KVM: x86 emulator: make emulator memory callbacks return full exception
[deliverable/linux.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/module.h>
36 #include <linux/mman.h>
37 #include <linux/highmem.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/cpufreq.h>
41 #include <linux/user-return-notifier.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/perf_event.h>
45 #include <linux/uaccess.h>
46 #include <linux/hash.h>
47 #include <trace/events/kvm.h>
48
49 #define CREATE_TRACE_POINTS
50 #include "trace.h"
51
52 #include <asm/debugreg.h>
53 #include <asm/msr.h>
54 #include <asm/desc.h>
55 #include <asm/mtrr.h>
56 #include <asm/mce.h>
57 #include <asm/i387.h>
58 #include <asm/xcr.h>
59 #include <asm/pvclock.h>
60 #include <asm/div64.h>
61
62 #define MAX_IO_MSRS 256
63 #define CR0_RESERVED_BITS \
64 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
65 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
66 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
67 #define CR4_RESERVED_BITS \
68 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
69 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
70 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
71 | X86_CR4_OSXSAVE \
72 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
73
74 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
75
76 #define KVM_MAX_MCE_BANKS 32
77 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
78
79 /* EFER defaults:
80 * - enable syscall per default because its emulated by KVM
81 * - enable LME and LMA per default on 64 bit KVM
82 */
83 #ifdef CONFIG_X86_64
84 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
85 #else
86 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
87 #endif
88
89 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
90 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
91
92 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
93 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
94 struct kvm_cpuid_entry2 __user *entries);
95
96 struct kvm_x86_ops *kvm_x86_ops;
97 EXPORT_SYMBOL_GPL(kvm_x86_ops);
98
99 int ignore_msrs = 0;
100 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
101
102 #define KVM_NR_SHARED_MSRS 16
103
104 struct kvm_shared_msrs_global {
105 int nr;
106 u32 msrs[KVM_NR_SHARED_MSRS];
107 };
108
109 struct kvm_shared_msrs {
110 struct user_return_notifier urn;
111 bool registered;
112 struct kvm_shared_msr_values {
113 u64 host;
114 u64 curr;
115 } values[KVM_NR_SHARED_MSRS];
116 };
117
118 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
119 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
120
121 struct kvm_stats_debugfs_item debugfs_entries[] = {
122 { "pf_fixed", VCPU_STAT(pf_fixed) },
123 { "pf_guest", VCPU_STAT(pf_guest) },
124 { "tlb_flush", VCPU_STAT(tlb_flush) },
125 { "invlpg", VCPU_STAT(invlpg) },
126 { "exits", VCPU_STAT(exits) },
127 { "io_exits", VCPU_STAT(io_exits) },
128 { "mmio_exits", VCPU_STAT(mmio_exits) },
129 { "signal_exits", VCPU_STAT(signal_exits) },
130 { "irq_window", VCPU_STAT(irq_window_exits) },
131 { "nmi_window", VCPU_STAT(nmi_window_exits) },
132 { "halt_exits", VCPU_STAT(halt_exits) },
133 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
134 { "hypercalls", VCPU_STAT(hypercalls) },
135 { "request_irq", VCPU_STAT(request_irq_exits) },
136 { "irq_exits", VCPU_STAT(irq_exits) },
137 { "host_state_reload", VCPU_STAT(host_state_reload) },
138 { "efer_reload", VCPU_STAT(efer_reload) },
139 { "fpu_reload", VCPU_STAT(fpu_reload) },
140 { "insn_emulation", VCPU_STAT(insn_emulation) },
141 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
142 { "irq_injections", VCPU_STAT(irq_injections) },
143 { "nmi_injections", VCPU_STAT(nmi_injections) },
144 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
145 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
146 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
147 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
148 { "mmu_flooded", VM_STAT(mmu_flooded) },
149 { "mmu_recycled", VM_STAT(mmu_recycled) },
150 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
151 { "mmu_unsync", VM_STAT(mmu_unsync) },
152 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
153 { "largepages", VM_STAT(lpages) },
154 { NULL }
155 };
156
157 u64 __read_mostly host_xcr0;
158
159 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
160 {
161 int i;
162 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
163 vcpu->arch.apf.gfns[i] = ~0;
164 }
165
166 static void kvm_on_user_return(struct user_return_notifier *urn)
167 {
168 unsigned slot;
169 struct kvm_shared_msrs *locals
170 = container_of(urn, struct kvm_shared_msrs, urn);
171 struct kvm_shared_msr_values *values;
172
173 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
174 values = &locals->values[slot];
175 if (values->host != values->curr) {
176 wrmsrl(shared_msrs_global.msrs[slot], values->host);
177 values->curr = values->host;
178 }
179 }
180 locals->registered = false;
181 user_return_notifier_unregister(urn);
182 }
183
184 static void shared_msr_update(unsigned slot, u32 msr)
185 {
186 struct kvm_shared_msrs *smsr;
187 u64 value;
188
189 smsr = &__get_cpu_var(shared_msrs);
190 /* only read, and nobody should modify it at this time,
191 * so don't need lock */
192 if (slot >= shared_msrs_global.nr) {
193 printk(KERN_ERR "kvm: invalid MSR slot!");
194 return;
195 }
196 rdmsrl_safe(msr, &value);
197 smsr->values[slot].host = value;
198 smsr->values[slot].curr = value;
199 }
200
201 void kvm_define_shared_msr(unsigned slot, u32 msr)
202 {
203 if (slot >= shared_msrs_global.nr)
204 shared_msrs_global.nr = slot + 1;
205 shared_msrs_global.msrs[slot] = msr;
206 /* we need ensured the shared_msr_global have been updated */
207 smp_wmb();
208 }
209 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
210
211 static void kvm_shared_msr_cpu_online(void)
212 {
213 unsigned i;
214
215 for (i = 0; i < shared_msrs_global.nr; ++i)
216 shared_msr_update(i, shared_msrs_global.msrs[i]);
217 }
218
219 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
220 {
221 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
222
223 if (((value ^ smsr->values[slot].curr) & mask) == 0)
224 return;
225 smsr->values[slot].curr = value;
226 wrmsrl(shared_msrs_global.msrs[slot], value);
227 if (!smsr->registered) {
228 smsr->urn.on_user_return = kvm_on_user_return;
229 user_return_notifier_register(&smsr->urn);
230 smsr->registered = true;
231 }
232 }
233 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
234
235 static void drop_user_return_notifiers(void *ignore)
236 {
237 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
238
239 if (smsr->registered)
240 kvm_on_user_return(&smsr->urn);
241 }
242
243 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
244 {
245 if (irqchip_in_kernel(vcpu->kvm))
246 return vcpu->arch.apic_base;
247 else
248 return vcpu->arch.apic_base;
249 }
250 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
251
252 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
253 {
254 /* TODO: reserve bits check */
255 if (irqchip_in_kernel(vcpu->kvm))
256 kvm_lapic_set_base(vcpu, data);
257 else
258 vcpu->arch.apic_base = data;
259 }
260 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
261
262 #define EXCPT_BENIGN 0
263 #define EXCPT_CONTRIBUTORY 1
264 #define EXCPT_PF 2
265
266 static int exception_class(int vector)
267 {
268 switch (vector) {
269 case PF_VECTOR:
270 return EXCPT_PF;
271 case DE_VECTOR:
272 case TS_VECTOR:
273 case NP_VECTOR:
274 case SS_VECTOR:
275 case GP_VECTOR:
276 return EXCPT_CONTRIBUTORY;
277 default:
278 break;
279 }
280 return EXCPT_BENIGN;
281 }
282
283 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
284 unsigned nr, bool has_error, u32 error_code,
285 bool reinject)
286 {
287 u32 prev_nr;
288 int class1, class2;
289
290 kvm_make_request(KVM_REQ_EVENT, vcpu);
291
292 if (!vcpu->arch.exception.pending) {
293 queue:
294 vcpu->arch.exception.pending = true;
295 vcpu->arch.exception.has_error_code = has_error;
296 vcpu->arch.exception.nr = nr;
297 vcpu->arch.exception.error_code = error_code;
298 vcpu->arch.exception.reinject = reinject;
299 return;
300 }
301
302 /* to check exception */
303 prev_nr = vcpu->arch.exception.nr;
304 if (prev_nr == DF_VECTOR) {
305 /* triple fault -> shutdown */
306 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
307 return;
308 }
309 class1 = exception_class(prev_nr);
310 class2 = exception_class(nr);
311 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
312 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
313 /* generate double fault per SDM Table 5-5 */
314 vcpu->arch.exception.pending = true;
315 vcpu->arch.exception.has_error_code = true;
316 vcpu->arch.exception.nr = DF_VECTOR;
317 vcpu->arch.exception.error_code = 0;
318 } else
319 /* replace previous exception with a new one in a hope
320 that instruction re-execution will regenerate lost
321 exception */
322 goto queue;
323 }
324
325 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
326 {
327 kvm_multiple_exception(vcpu, nr, false, 0, false);
328 }
329 EXPORT_SYMBOL_GPL(kvm_queue_exception);
330
331 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
332 {
333 kvm_multiple_exception(vcpu, nr, false, 0, true);
334 }
335 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
336
337 void kvm_inject_page_fault(struct kvm_vcpu *vcpu)
338 {
339 unsigned error_code = vcpu->arch.fault.error_code;
340
341 ++vcpu->stat.pf_guest;
342 vcpu->arch.cr2 = vcpu->arch.fault.address;
343 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
344 }
345
346 void kvm_propagate_fault(struct kvm_vcpu *vcpu)
347 {
348 if (mmu_is_nested(vcpu) && !vcpu->arch.fault.nested)
349 vcpu->arch.nested_mmu.inject_page_fault(vcpu);
350 else
351 vcpu->arch.mmu.inject_page_fault(vcpu);
352
353 vcpu->arch.fault.nested = false;
354 }
355
356 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
357 {
358 kvm_make_request(KVM_REQ_EVENT, vcpu);
359 vcpu->arch.nmi_pending = 1;
360 }
361 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
362
363 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
364 {
365 kvm_multiple_exception(vcpu, nr, true, error_code, false);
366 }
367 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
368
369 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
370 {
371 kvm_multiple_exception(vcpu, nr, true, error_code, true);
372 }
373 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
374
375 /*
376 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
377 * a #GP and return false.
378 */
379 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
380 {
381 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
382 return true;
383 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
384 return false;
385 }
386 EXPORT_SYMBOL_GPL(kvm_require_cpl);
387
388 /*
389 * This function will be used to read from the physical memory of the currently
390 * running guest. The difference to kvm_read_guest_page is that this function
391 * can read from guest physical or from the guest's guest physical memory.
392 */
393 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
394 gfn_t ngfn, void *data, int offset, int len,
395 u32 access)
396 {
397 gfn_t real_gfn;
398 gpa_t ngpa;
399
400 ngpa = gfn_to_gpa(ngfn);
401 real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
402 if (real_gfn == UNMAPPED_GVA)
403 return -EFAULT;
404
405 real_gfn = gpa_to_gfn(real_gfn);
406
407 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
408 }
409 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
410
411 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
412 void *data, int offset, int len, u32 access)
413 {
414 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
415 data, offset, len, access);
416 }
417
418 /*
419 * Load the pae pdptrs. Return true is they are all valid.
420 */
421 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
422 {
423 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
424 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
425 int i;
426 int ret;
427 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
428
429 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
430 offset * sizeof(u64), sizeof(pdpte),
431 PFERR_USER_MASK|PFERR_WRITE_MASK);
432 if (ret < 0) {
433 ret = 0;
434 goto out;
435 }
436 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
437 if (is_present_gpte(pdpte[i]) &&
438 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
439 ret = 0;
440 goto out;
441 }
442 }
443 ret = 1;
444
445 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
446 __set_bit(VCPU_EXREG_PDPTR,
447 (unsigned long *)&vcpu->arch.regs_avail);
448 __set_bit(VCPU_EXREG_PDPTR,
449 (unsigned long *)&vcpu->arch.regs_dirty);
450 out:
451
452 return ret;
453 }
454 EXPORT_SYMBOL_GPL(load_pdptrs);
455
456 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
457 {
458 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
459 bool changed = true;
460 int offset;
461 gfn_t gfn;
462 int r;
463
464 if (is_long_mode(vcpu) || !is_pae(vcpu))
465 return false;
466
467 if (!test_bit(VCPU_EXREG_PDPTR,
468 (unsigned long *)&vcpu->arch.regs_avail))
469 return true;
470
471 gfn = (vcpu->arch.cr3 & ~31u) >> PAGE_SHIFT;
472 offset = (vcpu->arch.cr3 & ~31u) & (PAGE_SIZE - 1);
473 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
474 PFERR_USER_MASK | PFERR_WRITE_MASK);
475 if (r < 0)
476 goto out;
477 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
478 out:
479
480 return changed;
481 }
482
483 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
484 {
485 unsigned long old_cr0 = kvm_read_cr0(vcpu);
486 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
487 X86_CR0_CD | X86_CR0_NW;
488
489 cr0 |= X86_CR0_ET;
490
491 #ifdef CONFIG_X86_64
492 if (cr0 & 0xffffffff00000000UL)
493 return 1;
494 #endif
495
496 cr0 &= ~CR0_RESERVED_BITS;
497
498 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
499 return 1;
500
501 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
502 return 1;
503
504 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
505 #ifdef CONFIG_X86_64
506 if ((vcpu->arch.efer & EFER_LME)) {
507 int cs_db, cs_l;
508
509 if (!is_pae(vcpu))
510 return 1;
511 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
512 if (cs_l)
513 return 1;
514 } else
515 #endif
516 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
517 vcpu->arch.cr3))
518 return 1;
519 }
520
521 kvm_x86_ops->set_cr0(vcpu, cr0);
522
523 if ((cr0 ^ old_cr0) & X86_CR0_PG)
524 kvm_clear_async_pf_completion_queue(vcpu);
525
526 if ((cr0 ^ old_cr0) & update_bits)
527 kvm_mmu_reset_context(vcpu);
528 return 0;
529 }
530 EXPORT_SYMBOL_GPL(kvm_set_cr0);
531
532 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
533 {
534 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
535 }
536 EXPORT_SYMBOL_GPL(kvm_lmsw);
537
538 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
539 {
540 u64 xcr0;
541
542 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
543 if (index != XCR_XFEATURE_ENABLED_MASK)
544 return 1;
545 xcr0 = xcr;
546 if (kvm_x86_ops->get_cpl(vcpu) != 0)
547 return 1;
548 if (!(xcr0 & XSTATE_FP))
549 return 1;
550 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
551 return 1;
552 if (xcr0 & ~host_xcr0)
553 return 1;
554 vcpu->arch.xcr0 = xcr0;
555 vcpu->guest_xcr0_loaded = 0;
556 return 0;
557 }
558
559 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
560 {
561 if (__kvm_set_xcr(vcpu, index, xcr)) {
562 kvm_inject_gp(vcpu, 0);
563 return 1;
564 }
565 return 0;
566 }
567 EXPORT_SYMBOL_GPL(kvm_set_xcr);
568
569 static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
570 {
571 struct kvm_cpuid_entry2 *best;
572
573 best = kvm_find_cpuid_entry(vcpu, 1, 0);
574 return best && (best->ecx & bit(X86_FEATURE_XSAVE));
575 }
576
577 static void update_cpuid(struct kvm_vcpu *vcpu)
578 {
579 struct kvm_cpuid_entry2 *best;
580
581 best = kvm_find_cpuid_entry(vcpu, 1, 0);
582 if (!best)
583 return;
584
585 /* Update OSXSAVE bit */
586 if (cpu_has_xsave && best->function == 0x1) {
587 best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
588 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
589 best->ecx |= bit(X86_FEATURE_OSXSAVE);
590 }
591 }
592
593 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
594 {
595 unsigned long old_cr4 = kvm_read_cr4(vcpu);
596 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
597
598 if (cr4 & CR4_RESERVED_BITS)
599 return 1;
600
601 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
602 return 1;
603
604 if (is_long_mode(vcpu)) {
605 if (!(cr4 & X86_CR4_PAE))
606 return 1;
607 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
608 && ((cr4 ^ old_cr4) & pdptr_bits)
609 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3))
610 return 1;
611
612 if (cr4 & X86_CR4_VMXE)
613 return 1;
614
615 kvm_x86_ops->set_cr4(vcpu, cr4);
616
617 if ((cr4 ^ old_cr4) & pdptr_bits)
618 kvm_mmu_reset_context(vcpu);
619
620 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
621 update_cpuid(vcpu);
622
623 return 0;
624 }
625 EXPORT_SYMBOL_GPL(kvm_set_cr4);
626
627 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
628 {
629 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
630 kvm_mmu_sync_roots(vcpu);
631 kvm_mmu_flush_tlb(vcpu);
632 return 0;
633 }
634
635 if (is_long_mode(vcpu)) {
636 if (cr3 & CR3_L_MODE_RESERVED_BITS)
637 return 1;
638 } else {
639 if (is_pae(vcpu)) {
640 if (cr3 & CR3_PAE_RESERVED_BITS)
641 return 1;
642 if (is_paging(vcpu) &&
643 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
644 return 1;
645 }
646 /*
647 * We don't check reserved bits in nonpae mode, because
648 * this isn't enforced, and VMware depends on this.
