace shouldn't do
6885 * that usually, but some bad designed PV devices (vmware
6886 * backdoor interface) need this to work
6887 */
6888 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6889 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6890 }
6891 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6892 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6893 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6894 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6895 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6896 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6897 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6898 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6899 #ifdef CONFIG_X86_64
6900 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6901 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6902 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6903 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6904 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6905 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6906 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6907 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6908 #endif
6909
6910 regs->rip = kvm_rip_read(vcpu);
6911 regs->rflags = kvm_get_rflags(vcpu);
6912
6913 return 0;
6914 }
6915
6916 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6917 {
6918 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6919 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6920
6921 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6922 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6923 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6924 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6925 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6926 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6927 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6928 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6929 #ifdef CONFIG_X86_64
6930 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6931 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6932 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6933 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6934 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6935 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6936 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6937 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6938 #endif
6939
6940 kvm_rip_write(vcpu, regs->rip);
6941 kvm_set_rflags(vcpu, regs->rflags);
6942
6943 vcpu->arch.exception.pending = false;
6944
6945 kvm_make_request(KVM_REQ_EVENT, vcpu);
6946
6947 return 0;
6948 }
6949
6950 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6951 {
6952 struct kvm_segment cs;
6953
6954 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6955 *db = cs.db;
6956 *l = cs.l;
6957 }
6958 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6959
6960 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6961 struct kvm_sregs *sregs)
6962 {
6963 struct desc_ptr dt;
6964
6965 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6966 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6967 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6968 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6969 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6970 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6971
6972 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6973 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6974
6975 kvm_x86_ops->get_idt(vcpu, &dt);
6976 sregs->idt.limit = dt.size;
6977 sregs->idt.base = dt.address;
6978 kvm_x86_ops->get_gdt(vcpu, &dt);
6979 sregs->gdt.limit = dt.size;
6980 sregs->gdt.base = dt.address;
6981
6982 sregs->cr0 = kvm_read_cr0(vcpu);
6983 sregs->cr2 = vcpu->arch.cr2;
6984 sregs->cr3 = kvm_read_cr3(vcpu);
6985 sregs->cr4 = kvm_read_cr4(vcpu);
6986 sregs->cr8 = kvm_get_cr8(vcpu);
6987 sregs->efer = vcpu->arch.efer;
6988 sregs->apic_base = kvm_get_apic_base(vcpu);
6989
6990 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6991
6992 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6993 set_bit(vcpu->arch.interrupt.nr,
6994 (unsigned long *)sregs->interrupt_bitmap);
6995
6996 return 0;
6997 }
6998
6999 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7000 struct kvm_mp_state *mp_state)
7001 {
7002 kvm_apic_accept_events(vcpu);
7003 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7004 vcpu->arch.pv.pv_unhalted)
7005 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7006 else
7007 mp_state->mp_state = vcpu->arch.mp_state;
7008
7009 return 0;
7010 }
7011
7012 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7013 struct kvm_mp_state *mp_state)
7014 {
7015 if (!kvm_vcpu_has_lapic(vcpu) &&
7016 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7017 return -EINVAL;
7018
7019 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7020 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7021 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7022 } else
7023 vcpu->arch.mp_state = mp_state->mp_state;
7024 kvm_make_request(KVM_REQ_EVENT, vcpu);
7025 return 0;
7026 }
7027
7028 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7029 int reason, bool has_error_code, u32 error_code)
7030 {
7031 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7032 int ret;
7033
7034 init_emulate_ctxt(vcpu);
7035
7036 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7037 has_error_code, error_code);
7038
7039 if (ret)
7040 return EMULATE_FAIL;
7041
7042 kvm_rip_write(vcpu, ctxt->eip);
7043 kvm_set_rflags(vcpu, ctxt->eflags);
7044 kvm_make_request(KVM_REQ_EVENT, vcpu);
7045 return EMULATE_DONE;
7046 }
7047 EXPORT_SYMBOL_GPL(kvm_task_switch);
7048
7049 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7050 struct kvm_sregs *sregs)
7051 {
7052 struct msr_data apic_base_msr;
7053 int mmu_reset_needed = 0;
7054 int pending_vec, max_bits, idx;
7055 struct desc_ptr dt;
7056
7057 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7058 return -EINVAL;
7059
7060 dt.size = sregs->idt.limit;
