785ae0c300f7a4014177cfe0fc1b99ffff56fc66
[deliverable/linux.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/module.h>
36 #include <linux/mman.h>
37 #include <linux/highmem.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/cpufreq.h>
41 #include <linux/user-return-notifier.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/perf_event.h>
45 #include <linux/uaccess.h>
46 #include <linux/hash.h>
47 #include <trace/events/kvm.h>
48
49 #define CREATE_TRACE_POINTS
50 #include "trace.h"
51
52 #include <asm/debugreg.h>
53 #include <asm/msr.h>
54 #include <asm/desc.h>
55 #include <asm/mtrr.h>
56 #include <asm/mce.h>
57 #include <asm/i387.h>
58 #include <asm/xcr.h>
59 #include <asm/pvclock.h>
60 #include <asm/div64.h>
61
62 #define MAX_IO_MSRS 256
63 #define CR0_RESERVED_BITS \
64 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
65 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
66 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
67 #define CR4_RESERVED_BITS \
68 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
69 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
70 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
71 | X86_CR4_OSXSAVE \
72 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
73
74 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
75
76 #define KVM_MAX_MCE_BANKS 32
77 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
78
79 /* EFER defaults:
80 * - enable syscall per default because its emulated by KVM
81 * - enable LME and LMA per default on 64 bit KVM
82 */
83 #ifdef CONFIG_X86_64
84 static
85 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
86 #else
87 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
88 #endif
89
90 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
91 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
92
93 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
94 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
95 struct kvm_cpuid_entry2 __user *entries);
96
97 struct kvm_x86_ops *kvm_x86_ops;
98 EXPORT_SYMBOL_GPL(kvm_x86_ops);
99
100 int ignore_msrs = 0;
101 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
102
103 #define KVM_NR_SHARED_MSRS 16
104
105 struct kvm_shared_msrs_global {
106 int nr;
107 u32 msrs[KVM_NR_SHARED_MSRS];
108 };
109
110 struct kvm_shared_msrs {
111 struct user_return_notifier urn;
112 bool registered;
113 struct kvm_shared_msr_values {
114 u64 host;
115 u64 curr;
116 } values[KVM_NR_SHARED_MSRS];
117 };
118
119 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
120 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
121
122 struct kvm_stats_debugfs_item debugfs_entries[] = {
123 { "pf_fixed", VCPU_STAT(pf_fixed) },
124 { "pf_guest", VCPU_STAT(pf_guest) },
125 { "tlb_flush", VCPU_STAT(tlb_flush) },
126 { "invlpg", VCPU_STAT(invlpg) },
127 { "exits", VCPU_STAT(exits) },
128 { "io_exits", VCPU_STAT(io_exits) },
129 { "mmio_exits", VCPU_STAT(mmio_exits) },
130 { "signal_exits", VCPU_STAT(signal_exits) },
131 { "irq_window", VCPU_STAT(irq_window_exits) },
132 { "nmi_window", VCPU_STAT(nmi_window_exits) },
133 { "halt_exits", VCPU_STAT(halt_exits) },
134 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
135 { "hypercalls", VCPU_STAT(hypercalls) },
136 { "request_irq", VCPU_STAT(request_irq_exits) },
137 { "irq_exits", VCPU_STAT(irq_exits) },
138 { "host_state_reload", VCPU_STAT(host_state_reload) },
139 { "efer_reload", VCPU_STAT(efer_reload) },
140 { "fpu_reload", VCPU_STAT(fpu_reload) },
141 { "insn_emulation", VCPU_STAT(insn_emulation) },
142 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
143 { "irq_injections", VCPU_STAT(irq_injections) },
144 { "nmi_injections", VCPU_STAT(nmi_injections) },
145 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
146 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
147 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
148 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
149 { "mmu_flooded", VM_STAT(mmu_flooded) },
150 { "mmu_recycled", VM_STAT(mmu_recycled) },
151 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
152 { "mmu_unsync", VM_STAT(mmu_unsync) },
153 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
154 { "largepages", VM_STAT(lpages) },
155 { NULL }
156 };
157
158 u64 __read_mostly host_xcr0;
159
160 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
161 {
162 int i;
163 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
164 vcpu->arch.apf.gfns[i] = ~0;
165 }
166
167 static void kvm_on_user_return(struct user_return_notifier *urn)
168 {
169 unsigned slot;
170 struct kvm_shared_msrs *locals
171 = container_of(urn, struct kvm_shared_msrs, urn);
172 struct kvm_shared_msr_values *values;
173
174 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
175 values = &locals->values[slot];
176 if (values->host != values->curr) {
177 wrmsrl(shared_msrs_global.msrs[slot], values->host);
178 values->curr = values->host;
179 }
180 }
181 locals->registered = false;
182 user_return_notifier_unregister(urn);
183 }
184
185 static void shared_msr_update(unsigned slot, u32 msr)
186 {
187 struct kvm_shared_msrs *smsr;
188 u64 value;
189
190 smsr = &__get_cpu_var(shared_msrs);
191 /* only read, and nobody should modify it at this time,
192 * so don't need lock */
193 if (slot >= shared_msrs_global.nr) {
194 printk(KERN_ERR "kvm: invalid MSR slot!");
195 return;
196 }
197 rdmsrl_safe(msr, &value);
198 smsr->values[slot].host = value;
199 smsr->values[slot].curr = value;
200 }
201
202 void kvm_define_shared_msr(unsigned slot, u32 msr)
203 {
204 if (slot >= shared_msrs_global.nr)
205 shared_msrs_global.nr = slot + 1;
206 shared_msrs_global.msrs[slot] = msr;
207 /* we need ensured the shared_msr_global have been updated */
208 smp_wmb();
209 }
210 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
211
212 static void kvm_shared_msr_cpu_online(void)
213 {
214 unsigned i;
215
216 for (i = 0; i < shared_msrs_global.nr; ++i)
217 shared_msr_update(i, shared_msrs_global.msrs[i]);
218 }
219
220 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
221 {
222 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
223
224 if (((value ^ smsr->values[slot].curr) & mask) == 0)
225 return;
226 smsr->values[slot].curr = value;
227 wrmsrl(shared_msrs_global.msrs[slot], value);
228 if (!smsr->registered) {
229 smsr->urn.on_user_return = kvm_on_user_return;
230 user_return_notifier_register(&smsr->urn);
231 smsr->registered = true;
232 }
233 }
234 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
235
236 static void drop_user_return_notifiers(void *ignore)
237 {
238 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
239
240 if (smsr->registered)
241 kvm_on_user_return(&smsr->urn);
242 }
243
244 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
245 {
246 if (irqchip_in_kernel(vcpu->kvm))
247 return vcpu->arch.apic_base;
248 else
249 return vcpu->arch.apic_base;
250 }
251 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
252
253 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
254 {
255 /* TODO: reserve bits check */
256 if (irqchip_in_kernel(vcpu->kvm))
257 kvm_lapic_set_base(vcpu, data);
258 else
259 vcpu->arch.apic_base = data;
260 }
261 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
262
263 #define EXCPT_BENIGN 0
264 #define EXCPT_CONTRIBUTORY 1
265 #define EXCPT_PF 2
266
267 static int exception_class(int vector)
268 {
269 switch (vector) {
270 case PF_VECTOR:
271 return EXCPT_PF;
272 case DE_VECTOR:
273 case TS_VECTOR:
274 case NP_VECTOR:
275 case SS_VECTOR:
276 case GP_VECTOR:
277 return EXCPT_CONTRIBUTORY;
278 default:
279 break;
280 }
281 return EXCPT_BENIGN;
282 }
283
284 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
285 unsigned nr, bool has_error, u32 error_code,
286 bool reinject)
287 {
288 u32 prev_nr;
289 int class1, class2;
290
291 kvm_make_request(KVM_REQ_EVENT, vcpu);
292
293 if (!vcpu->arch.exception.pending) {
294 queue:
295 vcpu->arch.exception.pending = true;
296 vcpu->arch.exception.has_error_code = has_error;
297 vcpu->arch.exception.nr = nr;
298 vcpu->arch.exception.error_code = error_code;
299 vcpu->arch.exception.reinject = reinject;
300 return;
301 }
302
303 /* to check exception */
304 prev_nr = vcpu->arch.exception.nr;
305 if (prev_nr == DF_VECTOR) {
306 /* triple fault -> shutdown */
307 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
308 return;
309 }
310 class1 = exception_class(prev_nr);
311 class2 = exception_class(nr);
312 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
313 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
314 /* generate double fault per SDM Table 5-5 */
315 vcpu->arch.exception.pending = true;
316 vcpu->arch.exception.has_error_code = true;
317 vcpu->arch.exception.nr = DF_VECTOR;
318 vcpu->arch.exception.error_code = 0;
319 } else
320 /* replace previous exception with a new one in a hope
321 that instruction re-execution will regenerate lost
322 exception */
323 goto queue;
324 }
325
326 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
327 {
328 kvm_multiple_exception(vcpu, nr, false, 0, false);
329 }
330 EXPORT_SYMBOL_GPL(kvm_queue_exception);
331
332 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
333 {
334 kvm_multiple_exception(vcpu, nr, false, 0, true);
335 }
336 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
337
338 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
339 {
340 if (err)
341 kvm_inject_gp(vcpu, 0);
342 else
343 kvm_x86_ops->skip_emulated_instruction(vcpu);
344 }
345 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
346
347 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
348 {
349 ++vcpu->stat.pf_guest;
350 vcpu->arch.cr2 = fault->address;
351 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
352 }
353
354 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
355 {
356 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
357 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
358 else
359 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
360 }
361
362 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
363 {
364 kvm_make_request(KVM_REQ_NMI, vcpu);
365 kvm_make_request(KVM_REQ_EVENT, vcpu);
366 }
367 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
368
369 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
370 {
371 kvm_multiple_exception(vcpu, nr, true, error_code, false);
372 }
373 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
374
375 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
376 {
377 kvm_multiple_exception(vcpu, nr, true, error_code, true);
378 }
379 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
380
381 /*
382 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
383 * a #GP and return false.
384 */
385 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
386 {
387 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
388 return true;
389 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
390 return false;
391 }
392 EXPORT_SYMBOL_GPL(kvm_require_cpl);
393
394 /*
395 * This function will be used to read from the physical memory of the currently
396 * running guest. The difference to kvm_read_guest_page is that this function
397 * can read from guest physical or from the guest's guest physical memory.
398 */
399 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
400 gfn_t ngfn, void *data, int offset, int len,
401 u32 access)
402 {
403 gfn_t real_gfn;
404 gpa_t ngpa;
405
406 ngpa = gfn_to_gpa(ngfn);
407 real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
408 if (real_gfn == UNMAPPED_GVA)
409 return -EFAULT;
410
411 real_gfn = gpa_to_gfn(real_gfn);
412
413 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
414 }
415 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
416
417 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
418 void *data, int offset, int len, u32 access)
419 {
420 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
421 data, offset, len, access);
422 }
423
424 /*
425 * Load the pae pdptrs. Return true is they are all valid.
426 */
427 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
428 {
429 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
430 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
431 int i;
432 int ret;
433 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
434
435 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
436 offset * sizeof(u64), sizeof(pdpte),
437 PFERR_USER_MASK|PFERR_WRITE_MASK);
438 if (ret < 0) {
439 ret = 0;
440 goto out;
441 }
442 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
443 if (is_present_gpte(pdpte[i]) &&
444 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
445 ret = 0;
446 goto out;
447 }
448 }
449 ret = 1;
450
451 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
452 __set_bit(VCPU_EXREG_PDPTR,
453 (unsigned long *)&vcpu->arch.regs_avail);
454 __set_bit(VCPU_EXREG_PDPTR,
455 (unsigned long *)&vcpu->arch.regs_dirty);
456 out:
457
458 return ret;
459 }
460 EXPORT_SYMBOL_GPL(load_pdptrs);
461
462 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
463 {
464 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
465 bool changed = true;
466 int offset;
467 gfn_t gfn;
468 int r;
469
470 if (is_long_mode(vcpu) || !is_pae(vcpu))
471 return false;
472
473 if (!test_bit(VCPU_EXREG_PDPTR,
474 (unsigned long *)&vcpu->arch.regs_avail))
475 return true;
476
477 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
478 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
479 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
480 PFERR_USER_MASK | PFERR_WRITE_MASK);
481 if (r < 0)
482 goto out;
483 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
484 out:
485
486 return changed;
487 }
488
489 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
490 {
491 unsigned long old_cr0 = kvm_read_cr0(vcpu);
492 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
493 X86_CR0_CD | X86_CR0_NW;
494
495 cr0 |= X86_CR0_ET;
496
497 #ifdef CONFIG_X86_64
498 if (cr0 & 0xffffffff00000000UL)
499 return 1;
500 #endif
501
502 cr0 &= ~CR0_RESERVED_BITS;
503
504 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
505 return 1;
506
507 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
508 return 1;
509
510 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
511 #ifdef CONFIG_X86_64
512 if ((vcpu->arch.efer & EFER_LME)) {
513 int cs_db, cs_l;
514
515 if (!is_pae(vcpu))
516 return 1;
517 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
518 if (cs_l)
519 return 1;
520 } else
521 #endif
522 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
523 kvm_read_cr3(vcpu)))
524 return 1;
525 }
526
527 kvm_x86_ops->set_cr0(vcpu, cr0);
528
529 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
530 kvm_clear_async_pf_completion_queue(vcpu);
531 kvm_async_pf_hash_reset(vcpu);
532 }
533
534 if ((cr0 ^ old_cr0) & update_bits)
535 kvm_mmu_reset_context(vcpu);
536 return 0;
537 }
538 EXPORT_SYMBOL_GPL(kvm_set_cr0);
539
540 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
541 {
542 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
543 }
544 EXPORT_SYMBOL_GPL(kvm_lmsw);
545
546 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
547 {
548 u64 xcr0;
549
550 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
551 if (index != XCR_XFEATURE_ENABLED_MASK)
552 return 1;
553 xcr0 = xcr;
554 if (kvm_x86_ops->get_cpl(vcpu) != 0)
555 return 1;
556 if (!(xcr0 & XSTATE_FP))
557 return 1;
558 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
559 return 1;
560 if (xcr0 & ~host_xcr0)
561 return 1;
562 vcpu->arch.xcr0 = xcr0;
563 vcpu->guest_xcr0_loaded = 0;
564 return 0;
565 }
566
567 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
568 {
569 if (__kvm_set_xcr(vcpu, index, xcr)) {
570 kvm_inject_gp(vcpu, 0);
571 return 1;
572 }
573 return 0;
574 }
575 EXPORT_SYMBOL_GPL(kvm_set_xcr);
576
577 static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
578 {
579 struct kvm_cpuid_entry2 *best;
580
581 best = kvm_find_cpuid_entry(vcpu, 1, 0);
582 return best && (best->ecx & bit(X86_FEATURE_XSAVE));
583 }
584
585 static void update_cpuid(struct kvm_vcpu *vcpu)
586 {
587 struct kvm_cpuid_entry2 *best;
588
589 best = kvm_find_cpuid_entry(vcpu, 1, 0);
590 if (!best)
591 return;
592
593 /* Update OSXSAVE bit */
594 if (cpu_has_xsave && best->function == 0x1) {
595 best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
596 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
597 best->ecx |= bit(X86_FEATURE_OSXSAVE);
598 }
599 }
600
601 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
602 {
603 unsigned long old_cr4 = kvm_read_cr4(vcpu);
604 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
605
606 if (cr4 & CR4_RESERVED_BITS)
607 return 1;
608
609 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
610 return 1;
611
612 if (is_long_mode(vcpu)) {
613 if (!(cr4 & X86_CR4_PAE))
614 return 1;
615 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
616 && ((cr4 ^ old_cr4) & pdptr_bits)
617 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
618 kvm_read_cr3(vcpu)))
619 return 1;
620
621 if (cr4 & X86_CR4_VMXE)
622 return 1;
623
624 kvm_x86_ops->set_cr4(vcpu, cr4);
625
626 if ((cr4 ^ old_cr4) & pdptr_bits)
627 kvm_mmu_reset_context(vcpu);
628
629 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
630 update_cpuid(vcpu);
631
632 return 0;
633 }
634 EXPORT_SYMBOL_GPL(kvm_set_cr4);
635
636 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
637 {
638 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
639 kvm_mmu_sync_roots(vcpu);
640 kvm_mmu_flush_tlb(vcpu);
641 return 0;
642 }
643
644 if (is_long_mode(vcpu)) {
645 if (cr3 & CR3_L_MODE_RESERVED_BITS)
646 return 1;
647 } else {
648 if (is_pae(vcpu)) {
649 if (cr3 & CR3_PAE_RESERVED_BITS)
650 return 1;
651 if (is_paging(vcpu) &&
652 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
653 return 1;
654 }
655 /*
656 * We don't check reserved bits in nonpae mode, because
657 * this isn't enforced, and VMware depends on this.
658 */
659 }
660
661 /*
662 * Does the new cr3 value map to physical memory? (Note, we
663 * catch an invalid cr3 even in real-mode, because it would
664 * cause trouble later on when we turn on paging anyway.)
665 *
666 * A real CPU would silently accept an invalid cr3 and would
667 * attempt to use it - with largely undefined (and often hard
668 * to debug) behavior on the guest side.
669 */
670 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
671 return 1;
672 vcpu->arch.cr3 = cr3;
673 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
674 vcpu->arch.mmu.new_cr3(vcpu);
675 return 0;
676 }
677 EXPORT_SYMBOL_GPL(kvm_set_cr3);
678
679 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
680 {
681 if (cr8 & CR8_RESERVED_BITS)
682 return 1;
683 if (irqchip_in_kernel(vcpu->kvm))
684 kvm_lapic_set_tpr(vcpu, cr8);
685 else
686 vcpu->arch.cr8 = cr8;
687 return 0;
688 }
689 EXPORT_SYMBOL_GPL(kvm_set_cr8);
690
691 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
692 {
693 if (irqchip_in_kernel(vcpu->kvm))
694 return kvm_lapic_get_cr8(vcpu);
695 else
696 return vcpu->arch.cr8;
697 }
698 EXPORT_SYMBOL_GPL(kvm_get_cr8);
699
700 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
701 {
702 switch (dr) {
703 case 0 ... 3:
704 vcpu->arch.db[dr] = val;
705 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
706 vcpu->arch.eff_db[dr] = val;
707 break;
708 case 4:
709 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
710 return 1; /* #UD */
711 /* fall through */
712 case 6:
713 if (val & 0xffffffff00000000ULL)
714 return -1; /* #GP */
715 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
716 break;
717 case 5:
718 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
719 return 1; /* #UD */
720 /* fall through */
721 default: /* 7 */
722 if (val & 0xffffffff00000000ULL)
723 return -1; /* #GP */
724 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
725 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
726 kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
727 vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
728 }
729 break;
730 }
731
732 return 0;
733 }
734
735 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
736 {
737 int res;
738
739 res = __kvm_set_dr(vcpu, dr, val);
740 if (res > 0)
741 kvm_queue_exception(vcpu, UD_VECTOR);
742 else if (res < 0)
743 kvm_inject_gp(vcpu, 0);
744
745 return res;
746 }
747 EXPORT_SYMBOL_GPL(kvm_set_dr);
748
749 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
750 {
751 switch (dr) {
752 case 0 ... 3:
753 *val = vcpu->arch.db[dr];
754 break;
755 case 4:
756 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
757 return 1;
758 /* fall through */
759 case 6:
760 *val = vcpu->arch.dr6;
761 break;
762 case 5:
763 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
764 return 1;
765 /* fall through */
766 default: /* 7 */
767 *val = vcpu->arch.dr7;
768 break;
769 }
770
771 return 0;
772 }
773
774 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
775 {
776 if (_kvm_get_dr(vcpu, dr, val)) {
777 kvm_queue_exception(vcpu, UD_VECTOR);
778 return 1;
779 }
780 return 0;
781 }
782 EXPORT_SYMBOL_GPL(kvm_get_dr);
783
784 /*
785 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
786 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
787 *
788 * This list is modified at module load time to reflect the
789 * capabilities of the host cpu. This capabilities test skips MSRs that are
790 * kvm-specific. Those are put in the beginning of the list.
791 */
792
793 #define KVM_SAVE_MSRS_BEGIN 8
794 static u32 msrs_to_save[] = {
795 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
796 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
797 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
798 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN,
799 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
800 MSR_STAR,
801 #ifdef CONFIG_X86_64
802 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
803 #endif
804 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
805 };
806
807 static unsigned num_msrs_to_save;
808
809 static u32 emulated_msrs[] = {
810 MSR_IA32_MISC_ENABLE,
811 MSR_IA32_MCG_STATUS,
812 MSR_IA32_MCG_CTL,
813 };
814
815 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
816 {
817 u64 old_efer = vcpu->arch.efer;
818
819 if (efer & efer_reserved_bits)
820 return 1;
821
822 if (is_paging(vcpu)
823 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
824 return 1;
825
826 if (efer & EFER_FFXSR) {
827 struct kvm_cpuid_entry2 *feat;
828
829 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
830 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
831 return 1;
832 }
833
834 if (efer & EFER_SVME) {
835 struct kvm_cpuid_entry2 *feat;
836
837 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
838 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
839 return 1;
840 }
841
842 efer &= ~EFER_LMA;
843 efer |= vcpu->arch.efer & EFER_LMA;
844
845 kvm_x86_ops->set_efer(vcpu, efer);
846
847 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
848
849 /* Update reserved bits */
850 if ((efer ^ old_efer) & EFER_NX)
851 kvm_mmu_reset_context(vcpu);
852
853 return 0;
854 }
855
856 void kvm_enable_efer_bits(u64 mask)
857 {
858 efer_reserved_bits &= ~mask;
859 }
860 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
861
862
863 /*
864 * Writes msr value into into the appropriate "register".
865 * Returns 0 on success, non-0 otherwise.
866 * Assumes vcpu_load() was already called.