649 */
650 }
651
652 /*
653 * Does the new cr3 value map to physical memory? (Note, we
654 * catch an invalid cr3 even in real-mode, because it would
655 * cause trouble later on when we turn on paging anyway.)
656 *
657 * A real CPU would silently accept an invalid cr3 and would
658 * attempt to use it - with largely undefined (and often hard
659 * to debug) behavior on the guest side.
660 */
661 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
662 return 1;
663 vcpu->arch.cr3 = cr3;
664 vcpu->arch.mmu.new_cr3(vcpu);
665 return 0;
666 }
667 EXPORT_SYMBOL_GPL(kvm_set_cr3);
668
669 int __kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
670 {
671 if (cr8 & CR8_RESERVED_BITS)
672 return 1;
673 if (irqchip_in_kernel(vcpu->kvm))
674 kvm_lapic_set_tpr(vcpu, cr8);
675 else
676 vcpu->arch.cr8 = cr8;
677 return 0;
678 }
679
680 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
681 {
682 if (__kvm_set_cr8(vcpu, cr8))
683 kvm_inject_gp(vcpu, 0);
684 }
685 EXPORT_SYMBOL_GPL(kvm_set_cr8);
686
687 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
688 {
689 if (irqchip_in_kernel(vcpu->kvm))
690 return kvm_lapic_get_cr8(vcpu);
691 else
692 return vcpu->arch.cr8;
693 }
694 EXPORT_SYMBOL_GPL(kvm_get_cr8);
695
696 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
697 {
698 switch (dr) {
699 case 0 ... 3:
700 vcpu->arch.db[dr] = val;
701 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
702 vcpu->arch.eff_db[dr] = val;
703 break;
704 case 4:
705 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
706 return 1; /* #UD */
707 /* fall through */
708 case 6:
709 if (val & 0xffffffff00000000ULL)
710 return -1; /* #GP */
711 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
712 break;
713 case 5:
714 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
715 return 1; /* #UD */
716 /* fall through */
717 default: /* 7 */
718 if (val & 0xffffffff00000000ULL)
719 return -1; /* #GP */
720 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
721 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
722 kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
723 vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
724 }
725 break;
726 }
727
728 return 0;
729 }
730
731 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
732 {
733 int res;
734
735 res = __kvm_set_dr(vcpu, dr, val);
736 if (res > 0)
737 kvm_queue_exception(vcpu, UD_VECTOR);
738 else if (res < 0)
739 kvm_inject_gp(vcpu, 0);
740
741 return res;
742 }
743 EXPORT_SYMBOL_GPL(kvm_set_dr);
744
745 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
746 {
747 switch (dr) {
748 case 0 ... 3:
749 *val = vcpu->arch.db[dr];
750 break;
751 case 4:
752 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
753 return 1;
754 /* fall through */
755 case 6:
756 *val = vcpu->arch.dr6;
757 break;
758 case 5:
759 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
760 return 1;
761 /* fall through */
762 default: /* 7 */
763 *val = vcpu->arch.dr7;
764 break;
765 }
766
767 return 0;
768 }
769
770 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
771 {
772 if (_kvm_get_dr(vcpu, dr, val)) {
773 kvm_queue_exception(vcpu, UD_VECTOR);
774 return 1;
775 }
776 return 0;
777 }
778 EXPORT_SYMBOL_GPL(kvm_get_dr);
779
780 /*
781 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
782 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
783 *
784 * This list is modified at module load time to reflect the
785 * capabilities of the host cpu. This capabilities test skips MSRs that are
786 * kvm-specific. Those are put in the beginning of the list.
787 */
788
789 #define KVM_SAVE_MSRS_BEGIN 8
790 static u32 msrs_to_save[] = {
791 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
792 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
793 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
794 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN,
795 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
796 MSR_STAR,
797 #ifdef CONFIG_X86_64
798 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
799 #endif
800 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
801 };
802
803 static unsigned num_msrs_to_save;
804
805 static u32 emulated_msrs[] = {
806 MSR_IA32_MISC_ENABLE,
807 MSR_IA32_MCG_STATUS,
808 MSR_IA32_MCG_CTL,
809 };
810
811 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
812 {
813 u64 old_efer = vcpu->arch.efer;
814
815 if (efer & efer_reserved_bits)
816 return 1;
817
818 if (is_paging(vcpu)
819 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
820 return 1;
821
822 if (efer & EFER_FFXSR) {
823 struct kvm_cpuid_entry2 *feat;
824
825 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
826 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
827 return 1;
828 }
829
830 if (efer & EFER_SVME) {
831 struct kvm_cpuid_entry2 *feat;
832
833 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
834 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
835 return 1;
836 }
837
838 efer &= ~EFER_LMA;
839 efer |= vcpu->arch.efer & EFER_LMA;
840
841 kvm_x86_ops->set_efer(vcpu, efer);
842
843 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
844
845 /* Update reserved bits */
846 if ((efer ^ old_efer) & EFER_NX)
847 kvm_mmu_reset_context(vcpu);
848
849 return 0;
850 }
851
852 void kvm_enable_efer_bits(u64 mask)
853 {
854 efer_reserved_bits &= ~mask;
855 }
856 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
857
858
859 /*
860 * Writes msr value into into the appropriate "register".
861 * Returns 0 on success, non-0 otherwise.
862 * Assumes vcpu_load() was already called.
863 */
864 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
865 {
866 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
867 }
868
869 /*
870 * Adapt set_msr() to msr_io()'s calling convention
871 */
872 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
873 {
874 return kvm_set_msr(vcpu, index, *data);
875 }
876
877 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
878 {
879 int version;
880 int r;
881 struct pvclock_wall_clock wc;
882 struct timespec boot;
883
884 if (!wall_clock)
885 return;
886
887 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
888 if (r)
889 return;
890
891 if (version & 1)
892 ++version; /* first time write, random junk */
893
894 ++version;
895
896 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
897
898 /*
899 * The guest calculates current wall clock time by adding
900 * system time (updated by kvm_guest_time_update below) to the
901 * wall clock specified here. guest system time equals host
902 * system time for us, thus we must fill in host boot time here.
903 */
904 getboottime(&boot);
905
906 wc.sec = boot.tv_sec;
907 wc.nsec = boot.tv_nsec;
908 wc.version = version;
909
910 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
911
912 version++;
913 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
914 }
915
916 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
917 {
918 uint32_t quotient, remainder;
919
920 /* Don't try to replace with do_div(), this one calculates
921 * "(dividend << 32) / divisor" */
922 __asm__ ( "divl %4"
923 : "=a" (quotient), "=d" (remainder)
924 : "0" (0), "1" (dividend), "r" (divisor) );
925 return quotient;
926 }
927
928 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
929 s8 *pshift, u32 *pmultiplier)
930 {
931 uint64_t scaled64;
932 int32_t shift = 0;
933 uint64_t tps64;
934 uint32_t tps32;
935
936 tps64 = base_khz * 1000LL;
937 scaled64 = scaled_khz * 1000LL;
938 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
939 tps64 >>= 1;
940 shift--;
941 }
942
943 tps32 = (uint32_t)tps64;
944 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
945 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
946 scaled64 >>= 1;
947 else
948 tps32 <<= 1;
949 shift++;
950 }
951
952 *pshift = shift;
953 *pmultiplier = div_frac(scaled64, tps32);
954
955 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
956 __func__, base_khz, scaled_khz, shift, *pmultiplier);
957 }
958
959 static inline u64 get_kernel_ns(void)
960 {
961 struct timespec ts;
962
963 WARN_ON(preemptible());
964 ktime_get_ts(&ts);
965 monotonic_to_bootbased(&ts);
966 return timespec_to_ns(&ts);
967 }
968
969 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
970 unsigned long max_tsc_khz;
971
972 static inline int kvm_tsc_changes_freq(void)
973 {
974 int cpu = get_cpu();
975 int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
976 cpufreq_quick_get(cpu) != 0;
977 put_cpu();
978 return ret;
979 }
980
981 static inline u64 nsec_to_cycles(u64 nsec)
982 {
983 u64 ret;
984
985 WARN_ON(preemptible());
986 if (kvm_tsc_changes_freq())
987 printk_once(KERN_WARNING
988 "kvm: unreliable cycle conversion on adjustable rate TSC\n");
989 ret = nsec * __get_cpu_var(cpu_tsc_khz);
990 do_div(ret, USEC_PER_SEC);
991 return ret;
992 }
993
994 static void kvm_arch_set_tsc_khz(struct kvm *kvm, u32 this_tsc_khz)
995 {
996 /* Compute a scale to convert nanoseconds in TSC cycles */
997 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
998 &kvm->arch.virtual_tsc_shift,
999 &kvm->arch.virtual_tsc_mult);
1000 kvm->arch.virtual_tsc_khz = this_tsc_khz;
1001 }
1002
1003 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1004 {
1005 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
1006 vcpu->kvm->arch.virtual_tsc_mult,
1007 vcpu->kvm->arch.virtual_tsc_shift);
1008 tsc += vcpu->arch.last_tsc_write;
1009 return tsc;
1010 }
1011
1012 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1013 {
1014 struct kvm *kvm = vcpu->kvm;
1015 u64 offset, ns, elapsed;
1016 unsigned long flags;
1017 s64 sdiff;
1018
1019 spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1020 offset = data - native_read_tsc();
1021 ns = get_kernel_ns();
1022 elapsed = ns - kvm->arch.last_tsc_nsec;
1023 sdiff = data - kvm->arch.last_tsc_write;
1024 if (sdiff < 0)
1025 sdiff = -sdiff;
1026
1027 /*
1028 * Special case: close write to TSC within 5 seconds of
1029 * another CPU is interpreted as an attempt to synchronize
1030 * The 5 seconds is to accomodate host load / swapping as
1031 * well as any reset of TSC during the boot process.
1032 *
1033 * In that case, for a reliable TSC, we can match TSC offsets,
1034 * or make a best guest using elapsed value.
1035 */
1036 if (sdiff < nsec_to_cycles(5ULL * NSEC_PER_SEC) &&
1037 elapsed < 5ULL * NSEC_PER_SEC) {
1038 if (!check_tsc_unstable()) {
1039 offset = kvm->arch.last_tsc_offset;
1040 pr_debug("kvm: matched tsc offset for %llu\n", data);
1041 } else {
1042 u64 delta = nsec_to_cycles(elapsed);
1043 offset += delta;
1044 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1045 }
1046 ns = kvm->arch.last_tsc_nsec;
1047 }
1048 kvm->arch.last_tsc_nsec = ns;
1049 kvm->arch.last_tsc_write = data;
1050 kvm->arch.last_tsc_offset = offset;
1051 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1052 spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1053
1054 /* Reset of TSC must disable overshoot protection below */
1055 vcpu->arch.hv_clock.tsc_timestamp = 0;
1056 vcpu->arch.last_tsc_write = data;
1057 vcpu->arch.last_tsc_nsec = ns;
1058 }
1059 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1060
1061 static int kvm_guest_time_update(struct kvm_vcpu *v)
1062 {
1063 unsigned long flags;
1064 struct kvm_vcpu_arch *vcpu = &v->arch;
1065 void *shared_kaddr;
1066 unsigned long this_tsc_khz;
1067 s64 kernel_ns, max_kernel_ns;
1068 u64 tsc_timestamp;
1069
1070 /* Keep irq disabled to prevent changes to the clock */
1071 local_irq_save(flags);
1072 kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
1073 kernel_ns = get_kernel_ns();
1074 this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1075
1076 if (unlikely(this_tsc_khz == 0)) {
1077 local_irq_restore(flags);
1078 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1079 return 1;
1080 }
1081
1082 /*
1083 * We may have to catch up the TSC to match elapsed wall clock
1084 * time for two reasons, even if kvmclock is used.
1085 * 1) CPU could have been running below the maximum TSC rate
1086 * 2) Broken TSC compensation resets the base at each VCPU
1087 * entry to avoid unknown leaps of TSC even when running
1088 * again on the same CPU. This may cause apparent elapsed
1089 * time to disappear, and the guest to stand still or run
1090 * very slowly.
1091 */
1092 if (vcpu->tsc_catchup) {
1093 u64 tsc = compute_guest_tsc(v, kernel_ns);
1094 if (tsc > tsc_timestamp) {
1095 kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp);
1096 tsc_timestamp = tsc;
1097 }
1098 }
1099
1100 local_irq_restore(flags);
1101
1102 if (!vcpu->time_page)
1103 return 0;
1104
1105 /*
1106 * Time as measured by the TSC may go backwards when resetting the base
1107 * tsc_timestamp. The reason for this is that the TSC resolution is
1108 * higher than the resolution of the other clock scales. Thus, many
1109 * possible measurments of the TSC correspond to one measurement of any
1110 * other clock, and so a spread of values is possible. This is not a
1111 * problem for the computation of the nanosecond clock; with TSC rates
1112 * around 1GHZ, there can only be a few cycles which correspond to one
1113 * nanosecond value, and any path through this code will inevitably
1114 * take longer than that. However, with the kernel_ns value itself,
1115 * the precision may be much lower, down to HZ granularity. If the
1116 * first sampling of TSC against kernel_ns ends in the low part of the
1117 * range, and the second in the high end of the range, we can get:
1118 *
1119 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1120 *
1121 * As the sampling errors potentially range in the thousands of cycles,
1122 * it is possible such a time value has already been observed by the
1123 * guest. To protect against this, we must compute the system time as
1124 * observed by the guest and ensure the new system time is greater.
1125 */
1126 max_kernel_ns = 0;
1127 if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
1128 max_kernel_ns = vcpu->last_guest_tsc -
1129 vcpu->hv_clock.tsc_timestamp;
1130 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1131 vcpu->hv_clock.tsc_to_system_mul,
1132 vcpu->hv_clock.tsc_shift);
1133 max_kernel_ns += vcpu->last_kernel_ns;
1134 }
1135
1136 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1137 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1138 &vcpu->hv_clock.tsc_shift,
1139 &vcpu->hv_clock.tsc_to_system_mul);
1140 vcpu->hw_tsc_khz = this_tsc_khz;
1141 }
1142
1143 if (max_kernel_ns > kernel_ns)
1144 kernel_ns = max_kernel_ns;
1145
1146 /* With all the info we got, fill in the values */
1147 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1148 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1149 vcpu->last_kernel_ns = kernel_ns;
1150 vcpu->last_guest_tsc = tsc_timestamp;
1151 vcpu->hv_clock.flags = 0;
1152
1153 /*
1154 * The interface expects us to write an even number signaling that the
1155 * update is finished. Since the guest won't see the intermediate
1156 * state, we just increase by 2 at the end.