7061 dt.address = sregs->idt.base;
7062 kvm_x86_ops->set_idt(vcpu, &dt);
7063 dt.size = sregs->gdt.limit;
7064 dt.address = sregs->gdt.base;
7065 kvm_x86_ops->set_gdt(vcpu, &dt);
7066
7067 vcpu->arch.cr2 = sregs->cr2;
7068 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7069 vcpu->arch.cr3 = sregs->cr3;
7070 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7071
7072 kvm_set_cr8(vcpu, sregs->cr8);
7073
7074 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7075 kvm_x86_ops->set_efer(vcpu, sregs->efer);
7076 apic_base_msr.data = sregs->apic_base;
7077 apic_base_msr.host_initiated = true;
7078 kvm_set_apic_base(vcpu, &apic_base_msr);
7079
7080 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7081 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7082 vcpu->arch.cr0 = sregs->cr0;
7083
7084 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7085 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7086 if (sregs->cr4 & X86_CR4_OSXSAVE)
7087 kvm_update_cpuid(vcpu);
7088
7089 idx = srcu_read_lock(&vcpu->kvm->srcu);
7090 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7091 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7092 mmu_reset_needed = 1;
7093 }
7094 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7095
7096 if (mmu_reset_needed)
7097 kvm_mmu_reset_context(vcpu);
7098
7099 max_bits = KVM_NR_INTERRUPTS;
7100 pending_vec = find_first_bit(
7101 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7102 if (pending_vec < max_bits) {
7103 kvm_queue_interrupt(vcpu, pending_vec, false);
7104 pr_debug("Set back pending irq %d\n", pending_vec);
7105 }
7106
7107 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7108 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7109 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7110 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7111 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7112 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7113
7114 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7115 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7116
7117 update_cr8_intercept(vcpu);
7118
7119 /* Older userspace won't unhalt the vcpu on reset. */
7120 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7121 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7122 !is_protmode(vcpu))
7123 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7124
7125 kvm_make_request(KVM_REQ_EVENT, vcpu);
7126
7127 return 0;
7128 }
7129
7130 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7131 struct kvm_guest_debug *dbg)
7132 {
7133 unsigned long rflags;
7134 int i, r;
7135
7136 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7137 r = -EBUSY;
7138 if (vcpu->arch.exception.pending)
7139 goto out;
7140 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7141 kvm_queue_exception(vcpu, DB_VECTOR);
7142 else
7143 kvm_queue_exception(vcpu, BP_VECTOR);
7144 }
7145
7146 /*
7147 * Read rflags as long as potentially injected trace flags are still
7148 * filtered out.
7149 */
7150 rflags = kvm_get_rflags(vcpu);
7151
7152 vcpu->guest_debug = dbg->control;
7153 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7154 vcpu->guest_debug = 0;
7155
7156 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7157 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7158 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7159 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7160 } else {
7161 for (i = 0; i < KVM_NR_DB_REGS; i++)
7162 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7163 }
7164 kvm_update_dr7(vcpu);
7165
7166 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7167 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7168 get_segment_base(vcpu, VCPU_SREG_CS);
7169
7170 /*
7171 * Trigger an rflags update that will inject or remove the trace
7172 * flags.
7173 */
7174 kvm_set_rflags(vcpu, rflags);
7175
7176 kvm_x86_ops->update_db_bp_intercept(vcpu);
7177
7178 r = 0;
7179
7180 out:
7181
7182 return r;
7183 }
7184
7185 /*
7186 * Translate a guest virtual address to a guest physical address.
7187 */
7188 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7189 struct kvm_translation *tr)
7190 {
7191 unsigned long vaddr = tr->linear_address;
7192 gpa_t gpa;
7193 int idx;
7194
7195 idx = srcu_read_lock(&vcpu->kvm->srcu);
7196 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7197 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7198 tr->physical_address = gpa;
7199 tr->valid = gpa != UNMAPPED_GVA;
7200 tr->writeable = 1;
7201 tr->usermode = 0;
7202
7203 return 0;
7204 }
7205
7206 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7207 {
7208 struct fxregs_state *fxsave =
7209 &vcpu->arch.guest_fpu.state.fxsave;
7210
7211 memcpy(fpu->fpr, fxsave->st_space, 128);
7212 fpu->fcw = fxsave->cwd;
7213 fpu->fsw = fxsave->swd;
7214 fpu->ftwx = fxsave->twd;
7215 fpu->last_opcode = fxsave->fop;
7216 fpu->last_ip = fxsave->rip;
7217 fpu->last_dp = fxsave->rdp;
7218 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7219
7220 return 0;
7221 }
7222
7223 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7224 {
7225 struct fxregs_state *fxsave =
7226 &vcpu->arch.guest_fpu.state.fxsave;
7227
7228 memcpy(fxsave->st_space, fpu->fpr, 128);
7229 fxsave->cwd = fpu->fcw;
7230 fxsave->swd = fpu->fsw;
7231 fxsave->twd = fpu->ftwx;
7232 fxsave->fop = fpu->last_opcode;
7233 fxsave->rip = fpu->last_ip;
7234 fxsave->rdp = fpu->last_dp;
7235 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7236
7237 return 0;
7238 }
7239
7240 static void fx_init(struct kvm_vcpu *vcpu)
7241 {
7242 fpstate_init(&vcpu->arch.guest_fpu.state);
7243 if (cpu_has_xsaves)
7244 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7245 host_xcr0 | XSTATE_COMPACTION_ENABLED;
7246
7247 /*
7248 * Ensure guest xcr0 is valid for loading
7249 */
7250 vcpu->arch.xcr0 = XSTATE_FP;
7251
7252 vcpu->arch.cr0 |= X86_CR0_ET;
7253 }
7254
7255 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7256 {
7257 if (vcpu->guest_fpu_loaded)
7258 return;
7259
7260 /*
7261 * Restore all possible states in the guest,
7262 * and assume host would use all available bits.
