KVM: x86: handle guest access to BBL_CR_CTL3 MSR
[deliverable/linux.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/module.h>
36 #include <linux/mman.h>
37 #include <linux/highmem.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/cpufreq.h>
41 #include <linux/user-return-notifier.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/perf_event.h>
45 #include <linux/uaccess.h>
46 #include <linux/hash.h>
47 #include <trace/events/kvm.h>
48
49 #define CREATE_TRACE_POINTS
50 #include "trace.h"
51
52 #include <asm/debugreg.h>
53 #include <asm/msr.h>
54 #include <asm/desc.h>
55 #include <asm/mtrr.h>
56 #include <asm/mce.h>
57 #include <asm/i387.h>
58 #include <asm/xcr.h>
59 #include <asm/pvclock.h>
60 #include <asm/div64.h>
61
62 #define MAX_IO_MSRS 256
63 #define CR0_RESERVED_BITS \
64 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
65 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
66 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
67 #define CR4_RESERVED_BITS \
68 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
69 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
70 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
71 | X86_CR4_OSXSAVE \
72 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
73
74 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
75
76 #define KVM_MAX_MCE_BANKS 32
77 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
78
79 /* EFER defaults:
80 * - enable syscall per default because its emulated by KVM
81 * - enable LME and LMA per default on 64 bit KVM
82 */
83 #ifdef CONFIG_X86_64
84 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
85 #else
86 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
87 #endif
88
89 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
90 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
91
92 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
93 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
94 struct kvm_cpuid_entry2 __user *entries);
95
96 struct kvm_x86_ops *kvm_x86_ops;
97 EXPORT_SYMBOL_GPL(kvm_x86_ops);
98
99 int ignore_msrs = 0;
100 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
101
102 #define KVM_NR_SHARED_MSRS 16
103
104 struct kvm_shared_msrs_global {
105 int nr;
106 u32 msrs[KVM_NR_SHARED_MSRS];
107 };
108
109 struct kvm_shared_msrs {
110 struct user_return_notifier urn;
111 bool registered;
112 struct kvm_shared_msr_values {
113 u64 host;
114 u64 curr;
115 } values[KVM_NR_SHARED_MSRS];
116 };
117
118 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
119 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
120
121 struct kvm_stats_debugfs_item debugfs_entries[] = {
122 { "pf_fixed", VCPU_STAT(pf_fixed) },
123 { "pf_guest", VCPU_STAT(pf_guest) },
124 { "tlb_flush", VCPU_STAT(tlb_flush) },
125 { "invlpg", VCPU_STAT(invlpg) },
126 { "exits", VCPU_STAT(exits) },
127 { "io_exits", VCPU_STAT(io_exits) },
128 { "mmio_exits", VCPU_STAT(mmio_exits) },
129 { "signal_exits", VCPU_STAT(signal_exits) },
130 { "irq_window", VCPU_STAT(irq_window_exits) },
131 { "nmi_window", VCPU_STAT(nmi_window_exits) },
132 { "halt_exits", VCPU_STAT(halt_exits) },
133 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
134 { "hypercalls", VCPU_STAT(hypercalls) },
135 { "request_irq", VCPU_STAT(request_irq_exits) },
136 { "irq_exits", VCPU_STAT(irq_exits) },
137 { "host_state_reload", VCPU_STAT(host_state_reload) },
138 { "efer_reload", VCPU_STAT(efer_reload) },
139 { "fpu_reload", VCPU_STAT(fpu_reload) },
140 { "insn_emulation", VCPU_STAT(insn_emulation) },
141 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
142 { "irq_injections", VCPU_STAT(irq_injections) },
143 { "nmi_injections", VCPU_STAT(nmi_injections) },
144 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
145 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
146 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
147 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
148 { "mmu_flooded", VM_STAT(mmu_flooded) },
149 { "mmu_recycled", VM_STAT(mmu_recycled) },
150 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
151 { "mmu_unsync", VM_STAT(mmu_unsync) },
152 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
153 { "largepages", VM_STAT(lpages) },
154 { NULL }
155 };
156
157 u64 __read_mostly host_xcr0;
158
159 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
160 {
161 int i;
162 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
163 vcpu->arch.apf.gfns[i] = ~0;
164 }
165
166 static void kvm_on_user_return(struct user_return_notifier *urn)
167 {
168 unsigned slot;
169 struct kvm_shared_msrs *locals
170 = container_of(urn, struct kvm_shared_msrs, urn);
171 struct kvm_shared_msr_values *values;
172
173 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
174 values = &locals->values[slot];
175 if (values->host != values->curr) {
176 wrmsrl(shared_msrs_global.msrs[slot], values->host);
177 values->curr = values->host;
178 }
179 }
180 locals->registered = false;
181 user_return_notifier_unregister(urn);
182 }
183
184 static void shared_msr_update(unsigned slot, u32 msr)
185 {
186 struct kvm_shared_msrs *smsr;
187 u64 value;
188
189 smsr = &__get_cpu_var(shared_msrs);
190 /* only read, and nobody should modify it at this time,
191 * so don't need lock */
192 if (slot >= shared_msrs_global.nr) {
193 printk(KERN_ERR "kvm: invalid MSR slot!");
194 return;
195 }
196 rdmsrl_safe(msr, &value);
197 smsr->values[slot].host = value;
198 smsr->values[slot].curr = value;
199 }
200
201 void kvm_define_shared_msr(unsigned slot, u32 msr)
202 {
203 if (slot >= shared_msrs_global.nr)
204 shared_msrs_global.nr = slot + 1;
205 shared_msrs_global.msrs[slot] = msr;
206 /* we need ensured the shared_msr_global have been updated */
207 smp_wmb();
208 }
209 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
210
211 static void kvm_shared_msr_cpu_online(void)
212 {
213 unsigned i;
214
215 for (i = 0; i < shared_msrs_global.nr; ++i)
216 shared_msr_update(i, shared_msrs_global.msrs[i]);
217 }
218
219 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
220 {
221 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
222
223 if (((value ^ smsr->values[slot].curr) & mask) == 0)
224 return;
225 smsr->values[slot].curr = value;
226 wrmsrl(shared_msrs_global.msrs[slot], value);
227 if (!smsr->registered) {
228 smsr->urn.on_user_return = kvm_on_user_return;
229 user_return_notifier_register(&smsr->urn);
230 smsr->registered = true;
231 }
232 }
233 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
234
235 static void drop_user_return_notifiers(void *ignore)
236 {
237 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
238
239 if (smsr->registered)
240 kvm_on_user_return(&smsr->urn);
241 }
242
243 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
244 {
245 if (irqchip_in_kernel(vcpu->kvm))
246 return vcpu->arch.apic_base;
247 else
248 return vcpu->arch.apic_base;
249 }
250 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
251
252 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
253 {
254 /* TODO: reserve bits check */
255 if (irqchip_in_kernel(vcpu->kvm))
256 kvm_lapic_set_base(vcpu, data);
257 else
258 vcpu->arch.apic_base = data;
259 }
260 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
261
262 #define EXCPT_BENIGN 0
263 #define EXCPT_CONTRIBUTORY 1
264 #define EXCPT_PF 2
265
266 static int exception_class(int vector)
267 {
268 switch (vector) {
269 case PF_VECTOR:
270 return EXCPT_PF;
271 case DE_VECTOR:
272 case TS_VECTOR:
273 case NP_VECTOR:
274 case SS_VECTOR:
275 case GP_VECTOR:
276 return EXCPT_CONTRIBUTORY;
277 default:
278 break;
279 }
280 return EXCPT_BENIGN;
281 }
282
283 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
284 unsigned nr, bool has_error, u32 error_code,
285 bool reinject)
286 {
287 u32 prev_nr;
288 int class1, class2;
289
290 kvm_make_request(KVM_REQ_EVENT, vcpu);
291
292 if (!vcpu->arch.exception.pending) {
293 queue:
294 vcpu->arch.exception.pending = true;
295 vcpu->arch.exception.has_error_code = has_error;
296 vcpu->arch.exception.nr = nr;
297 vcpu->arch.exception.error_code = error_code;
298 vcpu->arch.exception.reinject = reinject;
299 return;
300 }
301
302 /* to check exception */
303 prev_nr = vcpu->arch.exception.nr;
304 if (prev_nr == DF_VECTOR) {
305 /* triple fault -> shutdown */
306 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
307 return;
308 }
309 class1 = exception_class(prev_nr);
310 class2 = exception_class(nr);
311 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
312 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
313 /* generate double fault per SDM Table 5-5 */
314 vcpu->arch.exception.pending = true;
315 vcpu->arch.exception.has_error_code = true;
316 vcpu->arch.exception.nr = DF_VECTOR;
317 vcpu->arch.exception.error_code = 0;
318 } else
319 /* replace previous exception with a new one in a hope
320 that instruction re-execution will regenerate lost
321 exception */
322 goto queue;
323 }
324
325 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
326 {
327 kvm_multiple_exception(vcpu, nr, false, 0, false);
328 }
329 EXPORT_SYMBOL_GPL(kvm_queue_exception);
330
331 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
332 {
333 kvm_multiple_exception(vcpu, nr, false, 0, true);
334 }
335 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
336
337 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
338 {
339 if (err)
340 kvm_inject_gp(vcpu, 0);
341 else
342 kvm_x86_ops->skip_emulated_instruction(vcpu);
343 }
344 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
345
346 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
347 {
348 ++vcpu->stat.pf_guest;
349 vcpu->arch.cr2 = fault->address;
350 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
351 }
352
353 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
354 {
355 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
356 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
357 else
358 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
359 }
360
361 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
362 {
363 kvm_make_request(KVM_REQ_EVENT, vcpu);
364 vcpu->arch.nmi_pending = 1;
365 }
366 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
367
368 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
369 {
370 kvm_multiple_exception(vcpu, nr, true, error_code, false);
371 }
372 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
373
374 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
375 {
376 kvm_multiple_exception(vcpu, nr, true, error_code, true);
377 }
378 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
379
380 /*
381 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
382 * a #GP and return false.
383 */
384 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
385 {
386 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
387 return true;
388 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
389 return false;
390 }
391 EXPORT_SYMBOL_GPL(kvm_require_cpl);
392
393 /*
394 * This function will be used to read from the physical memory of the currently
395 * running guest. The difference to kvm_read_guest_page is that this function
396 * can read from guest physical or from the guest's guest physical memory.
397 */
398 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
399 gfn_t ngfn, void *data, int offset, int len,
400 u32 access)
401 {
402 gfn_t real_gfn;
403 gpa_t ngpa;
404
405 ngpa = gfn_to_gpa(ngfn);
406 real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
407 if (real_gfn == UNMAPPED_GVA)
408 return -EFAULT;
409
410 real_gfn = gpa_to_gfn(real_gfn);
411
412 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
413 }
414 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
415
416 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
417 void *data, int offset, int len, u32 access)
418 {
419 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
420 data, offset, len, access);
421 }
422
423 /*
424 * Load the pae pdptrs. Return true is they are all valid.
425 */
426 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
427 {
428 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
429 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
430 int i;
431 int ret;
432 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
433
434 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
435 offset * sizeof(u64), sizeof(pdpte),
436 PFERR_USER_MASK|PFERR_WRITE_MASK);
437 if (ret < 0) {
438 ret = 0;
439 goto out;
440 }
441 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
442 if (is_present_gpte(pdpte[i]) &&
443 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
444 ret = 0;
445 goto out;
446 }
447 }
448 ret = 1;
449
450 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
451 __set_bit(VCPU_EXREG_PDPTR,
452 (unsigned long *)&vcpu->arch.regs_avail);
453 __set_bit(VCPU_EXREG_PDPTR,
454 (unsigned long *)&vcpu->arch.regs_dirty);
455 out:
456
457 return ret;
458 }
459 EXPORT_SYMBOL_GPL(load_pdptrs);
460
461 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
462 {
463 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
464 bool changed = true;
465 int offset;
466 gfn_t gfn;
467 int r;
468
469 if (is_long_mode(vcpu) || !is_pae(vcpu))
470 return false;
471
472 if (!test_bit(VCPU_EXREG_PDPTR,
473 (unsigned long *)&vcpu->arch.regs_avail))
474 return true;
475
476 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
477 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
478 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
479 PFERR_USER_MASK | PFERR_WRITE_MASK);
480 if (r < 0)
481 goto out;
482 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
483 out:
484
485 return changed;
486 }
487
488 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
489 {
490 unsigned long old_cr0 = kvm_read_cr0(vcpu);
491 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
492 X86_CR0_CD | X86_CR0_NW;
493
494 cr0 |= X86_CR0_ET;
495
496 #ifdef CONFIG_X86_64
497 if (cr0 & 0xffffffff00000000UL)
498 return 1;
499 #endif
500
501 cr0 &= ~CR0_RESERVED_BITS;
502
503 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
504 return 1;
505
506 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
507 return 1;
508
509 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
510 #ifdef CONFIG_X86_64
511 if ((vcpu->arch.efer & EFER_LME)) {
512 int cs_db, cs_l;
513
514 if (!is_pae(vcpu))
515 return 1;
516 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
517 if (cs_l)
518 return 1;
519 } else
520 #endif
521 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
522 kvm_read_cr3(vcpu)))
523 return 1;
524 }
525
526 kvm_x86_ops->set_cr0(vcpu, cr0);
527
528 if ((cr0 ^ old_cr0) & X86_CR0_PG)
529 kvm_clear_async_pf_completion_queue(vcpu);
530
531 if ((cr0 ^ old_cr0) & update_bits)
532 kvm_mmu_reset_context(vcpu);
533 return 0;
534 }
535 EXPORT_SYMBOL_GPL(kvm_set_cr0);
536
537 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
538 {
539 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
540 }
541 EXPORT_SYMBOL_GPL(kvm_lmsw);
542
543 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
544 {
545 u64 xcr0;
546
547 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
548 if (index != XCR_XFEATURE_ENABLED_MASK)
549 return 1;
550 xcr0 = xcr;
551 if (kvm_x86_ops->get_cpl(vcpu) != 0)
552 return 1;
553 if (!(xcr0 & XSTATE_FP))
554 return 1;
555 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
556 return 1;
557 if (xcr0 & ~host_xcr0)
558 return 1;
559 vcpu->arch.xcr0 = xcr0;
560 vcpu->guest_xcr0_loaded = 0;
561 return 0;
562 }
563
564 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
565 {
566 if (__kvm_set_xcr(vcpu, index, xcr)) {
567 kvm_inject_gp(vcpu, 0);
568 return 1;
569 }
570 return 0;
571 }
572 EXPORT_SYMBOL_GPL(kvm_set_xcr);
573
574 static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
575 {
576 struct kvm_cpuid_entry2 *best;
577
578 best = kvm_find_cpuid_entry(vcpu, 1, 0);
579 return best && (best->ecx & bit(X86_FEATURE_XSAVE));
580 }
581
582 static void update_cpuid(struct kvm_vcpu *vcpu)
583 {
584 struct kvm_cpuid_entry2 *best;
585
586 best = kvm_find_cpuid_entry(vcpu, 1, 0);
587 if (!best)
588 return;
589
590 /* Update OSXSAVE bit */
591 if (cpu_has_xsave && best->function == 0x1) {
592 best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
593 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
594 best->ecx |= bit(X86_FEATURE_OSXSAVE);
595 }
596 }
597
598 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
599 {
600 unsigned long old_cr4 = kvm_read_cr4(vcpu);
601 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
602
603 if (cr4 & CR4_RESERVED_BITS)
604 return 1;
605
606 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
607 return 1;
608
609 if (is_long_mode(vcpu)) {
610 if (!(cr4 & X86_CR4_PAE))
611 return 1;
612 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
613 && ((cr4 ^ old_cr4) & pdptr_bits)
614 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
615 kvm_read_cr3(vcpu)))
616 return 1;
617
618 if (cr4 & X86_CR4_VMXE)
619 return 1;
620
621 kvm_x86_ops->set_cr4(vcpu, cr4);
622
623 if ((cr4 ^ old_cr4) & pdptr_bits)
624 kvm_mmu_reset_context(vcpu);
625
626 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
627 update_cpuid(vcpu);
628
629 return 0;
630 }
631 EXPORT_SYMBOL_GPL(kvm_set_cr4);
632
633 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
634 {
635 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
636 kvm_mmu_sync_roots(vcpu);
637 kvm_mmu_flush_tlb(vcpu);
638 return 0;
639 }
640
641 if (is_long_mode(vcpu)) {
642 if (cr3 & CR3_L_MODE_RESERVED_BITS)
643 return 1;
644 } else {
645 if (is_pae(vcpu)) {
646 if (cr3 & CR3_PAE_RESERVED_BITS)
647 return 1;
648 if (is_paging(vcpu) &&
649 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
650 return 1;
651 }
652 /*
653 * We don't check reserved bits in nonpae mode, because
654 * this isn't enforced, and VMware depends on this.
655 */
656 }
657
658 /*
659 * Does the new cr3 value map to physical memory? (Note, we
660 * catch an invalid cr3 even in real-mode, because it would
661 * cause trouble later on when we turn on paging anyway.)
662 *
663 * A real CPU would silently accept an invalid cr3 and would
664 * attempt to use it - with largely undefined (and often hard
665 * to debug) behavior on the guest side.
666 */
667 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
668 return 1;
669 vcpu->arch.cr3 = cr3;
670 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
671 vcpu->arch.mmu.new_cr3(vcpu);
672 return 0;
673 }
674 EXPORT_SYMBOL_GPL(kvm_set_cr3);
675
676 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
677 {
678 if (cr8 & CR8_RESERVED_BITS)
679 return 1;
680 if (irqchip_in_kernel(vcpu->kvm))
681 kvm_lapic_set_tpr(vcpu, cr8);
682 else
683 vcpu->arch.cr8 = cr8;
684 return 0;
685 }
686 EXPORT_SYMBOL_GPL(kvm_set_cr8);
687
688 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
689 {
690 if (irqchip_in_kernel(vcpu->kvm))
691 return kvm_lapic_get_cr8(vcpu);
692 else
693 return vcpu->arch.cr8;
694 }
695 EXPORT_SYMBOL_GPL(kvm_get_cr8);
696
697 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
698 {
699 switch (dr) {
700 case 0 ... 3:
701 vcpu->arch.db[dr] = val;
702 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
703 vcpu->arch.eff_db[dr] = val;
704 break;
705 case 4:
706 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
707 return 1; /* #UD */
708 /* fall through */
709 case 6:
710 if (val & 0xffffffff00000000ULL)
711 return -1; /* #GP */
712 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
713 break;
714 case 5:
715 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
716 return 1; /* #UD */
717 /* fall through */
718 default: /* 7 */
719 if (val & 0xffffffff00000000ULL)
720 return -1; /* #GP */
721 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
722 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
723 kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
724 vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
725 }
726 break;
727 }
728
729 return 0;
730 }
731
732 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
733 {
734 int res;
735
736 res = __kvm_set_dr(vcpu, dr, val);
737 if (res > 0)
738 kvm_queue_exception(vcpu, UD_VECTOR);
739 else if (res < 0)
740 kvm_inject_gp(vcpu, 0);
741
742 return res;
743 }
744 EXPORT_SYMBOL_GPL(kvm_set_dr);
745
746 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
747 {
748 switch (dr) {
749 case 0 ... 3:
750 *val = vcpu->arch.db[dr];
751 break;
752 case 4:
753 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
754 return 1;
755 /* fall through */
756 case 6:
757 *val = vcpu->arch.dr6;
758 break;
759 case 5:
760 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
761 return 1;
762 /* fall through */
763 default: /* 7 */
764 *val = vcpu->arch.dr7;
765 break;
766 }
767
768 return 0;
769 }
770
771 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
772 {
773 if (_kvm_get_dr(vcpu, dr, val)) {
774 kvm_queue_exception(vcpu, UD_VECTOR);
775 return 1;
776 }
777 return 0;
778 }
779 EXPORT_SYMBOL_GPL(kvm_get_dr);
780
781 /*
782 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
783 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
784 *
785 * This list is modified at module load time to reflect the
786 * capabilities of the host cpu. This capabilities test skips MSRs that are
787 * kvm-specific. Those are put in the beginning of the list.
788 */
789
790 #define KVM_SAVE_MSRS_BEGIN 8
791 static u32 msrs_to_save[] = {
792 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
793 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
794 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
795 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN,
796 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
797 MSR_STAR,
798 #ifdef CONFIG_X86_64
799 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
800 #endif
801 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
802 };
803
804 static unsigned num_msrs_to_save;
805
806 static u32 emulated_msrs[] = {
807 MSR_IA32_MISC_ENABLE,
808 MSR_IA32_MCG_STATUS,
809 MSR_IA32_MCG_CTL,
810 };
811
812 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
813 {
814 u64 old_efer = vcpu->arch.efer;
815
816 if (efer & efer_reserved_bits)
817 return 1;
818
819 if (is_paging(vcpu)
820 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
821 return 1;
822
823 if (efer & EFER_FFXSR) {
824 struct kvm_cpuid_entry2 *feat;
825
826 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
827 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
828 return 1;
829 }
830
831 if (efer & EFER_SVME) {
832 struct kvm_cpuid_entry2 *feat;
833
834 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
835 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
836 return 1;
837 }
838
839 efer &= ~EFER_LMA;
840 efer |= vcpu->arch.efer & EFER_LMA;
841
842 kvm_x86_ops->set_efer(vcpu, efer);
843
844 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
845
846 /* Update reserved bits */
847 if ((efer ^ old_efer) & EFER_NX)
848 kvm_mmu_reset_context(vcpu);
849
850 return 0;
851 }
852
853 void kvm_enable_efer_bits(u64 mask)
854 {
855 efer_reserved_bits &= ~mask;
856 }
857 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
858
859
860 /*
861 * Writes msr value into into the appropriate "register".
862 * Returns 0 on success, non-0 otherwise.
863 * Assumes vcpu_load() was already called.
864 */
865 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
866 {
867 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
868 }
869
870 /*
871 * Adapt set_msr() to msr_io()'s calling convention
872 */
873 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
874 {
875 return kvm_set_msr(vcpu, index, *data);
876 }
877
878 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
879 {
880 int version;
881 int r;
882 struct pvclock_wall_clock wc;
883 struct timespec boot;
884
885 if (!wall_clock)
886 return;
887
888 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
889 if (r)
890 return;
891
892 if (version & 1)
893 ++version; /* first time write, random junk */
894
895 ++version;
896
897 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
898
899 /*
900 * The guest calculates current wall clock time by adding
901 * system time (updated by kvm_guest_time_update below) to the
902 * wall clock specified here. guest system time equals host
903 * system time for us, thus we must fill in host boot time here.