867 */
868 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
869 {
870 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
871 }
872
873 /*
874 * Adapt set_msr() to msr_io()'s calling convention
875 */
876 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
877 {
878 return kvm_set_msr(vcpu, index, *data);
879 }
880
881 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
882 {
883 int version;
884 int r;
885 struct pvclock_wall_clock wc;
886 struct timespec boot;
887
888 if (!wall_clock)
889 return;
890
891 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
892 if (r)
893 return;
894
895 if (version & 1)
896 ++version; /* first time write, random junk */
897
898 ++version;
899
900 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
901
902 /*
903 * The guest calculates current wall clock time by adding
904 * system time (updated by kvm_guest_time_update below) to the
905 * wall clock specified here. guest system time equals host
906 * system time for us, thus we must fill in host boot time here.
907 */
908 getboottime(&boot);
909
910 wc.sec = boot.tv_sec;
911 wc.nsec = boot.tv_nsec;
912 wc.version = version;
913
914 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
915
916 version++;
917 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
918 }
919
920 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
921 {
922 uint32_t quotient, remainder;
923
924 /* Don't try to replace with do_div(), this one calculates
925 * "(dividend << 32) / divisor" */
926 __asm__ ( "divl %4"
927 : "=a" (quotient), "=d" (remainder)
928 : "0" (0), "1" (dividend), "r" (divisor) );
929 return quotient;
930 }
931
932 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
933 s8 *pshift, u32 *pmultiplier)
934 {
935 uint64_t scaled64;
936 int32_t shift = 0;
937 uint64_t tps64;
938 uint32_t tps32;
939
940 tps64 = base_khz * 1000LL;
941 scaled64 = scaled_khz * 1000LL;
942 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
943 tps64 >>= 1;
944 shift--;
945 }
946
947 tps32 = (uint32_t)tps64;
948 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
949 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
950 scaled64 >>= 1;
951 else
952 tps32 <<= 1;
953 shift++;
954 }
955
956 *pshift = shift;
957 *pmultiplier = div_frac(scaled64, tps32);
958
959 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
960 __func__, base_khz, scaled_khz, shift, *pmultiplier);
961 }
962
963 static inline u64 get_kernel_ns(void)
964 {
965 struct timespec ts;
966
967 WARN_ON(preemptible());
968 ktime_get_ts(&ts);
969 monotonic_to_bootbased(&ts);
970 return timespec_to_ns(&ts);
971 }
972
973 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
974 unsigned long max_tsc_khz;
975
976 static inline int kvm_tsc_changes_freq(void)
977 {
978 int cpu = get_cpu();
979 int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
980 cpufreq_quick_get(cpu) != 0;
981 put_cpu();
982 return ret;
983 }
984
985 static inline u64 nsec_to_cycles(u64 nsec)
986 {
987 u64 ret;
988
989 WARN_ON(preemptible());
990 if (kvm_tsc_changes_freq())
991 printk_once(KERN_WARNING
992 "kvm: unreliable cycle conversion on adjustable rate TSC\n");
993 ret = nsec * __this_cpu_read(cpu_tsc_khz);
994 do_div(ret, USEC_PER_SEC);
995 return ret;
996 }
997
998 static void kvm_arch_set_tsc_khz(struct kvm *kvm, u32 this_tsc_khz)
999 {
1000 /* Compute a scale to convert nanoseconds in TSC cycles */
1001 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1002 &kvm->arch.virtual_tsc_shift,
1003 &kvm->arch.virtual_tsc_mult);
1004 kvm->arch.virtual_tsc_khz = this_tsc_khz;
1005 }
1006
1007 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1008 {
1009 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
1010 vcpu->kvm->arch.virtual_tsc_mult,
1011 vcpu->kvm->arch.virtual_tsc_shift);
1012 tsc += vcpu->arch.last_tsc_write;
1013 return tsc;
1014 }
1015
1016 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1017 {
1018 struct kvm *kvm = vcpu->kvm;
1019 u64 offset, ns, elapsed;
1020 unsigned long flags;
1021 s64 sdiff;
1022
1023 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1024 offset = data - native_read_tsc();
1025 ns = get_kernel_ns();
1026 elapsed = ns - kvm->arch.last_tsc_nsec;
1027 sdiff = data - kvm->arch.last_tsc_write;
1028 if (sdiff < 0)
1029 sdiff = -sdiff;
1030
1031 /*
1032 * Special case: close write to TSC within 5 seconds of
1033 * another CPU is interpreted as an attempt to synchronize
1034 * The 5 seconds is to accomodate host load / swapping as
1035 * well as any reset of TSC during the boot process.
1036 *
1037 * In that case, for a reliable TSC, we can match TSC offsets,
1038 * or make a best guest using elapsed value.
1039 */
1040 if (sdiff < nsec_to_cycles(5ULL * NSEC_PER_SEC) &&
1041 elapsed < 5ULL * NSEC_PER_SEC) {
1042 if (!check_tsc_unstable()) {
1043 offset = kvm->arch.last_tsc_offset;
1044 pr_debug("kvm: matched tsc offset for %llu\n", data);
1045 } else {
1046 u64 delta = nsec_to_cycles(elapsed);
1047 offset += delta;
1048 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1049 }
1050 ns = kvm->arch.last_tsc_nsec;
1051 }
1052 kvm->arch.last_tsc_nsec = ns;
1053 kvm->arch.last_tsc_write = data;
1054 kvm->arch.last_tsc_offset = offset;
1055 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1056 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1057
1058 /* Reset of TSC must disable overshoot protection below */
1059 vcpu->arch.hv_clock.tsc_timestamp = 0;
1060 vcpu->arch.last_tsc_write = data;
1061 vcpu->arch.last_tsc_nsec = ns;
1062 }
1063 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1064
1065 static int kvm_guest_time_update(struct kvm_vcpu *v)
1066 {
1067 unsigned long flags;
1068 struct kvm_vcpu_arch *vcpu = &v->arch;
1069 void *shared_kaddr;
1070 unsigned long this_tsc_khz;
1071 s64 kernel_ns, max_kernel_ns;
1072 u64 tsc_timestamp;
1073
1074 /* Keep irq disabled to prevent changes to the clock */
1075 local_irq_save(flags);
1076 kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
1077 kernel_ns = get_kernel_ns();
1078 this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1079
1080 if (unlikely(this_tsc_khz == 0)) {
1081 local_irq_restore(flags);
1082 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1083 return 1;
1084 }
1085
1086 /*
1087 * We may have to catch up the TSC to match elapsed wall clock
1088 * time for two reasons, even if kvmclock is used.
1089 * 1) CPU could have been running below the maximum TSC rate
1090 * 2) Broken TSC compensation resets the base at each VCPU
1091 * entry to avoid unknown leaps of TSC even when running
1092 * again on the same CPU. This may cause apparent elapsed
1093 * time to disappear, and the guest to stand still or run
1094 * very slowly.
1095 */
1096 if (vcpu->tsc_catchup) {
1097 u64 tsc = compute_guest_tsc(v, kernel_ns);
1098 if (tsc > tsc_timestamp) {
1099 kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp);
1100 tsc_timestamp = tsc;
1101 }
1102 }
1103
1104 local_irq_restore(flags);
1105
1106 if (!vcpu->time_page)
1107 return 0;
1108
1109 /*
1110 * Time as measured by the TSC may go backwards when resetting the base
1111 * tsc_timestamp. The reason for this is that the TSC resolution is
1112 * higher than the resolution of the other clock scales. Thus, many
1113 * possible measurments of the TSC correspond to one measurement of any
1114 * other clock, and so a spread of values is possible. This is not a
1115 * problem for the computation of the nanosecond clock; with TSC rates
1116 * around 1GHZ, there can only be a few cycles which correspond to one
1117 * nanosecond value, and any path through this code will inevitably
1118 * take longer than that. However, with the kernel_ns value itself,
1119 * the precision may be much lower, down to HZ granularity. If the
1120 * first sampling of TSC against kernel_ns ends in the low part of the
1121 * range, and the second in the high end of the range, we can get:
1122 *
1123 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1124 *
1125 * As the sampling errors potentially range in the thousands of cycles,
1126 * it is possible such a time value has already been observed by the
1127 * guest. To protect against this, we must compute the system time as
1128 * observed by the guest and ensure the new system time is greater.
1129 */
1130 max_kernel_ns = 0;
1131 if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
1132 max_kernel_ns = vcpu->last_guest_tsc -
1133 vcpu->hv_clock.tsc_timestamp;
1134 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1135 vcpu->hv_clock.tsc_to_system_mul,
1136 vcpu->hv_clock.tsc_shift);
1137 max_kernel_ns += vcpu->last_kernel_ns;
1138 }
1139
1140 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1141 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1142 &vcpu->hv_clock.tsc_shift,
1143 &vcpu->hv_clock.tsc_to_system_mul);
1144 vcpu->hw_tsc_khz = this_tsc_khz;
1145 }
1146
1147 if (max_kernel_ns > kernel_ns)
1148 kernel_ns = max_kernel_ns;
1149
1150 /* With all the info we got, fill in the values */
1151 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1152 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1153 vcpu->last_kernel_ns = kernel_ns;
1154 vcpu->last_guest_tsc = tsc_timestamp;
1155 vcpu->hv_clock.flags = 0;
1156
1157 /*
1158 * The interface expects us to write an even number signaling that the
1159 * update is finished. Since the guest won't see the intermediate
1160 * state, we just increase by 2 at the end.
1161 */
1162 vcpu->hv_clock.version += 2;
1163
1164 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
1165
1166 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1167 sizeof(vcpu->hv_clock));
1168
1169 kunmap_atomic(shared_kaddr, KM_USER0);
1170
1171 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1172 return 0;
1173 }
1174
1175 static bool msr_mtrr_valid(unsigned msr)
1176 {
1177 switch (msr) {
1178 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1179 case MSR_MTRRfix64K_00000:
1180 case MSR_MTRRfix16K_80000:
1181 case MSR_MTRRfix16K_A0000:
1182 case MSR_MTRRfix4K_C0000:
1183 case MSR_MTRRfix4K_C8000:
1184 case MSR_MTRRfix4K_D0000:
1185 case MSR_MTRRfix4K_D8000:
1186 case MSR_MTRRfix4K_E0000:
1187 case MSR_MTRRfix4K_E8000:
1188 case MSR_MTRRfix4K_F0000:
1189 case MSR_MTRRfix4K_F8000:
1190 case MSR_MTRRdefType:
1191 case MSR_IA32_CR_PAT:
1192 return true;
1193 case 0x2f8:
1194 return true;
1195 }
1196 return false;
1197 }
1198
1199 static bool valid_pat_type(unsigned t)
1200 {
1201 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1202 }
1203
1204 static bool valid_mtrr_type(unsigned t)
1205 {
1206 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1207 }
1208
1209 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1210 {
1211 int i;
1212
1213 if (!msr_mtrr_valid(msr))
1214 return false;
1215
1216 if (msr == MSR_IA32_CR_PAT) {
1217 for (i = 0; i < 8; i++)
1218 if (!valid_pat_type((data >> (i * 8)) & 0xff))
1219 return false;
1220 return true;
1221 } else if (msr == MSR_MTRRdefType) {
1222 if (data & ~0xcff)
1223 return false;
1224 return valid_mtrr_type(data & 0xff);
1225 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1226 for (i = 0; i < 8 ; i++)
1227 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1228 return false;
1229 return true;
1230 }
1231
1232 /* variable MTRRs */
1233 return valid_mtrr_type(data & 0xff);
1234 }
1235
1236 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1237 {
1238 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1239
1240 if (!mtrr_valid(vcpu, msr, data))
1241 return 1;
1242
1243 if (msr == MSR_MTRRdefType) {
1244 vcpu->arch.mtrr_state.def_type = data;
1245 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1246 } else if (msr == MSR_MTRRfix64K_00000)
1247 p[0] = data;
1248 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1249 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1250 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1251 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1252 else if (msr == MSR_IA32_CR_PAT)
1253 vcpu->arch.pat = data;
1254 else { /* Variable MTRRs */
1255 int idx, is_mtrr_mask;
1256 u64 *pt;
1257
1258 idx = (msr - 0x200) / 2;
1259 is_mtrr_mask = msr - 0x200 - 2 * idx;
1260 if (!is_mtrr_mask)
1261 pt =
1262 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1263 else
1264 pt =
1265 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1266 *pt = data;
1267 }
1268
1269 kvm_mmu_reset_context(vcpu);
1270 return 0;
1271 }
1272
1273 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1274 {
1275 u64 mcg_cap = vcpu->arch.mcg_cap;
1276 unsigned bank_num = mcg_cap & 0xff;
1277
1278 switch (msr) {
1279 case MSR_IA32_MCG_STATUS:
1280 vcpu->arch.mcg_status = data;
1281 break;
1282 case MSR_IA32_MCG_CTL:
1283 if (!(mcg_cap & MCG_CTL_P))
1284 return 1;
1285 if (data != 0 && data != ~(u64)0)
1286 return -1;
1287 vcpu->arch.mcg_ctl = data;
1288 break;
1289 default:
1290 if (msr >= MSR_IA32_MC0_CTL &&
1291 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1292 u32 offset = msr - MSR_IA32_MC0_CTL;
1293 /* only 0 or all 1s can be written to IA32_MCi_CTL
1294 * some Linux kernels though clear bit 10 in bank 4 to
1295 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1296 * this to avoid an uncatched #GP in the guest
1297 */
1298 if ((offset & 0x3) == 0 &&
1299 data != 0 && (data | (1 << 10)) != ~(u64)0)
1300 return -1;
1301 vcpu->arch.mce_banks[offset] = data;
1302 break;
1303 }
1304 return 1;
1305 }
1306 return 0;
1307 }
1308
1309 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1310 {
1311 struct kvm *kvm = vcpu->kvm;
1312 int lm = is_long_mode(vcpu);
1313 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1314 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1315 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1316 : kvm->arch.xen_hvm_config.blob_size_32;
1317 u32 page_num = data & ~PAGE_MASK;
1318 u64 page_addr = data & PAGE_MASK;
1319 u8 *page;
1320 int r;
1321
1322 r = -E2BIG;
1323 if (page_num >= blob_size)
1324 goto out;
1325 r = -ENOMEM;
1326 page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1327 if (!page)
1328 goto out;
1329 r = -EFAULT;
1330 if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1331 goto out_free;
1332 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1333 goto out_free;
1334 r = 0;
1335 out_free:
1336 kfree(page);
1337 out:
1338 return r;
1339 }
1340
1341 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1342 {
1343 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1344 }
1345
1346 static bool kvm_hv_msr_partition_wide(u32 msr)
1347 {
1348 bool r = false;
1349 switch (msr) {
1350 case HV_X64_MSR_GUEST_OS_ID:
1351 case HV_X64_MSR_HYPERCALL:
1352 r = true;
1353 break;
1354 }
1355
1356 return r;
1357 }
1358
1359 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1360 {
1361 struct kvm *kvm = vcpu->kvm;
1362
1363 switch (msr) {
1364 case HV_X64_MSR_GUEST_OS_ID:
1365 kvm->arch.hv_guest_os_id = data;
1366 /* setting guest os id to zero disables hypercall page */
1367 if (!kvm->arch.hv_guest_os_id)
1368 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1369 break;
1370 case HV_X64_MSR_HYPERCALL: {
1371 u64 gfn;
1372 unsigned long addr;
1373 u8 instructions[4];
1374
1375 /* if guest os id is not set hypercall should remain disabled */
1376 if (!kvm->arch.hv_guest_os_id)
1377 break;
1378 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1379 kvm->arch.hv_hypercall = data;
1380 break;
1381 }
1382 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1383 addr = gfn_to_hva(kvm, gfn);
1384 if (kvm_is_error_hva(addr))
1385 return 1;
1386 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1387 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1388 if (copy_to_user((void __user *)addr, instructions, 4))
1389 return 1;
1390 kvm->arch.hv_hypercall = data;
1391 break;
1392 }
1393 default:
1394 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1395 "data 0x%llx\n", msr, data);
1396 return 1;
1397 }
1398 return 0;
1399 }
1400
1401 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1402 {
1403 switch (msr) {
1404 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1405 unsigned long addr;
1406
1407 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1408 vcpu->arch.hv_vapic = data;
1409 break;
1410 }
1411 addr = gfn_to_hva(vcpu->kvm, data >>
1412 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1413 if (kvm_is_error_hva(addr))
1414 return 1;
1415 if (clear_user((void __user *)addr, PAGE_SIZE))
1416 return 1;
1417 vcpu->arch.hv_vapic = data;
1418 break;
1419 }
1420 case HV_X64_MSR_EOI:
1421 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1422 case HV_X64_MSR_ICR:
1423 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1424 case HV_X64_MSR_TPR:
1425 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1426 default:
1427 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1428 "data 0x%llx\n", msr, data);
1429 return 1;
1430 }
1431
1432 return 0;
1433 }
1434
1435 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1436 {
1437 gpa_t gpa = data & ~0x3f;
1438
1439 /* Bits 2:5 are resrved, Should be zero */
1440 if (data & 0x3c)
1441 return 1;
1442
1443 vcpu->arch.apf.msr_val = data;
1444
1445 if (!(data & KVM_ASYNC_PF_ENABLED)) {
1446 kvm_clear_async_pf_completion_queue(vcpu);
1447 kvm_async_pf_hash_reset(vcpu);
1448 return 0;
1449 }
1450
1451 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1452 return 1;
1453
1454 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1455 kvm_async_pf_wakeup_all(vcpu);
1456 return 0;
1457 }
1458
1459 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1460 {
1461 if (vcpu->arch.time_page) {
1462 kvm_release_page_dirty(vcpu->arch.time_page);
1463 vcpu->arch.time_page = NULL;
1464 }
1465 }
1466
1467 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1468 {
1469 switch (msr) {
1470 case MSR_EFER:
1471 return set_efer(vcpu, data);
1472 case MSR_K7_HWCR:
1473 data &= ~(u64)0x40; /* ignore flush filter disable */
1474 data &= ~(u64)0x100; /* ignore ignne emulation enable */
1475 if (data != 0) {
1476 pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1477 data);
1478 return 1;
1479 }
1480 break;
1481 case MSR_FAM10H_MMIO_CONF_BASE:
1482 if (data != 0) {
1483 pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1484 "0x%llx\n", data);
1485 return 1;
1486 }
1487 break;
1488 case MSR_AMD64_NB_CFG:
1489 break;
1490 case MSR_IA32_DEBUGCTLMSR:
1491 if (!data) {
1492 /* We support the non-activated case already */
1493 break;
1494 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1495 /* Values other than LBR and BTF are vendor-specific,
1496 thus reserved and should throw a #GP */
1497 return 1;
1498 }
1499 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1500 __func__, data);
1501 break;
1502 case MSR_IA32_UCODE_REV:
1503 case MSR_IA32_UCODE_WRITE:
1504 case MSR_VM_HSAVE_PA:
1505 case MSR_AMD64_PATCH_LOADER:
1506 break;
1507 case 0x200 ... 0x2ff:
1508 return set_msr_mtrr(vcpu, msr, data);
1509 case MSR_IA32_APICBASE:
1510 kvm_set_apic_base(vcpu, data);
1511 break;
1512 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1513 return kvm_x2apic_msr_write(vcpu, msr, data);
1514 case MSR_IA32_MISC_ENABLE:
1515 vcpu->arch.ia32_misc_enable_msr = data;
1516 break;
1517 case MSR_KVM_WALL_CLOCK_NEW:
1518 case MSR_KVM_WALL_CLOCK:
1519 vcpu->kvm->arch.wall_clock = data;
1520 kvm_write_wall_clock(vcpu->kvm, data);
1521 break;
1522 case MSR_KVM_SYSTEM_TIME_NEW:
1523 case MSR_KVM_SYSTEM_TIME: {
1524 kvmclock_reset(vcpu);
1525
1526 vcpu->arch.time = data;
1527 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1528
1529 /* we verify if the enable bit is set... */
1530 if (!(data & 1))
1531 break;
1532
1533 /* ...but clean it before doing the actual write */
1534 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1535
1536 vcpu->arch.time_page =
1537 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1538
1539 if (is_error_page(vcpu->arch.time_page)) {
1540 kvm_release_page_clean(vcpu->arch.time_page);
1541 vcpu->arch.time_page = NULL;
1542 }
1543 break;
1544 }
1545 case MSR_KVM_ASYNC_PF_EN:
1546 if (kvm_pv_enable_async_pf(vcpu, data))
1547 return 1;
1548 break;
1549 case MSR_IA32_MCG_CTL:
1550 case MSR_IA32_MCG_STATUS:
1551 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1552 return set_msr_mce(vcpu, msr, data);
1553
1554 /* Performance counters are not protected by a CPUID bit,
1555 * so we should check all of them in the generic path for the sake of
1556 * cross vendor migration.
1557 * Writing a zero into the event select MSRs disables them,
1558 * which we perfectly emulate ;-). Any other value should be at least
1559 * reported, some guests depend on them.
1560 */
1561 case MSR_P6_EVNTSEL0:
1562 case MSR_P6_EVNTSEL1:
1563 case MSR_K7_EVNTSEL0:
1564 case MSR_K7_EVNTSEL1:
1565 case MSR_K7_EVNTSEL2:
1566 case MSR_K7_EVNTSEL3:
1567 if (data != 0)
1568 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1569 "0x%x data 0x%llx\n", msr, data);
1570 break;
1571 /* at least RHEL 4 unconditionally writes to the perfctr registers,
1572 * so we ignore writes to make it happy.
1573 */
1574 case MSR_P6_PERFCTR0:
1575 case MSR_P6_PERFCTR1:
1576 case MSR_K7_PERFCTR0:
1577 case MSR_K7_PERFCTR1:
1578 case MSR_K7_PERFCTR2:
1579 case MSR_K7_PERFCTR3:
1580 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1581 "0x%x data 0x%llx\n", msr, data);
1582 break;
1583 case MSR_K7_CLK_CTL:
1584 /*
1585 * Ignore all writes to this no longer documented MSR.
1586 * Writes are only relevant for old K7 processors,
1587 * all pre-dating SVM, but a recommended workaround from
1588 * AMD for these chips. It is possible to speicify the
1589 * affected processor models on the command line, hence
1590 * the need to ignore the workaround.
1591 */
1592 break;
1593 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1594 if (kvm_hv_msr_partition_wide(msr)) {
1595 int r;
1596 mutex_lock(&vcpu->kvm->lock);
1597 r = set_msr_hyperv_pw(vcpu, msr, data);
1598 mutex_unlock(&vcpu->kvm->lock);
1599 return r;
1600 } else
1601 return set_msr_hyperv(vcpu, msr, data);
1602 break;
1603 case MSR_IA32_BBL_CR_CTL3:
1604 /* Drop writes to this legacy MSR -- see rdmsr
1605 * counterpart for further detail.