7263 * Guest xcr0 would be loaded later.
7264 */
7265 kvm_put_guest_xcr0(vcpu);
7266 vcpu->guest_fpu_loaded = 1;
7267 __kernel_fpu_begin();
7268 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7269 trace_kvm_fpu(1);
7270 }
7271
7272 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7273 {
7274 kvm_put_guest_xcr0(vcpu);
7275
7276 if (!vcpu->guest_fpu_loaded) {
7277 vcpu->fpu_counter = 0;
7278 return;
7279 }
7280
7281 vcpu->guest_fpu_loaded = 0;
7282 copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7283 __kernel_fpu_end();
7284 ++vcpu->stat.fpu_reload;
7285 /*
7286 * If using eager FPU mode, or if the guest is a frequent user
7287 * of the FPU, just leave the FPU active for next time.
7288 * Every 255 times fpu_counter rolls over to 0; a guest that uses
7289 * the FPU in bursts will revert to loading it on demand.
7290 */
7291 if (!vcpu->arch.eager_fpu) {
7292 if (++vcpu->fpu_counter < 5)
7293 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7294 }
7295 trace_kvm_fpu(0);
7296 }
7297
7298 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7299 {
7300 kvmclock_reset(vcpu);
7301
7302 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7303 kvm_x86_ops->vcpu_free(vcpu);
7304 }
7305
7306 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7307 unsigned int id)
7308 {
7309 struct kvm_vcpu *vcpu;
7310
7311 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7312 printk_once(KERN_WARNING
7313 "kvm: SMP vm created on host with unstable TSC; "
7314 "guest TSC will not be reliable\n");
7315
7316 vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7317
7318 return vcpu;
7319 }
7320
7321 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7322 {
7323 int r;
7324
7325 kvm_vcpu_mtrr_init(vcpu);
7326 r = vcpu_load(vcpu);
7327 if (r)
7328 return r;
7329 kvm_vcpu_reset(vcpu, false);
7330 kvm_mmu_setup(vcpu);
7331 vcpu_put(vcpu);
7332 return r;
7333 }
7334
7335 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7336 {
7337 struct msr_data msr;
7338 struct kvm *kvm = vcpu->kvm;
7339
7340 if (vcpu_load(vcpu))
7341 return;
7342 msr.data = 0x0;
7343 msr.index = MSR_IA32_TSC;
7344 msr.host_initiated = true;
7345 kvm_write_tsc(vcpu, &msr);
7346 vcpu_put(vcpu);
7347
7348 if (!kvmclock_periodic_sync)
7349 return;
7350
7351 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7352 KVMCLOCK_SYNC_PERIOD);
7353 }
7354
7355 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7356 {
7357 int r;
7358 vcpu->arch.apf.msr_val = 0;
7359
7360 r = vcpu_load(vcpu);
7361 BUG_ON(r);
7362 kvm_mmu_unload(vcpu);
7363 vcpu_put(vcpu);
7364
7365 kvm_x86_ops->vcpu_free(vcpu);
7366 }
7367
7368 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7369 {
7370 vcpu->arch.hflags = 0;
7371
7372 atomic_set(&vcpu->arch.nmi_queued, 0);
7373 vcpu->arch.nmi_pending = 0;
7374 vcpu->arch.nmi_injected = false;
7375 kvm_clear_interrupt_queue(vcpu);
7376 kvm_clear_exception_queue(vcpu);
7377
7378 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7379 kvm_update_dr0123(vcpu);
7380 vcpu->arch.dr6 = DR6_INIT;
7381 kvm_update_dr6(vcpu);
7382 vcpu->arch.dr7 = DR7_FIXED_1;
7383 kvm_update_dr7(vcpu);
7384
7385 vcpu->arch.cr2 = 0;
7386
7387 kvm_make_request(KVM_REQ_EVENT, vcpu);
7388 vcpu->arch.apf.msr_val = 0;
7389 vcpu->arch.st.msr_val = 0;
7390
7391 kvmclock_reset(vcpu);
7392
7393 kvm_clear_async_pf_completion_queue(vcpu);
7394 kvm_async_pf_hash_reset(vcpu);
7395 vcpu->arch.apf.halted = false;
7396
7397 if (!init_event) {
7398 kvm_pmu_reset(vcpu);
7399 vcpu->arch.smbase = 0x30000;
7400 }
7401
7402 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7403 vcpu->arch.regs_avail = ~0;
7404 vcpu->arch.regs_dirty = ~0;
7405
7406 kvm_x86_ops->vcpu_reset(vcpu, init_event);
7407 }
7408
7409 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7410 {
7411 struct kvm_segment cs;
7412
7413 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7414 cs.selector = vector << 8;