904 */
905 getboottime(&boot);
906
907 wc.sec = boot.tv_sec;
908 wc.nsec = boot.tv_nsec;
909 wc.version = version;
910
911 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
912
913 version++;
914 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
915 }
916
917 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
918 {
919 uint32_t quotient, remainder;
920
921 /* Don't try to replace with do_div(), this one calculates
922 * "(dividend << 32) / divisor" */
923 __asm__ ( "divl %4"
924 : "=a" (quotient), "=d" (remainder)
925 : "0" (0), "1" (dividend), "r" (divisor) );
926 return quotient;
927 }
928
929 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
930 s8 *pshift, u32 *pmultiplier)
931 {
932 uint64_t scaled64;
933 int32_t shift = 0;
934 uint64_t tps64;
935 uint32_t tps32;
936
937 tps64 = base_khz * 1000LL;
938 scaled64 = scaled_khz * 1000LL;
939 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
940 tps64 >>= 1;
941 shift--;
942 }
943
944 tps32 = (uint32_t)tps64;
945 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
946 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
947 scaled64 >>= 1;
948 else
949 tps32 <<= 1;
950 shift++;
951 }
952
953 *pshift = shift;
954 *pmultiplier = div_frac(scaled64, tps32);
955
956 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
957 __func__, base_khz, scaled_khz, shift, *pmultiplier);
958 }
959
960 static inline u64 get_kernel_ns(void)
961 {
962 struct timespec ts;
963
964 WARN_ON(preemptible());
965 ktime_get_ts(&ts);
966 monotonic_to_bootbased(&ts);
967 return timespec_to_ns(&ts);
968 }
969
970 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
971 unsigned long max_tsc_khz;
972
973 static inline int kvm_tsc_changes_freq(void)
974 {
975 int cpu = get_cpu();
976 int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
977 cpufreq_quick_get(cpu) != 0;
978 put_cpu();
979 return ret;
980 }
981
982 static inline u64 nsec_to_cycles(u64 nsec)
983 {
984 u64 ret;
985
986 WARN_ON(preemptible());
987 if (kvm_tsc_changes_freq())
988 printk_once(KERN_WARNING
989 "kvm: unreliable cycle conversion on adjustable rate TSC\n");
990 ret = nsec * __this_cpu_read(cpu_tsc_khz);
991 do_div(ret, USEC_PER_SEC);
992 return ret;
993 }
994
995 static void kvm_arch_set_tsc_khz(struct kvm *kvm, u32 this_tsc_khz)
996 {
997 /* Compute a scale to convert nanoseconds in TSC cycles */
998 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
999 &kvm->arch.virtual_tsc_shift,
1000 &kvm->arch.virtual_tsc_mult);
1001 kvm->arch.virtual_tsc_khz = this_tsc_khz;
1002 }
1003
1004 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1005 {
1006 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
1007 vcpu->kvm->arch.virtual_tsc_mult,
1008 vcpu->kvm->arch.virtual_tsc_shift);
1009 tsc += vcpu->arch.last_tsc_write;
1010 return tsc;
1011 }
1012
1013 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1014 {
1015 struct kvm *kvm = vcpu->kvm;
1016 u64 offset, ns, elapsed;
1017 unsigned long flags;
1018 s64 sdiff;
1019
1020 spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1021 offset = data - native_read_tsc();
1022 ns = get_kernel_ns();
1023 elapsed = ns - kvm->arch.last_tsc_nsec;
1024 sdiff = data - kvm->arch.last_tsc_write;
1025 if (sdiff < 0)
1026 sdiff = -sdiff;
1027
1028 /*
1029 * Special case: close write to TSC within 5 seconds of
1030 * another CPU is interpreted as an attempt to synchronize
1031 * The 5 seconds is to accomodate host load / swapping as
1032 * well as any reset of TSC during the boot process.
1033 *
1034 * In that case, for a reliable TSC, we can match TSC offsets,
1035 * or make a best guest using elapsed value.
1036 */
1037 if (sdiff < nsec_to_cycles(5ULL * NSEC_PER_SEC) &&
1038 elapsed < 5ULL * NSEC_PER_SEC) {
1039 if (!check_tsc_unstable()) {
1040 offset = kvm->arch.last_tsc_offset;
1041 pr_debug("kvm: matched tsc offset for %llu\n", data);
1042 } else {
1043 u64 delta = nsec_to_cycles(elapsed);
1044 offset += delta;
1045 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1046 }
1047 ns = kvm->arch.last_tsc_nsec;
1048 }
1049 kvm->arch.last_tsc_nsec = ns;
1050 kvm->arch.last_tsc_write = data;
1051 kvm->arch.last_tsc_offset = offset;
1052 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1053 spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1054
1055 /* Reset of TSC must disable overshoot protection below */
1056 vcpu->arch.hv_clock.tsc_timestamp = 0;
1057 vcpu->arch.last_tsc_write = data;
1058 vcpu->arch.last_tsc_nsec = ns;
1059 }
1060 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1061
1062 static int kvm_guest_time_update(struct kvm_vcpu *v)
1063 {
1064 unsigned long flags;
1065 struct kvm_vcpu_arch *vcpu = &v->arch;
1066 void *shared_kaddr;
1067 unsigned long this_tsc_khz;
1068 s64 kernel_ns, max_kernel_ns;
1069 u64 tsc_timestamp;
1070
1071 /* Keep irq disabled to prevent changes to the clock */
1072 local_irq_save(flags);
1073 kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
1074 kernel_ns = get_kernel_ns();
1075 this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1076
1077 if (unlikely(this_tsc_khz == 0)) {
1078 local_irq_restore(flags);
1079 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1080 return 1;
1081 }
1082
1083 /*
1084 * We may have to catch up the TSC to match elapsed wall clock
1085 * time for two reasons, even if kvmclock is used.
1086 * 1) CPU could have been running below the maximum TSC rate
1087 * 2) Broken TSC compensation resets the base at each VCPU
1088 * entry to avoid unknown leaps of TSC even when running
1089 * again on the same CPU. This may cause apparent elapsed
1090 * time to disappear, and the guest to stand still or run
1091 * very slowly.
1092 */
1093 if (vcpu->tsc_catchup) {
1094 u64 tsc = compute_guest_tsc(v, kernel_ns);
1095 if (tsc > tsc_timestamp) {
1096 kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp);
1097 tsc_timestamp = tsc;
1098 }
1099 }
1100
1101 local_irq_restore(flags);
1102
1103 if (!vcpu->time_page)
1104 return 0;
1105
1106 /*
1107 * Time as measured by the TSC may go backwards when resetting the base
1108 * tsc_timestamp. The reason for this is that the TSC resolution is
1109 * higher than the resolution of the other clock scales. Thus, many
1110 * possible measurments of the TSC correspond to one measurement of any
1111 * other clock, and so a spread of values is possible. This is not a
1112 * problem for the computation of the nanosecond clock; with TSC rates
1113 * around 1GHZ, there can only be a few cycles which correspond to one
1114 * nanosecond value, and any path through this code will inevitably
1115 * take longer than that. However, with the kernel_ns value itself,
1116 * the precision may be much lower, down to HZ granularity. If the
1117 * first sampling of TSC against kernel_ns ends in the low part of the
1118 * range, and the second in the high end of the range, we can get:
1119 *
1120 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1121 *
1122 * As the sampling errors potentially range in the thousands of cycles,
1123 * it is possible such a time value has already been observed by the
1124 * guest. To protect against this, we must compute the system time as
1125 * observed by the guest and ensure the new system time is greater.
1126 */
1127 max_kernel_ns = 0;
1128 if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
1129 max_kernel_ns = vcpu->last_guest_tsc -
1130 vcpu->hv_clock.tsc_timestamp;
1131 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1132 vcpu->hv_clock.tsc_to_system_mul,
1133 vcpu->hv_clock.tsc_shift);
1134 max_kernel_ns += vcpu->last_kernel_ns;
1135 }
1136
1137 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1138 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1139 &vcpu->hv_clock.tsc_shift,
1140 &vcpu->hv_clock.tsc_to_system_mul);
1141 vcpu->hw_tsc_khz = this_tsc_khz;
1142 }
1143
1144 if (max_kernel_ns > kernel_ns)
1145 kernel_ns = max_kernel_ns;
1146
1147 /* With all the info we got, fill in the values */
1148 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1149 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1150 vcpu->last_kernel_ns = kernel_ns;
1151 vcpu->last_guest_tsc = tsc_timestamp;
1152 vcpu->hv_clock.flags = 0;
1153
1154 /*
1155 * The interface expects us to write an even number signaling that the
1156 * update is finished. Since the guest won't see the intermediate
1157 * state, we just increase by 2 at the end.
1158 */
1159 vcpu->hv_clock.version += 2;
1160
1161 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
1162
1163 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1164 sizeof(vcpu->hv_clock));
1165
1166 kunmap_atomic(shared_kaddr, KM_USER0);
1167
1168 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1169 return 0;
1170 }
1171
1172 static bool msr_mtrr_valid(unsigned msr)
1173 {
1174 switch (msr) {
1175 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1176 case MSR_MTRRfix64K_00000:
1177 case MSR_MTRRfix16K_80000:
1178 case MSR_MTRRfix16K_A0000:
1179 case MSR_MTRRfix4K_C0000:
1180 case MSR_MTRRfix4K_C8000:
1181 case MSR_MTRRfix4K_D0000:
1182 case MSR_MTRRfix4K_D8000:
1183 case MSR_MTRRfix4K_E0000:
1184 case MSR_MTRRfix4K_E8000:
1185 case MSR_MTRRfix4K_F0000:
1186 case MSR_MTRRfix4K_F8000:
1187 case MSR_MTRRdefType:
1188 case MSR_IA32_CR_PAT:
1189 return true;
1190 case 0x2f8:
1191 return true;
1192 }
1193 return false;
1194 }
1195
1196 static bool valid_pat_type(unsigned t)
1197 {
1198 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1199 }
1200
1201 static bool valid_mtrr_type(unsigned t)
1202 {
1203 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1204 }
1205
1206 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1207 {
1208 int i;
1209
1210 if (!msr_mtrr_valid(msr))
1211 return false;
1212
1213 if (msr == MSR_IA32_CR_PAT) {
1214 for (i = 0; i < 8; i++)
1215 if (!valid_pat_type((data >> (i * 8)) & 0xff))
1216 return false;
1217 return true;
1218 } else if (msr == MSR_MTRRdefType) {
1219 if (data & ~0xcff)
1220 return false;
1221 return valid_mtrr_type(data & 0xff);
1222 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1223 for (i = 0; i < 8 ; i++)
1224 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1225 return false;
1226 return true;
1227 }
1228
1229 /* variable MTRRs */
1230 return valid_mtrr_type(data & 0xff);
1231 }
1232
1233 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1234 {
1235 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1236
1237 if (!mtrr_valid(vcpu, msr, data))
1238 return 1;
1239
1240 if (msr == MSR_MTRRdefType) {
1241 vcpu->arch.mtrr_state.def_type = data;
1242 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1243 } else if (msr == MSR_MTRRfix64K_00000)
1244 p[0] = data;
1245 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1246 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1247 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1248 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1249 else if (msr == MSR_IA32_CR_PAT)
1250 vcpu->arch.pat = data;
1251 else { /* Variable MTRRs */
1252 int idx, is_mtrr_mask;
1253 u64 *pt;
1254
1255 idx = (msr - 0x200) / 2;
1256 is_mtrr_mask = msr - 0x200 - 2 * idx;
1257 if (!is_mtrr_mask)
1258 pt =
1259 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1260 else
1261 pt =
1262 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1263 *pt = data;
1264 }
1265
1266 kvm_mmu_reset_context(vcpu);
1267 return 0;
1268 }
1269
1270 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1271 {
1272 u64 mcg_cap = vcpu->arch.mcg_cap;
1273 unsigned bank_num = mcg_cap & 0xff;
1274
1275 switch (msr) {
1276 case MSR_IA32_MCG_STATUS:
1277 vcpu->arch.mcg_status = data;
1278 break;
1279 case MSR_IA32_MCG_CTL:
1280 if (!(mcg_cap & MCG_CTL_P))
1281 return 1;
1282 if (data != 0 && data != ~(u64)0)
1283 return -1;
1284 vcpu->arch.mcg_ctl = data;
1285 break;
1286 default:
1287 if (msr >= MSR_IA32_MC0_CTL &&
1288 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1289 u32 offset = msr - MSR_IA32_MC0_CTL;
1290 /* only 0 or all 1s can be written to IA32_MCi_CTL
1291 * some Linux kernels though clear bit 10 in bank 4 to
1292 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1293 * this to avoid an uncatched #GP in the guest
1294 */
1295 if ((offset & 0x3) == 0 &&
1296 data != 0 && (data | (1 << 10)) != ~(u64)0)
1297 return -1;
1298 vcpu->arch.mce_banks[offset] = data;
1299 break;
1300 }
1301 return 1;
1302 }
1303 return 0;
1304 }
1305
1306 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1307 {
1308 struct kvm *kvm = vcpu->kvm;
1309 int lm = is_long_mode(vcpu);
1310 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1311 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1312 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1313 : kvm->arch.xen_hvm_config.blob_size_32;
1314 u32 page_num = data & ~PAGE_MASK;
1315 u64 page_addr = data & PAGE_MASK;
1316 u8 *page;
1317 int r;
1318
1319 r = -E2BIG;
1320 if (page_num >= blob_size)
1321 goto out;
1322 r = -ENOMEM;
1323 page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1324 if (!page)
1325 goto out;
1326 r = -EFAULT;
1327 if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1328 goto out_free;
1329 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1330 goto out_free;
1331 r = 0;
1332 out_free:
1333 kfree(page);
1334 out:
1335 return r;
1336 }
1337
1338 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1339 {
1340 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1341 }
1342
1343 static bool kvm_hv_msr_partition_wide(u32 msr)
1344 {
1345 bool r = false;
1346 switch (msr) {
1347 case HV_X64_MSR_GUEST_OS_ID:
1348 case HV_X64_MSR_HYPERCALL:
1349 r = true;
1350 break;
1351 }
1352
1353 return r;
1354 }
1355
1356 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1357 {
1358 struct kvm *kvm = vcpu->kvm;
1359
1360 switch (msr) {
1361 case HV_X64_MSR_GUEST_OS_ID:
1362 kvm->arch.hv_guest_os_id = data;
1363 /* setting guest os id to zero disables hypercall page */
1364 if (!kvm->arch.hv_guest_os_id)
1365 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1366 break;
1367 case HV_X64_MSR_HYPERCALL: {
1368 u64 gfn;
1369 unsigned long addr;
1370 u8 instructions[4];
1371
1372 /* if guest os id is not set hypercall should remain disabled */
1373 if (!kvm->arch.hv_guest_os_id)
1374 break;
1375 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1376 kvm->arch.hv_hypercall = data;
1377 break;
1378 }
1379 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1380 addr = gfn_to_hva(kvm, gfn);
1381 if (kvm_is_error_hva(addr))
1382 return 1;
1383 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1384 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1385 if (copy_to_user((void __user *)addr, instructions, 4))
1386 return 1;
1387 kvm->arch.hv_hypercall = data;
1388 break;
1389 }
1390 default:
1391 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1392 "data 0x%llx\n", msr, data);
1393 return 1;
1394 }
1395 return 0;
1396 }
1397
1398 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1399 {
1400 switch (msr) {
1401 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1402 unsigned long addr;
1403
1404 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1405 vcpu->arch.hv_vapic = data;
1406 break;
1407 }
1408 addr = gfn_to_hva(vcpu->kvm, data >>
1409 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1410 if (kvm_is_error_hva(addr))
1411 return 1;
1412 if (clear_user((void __user *)addr, PAGE_SIZE))
1413 return 1;
1414 vcpu->arch.hv_vapic = data;
1415 break;
1416 }
1417 case HV_X64_MSR_EOI:
1418 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1419 case HV_X64_MSR_ICR:
1420 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1421 case HV_X64_MSR_TPR:
1422 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1423 default:
1424 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1425 "data 0x%llx\n", msr, data);
1426 return 1;
1427 }
1428
1429 return 0;
1430 }
1431
1432 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1433 {
1434 gpa_t gpa = data & ~0x3f;
1435
1436 /* Bits 2:5 are resrved, Should be zero */
1437 if (data & 0x3c)
1438 return 1;
1439
1440 vcpu->arch.apf.msr_val = data;
1441
1442 if (!(data & KVM_ASYNC_PF_ENABLED)) {
1443 kvm_clear_async_pf_completion_queue(vcpu);
1444 kvm_async_pf_hash_reset(vcpu);
1445 return 0;
1446 }
1447
1448 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1449 return 1;
1450
1451 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1452 kvm_async_pf_wakeup_all(vcpu);
1453 return 0;
1454 }
1455
1456 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1457 {
1458 switch (msr) {
1459 case MSR_EFER:
1460 return set_efer(vcpu, data);
1461 case MSR_K7_HWCR:
1462 data &= ~(u64)0x40; /* ignore flush filter disable */
1463 data &= ~(u64)0x100; /* ignore ignne emulation enable */
1464 if (data != 0) {
1465 pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1466 data);
1467 return 1;
1468 }
1469 break;
1470 case MSR_FAM10H_MMIO_CONF_BASE:
1471 if (data != 0) {
1472 pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1473 "0x%llx\n", data);
1474 return 1;
1475 }
1476 break;
1477 case MSR_AMD64_NB_CFG:
1478 break;
1479 case MSR_IA32_DEBUGCTLMSR:
1480 if (!data) {
1481 /* We support the non-activated case already */
1482 break;
1483 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1484 /* Values other than LBR and BTF are vendor-specific,
1485 thus reserved and should throw a #GP */
1486 return 1;
1487 }
1488 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1489 __func__, data);
1490 break;
1491 case MSR_IA32_UCODE_REV:
1492 case MSR_IA32_UCODE_WRITE:
1493 case MSR_VM_HSAVE_PA:
1494 case MSR_AMD64_PATCH_LOADER:
1495 break;
1496 case 0x200 ... 0x2ff:
1497 return set_msr_mtrr(vcpu, msr, data);
1498 case MSR_IA32_APICBASE:
1499 kvm_set_apic_base(vcpu, data);
1500 break;
1501 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1502 return kvm_x2apic_msr_write(vcpu, msr, data);
1503 case MSR_IA32_MISC_ENABLE:
1504 vcpu->arch.ia32_misc_enable_msr = data;
1505 break;
1506 case MSR_KVM_WALL_CLOCK_NEW:
1507 case MSR_KVM_WALL_CLOCK:
1508 vcpu->kvm->arch.wall_clock = data;
1509 kvm_write_wall_clock(vcpu->kvm, data);
1510 break;
1511 case MSR_KVM_SYSTEM_TIME_NEW:
1512 case MSR_KVM_SYSTEM_TIME: {
1513 if (vcpu->arch.time_page) {
1514 kvm_release_page_dirty(vcpu->arch.time_page);
1515 vcpu->arch.time_page = NULL;
1516 }
1517
1518 vcpu->arch.time = data;
1519 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1520
1521 /* we verify if the enable bit is set... */
1522 if (!(data & 1))
1523 break;
1524
1525 /* ...but clean it before doing the actual write */
1526 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1527
1528 vcpu->arch.time_page =
1529 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1530
1531 if (is_error_page(vcpu->arch.time_page)) {
1532 kvm_release_page_clean(vcpu->arch.time_page);
1533 vcpu->arch.time_page = NULL;
1534 }
1535 break;
1536 }
1537 case MSR_KVM_ASYNC_PF_EN:
1538 if (kvm_pv_enable_async_pf(vcpu, data))
1539 return 1;
1540 break;
1541 case MSR_IA32_MCG_CTL:
1542 case MSR_IA32_MCG_STATUS:
1543 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1544 return set_msr_mce(vcpu, msr, data);
1545
1546 /* Performance counters are not protected by a CPUID bit,
1547 * so we should check all of them in the generic path for the sake of
1548 * cross vendor migration.
1549 * Writing a zero into the event select MSRs disables them,
1550 * which we perfectly emulate ;-). Any other value should be at least
1551 * reported, some guests depend on them.
1552 */
1553 case MSR_P6_EVNTSEL0:
1554 case MSR_P6_EVNTSEL1:
1555 case MSR_K7_EVNTSEL0:
1556 case MSR_K7_EVNTSEL1:
1557 case MSR_K7_EVNTSEL2:
1558 case MSR_K7_EVNTSEL3:
1559 if (data != 0)
1560 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1561 "0x%x data 0x%llx\n", msr, data);
1562 break;
1563 /* at least RHEL 4 unconditionally writes to the perfctr registers,
1564 * so we ignore writes to make it happy.
1565 */
1566 case MSR_P6_PERFCTR0:
1567 case MSR_P6_PERFCTR1:
1568 case MSR_K7_PERFCTR0:
1569 case MSR_K7_PERFCTR1:
1570 case MSR_K7_PERFCTR2:
1571 case MSR_K7_PERFCTR3:
1572 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1573 "0x%x data 0x%llx\n", msr, data);
1574 break;
1575 case MSR_K7_CLK_CTL:
1576 /*
1577 * Ignore all writes to this no longer documented MSR.
1578 * Writes are only relevant for old K7 processors,
1579 * all pre-dating SVM, but a recommended workaround from
1580 * AMD for these chips. It is possible to speicify the
1581 * affected processor models on the command line, hence
1582 * the need to ignore the workaround.
1583 */
1584 break;
1585 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1586 if (kvm_hv_msr_partition_wide(msr)) {
1587 int r;
1588 mutex_lock(&vcpu->kvm->lock);
1589 r = set_msr_hyperv_pw(vcpu, msr, data);
1590 mutex_unlock(&vcpu->kvm->lock);
1591 return r;
1592 } else
1593 return set_msr_hyperv(vcpu, msr, data);
1594 break;
1595 case MSR_IA32_BBL_CR_CTL3:
1596 /* Drop writes to this legacy MSR -- see rdmsr
1597 * counterpart for further detail.