1157 */
1158 vcpu->hv_clock.version += 2;
1159
1160 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
1161
1162 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1163 sizeof(vcpu->hv_clock));
1164
1165 kunmap_atomic(shared_kaddr, KM_USER0);
1166
1167 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1168 return 0;
1169 }
1170
1171 static bool msr_mtrr_valid(unsigned msr)
1172 {
1173 switch (msr) {
1174 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1175 case MSR_MTRRfix64K_00000:
1176 case MSR_MTRRfix16K_80000:
1177 case MSR_MTRRfix16K_A0000:
1178 case MSR_MTRRfix4K_C0000:
1179 case MSR_MTRRfix4K_C8000:
1180 case MSR_MTRRfix4K_D0000:
1181 case MSR_MTRRfix4K_D8000:
1182 case MSR_MTRRfix4K_E0000:
1183 case MSR_MTRRfix4K_E8000:
1184 case MSR_MTRRfix4K_F0000:
1185 case MSR_MTRRfix4K_F8000:
1186 case MSR_MTRRdefType:
1187 case MSR_IA32_CR_PAT:
1188 return true;
1189 case 0x2f8:
1190 return true;
1191 }
1192 return false;
1193 }
1194
1195 static bool valid_pat_type(unsigned t)
1196 {
1197 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1198 }
1199
1200 static bool valid_mtrr_type(unsigned t)
1201 {
1202 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1203 }
1204
1205 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1206 {
1207 int i;
1208
1209 if (!msr_mtrr_valid(msr))
1210 return false;
1211
1212 if (msr == MSR_IA32_CR_PAT) {
1213 for (i = 0; i < 8; i++)
1214 if (!valid_pat_type((data >> (i * 8)) & 0xff))
1215 return false;
1216 return true;
1217 } else if (msr == MSR_MTRRdefType) {
1218 if (data & ~0xcff)
1219 return false;
1220 return valid_mtrr_type(data & 0xff);
1221 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1222 for (i = 0; i < 8 ; i++)
1223 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1224 return false;
1225 return true;
1226 }
1227
1228 /* variable MTRRs */
1229 return valid_mtrr_type(data & 0xff);
1230 }
1231
1232 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1233 {
1234 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1235
1236 if (!mtrr_valid(vcpu, msr, data))
1237 return 1;
1238
1239 if (msr == MSR_MTRRdefType) {
1240 vcpu->arch.mtrr_state.def_type = data;
1241 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1242 } else if (msr == MSR_MTRRfix64K_00000)
1243 p[0] = data;
1244 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1245 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1246 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1247 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1248 else if (msr == MSR_IA32_CR_PAT)
1249 vcpu->arch.pat = data;
1250 else { /* Variable MTRRs */
1251 int idx, is_mtrr_mask;
1252 u64 *pt;
1253
1254 idx = (msr - 0x200) / 2;
1255 is_mtrr_mask = msr - 0x200 - 2 * idx;
1256 if (!is_mtrr_mask)
1257 pt =
1258 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1259 else
1260 pt =
1261 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1262 *pt = data;
1263 }
1264
1265 kvm_mmu_reset_context(vcpu);
1266 return 0;
1267 }
1268
1269 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1270 {
1271 u64 mcg_cap = vcpu->arch.mcg_cap;
1272 unsigned bank_num = mcg_cap & 0xff;
1273
1274 switch (msr) {
1275 case MSR_IA32_MCG_STATUS:
1276 vcpu->arch.mcg_status = data;
1277 break;
1278 case MSR_IA32_MCG_CTL:
1279 if (!(mcg_cap & MCG_CTL_P))
1280 return 1;
1281 if (data != 0 && data != ~(u64)0)
1282 return -1;
1283 vcpu->arch.mcg_ctl = data;
1284 break;
1285 default:
1286 if (msr >= MSR_IA32_MC0_CTL &&
1287 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1288 u32 offset = msr - MSR_IA32_MC0_CTL;
1289 /* only 0 or all 1s can be written to IA32_MCi_CTL
1290 * some Linux kernels though clear bit 10 in bank 4 to
1291 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1292 * this to avoid an uncatched #GP in the guest
1293 */
1294 if ((offset & 0x3) == 0 &&
1295 data != 0 && (data | (1 << 10)) != ~(u64)0)
1296 return -1;
1297 vcpu->arch.mce_banks[offset] = data;
1298 break;
1299 }
1300 return 1;
1301 }
1302 return 0;
1303 }
1304
1305 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1306 {
1307 struct kvm *kvm = vcpu->kvm;
1308 int lm = is_long_mode(vcpu);
1309 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1310 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1311 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1312 : kvm->arch.xen_hvm_config.blob_size_32;
1313 u32 page_num = data & ~PAGE_MASK;
1314 u64 page_addr = data & PAGE_MASK;
1315 u8 *page;
1316 int r;
1317
1318 r = -E2BIG;
1319 if (page_num >= blob_size)
1320 goto out;
1321 r = -ENOMEM;
1322 page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1323 if (!page)
1324 goto out;
1325 r = -EFAULT;
1326 if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1327 goto out_free;
1328 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1329 goto out_free;
1330 r = 0;
1331 out_free:
1332 kfree(page);
1333 out:
1334 return r;
1335 }
1336
1337 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1338 {
1339 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1340 }
1341
1342 static bool kvm_hv_msr_partition_wide(u32 msr)
1343 {
1344 bool r = false;
1345 switch (msr) {
1346 case HV_X64_MSR_GUEST_OS_ID:
1347 case HV_X64_MSR_HYPERCALL:
1348 r = true;
1349 break;
1350 }
1351
1352 return r;
1353 }
1354
1355 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1356 {
1357 struct kvm *kvm = vcpu->kvm;
1358
1359 switch (msr) {
1360 case HV_X64_MSR_GUEST_OS_ID:
1361 kvm->arch.hv_guest_os_id = data;
1362 /* setting guest os id to zero disables hypercall page */
1363 if (!kvm->arch.hv_guest_os_id)
1364 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1365 break;
1366 case HV_X64_MSR_HYPERCALL: {
1367 u64 gfn;
1368 unsigned long addr;
1369 u8 instructions[4];
1370
1371 /* if guest os id is not set hypercall should remain disabled */
1372 if (!kvm->arch.hv_guest_os_id)
1373 break;
1374 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1375 kvm->arch.hv_hypercall = data;
1376 break;
1377 }
1378 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1379 addr = gfn_to_hva(kvm, gfn);
1380 if (kvm_is_error_hva(addr))
1381 return 1;
1382 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1383 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1384 if (copy_to_user((void __user *)addr, instructions, 4))
1385 return 1;
1386 kvm->arch.hv_hypercall = data;
1387 break;
1388 }
1389 default:
1390 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1391 "data 0x%llx\n", msr, data);
1392 return 1;
1393 }
1394 return 0;
1395 }
1396
1397 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1398 {
1399 switch (msr) {
1400 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1401 unsigned long addr;
1402
1403 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1404 vcpu->arch.hv_vapic = data;
1405 break;
1406 }
1407 addr = gfn_to_hva(vcpu->kvm, data >>
1408 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1409 if (kvm_is_error_hva(addr))
1410 return 1;
1411 if (clear_user((void __user *)addr, PAGE_SIZE))
1412 return 1;
1413 vcpu->arch.hv_vapic = data;
1414 break;
1415 }
1416 case HV_X64_MSR_EOI:
1417 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1418 case HV_X64_MSR_ICR:
1419 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1420 case HV_X64_MSR_TPR:
1421 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1422 default:
1423 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1424 "data 0x%llx\n", msr, data);
1425 return 1;
1426 }
1427
1428 return 0;
1429 }
1430
1431 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1432 {
1433 gpa_t gpa = data & ~0x3f;
1434
1435 /* Bits 2:5 are resrved, Should be zero */
1436 if (data & 0x3c)
1437 return 1;
1438
1439 vcpu->arch.apf.msr_val = data;
1440
1441 if (!(data & KVM_ASYNC_PF_ENABLED)) {
1442 kvm_clear_async_pf_completion_queue(vcpu);
1443 kvm_async_pf_hash_reset(vcpu);
1444 return 0;
1445 }
1446
1447 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1448 return 1;
1449
1450 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1451 kvm_async_pf_wakeup_all(vcpu);
1452 return 0;
1453 }
1454
1455 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1456 {
1457 switch (msr) {
1458 case MSR_EFER:
1459 return set_efer(vcpu, data);
1460 case MSR_K7_HWCR:
1461 data &= ~(u64)0x40; /* ignore flush filter disable */
1462 data &= ~(u64)0x100; /* ignore ignne emulation enable */
1463 if (data != 0) {
1464 pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1465 data);
1466 return 1;
1467 }
1468 break;
1469 case MSR_FAM10H_MMIO_CONF_BASE:
1470 if (data != 0) {
1471 pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1472 "0x%llx\n", data);
1473 return 1;
1474 }
1475 break;
1476 case MSR_AMD64_NB_CFG:
1477 break;
1478 case MSR_IA32_DEBUGCTLMSR:
1479 if (!data) {
1480 /* We support the non-activated case already */
1481 break;
1482 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1483 /* Values other than LBR and BTF are vendor-specific,
1484 thus reserved and should throw a #GP */
1485 return 1;
1486 }
1487 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1488 __func__, data);
1489 break;
1490 case MSR_IA32_UCODE_REV:
1491 case MSR_IA32_UCODE_WRITE:
1492 case MSR_VM_HSAVE_PA:
1493 case MSR_AMD64_PATCH_LOADER:
1494 break;
1495 case 0x200 ... 0x2ff:
1496 return set_msr_mtrr(vcpu, msr, data);
1497 case MSR_IA32_APICBASE:
1498 kvm_set_apic_base(vcpu, data);
1499 break;
1500 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1501 return kvm_x2apic_msr_write(vcpu, msr, data);
1502 case MSR_IA32_MISC_ENABLE:
1503 vcpu->arch.ia32_misc_enable_msr = data;
1504 break;
1505 case MSR_KVM_WALL_CLOCK_NEW:
1506 case MSR_KVM_WALL_CLOCK:
1507 vcpu->kvm->arch.wall_clock = data;
1508 kvm_write_wall_clock(vcpu->kvm, data);
1509 break;
1510 case MSR_KVM_SYSTEM_TIME_NEW:
1511 case MSR_KVM_SYSTEM_TIME: {
1512 if (vcpu->arch.time_page) {
1513 kvm_release_page_dirty(vcpu->arch.time_page);
1514 vcpu->arch.time_page = NULL;
1515 }
1516
1517 vcpu->arch.time = data;
1518 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1519
1520 /* we verify if the enable bit is set... */
1521 if (!(data & 1))
1522 break;
1523
1524 /* ...but clean it before doing the actual write */
1525 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1526
1527 vcpu->arch.time_page =
1528 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1529
1530 if (is_error_page(vcpu->arch.time_page)) {
1531 kvm_release_page_clean(vcpu->arch.time_page);
1532 vcpu->arch.time_page = NULL;
1533 }
1534 break;
1535 }
1536 case MSR_KVM_ASYNC_PF_EN:
1537 if (kvm_pv_enable_async_pf(vcpu, data))
1538 return 1;
1539 break;
1540 case MSR_IA32_MCG_CTL:
1541 case MSR_IA32_MCG_STATUS:
1542 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1543 return set_msr_mce(vcpu, msr, data);
1544
1545 /* Performance counters are not protected by a CPUID bit,
1546 * so we should check all of them in the generic path for the sake of
1547 * cross vendor migration.
1548 * Writing a zero into the event select MSRs disables them,
1549 * which we perfectly emulate ;-). Any other value should be at least
1550 * reported, some guests depend on them.
1551 */
1552 case MSR_P6_EVNTSEL0:
1553 case MSR_P6_EVNTSEL1:
1554 case MSR_K7_EVNTSEL0:
1555 case MSR_K7_EVNTSEL1:
1556 case MSR_K7_EVNTSEL2:
1557 case MSR_K7_EVNTSEL3:
1558 if (data != 0)
1559 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1560 "0x%x data 0x%llx\n", msr, data);
1561 break;
1562 /* at least RHEL 4 unconditionally writes to the perfctr registers,
1563 * so we ignore writes to make it happy.
1564 */
1565 case MSR_P6_PERFCTR0:
1566 case MSR_P6_PERFCTR1:
1567 case MSR_K7_PERFCTR0:
1568 case MSR_K7_PERFCTR1:
1569 case MSR_K7_PERFCTR2:
1570 case MSR_K7_PERFCTR3:
1571 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1572 "0x%x data 0x%llx\n", msr, data);
1573 break;
1574 case MSR_K7_CLK_CTL:
1575 /*
1576 * Ignore all writes to this no longer documented MSR.
1577 * Writes are only relevant for old K7 processors,
1578 * all pre-dating SVM, but a recommended workaround from
1579 * AMD for these chips. It is possible to speicify the
1580 * affected processor models on the command line, hence
1581 * the need to ignore the workaround.
1582 */
1583 break;
1584 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1585 if (kvm_hv_msr_partition_wide(msr)) {
1586 int r;
1587 mutex_lock(&vcpu->kvm->lock);
1588 r = set_msr_hyperv_pw(vcpu, msr, data);
1589 mutex_unlock(&vcpu->kvm->lock);
1590 return r;
1591 } else
1592 return set_msr_hyperv(vcpu, msr, data);
1593 break;
1594 default:
1595 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1596 return xen_hvm_config(vcpu, data);
1597 if (!ignore_msrs) {
1598 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1599 msr, data);
1600 return 1;
1601 } else {
1602 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1603 msr, data);
1604 break;
1605 }
1606 }
1607 return 0;
1608 }
1609 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1610
1611
1612 /*
1613 * Reads an msr value (of 'msr_index') into 'pdata'.
1614 * Returns 0 on success, non-0 otherwise.
1615 * Assumes vcpu_load() was already called.
1616 */
1617 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1618 {
1619 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1620 }
1621
1622 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1623 {
1624 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1625
1626 if (!msr_mtrr_valid(msr))
1627 return 1;
1628
1629 if (msr == MSR_MTRRdefType)
1630 *pdata = vcpu->arch.mtrr_state.def_type +
1631 (vcpu->arch.mtrr_state.enabled << 10);
1632 else if (msr == MSR_MTRRfix64K_00000)
1633 *pdata = p[0];
1634 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1635 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1636 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1637 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1638 else if (msr == MSR_IA32_CR_PAT)
1639 *pdata = vcpu->arch.pat;
1640 else { /* Variable MTRRs */
1641 int idx, is_mtrr_mask;
1642 u64 *pt;
1643
1644 idx = (msr - 0x200) / 2;
1645 is_mtrr_mask = msr - 0x200 - 2 * idx;
1646 if (!is_mtrr_mask)
1647 pt =
1648 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1649 else
1650 pt =
1651 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1652 *pdata = *pt;
1653 }
1654
1655 return 0;
1656 }
1657
1658 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1659 {
1660 u64 data;
1661 u64 mcg_cap = vcpu->arch.mcg_cap;
1662 unsigned bank_num = mcg_cap & 0xff;
1663
1664 switch (msr) {
1665 case MSR_IA32_P5_MC_ADDR:
1666 case MSR_IA32_P5_MC_TYPE:
1667 data = 0;
1668 break;
1669 case MSR_IA32_MCG_CAP:
1670 data = vcpu->arch.mcg_cap;
1671 break;
1672 case MSR_IA32_MCG_CTL:
1673 if (!(mcg_cap & MCG_CTL_P))
1674 return 1;
1675 data = vcpu->arch.mcg_ctl;
1676 break;
1677 case MSR_IA32_MCG_STATUS:
1678 data = vcpu->arch.mcg_status;
1679 break;
1680 default:
1681 if (msr >= MSR_IA32_MC0_CTL &&
1682 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1683 u32 offset = msr - MSR_IA32_MC0_CTL;
1684 data = vcpu->arch.mce_banks[offset];
1685 break;
1686 }
1687 return 1;
1688 }
1689 *pdata = data;
1690 return 0;
1691 }
1692
1693 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1694 {
1695 u64 data = 0;
1696 struct kvm *kvm = vcpu->kvm;
1697
1698 switch (msr) {
1699 case HV_X64_MSR_GUEST_OS_ID:
1700 data = kvm->arch.hv_guest_os_id;
1701 break;
1702 case HV_X64_MSR_HYPERCALL:
1703 data = kvm->arch.hv_hypercall;
1704 break;
1705 default:
1706 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1707 return 1;
1708 }
1709
1710 *pdata = data;
1711 return 0;
1712 }
1713
1714 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1715 {
1716 u64 data = 0;
1717
1718 switch (msr) {
1719 case HV_X64_MSR_VP_INDEX: {
1720 int r;
1721 struct kvm_vcpu *v;
1722 kvm_for_each_vcpu(r, v, vcpu->kvm)
1723 if (v == vcpu)
1724 data = r;
1725 break;
1726 }
1727 case HV_X64_MSR_EOI:
1728 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1729 case HV_X64_MSR_ICR:
1730 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1731 case HV_X64_MSR_TPR:
1732 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1733 default:
1734 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1735 return 1;
1736 }
1737 *pdata = data;
1738 return 0;
1739 }
1740
1741 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1742 {
1743 u64 data;
1744
1745 switch (msr) {
1746 case MSR_IA32_PLATFORM_ID:
1747 case MSR_IA32_UCODE_REV:
1748 case MSR_IA32_EBL_CR_POWERON:
1749 case MSR_IA32_DEBUGCTLMSR:
1750 case MSR_IA32_LASTBRANCHFROMIP:
1751 case MSR_IA32_LASTBRANCHTOIP:
1752 case MSR_IA32_LASTINTFROMIP:
1753 case MSR_IA32_LASTINTTOIP:
1754 case MSR_K8_SYSCFG:
1755 case MSR_K7_HWCR:
1756 case MSR_VM_HSAVE_PA:
1757 case MSR_P6_PERFCTR0:
1758 case MSR_P6_PERFCTR1:
1759 case MSR_P6_EVNTSEL0:
1760 case MSR_P6_EVNTSEL1:
1761 case MSR_K7_EVNTSEL0:
1762 case MSR_K7_PERFCTR0:
1763 case MSR_K8_INT_PENDING_MSG:
1764 case MSR_AMD64_NB_CFG:
1765 case MSR_FAM10H_MMIO_CONF_BASE:
1766 data = 0;
1767 break;
1768 case MSR_MTRRcap:
1769 data = 0x500 | KVM_NR_VAR_MTRR;
1770 break;
1771 case 0x200 ... 0x2ff:
1772 return get_msr_mtrr(vcpu, msr, pdata);
1773 case 0xcd: /* fsb frequency */
1774 data = 3;
1775 break;
1776 /*
1777 * MSR_EBC_FREQUENCY_ID
1778 * Conservative value valid for even the basic CPU models.
1779 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1780 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1781 * and 266MHz for model 3, or 4. Set Core Clock
1782 * Frequency to System Bus Frequency Ratio to 1 (bits
1783 * 31:24) even though these are only valid for CPU
1784 * models > 2, however guests may end up dividing or
1785 * multiplying by zero otherwise.