1606 */
1607 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
1608 break;
1609 default:
1610 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1611 return xen_hvm_config(vcpu, data);
1612 if (!ignore_msrs) {
1613 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1614 msr, data);
1615 return 1;
1616 } else {
1617 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1618 msr, data);
1619 break;
1620 }
1621 }
1622 return 0;
1623 }
1624 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1625
1626
1627 /*
1628 * Reads an msr value (of 'msr_index') into 'pdata'.
1629 * Returns 0 on success, non-0 otherwise.
1630 * Assumes vcpu_load() was already called.
1631 */
1632 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1633 {
1634 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1635 }
1636
1637 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1638 {
1639 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1640
1641 if (!msr_mtrr_valid(msr))
1642 return 1;
1643
1644 if (msr == MSR_MTRRdefType)
1645 *pdata = vcpu->arch.mtrr_state.def_type +
1646 (vcpu->arch.mtrr_state.enabled << 10);
1647 else if (msr == MSR_MTRRfix64K_00000)
1648 *pdata = p[0];
1649 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1650 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1651 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1652 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1653 else if (msr == MSR_IA32_CR_PAT)
1654 *pdata = vcpu->arch.pat;
1655 else { /* Variable MTRRs */
1656 int idx, is_mtrr_mask;
1657 u64 *pt;
1658
1659 idx = (msr - 0x200) / 2;
1660 is_mtrr_mask = msr - 0x200 - 2 * idx;
1661 if (!is_mtrr_mask)
1662 pt =
1663 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1664 else
1665 pt =
1666 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1667 *pdata = *pt;
1668 }
1669
1670 return 0;
1671 }
1672
1673 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1674 {
1675 u64 data;
1676 u64 mcg_cap = vcpu->arch.mcg_cap;
1677 unsigned bank_num = mcg_cap & 0xff;
1678
1679 switch (msr) {
1680 case MSR_IA32_P5_MC_ADDR:
1681 case MSR_IA32_P5_MC_TYPE:
1682 data = 0;
1683 break;
1684 case MSR_IA32_MCG_CAP:
1685 data = vcpu->arch.mcg_cap;
1686 break;
1687 case MSR_IA32_MCG_CTL:
1688 if (!(mcg_cap & MCG_CTL_P))
1689 return 1;
1690 data = vcpu->arch.mcg_ctl;
1691 break;
1692 case MSR_IA32_MCG_STATUS:
1693 data = vcpu->arch.mcg_status;
1694 break;
1695 default:
1696 if (msr >= MSR_IA32_MC0_CTL &&
1697 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1698 u32 offset = msr - MSR_IA32_MC0_CTL;
1699 data = vcpu->arch.mce_banks[offset];
1700 break;
1701 }
1702 return 1;
1703 }
1704 *pdata = data;
1705 return 0;
1706 }
1707
1708 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1709 {
1710 u64 data = 0;
1711 struct kvm *kvm = vcpu->kvm;
1712
1713 switch (msr) {
1714 case HV_X64_MSR_GUEST_OS_ID:
1715 data = kvm->arch.hv_guest_os_id;
1716 break;
1717 case HV_X64_MSR_HYPERCALL:
1718 data = kvm->arch.hv_hypercall;
1719 break;
1720 default:
1721 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1722 return 1;
1723 }
1724
1725 *pdata = data;
1726 return 0;
1727 }
1728
1729 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1730 {
1731 u64 data = 0;
1732
1733 switch (msr) {
1734 case HV_X64_MSR_VP_INDEX: {
1735 int r;
1736 struct kvm_vcpu *v;
1737 kvm_for_each_vcpu(r, v, vcpu->kvm)
1738 if (v == vcpu)
1739 data = r;
1740 break;
1741 }
1742 case HV_X64_MSR_EOI:
1743 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1744 case HV_X64_MSR_ICR:
1745 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1746 case HV_X64_MSR_TPR:
1747 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1748 default:
1749 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1750 return 1;
1751 }
1752 *pdata = data;
1753 return 0;
1754 }
1755
1756 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1757 {
1758 u64 data;
1759
1760 switch (msr) {
1761 case MSR_IA32_PLATFORM_ID:
1762 case MSR_IA32_UCODE_REV:
1763 case MSR_IA32_EBL_CR_POWERON:
1764 case MSR_IA32_DEBUGCTLMSR:
1765 case MSR_IA32_LASTBRANCHFROMIP:
1766 case MSR_IA32_LASTBRANCHTOIP:
1767 case MSR_IA32_LASTINTFROMIP:
1768 case MSR_IA32_LASTINTTOIP:
1769 case MSR_K8_SYSCFG:
1770 case MSR_K7_HWCR:
1771 case MSR_VM_HSAVE_PA:
1772 case MSR_P6_PERFCTR0:
1773 case MSR_P6_PERFCTR1:
1774 case MSR_P6_EVNTSEL0:
1775 case MSR_P6_EVNTSEL1:
1776 case MSR_K7_EVNTSEL0:
1777 case MSR_K7_PERFCTR0:
1778 case MSR_K8_INT_PENDING_MSG:
1779 case MSR_AMD64_NB_CFG:
1780 case MSR_FAM10H_MMIO_CONF_BASE:
1781 data = 0;
1782 break;
1783 case MSR_MTRRcap:
1784 data = 0x500 | KVM_NR_VAR_MTRR;
1785 break;
1786 case 0x200 ... 0x2ff:
1787 return get_msr_mtrr(vcpu, msr, pdata);
1788 case 0xcd: /* fsb frequency */
1789 data = 3;
1790 break;
1791 /*
1792 * MSR_EBC_FREQUENCY_ID
1793 * Conservative value valid for even the basic CPU models.
1794 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1795 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1796 * and 266MHz for model 3, or 4. Set Core Clock
1797 * Frequency to System Bus Frequency Ratio to 1 (bits
1798 * 31:24) even though these are only valid for CPU
1799 * models > 2, however guests may end up dividing or
1800 * multiplying by zero otherwise.
1801 */
1802 case MSR_EBC_FREQUENCY_ID:
1803 data = 1 << 24;
1804 break;
1805 case MSR_IA32_APICBASE:
1806 data = kvm_get_apic_base(vcpu);
1807 break;
1808 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1809 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1810 break;
1811 case MSR_IA32_MISC_ENABLE:
1812 data = vcpu->arch.ia32_misc_enable_msr;
1813 break;
1814 case MSR_IA32_PERF_STATUS:
1815 /* TSC increment by tick */
1816 data = 1000ULL;
1817 /* CPU multiplier */
1818 data |= (((uint64_t)4ULL) << 40);
1819 break;
1820 case MSR_EFER:
1821 data = vcpu->arch.efer;
1822 break;
1823 case MSR_KVM_WALL_CLOCK:
1824 case MSR_KVM_WALL_CLOCK_NEW:
1825 data = vcpu->kvm->arch.wall_clock;
1826 break;
1827 case MSR_KVM_SYSTEM_TIME:
1828 case MSR_KVM_SYSTEM_TIME_NEW:
1829 data = vcpu->arch.time;
1830 break;
1831 case MSR_KVM_ASYNC_PF_EN:
1832 data = vcpu->arch.apf.msr_val;
1833 break;
1834 case MSR_IA32_P5_MC_ADDR:
1835 case MSR_IA32_P5_MC_TYPE:
1836 case MSR_IA32_MCG_CAP:
1837 case MSR_IA32_MCG_CTL:
1838 case MSR_IA32_MCG_STATUS:
1839 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1840 return get_msr_mce(vcpu, msr, pdata);
1841 case MSR_K7_CLK_CTL:
1842 /*
1843 * Provide expected ramp-up count for K7. All other
1844 * are set to zero, indicating minimum divisors for
1845 * every field.
1846 *
1847 * This prevents guest kernels on AMD host with CPU
1848 * type 6, model 8 and higher from exploding due to
1849 * the rdmsr failing.
1850 */
1851 data = 0x20000000;
1852 break;
1853 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1854 if (kvm_hv_msr_partition_wide(msr)) {
1855 int r;
1856 mutex_lock(&vcpu->kvm->lock);
1857 r = get_msr_hyperv_pw(vcpu, msr, pdata);
1858 mutex_unlock(&vcpu->kvm->lock);
1859 return r;
1860 } else
1861 return get_msr_hyperv(vcpu, msr, pdata);
1862 break;
1863 case MSR_IA32_BBL_CR_CTL3:
1864 /* This legacy MSR exists but isn't fully documented in current
1865 * silicon. It is however accessed by winxp in very narrow
1866 * scenarios where it sets bit #19, itself documented as
1867 * a "reserved" bit. Best effort attempt to source coherent
1868 * read data here should the balance of the register be
1869 * interpreted by the guest:
1870 *
1871 * L2 cache control register 3: 64GB range, 256KB size,
1872 * enabled, latency 0x1, configured
1873 */
1874 data = 0xbe702111;
1875 break;
1876 default:
1877 if (!ignore_msrs) {
1878 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1879 return 1;
1880 } else {
1881 pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1882 data = 0;
1883 }
1884 break;
1885 }
1886 *pdata = data;
1887 return 0;
1888 }
1889 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1890
1891 /*
1892 * Read or write a bunch of msrs. All parameters are kernel addresses.
1893 *
1894 * @return number of msrs set successfully.
1895 */
1896 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1897 struct kvm_msr_entry *entries,
1898 int (*do_msr)(struct kvm_vcpu *vcpu,
1899 unsigned index, u64 *data))
1900 {
1901 int i, idx;
1902
1903 idx = srcu_read_lock(&vcpu->kvm->srcu);
1904 for (i = 0; i < msrs->nmsrs; ++i)
1905 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1906 break;
1907 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1908
1909 return i;
1910 }
1911
1912 /*
1913 * Read or write a bunch of msrs. Parameters are user addresses.
1914 *
1915 * @return number of msrs set successfully.
1916 */
1917 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1918 int (*do_msr)(struct kvm_vcpu *vcpu,
1919 unsigned index, u64 *data),
1920 int writeback)
1921 {
1922 struct kvm_msrs msrs;
1923 struct kvm_msr_entry *entries;
1924 int r, n;
1925 unsigned size;
1926
1927 r = -EFAULT;
1928 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1929 goto out;
1930
1931 r = -E2BIG;
1932 if (msrs.nmsrs >= MAX_IO_MSRS)
1933 goto out;
1934
1935 r = -ENOMEM;
1936 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1937 entries = kmalloc(size, GFP_KERNEL);
1938 if (!entries)
1939 goto out;
1940
1941 r = -EFAULT;
1942 if (copy_from_user(entries, user_msrs->entries, size))
1943 goto out_free;
1944
1945 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1946 if (r < 0)
1947 goto out_free;
1948
1949 r = -EFAULT;
1950 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1951 goto out_free;
1952
1953 r = n;
1954
1955 out_free:
1956 kfree(entries);
1957 out:
1958 return r;
1959 }
1960
1961 int kvm_dev_ioctl_check_extension(long ext)
1962 {
1963 int r;
1964
1965 switch (ext) {
1966 case KVM_CAP_IRQCHIP:
1967 case KVM_CAP_HLT:
1968 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1969 case KVM_CAP_SET_TSS_ADDR:
1970 case KVM_CAP_EXT_CPUID:
1971 case KVM_CAP_CLOCKSOURCE:
1972 case KVM_CAP_PIT:
1973 case KVM_CAP_NOP_IO_DELAY:
1974 case KVM_CAP_MP_STATE:
1975 case KVM_CAP_SYNC_MMU:
1976 case KVM_CAP_USER_NMI:
1977 case KVM_CAP_REINJECT_CONTROL:
1978 case KVM_CAP_IRQ_INJECT_STATUS:
1979 case KVM_CAP_ASSIGN_DEV_IRQ:
1980 case KVM_CAP_IRQFD:
1981 case KVM_CAP_IOEVENTFD:
1982 case KVM_CAP_PIT2:
1983 case KVM_CAP_PIT_STATE2:
1984 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1985 case KVM_CAP_XEN_HVM:
1986 case KVM_CAP_ADJUST_CLOCK:
1987 case KVM_CAP_VCPU_EVENTS:
1988 case KVM_CAP_HYPERV:
1989 case KVM_CAP_HYPERV_VAPIC:
1990 case KVM_CAP_HYPERV_SPIN:
1991 case KVM_CAP_PCI_SEGMENT:
1992 case KVM_CAP_DEBUGREGS:
1993 case KVM_CAP_X86_ROBUST_SINGLESTEP:
1994 case KVM_CAP_XSAVE:
1995 case KVM_CAP_ASYNC_PF:
1996 r = 1;
1997 break;
1998 case KVM_CAP_COALESCED_MMIO:
1999 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2000 break;
2001 case KVM_CAP_VAPIC:
2002 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2003 break;
2004 case KVM_CAP_NR_VCPUS:
2005 r = KVM_MAX_VCPUS;
2006 break;
2007 case KVM_CAP_NR_MEMSLOTS:
2008 r = KVM_MEMORY_SLOTS;
2009 break;
2010 case KVM_CAP_PV_MMU: /* obsolete */
2011 r = 0;
2012 break;
2013 case KVM_CAP_IOMMU:
2014 r = iommu_found();
2015 break;
2016 case KVM_CAP_MCE:
2017 r = KVM_MAX_MCE_BANKS;
2018 break;
2019 case KVM_CAP_XCRS:
2020 r = cpu_has_xsave;
2021 break;
2022 default:
2023 r = 0;
2024 break;
2025 }
2026 return r;
2027
2028 }
2029
2030 long kvm_arch_dev_ioctl(struct file *filp,
2031 unsigned int ioctl, unsigned long arg)
2032 {
2033 void __user *argp = (void __user *)arg;
2034 long r;
2035
2036 switch (ioctl) {
2037 case KVM_GET_MSR_INDEX_LIST: {
2038 struct kvm_msr_list __user *user_msr_list = argp;
2039 struct kvm_msr_list msr_list;
2040 unsigned n;
2041
2042 r = -EFAULT;
2043 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2044 goto out;
2045 n = msr_list.nmsrs;
2046 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2047 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2048 goto out;
2049 r = -E2BIG;
2050 if (n < msr_list.nmsrs)
2051 goto out;
2052 r = -EFAULT;
2053 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2054 num_msrs_to_save * sizeof(u32)))
2055 goto out;
2056 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2057 &emulated_msrs,
2058 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2059 goto out;
2060 r = 0;
2061 break;
2062 }
2063 case KVM_GET_SUPPORTED_CPUID: {
2064 struct kvm_cpuid2 __user *cpuid_arg = argp;
2065 struct kvm_cpuid2 cpuid;
2066
2067 r = -EFAULT;
2068 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2069 goto out;
2070 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2071 cpuid_arg->entries);
2072 if (r)
2073 goto out;
2074
2075 r = -EFAULT;
2076 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2077 goto out;
2078 r = 0;
2079 break;
2080 }
2081 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2082 u64 mce_cap;
2083
2084 mce_cap = KVM_MCE_CAP_SUPPORTED;
2085 r = -EFAULT;
2086 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2087 goto out;
2088 r = 0;
2089 break;
2090 }
2091 default:
2092 r = -EINVAL;
2093 }
2094 out:
2095 return r;
2096 }
2097
2098 static void wbinvd_ipi(void *garbage)
2099 {
2100 wbinvd();
2101 }
2102
2103 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2104 {
2105 return vcpu->kvm->arch.iommu_domain &&
2106 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2107 }
2108
2109 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2110 {
2111 /* Address WBINVD may be executed by guest */
2112 if (need_emulate_wbinvd(vcpu)) {
2113 if (kvm_x86_ops->has_wbinvd_exit())
2114 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2115 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2116 smp_call_function_single(vcpu->cpu,
2117 wbinvd_ipi, NULL, 1);
2118 }
2119
2120 kvm_x86_ops->vcpu_load(vcpu, cpu);
2121 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2122 /* Make sure TSC doesn't go backwards */
2123 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2124 native_read_tsc() - vcpu->arch.last_host_tsc;
2125 if (tsc_delta < 0)
2126 mark_tsc_unstable("KVM discovered backwards TSC");
2127 if (check_tsc_unstable()) {
2128 kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
2129 vcpu->arch.tsc_catchup = 1;
2130 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2131 }
2132 if (vcpu->cpu != cpu)
2133 kvm_migrate_timers(vcpu);
2134 vcpu->cpu = cpu;
2135 }
2136 }
2137
2138 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2139 {
2140 kvm_x86_ops->vcpu_put(vcpu);
2141 kvm_put_guest_fpu(vcpu);
2142 vcpu->arch.last_host_tsc = native_read_tsc();
2143 }
2144
2145 static int is_efer_nx(void)
2146 {
2147 unsigned long long efer = 0;
2148
2149 rdmsrl_safe(MSR_EFER, &efer);
2150 return efer & EFER_NX;
2151 }
2152
2153 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2154 {
2155 int i;
2156 struct kvm_cpuid_entry2 *e, *entry;
2157
2158 entry = NULL;
2159 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2160 e = &vcpu->arch.cpuid_entries[i];
2161 if (e->function == 0x80000001) {
2162 entry = e;
2163 break;
2164 }
2165 }
2166 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
2167 entry->edx &= ~(1 << 20);
2168 printk(KERN_INFO "kvm: guest NX capability removed\n");
2169 }
2170 }
2171
2172 /* when an old userspace process fills a new kernel module */
2173 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2174 struct kvm_cpuid *cpuid,
2175 struct kvm_cpuid_entry __user *entries)
2176 {
2177 int r, i;
2178 struct kvm_cpuid_entry *cpuid_entries;
2179
2180 r = -E2BIG;
2181 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2182 goto out;
2183 r = -ENOMEM;
2184 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
2185 if (!cpuid_entries)
2186 goto out;
2187 r = -EFAULT;
2188 if (copy_from_user(cpuid_entries, entries,
2189 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2190 goto out_free;
2191 for (i = 0; i < cpuid->nent; i++) {
2192 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
2193 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
2194 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
2195 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
2196 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
2197 vcpu->arch.cpuid_entries[i].index = 0;
2198 vcpu->arch.cpuid_entries[i].flags = 0;
2199 vcpu->arch.cpuid_entries[i].padding[0] = 0;
2200 vcpu->arch.cpuid_entries[i].padding[1] = 0;
2201 vcpu->arch.cpuid_entries[i].padding[2] = 0;
2202 }
2203 vcpu->arch.cpuid_nent = cpuid->nent;
2204 cpuid_fix_nx_cap(vcpu);
2205 r = 0;
2206 kvm_apic_set_version(vcpu);
2207 kvm_x86_ops->cpuid_update(vcpu);
2208 update_cpuid(vcpu);
2209
2210 out_free:
2211 vfree(cpuid_entries);
2212 out:
2213 return r;
2214 }
2215
2216 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
2217 struct kvm_cpuid2 *cpuid,
2218 struct kvm_cpuid_entry2 __user *entries)
2219 {
2220 int r;
2221
2222 r = -E2BIG;
2223 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2224 goto out;
2225 r = -EFAULT;
2226 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
2227 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
2228 goto out;
2229 vcpu->arch.cpuid_nent = cpuid->nent;
2230 kvm_apic_set_version(vcpu);
2231 kvm_x86_ops->cpuid_update(vcpu);
2232 update_cpuid(vcpu);
2233 return 0;
2234
2235 out:
2236 return r;
2237 }
2238
2239 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
2240 struct kvm_cpuid2 *cpuid,
2241 struct kvm_cpuid_entry2 __user *entries)
2242 {
2243 int r;
2244
2245 r = -E2BIG;
2246 if (cpuid->nent < vcpu->arch.cpuid_nent)
2247 goto out;
2248 r = -EFAULT;
2249 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
2250 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
2251 goto out;
2252 return 0;
2253
2254 out:
2255 cpuid->nent = vcpu->arch.cpuid_nent;
2256 return r;
2257 }
2258
2259 static void cpuid_mask(u32 *word, int wordnum)
2260 {
2261 *word &= boot_cpu_data.x86_capability[wordnum];
2262 }
2263
2264 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2265 u32 index)
2266 {
2267 entry->function = function;
2268 entry->index = index;
2269 cpuid_count(entry->function, entry->index,
2270 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
2271 entry->flags = 0;
2272 }
2273
2274 #define F(x) bit(X86_FEATURE_##x)
2275
2276 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2277 u32 index, int *nent, int maxnent)
2278 {
2279 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
2280 #ifdef CONFIG_X86_64
2281 unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
2282 ? F(GBPAGES) : 0;
2283 unsigned f_lm = F(LM);
2284 #else
2285 unsigned f_gbpages = 0;
2286 unsigned f_lm = 0;
2287 #endif
2288 unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
2289
2290 /* cpuid 1.edx */
2291 const u32 kvm_supported_word0_x86_features =
2292 F(FPU) | F(VME) | F(DE) | F(PSE) |
2293 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2294 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
2295 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2296 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
2297 0 /* Reserved, DS, ACPI */ | F(MMX) |
2298 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
2299 0 /* HTT, TM, Reserved, PBE */;
2300 /* cpuid 0x80000001.edx */
2301 const u32 kvm_supported_word1_x86_features =
2302 F(FPU) | F(VME) | F(DE) | F(PSE) |
2303 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2304 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
2305 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2306 F(PAT) | F(PSE36) | 0 /* Reserved */ |
2307 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
2308 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
2309 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
2310 /* cpuid 1.ecx */
2311 const u32 kvm_supported_word4_x86_features =
2312 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
2313 0 /* DS-CPL, VMX, SMX, EST */ |
2314 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
2315 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
2316 0 /* Reserved, DCA */ | F(XMM4_1) |
2317 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
2318 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
2319 F(F16C);
2320 /* cpuid 0x80000001.ecx */
2321 const u32 kvm_supported_word6_x86_features =
2322 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
2323 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
2324 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP) |
2325 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
2326
2327 /* all calls to cpuid_count() should be made on the same cpu */
2328 get_cpu();
2329 do_cpuid_1_ent(entry, function, index);
2330 ++*nent;
2331
2332 switch (function) {
2333 case 0:
2334 entry->eax = min(entry->eax, (u32)0xd);
2335 break;
2336 case 1:
2337 entry->edx &= kvm_supported_word0_x86_features;
2338 cpuid_mask(&entry->edx, 0);
2339 entry->ecx &= kvm_supported_word4_x86_features;
2340 cpuid_mask(&entry->ecx, 4);
2341 /* we support x2apic emulation even if host does not support
2342 * it since we emulate x2apic in software */
2343 entry->ecx |= F(X2APIC);
2344 break;
2345 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
2346 * may return different values. This forces us to get_cpu() before
2347 * issuing the first command, and also to emulate this annoying behavior
2348 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
2349 case 2: {
2350 int t, times = entry->eax & 0xff;
2351
2352 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2353 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2354 for (t = 1; t < times && *nent < maxnent; ++t) {
2355 do_cpuid_1_ent(&entry[t], function, 0);
2356 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2357 ++*nent;
2358 }
2359 break;
2360 }
2361 /* function 4 and 0xb have additional index. */
2362 case 4: {
2363 int i, cache_type;
2364
2365 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2366 /* read more entries until cache_type is zero */
2367 for (i = 1; *nent < maxnent; ++i) {
2368 cache_type = entry[i - 1].eax & 0x1f;
2369 if (!cache_type)
2370 break;
2371 do_cpuid_1_ent(&entry[i], function, i);
2372 entry[i].flags |=
2373 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2374 ++*nent;
2375 }
2376 break;
2377 }
2378 case 0xb: {
2379 int i, level_type;
2380
2381 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2382 /* read more entries until level_type is zero */
2383 for (i = 1; *nent < maxnent; ++i) {
2384 level_type = entry[i - 1].ecx & 0xff00;
2385 if (!level_type)
2386 break;