1598 */
1599 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
1600 break;
1601 default:
1602 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1603 return xen_hvm_config(vcpu, data);
1604 if (!ignore_msrs) {
1605 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1606 msr, data);
1607 return 1;
1608 } else {
1609 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1610 msr, data);
1611 break;
1612 }
1613 }
1614 return 0;
1615 }
1616 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1617
1618
1619 /*
1620 * Reads an msr value (of 'msr_index') into 'pdata'.
1621 * Returns 0 on success, non-0 otherwise.
1622 * Assumes vcpu_load() was already called.
1623 */
1624 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1625 {
1626 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1627 }
1628
1629 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1630 {
1631 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1632
1633 if (!msr_mtrr_valid(msr))
1634 return 1;
1635
1636 if (msr == MSR_MTRRdefType)
1637 *pdata = vcpu->arch.mtrr_state.def_type +
1638 (vcpu->arch.mtrr_state.enabled << 10);
1639 else if (msr == MSR_MTRRfix64K_00000)
1640 *pdata = p[0];
1641 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1642 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1643 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1644 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1645 else if (msr == MSR_IA32_CR_PAT)
1646 *pdata = vcpu->arch.pat;
1647 else { /* Variable MTRRs */
1648 int idx, is_mtrr_mask;
1649 u64 *pt;
1650
1651 idx = (msr - 0x200) / 2;
1652 is_mtrr_mask = msr - 0x200 - 2 * idx;
1653 if (!is_mtrr_mask)
1654 pt =
1655 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1656 else
1657 pt =
1658 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1659 *pdata = *pt;
1660 }
1661
1662 return 0;
1663 }
1664
1665 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1666 {
1667 u64 data;
1668 u64 mcg_cap = vcpu->arch.mcg_cap;
1669 unsigned bank_num = mcg_cap & 0xff;
1670
1671 switch (msr) {
1672 case MSR_IA32_P5_MC_ADDR:
1673 case MSR_IA32_P5_MC_TYPE:
1674 data = 0;
1675 break;
1676 case MSR_IA32_MCG_CAP:
1677 data = vcpu->arch.mcg_cap;
1678 break;
1679 case MSR_IA32_MCG_CTL:
1680 if (!(mcg_cap & MCG_CTL_P))
1681 return 1;
1682 data = vcpu->arch.mcg_ctl;
1683 break;
1684 case MSR_IA32_MCG_STATUS:
1685 data = vcpu->arch.mcg_status;
1686 break;
1687 default:
1688 if (msr >= MSR_IA32_MC0_CTL &&
1689 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1690 u32 offset = msr - MSR_IA32_MC0_CTL;
1691 data = vcpu->arch.mce_banks[offset];
1692 break;
1693 }
1694 return 1;
1695 }
1696 *pdata = data;
1697 return 0;
1698 }
1699
1700 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1701 {
1702 u64 data = 0;
1703 struct kvm *kvm = vcpu->kvm;
1704
1705 switch (msr) {
1706 case HV_X64_MSR_GUEST_OS_ID:
1707 data = kvm->arch.hv_guest_os_id;
1708 break;
1709 case HV_X64_MSR_HYPERCALL:
1710 data = kvm->arch.hv_hypercall;
1711 break;
1712 default:
1713 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1714 return 1;
1715 }
1716
1717 *pdata = data;
1718 return 0;
1719 }
1720
1721 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1722 {
1723 u64 data = 0;
1724
1725 switch (msr) {
1726 case HV_X64_MSR_VP_INDEX: {
1727 int r;
1728 struct kvm_vcpu *v;
1729 kvm_for_each_vcpu(r, v, vcpu->kvm)
1730 if (v == vcpu)
1731 data = r;
1732 break;
1733 }
1734 case HV_X64_MSR_EOI:
1735 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1736 case HV_X64_MSR_ICR:
1737 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1738 case HV_X64_MSR_TPR:
1739 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1740 default:
1741 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1742 return 1;
1743 }
1744 *pdata = data;
1745 return 0;
1746 }
1747
1748 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1749 {
1750 u64 data;
1751
1752 switch (msr) {
1753 case MSR_IA32_PLATFORM_ID:
1754 case MSR_IA32_UCODE_REV:
1755 case MSR_IA32_EBL_CR_POWERON:
1756 case MSR_IA32_DEBUGCTLMSR:
1757 case MSR_IA32_LASTBRANCHFROMIP:
1758 case MSR_IA32_LASTBRANCHTOIP:
1759 case MSR_IA32_LASTINTFROMIP:
1760 case MSR_IA32_LASTINTTOIP:
1761 case MSR_K8_SYSCFG:
1762 case MSR_K7_HWCR:
1763 case MSR_VM_HSAVE_PA:
1764 case MSR_P6_PERFCTR0:
1765 case MSR_P6_PERFCTR1:
1766 case MSR_P6_EVNTSEL0:
1767 case MSR_P6_EVNTSEL1:
1768 case MSR_K7_EVNTSEL0:
1769 case MSR_K7_PERFCTR0:
1770 case MSR_K8_INT_PENDING_MSG:
1771 case MSR_AMD64_NB_CFG:
1772 case MSR_FAM10H_MMIO_CONF_BASE:
1773 data = 0;
1774 break;
1775 case MSR_MTRRcap:
1776 data = 0x500 | KVM_NR_VAR_MTRR;
1777 break;
1778 case 0x200 ... 0x2ff:
1779 return get_msr_mtrr(vcpu, msr, pdata);
1780 case 0xcd: /* fsb frequency */
1781 data = 3;
1782 break;
1783 /*
1784 * MSR_EBC_FREQUENCY_ID
1785 * Conservative value valid for even the basic CPU models.
1786 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1787 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1788 * and 266MHz for model 3, or 4. Set Core Clock
1789 * Frequency to System Bus Frequency Ratio to 1 (bits
1790 * 31:24) even though these are only valid for CPU
1791 * models > 2, however guests may end up dividing or
1792 * multiplying by zero otherwise.
1793 */
1794 case MSR_EBC_FREQUENCY_ID:
1795 data = 1 << 24;
1796 break;
1797 case MSR_IA32_APICBASE:
1798 data = kvm_get_apic_base(vcpu);
1799 break;
1800 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1801 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1802 break;
1803 case MSR_IA32_MISC_ENABLE:
1804 data = vcpu->arch.ia32_misc_enable_msr;
1805 break;
1806 case MSR_IA32_PERF_STATUS:
1807 /* TSC increment by tick */
1808 data = 1000ULL;
1809 /* CPU multiplier */
1810 data |= (((uint64_t)4ULL) << 40);
1811 break;
1812 case MSR_EFER:
1813 data = vcpu->arch.efer;
1814 break;
1815 case MSR_KVM_WALL_CLOCK:
1816 case MSR_KVM_WALL_CLOCK_NEW:
1817 data = vcpu->kvm->arch.wall_clock;
1818 break;
1819 case MSR_KVM_SYSTEM_TIME:
1820 case MSR_KVM_SYSTEM_TIME_NEW:
1821 data = vcpu->arch.time;
1822 break;
1823 case MSR_KVM_ASYNC_PF_EN:
1824 data = vcpu->arch.apf.msr_val;
1825 break;
1826 case MSR_IA32_P5_MC_ADDR:
1827 case MSR_IA32_P5_MC_TYPE:
1828 case MSR_IA32_MCG_CAP:
1829 case MSR_IA32_MCG_CTL:
1830 case MSR_IA32_MCG_STATUS:
1831 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1832 return get_msr_mce(vcpu, msr, pdata);
1833 case MSR_K7_CLK_CTL:
1834 /*
1835 * Provide expected ramp-up count for K7. All other
1836 * are set to zero, indicating minimum divisors for
1837 * every field.
1838 *
1839 * This prevents guest kernels on AMD host with CPU
1840 * type 6, model 8 and higher from exploding due to
1841 * the rdmsr failing.
1842 */
1843 data = 0x20000000;
1844 break;
1845 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1846 if (kvm_hv_msr_partition_wide(msr)) {
1847 int r;
1848 mutex_lock(&vcpu->kvm->lock);
1849 r = get_msr_hyperv_pw(vcpu, msr, pdata);
1850 mutex_unlock(&vcpu->kvm->lock);
1851 return r;
1852 } else
1853 return get_msr_hyperv(vcpu, msr, pdata);
1854 break;
1855 case MSR_IA32_BBL_CR_CTL3:
1856 /* This legacy MSR exists but isn't fully documented in current
1857 * silicon. It is however accessed by winxp in very narrow
1858 * scenarios where it sets bit #19, itself documented as
1859 * a "reserved" bit. Best effort attempt to source coherent
1860 * read data here should the balance of the register be
1861 * interpreted by the guest:
1862 *
1863 * L2 cache control register 3: 64GB range, 256KB size,
1864 * enabled, latency 0x1, configured
1865 */
1866 data = 0xbe702111;
1867 break;
1868 default:
1869 if (!ignore_msrs) {
1870 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1871 return 1;
1872 } else {
1873 pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1874 data = 0;
1875 }
1876 break;
1877 }
1878 *pdata = data;
1879 return 0;
1880 }
1881 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1882
1883 /*
1884 * Read or write a bunch of msrs. All parameters are kernel addresses.
1885 *
1886 * @return number of msrs set successfully.
1887 */
1888 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1889 struct kvm_msr_entry *entries,
1890 int (*do_msr)(struct kvm_vcpu *vcpu,
1891 unsigned index, u64 *data))
1892 {
1893 int i, idx;
1894
1895 idx = srcu_read_lock(&vcpu->kvm->srcu);
1896 for (i = 0; i < msrs->nmsrs; ++i)
1897 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1898 break;
1899 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1900
1901 return i;
1902 }
1903
1904 /*
1905 * Read or write a bunch of msrs. Parameters are user addresses.
1906 *
1907 * @return number of msrs set successfully.
1908 */
1909 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1910 int (*do_msr)(struct kvm_vcpu *vcpu,
1911 unsigned index, u64 *data),
1912 int writeback)
1913 {
1914 struct kvm_msrs msrs;
1915 struct kvm_msr_entry *entries;
1916 int r, n;
1917 unsigned size;
1918
1919 r = -EFAULT;
1920 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1921 goto out;
1922
1923 r = -E2BIG;
1924 if (msrs.nmsrs >= MAX_IO_MSRS)
1925 goto out;
1926
1927 r = -ENOMEM;
1928 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1929 entries = kmalloc(size, GFP_KERNEL);
1930 if (!entries)
1931 goto out;
1932
1933 r = -EFAULT;
1934 if (copy_from_user(entries, user_msrs->entries, size))
1935 goto out_free;
1936
1937 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1938 if (r < 0)
1939 goto out_free;
1940
1941 r = -EFAULT;
1942 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1943 goto out_free;
1944
1945 r = n;
1946
1947 out_free:
1948 kfree(entries);
1949 out:
1950 return r;
1951 }
1952
1953 int kvm_dev_ioctl_check_extension(long ext)
1954 {
1955 int r;
1956
1957 switch (ext) {
1958 case KVM_CAP_IRQCHIP:
1959 case KVM_CAP_HLT:
1960 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1961 case KVM_CAP_SET_TSS_ADDR:
1962 case KVM_CAP_EXT_CPUID:
1963 case KVM_CAP_CLOCKSOURCE:
1964 case KVM_CAP_PIT:
1965 case KVM_CAP_NOP_IO_DELAY:
1966 case KVM_CAP_MP_STATE:
1967 case KVM_CAP_SYNC_MMU:
1968 case KVM_CAP_USER_NMI:
1969 case KVM_CAP_REINJECT_CONTROL:
1970 case KVM_CAP_IRQ_INJECT_STATUS:
1971 case KVM_CAP_ASSIGN_DEV_IRQ:
1972 case KVM_CAP_IRQFD:
1973 case KVM_CAP_IOEVENTFD:
1974 case KVM_CAP_PIT2:
1975 case KVM_CAP_PIT_STATE2:
1976 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1977 case KVM_CAP_XEN_HVM:
1978 case KVM_CAP_ADJUST_CLOCK:
1979 case KVM_CAP_VCPU_EVENTS:
1980 case KVM_CAP_HYPERV:
1981 case KVM_CAP_HYPERV_VAPIC:
1982 case KVM_CAP_HYPERV_SPIN:
1983 case KVM_CAP_PCI_SEGMENT:
1984 case KVM_CAP_DEBUGREGS:
1985 case KVM_CAP_X86_ROBUST_SINGLESTEP:
1986 case KVM_CAP_XSAVE:
1987 case KVM_CAP_ASYNC_PF:
1988 r = 1;
1989 break;
1990 case KVM_CAP_COALESCED_MMIO:
1991 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1992 break;
1993 case KVM_CAP_VAPIC:
1994 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1995 break;
1996 case KVM_CAP_NR_VCPUS:
1997 r = KVM_MAX_VCPUS;
1998 break;
1999 case KVM_CAP_NR_MEMSLOTS:
2000 r = KVM_MEMORY_SLOTS;
2001 break;
2002 case KVM_CAP_PV_MMU: /* obsolete */
2003 r = 0;
2004 break;
2005 case KVM_CAP_IOMMU:
2006 r = iommu_found();
2007 break;
2008 case KVM_CAP_MCE:
2009 r = KVM_MAX_MCE_BANKS;
2010 break;
2011 case KVM_CAP_XCRS:
2012 r = cpu_has_xsave;
2013 break;
2014 default:
2015 r = 0;
2016 break;
2017 }
2018 return r;
2019
2020 }
2021
2022 long kvm_arch_dev_ioctl(struct file *filp,
2023 unsigned int ioctl, unsigned long arg)
2024 {
2025 void __user *argp = (void __user *)arg;
2026 long r;
2027
2028 switch (ioctl) {
2029 case KVM_GET_MSR_INDEX_LIST: {
2030 struct kvm_msr_list __user *user_msr_list = argp;
2031 struct kvm_msr_list msr_list;
2032 unsigned n;
2033
2034 r = -EFAULT;
2035 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2036 goto out;
2037 n = msr_list.nmsrs;
2038 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2039 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2040 goto out;
2041 r = -E2BIG;
2042 if (n < msr_list.nmsrs)
2043 goto out;
2044 r = -EFAULT;
2045 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2046 num_msrs_to_save * sizeof(u32)))
2047 goto out;
2048 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2049 &emulated_msrs,
2050 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2051 goto out;
2052 r = 0;
2053 break;
2054 }
2055 case KVM_GET_SUPPORTED_CPUID: {
2056 struct kvm_cpuid2 __user *cpuid_arg = argp;
2057 struct kvm_cpuid2 cpuid;
2058
2059 r = -EFAULT;
2060 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2061 goto out;
2062 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2063 cpuid_arg->entries);
2064 if (r)
2065 goto out;
2066
2067 r = -EFAULT;
2068 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2069 goto out;
2070 r = 0;
2071 break;
2072 }
2073 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2074 u64 mce_cap;
2075
2076 mce_cap = KVM_MCE_CAP_SUPPORTED;
2077 r = -EFAULT;
2078 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2079 goto out;
2080 r = 0;
2081 break;
2082 }
2083 default:
2084 r = -EINVAL;
2085 }
2086 out:
2087 return r;
2088 }
2089
2090 static void wbinvd_ipi(void *garbage)
2091 {
2092 wbinvd();
2093 }
2094
2095 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2096 {
2097 return vcpu->kvm->arch.iommu_domain &&
2098 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2099 }
2100
2101 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2102 {
2103 /* Address WBINVD may be executed by guest */
2104 if (need_emulate_wbinvd(vcpu)) {
2105 if (kvm_x86_ops->has_wbinvd_exit())
2106 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2107 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2108 smp_call_function_single(vcpu->cpu,
2109 wbinvd_ipi, NULL, 1);
2110 }
2111
2112 kvm_x86_ops->vcpu_load(vcpu, cpu);
2113 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2114 /* Make sure TSC doesn't go backwards */
2115 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2116 native_read_tsc() - vcpu->arch.last_host_tsc;
2117 if (tsc_delta < 0)
2118 mark_tsc_unstable("KVM discovered backwards TSC");
2119 if (check_tsc_unstable()) {
2120 kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
2121 vcpu->arch.tsc_catchup = 1;
2122 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2123 }
2124 if (vcpu->cpu != cpu)
2125 kvm_migrate_timers(vcpu);
2126 vcpu->cpu = cpu;
2127 }
2128 }
2129
2130 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2131 {
2132 kvm_x86_ops->vcpu_put(vcpu);
2133 kvm_put_guest_fpu(vcpu);
2134 vcpu->arch.last_host_tsc = native_read_tsc();
2135 }
2136
2137 static int is_efer_nx(void)
2138 {
2139 unsigned long long efer = 0;
2140
2141 rdmsrl_safe(MSR_EFER, &efer);
2142 return efer & EFER_NX;
2143 }
2144
2145 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2146 {
2147 int i;
2148 struct kvm_cpuid_entry2 *e, *entry;
2149
2150 entry = NULL;
2151 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2152 e = &vcpu->arch.cpuid_entries[i];
2153 if (e->function == 0x80000001) {
2154 entry = e;
2155 break;
2156 }
2157 }
2158 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
2159 entry->edx &= ~(1 << 20);
2160 printk(KERN_INFO "kvm: guest NX capability removed\n");
2161 }
2162 }
2163
2164 /* when an old userspace process fills a new kernel module */
2165 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2166 struct kvm_cpuid *cpuid,
2167 struct kvm_cpuid_entry __user *entries)
2168 {
2169 int r, i;
2170 struct kvm_cpuid_entry *cpuid_entries;
2171
2172 r = -E2BIG;
2173 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2174 goto out;
2175 r = -ENOMEM;
2176 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
2177 if (!cpuid_entries)
2178 goto out;
2179 r = -EFAULT;
2180 if (copy_from_user(cpuid_entries, entries,
2181 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2182 goto out_free;
2183 for (i = 0; i < cpuid->nent; i++) {
2184 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
2185 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
2186 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
2187 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
2188 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
2189 vcpu->arch.cpuid_entries[i].index = 0;
2190 vcpu->arch.cpuid_entries[i].flags = 0;
2191 vcpu->arch.cpuid_entries[i].padding[0] = 0;
2192 vcpu->arch.cpuid_entries[i].padding[1] = 0;
2193 vcpu->arch.cpuid_entries[i].padding[2] = 0;
2194 }
2195 vcpu->arch.cpuid_nent = cpuid->nent;
2196 cpuid_fix_nx_cap(vcpu);
2197 r = 0;
2198 kvm_apic_set_version(vcpu);
2199 kvm_x86_ops->cpuid_update(vcpu);
2200 update_cpuid(vcpu);
2201
2202 out_free:
2203 vfree(cpuid_entries);
2204 out:
2205 return r;
2206 }
2207
2208 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
2209 struct kvm_cpuid2 *cpuid,
2210 struct kvm_cpuid_entry2 __user *entries)
2211 {
2212 int r;
2213
2214 r = -E2BIG;
2215 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2216 goto out;
2217 r = -EFAULT;
2218 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
2219 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
2220 goto out;
2221 vcpu->arch.cpuid_nent = cpuid->nent;
2222 kvm_apic_set_version(vcpu);
2223 kvm_x86_ops->cpuid_update(vcpu);
2224 update_cpuid(vcpu);
2225 return 0;
2226
2227 out:
2228 return r;
2229 }
2230
2231 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
2232 struct kvm_cpuid2 *cpuid,
2233 struct kvm_cpuid_entry2 __user *entries)
2234 {
2235 int r;
2236
2237 r = -E2BIG;
2238 if (cpuid->nent < vcpu->arch.cpuid_nent)
2239 goto out;
2240 r = -EFAULT;
2241 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
2242 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
2243 goto out;
2244 return 0;
2245
2246 out:
2247 cpuid->nent = vcpu->arch.cpuid_nent;
2248 return r;
2249 }
2250
2251 static void cpuid_mask(u32 *word, int wordnum)
2252 {
2253 *word &= boot_cpu_data.x86_capability[wordnum];
2254 }
2255
2256 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2257 u32 index)
2258 {
2259 entry->function = function;
2260 entry->index = index;
2261 cpuid_count(entry->function, entry->index,
2262 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
2263 entry->flags = 0;
2264 }
2265
2266 #define F(x) bit(X86_FEATURE_##x)
2267
2268 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2269 u32 index, int *nent, int maxnent)
2270 {
2271 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
2272 #ifdef CONFIG_X86_64
2273 unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
2274 ? F(GBPAGES) : 0;
2275 unsigned f_lm = F(LM);
2276 #else
2277 unsigned f_gbpages = 0;
2278 unsigned f_lm = 0;
2279 #endif
2280 unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
2281
2282 /* cpuid 1.edx */
2283 const u32 kvm_supported_word0_x86_features =
2284 F(FPU) | F(VME) | F(DE) | F(PSE) |
2285 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2286 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
2287 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2288 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
2289 0 /* Reserved, DS, ACPI */ | F(MMX) |
2290 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
2291 0 /* HTT, TM, Reserved, PBE */;
2292 /* cpuid 0x80000001.edx */
2293 const u32 kvm_supported_word1_x86_features =
2294 F(FPU) | F(VME) | F(DE) | F(PSE) |
2295 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2296 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
2297 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2298 F(PAT) | F(PSE36) | 0 /* Reserved */ |
2299 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
2300 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
2301 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
2302 /* cpuid 1.ecx */
2303 const u32 kvm_supported_word4_x86_features =
2304 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
2305 0 /* DS-CPL, VMX, SMX, EST */ |
2306 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
2307 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
2308 0 /* Reserved, DCA */ | F(XMM4_1) |
2309 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
2310 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
2311 F(F16C);
2312 /* cpuid 0x80000001.ecx */
2313 const u32 kvm_supported_word6_x86_features =
2314 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
2315 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
2316 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP) |
2317 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
2318
2319 /* all calls to cpuid_count() should be made on the same cpu */
2320 get_cpu();
2321 do_cpuid_1_ent(entry, function, index);
2322 ++*nent;
2323
2324 switch (function) {
2325 case 0:
2326 entry->eax = min(entry->eax, (u32)0xd);
2327 break;
2328 case 1:
2329 entry->edx &= kvm_supported_word0_x86_features;
2330 cpuid_mask(&entry->edx, 0);
2331 entry->ecx &= kvm_supported_word4_x86_features;
2332 cpuid_mask(&entry->ecx, 4);
2333 /* we support x2apic emulation even if host does not support
2334 * it since we emulate x2apic in software */
2335 entry->ecx |= F(X2APIC);
2336 break;
2337 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
2338 * may return different values. This forces us to get_cpu() before
2339 * issuing the first command, and also to emulate this annoying behavior
2340 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
2341 case 2: {
2342 int t, times = entry->eax & 0xff;
2343
2344 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2345 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2346 for (t = 1; t < times && *nent < maxnent; ++t) {
2347 do_cpuid_1_ent(&entry[t], function, 0);
2348 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2349 ++*nent;
2350 }
2351 break;
2352 }
2353 /* function 4 and 0xb have additional index. */
2354 case 4: {
2355 int i, cache_type;
2356
2357 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2358 /* read more entries until cache_type is zero */
2359 for (i = 1; *nent < maxnent; ++i) {
2360 cache_type = entry[i - 1].eax & 0x1f;
2361 if (!cache_type)
2362 break;
2363 do_cpuid_1_ent(&entry[i], function, i);
2364 entry[i].flags |=
2365 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2366 ++*nent;
2367 }
2368 break;
2369 }
2370 case 0xb: {
2371 int i, level_type;
2372
2373 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2374 /* read more entries until level_type is zero */
2375 for (i = 1; *nent < maxnent; ++i) {
2376 level_type = entry[i - 1].ecx & 0xff00;
2377 if (!level_type)
2378 break;
2379 do_cpuid_1_ent(&entry[i], function, i);
2380 entry[i].flags |=