1786 */
1787 case MSR_EBC_FREQUENCY_ID:
1788 data = 1 << 24;
1789 break;
1790 case MSR_IA32_APICBASE:
1791 data = kvm_get_apic_base(vcpu);
1792 break;
1793 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1794 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1795 break;
1796 case MSR_IA32_MISC_ENABLE:
1797 data = vcpu->arch.ia32_misc_enable_msr;
1798 break;
1799 case MSR_IA32_PERF_STATUS:
1800 /* TSC increment by tick */
1801 data = 1000ULL;
1802 /* CPU multiplier */
1803 data |= (((uint64_t)4ULL) << 40);
1804 break;
1805 case MSR_EFER:
1806 data = vcpu->arch.efer;
1807 break;
1808 case MSR_KVM_WALL_CLOCK:
1809 case MSR_KVM_WALL_CLOCK_NEW:
1810 data = vcpu->kvm->arch.wall_clock;
1811 break;
1812 case MSR_KVM_SYSTEM_TIME:
1813 case MSR_KVM_SYSTEM_TIME_NEW:
1814 data = vcpu->arch.time;
1815 break;
1816 case MSR_KVM_ASYNC_PF_EN:
1817 data = vcpu->arch.apf.msr_val;
1818 break;
1819 case MSR_IA32_P5_MC_ADDR:
1820 case MSR_IA32_P5_MC_TYPE:
1821 case MSR_IA32_MCG_CAP:
1822 case MSR_IA32_MCG_CTL:
1823 case MSR_IA32_MCG_STATUS:
1824 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1825 return get_msr_mce(vcpu, msr, pdata);
1826 case MSR_K7_CLK_CTL:
1827 /*
1828 * Provide expected ramp-up count for K7. All other
1829 * are set to zero, indicating minimum divisors for
1830 * every field.
1831 *
1832 * This prevents guest kernels on AMD host with CPU
1833 * type 6, model 8 and higher from exploding due to
1834 * the rdmsr failing.
1835 */
1836 data = 0x20000000;
1837 break;
1838 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1839 if (kvm_hv_msr_partition_wide(msr)) {
1840 int r;
1841 mutex_lock(&vcpu->kvm->lock);
1842 r = get_msr_hyperv_pw(vcpu, msr, pdata);
1843 mutex_unlock(&vcpu->kvm->lock);
1844 return r;
1845 } else
1846 return get_msr_hyperv(vcpu, msr, pdata);
1847 break;
1848 default:
1849 if (!ignore_msrs) {
1850 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1851 return 1;
1852 } else {
1853 pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1854 data = 0;
1855 }
1856 break;
1857 }
1858 *pdata = data;
1859 return 0;
1860 }
1861 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1862
1863 /*
1864 * Read or write a bunch of msrs. All parameters are kernel addresses.
1865 *
1866 * @return number of msrs set successfully.
1867 */
1868 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1869 struct kvm_msr_entry *entries,
1870 int (*do_msr)(struct kvm_vcpu *vcpu,
1871 unsigned index, u64 *data))
1872 {
1873 int i, idx;
1874
1875 idx = srcu_read_lock(&vcpu->kvm->srcu);
1876 for (i = 0; i < msrs->nmsrs; ++i)
1877 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1878 break;
1879 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1880
1881 return i;
1882 }
1883
1884 /*
1885 * Read or write a bunch of msrs. Parameters are user addresses.
1886 *
1887 * @return number of msrs set successfully.
1888 */
1889 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1890 int (*do_msr)(struct kvm_vcpu *vcpu,
1891 unsigned index, u64 *data),
1892 int writeback)
1893 {
1894 struct kvm_msrs msrs;
1895 struct kvm_msr_entry *entries;
1896 int r, n;
1897 unsigned size;
1898
1899 r = -EFAULT;
1900 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1901 goto out;
1902
1903 r = -E2BIG;
1904 if (msrs.nmsrs >= MAX_IO_MSRS)
1905 goto out;
1906
1907 r = -ENOMEM;
1908 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1909 entries = kmalloc(size, GFP_KERNEL);
1910 if (!entries)
1911 goto out;
1912
1913 r = -EFAULT;
1914 if (copy_from_user(entries, user_msrs->entries, size))
1915 goto out_free;
1916
1917 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1918 if (r < 0)
1919 goto out_free;
1920
1921 r = -EFAULT;
1922 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1923 goto out_free;
1924
1925 r = n;
1926
1927 out_free:
1928 kfree(entries);
1929 out:
1930 return r;
1931 }
1932
1933 int kvm_dev_ioctl_check_extension(long ext)
1934 {
1935 int r;
1936
1937 switch (ext) {
1938 case KVM_CAP_IRQCHIP:
1939 case KVM_CAP_HLT:
1940 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1941 case KVM_CAP_SET_TSS_ADDR:
1942 case KVM_CAP_EXT_CPUID:
1943 case KVM_CAP_CLOCKSOURCE:
1944 case KVM_CAP_PIT:
1945 case KVM_CAP_NOP_IO_DELAY:
1946 case KVM_CAP_MP_STATE:
1947 case KVM_CAP_SYNC_MMU:
1948 case KVM_CAP_REINJECT_CONTROL:
1949 case KVM_CAP_IRQ_INJECT_STATUS:
1950 case KVM_CAP_ASSIGN_DEV_IRQ:
1951 case KVM_CAP_IRQFD:
1952 case KVM_CAP_IOEVENTFD:
1953 case KVM_CAP_PIT2:
1954 case KVM_CAP_PIT_STATE2:
1955 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1956 case KVM_CAP_XEN_HVM:
1957 case KVM_CAP_ADJUST_CLOCK:
1958 case KVM_CAP_VCPU_EVENTS:
1959 case KVM_CAP_HYPERV:
1960 case KVM_CAP_HYPERV_VAPIC:
1961 case KVM_CAP_HYPERV_SPIN:
1962 case KVM_CAP_PCI_SEGMENT:
1963 case KVM_CAP_DEBUGREGS:
1964 case KVM_CAP_X86_ROBUST_SINGLESTEP:
1965 case KVM_CAP_XSAVE:
1966 case KVM_CAP_ASYNC_PF:
1967 r = 1;
1968 break;
1969 case KVM_CAP_COALESCED_MMIO:
1970 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1971 break;
1972 case KVM_CAP_VAPIC:
1973 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1974 break;
1975 case KVM_CAP_NR_VCPUS:
1976 r = KVM_MAX_VCPUS;
1977 break;
1978 case KVM_CAP_NR_MEMSLOTS:
1979 r = KVM_MEMORY_SLOTS;
1980 break;
1981 case KVM_CAP_PV_MMU: /* obsolete */
1982 r = 0;
1983 break;
1984 case KVM_CAP_IOMMU:
1985 r = iommu_found();
1986 break;
1987 case KVM_CAP_MCE:
1988 r = KVM_MAX_MCE_BANKS;
1989 break;
1990 case KVM_CAP_XCRS:
1991 r = cpu_has_xsave;
1992 break;
1993 default:
1994 r = 0;
1995 break;
1996 }
1997 return r;
1998
1999 }
2000
2001 long kvm_arch_dev_ioctl(struct file *filp,
2002 unsigned int ioctl, unsigned long arg)
2003 {
2004 void __user *argp = (void __user *)arg;
2005 long r;
2006
2007 switch (ioctl) {
2008 case KVM_GET_MSR_INDEX_LIST: {
2009 struct kvm_msr_list __user *user_msr_list = argp;
2010 struct kvm_msr_list msr_list;
2011 unsigned n;
2012
2013 r = -EFAULT;
2014 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2015 goto out;
2016 n = msr_list.nmsrs;
2017 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2018 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2019 goto out;
2020 r = -E2BIG;
2021 if (n < msr_list.nmsrs)
2022 goto out;
2023 r = -EFAULT;
2024 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2025 num_msrs_to_save * sizeof(u32)))
2026 goto out;
2027 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2028 &emulated_msrs,
2029 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2030 goto out;
2031 r = 0;
2032 break;
2033 }
2034 case KVM_GET_SUPPORTED_CPUID: {
2035 struct kvm_cpuid2 __user *cpuid_arg = argp;
2036 struct kvm_cpuid2 cpuid;
2037
2038 r = -EFAULT;
2039 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2040 goto out;
2041 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2042 cpuid_arg->entries);
2043 if (r)
2044 goto out;
2045
2046 r = -EFAULT;
2047 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2048 goto out;
2049 r = 0;
2050 break;
2051 }
2052 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2053 u64 mce_cap;
2054
2055 mce_cap = KVM_MCE_CAP_SUPPORTED;
2056 r = -EFAULT;
2057 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2058 goto out;
2059 r = 0;
2060 break;
2061 }
2062 default:
2063 r = -EINVAL;
2064 }
2065 out:
2066 return r;
2067 }
2068
2069 static void wbinvd_ipi(void *garbage)
2070 {
2071 wbinvd();
2072 }
2073
2074 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2075 {
2076 return vcpu->kvm->arch.iommu_domain &&
2077 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2078 }
2079
2080 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2081 {
2082 /* Address WBINVD may be executed by guest */
2083 if (need_emulate_wbinvd(vcpu)) {
2084 if (kvm_x86_ops->has_wbinvd_exit())
2085 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2086 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2087 smp_call_function_single(vcpu->cpu,
2088 wbinvd_ipi, NULL, 1);
2089 }
2090
2091 kvm_x86_ops->vcpu_load(vcpu, cpu);
2092 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2093 /* Make sure TSC doesn't go backwards */
2094 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2095 native_read_tsc() - vcpu->arch.last_host_tsc;
2096 if (tsc_delta < 0)
2097 mark_tsc_unstable("KVM discovered backwards TSC");
2098 if (check_tsc_unstable()) {
2099 kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
2100 vcpu->arch.tsc_catchup = 1;
2101 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2102 }
2103 if (vcpu->cpu != cpu)
2104 kvm_migrate_timers(vcpu);
2105 vcpu->cpu = cpu;
2106 }
2107 }
2108
2109 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2110 {
2111 kvm_x86_ops->vcpu_put(vcpu);
2112 kvm_put_guest_fpu(vcpu);
2113 vcpu->arch.last_host_tsc = native_read_tsc();
2114 }
2115
2116 static int is_efer_nx(void)
2117 {
2118 unsigned long long efer = 0;
2119
2120 rdmsrl_safe(MSR_EFER, &efer);
2121 return efer & EFER_NX;
2122 }
2123
2124 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2125 {
2126 int i;
2127 struct kvm_cpuid_entry2 *e, *entry;
2128
2129 entry = NULL;
2130 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2131 e = &vcpu->arch.cpuid_entries[i];
2132 if (e->function == 0x80000001) {
2133 entry = e;
2134 break;
2135 }
2136 }
2137 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
2138 entry->edx &= ~(1 << 20);
2139 printk(KERN_INFO "kvm: guest NX capability removed\n");
2140 }
2141 }
2142
2143 /* when an old userspace process fills a new kernel module */
2144 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2145 struct kvm_cpuid *cpuid,
2146 struct kvm_cpuid_entry __user *entries)
2147 {
2148 int r, i;
2149 struct kvm_cpuid_entry *cpuid_entries;
2150
2151 r = -E2BIG;
2152 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2153 goto out;
2154 r = -ENOMEM;
2155 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
2156 if (!cpuid_entries)
2157 goto out;
2158 r = -EFAULT;
2159 if (copy_from_user(cpuid_entries, entries,
2160 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2161 goto out_free;
2162 for (i = 0; i < cpuid->nent; i++) {
2163 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
2164 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
2165 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
2166 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
2167 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
2168 vcpu->arch.cpuid_entries[i].index = 0;
2169 vcpu->arch.cpuid_entries[i].flags = 0;
2170 vcpu->arch.cpuid_entries[i].padding[0] = 0;
2171 vcpu->arch.cpuid_entries[i].padding[1] = 0;
2172 vcpu->arch.cpuid_entries[i].padding[2] = 0;
2173 }
2174 vcpu->arch.cpuid_nent = cpuid->nent;
2175 cpuid_fix_nx_cap(vcpu);
2176 r = 0;
2177 kvm_apic_set_version(vcpu);
2178 kvm_x86_ops->cpuid_update(vcpu);
2179 update_cpuid(vcpu);
2180
2181 out_free:
2182 vfree(cpuid_entries);
2183 out:
2184 return r;
2185 }
2186
2187 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
2188 struct kvm_cpuid2 *cpuid,
2189 struct kvm_cpuid_entry2 __user *entries)
2190 {
2191 int r;
2192
2193 r = -E2BIG;
2194 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2195 goto out;
2196 r = -EFAULT;
2197 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
2198 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
2199 goto out;
2200 vcpu->arch.cpuid_nent = cpuid->nent;
2201 kvm_apic_set_version(vcpu);
2202 kvm_x86_ops->cpuid_update(vcpu);
2203 update_cpuid(vcpu);
2204 return 0;
2205
2206 out:
2207 return r;
2208 }
2209
2210 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
2211 struct kvm_cpuid2 *cpuid,
2212 struct kvm_cpuid_entry2 __user *entries)
2213 {
2214 int r;
2215
2216 r = -E2BIG;
2217 if (cpuid->nent < vcpu->arch.cpuid_nent)
2218 goto out;
2219 r = -EFAULT;
2220 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
2221 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
2222 goto out;
2223 return 0;
2224
2225 out:
2226 cpuid->nent = vcpu->arch.cpuid_nent;
2227 return r;
2228 }
2229
2230 static void cpuid_mask(u32 *word, int wordnum)
2231 {
2232 *word &= boot_cpu_data.x86_capability[wordnum];
2233 }
2234
2235 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2236 u32 index)
2237 {
2238 entry->function = function;
2239 entry->index = index;
2240 cpuid_count(entry->function, entry->index,
2241 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
2242 entry->flags = 0;
2243 }
2244
2245 #define F(x) bit(X86_FEATURE_##x)
2246
2247 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2248 u32 index, int *nent, int maxnent)
2249 {
2250 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
2251 #ifdef CONFIG_X86_64
2252 unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
2253 ? F(GBPAGES) : 0;
2254 unsigned f_lm = F(LM);
2255 #else
2256 unsigned f_gbpages = 0;
2257 unsigned f_lm = 0;
2258 #endif
2259 unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
2260
2261 /* cpuid 1.edx */
2262 const u32 kvm_supported_word0_x86_features =
2263 F(FPU) | F(VME) | F(DE) | F(PSE) |
2264 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2265 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
2266 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2267 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
2268 0 /* Reserved, DS, ACPI */ | F(MMX) |
2269 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
2270 0 /* HTT, TM, Reserved, PBE */;
2271 /* cpuid 0x80000001.edx */
2272 const u32 kvm_supported_word1_x86_features =
2273 F(FPU) | F(VME) | F(DE) | F(PSE) |
2274 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2275 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
2276 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2277 F(PAT) | F(PSE36) | 0 /* Reserved */ |
2278 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
2279 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
2280 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
2281 /* cpuid 1.ecx */
2282 const u32 kvm_supported_word4_x86_features =
2283 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
2284 0 /* DS-CPL, VMX, SMX, EST */ |
2285 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
2286 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
2287 0 /* Reserved, DCA */ | F(XMM4_1) |
2288 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
2289 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
2290 F(F16C);
2291 /* cpuid 0x80000001.ecx */
2292 const u32 kvm_supported_word6_x86_features =
2293 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
2294 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
2295 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP) |
2296 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
2297
2298 /* all calls to cpuid_count() should be made on the same cpu */
2299 get_cpu();
2300 do_cpuid_1_ent(entry, function, index);
2301 ++*nent;
2302
2303 switch (function) {
2304 case 0:
2305 entry->eax = min(entry->eax, (u32)0xd);
2306 break;
2307 case 1:
2308 entry->edx &= kvm_supported_word0_x86_features;
2309 cpuid_mask(&entry->edx, 0);
2310 entry->ecx &= kvm_supported_word4_x86_features;
2311 cpuid_mask(&entry->ecx, 4);
2312 /* we support x2apic emulation even if host does not support
2313 * it since we emulate x2apic in software */
2314 entry->ecx |= F(X2APIC);
2315 break;
2316 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
2317 * may return different values. This forces us to get_cpu() before
2318 * issuing the first command, and also to emulate this annoying behavior
2319 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
2320 case 2: {
2321 int t, times = entry->eax & 0xff;
2322
2323 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2324 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2325 for (t = 1; t < times && *nent < maxnent; ++t) {
2326 do_cpuid_1_ent(&entry[t], function, 0);
2327 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2328 ++*nent;
2329 }
2330 break;
2331 }
2332 /* function 4 and 0xb have additional index. */
2333 case 4: {
2334 int i, cache_type;
2335
2336 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2337 /* read more entries until cache_type is zero */
2338 for (i = 1; *nent < maxnent; ++i) {
2339 cache_type = entry[i - 1].eax & 0x1f;
2340 if (!cache_type)
2341 break;
2342 do_cpuid_1_ent(&entry[i], function, i);
2343 entry[i].flags |=
2344 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2345 ++*nent;
2346 }
2347 break;
2348 }
2349 case 0xb: {
2350 int i, level_type;
2351
2352 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2353 /* read more entries until level_type is zero */
2354 for (i = 1; *nent < maxnent; ++i) {
2355 level_type = entry[i - 1].ecx & 0xff00;
2356 if (!level_type)
2357 break;
2358 do_cpuid_1_ent(&entry[i], function, i);
2359 entry[i].flags |=
2360 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2361 ++*nent;
2362 }
2363 break;
2364 }
2365 case 0xd: {
2366 int i;
2367
2368 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2369 for (i = 1; *nent < maxnent; ++i) {
2370 if (entry[i - 1].eax == 0 && i != 2)
2371 break;
2372 do_cpuid_1_ent(&entry[i], function, i);
2373 entry[i].flags |=
2374 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2375 ++*nent;
2376 }
2377 break;
2378 }
2379 case KVM_CPUID_SIGNATURE: {
2380 char signature[12] = "KVMKVMKVM\0\0";
2381 u32 *sigptr = (u32 *)signature;
2382 entry->eax = 0;
2383 entry->ebx = sigptr[0];
2384 entry->ecx = sigptr[1];
2385 entry->edx = sigptr[2];
2386 break;
2387 }
2388 case KVM_CPUID_FEATURES:
2389 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
2390 (1 << KVM_FEATURE_NOP_IO_DELAY) |
2391 (1 << KVM_FEATURE_CLOCKSOURCE2) |
2392 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
2393 entry->ebx = 0;
2394 entry->ecx = 0;
2395 entry->edx = 0;
2396 break;
2397 case 0x80000000:
2398 entry->eax = min(entry->eax, 0x8000001a);
2399 break;
2400 case 0x80000001:
2401 entry->edx &= kvm_supported_word1_x86_features;
2402 cpuid_mask(&entry->edx, 1);
2403 entry->ecx &= kvm_supported_word6_x86_features;
2404 cpuid_mask(&entry->ecx, 6);
2405 break;
2406 }
2407
2408 kvm_x86_ops->set_supported_cpuid(function, entry);
2409
2410 put_cpu();
2411 }
2412
2413 #undef F
2414
2415 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
2416 struct kvm_cpuid_entry2 __user *entries)
2417 {
2418 struct kvm_cpuid_entry2 *cpuid_entries;
2419 int limit, nent = 0, r = -E2BIG;
2420 u32 func;
2421
2422 if (cpuid->nent < 1)
2423 goto out;
2424 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2425 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
2426 r = -ENOMEM;
2427 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
2428 if (!cpuid_entries)
2429 goto out;
2430
2431 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
2432 limit = cpuid_entries[0].eax;
2433 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
2434 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2435 &nent, cpuid->nent);
2436 r = -E2BIG;
2437 if (nent >= cpuid->nent)
2438 goto out_free;
2439
2440 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
2441 limit = cpuid_entries[nent - 1].eax;
2442 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
2443 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2444 &nent, cpuid->nent);
2445
2446
2447
2448 r = -E2BIG;
2449 if (nent >= cpuid->nent)
2450 goto out_free;
2451
2452 do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
2453 cpuid->nent);
2454
2455 r = -E2BIG;
2456 if (nent >= cpuid->nent)
2457 goto out_free;
2458
2459 do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
2460 cpuid->nent);
2461
2462 r = -E2BIG;
2463 if (nent >= cpuid->nent)
2464 goto out_free;
2465
2466 r = -EFAULT;
2467 if (copy_to_user(entries, cpuid_entries,
2468 nent * sizeof(struct kvm_cpuid_entry2)))