7415 cs.base = vector << 12;
7416 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7417 kvm_rip_write(vcpu, 0);
7418 }
7419
7420 int kvm_arch_hardware_enable(void)
7421 {
7422 struct kvm *kvm;
7423 struct kvm_vcpu *vcpu;
7424 int i;
7425 int ret;
7426 u64 local_tsc;
7427 u64 max_tsc = 0;
7428 bool stable, backwards_tsc = false;
7429
7430 kvm_shared_msr_cpu_online();
7431 ret = kvm_x86_ops->hardware_enable();
7432 if (ret != 0)
7433 return ret;
7434
7435 local_tsc = native_read_tsc();
7436 stable = !check_tsc_unstable();
7437 list_for_each_entry(kvm, &vm_list, vm_list) {
7438 kvm_for_each_vcpu(i, vcpu, kvm) {
7439 if (!stable && vcpu->cpu == smp_processor_id())
7440 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7441 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7442 backwards_tsc = true;
7443 if (vcpu->arch.last_host_tsc > max_tsc)
7444 max_tsc = vcpu->arch.last_host_tsc;
7445 }
7446 }
7447 }
7448
7449 /*
7450 * Sometimes, even reliable TSCs go backwards. This happens on
7451 * platforms that reset TSC during suspend or hibernate actions, but
7452 * maintain synchronization. We must compensate. Fortunately, we can
7453 * detect that condition here, which happens early in CPU bringup,
7454 * before any KVM threads can be running. Unfortunately, we can't
7455 * bring the TSCs fully up to date with real time, as we aren't yet far
7456 * enough into CPU bringup that we know how much real time has actually
7457 * elapsed; our helper function, get_kernel_ns() will be using boot
7458 * variables that haven't been updated yet.
7459 *
7460 * So we simply find the maximum observed TSC above, then record the
7461 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
7462 * the adjustment will be applied. Note that we accumulate
7463 * adjustments, in case multiple suspend cycles happen before some VCPU
7464 * gets a chance to run again. In the event that no KVM threads get a
7465 * chance to run, we will miss the entire elapsed period, as we'll have
7466 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7467 * loose cycle time. This isn't too big a deal, since the loss will be
7468 * uniform across all VCPUs (not to mention the scenario is extremely
7469 * unlikely). It is possible that a second hibernate recovery happens
7470 * much faster than a first, causing the observed TSC here to be
7471 * smaller; this would require additional padding adjustment, which is
7472 * why we set last_host_tsc to the local tsc observed here.
7473 *
7474 * N.B. - this code below runs only on platforms with reliable TSC,
7475 * as that is the only way backwards_tsc is set above. Also note
7476 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7477 * have the same delta_cyc adjustment applied if backwards_tsc
7478 * is detected. Note further, this adjustment is only done once,
7479 * as we reset last_host_tsc on all VCPUs to stop this from being
7480 * called multiple times (one for each physical CPU bringup).
7481 *
7482 * Platforms with unreliable TSCs don't have to deal with this, they
7483 * will be compensated by the logic in vcpu_load, which sets the TSC to
7484 * catchup mode. This will catchup all VCPUs to real time, but cannot
7485 * guarantee that they stay in perfect synchronization.
7486 */
7487 if (backwards_tsc) {
7488 u64 delta_cyc = max_tsc - local_tsc;
7489 backwards_tsc_observed = true;
7490 list_for_each_entry(kvm, &vm_list, vm_list) {
7491 kvm_for_each_vcpu(i, vcpu, kvm) {
7492 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7493 vcpu->arch.last_host_tsc = local_tsc;
7494 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7495 }
7496
7497 /*
7498 * We have to disable TSC offset matching.. if you were
7499 * booting a VM while issuing an S4 host suspend....
7500 * you may have some problem. Solving this issue is
7501 * left as an exercise to the reader.