2387 do_cpuid_1_ent(&entry[i], function, i);
2388 entry[i].flags |=
2389 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2390 ++*nent;
2391 }
2392 break;
2393 }
2394 case 0xd: {
2395 int i;
2396
2397 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2398 for (i = 1; *nent < maxnent; ++i) {
2399 if (entry[i - 1].eax == 0 && i != 2)
2400 break;
2401 do_cpuid_1_ent(&entry[i], function, i);
2402 entry[i].flags |=
2403 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2404 ++*nent;
2405 }
2406 break;
2407 }
2408 case KVM_CPUID_SIGNATURE: {
2409 char signature[12] = "KVMKVMKVM\0\0";
2410 u32 *sigptr = (u32 *)signature;
2411 entry->eax = 0;
2412 entry->ebx = sigptr[0];
2413 entry->ecx = sigptr[1];
2414 entry->edx = sigptr[2];
2415 break;
2416 }
2417 case KVM_CPUID_FEATURES:
2418 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
2419 (1 << KVM_FEATURE_NOP_IO_DELAY) |
2420 (1 << KVM_FEATURE_CLOCKSOURCE2) |
2421 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
2422 entry->ebx = 0;
2423 entry->ecx = 0;
2424 entry->edx = 0;
2425 break;
2426 case 0x80000000:
2427 entry->eax = min(entry->eax, 0x8000001a);
2428 break;
2429 case 0x80000001:
2430 entry->edx &= kvm_supported_word1_x86_features;
2431 cpuid_mask(&entry->edx, 1);
2432 entry->ecx &= kvm_supported_word6_x86_features;
2433 cpuid_mask(&entry->ecx, 6);
2434 break;
2435 }
2436
2437 kvm_x86_ops->set_supported_cpuid(function, entry);
2438
2439 put_cpu();
2440 }
2441
2442 #undef F
2443
2444 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
2445 struct kvm_cpuid_entry2 __user *entries)
2446 {
2447 struct kvm_cpuid_entry2 *cpuid_entries;
2448 int limit, nent = 0, r = -E2BIG;
2449 u32 func;
2450
2451 if (cpuid->nent < 1)
2452 goto out;
2453 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2454 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
2455 r = -ENOMEM;
2456 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
2457 if (!cpuid_entries)
2458 goto out;
2459
2460 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
2461 limit = cpuid_entries[0].eax;
2462 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
2463 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2464 &nent, cpuid->nent);
2465 r = -E2BIG;
2466 if (nent >= cpuid->nent)
2467 goto out_free;
2468
2469 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
2470 limit = cpuid_entries[nent - 1].eax;
2471 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
2472 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2473 &nent, cpuid->nent);
2474
2475
2476
2477 r = -E2BIG;
2478 if (nent >= cpuid->nent)
2479 goto out_free;
2480
2481 do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
2482 cpuid->nent);
2483
2484 r = -E2BIG;
2485 if (nent >= cpuid->nent)
2486 goto out_free;
2487
2488 do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
2489 cpuid->nent);
2490
2491 r = -E2BIG;
2492 if (nent >= cpuid->nent)
2493 goto out_free;
2494
2495 r = -EFAULT;
2496 if (copy_to_user(entries, cpuid_entries,
2497 nent * sizeof(struct kvm_cpuid_entry2)))
2498 goto out_free;
2499 cpuid->nent = nent;
2500 r = 0;
2501
2502 out_free:
2503 vfree(cpuid_entries);
2504 out:
2505 return r;
2506 }
2507
2508 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2509 struct kvm_lapic_state *s)
2510 {
2511 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2512
2513 return 0;
2514 }
2515
2516 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2517 struct kvm_lapic_state *s)
2518 {
2519 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2520 kvm_apic_post_state_restore(vcpu);
2521 update_cr8_intercept(vcpu);
2522
2523 return 0;
2524 }
2525
2526 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2527 struct kvm_interrupt *irq)
2528 {
2529 if (irq->irq < 0 || irq->irq >= 256)
2530 return -EINVAL;
2531 if (irqchip_in_kernel(vcpu->kvm))
2532 return -ENXIO;
2533
2534 kvm_queue_interrupt(vcpu, irq->irq, false);
2535 kvm_make_request(KVM_REQ_EVENT, vcpu);
2536
2537 return 0;
2538 }
2539
2540 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2541 {
2542 kvm_inject_nmi(vcpu);
2543
2544 return 0;
2545 }
2546
2547 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2548 struct kvm_tpr_access_ctl *tac)
2549 {
2550 if (tac->flags)
2551 return -EINVAL;
2552 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2553 return 0;
2554 }
2555
2556 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2557 u64 mcg_cap)
2558 {
2559 int r;
2560 unsigned bank_num = mcg_cap & 0xff, bank;
2561
2562 r = -EINVAL;
2563 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2564 goto out;
2565 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2566 goto out;
2567 r = 0;
2568 vcpu->arch.mcg_cap = mcg_cap;
2569 /* Init IA32_MCG_CTL to all 1s */
2570 if (mcg_cap & MCG_CTL_P)
2571 vcpu->arch.mcg_ctl = ~(u64)0;
2572 /* Init IA32_MCi_CTL to all 1s */
2573 for (bank = 0; bank < bank_num; bank++)
2574 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2575 out:
2576 return r;
2577 }
2578
2579 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2580 struct kvm_x86_mce *mce)
2581 {
2582 u64 mcg_cap = vcpu->arch.mcg_cap;
2583 unsigned bank_num = mcg_cap & 0xff;
2584 u64 *banks = vcpu->arch.mce_banks;
2585
2586 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2587 return -EINVAL;
2588 /*
2589 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2590 * reporting is disabled
2591 */
2592 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2593 vcpu->arch.mcg_ctl != ~(u64)0)
2594 return 0;
2595 banks += 4 * mce->bank;
2596 /*
2597 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2598 * reporting is disabled for the bank
2599 */
2600 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2601 return 0;
2602 if (mce->status & MCI_STATUS_UC) {
2603 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2604 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2605 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2606 return 0;
2607 }
2608 if (banks[1] & MCI_STATUS_VAL)
2609 mce->status |= MCI_STATUS_OVER;
2610 banks[2] = mce->addr;
2611 banks[3] = mce->misc;
2612 vcpu->arch.mcg_status = mce->mcg_status;
2613 banks[1] = mce->status;
2614 kvm_queue_exception(vcpu, MC_VECTOR);
2615 } else if (!(banks[1] & MCI_STATUS_VAL)
2616 || !(banks[1] & MCI_STATUS_UC)) {
2617 if (banks[1] & MCI_STATUS_VAL)
2618 mce->status |= MCI_STATUS_OVER;
2619 banks[2] = mce->addr;
2620 banks[3] = mce->misc;
2621 banks[1] = mce->status;
2622 } else
2623 banks[1] |= MCI_STATUS_OVER;
2624 return 0;
2625 }
2626
2627 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2628 struct kvm_vcpu_events *events)
2629 {
2630 events->exception.injected =
2631 vcpu->arch.exception.pending &&
2632 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2633 events->exception.nr = vcpu->arch.exception.nr;
2634 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2635 events->exception.pad = 0;
2636 events->exception.error_code = vcpu->arch.exception.error_code;
2637
2638 events->interrupt.injected =
2639 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2640 events->interrupt.nr = vcpu->arch.interrupt.nr;
2641 events->interrupt.soft = 0;
2642 events->interrupt.shadow =
2643 kvm_x86_ops->get_interrupt_shadow(vcpu,
2644 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2645
2646 events->nmi.injected = vcpu->arch.nmi_injected;
2647 events->nmi.pending = vcpu->arch.nmi_pending;
2648 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2649 events->nmi.pad = 0;
2650
2651 events->sipi_vector = vcpu->arch.sipi_vector;
2652
2653 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2654 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2655 | KVM_VCPUEVENT_VALID_SHADOW);
2656 memset(&events->reserved, 0, sizeof(events->reserved));
2657 }
2658
2659 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2660 struct kvm_vcpu_events *events)
2661 {
2662 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2663 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2664 | KVM_VCPUEVENT_VALID_SHADOW))
2665 return -EINVAL;
2666
2667 vcpu->arch.exception.pending = events->exception.injected;
2668 vcpu->arch.exception.nr = events->exception.nr;
2669 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2670 vcpu->arch.exception.error_code = events->exception.error_code;
2671
2672 vcpu->arch.interrupt.pending = events->interrupt.injected;
2673 vcpu->arch.interrupt.nr = events->interrupt.nr;
2674 vcpu->arch.interrupt.soft = events->interrupt.soft;
2675 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2676 kvm_x86_ops->set_interrupt_shadow(vcpu,
2677 events->interrupt.shadow);
2678
2679 vcpu->arch.nmi_injected = events->nmi.injected;
2680 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2681 vcpu->arch.nmi_pending = events->nmi.pending;
2682 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2683
2684 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2685 vcpu->arch.sipi_vector = events->sipi_vector;
2686
2687 kvm_make_request(KVM_REQ_EVENT, vcpu);
2688
2689 return 0;
2690 }
2691
2692 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2693 struct kvm_debugregs *dbgregs)
2694 {
2695 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2696 dbgregs->dr6 = vcpu->arch.dr6;
2697 dbgregs->dr7 = vcpu->arch.dr7;
2698 dbgregs->flags = 0;
2699 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2700 }
2701
2702 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2703 struct kvm_debugregs *dbgregs)
2704 {
2705 if (dbgregs->flags)
2706 return -EINVAL;
2707
2708 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2709 vcpu->arch.dr6 = dbgregs->dr6;
2710 vcpu->arch.dr7 = dbgregs->dr7;
2711
2712 return 0;
2713 }
2714
2715 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2716 struct kvm_xsave *guest_xsave)
2717 {
2718 if (cpu_has_xsave)
2719 memcpy(guest_xsave->region,
2720 &vcpu->arch.guest_fpu.state->xsave,
2721 xstate_size);
2722 else {
2723 memcpy(guest_xsave->region,
2724 &vcpu->arch.guest_fpu.state->fxsave,
2725 sizeof(struct i387_fxsave_struct));
2726 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2727 XSTATE_FPSSE;
2728 }
2729 }
2730
2731 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2732 struct kvm_xsave *guest_xsave)
2733 {
2734 u64 xstate_bv =
2735 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2736
2737 if (cpu_has_xsave)
2738 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2739 guest_xsave->region, xstate_size);
2740 else {
2741 if (xstate_bv & ~XSTATE_FPSSE)
2742 return -EINVAL;
2743 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2744 guest_xsave->region, sizeof(struct i387_fxsave_struct));
2745 }
2746 return 0;
2747 }
2748
2749 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2750 struct kvm_xcrs *guest_xcrs)
2751 {
2752 if (!cpu_has_xsave) {
2753 guest_xcrs->nr_xcrs = 0;
2754 return;
2755 }
2756
2757 guest_xcrs->nr_xcrs = 1;
2758 guest_xcrs->flags = 0;
2759 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2760 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2761 }
2762
2763 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2764 struct kvm_xcrs *guest_xcrs)
2765 {
2766 int i, r = 0;
2767
2768 if (!cpu_has_xsave)
2769 return -EINVAL;
2770
2771 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2772 return -EINVAL;
2773
2774 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2775 /* Only support XCR0 currently */
2776 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2777 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2778 guest_xcrs->xcrs[0].value);
2779 break;
2780 }
2781 if (r)
2782 r = -EINVAL;
2783 return r;
2784 }
2785
2786 long kvm_arch_vcpu_ioctl(struct file *filp,
2787 unsigned int ioctl, unsigned long arg)
2788 {
2789 struct kvm_vcpu *vcpu = filp->private_data;
2790 void __user *argp = (void __user *)arg;
2791 int r;
2792 union {
2793 struct kvm_lapic_state *lapic;
2794 struct kvm_xsave *xsave;
2795 struct kvm_xcrs *xcrs;
2796 void *buffer;
2797 } u;
2798
2799 u.buffer = NULL;
2800 switch (ioctl) {
2801 case KVM_GET_LAPIC: {
2802 r = -EINVAL;
2803 if (!vcpu->arch.apic)
2804 goto out;
2805 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2806
2807 r = -ENOMEM;
2808 if (!u.lapic)
2809 goto out;
2810 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2811 if (r)
2812 goto out;
2813 r = -EFAULT;
2814 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2815 goto out;
2816 r = 0;
2817 break;
2818 }
2819 case KVM_SET_LAPIC: {
2820 r = -EINVAL;
2821 if (!vcpu->arch.apic)
2822 goto out;
2823 u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2824 r = -ENOMEM;
2825 if (!u.lapic)
2826 goto out;
2827 r = -EFAULT;
2828 if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
2829 goto out;
2830 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2831 if (r)
2832 goto out;
2833 r = 0;
2834 break;
2835 }
2836 case KVM_INTERRUPT: {
2837 struct kvm_interrupt irq;
2838
2839 r = -EFAULT;
2840 if (copy_from_user(&irq, argp, sizeof irq))
2841 goto out;
2842 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2843 if (r)
2844 goto out;
2845 r = 0;
2846 break;
2847 }
2848 case KVM_NMI: {
2849 r = kvm_vcpu_ioctl_nmi(vcpu);
2850 if (r)
2851 goto out;
2852 r = 0;
2853 break;
2854 }
2855 case KVM_SET_CPUID: {
2856 struct kvm_cpuid __user *cpuid_arg = argp;
2857 struct kvm_cpuid cpuid;
2858
2859 r = -EFAULT;
2860 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2861 goto out;
2862 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2863 if (r)
2864 goto out;
2865 break;
2866 }
2867 case KVM_SET_CPUID2: {
2868 struct kvm_cpuid2 __user *cpuid_arg = argp;
2869 struct kvm_cpuid2 cpuid;
2870
2871 r = -EFAULT;
2872 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2873 goto out;
2874 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2875 cpuid_arg->entries);
2876 if (r)
2877 goto out;
2878 break;
2879 }
2880 case KVM_GET_CPUID2: {
2881 struct kvm_cpuid2 __user *cpuid_arg = argp;
2882 struct kvm_cpuid2 cpuid;
2883
2884 r = -EFAULT;
2885 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2886 goto out;
2887 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2888 cpuid_arg->entries);
2889 if (r)
2890 goto out;
2891 r = -EFAULT;
2892 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2893 goto out;
2894 r = 0;
2895 break;
2896 }
2897 case KVM_GET_MSRS:
2898 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2899 break;
2900 case KVM_SET_MSRS:
2901 r = msr_io(vcpu, argp, do_set_msr, 0);
2902 break;
2903 case KVM_TPR_ACCESS_REPORTING: {
2904 struct kvm_tpr_access_ctl tac;
2905
2906 r = -EFAULT;
2907 if (copy_from_user(&tac, argp, sizeof tac))
2908 goto out;
2909 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2910 if (r)
2911 goto out;
2912 r = -EFAULT;
2913 if (copy_to_user(argp, &tac, sizeof tac))
2914 goto out;
2915 r = 0;
2916 break;
2917 };
2918 case KVM_SET_VAPIC_ADDR: {
2919 struct kvm_vapic_addr va;
2920
2921 r = -EINVAL;
2922 if (!irqchip_in_kernel(vcpu->kvm))
2923 goto out;
2924 r = -EFAULT;
2925 if (copy_from_user(&va, argp, sizeof va))
2926 goto out;
2927 r = 0;
2928 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2929 break;
2930 }
2931 case KVM_X86_SETUP_MCE: {
2932 u64 mcg_cap;
2933
2934 r = -EFAULT;
2935 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2936 goto out;
2937 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2938 break;
2939 }
2940 case KVM_X86_SET_MCE: {
2941 struct kvm_x86_mce mce;
2942
2943 r = -EFAULT;
2944 if (copy_from_user(&mce, argp, sizeof mce))
2945 goto out;
2946 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2947 break;
2948 }
2949 case KVM_GET_VCPU_EVENTS: {
2950 struct kvm_vcpu_events events;
2951
2952 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2953
2954 r = -EFAULT;
2955 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2956 break;
2957 r = 0;
2958 break;
2959 }
2960 case KVM_SET_VCPU_EVENTS: {
2961 struct kvm_vcpu_events events;
2962
2963 r = -EFAULT;
2964 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2965 break;
2966
2967 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2968 break;
2969 }
2970 case KVM_GET_DEBUGREGS: {
2971 struct kvm_debugregs dbgregs;
2972
2973 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2974
2975 r = -EFAULT;
2976 if (copy_to_user(argp, &dbgregs,
2977 sizeof(struct kvm_debugregs)))
2978 break;
2979 r = 0;
2980 break;
2981 }
2982 case KVM_SET_DEBUGREGS: {
2983 struct kvm_debugregs dbgregs;
2984
2985 r = -EFAULT;
2986 if (copy_from_user(&dbgregs, argp,
2987 sizeof(struct kvm_debugregs)))
2988 break;
2989
2990 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2991 break;
2992 }
2993 case KVM_GET_XSAVE: {
2994 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2995 r = -ENOMEM;
2996 if (!u.xsave)
2997 break;
2998
2999 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3000
3001 r = -EFAULT;
3002 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3003 break;
3004 r = 0;
3005 break;
3006 }
3007 case KVM_SET_XSAVE: {
3008 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3009 r = -ENOMEM;
3010 if (!u.xsave)
3011 break;
3012
3013 r = -EFAULT;
3014 if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
3015 break;
3016
3017 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3018 break;
3019 }
3020 case KVM_GET_XCRS: {
3021 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3022 r = -ENOMEM;
3023 if (!u.xcrs)
3024 break;
3025
3026 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3027
3028 r = -EFAULT;
3029 if (copy_to_user(argp, u.xcrs,
3030 sizeof(struct kvm_xcrs)))
3031 break;
3032 r = 0;
3033 break;
3034 }
3035 case KVM_SET_XCRS: {
3036 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3037 r = -ENOMEM;
3038 if (!u.xcrs)
3039 break;
3040
3041 r = -EFAULT;
3042 if (copy_from_user(u.xcrs, argp,
3043 sizeof(struct kvm_xcrs)))
3044 break;
3045
3046 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3047 break;
3048 }
3049 default:
3050 r = -EINVAL;
3051 }
3052 out:
3053 kfree(u.buffer);
3054 return r;
3055 }
3056
3057 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3058 {
3059 int ret;
3060
3061 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3062 return -1;
3063 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3064 return ret;
3065 }
3066
3067 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3068 u64 ident_addr)
3069 {
3070 kvm->arch.ept_identity_map_addr = ident_addr;
3071 return 0;
3072 }
3073
3074 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3075 u32 kvm_nr_mmu_pages)
3076 {
3077 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3078 return -EINVAL;
3079
3080 mutex_lock(&kvm->slots_lock);
3081 spin_lock(&kvm->mmu_lock);
3082
3083 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3084 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3085
3086 spin_unlock(&kvm->mmu_lock);
3087 mutex_unlock(&kvm->slots_lock);
3088 return 0;
3089 }
3090
3091 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3092 {
3093 return kvm->arch.n_max_mmu_pages;
3094 }
3095
3096 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3097 {
3098 int r;
3099
3100 r = 0;
3101 switch (chip->chip_id) {
3102 case KVM_IRQCHIP_PIC_MASTER:
3103 memcpy(&chip->chip.pic,
3104 &pic_irqchip(kvm)->pics[0],
3105 sizeof(struct kvm_pic_state));
3106 break;
3107 case KVM_IRQCHIP_PIC_SLAVE:
3108 memcpy(&chip->chip.pic,
3109 &pic_irqchip(kvm)->pics[1],
3110 sizeof(struct kvm_pic_state));
3111 break;
3112 case KVM_IRQCHIP_IOAPIC:
3113 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3114 break;
3115 default:
3116 r = -EINVAL;
3117 break;
3118 }
3119 return r;
3120 }
3121
3122 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3123 {
3124 int r;
3125
3126 r = 0;
3127 switch (chip->chip_id) {
3128 case KVM_IRQCHIP_PIC_MASTER:
3129 spin_lock(&pic_irqchip(kvm)->lock);
3130 memcpy(&pic_irqchip(kvm)->pics[0],
3131 &chip->chip.pic,
3132 sizeof(struct kvm_pic_state));
3133 spin_unlock(&pic_irqchip(kvm)->lock);
3134 break;
3135 case KVM_IRQCHIP_PIC_SLAVE:
3136 spin_lock(&pic_irqchip(kvm)->lock);
3137 memcpy(&pic_irqchip(kvm)->pics[1],
3138 &chip->chip.pic,
3139 sizeof(struct kvm_pic_state));
3140 spin_unlock(&pic_irqchip(kvm)->lock);
3141 break;
3142 case KVM_IRQCHIP_IOAPIC:
3143 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3144 break;
3145 default:
3146 r = -EINVAL;
3147 break;
3148 }
3149 kvm_pic_update_irq(pic_irqchip(kvm));
3150 return r;
3151 }
3152
3153 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3154 {
3155 int r = 0;
3156
3157 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3158 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3159 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3160 return r;
3161 }
3162
3163 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3164 {
3165 int r = 0;
3166
3167 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3168 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3169 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3170 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3171 return r;
3172 }
3173
3174 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3175 {
3176 int r = 0;
3177
3178 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3179 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3180 sizeof(ps->channels));
3181 ps->flags = kvm->arch.vpit->pit_state.flags;
3182 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3183 memset(&ps->reserved, 0, sizeof(ps->reserved));
3184 return r;
3185 }
3186
3187 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3188 {
3189 int r = 0, start = 0;
3190 u32 prev_legacy, cur_legacy;
3191 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3192 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3193 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3194 if (!prev_legacy && cur_legacy)
3195 start = 1;
3196 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3197 sizeof(kvm->arch.vpit->pit_state.channels));
3198 kvm->arch.vpit->pit_state.flags = ps->flags;
3199 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3200 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3201 return r;
3202 }
3203
3204 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3205 struct kvm_reinject_control *control)
3206 {
3207 if (!kvm->arch.vpit)
3208 return -ENXIO;
3209 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3210 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
3211 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3212 return 0;
3213 }
3214
3215 /*
3216 * Get (and clear) the dirty memory log for a memory slot.