2469 goto out_free;
2470 cpuid->nent = nent;
2471 r = 0;
2472
2473 out_free:
2474 vfree(cpuid_entries);
2475 out:
2476 return r;
2477 }
2478
2479 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2480 struct kvm_lapic_state *s)
2481 {
2482 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2483
2484 return 0;
2485 }
2486
2487 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2488 struct kvm_lapic_state *s)
2489 {
2490 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2491 kvm_apic_post_state_restore(vcpu);
2492 update_cr8_intercept(vcpu);
2493
2494 return 0;
2495 }
2496
2497 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2498 struct kvm_interrupt *irq)
2499 {
2500 if (irq->irq < 0 || irq->irq >= 256)
2501 return -EINVAL;
2502 if (irqchip_in_kernel(vcpu->kvm))
2503 return -ENXIO;
2504
2505 kvm_queue_interrupt(vcpu, irq->irq, false);
2506 kvm_make_request(KVM_REQ_EVENT, vcpu);
2507
2508 return 0;
2509 }
2510
2511 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2512 {
2513 kvm_inject_nmi(vcpu);
2514
2515 return 0;
2516 }
2517
2518 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2519 struct kvm_tpr_access_ctl *tac)
2520 {
2521 if (tac->flags)
2522 return -EINVAL;
2523 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2524 return 0;
2525 }
2526
2527 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2528 u64 mcg_cap)
2529 {
2530 int r;
2531 unsigned bank_num = mcg_cap & 0xff, bank;
2532
2533 r = -EINVAL;
2534 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2535 goto out;
2536 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2537 goto out;
2538 r = 0;
2539 vcpu->arch.mcg_cap = mcg_cap;
2540 /* Init IA32_MCG_CTL to all 1s */
2541 if (mcg_cap & MCG_CTL_P)
2542 vcpu->arch.mcg_ctl = ~(u64)0;
2543 /* Init IA32_MCi_CTL to all 1s */
2544 for (bank = 0; bank < bank_num; bank++)
2545 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2546 out:
2547 return r;
2548 }
2549
2550 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2551 struct kvm_x86_mce *mce)
2552 {
2553 u64 mcg_cap = vcpu->arch.mcg_cap;
2554 unsigned bank_num = mcg_cap & 0xff;
2555 u64 *banks = vcpu->arch.mce_banks;
2556
2557 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2558 return -EINVAL;
2559 /*
2560 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2561 * reporting is disabled
2562 */
2563 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2564 vcpu->arch.mcg_ctl != ~(u64)0)
2565 return 0;
2566 banks += 4 * mce->bank;
2567 /*
2568 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2569 * reporting is disabled for the bank
2570 */
2571 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2572 return 0;
2573 if (mce->status & MCI_STATUS_UC) {
2574 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2575 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2576 printk(KERN_DEBUG "kvm: set_mce: "
2577 "injects mce exception while "
2578 "previous one is in progress!\n");
2579 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2580 return 0;
2581 }
2582 if (banks[1] & MCI_STATUS_VAL)
2583 mce->status |= MCI_STATUS_OVER;
2584 banks[2] = mce->addr;
2585 banks[3] = mce->misc;
2586 vcpu->arch.mcg_status = mce->mcg_status;
2587 banks[1] = mce->status;
2588 kvm_queue_exception(vcpu, MC_VECTOR);
2589 } else if (!(banks[1] & MCI_STATUS_VAL)
2590 || !(banks[1] & MCI_STATUS_UC)) {
2591 if (banks[1] & MCI_STATUS_VAL)
2592 mce->status |= MCI_STATUS_OVER;
2593 banks[2] = mce->addr;
2594 banks[3] = mce->misc;
2595 banks[1] = mce->status;
2596 } else
2597 banks[1] |= MCI_STATUS_OVER;
2598 return 0;
2599 }
2600
2601 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2602 struct kvm_vcpu_events *events)
2603 {
2604 events->exception.injected =
2605 vcpu->arch.exception.pending &&
2606 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2607 events->exception.nr = vcpu->arch.exception.nr;
2608 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2609 events->exception.pad = 0;
2610 events->exception.error_code = vcpu->arch.exception.error_code;
2611
2612 events->interrupt.injected =
2613 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2614 events->interrupt.nr = vcpu->arch.interrupt.nr;
2615 events->interrupt.soft = 0;
2616 events->interrupt.shadow =
2617 kvm_x86_ops->get_interrupt_shadow(vcpu,
2618 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2619
2620 events->nmi.injected = vcpu->arch.nmi_injected;
2621 events->nmi.pending = vcpu->arch.nmi_pending;
2622 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2623 events->nmi.pad = 0;
2624
2625 events->sipi_vector = vcpu->arch.sipi_vector;
2626
2627 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2628 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2629 | KVM_VCPUEVENT_VALID_SHADOW);
2630 memset(&events->reserved, 0, sizeof(events->reserved));
2631 }
2632
2633 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2634 struct kvm_vcpu_events *events)
2635 {
2636 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2637 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2638 | KVM_VCPUEVENT_VALID_SHADOW))
2639 return -EINVAL;
2640
2641 vcpu->arch.exception.pending = events->exception.injected;
2642 vcpu->arch.exception.nr = events->exception.nr;
2643 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2644 vcpu->arch.exception.error_code = events->exception.error_code;
2645
2646 vcpu->arch.interrupt.pending = events->interrupt.injected;
2647 vcpu->arch.interrupt.nr = events->interrupt.nr;
2648 vcpu->arch.interrupt.soft = events->interrupt.soft;
2649 if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
2650 kvm_pic_clear_isr_ack(vcpu->kvm);
2651 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2652 kvm_x86_ops->set_interrupt_shadow(vcpu,
2653 events->interrupt.shadow);
2654
2655 vcpu->arch.nmi_injected = events->nmi.injected;
2656 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2657 vcpu->arch.nmi_pending = events->nmi.pending;
2658 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2659
2660 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2661 vcpu->arch.sipi_vector = events->sipi_vector;
2662
2663 kvm_make_request(KVM_REQ_EVENT, vcpu);
2664
2665 return 0;
2666 }
2667
2668 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2669 struct kvm_debugregs *dbgregs)
2670 {
2671 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2672 dbgregs->dr6 = vcpu->arch.dr6;
2673 dbgregs->dr7 = vcpu->arch.dr7;
2674 dbgregs->flags = 0;
2675 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2676 }
2677
2678 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2679 struct kvm_debugregs *dbgregs)
2680 {
2681 if (dbgregs->flags)
2682 return -EINVAL;
2683
2684 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2685 vcpu->arch.dr6 = dbgregs->dr6;
2686 vcpu->arch.dr7 = dbgregs->dr7;
2687
2688 return 0;
2689 }
2690
2691 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2692 struct kvm_xsave *guest_xsave)
2693 {
2694 if (cpu_has_xsave)
2695 memcpy(guest_xsave->region,
2696 &vcpu->arch.guest_fpu.state->xsave,
2697 xstate_size);
2698 else {
2699 memcpy(guest_xsave->region,
2700 &vcpu->arch.guest_fpu.state->fxsave,
2701 sizeof(struct i387_fxsave_struct));
2702 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2703 XSTATE_FPSSE;
2704 }
2705 }
2706
2707 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2708 struct kvm_xsave *guest_xsave)
2709 {
2710 u64 xstate_bv =
2711 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2712
2713 if (cpu_has_xsave)
2714 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2715 guest_xsave->region, xstate_size);
2716 else {
2717 if (xstate_bv & ~XSTATE_FPSSE)
2718 return -EINVAL;
2719 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2720 guest_xsave->region, sizeof(struct i387_fxsave_struct));
2721 }
2722 return 0;
2723 }
2724
2725 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2726 struct kvm_xcrs *guest_xcrs)
2727 {
2728 if (!cpu_has_xsave) {
2729 guest_xcrs->nr_xcrs = 0;
2730 return;
2731 }
2732
2733 guest_xcrs->nr_xcrs = 1;
2734 guest_xcrs->flags = 0;
2735 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2736 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2737 }
2738
2739 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2740 struct kvm_xcrs *guest_xcrs)
2741 {
2742 int i, r = 0;
2743
2744 if (!cpu_has_xsave)
2745 return -EINVAL;
2746
2747 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2748 return -EINVAL;
2749
2750 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2751 /* Only support XCR0 currently */
2752 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2753 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2754 guest_xcrs->xcrs[0].value);
2755 break;
2756 }
2757 if (r)
2758 r = -EINVAL;
2759 return r;
2760 }
2761
2762 long kvm_arch_vcpu_ioctl(struct file *filp,
2763 unsigned int ioctl, unsigned long arg)
2764 {
2765 struct kvm_vcpu *vcpu = filp->private_data;
2766 void __user *argp = (void __user *)arg;
2767 int r;
2768 union {
2769 struct kvm_lapic_state *lapic;
2770 struct kvm_xsave *xsave;
2771 struct kvm_xcrs *xcrs;
2772 void *buffer;
2773 } u;
2774
2775 u.buffer = NULL;
2776 switch (ioctl) {
2777 case KVM_GET_LAPIC: {
2778 r = -EINVAL;
2779 if (!vcpu->arch.apic)
2780 goto out;
2781 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2782
2783 r = -ENOMEM;
2784 if (!u.lapic)
2785 goto out;
2786 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2787 if (r)
2788 goto out;
2789 r = -EFAULT;
2790 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2791 goto out;
2792 r = 0;
2793 break;
2794 }
2795 case KVM_SET_LAPIC: {
2796 r = -EINVAL;
2797 if (!vcpu->arch.apic)
2798 goto out;
2799 u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2800 r = -ENOMEM;
2801 if (!u.lapic)
2802 goto out;
2803 r = -EFAULT;
2804 if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
2805 goto out;
2806 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2807 if (r)
2808 goto out;
2809 r = 0;
2810 break;
2811 }
2812 case KVM_INTERRUPT: {
2813 struct kvm_interrupt irq;
2814
2815 r = -EFAULT;
2816 if (copy_from_user(&irq, argp, sizeof irq))
2817 goto out;
2818 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2819 if (r)
2820 goto out;
2821 r = 0;
2822 break;
2823 }
2824 case KVM_NMI: {
2825 r = kvm_vcpu_ioctl_nmi(vcpu);
2826 if (r)
2827 goto out;
2828 r = 0;
2829 break;
2830 }
2831 case KVM_SET_CPUID: {
2832 struct kvm_cpuid __user *cpuid_arg = argp;
2833 struct kvm_cpuid cpuid;
2834
2835 r = -EFAULT;
2836 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2837 goto out;
2838 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2839 if (r)
2840 goto out;
2841 break;
2842 }
2843 case KVM_SET_CPUID2: {
2844 struct kvm_cpuid2 __user *cpuid_arg = argp;
2845 struct kvm_cpuid2 cpuid;
2846
2847 r = -EFAULT;
2848 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2849 goto out;
2850 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2851 cpuid_arg->entries);
2852 if (r)
2853 goto out;
2854 break;
2855 }
2856 case KVM_GET_CPUID2: {
2857 struct kvm_cpuid2 __user *cpuid_arg = argp;
2858 struct kvm_cpuid2 cpuid;
2859
2860 r = -EFAULT;
2861 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2862 goto out;
2863 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2864 cpuid_arg->entries);
2865 if (r)
2866 goto out;
2867 r = -EFAULT;
2868 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2869 goto out;
2870 r = 0;
2871 break;
2872 }
2873 case KVM_GET_MSRS:
2874 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2875 break;
2876 case KVM_SET_MSRS:
2877 r = msr_io(vcpu, argp, do_set_msr, 0);
2878 break;
2879 case KVM_TPR_ACCESS_REPORTING: {
2880 struct kvm_tpr_access_ctl tac;
2881
2882 r = -EFAULT;
2883 if (copy_from_user(&tac, argp, sizeof tac))
2884 goto out;
2885 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2886 if (r)
2887 goto out;
2888 r = -EFAULT;
2889 if (copy_to_user(argp, &tac, sizeof tac))
2890 goto out;
2891 r = 0;
2892 break;
2893 };
2894 case KVM_SET_VAPIC_ADDR: {
2895 struct kvm_vapic_addr va;
2896
2897 r = -EINVAL;
2898 if (!irqchip_in_kernel(vcpu->kvm))
2899 goto out;
2900 r = -EFAULT;
2901 if (copy_from_user(&va, argp, sizeof va))
2902 goto out;
2903 r = 0;
2904 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2905 break;
2906 }
2907 case KVM_X86_SETUP_MCE: {
2908 u64 mcg_cap;
2909
2910 r = -EFAULT;
2911 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2912 goto out;
2913 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2914 break;
2915 }
2916 case KVM_X86_SET_MCE: {
2917 struct kvm_x86_mce mce;
2918
2919 r = -EFAULT;
2920 if (copy_from_user(&mce, argp, sizeof mce))
2921 goto out;
2922 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2923 break;
2924 }
2925 case KVM_GET_VCPU_EVENTS: {
2926 struct kvm_vcpu_events events;
2927
2928 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2929
2930 r = -EFAULT;
2931 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2932 break;
2933 r = 0;
2934 break;
2935 }
2936 case KVM_SET_VCPU_EVENTS: {
2937 struct kvm_vcpu_events events;
2938
2939 r = -EFAULT;
2940 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2941 break;
2942
2943 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2944 break;
2945 }
2946 case KVM_GET_DEBUGREGS: {
2947 struct kvm_debugregs dbgregs;
2948
2949 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2950
2951 r = -EFAULT;
2952 if (copy_to_user(argp, &dbgregs,
2953 sizeof(struct kvm_debugregs)))
2954 break;
2955 r = 0;
2956 break;
2957 }
2958 case KVM_SET_DEBUGREGS: {
2959 struct kvm_debugregs dbgregs;
2960
2961 r = -EFAULT;
2962 if (copy_from_user(&dbgregs, argp,
2963 sizeof(struct kvm_debugregs)))
2964 break;
2965
2966 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2967 break;
2968 }
2969 case KVM_GET_XSAVE: {
2970 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2971 r = -ENOMEM;
2972 if (!u.xsave)
2973 break;
2974
2975 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2976
2977 r = -EFAULT;
2978 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2979 break;
2980 r = 0;
2981 break;
2982 }
2983 case KVM_SET_XSAVE: {
2984 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2985 r = -ENOMEM;
2986 if (!u.xsave)
2987 break;
2988
2989 r = -EFAULT;
2990 if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
2991 break;
2992
2993 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2994 break;
2995 }
2996 case KVM_GET_XCRS: {
2997 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2998 r = -ENOMEM;
2999 if (!u.xcrs)
3000 break;
3001
3002 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3003
3004 r = -EFAULT;
3005 if (copy_to_user(argp, u.xcrs,
3006 sizeof(struct kvm_xcrs)))
3007 break;
3008 r = 0;
3009 break;
3010 }
3011 case KVM_SET_XCRS: {
3012 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3013 r = -ENOMEM;
3014 if (!u.xcrs)
3015 break;
3016
3017 r = -EFAULT;
3018 if (copy_from_user(u.xcrs, argp,
3019 sizeof(struct kvm_xcrs)))
3020 break;
3021
3022 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3023 break;
3024 }
3025 default:
3026 r = -EINVAL;
3027 }
3028 out:
3029 kfree(u.buffer);
3030 return r;
3031 }
3032
3033 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3034 {
3035 int ret;
3036
3037 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3038 return -1;
3039 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3040 return ret;
3041 }
3042
3043 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3044 u64 ident_addr)
3045 {
3046 kvm->arch.ept_identity_map_addr = ident_addr;
3047 return 0;
3048 }
3049
3050 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3051 u32 kvm_nr_mmu_pages)
3052 {
3053 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3054 return -EINVAL;
3055
3056 mutex_lock(&kvm->slots_lock);
3057 spin_lock(&kvm->mmu_lock);
3058
3059 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3060 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3061
3062 spin_unlock(&kvm->mmu_lock);
3063 mutex_unlock(&kvm->slots_lock);
3064 return 0;
3065 }
3066
3067 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3068 {
3069 return kvm->arch.n_max_mmu_pages;
3070 }
3071
3072 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3073 {
3074 int r;
3075
3076 r = 0;
3077 switch (chip->chip_id) {
3078 case KVM_IRQCHIP_PIC_MASTER:
3079 memcpy(&chip->chip.pic,
3080 &pic_irqchip(kvm)->pics[0],
3081 sizeof(struct kvm_pic_state));
3082 break;
3083 case KVM_IRQCHIP_PIC_SLAVE:
3084 memcpy(&chip->chip.pic,
3085 &pic_irqchip(kvm)->pics[1],
3086 sizeof(struct kvm_pic_state));
3087 break;
3088 case KVM_IRQCHIP_IOAPIC:
3089 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3090 break;
3091 default:
3092 r = -EINVAL;
3093 break;
3094 }
3095 return r;
3096 }
3097
3098 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3099 {
3100 int r;
3101
3102 r = 0;
3103 switch (chip->chip_id) {
3104 case KVM_IRQCHIP_PIC_MASTER:
3105 spin_lock(&pic_irqchip(kvm)->lock);
3106 memcpy(&pic_irqchip(kvm)->pics[0],
3107 &chip->chip.pic,
3108 sizeof(struct kvm_pic_state));
3109 spin_unlock(&pic_irqchip(kvm)->lock);
3110 break;
3111 case KVM_IRQCHIP_PIC_SLAVE:
3112 spin_lock(&pic_irqchip(kvm)->lock);
3113 memcpy(&pic_irqchip(kvm)->pics[1],
3114 &chip->chip.pic,
3115 sizeof(struct kvm_pic_state));
3116 spin_unlock(&pic_irqchip(kvm)->lock);
3117 break;
3118 case KVM_IRQCHIP_IOAPIC:
3119 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3120 break;
3121 default:
3122 r = -EINVAL;
3123 break;
3124 }
3125 kvm_pic_update_irq(pic_irqchip(kvm));
3126 return r;
3127 }
3128
3129 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3130 {
3131 int r = 0;
3132
3133 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3134 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3135 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3136 return r;
3137 }
3138
3139 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3140 {
3141 int r = 0;
3142
3143 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3144 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3145 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3146 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3147 return r;
3148 }
3149
3150 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3151 {
3152 int r = 0;
3153
3154 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3155 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3156 sizeof(ps->channels));
3157 ps->flags = kvm->arch.vpit->pit_state.flags;
3158 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3159 memset(&ps->reserved, 0, sizeof(ps->reserved));
3160 return r;
3161 }
3162
3163 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3164 {
3165 int r = 0, start = 0;
3166 u32 prev_legacy, cur_legacy;
3167 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3168 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3169 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3170 if (!prev_legacy && cur_legacy)
3171 start = 1;
3172 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3173 sizeof(kvm->arch.vpit->pit_state.channels));
3174 kvm->arch.vpit->pit_state.flags = ps->flags;
3175 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3176 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3177 return r;
3178 }
3179
3180 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3181 struct kvm_reinject_control *control)
3182 {
3183 if (!kvm->arch.vpit)
3184 return -ENXIO;
3185 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3186 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
3187 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3188 return 0;
3189 }
3190
3191 /*
3192 * Get (and clear) the dirty memory log for a memory slot.