2381 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2382 ++*nent;
2383 }
2384 break;
2385 }
2386 case 0xd: {
2387 int i;
2388
2389 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2390 for (i = 1; *nent < maxnent; ++i) {
2391 if (entry[i - 1].eax == 0 && i != 2)
2392 break;
2393 do_cpuid_1_ent(&entry[i], function, i);
2394 entry[i].flags |=
2395 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2396 ++*nent;
2397 }
2398 break;
2399 }
2400 case KVM_CPUID_SIGNATURE: {
2401 char signature[12] = "KVMKVMKVM\0\0";
2402 u32 *sigptr = (u32 *)signature;
2403 entry->eax = 0;
2404 entry->ebx = sigptr[0];
2405 entry->ecx = sigptr[1];
2406 entry->edx = sigptr[2];
2407 break;
2408 }
2409 case KVM_CPUID_FEATURES:
2410 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
2411 (1 << KVM_FEATURE_NOP_IO_DELAY) |
2412 (1 << KVM_FEATURE_CLOCKSOURCE2) |
2413 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
2414 entry->ebx = 0;
2415 entry->ecx = 0;
2416 entry->edx = 0;
2417 break;
2418 case 0x80000000:
2419 entry->eax = min(entry->eax, 0x8000001a);
2420 break;
2421 case 0x80000001:
2422 entry->edx &= kvm_supported_word1_x86_features;
2423 cpuid_mask(&entry->edx, 1);
2424 entry->ecx &= kvm_supported_word6_x86_features;
2425 cpuid_mask(&entry->ecx, 6);
2426 break;
2427 }
2428
2429 kvm_x86_ops->set_supported_cpuid(function, entry);
2430
2431 put_cpu();
2432 }
2433
2434 #undef F
2435
2436 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
2437 struct kvm_cpuid_entry2 __user *entries)
2438 {
2439 struct kvm_cpuid_entry2 *cpuid_entries;
2440 int limit, nent = 0, r = -E2BIG;
2441 u32 func;
2442
2443 if (cpuid->nent < 1)
2444 goto out;
2445 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2446 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
2447 r = -ENOMEM;
2448 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
2449 if (!cpuid_entries)
2450 goto out;
2451
2452 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
2453 limit = cpuid_entries[0].eax;
2454 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
2455 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2456 &nent, cpuid->nent);
2457 r = -E2BIG;
2458 if (nent >= cpuid->nent)
2459 goto out_free;
2460
2461 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
2462 limit = cpuid_entries[nent - 1].eax;
2463 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
2464 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2465 &nent, cpuid->nent);
2466
2467
2468
2469 r = -E2BIG;
2470 if (nent >= cpuid->nent)
2471 goto out_free;
2472
2473 do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
2474 cpuid->nent);
2475
2476 r = -E2BIG;
2477 if (nent >= cpuid->nent)
2478 goto out_free;
2479
2480 do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
2481 cpuid->nent);
2482
2483 r = -E2BIG;
2484 if (nent >= cpuid->nent)
2485 goto out_free;
2486
2487 r = -EFAULT;
2488 if (copy_to_user(entries, cpuid_entries,
2489 nent * sizeof(struct kvm_cpuid_entry2)))
2490 goto out_free;
2491 cpuid->nent = nent;
2492 r = 0;
2493
2494 out_free:
2495 vfree(cpuid_entries);
2496 out:
2497 return r;
2498 }
2499
2500 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2501 struct kvm_lapic_state *s)
2502 {
2503 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2504
2505 return 0;
2506 }
2507
2508 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2509 struct kvm_lapic_state *s)
2510 {
2511 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2512 kvm_apic_post_state_restore(vcpu);
2513 update_cr8_intercept(vcpu);
2514
2515 return 0;
2516 }
2517
2518 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2519 struct kvm_interrupt *irq)
2520 {
2521 if (irq->irq < 0 || irq->irq >= 256)
2522 return -EINVAL;
2523 if (irqchip_in_kernel(vcpu->kvm))
2524 return -ENXIO;
2525
2526 kvm_queue_interrupt(vcpu, irq->irq, false);
2527 kvm_make_request(KVM_REQ_EVENT, vcpu);
2528
2529 return 0;
2530 }
2531
2532 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2533 {
2534 kvm_inject_nmi(vcpu);
2535
2536 return 0;
2537 }
2538
2539 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2540 struct kvm_tpr_access_ctl *tac)
2541 {
2542 if (tac->flags)
2543 return -EINVAL;
2544 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2545 return 0;
2546 }
2547
2548 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2549 u64 mcg_cap)
2550 {
2551 int r;
2552 unsigned bank_num = mcg_cap & 0xff, bank;
2553
2554 r = -EINVAL;
2555 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2556 goto out;
2557 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2558 goto out;
2559 r = 0;
2560 vcpu->arch.mcg_cap = mcg_cap;
2561 /* Init IA32_MCG_CTL to all 1s */
2562 if (mcg_cap & MCG_CTL_P)
2563 vcpu->arch.mcg_ctl = ~(u64)0;
2564 /* Init IA32_MCi_CTL to all 1s */
2565 for (bank = 0; bank < bank_num; bank++)
2566 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2567 out:
2568 return r;
2569 }
2570
2571 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2572 struct kvm_x86_mce *mce)
2573 {
2574 u64 mcg_cap = vcpu->arch.mcg_cap;
2575 unsigned bank_num = mcg_cap & 0xff;
2576 u64 *banks = vcpu->arch.mce_banks;
2577
2578 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2579 return -EINVAL;
2580 /*
2581 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2582 * reporting is disabled
2583 */
2584 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2585 vcpu->arch.mcg_ctl != ~(u64)0)
2586 return 0;
2587 banks += 4 * mce->bank;
2588 /*
2589 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2590 * reporting is disabled for the bank
2591 */
2592 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2593 return 0;
2594 if (mce->status & MCI_STATUS_UC) {
2595 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2596 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2597 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2598 return 0;
2599 }
2600 if (banks[1] & MCI_STATUS_VAL)
2601 mce->status |= MCI_STATUS_OVER;
2602 banks[2] = mce->addr;
2603 banks[3] = mce->misc;
2604 vcpu->arch.mcg_status = mce->mcg_status;
2605 banks[1] = mce->status;
2606 kvm_queue_exception(vcpu, MC_VECTOR);
2607 } else if (!(banks[1] & MCI_STATUS_VAL)
2608 || !(banks[1] & MCI_STATUS_UC)) {
2609 if (banks[1] & MCI_STATUS_VAL)
2610 mce->status |= MCI_STATUS_OVER;
2611 banks[2] = mce->addr;
2612 banks[3] = mce->misc;
2613 banks[1] = mce->status;
2614 } else
2615 banks[1] |= MCI_STATUS_OVER;
2616 return 0;
2617 }
2618
2619 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2620 struct kvm_vcpu_events *events)
2621 {
2622 events->exception.injected =
2623 vcpu->arch.exception.pending &&
2624 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2625 events->exception.nr = vcpu->arch.exception.nr;
2626 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2627 events->exception.pad = 0;
2628 events->exception.error_code = vcpu->arch.exception.error_code;
2629
2630 events->interrupt.injected =
2631 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2632 events->interrupt.nr = vcpu->arch.interrupt.nr;
2633 events->interrupt.soft = 0;
2634 events->interrupt.shadow =
2635 kvm_x86_ops->get_interrupt_shadow(vcpu,
2636 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2637
2638 events->nmi.injected = vcpu->arch.nmi_injected;
2639 events->nmi.pending = vcpu->arch.nmi_pending;
2640 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2641 events->nmi.pad = 0;
2642
2643 events->sipi_vector = vcpu->arch.sipi_vector;
2644
2645 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2646 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2647 | KVM_VCPUEVENT_VALID_SHADOW);
2648 memset(&events->reserved, 0, sizeof(events->reserved));
2649 }
2650
2651 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2652 struct kvm_vcpu_events *events)
2653 {
2654 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2655 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2656 | KVM_VCPUEVENT_VALID_SHADOW))
2657 return -EINVAL;
2658
2659 vcpu->arch.exception.pending = events->exception.injected;
2660 vcpu->arch.exception.nr = events->exception.nr;
2661 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2662 vcpu->arch.exception.error_code = events->exception.error_code;
2663
2664 vcpu->arch.interrupt.pending = events->interrupt.injected;
2665 vcpu->arch.interrupt.nr = events->interrupt.nr;
2666 vcpu->arch.interrupt.soft = events->interrupt.soft;
2667 if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
2668 kvm_pic_clear_isr_ack(vcpu->kvm);
2669 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2670 kvm_x86_ops->set_interrupt_shadow(vcpu,
2671 events->interrupt.shadow);
2672
2673 vcpu->arch.nmi_injected = events->nmi.injected;
2674 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2675 vcpu->arch.nmi_pending = events->nmi.pending;
2676 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2677
2678 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2679 vcpu->arch.sipi_vector = events->sipi_vector;
2680
2681 kvm_make_request(KVM_REQ_EVENT, vcpu);
2682
2683 return 0;
2684 }
2685
2686 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2687 struct kvm_debugregs *dbgregs)
2688 {
2689 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2690 dbgregs->dr6 = vcpu->arch.dr6;
2691 dbgregs->dr7 = vcpu->arch.dr7;
2692 dbgregs->flags = 0;
2693 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2694 }
2695
2696 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2697 struct kvm_debugregs *dbgregs)
2698 {
2699 if (dbgregs->flags)
2700 return -EINVAL;
2701
2702 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2703 vcpu->arch.dr6 = dbgregs->dr6;
2704 vcpu->arch.dr7 = dbgregs->dr7;
2705
2706 return 0;
2707 }
2708
2709 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2710 struct kvm_xsave *guest_xsave)
2711 {
2712 if (cpu_has_xsave)
2713 memcpy(guest_xsave->region,
2714 &vcpu->arch.guest_fpu.state->xsave,
2715 xstate_size);
2716 else {
2717 memcpy(guest_xsave->region,
2718 &vcpu->arch.guest_fpu.state->fxsave,
2719 sizeof(struct i387_fxsave_struct));
2720 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2721 XSTATE_FPSSE;
2722 }
2723 }
2724
2725 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2726 struct kvm_xsave *guest_xsave)
2727 {
2728 u64 xstate_bv =
2729 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2730
2731 if (cpu_has_xsave)
2732 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2733 guest_xsave->region, xstate_size);
2734 else {
2735 if (xstate_bv & ~XSTATE_FPSSE)
2736 return -EINVAL;
2737 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2738 guest_xsave->region, sizeof(struct i387_fxsave_struct));
2739 }
2740 return 0;
2741 }
2742
2743 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2744 struct kvm_xcrs *guest_xcrs)
2745 {
2746 if (!cpu_has_xsave) {
2747 guest_xcrs->nr_xcrs = 0;
2748 return;
2749 }
2750
2751 guest_xcrs->nr_xcrs = 1;
2752 guest_xcrs->flags = 0;
2753 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2754 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2755 }
2756
2757 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2758 struct kvm_xcrs *guest_xcrs)
2759 {
2760 int i, r = 0;
2761
2762 if (!cpu_has_xsave)
2763 return -EINVAL;
2764
2765 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2766 return -EINVAL;
2767
2768 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2769 /* Only support XCR0 currently */
2770 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2771 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2772 guest_xcrs->xcrs[0].value);
2773 break;
2774 }
2775 if (r)
2776 r = -EINVAL;
2777 return r;
2778 }
2779
2780 long kvm_arch_vcpu_ioctl(struct file *filp,
2781 unsigned int ioctl, unsigned long arg)
2782 {
2783 struct kvm_vcpu *vcpu = filp->private_data;
2784 void __user *argp = (void __user *)arg;
2785 int r;
2786 union {
2787 struct kvm_lapic_state *lapic;
2788 struct kvm_xsave *xsave;
2789 struct kvm_xcrs *xcrs;
2790 void *buffer;
2791 } u;
2792
2793 u.buffer = NULL;
2794 switch (ioctl) {
2795 case KVM_GET_LAPIC: {
2796 r = -EINVAL;
2797 if (!vcpu->arch.apic)
2798 goto out;
2799 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2800
2801 r = -ENOMEM;
2802 if (!u.lapic)
2803 goto out;
2804 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2805 if (r)
2806 goto out;
2807 r = -EFAULT;
2808 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2809 goto out;
2810 r = 0;
2811 break;
2812 }
2813 case KVM_SET_LAPIC: {
2814 r = -EINVAL;
2815 if (!vcpu->arch.apic)
2816 goto out;
2817 u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2818 r = -ENOMEM;
2819 if (!u.lapic)
2820 goto out;
2821 r = -EFAULT;
2822 if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
2823 goto out;
2824 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2825 if (r)
2826 goto out;
2827 r = 0;
2828 break;
2829 }
2830 case KVM_INTERRUPT: {
2831 struct kvm_interrupt irq;
2832
2833 r = -EFAULT;
2834 if (copy_from_user(&irq, argp, sizeof irq))
2835 goto out;
2836 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2837 if (r)
2838 goto out;
2839 r = 0;
2840 break;
2841 }
2842 case KVM_NMI: {
2843 r = kvm_vcpu_ioctl_nmi(vcpu);
2844 if (r)
2845 goto out;
2846 r = 0;
2847 break;
2848 }
2849 case KVM_SET_CPUID: {
2850 struct kvm_cpuid __user *cpuid_arg = argp;
2851 struct kvm_cpuid cpuid;
2852
2853 r = -EFAULT;
2854 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2855 goto out;
2856 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2857 if (r)
2858 goto out;
2859 break;
2860 }
2861 case KVM_SET_CPUID2: {
2862 struct kvm_cpuid2 __user *cpuid_arg = argp;
2863 struct kvm_cpuid2 cpuid;
2864
2865 r = -EFAULT;
2866 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2867 goto out;
2868 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2869 cpuid_arg->entries);
2870 if (r)
2871 goto out;
2872 break;
2873 }
2874 case KVM_GET_CPUID2: {
2875 struct kvm_cpuid2 __user *cpuid_arg = argp;
2876 struct kvm_cpuid2 cpuid;
2877
2878 r = -EFAULT;
2879 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2880 goto out;
2881 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2882 cpuid_arg->entries);
2883 if (r)
2884 goto out;
2885 r = -EFAULT;
2886 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2887 goto out;
2888 r = 0;
2889 break;
2890 }
2891 case KVM_GET_MSRS:
2892 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2893 break;
2894 case KVM_SET_MSRS:
2895 r = msr_io(vcpu, argp, do_set_msr, 0);
2896 break;
2897 case KVM_TPR_ACCESS_REPORTING: {
2898 struct kvm_tpr_access_ctl tac;
2899
2900 r = -EFAULT;
2901 if (copy_from_user(&tac, argp, sizeof tac))
2902 goto out;
2903 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2904 if (r)
2905 goto out;
2906 r = -EFAULT;
2907 if (copy_to_user(argp, &tac, sizeof tac))
2908 goto out;
2909 r = 0;
2910 break;
2911 };
2912 case KVM_SET_VAPIC_ADDR: {
2913 struct kvm_vapic_addr va;
2914
2915 r = -EINVAL;
2916 if (!irqchip_in_kernel(vcpu->kvm))
2917 goto out;
2918 r = -EFAULT;
2919 if (copy_from_user(&va, argp, sizeof va))
2920 goto out;
2921 r = 0;
2922 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2923 break;
2924 }
2925 case KVM_X86_SETUP_MCE: {
2926 u64 mcg_cap;
2927
2928 r = -EFAULT;
2929 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2930 goto out;
2931 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2932 break;
2933 }
2934 case KVM_X86_SET_MCE: {
2935 struct kvm_x86_mce mce;
2936
2937 r = -EFAULT;
2938 if (copy_from_user(&mce, argp, sizeof mce))
2939 goto out;
2940 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2941 break;
2942 }
2943 case KVM_GET_VCPU_EVENTS: {
2944 struct kvm_vcpu_events events;
2945
2946 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2947
2948 r = -EFAULT;
2949 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2950 break;
2951 r = 0;
2952 break;
2953 }
2954 case KVM_SET_VCPU_EVENTS: {
2955 struct kvm_vcpu_events events;
2956
2957 r = -EFAULT;
2958 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2959 break;
2960
2961 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2962 break;
2963 }
2964 case KVM_GET_DEBUGREGS: {
2965 struct kvm_debugregs dbgregs;
2966
2967 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2968
2969 r = -EFAULT;
2970 if (copy_to_user(argp, &dbgregs,
2971 sizeof(struct kvm_debugregs)))
2972 break;
2973 r = 0;
2974 break;
2975 }
2976 case KVM_SET_DEBUGREGS: {
2977 struct kvm_debugregs dbgregs;
2978
2979 r = -EFAULT;
2980 if (copy_from_user(&dbgregs, argp,
2981 sizeof(struct kvm_debugregs)))
2982 break;
2983
2984 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2985 break;
2986 }
2987 case KVM_GET_XSAVE: {
2988 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2989 r = -ENOMEM;
2990 if (!u.xsave)
2991 break;
2992
2993 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2994
2995 r = -EFAULT;
2996 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2997 break;
2998 r = 0;
2999 break;
3000 }
3001 case KVM_SET_XSAVE: {
3002 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3003 r = -ENOMEM;
3004 if (!u.xsave)
3005 break;
3006
3007 r = -EFAULT;
3008 if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
3009 break;
3010
3011 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3012 break;
3013 }
3014 case KVM_GET_XCRS: {
3015 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3016 r = -ENOMEM;
3017 if (!u.xcrs)
3018 break;
3019
3020 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3021
3022 r = -EFAULT;
3023 if (copy_to_user(argp, u.xcrs,
3024 sizeof(struct kvm_xcrs)))
3025 break;
3026 r = 0;
3027 break;
3028 }
3029 case KVM_SET_XCRS: {
3030 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3031 r = -ENOMEM;
3032 if (!u.xcrs)
3033 break;
3034
3035 r = -EFAULT;
3036 if (copy_from_user(u.xcrs, argp,
3037 sizeof(struct kvm_xcrs)))
3038 break;
3039
3040 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3041 break;
3042 }
3043 default:
3044 r = -EINVAL;
3045 }
3046 out:
3047 kfree(u.buffer);
3048 return r;
3049 }
3050
3051 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3052 {
3053 int ret;
3054
3055 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3056 return -1;
3057 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3058 return ret;
3059 }
3060
3061 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3062 u64 ident_addr)
3063 {
3064 kvm->arch.ept_identity_map_addr = ident_addr;
3065 return 0;
3066 }
3067
3068 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3069 u32 kvm_nr_mmu_pages)
3070 {
3071 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3072 return -EINVAL;
3073
3074 mutex_lock(&kvm->slots_lock);
3075 spin_lock(&kvm->mmu_lock);
3076
3077 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3078 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3079
3080 spin_unlock(&kvm->mmu_lock);
3081 mutex_unlock(&kvm->slots_lock);
3082 return 0;
3083 }
3084
3085 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3086 {
3087 return kvm->arch.n_max_mmu_pages;
3088 }
3089
3090 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3091 {
3092 int r;
3093
3094 r = 0;
3095 switch (chip->chip_id) {
3096 case KVM_IRQCHIP_PIC_MASTER:
3097 memcpy(&chip->chip.pic,
3098 &pic_irqchip(kvm)->pics[0],
3099 sizeof(struct kvm_pic_state));
3100 break;
3101 case KVM_IRQCHIP_PIC_SLAVE:
3102 memcpy(&chip->chip.pic,
3103 &pic_irqchip(kvm)->pics[1],
3104 sizeof(struct kvm_pic_state));
3105 break;
3106 case KVM_IRQCHIP_IOAPIC:
3107 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3108 break;
3109 default:
3110 r = -EINVAL;
3111 break;
3112 }
3113 return r;
3114 }
3115
3116 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3117 {
3118 int r;
3119
3120 r = 0;
3121 switch (chip->chip_id) {
3122 case KVM_IRQCHIP_PIC_MASTER:
3123 spin_lock(&pic_irqchip(kvm)->lock);
3124 memcpy(&pic_irqchip(kvm)->pics[0],
3125 &chip->chip.pic,
3126 sizeof(struct kvm_pic_state));
3127 spin_unlock(&pic_irqchip(kvm)->lock);
3128 break;
3129 case KVM_IRQCHIP_PIC_SLAVE:
3130 spin_lock(&pic_irqchip(kvm)->lock);
3131 memcpy(&pic_irqchip(kvm)->pics[1],
3132 &chip->chip.pic,
3133 sizeof(struct kvm_pic_state));
3134 spin_unlock(&pic_irqchip(kvm)->lock);
3135 break;
3136 case KVM_IRQCHIP_IOAPIC:
3137 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3138 break;
3139 default:
3140 r = -EINVAL;
3141 break;
3142 }
3143 kvm_pic_update_irq(pic_irqchip(kvm));
3144 return r;
3145 }
3146
3147 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3148 {
3149 int r = 0;
3150
3151 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3152 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3153 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3154 return r;
3155 }
3156
3157 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3158 {
3159 int r = 0;
3160
3161 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3162 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3163 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3164 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3165 return r;
3166 }
3167
3168 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3169 {
3170 int r = 0;
3171
3172 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3173 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3174 sizeof(ps->channels));
3175 ps->flags = kvm->arch.vpit->pit_state.flags;
3176 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3177 memset(&ps->reserved, 0, sizeof(ps->reserved));
3178 return r;
3179 }
3180
3181 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3182 {
3183 int r = 0, start = 0;
3184 u32 prev_legacy, cur_legacy;
3185 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3186 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3187 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3188 if (!prev_legacy && cur_legacy)
3189 start = 1;
3190 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3191 sizeof(kvm->arch.vpit->pit_state.channels));
3192 kvm->arch.vpit->pit_state.flags = ps->flags;
3193 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3194 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3195 return r;
3196 }
3197
3198 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3199 struct kvm_reinject_control *control)
3200 {
3201 if (!kvm->arch.vpit)
3202 return -ENXIO;
3203 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3204 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
3205 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3206 return 0;
3207 }
3208
3209 /*
3210 * Get (and clear) the dirty memory log for a memory slot.