3217 */
3218 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
3219 struct kvm_dirty_log *log)
3220 {
3221 int r, i;
3222 struct kvm_memory_slot *memslot;
3223 unsigned long n;
3224 unsigned long is_dirty = 0;
3225
3226 mutex_lock(&kvm->slots_lock);
3227
3228 r = -EINVAL;
3229 if (log->slot >= KVM_MEMORY_SLOTS)
3230 goto out;
3231
3232 memslot = &kvm->memslots->memslots[log->slot];
3233 r = -ENOENT;
3234 if (!memslot->dirty_bitmap)
3235 goto out;
3236
3237 n = kvm_dirty_bitmap_bytes(memslot);
3238
3239 for (i = 0; !is_dirty && i < n/sizeof(long); i++)
3240 is_dirty = memslot->dirty_bitmap[i];
3241
3242 /* If nothing is dirty, don't bother messing with page tables. */
3243 if (is_dirty) {
3244 struct kvm_memslots *slots, *old_slots;
3245 unsigned long *dirty_bitmap;
3246
3247 dirty_bitmap = memslot->dirty_bitmap_head;
3248 if (memslot->dirty_bitmap == dirty_bitmap)
3249 dirty_bitmap += n / sizeof(long);
3250 memset(dirty_bitmap, 0, n);
3251
3252 r = -ENOMEM;
3253 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
3254 if (!slots)
3255 goto out;
3256 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
3257 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
3258 slots->generation++;
3259
3260 old_slots = kvm->memslots;
3261 rcu_assign_pointer(kvm->memslots, slots);
3262 synchronize_srcu_expedited(&kvm->srcu);
3263 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
3264 kfree(old_slots);
3265
3266 spin_lock(&kvm->mmu_lock);
3267 kvm_mmu_slot_remove_write_access(kvm, log->slot);
3268 spin_unlock(&kvm->mmu_lock);
3269
3270 r = -EFAULT;
3271 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
3272 goto out;
3273 } else {
3274 r = -EFAULT;
3275 if (clear_user(log->dirty_bitmap, n))
3276 goto out;
3277 }
3278
3279 r = 0;
3280 out:
3281 mutex_unlock(&kvm->slots_lock);
3282 return r;
3283 }
3284
3285 long kvm_arch_vm_ioctl(struct file *filp,
3286 unsigned int ioctl, unsigned long arg)
3287 {
3288 struct kvm *kvm = filp->private_data;
3289 void __user *argp = (void __user *)arg;
3290 int r = -ENOTTY;
3291 /*
3292 * This union makes it completely explicit to gcc-3.x
3293 * that these two variables' stack usage should be
3294 * combined, not added together.
3295 */
3296 union {
3297 struct kvm_pit_state ps;
3298 struct kvm_pit_state2 ps2;
3299 struct kvm_pit_config pit_config;
3300 } u;
3301
3302 switch (ioctl) {
3303 case KVM_SET_TSS_ADDR:
3304 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3305 if (r < 0)
3306 goto out;
3307 break;
3308 case KVM_SET_IDENTITY_MAP_ADDR: {
3309 u64 ident_addr;
3310
3311 r = -EFAULT;
3312 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3313 goto out;
3314 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3315 if (r < 0)
3316 goto out;
3317 break;
3318 }
3319 case KVM_SET_NR_MMU_PAGES:
3320 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3321 if (r)
3322 goto out;
3323 break;
3324 case KVM_GET_NR_MMU_PAGES:
3325 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3326 break;
3327 case KVM_CREATE_IRQCHIP: {
3328 struct kvm_pic *vpic;
3329
3330 mutex_lock(&kvm->lock);
3331 r = -EEXIST;
3332 if (kvm->arch.vpic)
3333 goto create_irqchip_unlock;
3334 r = -ENOMEM;
3335 vpic = kvm_create_pic(kvm);
3336 if (vpic) {
3337 r = kvm_ioapic_init(kvm);
3338 if (r) {
3339 mutex_lock(&kvm->slots_lock);
3340 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3341 &vpic->dev);
3342 mutex_unlock(&kvm->slots_lock);
3343 kfree(vpic);
3344 goto create_irqchip_unlock;
3345 }
3346 } else
3347 goto create_irqchip_unlock;
3348 smp_wmb();
3349 kvm->arch.vpic = vpic;
3350 smp_wmb();
3351 r = kvm_setup_default_irq_routing(kvm);
3352 if (r) {
3353 mutex_lock(&kvm->slots_lock);
3354 mutex_lock(&kvm->irq_lock);
3355 kvm_ioapic_destroy(kvm);
3356 kvm_destroy_pic(kvm);
3357 mutex_unlock(&kvm->irq_lock);
3358 mutex_unlock(&kvm->slots_lock);
3359 }
3360 create_irqchip_unlock:
3361 mutex_unlock(&kvm->lock);
3362 break;
3363 }
3364 case KVM_CREATE_PIT:
3365 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3366 goto create_pit;
3367 case KVM_CREATE_PIT2:
3368 r = -EFAULT;
3369 if (copy_from_user(&u.pit_config, argp,
3370 sizeof(struct kvm_pit_config)))
3371 goto out;
3372 create_pit:
3373 mutex_lock(&kvm->slots_lock);
3374 r = -EEXIST;
3375 if (kvm->arch.vpit)
3376 goto create_pit_unlock;
3377 r = -ENOMEM;
3378 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3379 if (kvm->arch.vpit)
3380 r = 0;
3381 create_pit_unlock:
3382 mutex_unlock(&kvm->slots_lock);
3383 break;
3384 case KVM_IRQ_LINE_STATUS:
3385 case KVM_IRQ_LINE: {
3386 struct kvm_irq_level irq_event;
3387
3388 r = -EFAULT;
3389 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3390 goto out;
3391 r = -ENXIO;
3392 if (irqchip_in_kernel(kvm)) {
3393 __s32 status;
3394 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3395 irq_event.irq, irq_event.level);
3396 if (ioctl == KVM_IRQ_LINE_STATUS) {
3397 r = -EFAULT;
3398 irq_event.status = status;
3399 if (copy_to_user(argp, &irq_event,
3400 sizeof irq_event))
3401 goto out;
3402 }
3403 r = 0;
3404 }
3405 break;
3406 }
3407 case KVM_GET_IRQCHIP: {
3408 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3409 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3410
3411 r = -ENOMEM;
3412 if (!chip)
3413 goto out;
3414 r = -EFAULT;
3415 if (copy_from_user(chip, argp, sizeof *chip))
3416 goto get_irqchip_out;
3417 r = -ENXIO;
3418 if (!irqchip_in_kernel(kvm))
3419 goto get_irqchip_out;
3420 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3421 if (r)
3422 goto get_irqchip_out;
3423 r = -EFAULT;
3424 if (copy_to_user(argp, chip, sizeof *chip))
3425 goto get_irqchip_out;
3426 r = 0;
3427 get_irqchip_out:
3428 kfree(chip);
3429 if (r)
3430 goto out;
3431 break;
3432 }
3433 case KVM_SET_IRQCHIP: {
3434 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3435 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3436
3437 r = -ENOMEM;
3438 if (!chip)
3439 goto out;
3440 r = -EFAULT;
3441 if (copy_from_user(chip, argp, sizeof *chip))
3442 goto set_irqchip_out;
3443 r = -ENXIO;
3444 if (!irqchip_in_kernel(kvm))
3445 goto set_irqchip_out;
3446 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3447 if (r)
3448 goto set_irqchip_out;
3449 r = 0;
3450 set_irqchip_out:
3451 kfree(chip);
3452 if (r)
3453 goto out;
3454 break;
3455 }
3456 case KVM_GET_PIT: {
3457 r = -EFAULT;
3458 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3459 goto out;
3460 r = -ENXIO;
3461 if (!kvm->arch.vpit)
3462 goto out;
3463 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3464 if (r)
3465 goto out;
3466 r = -EFAULT;
3467 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3468 goto out;
3469 r = 0;
3470 break;
3471 }
3472 case KVM_SET_PIT: {
3473 r = -EFAULT;
3474 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3475 goto out;
3476 r = -ENXIO;
3477 if (!kvm->arch.vpit)
3478 goto out;
3479 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3480 if (r)
3481 goto out;
3482 r = 0;
3483 break;
3484 }
3485 case KVM_GET_PIT2: {
3486 r = -ENXIO;
3487 if (!kvm->arch.vpit)
3488 goto out;
3489 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3490 if (r)
3491 goto out;
3492 r = -EFAULT;
3493 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3494 goto out;
3495 r = 0;
3496 break;
3497 }
3498 case KVM_SET_PIT2: {
3499 r = -EFAULT;
3500 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3501 goto out;
3502 r = -ENXIO;
3503 if (!kvm->arch.vpit)
3504 goto out;
3505 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3506 if (r)
3507 goto out;
3508 r = 0;
3509 break;
3510 }
3511 case KVM_REINJECT_CONTROL: {
3512 struct kvm_reinject_control control;
3513 r = -EFAULT;
3514 if (copy_from_user(&control, argp, sizeof(control)))
3515 goto out;
3516 r = kvm_vm_ioctl_reinject(kvm, &control);
3517 if (r)
3518 goto out;
3519 r = 0;
3520 break;
3521 }
3522 case KVM_XEN_HVM_CONFIG: {
3523 r = -EFAULT;
3524 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3525 sizeof(struct kvm_xen_hvm_config)))
3526 goto out;
3527 r = -EINVAL;
3528 if (kvm->arch.xen_hvm_config.flags)
3529 goto out;
3530 r = 0;
3531 break;
3532 }
3533 case KVM_SET_CLOCK: {
3534 struct kvm_clock_data user_ns;
3535 u64 now_ns;
3536 s64 delta;
3537
3538 r = -EFAULT;
3539 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3540 goto out;
3541
3542 r = -EINVAL;
3543 if (user_ns.flags)
3544 goto out;
3545
3546 r = 0;
3547 local_irq_disable();
3548 now_ns = get_kernel_ns();
3549 delta = user_ns.clock - now_ns;
3550 local_irq_enable();
3551 kvm->arch.kvmclock_offset = delta;
3552 break;
3553 }
3554 case KVM_GET_CLOCK: {
3555 struct kvm_clock_data user_ns;
3556 u64 now_ns;
3557
3558 local_irq_disable();
3559 now_ns = get_kernel_ns();
3560 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3561 local_irq_enable();
3562 user_ns.flags = 0;
3563 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3564
3565 r = -EFAULT;
3566 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3567 goto out;
3568 r = 0;
3569 break;
3570 }
3571
3572 default:
3573 ;
3574 }
3575 out:
3576 return r;
3577 }
3578
3579 static void kvm_init_msr_list(void)
3580 {
3581 u32 dummy[2];
3582 unsigned i, j;
3583
3584 /* skip the first msrs in the list. KVM-specific */
3585 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3586 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3587 continue;
3588 if (j < i)
3589 msrs_to_save[j] = msrs_to_save[i];
3590 j++;
3591 }
3592 num_msrs_to_save = j;
3593 }
3594
3595 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3596 const void *v)
3597 {
3598 if (vcpu->arch.apic &&
3599 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
3600 return 0;
3601
3602 return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3603 }
3604
3605 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3606 {
3607 if (vcpu->arch.apic &&
3608 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
3609 return 0;
3610
3611 return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3612 }
3613
3614 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3615 struct kvm_segment *var, int seg)
3616 {
3617 kvm_x86_ops->set_segment(vcpu, var, seg);
3618 }
3619
3620 void kvm_get_segment(struct kvm_vcpu *vcpu,
3621 struct kvm_segment *var, int seg)
3622 {
3623 kvm_x86_ops->get_segment(vcpu, var, seg);
3624 }
3625
3626 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3627 {
3628 return gpa;
3629 }
3630
3631 static gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3632 {
3633 gpa_t t_gpa;
3634 struct x86_exception exception;
3635
3636 BUG_ON(!mmu_is_nested(vcpu));
3637
3638 /* NPT walks are always user-walks */
3639 access |= PFERR_USER_MASK;
3640 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3641
3642 return t_gpa;
3643 }
3644
3645 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3646 struct x86_exception *exception)
3647 {
3648 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3649 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3650 }
3651
3652 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3653 struct x86_exception *exception)
3654 {
3655 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3656 access |= PFERR_FETCH_MASK;
3657 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3658 }
3659
3660 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3661 struct x86_exception *exception)
3662 {
3663 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3664 access |= PFERR_WRITE_MASK;
3665 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3666 }
3667
3668 /* uses this to access any guest's mapped memory without checking CPL */
3669 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3670 struct x86_exception *exception)
3671 {
3672 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3673 }
3674
3675 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3676 struct kvm_vcpu *vcpu, u32 access,
3677 struct x86_exception *exception)
3678 {
3679 void *data = val;
3680 int r = X86EMUL_CONTINUE;
3681
3682 while (bytes) {
3683 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3684 exception);
3685 unsigned offset = addr & (PAGE_SIZE-1);
3686 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3687 int ret;
3688
3689 if (gpa == UNMAPPED_GVA)
3690 return X86EMUL_PROPAGATE_FAULT;
3691 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3692 if (ret < 0) {
3693 r = X86EMUL_IO_NEEDED;
3694 goto out;
3695 }
3696
3697 bytes -= toread;
3698 data += toread;
3699 addr += toread;
3700 }
3701 out:
3702 return r;
3703 }
3704
3705 /* used for instruction fetching */
3706 static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
3707 struct kvm_vcpu *vcpu,
3708 struct x86_exception *exception)
3709 {
3710 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3711 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3712 access | PFERR_FETCH_MASK,
3713 exception);
3714 }
3715
3716 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
3717 struct kvm_vcpu *vcpu,
3718 struct x86_exception *exception)
3719 {
3720 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3721 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3722 exception);
3723 }
3724
3725 static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
3726 struct kvm_vcpu *vcpu,
3727 struct x86_exception *exception)
3728 {
3729 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3730 }
3731
3732 static int kvm_write_guest_virt_system(gva_t addr, void *val,
3733 unsigned int bytes,
3734 struct kvm_vcpu *vcpu,
3735 struct x86_exception *exception)
3736 {
3737 void *data = val;
3738 int r = X86EMUL_CONTINUE;
3739
3740 while (bytes) {
3741 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3742 PFERR_WRITE_MASK,
3743 exception);
3744 unsigned offset = addr & (PAGE_SIZE-1);
3745 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3746 int ret;
3747
3748 if (gpa == UNMAPPED_GVA)
3749 return X86EMUL_PROPAGATE_FAULT;
3750 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3751 if (ret < 0) {
3752 r = X86EMUL_IO_NEEDED;
3753 goto out;
3754 }
3755
3756 bytes -= towrite;
3757 data += towrite;
3758 addr += towrite;
3759 }
3760 out:
3761 return r;
3762 }
3763
3764 static int emulator_read_emulated(unsigned long addr,
3765 void *val,
3766 unsigned int bytes,
3767 struct x86_exception *exception,
3768 struct kvm_vcpu *vcpu)
3769 {
3770 gpa_t gpa;
3771
3772 if (vcpu->mmio_read_completed) {
3773 memcpy(val, vcpu->mmio_data, bytes);
3774 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3775 vcpu->mmio_phys_addr, *(u64 *)val);
3776 vcpu->mmio_read_completed = 0;
3777 return X86EMUL_CONTINUE;
3778 }
3779
3780 gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, exception);
3781
3782 if (gpa == UNMAPPED_GVA)
3783 return X86EMUL_PROPAGATE_FAULT;
3784
3785 /* For APIC access vmexit */
3786 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3787 goto mmio;
3788
3789 if (kvm_read_guest_virt(addr, val, bytes, vcpu, exception)
3790 == X86EMUL_CONTINUE)
3791 return X86EMUL_CONTINUE;
3792
3793 mmio:
3794 /*
3795 * Is this MMIO handled locally?
3796 */
3797 if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
3798 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
3799 return X86EMUL_CONTINUE;
3800 }
3801
3802 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3803
3804 vcpu->mmio_needed = 1;
3805 vcpu->run->exit_reason = KVM_EXIT_MMIO;
3806 vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3807 vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3808 vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
3809
3810 return X86EMUL_IO_NEEDED;
3811 }
3812
3813 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3814 const void *val, int bytes)
3815 {
3816 int ret;
3817
3818 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3819 if (ret < 0)
3820 return 0;
3821 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3822 return 1;
3823 }
3824
3825 static int emulator_write_emulated_onepage(unsigned long addr,
3826 const void *val,
3827 unsigned int bytes,
3828 struct x86_exception *exception,
3829 struct kvm_vcpu *vcpu)
3830 {
3831 gpa_t gpa;
3832
3833 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, exception);
3834
3835 if (gpa == UNMAPPED_GVA)
3836 return X86EMUL_PROPAGATE_FAULT;
3837
3838 /* For APIC access vmexit */
3839 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3840 goto mmio;
3841
3842 if (emulator_write_phys(vcpu, gpa, val, bytes))
3843 return X86EMUL_CONTINUE;
3844
3845 mmio:
3846 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3847 /*
3848 * Is this MMIO handled locally?