7502 */
7503 kvm->arch.last_tsc_nsec = 0;
7504 kvm->arch.last_tsc_write = 0;
7505 }
7506
7507 }
7508 return 0;
7509 }
7510
7511 void kvm_arch_hardware_disable(void)
7512 {
7513 kvm_x86_ops->hardware_disable();
7514 drop_user_return_notifiers();
7515 }
7516
7517 int kvm_arch_hardware_setup(void)
7518 {
7519 int r;
7520
7521 r = kvm_x86_ops->hardware_setup();
7522 if (r != 0)
7523 return r;
7524
7525 kvm_init_msr_list();
7526 return 0;
7527 }
7528
7529 void kvm_arch_hardware_unsetup(void)
7530 {
7531 kvm_x86_ops->hardware_unsetup();
7532 }
7533
7534 void kvm_arch_check_processor_compat(void *rtn)
7535 {
7536 kvm_x86_ops->check_processor_compatibility(rtn);
7537 }
7538
7539 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7540 {
7541 return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
7542 }
7543
7544 struct static_key kvm_no_apic_vcpu __read_mostly;
7545
7546 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7547 {
7548 struct page *page;
7549 struct kvm *kvm;
7550 int r;
7551
7552 BUG_ON(vcpu->kvm == NULL);
7553 kvm = vcpu->kvm;
7554
7555 vcpu->arch.pv.pv_unhalted = false;
7556 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7557 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7558 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7559 else
7560 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7561
7562 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7563 if (!page) {
7564 r = -ENOMEM;
7565 goto fail;
7566 }
7567 vcpu->arch.pio_data = page_address(page);
7568
7569 kvm_set_tsc_khz(vcpu, max_tsc_khz);
7570
7571 r = kvm_mmu_create(vcpu);
7572 if (r < 0)
7573 goto fail_free_pio_data;
7574
7575 if (irqchip_in_kernel(kvm)) {
7576 r = kvm_create_lapic(vcpu);
7577 if (r < 0)
7578 goto fail_mmu_destroy;
7579 } else
7580 static_key_slow_inc(&kvm_no_apic_vcpu);
7581
7582 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7583 GFP_KERNEL);
7584 if (!vcpu->arch.mce_banks) {
7585 r = -ENOMEM;
7586 goto fail_free_lapic;
7587 }
7588 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7589
7590 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7591 r = -ENOMEM;
7592 goto fail_free_mce_banks;
7593 }
7594
7595 fx_init(vcpu);
7596
7597 vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7598 vcpu->arch.pv_time_enabled = false;
7599
7600 vcpu->arch.guest_supported_xcr0 = 0;
7601 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7602
7603 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7604
7605 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7606
7607 kvm_async_pf_hash_reset(vcpu);
7608 kvm_pmu_init(vcpu);
7609
7610 return 0;
7611
7612 fail_free_mce_banks:
7613 kfree(vcpu->arch.mce_banks);
7614 fail_free_lapic:
7615 kvm_free_lapic(vcpu);
7616 fail_mmu_destroy:
7617 kvm_mmu_destroy(vcpu);
7618 fail_free_pio_data:
7619 free_page((unsigned long)vcpu->arch.pio_data);
7620 fail:
7621 return r;
7622 }
7623
7624 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7625 {
7626 int idx;
7627
7628 kvm_pmu_destroy(vcpu);
7629 kfree(vcpu->arch.mce_banks);
7630 kvm_free_lapic(vcpu);
7631 idx = srcu_read_lock(&vcpu->kvm->srcu);
7632 kvm_mmu_destroy(vcpu);
7633 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7634 free_page((unsigned long)vcpu->arch.pio_data);
7635 if (!irqchip_in_kernel(vcpu->kvm))
7636 static_key_slow_dec(&kvm_no_apic_vcpu);
7637 }
7638
7639 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7640 {
7641 kvm_x86_ops->sched_in(vcpu, cpu);
7642 }
7643
7644 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7645 {
7646 if (type)
7647 return -EINVAL;
7648
7649 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7650 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7651 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7652 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7653 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7654
7655 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7656 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7657 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7658 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7659 &kvm->arch.irq_sources_bitmap);
7660
7661 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7662 mutex_init(&kvm->arch.apic_map_lock);
7663 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7664
7665 pvclock_update_vm_gtod_copy(kvm);
7666
7667 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7668 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7669
7670 return 0;
7671 }
7672
7673 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7674 {
7675 int r;
7676 r = vcpu_load(vcpu);
7677 BUG_ON(r);
7678 kvm_mmu_unload(vcpu);
7679 vcpu_put(vcpu);
7680 }
7681
7682 static void kvm_free_vcpus(struct kvm *kvm)
7683 {
7684 unsigned int i;
7685 struct kvm_vcpu *vcpu;
7686
7687 /*
7688 * Unpin any mmu pages first.
7689 */
7690 kvm_for_each_vcpu(i, vcpu, kvm) {
7691 kvm_clear_async_pf_completion_queue(vcpu);
7692 kvm_unload_vcpu_mmu(vcpu);
7693 }
7694 kvm_for_each_vcpu(i, vcpu, kvm)
7695 kvm_arch_vcpu_free(vcpu);
7696
7697 mutex_lock(&kvm->lock);
7698 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7699 kvm->vcpus[i] = NULL;
7700
7701 atomic_set(&kvm->online_vcpus, 0);
7702 mutex_unlock(&kvm->lock);
7703 }
7704
7705 void kvm_arch_sync_events(struct kvm *kvm)
7706 {
7707 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7708 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7709 kvm_free_all_assigned_devices(kvm);
7710 kvm_free_pit(kvm);
7711 }
7712
7713 int __x86_set_memory_region(struct kvm *kvm,
7714 const struct kvm_userspace_memory_region *mem)
7715 {
7716 int i, r;
7717
7718 /* Called with kvm->slots_lock held. */
7719 BUG_ON(mem->slot >= KVM_MEM_SLOTS_NUM);
7720
7721 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7722 struct kvm_userspace_memory_region m = *mem;
7723
7724 m.slot |= i << 16;
7725 r = __kvm_set_memory_region(kvm, &m);
7726 if (r < 0)
7727 return r;
7728 }
7729
7730 return 0;
7731 }
7732 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7733
7734 int x86_set_memory_region(struct kvm *kvm,
7735 const struct kvm_userspace_memory_region *mem)
7736 {
7737 int r;
7738
7739 mutex_lock(&kvm->slots_lock);
7740 r = __x86_set_memory_region(kvm, mem);
7741 mutex_unlock(&kvm->slots_lock);
7742
7743 return r;
7744 }
7745 EXPORT_SYMBOL_GPL(x86_set_memory_region);
7746
7747 void kvm_arch_destroy_vm(struct kvm *kvm)
7748 {
7749 if (current->mm == kvm->mm) {
7750 /*
7751 * Free memory regions allocated on behalf of userspace,
7752 * unless the the memory map has changed due to process exit
7753 * or fd copying.