3211 */
3212 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
3213 struct kvm_dirty_log *log)
3214 {
3215 int r, i;
3216 struct kvm_memory_slot *memslot;
3217 unsigned long n;
3218 unsigned long is_dirty = 0;
3219
3220 mutex_lock(&kvm->slots_lock);
3221
3222 r = -EINVAL;
3223 if (log->slot >= KVM_MEMORY_SLOTS)
3224 goto out;
3225
3226 memslot = &kvm->memslots->memslots[log->slot];
3227 r = -ENOENT;
3228 if (!memslot->dirty_bitmap)
3229 goto out;
3230
3231 n = kvm_dirty_bitmap_bytes(memslot);
3232
3233 for (i = 0; !is_dirty && i < n/sizeof(long); i++)
3234 is_dirty = memslot->dirty_bitmap[i];
3235
3236 /* If nothing is dirty, don't bother messing with page tables. */
3237 if (is_dirty) {
3238 struct kvm_memslots *slots, *old_slots;
3239 unsigned long *dirty_bitmap;
3240
3241 dirty_bitmap = memslot->dirty_bitmap_head;
3242 if (memslot->dirty_bitmap == dirty_bitmap)
3243 dirty_bitmap += n / sizeof(long);
3244 memset(dirty_bitmap, 0, n);
3245
3246 r = -ENOMEM;
3247 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
3248 if (!slots)
3249 goto out;
3250 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
3251 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
3252 slots->generation++;
3253
3254 old_slots = kvm->memslots;
3255 rcu_assign_pointer(kvm->memslots, slots);
3256 synchronize_srcu_expedited(&kvm->srcu);
3257 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
3258 kfree(old_slots);
3259
3260 spin_lock(&kvm->mmu_lock);
3261 kvm_mmu_slot_remove_write_access(kvm, log->slot);
3262 spin_unlock(&kvm->mmu_lock);
3263
3264 r = -EFAULT;
3265 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
3266 goto out;
3267 } else {
3268 r = -EFAULT;
3269 if (clear_user(log->dirty_bitmap, n))
3270 goto out;
3271 }
3272
3273 r = 0;
3274 out:
3275 mutex_unlock(&kvm->slots_lock);
3276 return r;
3277 }
3278
3279 long kvm_arch_vm_ioctl(struct file *filp,
3280 unsigned int ioctl, unsigned long arg)
3281 {
3282 struct kvm *kvm = filp->private_data;
3283 void __user *argp = (void __user *)arg;
3284 int r = -ENOTTY;
3285 /*
3286 * This union makes it completely explicit to gcc-3.x
3287 * that these two variables' stack usage should be
3288 * combined, not added together.
3289 */
3290 union {
3291 struct kvm_pit_state ps;
3292 struct kvm_pit_state2 ps2;
3293 struct kvm_pit_config pit_config;
3294 } u;
3295
3296 switch (ioctl) {
3297 case KVM_SET_TSS_ADDR:
3298 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3299 if (r < 0)
3300 goto out;
3301 break;
3302 case KVM_SET_IDENTITY_MAP_ADDR: {
3303 u64 ident_addr;
3304
3305 r = -EFAULT;
3306 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3307 goto out;
3308 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3309 if (r < 0)
3310 goto out;
3311 break;
3312 }
3313 case KVM_SET_NR_MMU_PAGES:
3314 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3315 if (r)
3316 goto out;
3317 break;
3318 case KVM_GET_NR_MMU_PAGES:
3319 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3320 break;
3321 case KVM_CREATE_IRQCHIP: {
3322 struct kvm_pic *vpic;
3323
3324 mutex_lock(&kvm->lock);
3325 r = -EEXIST;
3326 if (kvm->arch.vpic)
3327 goto create_irqchip_unlock;
3328 r = -ENOMEM;
3329 vpic = kvm_create_pic(kvm);
3330 if (vpic) {
3331 r = kvm_ioapic_init(kvm);
3332 if (r) {
3333 mutex_lock(&kvm->slots_lock);
3334 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3335 &vpic->dev);
3336 mutex_unlock(&kvm->slots_lock);
3337 kfree(vpic);
3338 goto create_irqchip_unlock;
3339 }
3340 } else
3341 goto create_irqchip_unlock;
3342 smp_wmb();
3343 kvm->arch.vpic = vpic;
3344 smp_wmb();
3345 r = kvm_setup_default_irq_routing(kvm);
3346 if (r) {
3347 mutex_lock(&kvm->slots_lock);
3348 mutex_lock(&kvm->irq_lock);
3349 kvm_ioapic_destroy(kvm);
3350 kvm_destroy_pic(kvm);
3351 mutex_unlock(&kvm->irq_lock);
3352 mutex_unlock(&kvm->slots_lock);
3353 }
3354 create_irqchip_unlock:
3355 mutex_unlock(&kvm->lock);
3356 break;
3357 }
3358 case KVM_CREATE_PIT:
3359 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3360 goto create_pit;
3361 case KVM_CREATE_PIT2:
3362 r = -EFAULT;
3363 if (copy_from_user(&u.pit_config, argp,
3364 sizeof(struct kvm_pit_config)))
3365 goto out;
3366 create_pit:
3367 mutex_lock(&kvm->slots_lock);
3368 r = -EEXIST;
3369 if (kvm->arch.vpit)
3370 goto create_pit_unlock;
3371 r = -ENOMEM;
3372 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3373 if (kvm->arch.vpit)
3374 r = 0;
3375 create_pit_unlock:
3376 mutex_unlock(&kvm->slots_lock);
3377 break;
3378 case KVM_IRQ_LINE_STATUS:
3379 case KVM_IRQ_LINE: {
3380 struct kvm_irq_level irq_event;
3381
3382 r = -EFAULT;
3383 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3384 goto out;
3385 r = -ENXIO;
3386 if (irqchip_in_kernel(kvm)) {
3387 __s32 status;
3388 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3389 irq_event.irq, irq_event.level);
3390 if (ioctl == KVM_IRQ_LINE_STATUS) {
3391 r = -EFAULT;
3392 irq_event.status = status;
3393 if (copy_to_user(argp, &irq_event,
3394 sizeof irq_event))
3395 goto out;
3396 }
3397 r = 0;
3398 }
3399 break;
3400 }
3401 case KVM_GET_IRQCHIP: {
3402 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3403 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3404
3405 r = -ENOMEM;
3406 if (!chip)
3407 goto out;
3408 r = -EFAULT;
3409 if (copy_from_user(chip, argp, sizeof *chip))
3410 goto get_irqchip_out;
3411 r = -ENXIO;
3412 if (!irqchip_in_kernel(kvm))
3413 goto get_irqchip_out;
3414 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3415 if (r)
3416 goto get_irqchip_out;
3417 r = -EFAULT;
3418 if (copy_to_user(argp, chip, sizeof *chip))
3419 goto get_irqchip_out;
3420 r = 0;
3421 get_irqchip_out:
3422 kfree(chip);
3423 if (r)
3424 goto out;
3425 break;
3426 }
3427 case KVM_SET_IRQCHIP: {
3428 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3429 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3430
3431 r = -ENOMEM;
3432 if (!chip)
3433 goto out;
3434 r = -EFAULT;
3435 if (copy_from_user(chip, argp, sizeof *chip))
3436 goto set_irqchip_out;
3437 r = -ENXIO;
3438 if (!irqchip_in_kernel(kvm))
3439 goto set_irqchip_out;
3440 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3441 if (r)
3442 goto set_irqchip_out;
3443 r = 0;
3444 set_irqchip_out:
3445 kfree(chip);
3446 if (r)
3447 goto out;
3448 break;
3449 }
3450 case KVM_GET_PIT: {
3451 r = -EFAULT;
3452 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3453 goto out;
3454 r = -ENXIO;
3455 if (!kvm->arch.vpit)
3456 goto out;
3457 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3458 if (r)
3459 goto out;
3460 r = -EFAULT;
3461 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3462 goto out;
3463 r = 0;
3464 break;
3465 }
3466 case KVM_SET_PIT: {
3467 r = -EFAULT;
3468 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3469 goto out;
3470 r = -ENXIO;
3471 if (!kvm->arch.vpit)
3472 goto out;
3473 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3474 if (r)
3475 goto out;
3476 r = 0;
3477 break;
3478 }
3479 case KVM_GET_PIT2: {
3480 r = -ENXIO;
3481 if (!kvm->arch.vpit)
3482 goto out;
3483 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3484 if (r)
3485 goto out;
3486 r = -EFAULT;
3487 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3488 goto out;
3489 r = 0;
3490 break;
3491 }
3492 case KVM_SET_PIT2: {
3493 r = -EFAULT;
3494 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3495 goto out;
3496 r = -ENXIO;
3497 if (!kvm->arch.vpit)
3498 goto out;
3499 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3500 if (r)
3501 goto out;
3502 r = 0;
3503 break;
3504 }
3505 case KVM_REINJECT_CONTROL: {
3506 struct kvm_reinject_control control;
3507 r = -EFAULT;
3508 if (copy_from_user(&control, argp, sizeof(control)))
3509 goto out;
3510 r = kvm_vm_ioctl_reinject(kvm, &control);
3511 if (r)
3512 goto out;
3513 r = 0;
3514 break;
3515 }
3516 case KVM_XEN_HVM_CONFIG: {
3517 r = -EFAULT;
3518 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3519 sizeof(struct kvm_xen_hvm_config)))
3520 goto out;
3521 r = -EINVAL;
3522 if (kvm->arch.xen_hvm_config.flags)
3523 goto out;
3524 r = 0;
3525 break;
3526 }
3527 case KVM_SET_CLOCK: {
3528 struct kvm_clock_data user_ns;
3529 u64 now_ns;
3530 s64 delta;
3531
3532 r = -EFAULT;
3533 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3534 goto out;
3535
3536 r = -EINVAL;
3537 if (user_ns.flags)
3538 goto out;
3539
3540 r = 0;
3541 local_irq_disable();
3542 now_ns = get_kernel_ns();
3543 delta = user_ns.clock - now_ns;
3544 local_irq_enable();
3545 kvm->arch.kvmclock_offset = delta;
3546 break;
3547 }
3548 case KVM_GET_CLOCK: {
3549 struct kvm_clock_data user_ns;
3550 u64 now_ns;
3551
3552 local_irq_disable();
3553 now_ns = get_kernel_ns();
3554 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3555 local_irq_enable();
3556 user_ns.flags = 0;
3557 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3558
3559 r = -EFAULT;
3560 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3561 goto out;
3562 r = 0;
3563 break;
3564 }
3565
3566 default:
3567 ;
3568 }
3569 out:
3570 return r;
3571 }
3572
3573 static void kvm_init_msr_list(void)
3574 {
3575 u32 dummy[2];
3576 unsigned i, j;
3577
3578 /* skip the first msrs in the list. KVM-specific */
3579 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3580 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3581 continue;
3582 if (j < i)
3583 msrs_to_save[j] = msrs_to_save[i];
3584 j++;
3585 }
3586 num_msrs_to_save = j;
3587 }
3588
3589 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3590 const void *v)
3591 {
3592 if (vcpu->arch.apic &&
3593 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
3594 return 0;
3595
3596 return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3597 }
3598
3599 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3600 {
3601 if (vcpu->arch.apic &&
3602 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
3603 return 0;
3604
3605 return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3606 }
3607
3608 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3609 struct kvm_segment *var, int seg)
3610 {
3611 kvm_x86_ops->set_segment(vcpu, var, seg);
3612 }
3613
3614 void kvm_get_segment(struct kvm_vcpu *vcpu,
3615 struct kvm_segment *var, int seg)
3616 {
3617 kvm_x86_ops->get_segment(vcpu, var, seg);
3618 }
3619
3620 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3621 {
3622 return gpa;
3623 }
3624
3625 static gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3626 {
3627 gpa_t t_gpa;
3628 struct x86_exception exception;
3629
3630 BUG_ON(!mmu_is_nested(vcpu));
3631
3632 /* NPT walks are always user-walks */
3633 access |= PFERR_USER_MASK;
3634 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3635
3636 return t_gpa;
3637 }
3638
3639 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3640 struct x86_exception *exception)
3641 {
3642 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3643 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3644 }
3645
3646 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3647 struct x86_exception *exception)
3648 {
3649 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3650 access |= PFERR_FETCH_MASK;
3651 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3652 }
3653
3654 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3655 struct x86_exception *exception)
3656 {
3657 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3658 access |= PFERR_WRITE_MASK;
3659 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3660 }
3661
3662 /* uses this to access any guest's mapped memory without checking CPL */
3663 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3664 struct x86_exception *exception)
3665 {
3666 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3667 }
3668
3669 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3670 struct kvm_vcpu *vcpu, u32 access,
3671 struct x86_exception *exception)
3672 {
3673 void *data = val;
3674 int r = X86EMUL_CONTINUE;
3675
3676 while (bytes) {
3677 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3678 exception);
3679 unsigned offset = addr & (PAGE_SIZE-1);
3680 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3681 int ret;
3682
3683 if (gpa == UNMAPPED_GVA)
3684 return X86EMUL_PROPAGATE_FAULT;
3685 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3686 if (ret < 0) {
3687 r = X86EMUL_IO_NEEDED;
3688 goto out;
3689 }
3690
3691 bytes -= toread;
3692 data += toread;
3693 addr += toread;
3694 }
3695 out:
3696 return r;
3697 }
3698
3699 /* used for instruction fetching */
3700 static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
3701 struct kvm_vcpu *vcpu,
3702 struct x86_exception *exception)
3703 {
3704 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3705 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3706 access | PFERR_FETCH_MASK,
3707 exception);
3708 }
3709
3710 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
3711 struct kvm_vcpu *vcpu,
3712 struct x86_exception *exception)
3713 {
3714 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3715 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3716 exception);
3717 }
3718
3719 static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
3720 struct kvm_vcpu *vcpu,
3721 struct x86_exception *exception)
3722 {
3723 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3724 }
3725
3726 static int kvm_write_guest_virt_system(gva_t addr, void *val,
3727 unsigned int bytes,
3728 struct kvm_vcpu *vcpu,
3729 struct x86_exception *exception)
3730 {
3731 void *data = val;
3732 int r = X86EMUL_CONTINUE;
3733
3734 while (bytes) {
3735 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3736 PFERR_WRITE_MASK,
3737 exception);
3738 unsigned offset = addr & (PAGE_SIZE-1);
3739 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3740 int ret;
3741
3742 if (gpa == UNMAPPED_GVA)
3743 return X86EMUL_PROPAGATE_FAULT;
3744 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3745 if (ret < 0) {
3746 r = X86EMUL_IO_NEEDED;
3747 goto out;
3748 }
3749
3750 bytes -= towrite;
3751 data += towrite;
3752 addr += towrite;
3753 }
3754 out:
3755 return r;
3756 }
3757
3758 static int emulator_read_emulated(unsigned long addr,
3759 void *val,
3760 unsigned int bytes,
3761 struct x86_exception *exception,
3762 struct kvm_vcpu *vcpu)
3763 {
3764 gpa_t gpa;
3765
3766 if (vcpu->mmio_read_completed) {
3767 memcpy(val, vcpu->mmio_data, bytes);
3768 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3769 vcpu->mmio_phys_addr, *(u64 *)val);
3770 vcpu->mmio_read_completed = 0;
3771 return X86EMUL_CONTINUE;
3772 }
3773
3774 gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, exception);
3775
3776 if (gpa == UNMAPPED_GVA)
3777 return X86EMUL_PROPAGATE_FAULT;
3778
3779 /* For APIC access vmexit */
3780 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3781 goto mmio;
3782
3783 if (kvm_read_guest_virt(addr, val, bytes, vcpu, exception)
3784 == X86EMUL_CONTINUE)
3785 return X86EMUL_CONTINUE;
3786
3787 mmio:
3788 /*
3789 * Is this MMIO handled locally?
3790 */
3791 if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
3792 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
3793 return X86EMUL_CONTINUE;
3794 }
3795
3796 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3797
3798 vcpu->mmio_needed = 1;
3799 vcpu->run->exit_reason = KVM_EXIT_MMIO;
3800 vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3801 vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3802 vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
3803
3804 return X86EMUL_IO_NEEDED;
3805 }
3806
3807 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3808 const void *val, int bytes)
3809 {
3810 int ret;
3811
3812 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3813 if (ret < 0)
3814 return 0;
3815 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3816 return 1;
3817 }
3818
3819 static int emulator_write_emulated_onepage(unsigned long addr,
3820 const void *val,
3821 unsigned int bytes,
3822 struct x86_exception *exception,
3823 struct kvm_vcpu *vcpu)
3824 {
3825 gpa_t gpa;
3826
3827 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, exception);
3828
3829 if (gpa == UNMAPPED_GVA)
3830 return X86EMUL_PROPAGATE_FAULT;
3831
3832 /* For APIC access vmexit */
3833 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3834 goto mmio;
3835
3836 if (emulator_write_phys(vcpu, gpa, val, bytes))
3837 return X86EMUL_CONTINUE;
3838
3839 mmio:
3840 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3841 /*
3842 * Is this MMIO handled locally?