3193 */
3194 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
3195 struct kvm_dirty_log *log)
3196 {
3197 int r, i;
3198 struct kvm_memory_slot *memslot;
3199 unsigned long n;
3200 unsigned long is_dirty = 0;
3201
3202 mutex_lock(&kvm->slots_lock);
3203
3204 r = -EINVAL;
3205 if (log->slot >= KVM_MEMORY_SLOTS)
3206 goto out;
3207
3208 memslot = &kvm->memslots->memslots[log->slot];
3209 r = -ENOENT;
3210 if (!memslot->dirty_bitmap)
3211 goto out;
3212
3213 n = kvm_dirty_bitmap_bytes(memslot);
3214
3215 for (i = 0; !is_dirty && i < n/sizeof(long); i++)
3216 is_dirty = memslot->dirty_bitmap[i];
3217
3218 /* If nothing is dirty, don't bother messing with page tables. */
3219 if (is_dirty) {
3220 struct kvm_memslots *slots, *old_slots;
3221 unsigned long *dirty_bitmap;
3222
3223 dirty_bitmap = memslot->dirty_bitmap_head;
3224 if (memslot->dirty_bitmap == dirty_bitmap)
3225 dirty_bitmap += n / sizeof(long);
3226 memset(dirty_bitmap, 0, n);
3227
3228 r = -ENOMEM;
3229 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
3230 if (!slots)
3231 goto out;
3232 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
3233 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
3234 slots->generation++;
3235
3236 old_slots = kvm->memslots;
3237 rcu_assign_pointer(kvm->memslots, slots);
3238 synchronize_srcu_expedited(&kvm->srcu);
3239 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
3240 kfree(old_slots);
3241
3242 spin_lock(&kvm->mmu_lock);
3243 kvm_mmu_slot_remove_write_access(kvm, log->slot);
3244 spin_unlock(&kvm->mmu_lock);
3245
3246 r = -EFAULT;
3247 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
3248 goto out;
3249 } else {
3250 r = -EFAULT;
3251 if (clear_user(log->dirty_bitmap, n))
3252 goto out;
3253 }
3254
3255 r = 0;
3256 out:
3257 mutex_unlock(&kvm->slots_lock);
3258 return r;
3259 }
3260
3261 long kvm_arch_vm_ioctl(struct file *filp,
3262 unsigned int ioctl, unsigned long arg)
3263 {
3264 struct kvm *kvm = filp->private_data;
3265 void __user *argp = (void __user *)arg;
3266 int r = -ENOTTY;
3267 /*
3268 * This union makes it completely explicit to gcc-3.x
3269 * that these two variables' stack usage should be
3270 * combined, not added together.
3271 */
3272 union {
3273 struct kvm_pit_state ps;
3274 struct kvm_pit_state2 ps2;
3275 struct kvm_pit_config pit_config;
3276 } u;
3277
3278 switch (ioctl) {
3279 case KVM_SET_TSS_ADDR:
3280 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3281 if (r < 0)
3282 goto out;
3283 break;
3284 case KVM_SET_IDENTITY_MAP_ADDR: {
3285 u64 ident_addr;
3286
3287 r = -EFAULT;
3288 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3289 goto out;
3290 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3291 if (r < 0)
3292 goto out;
3293 break;
3294 }
3295 case KVM_SET_NR_MMU_PAGES:
3296 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3297 if (r)
3298 goto out;
3299 break;
3300 case KVM_GET_NR_MMU_PAGES:
3301 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3302 break;
3303 case KVM_CREATE_IRQCHIP: {
3304 struct kvm_pic *vpic;
3305
3306 mutex_lock(&kvm->lock);
3307 r = -EEXIST;
3308 if (kvm->arch.vpic)
3309 goto create_irqchip_unlock;
3310 r = -ENOMEM;
3311 vpic = kvm_create_pic(kvm);
3312 if (vpic) {
3313 r = kvm_ioapic_init(kvm);
3314 if (r) {
3315 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3316 &vpic->dev);
3317 kfree(vpic);
3318 goto create_irqchip_unlock;
3319 }
3320 } else
3321 goto create_irqchip_unlock;
3322 smp_wmb();
3323 kvm->arch.vpic = vpic;
3324 smp_wmb();
3325 r = kvm_setup_default_irq_routing(kvm);
3326 if (r) {
3327 mutex_lock(&kvm->irq_lock);
3328 kvm_ioapic_destroy(kvm);
3329 kvm_destroy_pic(kvm);
3330 mutex_unlock(&kvm->irq_lock);
3331 }
3332 create_irqchip_unlock:
3333 mutex_unlock(&kvm->lock);
3334 break;
3335 }
3336 case KVM_CREATE_PIT:
3337 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3338 goto create_pit;
3339 case KVM_CREATE_PIT2:
3340 r = -EFAULT;
3341 if (copy_from_user(&u.pit_config, argp,
3342 sizeof(struct kvm_pit_config)))
3343 goto out;
3344 create_pit:
3345 mutex_lock(&kvm->slots_lock);
3346 r = -EEXIST;
3347 if (kvm->arch.vpit)
3348 goto create_pit_unlock;
3349 r = -ENOMEM;
3350 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3351 if (kvm->arch.vpit)
3352 r = 0;
3353 create_pit_unlock:
3354 mutex_unlock(&kvm->slots_lock);
3355 break;
3356 case KVM_IRQ_LINE_STATUS:
3357 case KVM_IRQ_LINE: {
3358 struct kvm_irq_level irq_event;
3359
3360 r = -EFAULT;
3361 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3362 goto out;
3363 r = -ENXIO;
3364 if (irqchip_in_kernel(kvm)) {
3365 __s32 status;
3366 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3367 irq_event.irq, irq_event.level);
3368 if (ioctl == KVM_IRQ_LINE_STATUS) {
3369 r = -EFAULT;
3370 irq_event.status = status;
3371 if (copy_to_user(argp, &irq_event,
3372 sizeof irq_event))
3373 goto out;
3374 }
3375 r = 0;
3376 }
3377 break;
3378 }
3379 case KVM_GET_IRQCHIP: {
3380 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3381 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3382
3383 r = -ENOMEM;
3384 if (!chip)
3385 goto out;
3386 r = -EFAULT;
3387 if (copy_from_user(chip, argp, sizeof *chip))
3388 goto get_irqchip_out;
3389 r = -ENXIO;
3390 if (!irqchip_in_kernel(kvm))
3391 goto get_irqchip_out;
3392 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3393 if (r)
3394 goto get_irqchip_out;
3395 r = -EFAULT;
3396 if (copy_to_user(argp, chip, sizeof *chip))
3397 goto get_irqchip_out;
3398 r = 0;
3399 get_irqchip_out:
3400 kfree(chip);
3401 if (r)
3402 goto out;
3403 break;
3404 }
3405 case KVM_SET_IRQCHIP: {
3406 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3407 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3408
3409 r = -ENOMEM;
3410 if (!chip)
3411 goto out;
3412 r = -EFAULT;
3413 if (copy_from_user(chip, argp, sizeof *chip))
3414 goto set_irqchip_out;
3415 r = -ENXIO;
3416 if (!irqchip_in_kernel(kvm))
3417 goto set_irqchip_out;
3418 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3419 if (r)
3420 goto set_irqchip_out;
3421 r = 0;
3422 set_irqchip_out:
3423 kfree(chip);
3424 if (r)
3425 goto out;
3426 break;
3427 }
3428 case KVM_GET_PIT: {
3429 r = -EFAULT;
3430 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3431 goto out;
3432 r = -ENXIO;
3433 if (!kvm->arch.vpit)
3434 goto out;
3435 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3436 if (r)
3437 goto out;
3438 r = -EFAULT;
3439 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3440 goto out;
3441 r = 0;
3442 break;
3443 }
3444 case KVM_SET_PIT: {
3445 r = -EFAULT;
3446 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3447 goto out;
3448 r = -ENXIO;
3449 if (!kvm->arch.vpit)
3450 goto out;
3451 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3452 if (r)
3453 goto out;
3454 r = 0;
3455 break;
3456 }
3457 case KVM_GET_PIT2: {
3458 r = -ENXIO;
3459 if (!kvm->arch.vpit)
3460 goto out;
3461 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3462 if (r)
3463 goto out;
3464 r = -EFAULT;
3465 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3466 goto out;
3467 r = 0;
3468 break;
3469 }
3470 case KVM_SET_PIT2: {
3471 r = -EFAULT;
3472 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3473 goto out;
3474 r = -ENXIO;
3475 if (!kvm->arch.vpit)
3476 goto out;
3477 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3478 if (r)
3479 goto out;
3480 r = 0;
3481 break;
3482 }
3483 case KVM_REINJECT_CONTROL: {
3484 struct kvm_reinject_control control;
3485 r = -EFAULT;
3486 if (copy_from_user(&control, argp, sizeof(control)))
3487 goto out;
3488 r = kvm_vm_ioctl_reinject(kvm, &control);
3489 if (r)
3490 goto out;
3491 r = 0;
3492 break;
3493 }
3494 case KVM_XEN_HVM_CONFIG: {
3495 r = -EFAULT;
3496 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3497 sizeof(struct kvm_xen_hvm_config)))
3498 goto out;
3499 r = -EINVAL;
3500 if (kvm->arch.xen_hvm_config.flags)
3501 goto out;
3502 r = 0;
3503 break;
3504 }
3505 case KVM_SET_CLOCK: {
3506 struct kvm_clock_data user_ns;
3507 u64 now_ns;
3508 s64 delta;
3509
3510 r = -EFAULT;
3511 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3512 goto out;
3513
3514 r = -EINVAL;
3515 if (user_ns.flags)
3516 goto out;
3517
3518 r = 0;
3519 local_irq_disable();
3520 now_ns = get_kernel_ns();
3521 delta = user_ns.clock - now_ns;
3522 local_irq_enable();
3523 kvm->arch.kvmclock_offset = delta;
3524 break;
3525 }
3526 case KVM_GET_CLOCK: {
3527 struct kvm_clock_data user_ns;
3528 u64 now_ns;
3529
3530 local_irq_disable();
3531 now_ns = get_kernel_ns();
3532 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3533 local_irq_enable();
3534 user_ns.flags = 0;
3535 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3536
3537 r = -EFAULT;
3538 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3539 goto out;
3540 r = 0;
3541 break;
3542 }
3543
3544 default:
3545 ;
3546 }
3547 out:
3548 return r;
3549 }
3550
3551 static void kvm_init_msr_list(void)
3552 {
3553 u32 dummy[2];
3554 unsigned i, j;
3555
3556 /* skip the first msrs in the list. KVM-specific */
3557 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3558 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3559 continue;
3560 if (j < i)
3561 msrs_to_save[j] = msrs_to_save[i];
3562 j++;
3563 }
3564 num_msrs_to_save = j;
3565 }
3566
3567 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3568 const void *v)
3569 {
3570 if (vcpu->arch.apic &&
3571 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
3572 return 0;
3573
3574 return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3575 }
3576
3577 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3578 {
3579 if (vcpu->arch.apic &&
3580 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
3581 return 0;
3582
3583 return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3584 }
3585
3586 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3587 struct kvm_segment *var, int seg)
3588 {
3589 kvm_x86_ops->set_segment(vcpu, var, seg);
3590 }
3591
3592 void kvm_get_segment(struct kvm_vcpu *vcpu,
3593 struct kvm_segment *var, int seg)
3594 {
3595 kvm_x86_ops->get_segment(vcpu, var, seg);
3596 }
3597
3598 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3599 {
3600 return gpa;
3601 }
3602
3603 static gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3604 {
3605 gpa_t t_gpa;
3606 u32 error;
3607
3608 BUG_ON(!mmu_is_nested(vcpu));
3609
3610 /* NPT walks are always user-walks */
3611 access |= PFERR_USER_MASK;
3612 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &error);
3613 if (t_gpa == UNMAPPED_GVA)
3614 vcpu->arch.fault.nested = true;
3615
3616 return t_gpa;
3617 }
3618
3619 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3620 {
3621 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3622 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
3623 }
3624
3625 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3626 {
3627 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3628 access |= PFERR_FETCH_MASK;
3629 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
3630 }
3631
3632 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3633 {
3634 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3635 access |= PFERR_WRITE_MASK;
3636 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
3637 }
3638
3639 /* uses this to access any guest's mapped memory without checking CPL */
3640 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3641 {
3642 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, error);
3643 }
3644
3645 static int make_page_fault(struct x86_exception *exception, u32 error)
3646 {
3647 exception->vector = PF_VECTOR;
3648 exception->error_code_valid = true;
3649 exception->error_code = error;
3650 return X86EMUL_PROPAGATE_FAULT;
3651 }
3652
3653 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3654 struct kvm_vcpu *vcpu, u32 access,
3655 struct x86_exception *exception)
3656 {
3657 void *data = val;
3658 int r = X86EMUL_CONTINUE;
3659 u32 error;
3660
3661 while (bytes) {
3662 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3663 &error);
3664 unsigned offset = addr & (PAGE_SIZE-1);
3665 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3666 int ret;
3667
3668 if (gpa == UNMAPPED_GVA)
3669 return make_page_fault(exception, error);
3670 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3671 if (ret < 0) {
3672 r = X86EMUL_IO_NEEDED;
3673 goto out;
3674 }
3675
3676 bytes -= toread;
3677 data += toread;
3678 addr += toread;
3679 }
3680 out:
3681 return r;
3682 }
3683
3684 /* used for instruction fetching */
3685 static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
3686 struct kvm_vcpu *vcpu,
3687 struct x86_exception *exception)
3688 {
3689 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3690 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3691 access | PFERR_FETCH_MASK,
3692 exception);
3693 }
3694
3695 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
3696 struct kvm_vcpu *vcpu,
3697 struct x86_exception *exception)
3698 {
3699 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3700 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3701 exception);
3702 }
3703
3704 static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
3705 struct kvm_vcpu *vcpu,
3706 struct x86_exception *exception)
3707 {
3708 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3709 }
3710
3711 static int kvm_write_guest_virt_system(gva_t addr, void *val,
3712 unsigned int bytes,
3713 struct kvm_vcpu *vcpu,
3714 struct x86_exception *exception)
3715 {
3716 void *data = val;
3717 int r = X86EMUL_CONTINUE;
3718 u32 error;
3719
3720 while (bytes) {
3721 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3722 PFERR_WRITE_MASK,
3723 &error);
3724 unsigned offset = addr & (PAGE_SIZE-1);
3725 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3726 int ret;
3727
3728 if (gpa == UNMAPPED_GVA)
3729 return make_page_fault(exception, error);
3730 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3731 if (ret < 0) {
3732 r = X86EMUL_IO_NEEDED;
3733 goto out;
3734 }
3735
3736 bytes -= towrite;
3737 data += towrite;
3738 addr += towrite;
3739 }
3740 out:
3741 return r;
3742 }
3743
3744 static int emulator_read_emulated(unsigned long addr,
3745 void *val,
3746 unsigned int bytes,
3747 struct x86_exception *exception,
3748 struct kvm_vcpu *vcpu)
3749 {
3750 gpa_t gpa;
3751 u32 error_code;
3752
3753 if (vcpu->mmio_read_completed) {
3754 memcpy(val, vcpu->mmio_data, bytes);
3755 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3756 vcpu->mmio_phys_addr, *(u64 *)val);
3757 vcpu->mmio_read_completed = 0;
3758 return X86EMUL_CONTINUE;
3759 }
3760
3761 gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, &error_code);
3762
3763 if (gpa == UNMAPPED_GVA)
3764 return make_page_fault(exception, error_code);
3765
3766 /* For APIC access vmexit */
3767 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3768 goto mmio;
3769
3770 if (kvm_read_guest_virt(addr, val, bytes, vcpu, exception)
3771 == X86EMUL_CONTINUE)
3772 return X86EMUL_CONTINUE;
3773
3774 mmio:
3775 /*
3776 * Is this MMIO handled locally?