7754 */
7755 struct kvm_userspace_memory_region mem;
7756 memset(&mem, 0, sizeof(mem));
7757 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7758 x86_set_memory_region(kvm, &mem);
7759
7760 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7761 x86_set_memory_region(kvm, &mem);
7762
7763 mem.slot = TSS_PRIVATE_MEMSLOT;
7764 x86_set_memory_region(kvm, &mem);
7765 }
7766 kvm_iommu_unmap_guest(kvm);
7767 kfree(kvm->arch.vpic);
7768 kfree(kvm->arch.vioapic);
7769 kvm_free_vcpus(kvm);
7770 kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7771 }
7772
7773 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7774 struct kvm_memory_slot *dont)
7775 {
7776 int i;
7777
7778 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7779 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7780 kvfree(free->arch.rmap[i]);
7781 free->arch.rmap[i] = NULL;
7782 }
7783 if (i == 0)
7784 continue;
7785
7786 if (!dont || free->arch.lpage_info[i - 1] !=
7787 dont->arch.lpage_info[i - 1]) {
7788 kvfree(free->arch.lpage_info[i - 1]);
7789 free->arch.lpage_info[i - 1] = NULL;
7790 }
7791 }
7792 }
7793
7794 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7795 unsigned long npages)
7796 {
7797 int i;
7798
7799 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7800 unsigned long ugfn;
7801 int lpages;
7802 int level = i + 1;
7803
7804 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7805 slot->base_gfn, level) + 1;
7806
7807 slot->arch.rmap[i] =
7808 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7809 if (!slot->arch.rmap[i])
7810 goto out_free;
7811 if (i == 0)
7812 continue;
7813
7814 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7815 sizeof(*slot->arch.lpage_info[i - 1]));
7816 if (!slot->arch.lpage_info[i - 1])
7817 goto out_free;
7818
7819 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7820 slot->arch.lpage_info[i - 1][0].write_count = 1;
7821 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7822 slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7823 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7824 /*
7825 * If the gfn and userspace address are not aligned wrt each
7826 * other, or if explicitly asked to, disable large page
7827 * support for this slot
7828 */
7829 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7830 !kvm_largepages_enabled()) {
7831 unsigned long j;
7832
7833 for (j = 0; j < lpages; ++j)
7834 slot->arch.lpage_info[i - 1][j].write_count = 1;
7835 }
7836 }
7837
7838 return 0;
7839
7840 out_free:
7841 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7842 kvfree(slot->arch.rmap[i]);
7843 slot->arch.rmap[i] = NULL;
7844 if (i == 0)
7845 continue;
7846
7847 kvfree(slot->arch.lpage_info[i - 1]);
7848 slot->arch.lpage_info[i - 1] = NULL;
7849 }
7850 return -ENOMEM;
7851 }
7852
7853 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
7854 {
7855 /*
7856 * memslots->generation has been incremented.
7857 * mmio generation may have reached its maximum value.
7858 */
7859 kvm_mmu_invalidate_mmio_sptes(kvm, slots);
7860 }
7861
7862 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7863 struct kvm_memory_slot *memslot,
7864 const struct kvm_userspace_memory_region *mem,
7865 enum kvm_mr_change change)
7866 {
7867 /*
7868 * Only private memory slots need to be mapped here since
7869 * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7870 */
7871 if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7872 unsigned long userspace_addr;
7873
7874 /*
7875 * MAP_SHARED to prevent internal slot pages from being moved
7876 * by fork()/COW.
7877 */
7878 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7879 PROT_READ | PROT_WRITE,
7880 MAP_SHARED | MAP_ANONYMOUS, 0);
7881
7882 if (IS_ERR((void *)userspace_addr))
7883 return PTR_ERR((void *)userspace_addr);
7884
7885 memslot->userspace_addr = userspace_addr;
7886 }
7887
7888 return 0;
7889 }
7890
7891 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
7892 struct kvm_memory_slot *new)
7893 {
7894 /* Still write protect RO slot */
7895 if (new->flags & KVM_MEM_READONLY) {
7896 kvm_mmu_slot_remove_write_access(kvm, new);
7897 return;
7898 }
7899
7900 /*
7901 * Call kvm_x86_ops dirty logging hooks when they are valid.