3843 */
3844 if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
3845 return X86EMUL_CONTINUE;
3846
3847 vcpu->mmio_needed = 1;
3848 vcpu->run->exit_reason = KVM_EXIT_MMIO;
3849 vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3850 vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3851 vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
3852 memcpy(vcpu->run->mmio.data, val, bytes);
3853
3854 return X86EMUL_CONTINUE;
3855 }
3856
3857 int emulator_write_emulated(unsigned long addr,
3858 const void *val,
3859 unsigned int bytes,
3860 struct x86_exception *exception,
3861 struct kvm_vcpu *vcpu)
3862 {
3863 /* Crossing a page boundary? */
3864 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3865 int rc, now;
3866
3867 now = -addr & ~PAGE_MASK;
3868 rc = emulator_write_emulated_onepage(addr, val, now, exception,
3869 vcpu);
3870 if (rc != X86EMUL_CONTINUE)
3871 return rc;
3872 addr += now;
3873 val += now;
3874 bytes -= now;
3875 }
3876 return emulator_write_emulated_onepage(addr, val, bytes, exception,
3877 vcpu);
3878 }
3879
3880 #define CMPXCHG_TYPE(t, ptr, old, new) \
3881 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3882
3883 #ifdef CONFIG_X86_64
3884 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3885 #else
3886 # define CMPXCHG64(ptr, old, new) \
3887 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3888 #endif
3889
3890 static int emulator_cmpxchg_emulated(unsigned long addr,
3891 const void *old,
3892 const void *new,
3893 unsigned int bytes,
3894 struct x86_exception *exception,
3895 struct kvm_vcpu *vcpu)
3896 {
3897 gpa_t gpa;
3898 struct page *page;
3899 char *kaddr;
3900 bool exchanged;
3901
3902 /* guests cmpxchg8b have to be emulated atomically */
3903 if (bytes > 8 || (bytes & (bytes - 1)))
3904 goto emul_write;
3905
3906 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3907
3908 if (gpa == UNMAPPED_GVA ||
3909 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3910 goto emul_write;
3911
3912 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3913 goto emul_write;
3914
3915 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3916 if (is_error_page(page)) {
3917 kvm_release_page_clean(page);
3918 goto emul_write;
3919 }
3920
3921 kaddr = kmap_atomic(page, KM_USER0);
3922 kaddr += offset_in_page(gpa);
3923 switch (bytes) {
3924 case 1:
3925 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3926 break;
3927 case 2:
3928 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3929 break;
3930 case 4:
3931 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3932 break;
3933 case 8:
3934 exchanged = CMPXCHG64(kaddr, old, new);
3935 break;
3936 default:
3937 BUG();
3938 }
3939 kunmap_atomic(kaddr, KM_USER0);
3940 kvm_release_page_dirty(page);
3941
3942 if (!exchanged)
3943 return X86EMUL_CMPXCHG_FAILED;
3944
3945 kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
3946
3947 return X86EMUL_CONTINUE;
3948
3949 emul_write:
3950 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3951
3952 return emulator_write_emulated(addr, new, bytes, exception, vcpu);
3953 }
3954
3955 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3956 {
3957 /* TODO: String I/O for in kernel device */
3958 int r;
3959
3960 if (vcpu->arch.pio.in)
3961 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3962 vcpu->arch.pio.size, pd);
3963 else
3964 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3965 vcpu->arch.pio.port, vcpu->arch.pio.size,
3966 pd);
3967 return r;
3968 }
3969
3970
3971 static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
3972 unsigned int count, struct kvm_vcpu *vcpu)
3973 {
3974 if (vcpu->arch.pio.count)
3975 goto data_avail;
3976
3977 trace_kvm_pio(0, port, size, count);
3978
3979 vcpu->arch.pio.port = port;
3980 vcpu->arch.pio.in = 1;
3981 vcpu->arch.pio.count = count;
3982 vcpu->arch.pio.size = size;
3983
3984 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3985 data_avail:
3986 memcpy(val, vcpu->arch.pio_data, size * count);
3987 vcpu->arch.pio.count = 0;
3988 return 1;
3989 }
3990
3991 vcpu->run->exit_reason = KVM_EXIT_IO;
3992 vcpu->run->io.direction = KVM_EXIT_IO_IN;
3993 vcpu->run->io.size = size;
3994 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3995 vcpu->run->io.count = count;
3996 vcpu->run->io.port = port;
3997
3998 return 0;
3999 }
4000
4001 static int emulator_pio_out_emulated(int size, unsigned short port,
4002 const void *val, unsigned int count,
4003 struct kvm_vcpu *vcpu)
4004 {
4005 trace_kvm_pio(1, port, size, count);
4006
4007 vcpu->arch.pio.port = port;
4008 vcpu->arch.pio.in = 0;
4009 vcpu->arch.pio.count = count;
4010 vcpu->arch.pio.size = size;
4011
4012 memcpy(vcpu->arch.pio_data, val, size * count);
4013
4014 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4015 vcpu->arch.pio.count = 0;
4016 return 1;
4017 }
4018
4019 vcpu->run->exit_reason = KVM_EXIT_IO;
4020 vcpu->run->io.direction = KVM_EXIT_IO_OUT;
4021 vcpu->run->io.size = size;
4022 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4023 vcpu->run->io.count = count;
4024 vcpu->run->io.port = port;
4025
4026 return 0;
4027 }
4028
4029 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4030 {
4031 return kvm_x86_ops->get_segment_base(vcpu, seg);
4032 }
4033
4034 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
4035 {
4036 kvm_mmu_invlpg(vcpu, address);
4037 return X86EMUL_CONTINUE;
4038 }
4039
4040 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4041 {
4042 if (!need_emulate_wbinvd(vcpu))
4043 return X86EMUL_CONTINUE;
4044
4045 if (kvm_x86_ops->has_wbinvd_exit()) {
4046 int cpu = get_cpu();
4047
4048 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4049 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4050 wbinvd_ipi, NULL, 1);
4051 put_cpu();
4052 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4053 } else
4054 wbinvd();
4055 return X86EMUL_CONTINUE;
4056 }
4057 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4058
4059 int emulate_clts(struct kvm_vcpu *vcpu)
4060 {
4061 kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4062 kvm_x86_ops->fpu_activate(vcpu);
4063 return X86EMUL_CONTINUE;
4064 }
4065
4066 int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu)
4067 {
4068 return _kvm_get_dr(vcpu, dr, dest);
4069 }
4070
4071 int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu)
4072 {
4073
4074 return __kvm_set_dr(vcpu, dr, value);
4075 }
4076
4077 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4078 {
4079 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4080 }
4081
4082 static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
4083 {
4084 unsigned long value;
4085
4086 switch (cr) {
4087 case 0:
4088 value = kvm_read_cr0(vcpu);
4089 break;
4090 case 2:
4091 value = vcpu->arch.cr2;
4092 break;
4093 case 3:
4094 value = kvm_read_cr3(vcpu);
4095 break;
4096 case 4:
4097 value = kvm_read_cr4(vcpu);
4098 break;
4099 case 8:
4100 value = kvm_get_cr8(vcpu);
4101 break;
4102 default:
4103 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4104 return 0;
4105 }
4106
4107 return value;
4108 }
4109
4110 static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
4111 {
4112 int res = 0;
4113
4114 switch (cr) {
4115 case 0:
4116 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4117 break;
4118 case 2:
4119 vcpu->arch.cr2 = val;
4120 break;
4121 case 3:
4122 res = kvm_set_cr3(vcpu, val);
4123 break;
4124 case 4:
4125 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4126 break;
4127 case 8:
4128 res = kvm_set_cr8(vcpu, val);
4129 break;
4130 default:
4131 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4132 res = -1;
4133 }
4134
4135 return res;
4136 }
4137
4138 static int emulator_get_cpl(struct kvm_vcpu *vcpu)
4139 {
4140 return kvm_x86_ops->get_cpl(vcpu);
4141 }
4142
4143 static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
4144 {
4145 kvm_x86_ops->get_gdt(vcpu, dt);
4146 }
4147
4148 static void emulator_get_idt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
4149 {
4150 kvm_x86_ops->get_idt(vcpu, dt);
4151 }
4152
4153 static unsigned long emulator_get_cached_segment_base(int seg,
4154 struct kvm_vcpu *vcpu)
4155 {
4156 return get_segment_base(vcpu, seg);
4157 }
4158
4159 static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
4160 struct kvm_vcpu *vcpu)
4161 {
4162 struct kvm_segment var;
4163
4164 kvm_get_segment(vcpu, &var, seg);
4165
4166 if (var.unusable)
4167 return false;
4168
4169 if (var.g)
4170 var.limit >>= 12;
4171 set_desc_limit(desc, var.limit);
4172 set_desc_base(desc, (unsigned long)var.base);
4173 desc->type = var.type;
4174 desc->s = var.s;
4175 desc->dpl = var.dpl;
4176 desc->p = var.present;
4177 desc->avl = var.avl;
4178 desc->l = var.l;
4179 desc->d = var.db;
4180 desc->g = var.g;
4181
4182 return true;
4183 }
4184
4185 static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
4186 struct kvm_vcpu *vcpu)
4187 {
4188 struct kvm_segment var;
4189
4190 /* needed to preserve selector */
4191 kvm_get_segment(vcpu, &var, seg);
4192
4193 var.base = get_desc_base(desc);
4194 var.limit = get_desc_limit(desc);
4195 if (desc->g)
4196 var.limit = (var.limit << 12) | 0xfff;
4197 var.type = desc->type;
4198 var.present = desc->p;
4199 var.dpl = desc->dpl;
4200 var.db = desc->d;
4201 var.s = desc->s;
4202 var.l = desc->l;
4203 var.g = desc->g;
4204 var.avl = desc->avl;
4205 var.present = desc->p;
4206 var.unusable = !var.present;
4207 var.padding = 0;
4208
4209 kvm_set_segment(vcpu, &var, seg);
4210 return;
4211 }
4212
4213 static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
4214 {
4215 struct kvm_segment kvm_seg;
4216
4217 kvm_get_segment(vcpu, &kvm_seg, seg);
4218 return kvm_seg.selector;
4219 }
4220
4221 static void emulator_set_segment_selector(u16 sel, int seg,
4222 struct kvm_vcpu *vcpu)
4223 {
4224 struct kvm_segment kvm_seg;
4225
4226 kvm_get_segment(vcpu, &kvm_seg, seg);
4227 kvm_seg.selector = sel;
4228 kvm_set_segment(vcpu, &kvm_seg, seg);
4229 }
4230
4231 static struct x86_emulate_ops emulate_ops = {
4232 .read_std = kvm_read_guest_virt_system,
4233 .write_std = kvm_write_guest_virt_system,
4234 .fetch = kvm_fetch_guest_virt,
4235 .read_emulated = emulator_read_emulated,
4236 .write_emulated = emulator_write_emulated,
4237 .cmpxchg_emulated = emulator_cmpxchg_emulated,
4238 .pio_in_emulated = emulator_pio_in_emulated,
4239 .pio_out_emulated = emulator_pio_out_emulated,
4240 .get_cached_descriptor = emulator_get_cached_descriptor,
4241 .set_cached_descriptor = emulator_set_cached_descriptor,
4242 .get_segment_selector = emulator_get_segment_selector,
4243 .set_segment_selector = emulator_set_segment_selector,
4244 .get_cached_segment_base = emulator_get_cached_segment_base,
4245 .get_gdt = emulator_get_gdt,
4246 .get_idt = emulator_get_idt,
4247 .get_cr = emulator_get_cr,
4248 .set_cr = emulator_set_cr,
4249 .cpl = emulator_get_cpl,
4250 .get_dr = emulator_get_dr,
4251 .set_dr = emulator_set_dr,
4252 .set_msr = kvm_set_msr,
4253 .get_msr = kvm_get_msr,
4254 };
4255
4256 static void cache_all_regs(struct kvm_vcpu *vcpu)
4257 {
4258 kvm_register_read(vcpu, VCPU_REGS_RAX);
4259 kvm_register_read(vcpu, VCPU_REGS_RSP);
4260 kvm_register_read(vcpu, VCPU_REGS_RIP);
4261 vcpu->arch.regs_dirty = ~0;
4262 }
4263
4264 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4265 {
4266 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4267 /*
4268 * an sti; sti; sequence only disable interrupts for the first
4269 * instruction. So, if the last instruction, be it emulated or
4270 * not, left the system with the INT_STI flag enabled, it
4271 * means that the last instruction is an sti. We should not
4272 * leave the flag on in this case. The same goes for mov ss
4273 */
4274 if (!(int_shadow & mask))
4275 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4276 }
4277
4278 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4279 {
4280 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4281 if (ctxt->exception.vector == PF_VECTOR)
4282 kvm_propagate_fault(vcpu, &ctxt->exception);
4283 else if (ctxt->exception.error_code_valid)
4284 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4285 ctxt->exception.error_code);
4286 else
4287 kvm_queue_exception(vcpu, ctxt->exception.vector);
4288 }
4289
4290 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4291 {
4292 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4293 int cs_db, cs_l;
4294
4295 cache_all_regs(vcpu);
4296
4297 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4298
4299 vcpu->arch.emulate_ctxt.vcpu = vcpu;
4300 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
4301 vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
4302 vcpu->arch.emulate_ctxt.mode =
4303 (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4304 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
4305 ? X86EMUL_MODE_VM86 : cs_l
4306 ? X86EMUL_MODE_PROT64 : cs_db
4307 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
4308 memset(c, 0, sizeof(struct decode_cache));
4309 memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4310 }
4311
4312 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq)
4313 {
4314 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4315 int ret;
4316
4317 init_emulate_ctxt(vcpu);
4318
4319 vcpu->arch.emulate_ctxt.decode.op_bytes = 2;
4320 vcpu->arch.emulate_ctxt.decode.ad_bytes = 2;
4321 vcpu->arch.emulate_ctxt.decode.eip = vcpu->arch.emulate_ctxt.eip;
4322 ret = emulate_int_real(&vcpu->arch.emulate_ctxt, &emulate_ops, irq);
4323
4324 if (ret != X86EMUL_CONTINUE)
4325 return EMULATE_FAIL;
4326
4327 vcpu->arch.emulate_ctxt.eip = c->eip;
4328 memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4329 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4330 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4331
4332 if (irq == NMI_VECTOR)
4333 vcpu->arch.nmi_pending = false;
4334 else
4335 vcpu->arch.interrupt.pending = false;
4336
4337 return EMULATE_DONE;
4338 }
4339 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4340
4341 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4342 {
4343 int r = EMULATE_DONE;
4344
4345 ++vcpu->stat.insn_emulation_fail;
4346 trace_kvm_emulate_insn_failed(vcpu);
4347 if (!is_guest_mode(vcpu)) {
4348 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4349 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4350 vcpu->run->internal.ndata = 0;
4351 r = EMULATE_FAIL;
4352 }
4353 kvm_queue_exception(vcpu, UD_VECTOR);
4354
4355 return r;
4356 }
4357
4358 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4359 {
4360 gpa_t gpa;
4361
4362 if (tdp_enabled)
4363 return false;
4364
4365 /*
4366 * if emulation was due to access to shadowed page table
4367 * and it failed try to unshadow page and re-entetr the
4368 * guest to let CPU execute the instruction.
4369 */
4370 if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4371 return true;
4372
4373 gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4374
4375 if (gpa == UNMAPPED_GVA)
4376 return true; /* let cpu generate fault */
4377
4378 if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4379 return true;
4380
4381 return false;
4382 }
4383
4384 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4385 unsigned long cr2,
4386 int emulation_type,
4387 void *insn,
4388 int insn_len)
4389 {
4390 int r;
4391 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4392
4393 kvm_clear_exception_queue(vcpu);
4394 vcpu->arch.mmio_fault_cr2 = cr2;
4395 /*
4396 * TODO: fix emulate.c to use guest_read/write_register
4397 * instead of direct ->regs accesses, can save hundred cycles
4398 * on Intel for instructions that don't read/change RSP, for
4399 * for example.
4400 */
4401 cache_all_regs(vcpu);
4402
4403 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4404 init_emulate_ctxt(vcpu);
4405 vcpu->arch.emulate_ctxt.interruptibility = 0;
4406 vcpu->arch.emulate_ctxt.have_exception = false;
4407 vcpu->arch.emulate_ctxt.perm_ok = false;
4408
4409 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, insn, insn_len);
4410 if (r == X86EMUL_PROPAGATE_FAULT)
4411 goto done;
4412
4413 trace_kvm_emulate_insn_start(vcpu);
4414
4415 /* Only allow emulation of specific instructions on #UD
4416 * (namely VMMCALL, sysenter, sysexit, syscall)*/
4417 if (emulation_type & EMULTYPE_TRAP_UD) {
4418 if (!c->twobyte)
4419 return EMULATE_FAIL;
4420 switch (c->b) {
4421 case 0x01: /* VMMCALL */
4422 if (c->modrm_mod != 3 || c->modrm_rm != 1)
4423 return EMULATE_FAIL;
4424 break;
4425 case 0x34: /* sysenter */
4426 case 0x35: /* sysexit */
4427 if (c->modrm_mod != 0 || c->modrm_rm != 0)
4428 return EMULATE_FAIL;
4429 break;
4430 case 0x05: /* syscall */
4431 if (c->modrm_mod != 0 || c->modrm_rm != 0)
4432 return EMULATE_FAIL;
4433 break;
4434 default:
4435 return EMULATE_FAIL;
4436 }
4437
4438 if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
4439 return EMULATE_FAIL;
4440 }
4441
4442 ++vcpu->stat.insn_emulation;
4443 if (r) {
4444 if (reexecute_instruction(vcpu, cr2))
4445 return EMULATE_DONE;
4446 if (emulation_type & EMULTYPE_SKIP)
4447 return EMULATE_FAIL;
4448 return handle_emulation_failure(vcpu);
4449 }
4450 }
4451
4452 if (emulation_type & EMULTYPE_SKIP) {
4453 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
4454 return EMULATE_DONE;
4455 }
4456
4457 /* this is needed for vmware backdor interface to work since it
4458 changes registers values during IO operation */
4459 memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4460
4461 restart:
4462 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt);
4463
4464 if (r == EMULATION_FAILED) {
4465 if (reexecute_instruction(vcpu, cr2))
4466 return EMULATE_DONE;
4467
4468 return handle_emulation_failure(vcpu);
4469 }
4470
4471 done:
4472 if (vcpu->arch.emulate_ctxt.have_exception) {
4473 inject_emulated_exception(vcpu);
4474 r = EMULATE_DONE;
4475 } else if (vcpu->arch.pio.count) {
4476 if (!vcpu->arch.pio.in)
4477 vcpu->arch.pio.count = 0;
4478 r = EMULATE_DO_MMIO;
4479 } else if (vcpu->mmio_needed) {
4480 if (vcpu->mmio_is_write)
4481 vcpu->mmio_needed = 0;
4482 r = EMULATE_DO_MMIO;
4483 } else if (r == EMULATION_RESTART)
4484 goto restart;
4485 else
4486 r = EMULATE_DONE;
4487
4488 toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility);
4489 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4490 kvm_make_request(KVM_REQ_EVENT, vcpu);
4491 memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4492 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4493
4494 return r;
4495 }
4496 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4497
4498 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4499 {
4500 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4501 int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
4502 /* do not return to emulator after return from userspace */
4503 vcpu->arch.pio.count = 0;
4504 return ret;
4505 }
4506 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4507
4508 static void tsc_bad(void *info)
4509 {
4510 __this_cpu_write(cpu_tsc_khz, 0);
4511 }
4512
4513 static void tsc_khz_changed(void *data)
4514 {
4515 struct cpufreq_freqs *freq = data;
4516 unsigned long khz = 0;
4517
4518 if (data)
4519 khz = freq->new;
4520 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4521 khz = cpufreq_quick_get(raw_smp_processor_id());
4522 if (!khz)
4523 khz = tsc_khz;
4524 __this_cpu_write(cpu_tsc_khz, khz);
4525 }
4526
4527 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4528 void *data)
4529 {
4530 struct cpufreq_freqs *freq = data;
4531 struct kvm *kvm;
4532 struct kvm_vcpu *vcpu;
4533 int i, send_ipi = 0;
4534
4535 /*
4536 * We allow guests to temporarily run on slowing clocks,
4537 * provided we notify them after, or to run on accelerating
4538 * clocks, provided we notify them before. Thus time never
4539 * goes backwards.
4540 *
4541 * However, we have a problem. We can't atomically update
4542 * the frequency of a given CPU from this function; it is
4543 * merely a notifier, which can be called from any CPU.
4544 * Changing the TSC frequency at arbitrary points in time
4545 * requires a recomputation of local variables related to
4546 * the TSC for each VCPU. We must flag these local variables
4547 * to be updated and be sure the update takes place with the
4548 * new frequency before any guests proceed.
4549 *
4550 * Unfortunately, the combination of hotplug CPU and frequency
4551 * change creates an intractable locking scenario; the order
4552 * of when these callouts happen is undefined with respect to
4553 * CPU hotplug, and they can race with each other. As such,
4554 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4555 * undefined; you can actually have a CPU frequency change take
4556 * place in between the computation of X and the setting of the
4557 * variable. To protect against this problem, all updates of
4558 * the per_cpu tsc_khz variable are done in an interrupt
4559 * protected IPI, and all callers wishing to update the value
4560 * must wait for a synchronous IPI to complete (which is trivial
4561 * if the caller is on the CPU already). This establishes the
4562 * necessary total order on variable updates.
4563 *
4564 * Note that because a guest time update may take place
4565 * anytime after the setting of the VCPU's request bit, the
4566 * correct TSC value must be set before the request. However,
4567 * to ensure the update actually makes it to any guest which
4568 * starts running in hardware virtualization between the set
4569 * and the acquisition of the spinlock, we must also ping the
4570 * CPU after setting the request bit.
4571 *
4572 */
4573
4574 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4575 return 0;
4576 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4577 return 0;
4578
4579 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4580
4581 spin_lock(&kvm_lock);
4582 list_for_each_entry(kvm, &vm_list, vm_list) {
4583 kvm_for_each_vcpu(i, vcpu, kvm) {
4584 if (vcpu->cpu != freq->cpu)
4585 continue;
4586 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4587 if (vcpu->cpu != smp_processor_id())
4588 send_ipi = 1;
4589 }
4590 }
4591 spin_unlock(&kvm_lock);
4592
4593 if (freq->old < freq->new && send_ipi) {
4594 /*
4595 * We upscale the frequency. Must make the guest
4596 * doesn't see old kvmclock values while running with
4597 * the new frequency, otherwise we risk the guest sees
4598 * time go backwards.
4599 *
4600 * In case we update the frequency for another cpu
4601 * (which might be in guest context) send an interrupt
4602 * to kick the cpu out of guest context. Next time
4603 * guest context is entered kvmclock will be updated,
4604 * so the guest will not see stale values.