3849 */
3850 if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
3851 return X86EMUL_CONTINUE;
3852
3853 vcpu->mmio_needed = 1;
3854 vcpu->run->exit_reason = KVM_EXIT_MMIO;
3855 vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3856 vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3857 vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
3858 memcpy(vcpu->run->mmio.data, val, bytes);
3859
3860 return X86EMUL_CONTINUE;
3861 }
3862
3863 int emulator_write_emulated(unsigned long addr,
3864 const void *val,
3865 unsigned int bytes,
3866 struct x86_exception *exception,
3867 struct kvm_vcpu *vcpu)
3868 {
3869 /* Crossing a page boundary? */
3870 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3871 int rc, now;
3872
3873 now = -addr & ~PAGE_MASK;
3874 rc = emulator_write_emulated_onepage(addr, val, now, exception,
3875 vcpu);
3876 if (rc != X86EMUL_CONTINUE)
3877 return rc;
3878 addr += now;
3879 val += now;
3880 bytes -= now;
3881 }
3882 return emulator_write_emulated_onepage(addr, val, bytes, exception,
3883 vcpu);
3884 }
3885
3886 #define CMPXCHG_TYPE(t, ptr, old, new) \
3887 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3888
3889 #ifdef CONFIG_X86_64
3890 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3891 #else
3892 # define CMPXCHG64(ptr, old, new) \
3893 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3894 #endif
3895
3896 static int emulator_cmpxchg_emulated(unsigned long addr,
3897 const void *old,
3898 const void *new,
3899 unsigned int bytes,
3900 struct x86_exception *exception,
3901 struct kvm_vcpu *vcpu)
3902 {
3903 gpa_t gpa;
3904 struct page *page;
3905 char *kaddr;
3906 bool exchanged;
3907
3908 /* guests cmpxchg8b have to be emulated atomically */
3909 if (bytes > 8 || (bytes & (bytes - 1)))
3910 goto emul_write;
3911
3912 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3913
3914 if (gpa == UNMAPPED_GVA ||
3915 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3916 goto emul_write;
3917
3918 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3919 goto emul_write;
3920
3921 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3922 if (is_error_page(page)) {
3923 kvm_release_page_clean(page);
3924 goto emul_write;
3925 }
3926
3927 kaddr = kmap_atomic(page, KM_USER0);
3928 kaddr += offset_in_page(gpa);
3929 switch (bytes) {
3930 case 1:
3931 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3932 break;
3933 case 2:
3934 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3935 break;
3936 case 4:
3937 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3938 break;
3939 case 8:
3940 exchanged = CMPXCHG64(kaddr, old, new);
3941 break;
3942 default:
3943 BUG();
3944 }
3945 kunmap_atomic(kaddr, KM_USER0);
3946 kvm_release_page_dirty(page);
3947
3948 if (!exchanged)
3949 return X86EMUL_CMPXCHG_FAILED;
3950
3951 kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
3952
3953 return X86EMUL_CONTINUE;
3954
3955 emul_write:
3956 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3957
3958 return emulator_write_emulated(addr, new, bytes, exception, vcpu);
3959 }
3960
3961 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3962 {
3963 /* TODO: String I/O for in kernel device */
3964 int r;
3965
3966 if (vcpu->arch.pio.in)
3967 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3968 vcpu->arch.pio.size, pd);
3969 else
3970 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3971 vcpu->arch.pio.port, vcpu->arch.pio.size,
3972 pd);
3973 return r;
3974 }
3975
3976
3977 static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
3978 unsigned int count, struct kvm_vcpu *vcpu)
3979 {
3980 if (vcpu->arch.pio.count)
3981 goto data_avail;
3982
3983 trace_kvm_pio(0, port, size, count);
3984
3985 vcpu->arch.pio.port = port;
3986 vcpu->arch.pio.in = 1;
3987 vcpu->arch.pio.count = count;
3988 vcpu->arch.pio.size = size;
3989
3990 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3991 data_avail:
3992 memcpy(val, vcpu->arch.pio_data, size * count);
3993 vcpu->arch.pio.count = 0;
3994 return 1;
3995 }
3996
3997 vcpu->run->exit_reason = KVM_EXIT_IO;
3998 vcpu->run->io.direction = KVM_EXIT_IO_IN;
3999 vcpu->run->io.size = size;
4000 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4001 vcpu->run->io.count = count;
4002 vcpu->run->io.port = port;
4003
4004 return 0;
4005 }
4006
4007 static int emulator_pio_out_emulated(int size, unsigned short port,
4008 const void *val, unsigned int count,
4009 struct kvm_vcpu *vcpu)
4010 {
4011 trace_kvm_pio(1, port, size, count);
4012
4013 vcpu->arch.pio.port = port;
4014 vcpu->arch.pio.in = 0;
4015 vcpu->arch.pio.count = count;
4016 vcpu->arch.pio.size = size;
4017
4018 memcpy(vcpu->arch.pio_data, val, size * count);
4019
4020 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4021 vcpu->arch.pio.count = 0;
4022 return 1;
4023 }
4024
4025 vcpu->run->exit_reason = KVM_EXIT_IO;
4026 vcpu->run->io.direction = KVM_EXIT_IO_OUT;
4027 vcpu->run->io.size = size;
4028 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4029 vcpu->run->io.count = count;
4030 vcpu->run->io.port = port;
4031
4032 return 0;
4033 }
4034
4035 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4036 {
4037 return kvm_x86_ops->get_segment_base(vcpu, seg);
4038 }
4039
4040 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
4041 {
4042 kvm_mmu_invlpg(vcpu, address);
4043 return X86EMUL_CONTINUE;
4044 }
4045
4046 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4047 {
4048 if (!need_emulate_wbinvd(vcpu))
4049 return X86EMUL_CONTINUE;
4050
4051 if (kvm_x86_ops->has_wbinvd_exit()) {
4052 int cpu = get_cpu();
4053
4054 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4055 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4056 wbinvd_ipi, NULL, 1);
4057 put_cpu();
4058 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4059 } else
4060 wbinvd();
4061 return X86EMUL_CONTINUE;
4062 }
4063 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4064
4065 int emulate_clts(struct kvm_vcpu *vcpu)
4066 {
4067 kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4068 kvm_x86_ops->fpu_activate(vcpu);
4069 return X86EMUL_CONTINUE;
4070 }
4071
4072 int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu)
4073 {
4074 return _kvm_get_dr(vcpu, dr, dest);
4075 }
4076
4077 int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu)
4078 {
4079
4080 return __kvm_set_dr(vcpu, dr, value);
4081 }
4082
4083 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4084 {
4085 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4086 }
4087
4088 static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
4089 {
4090 unsigned long value;
4091
4092 switch (cr) {
4093 case 0:
4094 value = kvm_read_cr0(vcpu);
4095 break;
4096 case 2:
4097 value = vcpu->arch.cr2;
4098 break;
4099 case 3:
4100 value = kvm_read_cr3(vcpu);
4101 break;
4102 case 4:
4103 value = kvm_read_cr4(vcpu);
4104 break;
4105 case 8:
4106 value = kvm_get_cr8(vcpu);
4107 break;
4108 default:
4109 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4110 return 0;
4111 }
4112
4113 return value;
4114 }
4115
4116 static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
4117 {
4118 int res = 0;
4119
4120 switch (cr) {
4121 case 0:
4122 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4123 break;
4124 case 2:
4125 vcpu->arch.cr2 = val;
4126 break;
4127 case 3:
4128 res = kvm_set_cr3(vcpu, val);
4129 break;
4130 case 4:
4131 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4132 break;
4133 case 8:
4134 res = kvm_set_cr8(vcpu, val);
4135 break;
4136 default:
4137 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4138 res = -1;
4139 }
4140
4141 return res;
4142 }
4143
4144 static int emulator_get_cpl(struct kvm_vcpu *vcpu)
4145 {
4146 return kvm_x86_ops->get_cpl(vcpu);
4147 }
4148
4149 static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
4150 {
4151 kvm_x86_ops->get_gdt(vcpu, dt);
4152 }
4153
4154 static void emulator_get_idt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
4155 {
4156 kvm_x86_ops->get_idt(vcpu, dt);
4157 }
4158
4159 static unsigned long emulator_get_cached_segment_base(int seg,
4160 struct kvm_vcpu *vcpu)
4161 {
4162 return get_segment_base(vcpu, seg);
4163 }
4164
4165 static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
4166 struct kvm_vcpu *vcpu)
4167 {
4168 struct kvm_segment var;
4169
4170 kvm_get_segment(vcpu, &var, seg);
4171
4172 if (var.unusable)
4173 return false;
4174
4175 if (var.g)
4176 var.limit >>= 12;
4177 set_desc_limit(desc, var.limit);
4178 set_desc_base(desc, (unsigned long)var.base);
4179 desc->type = var.type;
4180 desc->s = var.s;
4181 desc->dpl = var.dpl;
4182 desc->p = var.present;
4183 desc->avl = var.avl;
4184 desc->l = var.l;
4185 desc->d = var.db;
4186 desc->g = var.g;
4187
4188 return true;
4189 }
4190
4191 static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
4192 struct kvm_vcpu *vcpu)
4193 {
4194 struct kvm_segment var;
4195
4196 /* needed to preserve selector */
4197 kvm_get_segment(vcpu, &var, seg);
4198
4199 var.base = get_desc_base(desc);
4200 var.limit = get_desc_limit(desc);
4201 if (desc->g)
4202 var.limit = (var.limit << 12) | 0xfff;
4203 var.type = desc->type;
4204 var.present = desc->p;
4205 var.dpl = desc->dpl;
4206 var.db = desc->d;
4207 var.s = desc->s;
4208 var.l = desc->l;
4209 var.g = desc->g;
4210 var.avl = desc->avl;
4211 var.present = desc->p;
4212 var.unusable = !var.present;
4213 var.padding = 0;
4214
4215 kvm_set_segment(vcpu, &var, seg);
4216 return;
4217 }
4218
4219 static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
4220 {
4221 struct kvm_segment kvm_seg;
4222
4223 kvm_get_segment(vcpu, &kvm_seg, seg);
4224 return kvm_seg.selector;
4225 }
4226
4227 static void emulator_set_segment_selector(u16 sel, int seg,
4228 struct kvm_vcpu *vcpu)
4229 {
4230 struct kvm_segment kvm_seg;
4231
4232 kvm_get_segment(vcpu, &kvm_seg, seg);
4233 kvm_seg.selector = sel;
4234 kvm_set_segment(vcpu, &kvm_seg, seg);
4235 }
4236
4237 static struct x86_emulate_ops emulate_ops = {
4238 .read_std = kvm_read_guest_virt_system,
4239 .write_std = kvm_write_guest_virt_system,
4240 .fetch = kvm_fetch_guest_virt,
4241 .read_emulated = emulator_read_emulated,
4242 .write_emulated = emulator_write_emulated,
4243 .cmpxchg_emulated = emulator_cmpxchg_emulated,
4244 .pio_in_emulated = emulator_pio_in_emulated,
4245 .pio_out_emulated = emulator_pio_out_emulated,
4246 .get_cached_descriptor = emulator_get_cached_descriptor,
4247 .set_cached_descriptor = emulator_set_cached_descriptor,
4248 .get_segment_selector = emulator_get_segment_selector,
4249 .set_segment_selector = emulator_set_segment_selector,
4250 .get_cached_segment_base = emulator_get_cached_segment_base,
4251 .get_gdt = emulator_get_gdt,
4252 .get_idt = emulator_get_idt,
4253 .get_cr = emulator_get_cr,
4254 .set_cr = emulator_set_cr,
4255 .cpl = emulator_get_cpl,
4256 .get_dr = emulator_get_dr,
4257 .set_dr = emulator_set_dr,
4258 .set_msr = kvm_set_msr,
4259 .get_msr = kvm_get_msr,
4260 };
4261
4262 static void cache_all_regs(struct kvm_vcpu *vcpu)
4263 {
4264 kvm_register_read(vcpu, VCPU_REGS_RAX);
4265 kvm_register_read(vcpu, VCPU_REGS_RSP);
4266 kvm_register_read(vcpu, VCPU_REGS_RIP);
4267 vcpu->arch.regs_dirty = ~0;
4268 }
4269
4270 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4271 {
4272 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4273 /*
4274 * an sti; sti; sequence only disable interrupts for the first
4275 * instruction. So, if the last instruction, be it emulated or
4276 * not, left the system with the INT_STI flag enabled, it
4277 * means that the last instruction is an sti. We should not
4278 * leave the flag on in this case. The same goes for mov ss
4279 */
4280 if (!(int_shadow & mask))
4281 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4282 }
4283
4284 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4285 {
4286 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4287 if (ctxt->exception.vector == PF_VECTOR)
4288 kvm_propagate_fault(vcpu, &ctxt->exception);
4289 else if (ctxt->exception.error_code_valid)
4290 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4291 ctxt->exception.error_code);
4292 else
4293 kvm_queue_exception(vcpu, ctxt->exception.vector);
4294 }
4295
4296 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4297 {
4298 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4299 int cs_db, cs_l;
4300
4301 cache_all_regs(vcpu);
4302
4303 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4304
4305 vcpu->arch.emulate_ctxt.vcpu = vcpu;
4306 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
4307 vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
4308 vcpu->arch.emulate_ctxt.mode =
4309 (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4310 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
4311 ? X86EMUL_MODE_VM86 : cs_l
4312 ? X86EMUL_MODE_PROT64 : cs_db
4313 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
4314 memset(c, 0, sizeof(struct decode_cache));
4315 memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4316 }
4317
4318 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq)
4319 {
4320 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4321 int ret;
4322
4323 init_emulate_ctxt(vcpu);
4324
4325 vcpu->arch.emulate_ctxt.decode.op_bytes = 2;
4326 vcpu->arch.emulate_ctxt.decode.ad_bytes = 2;
4327 vcpu->arch.emulate_ctxt.decode.eip = vcpu->arch.emulate_ctxt.eip;
4328 ret = emulate_int_real(&vcpu->arch.emulate_ctxt, &emulate_ops, irq);
4329
4330 if (ret != X86EMUL_CONTINUE)
4331 return EMULATE_FAIL;
4332
4333 vcpu->arch.emulate_ctxt.eip = c->eip;
4334 memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4335 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4336 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4337
4338 if (irq == NMI_VECTOR)
4339 vcpu->arch.nmi_pending = false;
4340 else
4341 vcpu->arch.interrupt.pending = false;
4342
4343 return EMULATE_DONE;
4344 }
4345 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4346
4347 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4348 {
4349 int r = EMULATE_DONE;
4350
4351 ++vcpu->stat.insn_emulation_fail;
4352 trace_kvm_emulate_insn_failed(vcpu);
4353 if (!is_guest_mode(vcpu)) {
4354 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4355 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4356 vcpu->run->internal.ndata = 0;
4357 r = EMULATE_FAIL;
4358 }
4359 kvm_queue_exception(vcpu, UD_VECTOR);
4360
4361 return r;
4362 }
4363
4364 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4365 {
4366 gpa_t gpa;
4367
4368 if (tdp_enabled)
4369 return false;
4370
4371 /*
4372 * if emulation was due to access to shadowed page table
4373 * and it failed try to unshadow page and re-entetr the
4374 * guest to let CPU execute the instruction.
4375 */
4376 if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4377 return true;
4378
4379 gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4380
4381 if (gpa == UNMAPPED_GVA)
4382 return true; /* let cpu generate fault */
4383
4384 if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4385 return true;
4386
4387 return false;
4388 }
4389
4390 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4391 unsigned long cr2,
4392 int emulation_type,
4393 void *insn,
4394 int insn_len)
4395 {
4396 int r;
4397 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4398
4399 kvm_clear_exception_queue(vcpu);
4400 vcpu->arch.mmio_fault_cr2 = cr2;
4401 /*
4402 * TODO: fix emulate.c to use guest_read/write_register
4403 * instead of direct ->regs accesses, can save hundred cycles
4404 * on Intel for instructions that don't read/change RSP, for
4405 * for example.
4406 */
4407 cache_all_regs(vcpu);
4408
4409 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4410 init_emulate_ctxt(vcpu);
4411 vcpu->arch.emulate_ctxt.interruptibility = 0;
4412 vcpu->arch.emulate_ctxt.have_exception = false;
4413 vcpu->arch.emulate_ctxt.perm_ok = false;
4414
4415 vcpu->arch.emulate_ctxt.only_vendor_specific_insn
4416 = emulation_type & EMULTYPE_TRAP_UD;
4417
4418 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, insn, insn_len);
4419
4420 trace_kvm_emulate_insn_start(vcpu);
4421 ++vcpu->stat.insn_emulation;
4422 if (r) {
4423 if (emulation_type & EMULTYPE_TRAP_UD)
4424 return EMULATE_FAIL;
4425 if (reexecute_instruction(vcpu, cr2))
4426 return EMULATE_DONE;
4427 if (emulation_type & EMULTYPE_SKIP)
4428 return EMULATE_FAIL;
4429 return handle_emulation_failure(vcpu);
4430 }
4431 }
4432
4433 if (emulation_type & EMULTYPE_SKIP) {
4434 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
4435 return EMULATE_DONE;
4436 }
4437
4438 /* this is needed for vmware backdor interface to work since it
4439 changes registers values during IO operation */
4440 memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4441
4442 restart:
4443 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt);
4444
4445 if (r == EMULATION_FAILED) {
4446 if (reexecute_instruction(vcpu, cr2))
4447 return EMULATE_DONE;
4448
4449 return handle_emulation_failure(vcpu);
4450 }
4451
4452 if (vcpu->arch.emulate_ctxt.have_exception) {
4453 inject_emulated_exception(vcpu);
4454 r = EMULATE_DONE;
4455 } else if (vcpu->arch.pio.count) {
4456 if (!vcpu->arch.pio.in)
4457 vcpu->arch.pio.count = 0;
4458 r = EMULATE_DO_MMIO;
4459 } else if (vcpu->mmio_needed) {
4460 if (vcpu->mmio_is_write)
4461 vcpu->mmio_needed = 0;
4462 r = EMULATE_DO_MMIO;
4463 } else if (r == EMULATION_RESTART)
4464 goto restart;
4465 else
4466 r = EMULATE_DONE;
4467
4468 toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility);
4469 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4470 kvm_make_request(KVM_REQ_EVENT, vcpu);
4471 memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4472 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4473
4474 return r;
4475 }
4476 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4477
4478 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4479 {
4480 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4481 int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
4482 /* do not return to emulator after return from userspace */
4483 vcpu->arch.pio.count = 0;
4484 return ret;
4485 }
4486 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4487
4488 static void tsc_bad(void *info)
4489 {
4490 __this_cpu_write(cpu_tsc_khz, 0);
4491 }
4492
4493 static void tsc_khz_changed(void *data)
4494 {
4495 struct cpufreq_freqs *freq = data;
4496 unsigned long khz = 0;
4497
4498 if (data)
4499 khz = freq->new;
4500 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4501 khz = cpufreq_quick_get(raw_smp_processor_id());
4502 if (!khz)
4503 khz = tsc_khz;
4504 __this_cpu_write(cpu_tsc_khz, khz);
4505 }
4506
4507 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4508 void *data)
4509 {
4510 struct cpufreq_freqs *freq = data;
4511 struct kvm *kvm;
4512 struct kvm_vcpu *vcpu;
4513 int i, send_ipi = 0;
4514
4515 /*
4516 * We allow guests to temporarily run on slowing clocks,
4517 * provided we notify them after, or to run on accelerating
4518 * clocks, provided we notify them before. Thus time never
4519 * goes backwards.
4520 *
4521 * However, we have a problem. We can't atomically update
4522 * the frequency of a given CPU from this function; it is
4523 * merely a notifier, which can be called from any CPU.
4524 * Changing the TSC frequency at arbitrary points in time
4525 * requires a recomputation of local variables related to
4526 * the TSC for each VCPU. We must flag these local variables
4527 * to be updated and be sure the update takes place with the
4528 * new frequency before any guests proceed.
4529 *
4530 * Unfortunately, the combination of hotplug CPU and frequency
4531 * change creates an intractable locking scenario; the order
4532 * of when these callouts happen is undefined with respect to
4533 * CPU hotplug, and they can race with each other. As such,
4534 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4535 * undefined; you can actually have a CPU frequency change take
4536 * place in between the computation of X and the setting of the
4537 * variable. To protect against this problem, all updates of
4538 * the per_cpu tsc_khz variable are done in an interrupt
4539 * protected IPI, and all callers wishing to update the value
4540 * must wait for a synchronous IPI to complete (which is trivial
4541 * if the caller is on the CPU already). This establishes the
4542 * necessary total order on variable updates.
4543 *
4544 * Note that because a guest time update may take place
4545 * anytime after the setting of the VCPU's request bit, the
4546 * correct TSC value must be set before the request. However,
4547 * to ensure the update actually makes it to any guest which
4548 * starts running in hardware virtualization between the set
4549 * and the acquisition of the spinlock, we must also ping the
4550 * CPU after setting the request bit.
4551 *
4552 */
4553
4554 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4555 return 0;
4556 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4557 return 0;
4558
4559 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4560
4561 raw_spin_lock(&kvm_lock);
4562 list_for_each_entry(kvm, &vm_list, vm_list) {
4563 kvm_for_each_vcpu(i, vcpu, kvm) {
4564 if (vcpu->cpu != freq->cpu)
4565 continue;
4566 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4567 if (vcpu->cpu != smp_processor_id())
4568 send_ipi = 1;
4569 }
4570 }
4571 raw_spin_unlock(&kvm_lock);
4572
4573 if (freq->old < freq->new && send_ipi) {
4574 /*
4575 * We upscale the frequency. Must make the guest
4576 * doesn't see old kvmclock values while running with
4577 * the new frequency, otherwise we risk the guest sees
4578 * time go backwards.
4579 *
4580 * In case we update the frequency for another cpu
4581 * (which might be in guest context) send an interrupt
4582 * to kick the cpu out of guest context. Next time
4583 * guest context is entered kvmclock will be updated,
4584 * so the guest will not see stale values.
4585 */
4586 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4587 }
4588 return 0;
4589 }
4590
4591 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4592 .notifier_call = kvmclock_cpufreq_notifier
4593 };
4594
4595 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4596 unsigned long action, void *hcpu)
4597 {
4598 unsigned int cpu = (unsigned long)hcpu;
4599
4600 switch (action) {
4601 case CPU_ONLINE:
4602 case CPU_DOWN_FAILED:
4603 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4604 break;
4605 case CPU_DOWN_PREPARE:
4606 smp_call_function_single(cpu, tsc_bad, NULL, 1);
4607 break;
4608 }
4609 return NOTIFY_OK;
4610 }
4611
4612 static struct notifier_block kvmclock_cpu_notifier_block = {
4613 .notifier_call = kvmclock_cpu_notifier,
4614 .priority = -INT_MAX
4615 };
4616
4617 static void kvm_timer_init(void)
4618 {
4619 int cpu;
4620
4621 max_tsc_khz = tsc_khz;
4622 register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4623 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4624 #ifdef CONFIG_CPU_FREQ
4625 struct cpufreq_policy policy;
4626 memset(&policy, 0, sizeof(policy));
4627 cpu = get_cpu();
4628 cpufreq_get_policy(&policy, cpu);
4629 if (policy.cpuinfo.max_freq)
4630 max_tsc_khz = policy.cpuinfo.max_freq;
4631 put_cpu();
4632 #endif
4633 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4634 CPUFREQ_TRANSITION_NOTIFIER);
4635 }
4636 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
4637 for_each_online_cpu(cpu)
4638 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4639 }
4640
4641 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4642
4643 static int kvm_is_in_guest(void)
4644 {
4645 return percpu_read(current_vcpu) != NULL;
4646 }
4647
4648 static int kvm_is_user_mode(void)
4649 {
4650 int user_mode = 3;
4651
4652 if (percpu_read(current_vcpu))
4653 user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
4654
4655 return user_mode != 0;
4656 }
4657
4658 static unsigned long kvm_get_guest_ip(void)
4659 {
4660 unsigned long ip = 0;
4661
4662 if (percpu_read(current_vcpu))
4663 ip = kvm_rip_read(percpu_read(current_vcpu));
4664
4665 return ip;
4666 }
4667
4668 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4669 .is_in_guest = kvm_is_in_guest,
4670 .is_user_mode = kvm_is_user_mode,
4671 .get_guest_ip = kvm_get_guest_ip,
4672 };
4673
4674 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4675 {
4676 percpu_write(current_vcpu, vcpu);
4677 }
4678 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4679
4680 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4681 {
4682 percpu_write(current_vcpu, NULL);
4683 }
4684 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4685
4686 int kvm_arch_init(void *opaque)
4687 {
4688 int r;
4689 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4690
4691 if (kvm_x86_ops) {
4692 printk(KERN_ERR "kvm: already loaded the other module\n");
4693 r = -EEXIST;
4694 goto out;
4695 }
4696
4697 if (!ops->cpu_has_kvm_support()) {
4698 printk(KERN_ERR "kvm: no hardware support\n");
4699 r = -EOPNOTSUPP;
4700 goto out;
4701 }
4702 if (ops->disabled_by_bios()) {
4703 printk(KERN_ERR "kvm: disabled by bios\n");
4704 r = -EOPNOTSUPP;
4705 goto out;
4706 }
4707
4708 r = kvm_mmu_module_init();
4709 if (r)
4710 goto out;
4711
4712 kvm_init_msr_list();
4713
4714 kvm_x86_ops = ops;
4715 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
4716 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4717 PT_DIRTY_MASK, PT64_NX_MASK, 0);
4718
4719 kvm_timer_init();
4720
4721 perf_register_guest_info_callbacks(&kvm_guest_cbs);
4722
4723 if (cpu_has_xsave)
4724 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4725
4726 return 0;
4727
4728 out:
4729 return r;
4730 }
4731
4732 void kvm_arch_exit(void)
4733 {
4734 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4735
4736 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4737 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4738 CPUFREQ_TRANSITION_NOTIFIER);
4739 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4740 kvm_x86_ops = NULL;
4741 kvm_mmu_module_exit();
4742 }
4743
4744 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4745 {
4746 ++vcpu->stat.halt_exits;
4747 if (irqchip_in_kernel(vcpu->kvm)) {
4748 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4749 return 1;
4750 } else {
4751 vcpu->run->exit_reason = KVM_EXIT_HLT;
4752 return 0;
4753 }
4754 }
4755 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4756
4757 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
4758 unsigned long a1)
4759 {
4760 if (is_long_mode(vcpu))
4761 return a0;
4762 else
4763 return a0 | ((gpa_t)a1 << 32);
4764 }
4765
4766 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4767 {
4768 u64 param, ingpa, outgpa, ret;
4769 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4770 bool fast, longmode;
4771 int cs_db, cs_l;
4772
4773 /*
4774 * hypercall generates UD from non zero cpl and real mode
4775 * per HYPER-V spec
4776 */
4777 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4778 kvm_queue_exception(vcpu, UD_VECTOR);
4779 return 0;
4780 }
4781
4782 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4783 longmode = is_long_mode(vcpu) && cs_l == 1;
4784
4785 if (!longmode) {
4786 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4787 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4788 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4789 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4790 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4791 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4792 }
4793 #ifdef CONFIG_X86_64
4794 else {
4795 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4796 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4797 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4798 }
4799 #endif
4800
4801 code = param & 0xffff;
4802 fast = (param >> 16) & 0x1;
4803 rep_cnt = (param >> 32) & 0xfff;
4804 rep_idx = (param >> 48) & 0xfff;
4805
4806 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4807
4808 switch (code) {
4809 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4810 kvm_vcpu_on_spin(vcpu);
4811 break;
4812 default:
4813 res = HV_STATUS_INVALID_HYPERCALL_CODE;
4814 break;
4815 }
4816
4817 ret = res | (((u64)rep_done & 0xfff) << 32);
4818 if (longmode) {
4819 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4820 } else {
4821 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
4822 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
4823 }
4824
4825 return 1;
4826 }
4827
4828 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
4829 {
4830 unsigned long nr, a0, a1, a2, a3, ret;
4831 int r = 1;
4832
4833 if (kvm_hv_hypercall_enabled(vcpu->kvm))
4834 return kvm_hv_hypercall(vcpu);
4835
4836 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
4837 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
4838 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
4839 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
4840 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
4841
4842 trace_kvm_hypercall(nr, a0, a1, a2, a3);
4843
4844 if (!is_long_mode(vcpu)) {
4845 nr &= 0xFFFFFFFF;
4846 a0 &= 0xFFFFFFFF;
4847 a1 &= 0xFFFFFFFF;
4848 a2 &= 0xFFFFFFFF;
4849 a3 &= 0xFFFFFFFF;
4850 }
4851
4852 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
4853 ret = -KVM_EPERM;
4854 goto out;
4855 }
4856
4857 switch (nr) {
4858 case KVM_HC_VAPIC_POLL_IRQ:
4859 ret = 0;
4860 break;
4861 case KVM_HC_MMU_OP:
4862 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
4863 break;
4864 default:
4865 ret = -KVM_ENOSYS;
4866 break;
4867 }
4868 out:
4869 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4870 ++vcpu->stat.hypercalls;
4871 return r;
4872 }
4873 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
4874
4875 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
4876 {
4877 char instruction[3];
4878 unsigned long rip = kvm_rip_read(vcpu);
4879
4880 /*
4881 * Blow out the MMU to ensure that no other VCPU has an active mapping
4882 * to ensure that the updated hypercall appears atomically across all
4883 * VCPUs.