7902 *
7903 * kvm_x86_ops->slot_disable_log_dirty is called when:
7904 *
7905 * - KVM_MR_CREATE with dirty logging is disabled
7906 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
7907 *
7908 * The reason is, in case of PML, we need to set D-bit for any slots
7909 * with dirty logging disabled in order to eliminate unnecessary GPA
7910 * logging in PML buffer (and potential PML buffer full VMEXT). This
7911 * guarantees leaving PML enabled during guest's lifetime won't have
7912 * any additonal overhead from PML when guest is running with dirty
7913 * logging disabled for memory slots.
7914 *
7915 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
7916 * to dirty logging mode.
7917 *
7918 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
7919 *
7920 * In case of write protect:
7921 *
7922 * Write protect all pages for dirty logging.
7923 *
7924 * All the sptes including the large sptes which point to this
7925 * slot are set to readonly. We can not create any new large
7926 * spte on this slot until the end of the logging.
7927 *
7928 * See the comments in fast_page_fault().
7929 */
7930 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
7931 if (kvm_x86_ops->slot_enable_log_dirty)
7932 kvm_x86_ops->slot_enable_log_dirty(kvm, new);
7933 else
7934 kvm_mmu_slot_remove_write_access(kvm, new);
7935 } else {
7936 if (kvm_x86_ops->slot_disable_log_dirty)
7937 kvm_x86_ops->slot_disable_log_dirty(kvm, new);
7938 }
7939 }
7940
7941 void kvm_arch_commit_memory_region(struct kvm *kvm,
7942 const struct kvm_userspace_memory_region *mem,
7943 const struct kvm_memory_slot *old,
7944 const struct kvm_memory_slot *new,
7945 enum kvm_mr_change change)
7946 {
7947 int nr_mmu_pages = 0;
7948
7949 if (change == KVM_MR_DELETE && old->id >= KVM_USER_MEM_SLOTS) {
7950 int ret;
7951
7952 ret = vm_munmap(old->userspace_addr,
7953 old->npages * PAGE_SIZE);
7954 if (ret < 0)
7955 printk(KERN_WARNING
7956 "kvm_vm_ioctl_set_memory_region: "
7957 "failed to munmap memory\n");
7958 }
7959
7960 if (!kvm->arch.n_requested_mmu_pages)
7961 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7962
7963 if (nr_mmu_pages)
7964 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7965
7966 /*
7967 * Dirty logging tracks sptes in 4k granularity, meaning that large
7968 * sptes have to be split. If live migration is successful, the guest
7969 * in the source machine will be destroyed and large sptes will be
7970 * created in the destination. However, if the guest continues to run
7971 * in the source machine (for example if live migration fails), small
7972 * sptes will remain around and cause bad performance.
7973 *
7974 * Scan sptes if dirty logging has been stopped, dropping those
7975 * which can be collapsed into a single large-page spte. Later
7976 * page faults will create the large-page sptes.
7977 */
7978 if ((change != KVM_MR_DELETE) &&
7979 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
7980 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
7981 kvm_mmu_zap_collapsible_sptes(kvm, new);
7982
7983 /*
7984 * Set up write protection and/or dirty logging for the new slot.
7985 *
7986 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
7987 * been zapped so no dirty logging staff is needed for old slot. For
7988 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
7989 * new and it's also covered when dealing with the new slot.
7990 *
7991 * FIXME: const-ify all uses of struct kvm_memory_slot.