4605 */
4606 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4607 }
4608 return 0;
4609 }
4610
4611 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4612 .notifier_call = kvmclock_cpufreq_notifier
4613 };
4614
4615 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4616 unsigned long action, void *hcpu)
4617 {
4618 unsigned int cpu = (unsigned long)hcpu;
4619
4620 switch (action) {
4621 case CPU_ONLINE:
4622 case CPU_DOWN_FAILED:
4623 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4624 break;
4625 case CPU_DOWN_PREPARE:
4626 smp_call_function_single(cpu, tsc_bad, NULL, 1);
4627 break;
4628 }
4629 return NOTIFY_OK;
4630 }
4631
4632 static struct notifier_block kvmclock_cpu_notifier_block = {
4633 .notifier_call = kvmclock_cpu_notifier,
4634 .priority = -INT_MAX
4635 };
4636
4637 static void kvm_timer_init(void)
4638 {
4639 int cpu;
4640
4641 max_tsc_khz = tsc_khz;
4642 register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4643 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4644 #ifdef CONFIG_CPU_FREQ
4645 struct cpufreq_policy policy;
4646 memset(&policy, 0, sizeof(policy));
4647 cpu = get_cpu();
4648 cpufreq_get_policy(&policy, cpu);
4649 if (policy.cpuinfo.max_freq)
4650 max_tsc_khz = policy.cpuinfo.max_freq;
4651 put_cpu();
4652 #endif
4653 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4654 CPUFREQ_TRANSITION_NOTIFIER);
4655 }
4656 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
4657 for_each_online_cpu(cpu)
4658 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4659 }
4660
4661 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4662
4663 static int kvm_is_in_guest(void)
4664 {
4665 return percpu_read(current_vcpu) != NULL;
4666 }
4667
4668 static int kvm_is_user_mode(void)
4669 {
4670 int user_mode = 3;
4671
4672 if (percpu_read(current_vcpu))
4673 user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
4674
4675 return user_mode != 0;
4676 }
4677
4678 static unsigned long kvm_get_guest_ip(void)
4679 {
4680 unsigned long ip = 0;
4681
4682 if (percpu_read(current_vcpu))
4683 ip = kvm_rip_read(percpu_read(current_vcpu));
4684
4685 return ip;
4686 }
4687
4688 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4689 .is_in_guest = kvm_is_in_guest,
4690 .is_user_mode = kvm_is_user_mode,
4691 .get_guest_ip = kvm_get_guest_ip,
4692 };
4693
4694 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4695 {
4696 percpu_write(current_vcpu, vcpu);
4697 }
4698 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4699
4700 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4701 {
4702 percpu_write(current_vcpu, NULL);
4703 }
4704 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4705
4706 int kvm_arch_init(void *opaque)
4707 {
4708 int r;
4709 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4710
4711 if (kvm_x86_ops) {
4712 printk(KERN_ERR "kvm: already loaded the other module\n");
4713 r = -EEXIST;
4714 goto out;
4715 }
4716
4717 if (!ops->cpu_has_kvm_support()) {
4718 printk(KERN_ERR "kvm: no hardware support\n");
4719 r = -EOPNOTSUPP;
4720 goto out;
4721 }
4722 if (ops->disabled_by_bios()) {
4723 printk(KERN_ERR "kvm: disabled by bios\n");
4724 r = -EOPNOTSUPP;
4725 goto out;
4726 }
4727
4728 r = kvm_mmu_module_init();
4729 if (r)
4730 goto out;
4731
4732 kvm_init_msr_list();
4733
4734 kvm_x86_ops = ops;
4735 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
4736 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4737 PT_DIRTY_MASK, PT64_NX_MASK, 0);
4738
4739 kvm_timer_init();
4740
4741 perf_register_guest_info_callbacks(&kvm_guest_cbs);
4742
4743 if (cpu_has_xsave)
4744 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4745
4746 return 0;
4747
4748 out:
4749 return r;
4750 }
4751
4752 void kvm_arch_exit(void)
4753 {
4754 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4755
4756 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4757 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4758 CPUFREQ_TRANSITION_NOTIFIER);
4759 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4760 kvm_x86_ops = NULL;
4761 kvm_mmu_module_exit();
4762 }
4763
4764 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4765 {
4766 ++vcpu->stat.halt_exits;
4767 if (irqchip_in_kernel(vcpu->kvm)) {
4768 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4769 return 1;
4770 } else {
4771 vcpu->run->exit_reason = KVM_EXIT_HLT;
4772 return 0;
4773 }
4774 }
4775 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4776
4777 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
4778 unsigned long a1)
4779 {
4780 if (is_long_mode(vcpu))
4781 return a0;
4782 else
4783 return a0 | ((gpa_t)a1 << 32);
4784 }
4785
4786 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4787 {
4788 u64 param, ingpa, outgpa, ret;
4789 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4790 bool fast, longmode;
4791 int cs_db, cs_l;
4792
4793 /*
4794 * hypercall generates UD from non zero cpl and real mode
4795 * per HYPER-V spec
4796 */
4797 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4798 kvm_queue_exception(vcpu, UD_VECTOR);
4799 return 0;
4800 }
4801
4802 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4803 longmode = is_long_mode(vcpu) && cs_l == 1;
4804
4805 if (!longmode) {
4806 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4807 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4808 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4809 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4810 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4811 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4812 }
4813 #ifdef CONFIG_X86_64
4814 else {
4815 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4816 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4817 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4818 }
4819 #endif
4820
4821 code = param & 0xffff;
4822 fast = (param >> 16) & 0x1;
4823 rep_cnt = (param >> 32) & 0xfff;
4824 rep_idx = (param >> 48) & 0xfff;
4825
4826 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4827
4828 switch (code) {
4829 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4830 kvm_vcpu_on_spin(vcpu);
4831 break;
4832 default:
4833 res = HV_STATUS_INVALID_HYPERCALL_CODE;
4834 break;
4835 }
4836
4837 ret = res | (((u64)rep_done & 0xfff) << 32);
4838 if (longmode) {
4839 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4840 } else {
4841 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
4842 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
4843 }
4844
4845 return 1;
4846 }
4847
4848 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
4849 {
4850 unsigned long nr, a0, a1, a2, a3, ret;
4851 int r = 1;
4852
4853 if (kvm_hv_hypercall_enabled(vcpu->kvm))
4854 return kvm_hv_hypercall(vcpu);
4855
4856 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
4857 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
4858 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
4859 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
4860 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
4861
4862 trace_kvm_hypercall(nr, a0, a1, a2, a3);
4863
4864 if (!is_long_mode(vcpu)) {
4865 nr &= 0xFFFFFFFF;
4866 a0 &= 0xFFFFFFFF;
4867 a1 &= 0xFFFFFFFF;
4868 a2 &= 0xFFFFFFFF;
4869 a3 &= 0xFFFFFFFF;
4870 }
4871
4872 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
4873 ret = -KVM_EPERM;
4874 goto out;
4875 }
4876
4877 switch (nr) {
4878 case KVM_HC_VAPIC_POLL_IRQ:
4879 ret = 0;
4880 break;
4881 case KVM_HC_MMU_OP:
4882 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
4883 break;
4884 default:
4885 ret = -KVM_ENOSYS;
4886 break;
4887 }
4888 out:
4889 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4890 ++vcpu->stat.hypercalls;
4891 return r;
4892 }
4893 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
4894
4895 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
4896 {
4897 char instruction[3];
4898 unsigned long rip = kvm_rip_read(vcpu);
4899
4900 /*
4901 * Blow out the MMU to ensure that no other VCPU has an active mapping
4902 * to ensure that the updated hypercall appears atomically across all
4903 * VCPUs.
4904 */
4905 kvm_mmu_zap_all(vcpu->kvm);
4906
4907 kvm_x86_ops->patch_hypercall(vcpu, instruction);
4908
4909 return emulator_write_emulated(rip, instruction, 3, NULL, vcpu);
4910 }
4911
4912 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4913 {
4914 struct desc_ptr dt = { limit, base };
4915
4916 kvm_x86_ops->set_gdt(vcpu, &dt);
4917 }
4918
4919 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4920 {
4921 struct desc_ptr dt = { limit, base };
4922
4923 kvm_x86_ops->set_idt(vcpu, &dt);
4924 }
4925
4926 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
4927 {
4928 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
4929 int j, nent = vcpu->arch.cpuid_nent;
4930
4931 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
4932 /* when no next entry is found, the current entry[i] is reselected */
4933 for (j = i + 1; ; j = (j + 1) % nent) {
4934 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
4935 if (ej->function == e->function) {
4936 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
4937 return j;
4938 }
4939 }
4940 return 0; /* silence gcc, even though control never reaches here */
4941 }
4942
4943 /* find an entry with matching function, matching index (if needed), and that
4944 * should be read next (if it's stateful) */
4945 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
4946 u32 function, u32 index)
4947 {
4948 if (e->function != function)
4949 return 0;
4950 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
4951 return 0;
4952 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
4953 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
4954 return 0;
4955 return 1;
4956 }
4957
4958 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
4959 u32 function, u32 index)
4960 {
4961 int i;
4962 struct kvm_cpuid_entry2 *best = NULL;
4963
4964 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
4965 struct kvm_cpuid_entry2 *e;
4966
4967 e = &vcpu->arch.cpuid_entries[i];
4968 if (is_matching_cpuid_entry(e, function, index)) {
4969 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
4970 move_to_next_stateful_cpuid_entry(vcpu, i);
4971 best = e;
4972 break;
4973 }
4974 /*
4975 * Both basic or both extended?
4976 */
4977 if (((e->function ^ function) & 0x80000000) == 0)
4978 if (!best || e->function > best->function)
4979 best = e;
4980 }
4981 return best;
4982 }
4983 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
4984
4985 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
4986 {
4987 struct kvm_cpuid_entry2 *best;
4988
4989 best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
4990 if (!best || best->eax < 0x80000008)
4991 goto not_found;
4992 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
4993 if (best)
4994 return best->eax & 0xff;
4995 not_found:
4996 return 36;
4997 }
4998
4999 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
5000 {
5001 u32 function, index;
5002 struct kvm_cpuid_entry2 *best;
5003
5004 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
5005 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5006 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
5007 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
5008 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
5009 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
5010 best = kvm_find_cpuid_entry(vcpu, function, index);
5011 if (best) {
5012 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
5013 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
5014 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
5015 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
5016 }
5017 kvm_x86_ops->skip_emulated_instruction(vcpu);
5018 trace_kvm_cpuid(function,
5019 kvm_register_read(vcpu, VCPU_REGS_RAX),
5020 kvm_register_read(vcpu, VCPU_REGS_RBX),
5021 kvm_register_read(vcpu, VCPU_REGS_RCX),
5022 kvm_register_read(vcpu, VCPU_REGS_RDX));
5023 }
5024 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
5025
5026 /*
5027 * Check if userspace requested an interrupt window, and that the
5028 * interrupt window is open.
5029 *
5030 * No need to exit to userspace if we already have an interrupt queued.
5031 */
5032 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5033 {
5034 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5035 vcpu->run->request_interrupt_window &&
5036 kvm_arch_interrupt_allowed(vcpu));
5037 }
5038
5039 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5040 {
5041 struct kvm_run *kvm_run = vcpu->run;
5042
5043 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5044 kvm_run->cr8 = kvm_get_cr8(vcpu);
5045 kvm_run->apic_base = kvm_get_apic_base(vcpu);
5046 if (irqchip_in_kernel(vcpu->kvm))
5047 kvm_run->ready_for_interrupt_injection = 1;
5048 else
5049 kvm_run->ready_for_interrupt_injection =
5050 kvm_arch_interrupt_allowed(vcpu) &&
5051 !kvm_cpu_has_interrupt(vcpu) &&
5052 !kvm_event_needs_reinjection(vcpu);
5053 }
5054
5055 static void vapic_enter(struct kvm_vcpu *vcpu)
5056 {
5057 struct kvm_lapic *apic = vcpu->arch.apic;
5058 struct page *page;
5059
5060 if (!apic || !apic->vapic_addr)
5061 return;
5062
5063 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5064
5065 vcpu->arch.apic->vapic_page = page;
5066 }
5067
5068 static void vapic_exit(struct kvm_vcpu *vcpu)
5069 {
5070 struct kvm_lapic *apic = vcpu->arch.apic;
5071 int idx;
5072
5073 if (!apic || !apic->vapic_addr)
5074 return;
5075
5076 idx = srcu_read_lock(&vcpu->kvm->srcu);
5077 kvm_release_page_dirty(apic->vapic_page);
5078 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5079 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5080 }
5081
5082 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5083 {
5084 int max_irr, tpr;
5085
5086 if (!kvm_x86_ops->update_cr8_intercept)
5087 return;
5088
5089 if (!vcpu->arch.apic)
5090 return;
5091
5092 if (!vcpu->arch.apic->vapic_addr)
5093 max_irr = kvm_lapic_find_highest_irr(vcpu);
5094 else
5095 max_irr = -1;
5096
5097 if (max_irr != -1)
5098 max_irr >>= 4;
5099
5100 tpr = kvm_lapic_get_cr8(vcpu);
5101
5102 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5103 }
5104
5105 static void inject_pending_event(struct kvm_vcpu *vcpu)
5106 {
5107 /* try to reinject previous events if any */
5108 if (vcpu->arch.exception.pending) {
5109 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5110 vcpu->arch.exception.has_error_code,
5111 vcpu->arch.exception.error_code);
5112 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5113 vcpu->arch.exception.has_error_code,
5114 vcpu->arch.exception.error_code,
5115 vcpu->arch.exception.reinject);
5116 return;
5117 }
5118
5119 if (vcpu->arch.nmi_injected) {
5120 kvm_x86_ops->set_nmi(vcpu);
5121 return;
5122 }
5123
5124 if (vcpu->arch.interrupt.pending) {
5125 kvm_x86_ops->set_irq(vcpu);
5126 return;
5127 }
5128
5129 /* try to inject new event if pending */
5130 if (vcpu->arch.nmi_pending) {
5131 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5132 vcpu->arch.nmi_pending = false;
5133 vcpu->arch.nmi_injected = true;
5134 kvm_x86_ops->set_nmi(vcpu);
5135 }
5136 } else if (kvm_cpu_has_interrupt(vcpu)) {
5137 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5138 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5139 false);
5140 kvm_x86_ops->set_irq(vcpu);
5141 }
5142 }
5143 }
5144
5145 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5146 {
5147 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5148 !vcpu->guest_xcr0_loaded) {
5149 /* kvm_set_xcr() also depends on this */
5150 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5151 vcpu->guest_xcr0_loaded = 1;
5152 }
5153 }
5154
5155 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5156 {
5157 if (vcpu->guest_xcr0_loaded) {
5158 if (vcpu->arch.xcr0 != host_xcr0)
5159 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5160 vcpu->guest_xcr0_loaded = 0;
5161 }
5162 }
5163
5164 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5165 {
5166 int r;
5167 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5168 vcpu->run->request_interrupt_window;
5169
5170 if (vcpu->requests) {
5171 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5172 kvm_mmu_unload(vcpu);
5173 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5174 __kvm_migrate_timers(vcpu);
5175 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5176 r = kvm_guest_time_update(vcpu);
5177 if (unlikely(r))
5178 goto out;
5179 }
5180 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5181 kvm_mmu_sync_roots(vcpu);
5182 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5183 kvm_x86_ops->tlb_flush(vcpu);
5184 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5185 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5186 r = 0;
5187 goto out;
5188 }
5189 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5190 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5191 r = 0;
5192 goto out;
5193 }
5194 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5195 vcpu->fpu_active = 0;
5196 kvm_x86_ops->fpu_deactivate(vcpu);
5197 }
5198 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5199 /* Page is swapped out. Do synthetic halt */
5200 vcpu->arch.apf.halted = true;
5201 r = 1;
5202 goto out;
5203 }
5204 }
5205
5206 r = kvm_mmu_reload(vcpu);
5207 if (unlikely(r))
5208 goto out;
5209
5210 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5211 inject_pending_event(vcpu);
5212
5213 /* enable NMI/IRQ window open exits if needed */
5214 if (vcpu->arch.nmi_pending)
5215 kvm_x86_ops->enable_nmi_window(vcpu);
5216 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5217 kvm_x86_ops->enable_irq_window(vcpu);
5218
5219 if (kvm_lapic_enabled(vcpu)) {
5220 update_cr8_intercept(vcpu);
5221 kvm_lapic_sync_to_vapic(vcpu);
5222 }
5223 }
5224
5225 preempt_disable();
5226
5227 kvm_x86_ops->prepare_guest_switch(vcpu);
5228 if (vcpu->fpu_active)
5229 kvm_load_guest_fpu(vcpu);
5230 kvm_load_guest_xcr0(vcpu);
5231
5232 vcpu->mode = IN_GUEST_MODE;
5233
5234 /* We should set ->mode before check ->requests,
5235 * see the comment in make_all_cpus_request.
5236 */
5237 smp_mb();
5238
5239 local_irq_disable();
5240
5241 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5242 || need_resched() || signal_pending(current)) {
5243 vcpu->mode = OUTSIDE_GUEST_MODE;
5244 smp_wmb();
5245 local_irq_enable();
5246 preempt_enable();
5247 kvm_x86_ops->cancel_injection(vcpu);
5248 r = 1;
5249 goto out;
5250 }
5251
5252 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5253
5254 kvm_guest_enter();
5255
5256 if (unlikely(vcpu->arch.switch_db_regs)) {
5257 set_debugreg(0, 7);
5258 set_debugreg(vcpu->arch.eff_db[0], 0);
5259 set_debugreg(vcpu->arch.eff_db[1], 1);
5260 set_debugreg(vcpu->arch.eff_db[2], 2);
5261 set_debugreg(vcpu->arch.eff_db[3], 3);
5262 }
5263
5264 trace_kvm_entry(vcpu->vcpu_id);
5265 kvm_x86_ops->run(vcpu);
5266
5267 /*
5268 * If the guest has used debug registers, at least dr7
5269 * will be disabled while returning to the host.
5270 * If we don't have active breakpoints in the host, we don't
5271 * care about the messed up debug address registers. But if
5272 * we have some of them active, restore the old state.
5273 */
5274 if (hw_breakpoint_active())
5275 hw_breakpoint_restore();
5276
5277 kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
5278
5279 vcpu->mode = OUTSIDE_GUEST_MODE;
5280 smp_wmb();
5281 local_irq_enable();
5282
5283 ++vcpu->stat.exits;
5284
5285 /*
5286 * We must have an instruction between local_irq_enable() and
5287 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5288 * the interrupt shadow. The stat.exits increment will do nicely.
5289 * But we need to prevent reordering, hence this barrier():
5290 */
5291 barrier();
5292
5293 kvm_guest_exit();
5294
5295 preempt_enable();
5296
5297 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5298
5299 /*
5300 * Profile KVM exit RIPs:
5301 */
5302 if (unlikely(prof_on == KVM_PROFILING)) {
5303 unsigned long rip = kvm_rip_read(vcpu);
5304 profile_hit(KVM_PROFILING, (void *)rip);
5305 }
5306
5307
5308 kvm_lapic_sync_from_vapic(vcpu);
5309
5310 r = kvm_x86_ops->handle_exit(vcpu);
5311 out:
5312 return r;
5313 }
5314
5315
5316 static int __vcpu_run(struct kvm_vcpu *vcpu)
5317 {
5318 int r;
5319 struct kvm *kvm = vcpu->kvm;
5320
5321 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5322 pr_debug("vcpu %d received sipi with vector # %x\n",
5323 vcpu->vcpu_id, vcpu->arch.sipi_vector);
5324 kvm_lapic_reset(vcpu);
5325 r = kvm_arch_vcpu_reset(vcpu);
5326 if (r)
5327 return r;
5328 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5329 }
5330
5331 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5332 vapic_enter(vcpu);
5333
5334 r = 1;
5335 while (r > 0) {
5336 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5337 !vcpu->arch.apf.halted)
5338 r = vcpu_enter_guest(vcpu);
5339 else {
5340 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5341 kvm_vcpu_block(vcpu);
5342 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5343 if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5344 {
5345 switch(vcpu->arch.mp_state) {
5346 case KVM_MP_STATE_HALTED:
5347 vcpu->arch.mp_state =
5348 KVM_MP_STATE_RUNNABLE;
5349 case KVM_MP_STATE_RUNNABLE:
5350 vcpu->arch.apf.halted = false;
5351 break;
5352 case KVM_MP_STATE_SIPI_RECEIVED:
5353 default:
5354 r = -EINTR;
5355 break;
5356 }
5357 }
5358 }
5359
5360 if (r <= 0)
5361 break;
5362
5363 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5364 if (kvm_cpu_has_pending_timer(vcpu))
5365 kvm_inject_pending_timer_irqs(vcpu);
5366
5367 if (dm_request_for_irq_injection(vcpu)) {
5368 r = -EINTR;
5369 vcpu->run->exit_reason = KVM_EXIT_INTR;
5370 ++vcpu->stat.request_irq_exits;
5371 }
5372
5373 kvm_check_async_pf_completion(vcpu);
5374
5375 if (signal_pending(current)) {
5376 r = -EINTR;
5377 vcpu->run->exit_reason = KVM_EXIT_INTR;
5378 ++vcpu->stat.signal_exits;
5379 }
5380 if (need_resched()) {
5381 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5382 kvm_resched(vcpu);
5383 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5384 }
5385 }
5386
5387 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5388
5389 vapic_exit(vcpu);
5390
5391 return r;
5392 }
5393
5394 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5395 {
5396 int r;
5397 sigset_t sigsaved;
5398
5399 if (!tsk_used_math(current) && init_fpu(current))
5400 return -ENOMEM;
5401
5402 if (vcpu->sigset_active)
5403 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5404
5405 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5406 kvm_vcpu_block(vcpu);
5407 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5408 r = -EAGAIN;
5409 goto out;
5410 }
5411
5412 /* re-sync apic's tpr */
5413 if (!irqchip_in_kernel(vcpu->kvm)) {
5414 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5415 r = -EINVAL;
5416 goto out;
5417 }
5418 }
5419
5420 if (vcpu->arch.pio.count || vcpu->mmio_needed) {
5421 if (vcpu->mmio_needed) {
5422 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
5423 vcpu->mmio_read_completed = 1;
5424 vcpu->mmio_needed = 0;
5425 }
5426 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5427 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5428 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5429 if (r != EMULATE_DONE) {
5430 r = 0;
5431 goto out;
5432 }
5433 }
5434 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
5435 kvm_register_write(vcpu, VCPU_REGS_RAX,
5436 kvm_run->hypercall.ret);
5437
5438 r = __vcpu_run(vcpu);
5439
5440 out:
5441 post_kvm_run_save(vcpu);
5442 if (vcpu->sigset_active)
5443 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5444
5445 return r;
5446 }
5447
5448 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5449 {
5450 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5451 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5452 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5453 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5454 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5455 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5456 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5457 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5458 #ifdef CONFIG_X86_64
5459 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5460 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5461 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5462 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5463 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5464 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5465 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5466 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5467 #endif
5468
5469 regs->rip = kvm_rip_read(vcpu);
5470 regs->rflags = kvm_get_rflags(vcpu);
5471
5472 return 0;
5473 }
5474
5475 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5476 {
5477 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5478 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5479 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5480 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5481 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5482 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5483 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5484 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5485 #ifdef CONFIG_X86_64
5486 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5487 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5488 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5489 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5490 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5491 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5492 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5493 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5494 #endif
5495
5496 kvm_rip_write(vcpu, regs->rip);
5497 kvm_set_rflags(vcpu, regs->rflags);
5498
5499 vcpu->arch.exception.pending = false;
5500
5501 kvm_make_request(KVM_REQ_EVENT, vcpu);
5502
5503 return 0;
5504 }
5505
5506 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5507 {
5508 struct kvm_segment cs;
5509
5510 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5511 *db = cs.db;
5512 *l = cs.l;
5513 }
5514 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5515
5516 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5517 struct kvm_sregs *sregs)
5518 {
5519 struct desc_ptr dt;
5520
5521 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5522 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5523 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5524 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5525 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5526 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5527
5528 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5529 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5530
5531 kvm_x86_ops->get_idt(vcpu, &dt);
5532 sregs->idt.limit = dt.size;
5533 sregs->idt.base = dt.address;
5534 kvm_x86_ops->get_gdt(vcpu, &dt);
5535 sregs->gdt.limit = dt.size;
5536 sregs->gdt.base = dt.address;
5537
5538 sregs->cr0 = kvm_read_cr0(vcpu);
5539 sregs->cr2 = vcpu->arch.cr2;
5540 sregs->cr3 = kvm_read_cr3(vcpu);
5541 sregs->cr4 = kvm_read_cr4(vcpu);
5542 sregs->cr8 = kvm_get_cr8(vcpu);
5543 sregs->efer = vcpu->arch.efer;
5544 sregs->apic_base = kvm_get_apic_base(vcpu);
5545
5546 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5547
5548 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5549 set_bit(vcpu->arch.interrupt.nr,
5550 (unsigned long *)sregs->interrupt_bitmap);
5551
5552 return 0;
5553 }
5554
5555 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5556 struct kvm_mp_state *mp_state)
5557 {
5558 mp_state->mp_state = vcpu->arch.mp_state;
5559 return 0;
5560 }
5561
5562 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5563 struct kvm_mp_state *mp_state)
5564 {
5565 vcpu->arch.mp_state = mp_state->mp_state;
5566 kvm_make_request(KVM_REQ_EVENT, vcpu);
5567 return 0;
5568 }
5569
5570 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
5571 bool has_error_code, u32 error_code)
5572 {
5573 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
5574 int ret;
5575
5576 init_emulate_ctxt(vcpu);
5577
5578 ret = emulator_task_switch(&vcpu->arch.emulate_ctxt,
5579 tss_selector, reason, has_error_code,
5580 error_code);
5581
5582 if (ret)
5583 return EMULATE_FAIL;
5584
5585 memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
5586 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
5587 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
5588 kvm_make_request(KVM_REQ_EVENT, vcpu);
5589 return EMULATE_DONE;
5590 }
5591 EXPORT_SYMBOL_GPL(kvm_task_switch);
5592
5593 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5594 struct kvm_sregs *sregs)
5595 {
5596 int mmu_reset_needed = 0;
5597 int pending_vec, max_bits, idx;
5598 struct desc_ptr dt;
5599
5600 dt.size = sregs->idt.limit;
5601 dt.address = sregs->idt.base;
5602 kvm_x86_ops->set_idt(vcpu, &dt);
5603 dt.size = sregs->gdt.limit;
5604 dt.address = sregs->gdt.base;
5605 kvm_x86_ops->set_gdt(vcpu, &dt);
5606
5607 vcpu->arch.cr2 = sregs->cr2;
5608 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
5609 vcpu->arch.cr3 = sregs->cr3;
5610 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
5611
5612 kvm_set_cr8(vcpu, sregs->cr8);
5613
5614 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5615 kvm_x86_ops->set_efer(vcpu, sregs->efer);
5616 kvm_set_apic_base(vcpu, sregs->apic_base);
5617
5618 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5619 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5620 vcpu->arch.cr0 = sregs->cr0;
5621
5622 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5623 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5624 if (sregs->cr4 & X86_CR4_OSXSAVE)
5625 update_cpuid(vcpu);
5626
5627 idx = srcu_read_lock(&vcpu->kvm->srcu);
5628 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5629 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
5630 mmu_reset_needed = 1;
5631 }
5632 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5633
5634 if (mmu_reset_needed)
5635 kvm_mmu_reset_context(vcpu);
5636
5637 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5638 pending_vec = find_first_bit(
5639 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5640 if (pending_vec < max_bits) {
5641 kvm_queue_interrupt(vcpu, pending_vec, false);
5642 pr_debug("Set back pending irq %d\n", pending_vec);
5643 if (irqchip_in_kernel(vcpu->kvm))
5644 kvm_pic_clear_isr_ack(vcpu->kvm);
5645 }
5646
5647 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5648 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5649 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5650 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5651 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5652 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5653
5654 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5655 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5656
5657 update_cr8_intercept(vcpu);
5658
5659 /* Older userspace won't unhalt the vcpu on reset. */
5660 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5661 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5662 !is_protmode(vcpu))
5663 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5664
5665 kvm_make_request(KVM_REQ_EVENT, vcpu);
5666
5667 return 0;
5668 }
5669
5670 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5671 struct kvm_guest_debug *dbg)
5672 {
5673 unsigned long rflags;
5674 int i, r;
5675
5676 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5677 r = -EBUSY;
5678 if (vcpu->arch.exception.pending)
5679 goto out;
5680 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5681 kvm_queue_exception(vcpu, DB_VECTOR);
5682 else
5683 kvm_queue_exception(vcpu, BP_VECTOR);
5684 }
5685
5686 /*
5687 * Read rflags as long as potentially injected trace flags are still
5688 * filtered out.