3777 */
3778 if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
3779 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
3780 return X86EMUL_CONTINUE;
3781 }
3782
3783 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3784
3785 vcpu->mmio_needed = 1;
3786 vcpu->run->exit_reason = KVM_EXIT_MMIO;
3787 vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3788 vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3789 vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
3790
3791 return X86EMUL_IO_NEEDED;
3792 }
3793
3794 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3795 const void *val, int bytes)
3796 {
3797 int ret;
3798
3799 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3800 if (ret < 0)
3801 return 0;
3802 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3803 return 1;
3804 }
3805
3806 static int emulator_write_emulated_onepage(unsigned long addr,
3807 const void *val,
3808 unsigned int bytes,
3809 struct x86_exception *exception,
3810 struct kvm_vcpu *vcpu)
3811 {
3812 gpa_t gpa;
3813 u32 error_code;
3814
3815 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, &error_code);
3816
3817 if (gpa == UNMAPPED_GVA)
3818 return make_page_fault(exception, error_code);
3819
3820 /* For APIC access vmexit */
3821 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3822 goto mmio;
3823
3824 if (emulator_write_phys(vcpu, gpa, val, bytes))
3825 return X86EMUL_CONTINUE;
3826
3827 mmio:
3828 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3829 /*
3830 * Is this MMIO handled locally?
3831 */
3832 if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
3833 return X86EMUL_CONTINUE;
3834
3835 vcpu->mmio_needed = 1;
3836 vcpu->run->exit_reason = KVM_EXIT_MMIO;
3837 vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3838 vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3839 vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
3840 memcpy(vcpu->run->mmio.data, val, bytes);
3841
3842 return X86EMUL_CONTINUE;
3843 }
3844
3845 int emulator_write_emulated(unsigned long addr,
3846 const void *val,
3847 unsigned int bytes,
3848 struct x86_exception *exception,
3849 struct kvm_vcpu *vcpu)
3850 {
3851 /* Crossing a page boundary? */
3852 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3853 int rc, now;
3854
3855 now = -addr & ~PAGE_MASK;
3856 rc = emulator_write_emulated_onepage(addr, val, now, exception,
3857 vcpu);
3858 if (rc != X86EMUL_CONTINUE)
3859 return rc;
3860 addr += now;
3861 val += now;
3862 bytes -= now;
3863 }
3864 return emulator_write_emulated_onepage(addr, val, bytes, exception,
3865 vcpu);
3866 }
3867
3868 #define CMPXCHG_TYPE(t, ptr, old, new) \
3869 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3870
3871 #ifdef CONFIG_X86_64
3872 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3873 #else
3874 # define CMPXCHG64(ptr, old, new) \
3875 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3876 #endif
3877
3878 static int emulator_cmpxchg_emulated(unsigned long addr,
3879 const void *old,
3880 const void *new,
3881 unsigned int bytes,
3882 struct x86_exception *exception,
3883 struct kvm_vcpu *vcpu)
3884 {
3885 gpa_t gpa;
3886 struct page *page;
3887 char *kaddr;
3888 bool exchanged;
3889
3890 /* guests cmpxchg8b have to be emulated atomically */
3891 if (bytes > 8 || (bytes & (bytes - 1)))
3892 goto emul_write;
3893
3894 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3895
3896 if (gpa == UNMAPPED_GVA ||
3897 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3898 goto emul_write;
3899
3900 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3901 goto emul_write;
3902
3903 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3904 if (is_error_page(page)) {
3905 kvm_release_page_clean(page);
3906 goto emul_write;
3907 }
3908
3909 kaddr = kmap_atomic(page, KM_USER0);
3910 kaddr += offset_in_page(gpa);
3911 switch (bytes) {
3912 case 1:
3913 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3914 break;
3915 case 2:
3916 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3917 break;
3918 case 4:
3919 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3920 break;
3921 case 8:
3922 exchanged = CMPXCHG64(kaddr, old, new);
3923 break;
3924 default:
3925 BUG();
3926 }
3927 kunmap_atomic(kaddr, KM_USER0);
3928 kvm_release_page_dirty(page);
3929
3930 if (!exchanged)
3931 return X86EMUL_CMPXCHG_FAILED;
3932
3933 kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
3934
3935 return X86EMUL_CONTINUE;
3936
3937 emul_write:
3938 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3939
3940 return emulator_write_emulated(addr, new, bytes, exception, vcpu);
3941 }
3942
3943 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3944 {
3945 /* TODO: String I/O for in kernel device */
3946 int r;
3947
3948 if (vcpu->arch.pio.in)
3949 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3950 vcpu->arch.pio.size, pd);
3951 else
3952 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3953 vcpu->arch.pio.port, vcpu->arch.pio.size,
3954 pd);
3955 return r;
3956 }
3957
3958
3959 static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
3960 unsigned int count, struct kvm_vcpu *vcpu)
3961 {
3962 if (vcpu->arch.pio.count)
3963 goto data_avail;
3964
3965 trace_kvm_pio(0, port, size, 1);
3966
3967 vcpu->arch.pio.port = port;
3968 vcpu->arch.pio.in = 1;
3969 vcpu->arch.pio.count = count;
3970 vcpu->arch.pio.size = size;
3971
3972 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3973 data_avail:
3974 memcpy(val, vcpu->arch.pio_data, size * count);
3975 vcpu->arch.pio.count = 0;
3976 return 1;
3977 }
3978
3979 vcpu->run->exit_reason = KVM_EXIT_IO;
3980 vcpu->run->io.direction = KVM_EXIT_IO_IN;
3981 vcpu->run->io.size = size;
3982 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3983 vcpu->run->io.count = count;
3984 vcpu->run->io.port = port;
3985
3986 return 0;
3987 }
3988
3989 static int emulator_pio_out_emulated(int size, unsigned short port,
3990 const void *val, unsigned int count,
3991 struct kvm_vcpu *vcpu)
3992 {
3993 trace_kvm_pio(1, port, size, 1);
3994
3995 vcpu->arch.pio.port = port;
3996 vcpu->arch.pio.in = 0;
3997 vcpu->arch.pio.count = count;
3998 vcpu->arch.pio.size = size;
3999
4000 memcpy(vcpu->arch.pio_data, val, size * count);
4001
4002 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4003 vcpu->arch.pio.count = 0;
4004 return 1;
4005 }
4006
4007 vcpu->run->exit_reason = KVM_EXIT_IO;
4008 vcpu->run->io.direction = KVM_EXIT_IO_OUT;
4009 vcpu->run->io.size = size;
4010 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4011 vcpu->run->io.count = count;
4012 vcpu->run->io.port = port;
4013
4014 return 0;
4015 }
4016
4017 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4018 {
4019 return kvm_x86_ops->get_segment_base(vcpu, seg);
4020 }
4021
4022 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
4023 {
4024 kvm_mmu_invlpg(vcpu, address);
4025 return X86EMUL_CONTINUE;
4026 }
4027
4028 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4029 {
4030 if (!need_emulate_wbinvd(vcpu))
4031 return X86EMUL_CONTINUE;
4032
4033 if (kvm_x86_ops->has_wbinvd_exit()) {
4034 int cpu = get_cpu();
4035
4036 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4037 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4038 wbinvd_ipi, NULL, 1);
4039 put_cpu();
4040 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4041 } else
4042 wbinvd();
4043 return X86EMUL_CONTINUE;
4044 }
4045 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4046
4047 int emulate_clts(struct kvm_vcpu *vcpu)
4048 {
4049 kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4050 kvm_x86_ops->fpu_activate(vcpu);
4051 return X86EMUL_CONTINUE;
4052 }
4053
4054 int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu)
4055 {
4056 return _kvm_get_dr(vcpu, dr, dest);
4057 }
4058
4059 int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu)
4060 {
4061
4062 return __kvm_set_dr(vcpu, dr, value);
4063 }
4064
4065 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4066 {
4067 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4068 }
4069
4070 static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
4071 {
4072 unsigned long value;
4073
4074 switch (cr) {
4075 case 0:
4076 value = kvm_read_cr0(vcpu);
4077 break;
4078 case 2:
4079 value = vcpu->arch.cr2;
4080 break;
4081 case 3:
4082 value = vcpu->arch.cr3;
4083 break;
4084 case 4:
4085 value = kvm_read_cr4(vcpu);
4086 break;
4087 case 8:
4088 value = kvm_get_cr8(vcpu);
4089 break;
4090 default:
4091 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4092 return 0;
4093 }
4094
4095 return value;
4096 }
4097
4098 static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
4099 {
4100 int res = 0;
4101
4102 switch (cr) {
4103 case 0:
4104 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4105 break;
4106 case 2:
4107 vcpu->arch.cr2 = val;
4108 break;
4109 case 3:
4110 res = kvm_set_cr3(vcpu, val);
4111 break;
4112 case 4:
4113 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4114 break;
4115 case 8:
4116 res = __kvm_set_cr8(vcpu, val & 0xfUL);
4117 break;
4118 default:
4119 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4120 res = -1;
4121 }
4122
4123 return res;
4124 }
4125
4126 static int emulator_get_cpl(struct kvm_vcpu *vcpu)
4127 {
4128 return kvm_x86_ops->get_cpl(vcpu);
4129 }
4130
4131 static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
4132 {
4133 kvm_x86_ops->get_gdt(vcpu, dt);
4134 }
4135
4136 static void emulator_get_idt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
4137 {
4138 kvm_x86_ops->get_idt(vcpu, dt);
4139 }
4140
4141 static unsigned long emulator_get_cached_segment_base(int seg,
4142 struct kvm_vcpu *vcpu)
4143 {
4144 return get_segment_base(vcpu, seg);
4145 }
4146
4147 static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
4148 struct kvm_vcpu *vcpu)
4149 {
4150 struct kvm_segment var;
4151
4152 kvm_get_segment(vcpu, &var, seg);
4153
4154 if (var.unusable)
4155 return false;
4156
4157 if (var.g)
4158 var.limit >>= 12;
4159 set_desc_limit(desc, var.limit);
4160 set_desc_base(desc, (unsigned long)var.base);
4161 desc->type = var.type;
4162 desc->s = var.s;
4163 desc->dpl = var.dpl;
4164 desc->p = var.present;
4165 desc->avl = var.avl;
4166 desc->l = var.l;
4167 desc->d = var.db;
4168 desc->g = var.g;
4169
4170 return true;
4171 }
4172
4173 static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
4174 struct kvm_vcpu *vcpu)
4175 {
4176 struct kvm_segment var;
4177
4178 /* needed to preserve selector */
4179 kvm_get_segment(vcpu, &var, seg);
4180
4181 var.base = get_desc_base(desc);
4182 var.limit = get_desc_limit(desc);
4183 if (desc->g)
4184 var.limit = (var.limit << 12) | 0xfff;
4185 var.type = desc->type;
4186 var.present = desc->p;
4187 var.dpl = desc->dpl;
4188 var.db = desc->d;
4189 var.s = desc->s;
4190 var.l = desc->l;
4191 var.g = desc->g;
4192 var.avl = desc->avl;
4193 var.present = desc->p;
4194 var.unusable = !var.present;
4195 var.padding = 0;
4196
4197 kvm_set_segment(vcpu, &var, seg);
4198 return;
4199 }
4200
4201 static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
4202 {
4203 struct kvm_segment kvm_seg;
4204
4205 kvm_get_segment(vcpu, &kvm_seg, seg);
4206 return kvm_seg.selector;
4207 }
4208
4209 static void emulator_set_segment_selector(u16 sel, int seg,
4210 struct kvm_vcpu *vcpu)
4211 {
4212 struct kvm_segment kvm_seg;
4213
4214 kvm_get_segment(vcpu, &kvm_seg, seg);
4215 kvm_seg.selector = sel;
4216 kvm_set_segment(vcpu, &kvm_seg, seg);
4217 }
4218
4219 static struct x86_emulate_ops emulate_ops = {
4220 .read_std = kvm_read_guest_virt_system,
4221 .write_std = kvm_write_guest_virt_system,
4222 .fetch = kvm_fetch_guest_virt,
4223 .read_emulated = emulator_read_emulated,
4224 .write_emulated = emulator_write_emulated,
4225 .cmpxchg_emulated = emulator_cmpxchg_emulated,
4226 .pio_in_emulated = emulator_pio_in_emulated,
4227 .pio_out_emulated = emulator_pio_out_emulated,
4228 .get_cached_descriptor = emulator_get_cached_descriptor,
4229 .set_cached_descriptor = emulator_set_cached_descriptor,
4230 .get_segment_selector = emulator_get_segment_selector,
4231 .set_segment_selector = emulator_set_segment_selector,
4232 .get_cached_segment_base = emulator_get_cached_segment_base,
4233 .get_gdt = emulator_get_gdt,
4234 .get_idt = emulator_get_idt,
4235 .get_cr = emulator_get_cr,
4236 .set_cr = emulator_set_cr,
4237 .cpl = emulator_get_cpl,
4238 .get_dr = emulator_get_dr,
4239 .set_dr = emulator_set_dr,
4240 .set_msr = kvm_set_msr,
4241 .get_msr = kvm_get_msr,
4242 };
4243
4244 static void cache_all_regs(struct kvm_vcpu *vcpu)
4245 {
4246 kvm_register_read(vcpu, VCPU_REGS_RAX);
4247 kvm_register_read(vcpu, VCPU_REGS_RSP);
4248 kvm_register_read(vcpu, VCPU_REGS_RIP);
4249 vcpu->arch.regs_dirty = ~0;
4250 }
4251
4252 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4253 {
4254 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4255 /*
4256 * an sti; sti; sequence only disable interrupts for the first
4257 * instruction. So, if the last instruction, be it emulated or
4258 * not, left the system with the INT_STI flag enabled, it
4259 * means that the last instruction is an sti. We should not
4260 * leave the flag on in this case. The same goes for mov ss
4261 */
4262 if (!(int_shadow & mask))
4263 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4264 }
4265
4266 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4267 {
4268 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4269 if (ctxt->exception.vector == PF_VECTOR)
4270 kvm_propagate_fault(vcpu);
4271 else if (ctxt->exception.error_code_valid)
4272 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4273 ctxt->exception.error_code);
4274 else
4275 kvm_queue_exception(vcpu, ctxt->exception.vector);
4276 }
4277
4278 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4279 {
4280 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4281 int cs_db, cs_l;
4282
4283 cache_all_regs(vcpu);
4284
4285 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4286
4287 vcpu->arch.emulate_ctxt.vcpu = vcpu;
4288 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
4289 vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
4290 vcpu->arch.emulate_ctxt.mode =
4291 (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4292 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
4293 ? X86EMUL_MODE_VM86 : cs_l
4294 ? X86EMUL_MODE_PROT64 : cs_db
4295 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
4296 memset(c, 0, sizeof(struct decode_cache));
4297 memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4298 }
4299
4300 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq)
4301 {
4302 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4303 int ret;
4304
4305 init_emulate_ctxt(vcpu);
4306
4307 vcpu->arch.emulate_ctxt.decode.op_bytes = 2;
4308 vcpu->arch.emulate_ctxt.decode.ad_bytes = 2;
4309 vcpu->arch.emulate_ctxt.decode.eip = vcpu->arch.emulate_ctxt.eip;
4310 ret = emulate_int_real(&vcpu->arch.emulate_ctxt, &emulate_ops, irq);
4311
4312 if (ret != X86EMUL_CONTINUE)
4313 return EMULATE_FAIL;
4314
4315 vcpu->arch.emulate_ctxt.eip = c->eip;
4316 memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4317 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4318 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4319
4320 if (irq == NMI_VECTOR)
4321 vcpu->arch.nmi_pending = false;
4322 else
4323 vcpu->arch.interrupt.pending = false;
4324
4325 return EMULATE_DONE;
4326 }
4327 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4328
4329 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4330 {
4331 ++vcpu->stat.insn_emulation_fail;
4332 trace_kvm_emulate_insn_failed(vcpu);
4333 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4334 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4335 vcpu->run->internal.ndata = 0;
4336 kvm_queue_exception(vcpu, UD_VECTOR);
4337 return EMULATE_FAIL;
4338 }
4339
4340 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4341 {
4342 gpa_t gpa;
4343
4344 if (tdp_enabled)
4345 return false;
4346
4347 /*
4348 * if emulation was due to access to shadowed page table
4349 * and it failed try to unshadow page and re-entetr the
4350 * guest to let CPU execute the instruction.