7992 */
7993 if (change != KVM_MR_DELETE)
7994 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
7995 }
7996
7997 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7998 {
7999 kvm_mmu_invalidate_zap_all_pages(kvm);
8000 }
8001
8002 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8003 struct kvm_memory_slot *slot)
8004 {
8005 kvm_mmu_invalidate_zap_all_pages(kvm);
8006 }
8007
8008 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8009 {
8010 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8011 kvm_x86_ops->check_nested_events(vcpu, false);
8012
8013 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8014 !vcpu->arch.apf.halted)
8015 || !list_empty_careful(&vcpu->async_pf.done)
8016 || kvm_apic_has_events(vcpu)
8017 || vcpu->arch.pv.pv_unhalted
8018 || atomic_read(&vcpu->arch.nmi_queued) ||
8019 (kvm_arch_interrupt_allowed(vcpu) &&
8020 kvm_cpu_has_interrupt(vcpu));
8021 }
8022
8023 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8024 {
8025 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8026 }
8027
8028 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8029 {
8030 return kvm_x86_ops->interrupt_allowed(vcpu);
8031 }
8032
8033 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8034 {
8035 if (is_64_bit_mode(vcpu))
8036 return kvm_rip_read(vcpu);
8037 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8038 kvm_rip_read(vcpu));
8039 }
8040 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8041
8042 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8043 {
8044 return kvm_get_linear_rip(vcpu) == linear_rip;
8045 }
8046 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8047
8048 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8049 {
8050 unsigned long rflags;
8051
8052 rflags = kvm_x86_ops->get_rflags(vcpu);
8053 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8054 rflags &= ~X86_EFLAGS_TF;
8055 return rflags;
8056 }
8057 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8058
8059 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8060 {
8061 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8062 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8063 rflags |= X86_EFLAGS_TF;
8064 kvm_x86_ops->set_rflags(vcpu, rflags);
8065 }
8066
8067 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8068 {
8069 __kvm_set_rflags(vcpu, rflags);
8070 kvm_make_request(KVM_REQ_EVENT, vcpu);
8071 }
8072 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8073
8074 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8075 {
8076 int r;
8077
8078 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8079 work->wakeup_all)
8080 return;
8081
8082 r = kvm_mmu_reload(vcpu);
8083 if (unlikely(r))
8084 return;
8085
8086 if (!vcpu->arch.mmu.direct_map &&
8087 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8088 return;
8089
8090 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8091 }
8092
8093 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8094 {
8095 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8096 }
8097
8098 static inline u32 kvm_async_pf_next_probe(u32 key)
8099 {
8100 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8101 }
8102
8103 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8104 {
8105 u32 key = kvm_async_pf_hash_fn(gfn);
8106
8107 while (vcpu->arch.apf.gfns[key] != ~0)
8108 key = kvm_async_pf_next_probe(key);
8109
8110 vcpu->arch.apf.gfns[key] = gfn;
8111 }
8112
8113 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8114 {
8115 int i;
8116 u32 key = kvm_async_pf_hash_fn(gfn);
8117
8118 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8119 (vcpu->arch.apf.gfns[key] != gfn &&
8120 vcpu->arch.apf.gfns[key] != ~0); i++)
8121 key = kvm_async_pf_next_probe(key);
8122
8123 return key;
8124 }
8125
8126 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8127 {
8128 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8129 }
8130
8131 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8132 {
8133 u32 i, j, k;
8134
8135 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8136 while (true) {
8137 vcpu->arch.apf.gfns[i] = ~0;
8138 do {
8139 j = kvm_async_pf_next_probe(j);
8140 if (vcpu->arch.apf.gfns[j] == ~0)
8141 return;
8142 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8143 /*
8144 * k lies cyclically in ]i,j]
8145 * | i.k.j |
8146 * |....j i.k.| or |.k..j i...|
8147 */
8148 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8149 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8150 i = j;
8151 }
8152 }
8153
8154 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8155 {
8156
8157 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8158 sizeof(val));
8159 }
8160
8161 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8162 struct kvm_async_pf *work)
8163 {
8164 struct x86_exception fault;
8165
8166 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8167 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8168
8169 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8170 (vcpu->arch.apf.send_user_only &&
8171 kvm_x86_ops->get_cpl(vcpu) == 0))
8172 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8173 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8174 fault.vector = PF_VECTOR;
8175 fault.error_code_valid = true;
8176 fault.error_code = 0;
8177 fault.nested_page_fault = false;
8178 fault.address = work->arch.token;
8179 kvm_inject_page_fault(vcpu, &fault);
8180 }
8181 }
8182
8183 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8184 struct kvm_async_pf *work)
8185 {
8186 struct x86_exception fault;
8187
8188 trace_kvm_async_pf_ready(work->arch.token, work->gva);
8189 if (work->wakeup_all)
8190 work->arch.token = ~0; /* broadcast wakeup */
8191 else
8192 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8193
8194 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8195 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8196 fault.vector = PF_VECTOR;
8197 fault.error_code_valid = true;
8198 fault.error_code = 0;
8199 fault.nested_page_fault = false;
8200 fault.address = work->arch.token;
8201 kvm_inject_page_fault(vcpu, &fault);
8202 }
8203 vcpu->arch.apf.halted = false;
8204 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8205 }
8206
8207 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8208 {
8209 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8210 return true;
8211 else
8212 return !kvm_event_needs_reinjection(vcpu) &&
8213 kvm_x86_ops->interrupt_allowed(vcpu);
8214 }
8215
8216 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8217 {
8218 atomic_inc(&kvm->arch.noncoherent_dma_count);
8219 }
8220 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8221
8222 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8223 {
8224 atomic_dec(&kvm->arch.noncoherent_dma_count);
8225 }
8226 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8227
8228 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8229 {
8230 return atomic_read(&kvm->arch.noncoherent_dma_count);
8231 }
8232 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8233
8234 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8235 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8236 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8237 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8238 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8239 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8240 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8241 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8242 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8243 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8244 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8245 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8246 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8247 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8248 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
This page took 0.202918 seconds and 5 git commands to generate.