4884 */
4885 kvm_mmu_zap_all(vcpu->kvm);
4886
4887 kvm_x86_ops->patch_hypercall(vcpu, instruction);
4888
4889 return emulator_write_emulated(rip, instruction, 3, NULL, vcpu);
4890 }
4891
4892 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4893 {
4894 struct desc_ptr dt = { limit, base };
4895
4896 kvm_x86_ops->set_gdt(vcpu, &dt);
4897 }
4898
4899 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4900 {
4901 struct desc_ptr dt = { limit, base };
4902
4903 kvm_x86_ops->set_idt(vcpu, &dt);
4904 }
4905
4906 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
4907 {
4908 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
4909 int j, nent = vcpu->arch.cpuid_nent;
4910
4911 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
4912 /* when no next entry is found, the current entry[i] is reselected */
4913 for (j = i + 1; ; j = (j + 1) % nent) {
4914 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
4915 if (ej->function == e->function) {
4916 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
4917 return j;
4918 }
4919 }
4920 return 0; /* silence gcc, even though control never reaches here */
4921 }
4922
4923 /* find an entry with matching function, matching index (if needed), and that
4924 * should be read next (if it's stateful) */
4925 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
4926 u32 function, u32 index)
4927 {
4928 if (e->function != function)
4929 return 0;
4930 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
4931 return 0;
4932 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
4933 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
4934 return 0;
4935 return 1;
4936 }
4937
4938 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
4939 u32 function, u32 index)
4940 {
4941 int i;
4942 struct kvm_cpuid_entry2 *best = NULL;
4943
4944 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
4945 struct kvm_cpuid_entry2 *e;
4946
4947 e = &vcpu->arch.cpuid_entries[i];
4948 if (is_matching_cpuid_entry(e, function, index)) {
4949 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
4950 move_to_next_stateful_cpuid_entry(vcpu, i);
4951 best = e;
4952 break;
4953 }
4954 /*
4955 * Both basic or both extended?
4956 */
4957 if (((e->function ^ function) & 0x80000000) == 0)
4958 if (!best || e->function > best->function)
4959 best = e;
4960 }
4961 return best;
4962 }
4963 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
4964
4965 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
4966 {
4967 struct kvm_cpuid_entry2 *best;
4968
4969 best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
4970 if (!best || best->eax < 0x80000008)
4971 goto not_found;
4972 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
4973 if (best)
4974 return best->eax & 0xff;
4975 not_found:
4976 return 36;
4977 }
4978
4979 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
4980 {
4981 u32 function, index;
4982 struct kvm_cpuid_entry2 *best;
4983
4984 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
4985 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4986 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
4987 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
4988 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
4989 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
4990 best = kvm_find_cpuid_entry(vcpu, function, index);
4991 if (best) {
4992 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
4993 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
4994 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
4995 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
4996 }
4997 kvm_x86_ops->skip_emulated_instruction(vcpu);
4998 trace_kvm_cpuid(function,
4999 kvm_register_read(vcpu, VCPU_REGS_RAX),
5000 kvm_register_read(vcpu, VCPU_REGS_RBX),
5001 kvm_register_read(vcpu, VCPU_REGS_RCX),
5002 kvm_register_read(vcpu, VCPU_REGS_RDX));
5003 }
5004 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
5005
5006 /*
5007 * Check if userspace requested an interrupt window, and that the
5008 * interrupt window is open.
5009 *
5010 * No need to exit to userspace if we already have an interrupt queued.
5011 */
5012 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5013 {
5014 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5015 vcpu->run->request_interrupt_window &&
5016 kvm_arch_interrupt_allowed(vcpu));
5017 }
5018
5019 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5020 {
5021 struct kvm_run *kvm_run = vcpu->run;
5022
5023 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5024 kvm_run->cr8 = kvm_get_cr8(vcpu);
5025 kvm_run->apic_base = kvm_get_apic_base(vcpu);
5026 if (irqchip_in_kernel(vcpu->kvm))
5027 kvm_run->ready_for_interrupt_injection = 1;
5028 else
5029 kvm_run->ready_for_interrupt_injection =
5030 kvm_arch_interrupt_allowed(vcpu) &&
5031 !kvm_cpu_has_interrupt(vcpu) &&
5032 !kvm_event_needs_reinjection(vcpu);
5033 }
5034
5035 static void vapic_enter(struct kvm_vcpu *vcpu)
5036 {
5037 struct kvm_lapic *apic = vcpu->arch.apic;
5038 struct page *page;
5039
5040 if (!apic || !apic->vapic_addr)
5041 return;
5042
5043 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5044
5045 vcpu->arch.apic->vapic_page = page;
5046 }
5047
5048 static void vapic_exit(struct kvm_vcpu *vcpu)
5049 {
5050 struct kvm_lapic *apic = vcpu->arch.apic;
5051 int idx;
5052
5053 if (!apic || !apic->vapic_addr)
5054 return;
5055
5056 idx = srcu_read_lock(&vcpu->kvm->srcu);
5057 kvm_release_page_dirty(apic->vapic_page);
5058 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5059 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5060 }
5061
5062 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5063 {
5064 int max_irr, tpr;
5065
5066 if (!kvm_x86_ops->update_cr8_intercept)
5067 return;
5068
5069 if (!vcpu->arch.apic)
5070 return;
5071
5072 if (!vcpu->arch.apic->vapic_addr)
5073 max_irr = kvm_lapic_find_highest_irr(vcpu);
5074 else
5075 max_irr = -1;
5076
5077 if (max_irr != -1)
5078 max_irr >>= 4;
5079
5080 tpr = kvm_lapic_get_cr8(vcpu);
5081
5082 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5083 }
5084
5085 static void inject_pending_event(struct kvm_vcpu *vcpu)
5086 {
5087 /* try to reinject previous events if any */
5088 if (vcpu->arch.exception.pending) {
5089 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5090 vcpu->arch.exception.has_error_code,
5091 vcpu->arch.exception.error_code);
5092 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5093 vcpu->arch.exception.has_error_code,
5094 vcpu->arch.exception.error_code,
5095 vcpu->arch.exception.reinject);
5096 return;
5097 }
5098
5099 if (vcpu->arch.nmi_injected) {
5100 kvm_x86_ops->set_nmi(vcpu);
5101 return;
5102 }
5103
5104 if (vcpu->arch.interrupt.pending) {
5105 kvm_x86_ops->set_irq(vcpu);
5106 return;
5107 }
5108
5109 /* try to inject new event if pending */
5110 if (vcpu->arch.nmi_pending) {
5111 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5112 vcpu->arch.nmi_pending = false;
5113 vcpu->arch.nmi_injected = true;
5114 kvm_x86_ops->set_nmi(vcpu);
5115 }
5116 } else if (kvm_cpu_has_interrupt(vcpu)) {
5117 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5118 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5119 false);
5120 kvm_x86_ops->set_irq(vcpu);
5121 }
5122 }
5123 }
5124
5125 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5126 {
5127 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5128 !vcpu->guest_xcr0_loaded) {
5129 /* kvm_set_xcr() also depends on this */
5130 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5131 vcpu->guest_xcr0_loaded = 1;
5132 }
5133 }
5134
5135 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5136 {
5137 if (vcpu->guest_xcr0_loaded) {
5138 if (vcpu->arch.xcr0 != host_xcr0)
5139 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5140 vcpu->guest_xcr0_loaded = 0;
5141 }
5142 }
5143
5144 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5145 {
5146 int r;
5147 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5148 vcpu->run->request_interrupt_window;
5149
5150 if (vcpu->requests) {
5151 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5152 kvm_mmu_unload(vcpu);
5153 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5154 __kvm_migrate_timers(vcpu);
5155 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5156 r = kvm_guest_time_update(vcpu);
5157 if (unlikely(r))
5158 goto out;
5159 }
5160 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5161 kvm_mmu_sync_roots(vcpu);
5162 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5163 kvm_x86_ops->tlb_flush(vcpu);
5164 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5165 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5166 r = 0;
5167 goto out;
5168 }
5169 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5170 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5171 r = 0;
5172 goto out;
5173 }
5174 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5175 vcpu->fpu_active = 0;
5176 kvm_x86_ops->fpu_deactivate(vcpu);
5177 }
5178 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5179 /* Page is swapped out. Do synthetic halt */
5180 vcpu->arch.apf.halted = true;
5181 r = 1;
5182 goto out;
5183 }
5184 if (kvm_check_request(KVM_REQ_NMI, vcpu))
5185 vcpu->arch.nmi_pending = true;
5186 }
5187
5188 r = kvm_mmu_reload(vcpu);
5189 if (unlikely(r))
5190 goto out;
5191
5192 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5193 inject_pending_event(vcpu);
5194
5195 /* enable NMI/IRQ window open exits if needed */
5196 if (vcpu->arch.nmi_pending)
5197 kvm_x86_ops->enable_nmi_window(vcpu);
5198 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5199 kvm_x86_ops->enable_irq_window(vcpu);
5200
5201 if (kvm_lapic_enabled(vcpu)) {
5202 update_cr8_intercept(vcpu);
5203 kvm_lapic_sync_to_vapic(vcpu);
5204 }
5205 }
5206
5207 preempt_disable();
5208
5209 kvm_x86_ops->prepare_guest_switch(vcpu);
5210 if (vcpu->fpu_active)
5211 kvm_load_guest_fpu(vcpu);
5212 kvm_load_guest_xcr0(vcpu);
5213
5214 vcpu->mode = IN_GUEST_MODE;
5215
5216 /* We should set ->mode before check ->requests,
5217 * see the comment in make_all_cpus_request.
5218 */
5219 smp_mb();
5220
5221 local_irq_disable();
5222
5223 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5224 || need_resched() || signal_pending(current)) {
5225 vcpu->mode = OUTSIDE_GUEST_MODE;
5226 smp_wmb();
5227 local_irq_enable();
5228 preempt_enable();
5229 kvm_x86_ops->cancel_injection(vcpu);
5230 r = 1;
5231 goto out;
5232 }
5233
5234 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5235
5236 kvm_guest_enter();
5237
5238 if (unlikely(vcpu->arch.switch_db_regs)) {
5239 set_debugreg(0, 7);
5240 set_debugreg(vcpu->arch.eff_db[0], 0);
5241 set_debugreg(vcpu->arch.eff_db[1], 1);
5242 set_debugreg(vcpu->arch.eff_db[2], 2);
5243 set_debugreg(vcpu->arch.eff_db[3], 3);
5244 }
5245
5246 trace_kvm_entry(vcpu->vcpu_id);
5247 kvm_x86_ops->run(vcpu);
5248
5249 /*
5250 * If the guest has used debug registers, at least dr7
5251 * will be disabled while returning to the host.
5252 * If we don't have active breakpoints in the host, we don't
5253 * care about the messed up debug address registers. But if
5254 * we have some of them active, restore the old state.
5255 */
5256 if (hw_breakpoint_active())
5257 hw_breakpoint_restore();
5258
5259 kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
5260
5261 vcpu->mode = OUTSIDE_GUEST_MODE;
5262 smp_wmb();
5263 local_irq_enable();
5264
5265 ++vcpu->stat.exits;
5266
5267 /*
5268 * We must have an instruction between local_irq_enable() and
5269 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5270 * the interrupt shadow. The stat.exits increment will do nicely.
5271 * But we need to prevent reordering, hence this barrier():
5272 */
5273 barrier();
5274
5275 kvm_guest_exit();
5276
5277 preempt_enable();
5278
5279 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5280
5281 /*
5282 * Profile KVM exit RIPs:
5283 */
5284 if (unlikely(prof_on == KVM_PROFILING)) {
5285 unsigned long rip = kvm_rip_read(vcpu);
5286 profile_hit(KVM_PROFILING, (void *)rip);
5287 }
5288
5289
5290 kvm_lapic_sync_from_vapic(vcpu);
5291
5292 r = kvm_x86_ops->handle_exit(vcpu);
5293 out:
5294 return r;
5295 }
5296
5297
5298 static int __vcpu_run(struct kvm_vcpu *vcpu)
5299 {
5300 int r;
5301 struct kvm *kvm = vcpu->kvm;
5302
5303 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5304 pr_debug("vcpu %d received sipi with vector # %x\n",
5305 vcpu->vcpu_id, vcpu->arch.sipi_vector);
5306 kvm_lapic_reset(vcpu);
5307 r = kvm_arch_vcpu_reset(vcpu);
5308 if (r)
5309 return r;
5310 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5311 }
5312
5313 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5314 vapic_enter(vcpu);
5315
5316 r = 1;
5317 while (r > 0) {
5318 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5319 !vcpu->arch.apf.halted)
5320 r = vcpu_enter_guest(vcpu);
5321 else {
5322 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5323 kvm_vcpu_block(vcpu);
5324 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5325 if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5326 {
5327 switch(vcpu->arch.mp_state) {
5328 case KVM_MP_STATE_HALTED:
5329 vcpu->arch.mp_state =
5330 KVM_MP_STATE_RUNNABLE;
5331 case KVM_MP_STATE_RUNNABLE:
5332 vcpu->arch.apf.halted = false;
5333 break;
5334 case KVM_MP_STATE_SIPI_RECEIVED:
5335 default:
5336 r = -EINTR;
5337 break;
5338 }
5339 }
5340 }
5341
5342 if (r <= 0)
5343 break;
5344
5345 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5346 if (kvm_cpu_has_pending_timer(vcpu))
5347 kvm_inject_pending_timer_irqs(vcpu);
5348
5349 if (dm_request_for_irq_injection(vcpu)) {
5350 r = -EINTR;
5351 vcpu->run->exit_reason = KVM_EXIT_INTR;
5352 ++vcpu->stat.request_irq_exits;
5353 }
5354
5355 kvm_check_async_pf_completion(vcpu);
5356
5357 if (signal_pending(current)) {
5358 r = -EINTR;
5359 vcpu->run->exit_reason = KVM_EXIT_INTR;
5360 ++vcpu->stat.signal_exits;
5361 }
5362 if (need_resched()) {
5363 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5364 kvm_resched(vcpu);
5365 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5366 }
5367 }
5368
5369 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5370
5371 vapic_exit(vcpu);
5372
5373 return r;
5374 }
5375
5376 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5377 {
5378 int r;
5379 sigset_t sigsaved;
5380
5381 if (!tsk_used_math(current) && init_fpu(current))
5382 return -ENOMEM;
5383
5384 if (vcpu->sigset_active)
5385 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5386
5387 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5388 kvm_vcpu_block(vcpu);
5389 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5390 r = -EAGAIN;
5391 goto out;
5392 }
5393
5394 /* re-sync apic's tpr */
5395 if (!irqchip_in_kernel(vcpu->kvm)) {
5396 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5397 r = -EINVAL;
5398 goto out;
5399 }
5400 }
5401
5402 if (vcpu->arch.pio.count || vcpu->mmio_needed) {
5403 if (vcpu->mmio_needed) {
5404 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
5405 vcpu->mmio_read_completed = 1;
5406 vcpu->mmio_needed = 0;
5407 }
5408 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5409 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5410 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5411 if (r != EMULATE_DONE) {
5412 r = 0;
5413 goto out;
5414 }
5415 }
5416 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
5417 kvm_register_write(vcpu, VCPU_REGS_RAX,
5418 kvm_run->hypercall.ret);
5419
5420 r = __vcpu_run(vcpu);
5421
5422 out:
5423 post_kvm_run_save(vcpu);
5424 if (vcpu->sigset_active)
5425 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5426
5427 return r;
5428 }
5429
5430 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5431 {
5432 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5433 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5434 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5435 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5436 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5437 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5438 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5439 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5440 #ifdef CONFIG_X86_64
5441 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5442 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5443 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5444 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5445 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5446 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5447 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5448 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5449 #endif
5450
5451 regs->rip = kvm_rip_read(vcpu);
5452 regs->rflags = kvm_get_rflags(vcpu);
5453
5454 return 0;
5455 }
5456
5457 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5458 {
5459 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5460 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5461 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5462 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5463 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5464 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5465 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5466 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5467 #ifdef CONFIG_X86_64
5468 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5469 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5470 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5471 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5472 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5473 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5474 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5475 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5476 #endif
5477
5478 kvm_rip_write(vcpu, regs->rip);
5479 kvm_set_rflags(vcpu, regs->rflags);
5480
5481 vcpu->arch.exception.pending = false;
5482
5483 kvm_make_request(KVM_REQ_EVENT, vcpu);
5484
5485 return 0;
5486 }
5487
5488 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5489 {
5490 struct kvm_segment cs;
5491
5492 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5493 *db = cs.db;
5494 *l = cs.l;
5495 }
5496 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5497
5498 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5499 struct kvm_sregs *sregs)
5500 {
5501 struct desc_ptr dt;
5502
5503 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5504 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5505 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5506 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5507 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5508 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5509
5510 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5511 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5512
5513 kvm_x86_ops->get_idt(vcpu, &dt);
5514 sregs->idt.limit = dt.size;
5515 sregs->idt.base = dt.address;
5516 kvm_x86_ops->get_gdt(vcpu, &dt);
5517 sregs->gdt.limit = dt.size;
5518 sregs->gdt.base = dt.address;
5519
5520 sregs->cr0 = kvm_read_cr0(vcpu);
5521 sregs->cr2 = vcpu->arch.cr2;
5522 sregs->cr3 = kvm_read_cr3(vcpu);
5523 sregs->cr4 = kvm_read_cr4(vcpu);
5524 sregs->cr8 = kvm_get_cr8(vcpu);
5525 sregs->efer = vcpu->arch.efer;
5526 sregs->apic_base = kvm_get_apic_base(vcpu);
5527
5528 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5529
5530 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5531 set_bit(vcpu->arch.interrupt.nr,
5532 (unsigned long *)sregs->interrupt_bitmap);
5533
5534 return 0;
5535 }
5536
5537 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5538 struct kvm_mp_state *mp_state)
5539 {
5540 mp_state->mp_state = vcpu->arch.mp_state;
5541 return 0;
5542 }
5543
5544 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5545 struct kvm_mp_state *mp_state)
5546 {
5547 vcpu->arch.mp_state = mp_state->mp_state;
5548 kvm_make_request(KVM_REQ_EVENT, vcpu);
5549 return 0;
5550 }
5551
5552 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
5553 bool has_error_code, u32 error_code)
5554 {
5555 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
5556 int ret;
5557
5558 init_emulate_ctxt(vcpu);
5559
5560 ret = emulator_task_switch(&vcpu->arch.emulate_ctxt,
5561 tss_selector, reason, has_error_code,
5562 error_code);
5563
5564 if (ret)
5565 return EMULATE_FAIL;
5566
5567 memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
5568 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
5569 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
5570 kvm_make_request(KVM_REQ_EVENT, vcpu);
5571 return EMULATE_DONE;
5572 }
5573 EXPORT_SYMBOL_GPL(kvm_task_switch);
5574
5575 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5576 struct kvm_sregs *sregs)
5577 {
5578 int mmu_reset_needed = 0;
5579 int pending_vec, max_bits, idx;
5580 struct desc_ptr dt;
5581
5582 dt.size = sregs->idt.limit;
5583 dt.address = sregs->idt.base;
5584 kvm_x86_ops->set_idt(vcpu, &dt);
5585 dt.size = sregs->gdt.limit;
5586 dt.address = sregs->gdt.base;
5587 kvm_x86_ops->set_gdt(vcpu, &dt);
5588
5589 vcpu->arch.cr2 = sregs->cr2;
5590 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
5591 vcpu->arch.cr3 = sregs->cr3;
5592 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
5593
5594 kvm_set_cr8(vcpu, sregs->cr8);
5595
5596 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5597 kvm_x86_ops->set_efer(vcpu, sregs->efer);
5598 kvm_set_apic_base(vcpu, sregs->apic_base);
5599
5600 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5601 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5602 vcpu->arch.cr0 = sregs->cr0;
5603
5604 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5605 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5606 if (sregs->cr4 & X86_CR4_OSXSAVE)
5607 update_cpuid(vcpu);
5608
5609 idx = srcu_read_lock(&vcpu->kvm->srcu);
5610 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5611 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
5612 mmu_reset_needed = 1;
5613 }
5614 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5615
5616 if (mmu_reset_needed)
5617 kvm_mmu_reset_context(vcpu);
5618
5619 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5620 pending_vec = find_first_bit(
5621 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5622 if (pending_vec < max_bits) {
5623 kvm_queue_interrupt(vcpu, pending_vec, false);
5624 pr_debug("Set back pending irq %d\n", pending_vec);
5625 }
5626
5627 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5628 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5629 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5630 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5631 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5632 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5633
5634 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5635 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5636
5637 update_cr8_intercept(vcpu);
5638
5639 /* Older userspace won't unhalt the vcpu on reset. */
5640 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5641 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5642 !is_protmode(vcpu))
5643 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5644
5645 kvm_make_request(KVM_REQ_EVENT, vcpu);
5646
5647 return 0;
5648 }
5649
5650 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5651 struct kvm_guest_debug *dbg)
5652 {
5653 unsigned long rflags;
5654 int i, r;
5655
5656 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5657 r = -EBUSY;
5658 if (vcpu->arch.exception.pending)
5659 goto out;
5660 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5661 kvm_queue_exception(vcpu, DB_VECTOR);
5662 else
5663 kvm_queue_exception(vcpu, BP_VECTOR);
5664 }
5665
5666 /*
5667 * Read rflags as long as potentially injected trace flags are still
5668 * filtered out.