5689 */
5690 rflags = kvm_get_rflags(vcpu);
5691
5692 vcpu->guest_debug = dbg->control;
5693 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5694 vcpu->guest_debug = 0;
5695
5696 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5697 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5698 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5699 vcpu->arch.switch_db_regs =
5700 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5701 } else {
5702 for (i = 0; i < KVM_NR_DB_REGS; i++)
5703 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5704 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5705 }
5706
5707 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5708 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5709 get_segment_base(vcpu, VCPU_SREG_CS);
5710
5711 /*
5712 * Trigger an rflags update that will inject or remove the trace
5713 * flags.
5714 */
5715 kvm_set_rflags(vcpu, rflags);
5716
5717 kvm_x86_ops->set_guest_debug(vcpu, dbg);
5718
5719 r = 0;
5720
5721 out:
5722
5723 return r;
5724 }
5725
5726 /*
5727 * Translate a guest virtual address to a guest physical address.
5728 */
5729 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5730 struct kvm_translation *tr)
5731 {
5732 unsigned long vaddr = tr->linear_address;
5733 gpa_t gpa;
5734 int idx;
5735
5736 idx = srcu_read_lock(&vcpu->kvm->srcu);
5737 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5738 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5739 tr->physical_address = gpa;
5740 tr->valid = gpa != UNMAPPED_GVA;
5741 tr->writeable = 1;
5742 tr->usermode = 0;
5743
5744 return 0;
5745 }
5746
5747 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5748 {
5749 struct i387_fxsave_struct *fxsave =
5750 &vcpu->arch.guest_fpu.state->fxsave;
5751
5752 memcpy(fpu->fpr, fxsave->st_space, 128);
5753 fpu->fcw = fxsave->cwd;
5754 fpu->fsw = fxsave->swd;
5755 fpu->ftwx = fxsave->twd;
5756 fpu->last_opcode = fxsave->fop;
5757 fpu->last_ip = fxsave->rip;
5758 fpu->last_dp = fxsave->rdp;
5759 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5760
5761 return 0;
5762 }
5763
5764 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5765 {
5766 struct i387_fxsave_struct *fxsave =
5767 &vcpu->arch.guest_fpu.state->fxsave;
5768
5769 memcpy(fxsave->st_space, fpu->fpr, 128);
5770 fxsave->cwd = fpu->fcw;
5771 fxsave->swd = fpu->fsw;
5772 fxsave->twd = fpu->ftwx;
5773 fxsave->fop = fpu->last_opcode;
5774 fxsave->rip = fpu->last_ip;
5775 fxsave->rdp = fpu->last_dp;
5776 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5777
5778 return 0;
5779 }
5780
5781 int fx_init(struct kvm_vcpu *vcpu)
5782 {
5783 int err;
5784
5785 err = fpu_alloc(&vcpu->arch.guest_fpu);
5786 if (err)
5787 return err;
5788
5789 fpu_finit(&vcpu->arch.guest_fpu);
5790
5791 /*
5792 * Ensure guest xcr0 is valid for loading
5793 */
5794 vcpu->arch.xcr0 = XSTATE_FP;
5795
5796 vcpu->arch.cr0 |= X86_CR0_ET;
5797
5798 return 0;
5799 }
5800 EXPORT_SYMBOL_GPL(fx_init);
5801
5802 static void fx_free(struct kvm_vcpu *vcpu)
5803 {
5804 fpu_free(&vcpu->arch.guest_fpu);
5805 }
5806
5807 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5808 {
5809 if (vcpu->guest_fpu_loaded)
5810 return;
5811
5812 /*
5813 * Restore all possible states in the guest,
5814 * and assume host would use all available bits.
5815 * Guest xcr0 would be loaded later.
5816 */
5817 kvm_put_guest_xcr0(vcpu);
5818 vcpu->guest_fpu_loaded = 1;
5819 unlazy_fpu(current);
5820 fpu_restore_checking(&vcpu->arch.guest_fpu);
5821 trace_kvm_fpu(1);
5822 }
5823
5824 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5825 {
5826 kvm_put_guest_xcr0(vcpu);
5827
5828 if (!vcpu->guest_fpu_loaded)
5829 return;
5830
5831 vcpu->guest_fpu_loaded = 0;
5832 fpu_save_init(&vcpu->arch.guest_fpu);
5833 ++vcpu->stat.fpu_reload;
5834 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
5835 trace_kvm_fpu(0);
5836 }
5837
5838 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5839 {
5840 if (vcpu->arch.time_page) {
5841 kvm_release_page_dirty(vcpu->arch.time_page);
5842 vcpu->arch.time_page = NULL;
5843 }
5844
5845 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
5846 fx_free(vcpu);
5847 kvm_x86_ops->vcpu_free(vcpu);
5848 }
5849
5850 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5851 unsigned int id)
5852 {
5853 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
5854 printk_once(KERN_WARNING
5855 "kvm: SMP vm created on host with unstable TSC; "
5856 "guest TSC will not be reliable\n");
5857 return kvm_x86_ops->vcpu_create(kvm, id);
5858 }
5859
5860 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5861 {
5862 int r;
5863
5864 vcpu->arch.mtrr_state.have_fixed = 1;
5865 vcpu_load(vcpu);
5866 r = kvm_arch_vcpu_reset(vcpu);
5867 if (r == 0)
5868 r = kvm_mmu_setup(vcpu);
5869 vcpu_put(vcpu);
5870 if (r < 0)
5871 goto free_vcpu;
5872
5873 return 0;
5874 free_vcpu:
5875 kvm_x86_ops->vcpu_free(vcpu);
5876 return r;
5877 }
5878
5879 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5880 {
5881 vcpu->arch.apf.msr_val = 0;
5882
5883 vcpu_load(vcpu);
5884 kvm_mmu_unload(vcpu);
5885 vcpu_put(vcpu);
5886
5887 fx_free(vcpu);
5888 kvm_x86_ops->vcpu_free(vcpu);
5889 }
5890
5891 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5892 {
5893 vcpu->arch.nmi_pending = false;
5894 vcpu->arch.nmi_injected = false;
5895
5896 vcpu->arch.switch_db_regs = 0;
5897 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5898 vcpu->arch.dr6 = DR6_FIXED_1;
5899 vcpu->arch.dr7 = DR7_FIXED_1;
5900
5901 kvm_make_request(KVM_REQ_EVENT, vcpu);
5902 vcpu->arch.apf.msr_val = 0;
5903
5904 kvm_clear_async_pf_completion_queue(vcpu);
5905 kvm_async_pf_hash_reset(vcpu);
5906 vcpu->arch.apf.halted = false;
5907
5908 return kvm_x86_ops->vcpu_reset(vcpu);
5909 }
5910
5911 int kvm_arch_hardware_enable(void *garbage)
5912 {
5913 struct kvm *kvm;
5914 struct kvm_vcpu *vcpu;
5915 int i;
5916
5917 kvm_shared_msr_cpu_online();
5918 list_for_each_entry(kvm, &vm_list, vm_list)
5919 kvm_for_each_vcpu(i, vcpu, kvm)
5920 if (vcpu->cpu == smp_processor_id())
5921 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5922 return kvm_x86_ops->hardware_enable(garbage);
5923 }
5924
5925 void kvm_arch_hardware_disable(void *garbage)
5926 {
5927 kvm_x86_ops->hardware_disable(garbage);
5928 drop_user_return_notifiers(garbage);
5929 }
5930
5931 int kvm_arch_hardware_setup(void)
5932 {
5933 return kvm_x86_ops->hardware_setup();
5934 }
5935
5936 void kvm_arch_hardware_unsetup(void)
5937 {
5938 kvm_x86_ops->hardware_unsetup();
5939 }
5940
5941 void kvm_arch_check_processor_compat(void *rtn)
5942 {
5943 kvm_x86_ops->check_processor_compatibility(rtn);
5944 }
5945
5946 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5947 {
5948 struct page *page;
5949 struct kvm *kvm;
5950 int r;
5951
5952 BUG_ON(vcpu->kvm == NULL);
5953 kvm = vcpu->kvm;
5954
5955 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
5956 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
5957 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5958 vcpu->arch.mmu.translate_gpa = translate_gpa;
5959 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5960 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5961 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5962 else
5963 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5964
5965 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5966 if (!page) {
5967 r = -ENOMEM;
5968 goto fail;
5969 }
5970 vcpu->arch.pio_data = page_address(page);
5971
5972 if (!kvm->arch.virtual_tsc_khz)
5973 kvm_arch_set_tsc_khz(kvm, max_tsc_khz);
5974
5975 r = kvm_mmu_create(vcpu);
5976 if (r < 0)
5977 goto fail_free_pio_data;
5978
5979 if (irqchip_in_kernel(kvm)) {
5980 r = kvm_create_lapic(vcpu);
5981 if (r < 0)
5982 goto fail_mmu_destroy;
5983 }
5984
5985 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5986 GFP_KERNEL);
5987 if (!vcpu->arch.mce_banks) {
5988 r = -ENOMEM;
5989 goto fail_free_lapic;
5990 }
5991 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5992
5993 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
5994 goto fail_free_mce_banks;
5995
5996 kvm_async_pf_hash_reset(vcpu);
5997
5998 return 0;
5999 fail_free_mce_banks:
6000 kfree(vcpu->arch.mce_banks);
6001 fail_free_lapic:
6002 kvm_free_lapic(vcpu);
6003 fail_mmu_destroy:
6004 kvm_mmu_destroy(vcpu);
6005 fail_free_pio_data:
6006 free_page((unsigned long)vcpu->arch.pio_data);
6007 fail:
6008 return r;
6009 }
6010
6011 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6012 {
6013 int idx;
6014
6015 kfree(vcpu->arch.mce_banks);
6016 kvm_free_lapic(vcpu);
6017 idx = srcu_read_lock(&vcpu->kvm->srcu);
6018 kvm_mmu_destroy(vcpu);
6019 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6020 free_page((unsigned long)vcpu->arch.pio_data);
6021 }
6022
6023 int kvm_arch_init_vm(struct kvm *kvm)
6024 {
6025 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6026 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6027
6028 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6029 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6030
6031 spin_lock_init(&kvm->arch.tsc_write_lock);
6032
6033 return 0;
6034 }
6035
6036 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6037 {
6038 vcpu_load(vcpu);
6039 kvm_mmu_unload(vcpu);
6040 vcpu_put(vcpu);
6041 }
6042
6043 static void kvm_free_vcpus(struct kvm *kvm)
6044 {
6045 unsigned int i;
6046 struct kvm_vcpu *vcpu;
6047
6048 /*
6049 * Unpin any mmu pages first.
6050 */
6051 kvm_for_each_vcpu(i, vcpu, kvm) {
6052 kvm_clear_async_pf_completion_queue(vcpu);
6053 kvm_unload_vcpu_mmu(vcpu);
6054 }
6055 kvm_for_each_vcpu(i, vcpu, kvm)
6056 kvm_arch_vcpu_free(vcpu);
6057
6058 mutex_lock(&kvm->lock);
6059 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6060 kvm->vcpus[i] = NULL;
6061
6062 atomic_set(&kvm->online_vcpus, 0);
6063 mutex_unlock(&kvm->lock);
6064 }
6065
6066 void kvm_arch_sync_events(struct kvm *kvm)
6067 {
6068 kvm_free_all_assigned_devices(kvm);
6069 kvm_free_pit(kvm);
6070 }
6071
6072 void kvm_arch_destroy_vm(struct kvm *kvm)
6073 {
6074 kvm_iommu_unmap_guest(kvm);
6075 kfree(kvm->arch.vpic);
6076 kfree(kvm->arch.vioapic);
6077 kvm_free_vcpus(kvm);
6078 if (kvm->arch.apic_access_page)
6079 put_page(kvm->arch.apic_access_page);
6080 if (kvm->arch.ept_identity_pagetable)
6081 put_page(kvm->arch.ept_identity_pagetable);
6082 }
6083
6084 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6085 struct kvm_memory_slot *memslot,
6086 struct kvm_memory_slot old,
6087 struct kvm_userspace_memory_region *mem,
6088 int user_alloc)
6089 {
6090 int npages = memslot->npages;
6091 int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6092
6093 /* Prevent internal slot pages from being moved by fork()/COW. */
6094 if (memslot->id >= KVM_MEMORY_SLOTS)
6095 map_flags = MAP_SHARED | MAP_ANONYMOUS;
6096
6097 /*To keep backward compatibility with older userspace,
6098 *x86 needs to hanlde !user_alloc case.
6099 */
6100 if (!user_alloc) {
6101 if (npages && !old.rmap) {
6102 unsigned long userspace_addr;
6103
6104 down_write(&current->mm->mmap_sem);
6105 userspace_addr = do_mmap(NULL, 0,
6106 npages * PAGE_SIZE,
6107 PROT_READ | PROT_WRITE,
6108 map_flags,
6109 0);
6110 up_write(&current->mm->mmap_sem);
6111
6112 if (IS_ERR((void *)userspace_addr))
6113 return PTR_ERR((void *)userspace_addr);
6114
6115 memslot->userspace_addr = userspace_addr;
6116 }
6117 }
6118
6119
6120 return 0;
6121 }
6122
6123 void kvm_arch_commit_memory_region(struct kvm *kvm,
6124 struct kvm_userspace_memory_region *mem,
6125 struct kvm_memory_slot old,
6126 int user_alloc)
6127 {
6128
6129 int npages = mem->memory_size >> PAGE_SHIFT;
6130
6131 if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
6132 int ret;
6133
6134 down_write(&current->mm->mmap_sem);
6135 ret = do_munmap(current->mm, old.userspace_addr,
6136 old.npages * PAGE_SIZE);
6137 up_write(&current->mm->mmap_sem);
6138 if (ret < 0)
6139 printk(KERN_WARNING
6140 "kvm_vm_ioctl_set_memory_region: "
6141 "failed to munmap memory\n");
6142 }
6143
6144 spin_lock(&kvm->mmu_lock);
6145 if (!kvm->arch.n_requested_mmu_pages) {
6146 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6147 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6148 }
6149
6150 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6151 spin_unlock(&kvm->mmu_lock);
6152 }
6153
6154 void kvm_arch_flush_shadow(struct kvm *kvm)
6155 {
6156 kvm_mmu_zap_all(kvm);
6157 kvm_reload_remote_mmus(kvm);
6158 }
6159
6160 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6161 {
6162 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6163 !vcpu->arch.apf.halted)
6164 || !list_empty_careful(&vcpu->async_pf.done)
6165 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6166 || vcpu->arch.nmi_pending ||
6167 (kvm_arch_interrupt_allowed(vcpu) &&
6168 kvm_cpu_has_interrupt(vcpu));
6169 }
6170
6171 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
6172 {
6173 int me;
6174 int cpu = vcpu->cpu;
6175
6176 if (waitqueue_active(&vcpu->wq)) {
6177 wake_up_interruptible(&vcpu->wq);
6178 ++vcpu->stat.halt_wakeup;
6179 }
6180
6181 me = get_cpu();
6182 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
6183 if (kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE)
6184 smp_send_reschedule(cpu);
6185 put_cpu();
6186 }
6187
6188 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6189 {
6190 return kvm_x86_ops->interrupt_allowed(vcpu);
6191 }
6192
6193 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6194 {
6195 unsigned long current_rip = kvm_rip_read(vcpu) +
6196 get_segment_base(vcpu, VCPU_SREG_CS);
6197
6198 return current_rip == linear_rip;
6199 }
6200 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6201
6202 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6203 {
6204 unsigned long rflags;
6205
6206 rflags = kvm_x86_ops->get_rflags(vcpu);
6207 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6208 rflags &= ~X86_EFLAGS_TF;
6209 return rflags;
6210 }
6211 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6212
6213 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6214 {
6215 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6216 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6217 rflags |= X86_EFLAGS_TF;
6218 kvm_x86_ops->set_rflags(vcpu, rflags);
6219 kvm_make_request(KVM_REQ_EVENT, vcpu);
6220 }
6221 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6222
6223 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6224 {
6225 int r;
6226
6227 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
6228 is_error_page(work->page))
6229 return;
6230
6231 r = kvm_mmu_reload(vcpu);
6232 if (unlikely(r))
6233 return;
6234
6235 if (!vcpu->arch.mmu.direct_map &&
6236 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
6237 return;
6238
6239 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
6240 }
6241
6242 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
6243 {
6244 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
6245 }
6246
6247 static inline u32 kvm_async_pf_next_probe(u32 key)
6248 {
6249 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
6250 }
6251
6252 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6253 {
6254 u32 key = kvm_async_pf_hash_fn(gfn);
6255
6256 while (vcpu->arch.apf.gfns[key] != ~0)
6257 key = kvm_async_pf_next_probe(key);
6258
6259 vcpu->arch.apf.gfns[key] = gfn;
6260 }
6261
6262 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
6263 {
6264 int i;
6265 u32 key = kvm_async_pf_hash_fn(gfn);
6266
6267 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
6268 (vcpu->arch.apf.gfns[key] != gfn &&
6269 vcpu->arch.apf.gfns[key] != ~0); i++)
6270 key = kvm_async_pf_next_probe(key);
6271
6272 return key;
6273 }
6274
6275 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6276 {
6277 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
6278 }
6279
6280 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6281 {
6282 u32 i, j, k;
6283
6284 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
6285 while (true) {
6286 vcpu->arch.apf.gfns[i] = ~0;
6287 do {
6288 j = kvm_async_pf_next_probe(j);
6289 if (vcpu->arch.apf.gfns[j] == ~0)
6290 return;
6291 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
6292 /*
6293 * k lies cyclically in ]i,j]
6294 * | i.k.j |
6295 * |....j i.k.| or |.k..j i...|
6296 */
6297 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
6298 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
6299 i = j;
6300 }
6301 }
6302
6303 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
6304 {
6305
6306 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
6307 sizeof(val));
6308 }
6309
6310 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
6311 struct kvm_async_pf *work)
6312 {
6313 struct x86_exception fault;
6314
6315 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
6316 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
6317
6318 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
6319 (vcpu->arch.apf.send_user_only &&
6320 kvm_x86_ops->get_cpl(vcpu) == 0))
6321 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
6322 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
6323 fault.vector = PF_VECTOR;
6324 fault.error_code_valid = true;
6325 fault.error_code = 0;
6326 fault.nested_page_fault = false;
6327 fault.address = work->arch.token;
6328 kvm_inject_page_fault(vcpu, &fault);
6329 }
6330 }
6331
6332 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
6333 struct kvm_async_pf *work)
6334 {
6335 struct x86_exception fault;
6336
6337 trace_kvm_async_pf_ready(work->arch.token, work->gva);
6338 if (is_error_page(work->page))
6339 work->arch.token = ~0; /* broadcast wakeup */
6340 else
6341 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
6342
6343 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
6344 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
6345 fault.vector = PF_VECTOR;
6346 fault.error_code_valid = true;
6347 fault.error_code = 0;
6348 fault.nested_page_fault = false;
6349 fault.address = work->arch.token;
6350 kvm_inject_page_fault(vcpu, &fault);
6351 }
6352 vcpu->arch.apf.halted = false;
6353 }
6354
6355 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
6356 {
6357 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
6358 return true;
6359 else
6360 return !kvm_event_needs_reinjection(vcpu) &&
6361 kvm_x86_ops->interrupt_allowed(vcpu);
6362 }
6363
6364 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6365 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6366 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6367 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6368 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6369 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6370 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6371 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6372 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6373 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6374 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6375 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
This page took 0.349907 seconds and 5 git commands to generate.