5669 */
5670 rflags = kvm_get_rflags(vcpu);
5671
5672 vcpu->guest_debug = dbg->control;
5673 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5674 vcpu->guest_debug = 0;
5675
5676 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5677 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5678 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5679 vcpu->arch.switch_db_regs =
5680 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5681 } else {
5682 for (i = 0; i < KVM_NR_DB_REGS; i++)
5683 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5684 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5685 }
5686
5687 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5688 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5689 get_segment_base(vcpu, VCPU_SREG_CS);
5690
5691 /*
5692 * Trigger an rflags update that will inject or remove the trace
5693 * flags.
5694 */
5695 kvm_set_rflags(vcpu, rflags);
5696
5697 kvm_x86_ops->set_guest_debug(vcpu, dbg);
5698
5699 r = 0;
5700
5701 out:
5702
5703 return r;
5704 }
5705
5706 /*
5707 * Translate a guest virtual address to a guest physical address.
5708 */
5709 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5710 struct kvm_translation *tr)
5711 {
5712 unsigned long vaddr = tr->linear_address;
5713 gpa_t gpa;
5714 int idx;
5715
5716 idx = srcu_read_lock(&vcpu->kvm->srcu);
5717 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5718 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5719 tr->physical_address = gpa;
5720 tr->valid = gpa != UNMAPPED_GVA;
5721 tr->writeable = 1;
5722 tr->usermode = 0;
5723
5724 return 0;
5725 }
5726
5727 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5728 {
5729 struct i387_fxsave_struct *fxsave =
5730 &vcpu->arch.guest_fpu.state->fxsave;
5731
5732 memcpy(fpu->fpr, fxsave->st_space, 128);
5733 fpu->fcw = fxsave->cwd;
5734 fpu->fsw = fxsave->swd;
5735 fpu->ftwx = fxsave->twd;
5736 fpu->last_opcode = fxsave->fop;
5737 fpu->last_ip = fxsave->rip;
5738 fpu->last_dp = fxsave->rdp;
5739 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5740
5741 return 0;
5742 }
5743
5744 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5745 {
5746 struct i387_fxsave_struct *fxsave =
5747 &vcpu->arch.guest_fpu.state->fxsave;
5748
5749 memcpy(fxsave->st_space, fpu->fpr, 128);
5750 fxsave->cwd = fpu->fcw;
5751 fxsave->swd = fpu->fsw;
5752 fxsave->twd = fpu->ftwx;
5753 fxsave->fop = fpu->last_opcode;
5754 fxsave->rip = fpu->last_ip;
5755 fxsave->rdp = fpu->last_dp;
5756 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5757
5758 return 0;
5759 }
5760
5761 int fx_init(struct kvm_vcpu *vcpu)
5762 {
5763 int err;
5764
5765 err = fpu_alloc(&vcpu->arch.guest_fpu);
5766 if (err)
5767 return err;
5768
5769 fpu_finit(&vcpu->arch.guest_fpu);
5770
5771 /*
5772 * Ensure guest xcr0 is valid for loading
5773 */
5774 vcpu->arch.xcr0 = XSTATE_FP;
5775
5776 vcpu->arch.cr0 |= X86_CR0_ET;
5777
5778 return 0;
5779 }
5780 EXPORT_SYMBOL_GPL(fx_init);
5781
5782 static void fx_free(struct kvm_vcpu *vcpu)
5783 {
5784 fpu_free(&vcpu->arch.guest_fpu);
5785 }
5786
5787 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5788 {
5789 if (vcpu->guest_fpu_loaded)
5790 return;
5791
5792 /*
5793 * Restore all possible states in the guest,
5794 * and assume host would use all available bits.
5795 * Guest xcr0 would be loaded later.
5796 */
5797 kvm_put_guest_xcr0(vcpu);
5798 vcpu->guest_fpu_loaded = 1;
5799 unlazy_fpu(current);
5800 fpu_restore_checking(&vcpu->arch.guest_fpu);
5801 trace_kvm_fpu(1);
5802 }
5803
5804 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5805 {
5806 kvm_put_guest_xcr0(vcpu);
5807
5808 if (!vcpu->guest_fpu_loaded)
5809 return;
5810
5811 vcpu->guest_fpu_loaded = 0;
5812 fpu_save_init(&vcpu->arch.guest_fpu);
5813 ++vcpu->stat.fpu_reload;
5814 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
5815 trace_kvm_fpu(0);
5816 }
5817
5818 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5819 {
5820 kvmclock_reset(vcpu);
5821
5822 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
5823 fx_free(vcpu);
5824 kvm_x86_ops->vcpu_free(vcpu);
5825 }
5826
5827 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5828 unsigned int id)
5829 {
5830 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
5831 printk_once(KERN_WARNING
5832 "kvm: SMP vm created on host with unstable TSC; "
5833 "guest TSC will not be reliable\n");
5834 return kvm_x86_ops->vcpu_create(kvm, id);
5835 }
5836
5837 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5838 {
5839 int r;
5840
5841 vcpu->arch.mtrr_state.have_fixed = 1;
5842 vcpu_load(vcpu);
5843 r = kvm_arch_vcpu_reset(vcpu);
5844 if (r == 0)
5845 r = kvm_mmu_setup(vcpu);
5846 vcpu_put(vcpu);
5847 if (r < 0)
5848 goto free_vcpu;
5849
5850 return 0;
5851 free_vcpu:
5852 kvm_x86_ops->vcpu_free(vcpu);
5853 return r;
5854 }
5855
5856 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5857 {
5858 vcpu->arch.apf.msr_val = 0;
5859
5860 vcpu_load(vcpu);
5861 kvm_mmu_unload(vcpu);
5862 vcpu_put(vcpu);
5863
5864 fx_free(vcpu);
5865 kvm_x86_ops->vcpu_free(vcpu);
5866 }
5867
5868 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5869 {
5870 vcpu->arch.nmi_pending = false;
5871 vcpu->arch.nmi_injected = false;
5872
5873 vcpu->arch.switch_db_regs = 0;
5874 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5875 vcpu->arch.dr6 = DR6_FIXED_1;
5876 vcpu->arch.dr7 = DR7_FIXED_1;
5877
5878 kvm_make_request(KVM_REQ_EVENT, vcpu);
5879 vcpu->arch.apf.msr_val = 0;
5880
5881 kvmclock_reset(vcpu);
5882
5883 kvm_clear_async_pf_completion_queue(vcpu);
5884 kvm_async_pf_hash_reset(vcpu);
5885 vcpu->arch.apf.halted = false;
5886
5887 return kvm_x86_ops->vcpu_reset(vcpu);
5888 }
5889
5890 int kvm_arch_hardware_enable(void *garbage)
5891 {
5892 struct kvm *kvm;
5893 struct kvm_vcpu *vcpu;
5894 int i;
5895
5896 kvm_shared_msr_cpu_online();
5897 list_for_each_entry(kvm, &vm_list, vm_list)
5898 kvm_for_each_vcpu(i, vcpu, kvm)
5899 if (vcpu->cpu == smp_processor_id())
5900 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5901 return kvm_x86_ops->hardware_enable(garbage);
5902 }
5903
5904 void kvm_arch_hardware_disable(void *garbage)
5905 {
5906 kvm_x86_ops->hardware_disable(garbage);
5907 drop_user_return_notifiers(garbage);
5908 }
5909
5910 int kvm_arch_hardware_setup(void)
5911 {
5912 return kvm_x86_ops->hardware_setup();
5913 }
5914
5915 void kvm_arch_hardware_unsetup(void)
5916 {
5917 kvm_x86_ops->hardware_unsetup();
5918 }
5919
5920 void kvm_arch_check_processor_compat(void *rtn)
5921 {
5922 kvm_x86_ops->check_processor_compatibility(rtn);
5923 }
5924
5925 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5926 {
5927 struct page *page;
5928 struct kvm *kvm;
5929 int r;
5930
5931 BUG_ON(vcpu->kvm == NULL);
5932 kvm = vcpu->kvm;
5933
5934 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
5935 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
5936 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5937 vcpu->arch.mmu.translate_gpa = translate_gpa;
5938 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5939 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5940 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5941 else
5942 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5943
5944 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5945 if (!page) {
5946 r = -ENOMEM;
5947 goto fail;
5948 }
5949 vcpu->arch.pio_data = page_address(page);
5950
5951 if (!kvm->arch.virtual_tsc_khz)
5952 kvm_arch_set_tsc_khz(kvm, max_tsc_khz);
5953
5954 r = kvm_mmu_create(vcpu);
5955 if (r < 0)
5956 goto fail_free_pio_data;
5957
5958 if (irqchip_in_kernel(kvm)) {
5959 r = kvm_create_lapic(vcpu);
5960 if (r < 0)
5961 goto fail_mmu_destroy;
5962 }
5963
5964 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5965 GFP_KERNEL);
5966 if (!vcpu->arch.mce_banks) {
5967 r = -ENOMEM;
5968 goto fail_free_lapic;
5969 }
5970 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5971
5972 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
5973 goto fail_free_mce_banks;
5974
5975 kvm_async_pf_hash_reset(vcpu);
5976
5977 return 0;
5978 fail_free_mce_banks:
5979 kfree(vcpu->arch.mce_banks);
5980 fail_free_lapic:
5981 kvm_free_lapic(vcpu);
5982 fail_mmu_destroy:
5983 kvm_mmu_destroy(vcpu);
5984 fail_free_pio_data:
5985 free_page((unsigned long)vcpu->arch.pio_data);
5986 fail:
5987 return r;
5988 }
5989
5990 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
5991 {
5992 int idx;
5993
5994 kfree(vcpu->arch.mce_banks);
5995 kvm_free_lapic(vcpu);
5996 idx = srcu_read_lock(&vcpu->kvm->srcu);
5997 kvm_mmu_destroy(vcpu);
5998 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5999 free_page((unsigned long)vcpu->arch.pio_data);
6000 }
6001
6002 int kvm_arch_init_vm(struct kvm *kvm)
6003 {
6004 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6005 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6006
6007 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6008 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6009
6010 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6011
6012 return 0;
6013 }
6014
6015 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6016 {
6017 vcpu_load(vcpu);
6018 kvm_mmu_unload(vcpu);
6019 vcpu_put(vcpu);
6020 }
6021
6022 static void kvm_free_vcpus(struct kvm *kvm)
6023 {
6024 unsigned int i;
6025 struct kvm_vcpu *vcpu;
6026
6027 /*
6028 * Unpin any mmu pages first.
6029 */
6030 kvm_for_each_vcpu(i, vcpu, kvm) {
6031 kvm_clear_async_pf_completion_queue(vcpu);
6032 kvm_unload_vcpu_mmu(vcpu);
6033 }
6034 kvm_for_each_vcpu(i, vcpu, kvm)
6035 kvm_arch_vcpu_free(vcpu);
6036
6037 mutex_lock(&kvm->lock);
6038 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6039 kvm->vcpus[i] = NULL;
6040
6041 atomic_set(&kvm->online_vcpus, 0);
6042 mutex_unlock(&kvm->lock);
6043 }
6044
6045 void kvm_arch_sync_events(struct kvm *kvm)
6046 {
6047 kvm_free_all_assigned_devices(kvm);
6048 kvm_free_pit(kvm);
6049 }
6050
6051 void kvm_arch_destroy_vm(struct kvm *kvm)
6052 {
6053 kvm_iommu_unmap_guest(kvm);
6054 kfree(kvm->arch.vpic);
6055 kfree(kvm->arch.vioapic);
6056 kvm_free_vcpus(kvm);
6057 if (kvm->arch.apic_access_page)
6058 put_page(kvm->arch.apic_access_page);
6059 if (kvm->arch.ept_identity_pagetable)
6060 put_page(kvm->arch.ept_identity_pagetable);
6061 }
6062
6063 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6064 struct kvm_memory_slot *memslot,
6065 struct kvm_memory_slot old,
6066 struct kvm_userspace_memory_region *mem,
6067 int user_alloc)
6068 {
6069 int npages = memslot->npages;
6070 int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6071
6072 /* Prevent internal slot pages from being moved by fork()/COW. */
6073 if (memslot->id >= KVM_MEMORY_SLOTS)
6074 map_flags = MAP_SHARED | MAP_ANONYMOUS;
6075
6076 /*To keep backward compatibility with older userspace,
6077 *x86 needs to hanlde !user_alloc case.
6078 */
6079 if (!user_alloc) {
6080 if (npages && !old.rmap) {
6081 unsigned long userspace_addr;
6082
6083 down_write(&current->mm->mmap_sem);
6084 userspace_addr = do_mmap(NULL, 0,
6085 npages * PAGE_SIZE,
6086 PROT_READ | PROT_WRITE,
6087 map_flags,
6088 0);
6089 up_write(&current->mm->mmap_sem);
6090
6091 if (IS_ERR((void *)userspace_addr))
6092 return PTR_ERR((void *)userspace_addr);
6093
6094 memslot->userspace_addr = userspace_addr;
6095 }
6096 }
6097
6098
6099 return 0;
6100 }
6101
6102 void kvm_arch_commit_memory_region(struct kvm *kvm,
6103 struct kvm_userspace_memory_region *mem,
6104 struct kvm_memory_slot old,
6105 int user_alloc)
6106 {
6107
6108 int npages = mem->memory_size >> PAGE_SHIFT;
6109
6110 if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
6111 int ret;
6112
6113 down_write(&current->mm->mmap_sem);
6114 ret = do_munmap(current->mm, old.userspace_addr,
6115 old.npages * PAGE_SIZE);
6116 up_write(&current->mm->mmap_sem);
6117 if (ret < 0)
6118 printk(KERN_WARNING
6119 "kvm_vm_ioctl_set_memory_region: "
6120 "failed to munmap memory\n");
6121 }
6122
6123 spin_lock(&kvm->mmu_lock);
6124 if (!kvm->arch.n_requested_mmu_pages) {
6125 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6126 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6127 }
6128
6129 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6130 spin_unlock(&kvm->mmu_lock);
6131 }
6132
6133 void kvm_arch_flush_shadow(struct kvm *kvm)
6134 {
6135 kvm_mmu_zap_all(kvm);
6136 kvm_reload_remote_mmus(kvm);
6137 }
6138
6139 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6140 {
6141 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6142 !vcpu->arch.apf.halted)
6143 || !list_empty_careful(&vcpu->async_pf.done)
6144 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6145 || vcpu->arch.nmi_pending ||
6146 (kvm_arch_interrupt_allowed(vcpu) &&
6147 kvm_cpu_has_interrupt(vcpu));
6148 }
6149
6150 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
6151 {
6152 int me;
6153 int cpu = vcpu->cpu;
6154
6155 if (waitqueue_active(&vcpu->wq)) {
6156 wake_up_interruptible(&vcpu->wq);
6157 ++vcpu->stat.halt_wakeup;
6158 }
6159
6160 me = get_cpu();
6161 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
6162 if (kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE)
6163 smp_send_reschedule(cpu);
6164 put_cpu();
6165 }
6166
6167 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6168 {
6169 return kvm_x86_ops->interrupt_allowed(vcpu);
6170 }
6171
6172 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6173 {
6174 unsigned long current_rip = kvm_rip_read(vcpu) +
6175 get_segment_base(vcpu, VCPU_SREG_CS);
6176
6177 return current_rip == linear_rip;
6178 }
6179 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6180
6181 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6182 {
6183 unsigned long rflags;
6184
6185 rflags = kvm_x86_ops->get_rflags(vcpu);
6186 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6187 rflags &= ~X86_EFLAGS_TF;
6188 return rflags;
6189 }
6190 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6191
6192 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6193 {
6194 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6195 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6196 rflags |= X86_EFLAGS_TF;
6197 kvm_x86_ops->set_rflags(vcpu, rflags);
6198 kvm_make_request(KVM_REQ_EVENT, vcpu);
6199 }
6200 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6201
6202 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6203 {
6204 int r;
6205
6206 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
6207 is_error_page(work->page))
6208 return;
6209
6210 r = kvm_mmu_reload(vcpu);
6211 if (unlikely(r))
6212 return;
6213
6214 if (!vcpu->arch.mmu.direct_map &&
6215 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
6216 return;
6217
6218 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
6219 }
6220
6221 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
6222 {
6223 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
6224 }
6225
6226 static inline u32 kvm_async_pf_next_probe(u32 key)
6227 {
6228 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
6229 }
6230
6231 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6232 {
6233 u32 key = kvm_async_pf_hash_fn(gfn);
6234
6235 while (vcpu->arch.apf.gfns[key] != ~0)
6236 key = kvm_async_pf_next_probe(key);
6237
6238 vcpu->arch.apf.gfns[key] = gfn;
6239 }
6240
6241 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
6242 {
6243 int i;
6244 u32 key = kvm_async_pf_hash_fn(gfn);
6245
6246 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
6247 (vcpu->arch.apf.gfns[key] != gfn &&
6248 vcpu->arch.apf.gfns[key] != ~0); i++)
6249 key = kvm_async_pf_next_probe(key);
6250
6251 return key;
6252 }
6253
6254 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6255 {
6256 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
6257 }
6258
6259 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6260 {
6261 u32 i, j, k;
6262
6263 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
6264 while (true) {
6265 vcpu->arch.apf.gfns[i] = ~0;
6266 do {
6267 j = kvm_async_pf_next_probe(j);
6268 if (vcpu->arch.apf.gfns[j] == ~0)
6269 return;
6270 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
6271 /*
6272 * k lies cyclically in ]i,j]
6273 * | i.k.j |
6274 * |....j i.k.| or |.k..j i...|
6275 */
6276 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
6277 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
6278 i = j;
6279 }
6280 }
6281
6282 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
6283 {
6284
6285 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
6286 sizeof(val));
6287 }
6288
6289 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
6290 struct kvm_async_pf *work)
6291 {
6292 struct x86_exception fault;
6293
6294 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
6295 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
6296
6297 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
6298 (vcpu->arch.apf.send_user_only &&
6299 kvm_x86_ops->get_cpl(vcpu) == 0))
6300 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
6301 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
6302 fault.vector = PF_VECTOR;
6303 fault.error_code_valid = true;
6304 fault.error_code = 0;
6305 fault.nested_page_fault = false;
6306 fault.address = work->arch.token;
6307 kvm_inject_page_fault(vcpu, &fault);
6308 }
6309 }
6310
6311 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
6312 struct kvm_async_pf *work)
6313 {
6314 struct x86_exception fault;
6315
6316 trace_kvm_async_pf_ready(work->arch.token, work->gva);
6317 if (is_error_page(work->page))
6318 work->arch.token = ~0; /* broadcast wakeup */
6319 else
6320 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
6321
6322 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
6323 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
6324 fault.vector = PF_VECTOR;
6325 fault.error_code_valid = true;
6326 fault.error_code = 0;
6327 fault.nested_page_fault = false;
6328 fault.address = work->arch.token;
6329 kvm_inject_page_fault(vcpu, &fault);
6330 }
6331 vcpu->arch.apf.halted = false;
6332 }
6333
6334 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
6335 {
6336 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
6337 return true;
6338 else
6339 return !kvm_event_needs_reinjection(vcpu) &&
6340 kvm_x86_ops->interrupt_allowed(vcpu);
6341 }
6342
6343 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6344 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6345 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6346 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6347 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6348 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6349 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6350 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6351 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6352 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6353 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6354 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
This page took 0.214677 seconds and 4 git commands to generate.