4351 */
4352 if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4353 return true;
4354
4355 gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4356
4357 if (gpa == UNMAPPED_GVA)
4358 return true; /* let cpu generate fault */
4359
4360 if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4361 return true;
4362
4363 return false;
4364 }
4365
4366 int emulate_instruction(struct kvm_vcpu *vcpu,
4367 unsigned long cr2,
4368 u16 error_code,
4369 int emulation_type)
4370 {
4371 int r;
4372 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4373
4374 kvm_clear_exception_queue(vcpu);
4375 vcpu->arch.mmio_fault_cr2 = cr2;
4376 /*
4377 * TODO: fix emulate.c to use guest_read/write_register
4378 * instead of direct ->regs accesses, can save hundred cycles
4379 * on Intel for instructions that don't read/change RSP, for
4380 * for example.
4381 */
4382 cache_all_regs(vcpu);
4383
4384 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4385 init_emulate_ctxt(vcpu);
4386 vcpu->arch.emulate_ctxt.interruptibility = 0;
4387 vcpu->arch.emulate_ctxt.have_exception = false;
4388 vcpu->arch.emulate_ctxt.perm_ok = false;
4389
4390 r = x86_decode_insn(&vcpu->arch.emulate_ctxt);
4391 if (r == X86EMUL_PROPAGATE_FAULT)
4392 goto done;
4393
4394 trace_kvm_emulate_insn_start(vcpu);
4395
4396 /* Only allow emulation of specific instructions on #UD
4397 * (namely VMMCALL, sysenter, sysexit, syscall)*/
4398 if (emulation_type & EMULTYPE_TRAP_UD) {
4399 if (!c->twobyte)
4400 return EMULATE_FAIL;
4401 switch (c->b) {
4402 case 0x01: /* VMMCALL */
4403 if (c->modrm_mod != 3 || c->modrm_rm != 1)
4404 return EMULATE_FAIL;
4405 break;
4406 case 0x34: /* sysenter */
4407 case 0x35: /* sysexit */
4408 if (c->modrm_mod != 0 || c->modrm_rm != 0)
4409 return EMULATE_FAIL;
4410 break;
4411 case 0x05: /* syscall */
4412 if (c->modrm_mod != 0 || c->modrm_rm != 0)
4413 return EMULATE_FAIL;
4414 break;
4415 default:
4416 return EMULATE_FAIL;
4417 }
4418
4419 if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
4420 return EMULATE_FAIL;
4421 }
4422
4423 ++vcpu->stat.insn_emulation;
4424 if (r) {
4425 if (reexecute_instruction(vcpu, cr2))
4426 return EMULATE_DONE;
4427 if (emulation_type & EMULTYPE_SKIP)
4428 return EMULATE_FAIL;
4429 return handle_emulation_failure(vcpu);
4430 }
4431 }
4432
4433 if (emulation_type & EMULTYPE_SKIP) {
4434 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
4435 return EMULATE_DONE;
4436 }
4437
4438 /* this is needed for vmware backdor interface to work since it
4439 changes registers values during IO operation */
4440 memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4441
4442 restart:
4443 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt);
4444
4445 if (r == EMULATION_FAILED) {
4446 if (reexecute_instruction(vcpu, cr2))
4447 return EMULATE_DONE;
4448
4449 return handle_emulation_failure(vcpu);
4450 }
4451
4452 done:
4453 if (vcpu->arch.emulate_ctxt.have_exception) {
4454 inject_emulated_exception(vcpu);
4455 r = EMULATE_DONE;
4456 } else if (vcpu->arch.pio.count) {
4457 if (!vcpu->arch.pio.in)
4458 vcpu->arch.pio.count = 0;
4459 r = EMULATE_DO_MMIO;
4460 } else if (vcpu->mmio_needed) {
4461 if (vcpu->mmio_is_write)
4462 vcpu->mmio_needed = 0;
4463 r = EMULATE_DO_MMIO;
4464 } else if (r == EMULATION_RESTART)
4465 goto restart;
4466 else
4467 r = EMULATE_DONE;
4468
4469 toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility);
4470 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4471 kvm_make_request(KVM_REQ_EVENT, vcpu);
4472 memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4473 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4474
4475 return r;
4476 }
4477 EXPORT_SYMBOL_GPL(emulate_instruction);
4478
4479 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4480 {
4481 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4482 int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
4483 /* do not return to emulator after return from userspace */
4484 vcpu->arch.pio.count = 0;
4485 return ret;
4486 }
4487 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4488
4489 static void tsc_bad(void *info)
4490 {
4491 __get_cpu_var(cpu_tsc_khz) = 0;
4492 }
4493
4494 static void tsc_khz_changed(void *data)
4495 {
4496 struct cpufreq_freqs *freq = data;
4497 unsigned long khz = 0;
4498
4499 if (data)
4500 khz = freq->new;
4501 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4502 khz = cpufreq_quick_get(raw_smp_processor_id());
4503 if (!khz)
4504 khz = tsc_khz;
4505 __get_cpu_var(cpu_tsc_khz) = khz;
4506 }
4507
4508 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4509 void *data)
4510 {
4511 struct cpufreq_freqs *freq = data;
4512 struct kvm *kvm;
4513 struct kvm_vcpu *vcpu;
4514 int i, send_ipi = 0;
4515
4516 /*
4517 * We allow guests to temporarily run on slowing clocks,
4518 * provided we notify them after, or to run on accelerating
4519 * clocks, provided we notify them before. Thus time never
4520 * goes backwards.
4521 *
4522 * However, we have a problem. We can't atomically update
4523 * the frequency of a given CPU from this function; it is
4524 * merely a notifier, which can be called from any CPU.
4525 * Changing the TSC frequency at arbitrary points in time
4526 * requires a recomputation of local variables related to
4527 * the TSC for each VCPU. We must flag these local variables
4528 * to be updated and be sure the update takes place with the
4529 * new frequency before any guests proceed.
4530 *
4531 * Unfortunately, the combination of hotplug CPU and frequency
4532 * change creates an intractable locking scenario; the order
4533 * of when these callouts happen is undefined with respect to
4534 * CPU hotplug, and they can race with each other. As such,
4535 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4536 * undefined; you can actually have a CPU frequency change take
4537 * place in between the computation of X and the setting of the
4538 * variable. To protect against this problem, all updates of
4539 * the per_cpu tsc_khz variable are done in an interrupt
4540 * protected IPI, and all callers wishing to update the value
4541 * must wait for a synchronous IPI to complete (which is trivial
4542 * if the caller is on the CPU already). This establishes the
4543 * necessary total order on variable updates.
4544 *
4545 * Note that because a guest time update may take place
4546 * anytime after the setting of the VCPU's request bit, the
4547 * correct TSC value must be set before the request. However,
4548 * to ensure the update actually makes it to any guest which
4549 * starts running in hardware virtualization between the set
4550 * and the acquisition of the spinlock, we must also ping the
4551 * CPU after setting the request bit.
4552 *
4553 */
4554
4555 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4556 return 0;
4557 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4558 return 0;
4559
4560 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4561
4562 spin_lock(&kvm_lock);
4563 list_for_each_entry(kvm, &vm_list, vm_list) {
4564 kvm_for_each_vcpu(i, vcpu, kvm) {
4565 if (vcpu->cpu != freq->cpu)
4566 continue;
4567 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4568 if (vcpu->cpu != smp_processor_id())
4569 send_ipi = 1;
4570 }
4571 }
4572 spin_unlock(&kvm_lock);
4573
4574 if (freq->old < freq->new && send_ipi) {
4575 /*
4576 * We upscale the frequency. Must make the guest
4577 * doesn't see old kvmclock values while running with
4578 * the new frequency, otherwise we risk the guest sees
4579 * time go backwards.
4580 *
4581 * In case we update the frequency for another cpu
4582 * (which might be in guest context) send an interrupt
4583 * to kick the cpu out of guest context. Next time
4584 * guest context is entered kvmclock will be updated,
4585 * so the guest will not see stale values.
4586 */
4587 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4588 }
4589 return 0;
4590 }
4591
4592 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4593 .notifier_call = kvmclock_cpufreq_notifier
4594 };
4595
4596 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4597 unsigned long action, void *hcpu)
4598 {
4599 unsigned int cpu = (unsigned long)hcpu;
4600
4601 switch (action) {
4602 case CPU_ONLINE:
4603 case CPU_DOWN_FAILED:
4604 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4605 break;
4606 case CPU_DOWN_PREPARE:
4607 smp_call_function_single(cpu, tsc_bad, NULL, 1);
4608 break;
4609 }
4610 return NOTIFY_OK;
4611 }
4612
4613 static struct notifier_block kvmclock_cpu_notifier_block = {
4614 .notifier_call = kvmclock_cpu_notifier,
4615 .priority = -INT_MAX
4616 };
4617
4618 static void kvm_timer_init(void)
4619 {
4620 int cpu;
4621
4622 max_tsc_khz = tsc_khz;
4623 register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4624 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4625 #ifdef CONFIG_CPU_FREQ
4626 struct cpufreq_policy policy;
4627 memset(&policy, 0, sizeof(policy));
4628 cpu = get_cpu();
4629 cpufreq_get_policy(&policy, cpu);
4630 if (policy.cpuinfo.max_freq)
4631 max_tsc_khz = policy.cpuinfo.max_freq;
4632 put_cpu();
4633 #endif
4634 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4635 CPUFREQ_TRANSITION_NOTIFIER);
4636 }
4637 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
4638 for_each_online_cpu(cpu)
4639 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4640 }
4641
4642 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4643
4644 static int kvm_is_in_guest(void)
4645 {
4646 return percpu_read(current_vcpu) != NULL;
4647 }
4648
4649 static int kvm_is_user_mode(void)
4650 {
4651 int user_mode = 3;
4652
4653 if (percpu_read(current_vcpu))
4654 user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
4655
4656 return user_mode != 0;
4657 }
4658
4659 static unsigned long kvm_get_guest_ip(void)
4660 {
4661 unsigned long ip = 0;
4662
4663 if (percpu_read(current_vcpu))
4664 ip = kvm_rip_read(percpu_read(current_vcpu));
4665
4666 return ip;
4667 }
4668
4669 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4670 .is_in_guest = kvm_is_in_guest,
4671 .is_user_mode = kvm_is_user_mode,
4672 .get_guest_ip = kvm_get_guest_ip,
4673 };
4674
4675 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4676 {
4677 percpu_write(current_vcpu, vcpu);
4678 }
4679 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4680
4681 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4682 {
4683 percpu_write(current_vcpu, NULL);
4684 }
4685 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4686
4687 int kvm_arch_init(void *opaque)
4688 {
4689 int r;
4690 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4691
4692 if (kvm_x86_ops) {
4693 printk(KERN_ERR "kvm: already loaded the other module\n");
4694 r = -EEXIST;
4695 goto out;
4696 }
4697
4698 if (!ops->cpu_has_kvm_support()) {
4699 printk(KERN_ERR "kvm: no hardware support\n");
4700 r = -EOPNOTSUPP;
4701 goto out;
4702 }
4703 if (ops->disabled_by_bios()) {
4704 printk(KERN_ERR "kvm: disabled by bios\n");
4705 r = -EOPNOTSUPP;
4706 goto out;
4707 }
4708
4709 r = kvm_mmu_module_init();
4710 if (r)
4711 goto out;
4712
4713 kvm_init_msr_list();
4714
4715 kvm_x86_ops = ops;
4716 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
4717 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4718 PT_DIRTY_MASK, PT64_NX_MASK, 0);
4719
4720 kvm_timer_init();
4721
4722 perf_register_guest_info_callbacks(&kvm_guest_cbs);
4723
4724 if (cpu_has_xsave)
4725 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4726
4727 return 0;
4728
4729 out:
4730 return r;
4731 }
4732
4733 void kvm_arch_exit(void)
4734 {
4735 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4736
4737 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4738 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4739 CPUFREQ_TRANSITION_NOTIFIER);
4740 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4741 kvm_x86_ops = NULL;
4742 kvm_mmu_module_exit();
4743 }
4744
4745 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4746 {
4747 ++vcpu->stat.halt_exits;
4748 if (irqchip_in_kernel(vcpu->kvm)) {
4749 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4750 return 1;
4751 } else {
4752 vcpu->run->exit_reason = KVM_EXIT_HLT;
4753 return 0;
4754 }
4755 }
4756 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4757
4758 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
4759 unsigned long a1)
4760 {
4761 if (is_long_mode(vcpu))
4762 return a0;
4763 else
4764 return a0 | ((gpa_t)a1 << 32);
4765 }
4766
4767 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4768 {
4769 u64 param, ingpa, outgpa, ret;
4770 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4771 bool fast, longmode;
4772 int cs_db, cs_l;
4773
4774 /*
4775 * hypercall generates UD from non zero cpl and real mode
4776 * per HYPER-V spec
4777 */
4778 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4779 kvm_queue_exception(vcpu, UD_VECTOR);
4780 return 0;
4781 }
4782
4783 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4784 longmode = is_long_mode(vcpu) && cs_l == 1;
4785
4786 if (!longmode) {
4787 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4788 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4789 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4790 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4791 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4792 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4793 }
4794 #ifdef CONFIG_X86_64
4795 else {
4796 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4797 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4798 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4799 }
4800 #endif
4801
4802 code = param & 0xffff;
4803 fast = (param >> 16) & 0x1;
4804 rep_cnt = (param >> 32) & 0xfff;
4805 rep_idx = (param >> 48) & 0xfff;
4806
4807 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4808
4809 switch (code) {
4810 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4811 kvm_vcpu_on_spin(vcpu);
4812 break;
4813 default:
4814 res = HV_STATUS_INVALID_HYPERCALL_CODE;
4815 break;
4816 }
4817
4818 ret = res | (((u64)rep_done & 0xfff) << 32);
4819 if (longmode) {
4820 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4821 } else {
4822 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
4823 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
4824 }
4825
4826 return 1;
4827 }
4828
4829 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
4830 {
4831 unsigned long nr, a0, a1, a2, a3, ret;
4832 int r = 1;
4833
4834 if (kvm_hv_hypercall_enabled(vcpu->kvm))
4835 return kvm_hv_hypercall(vcpu);
4836
4837 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
4838 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
4839 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
4840 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
4841 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
4842
4843 trace_kvm_hypercall(nr, a0, a1, a2, a3);
4844
4845 if (!is_long_mode(vcpu)) {
4846 nr &= 0xFFFFFFFF;
4847 a0 &= 0xFFFFFFFF;
4848 a1 &= 0xFFFFFFFF;
4849 a2 &= 0xFFFFFFFF;
4850 a3 &= 0xFFFFFFFF;
4851 }
4852
4853 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
4854 ret = -KVM_EPERM;
4855 goto out;
4856 }
4857
4858 switch (nr) {
4859 case KVM_HC_VAPIC_POLL_IRQ:
4860 ret = 0;
4861 break;
4862 case KVM_HC_MMU_OP:
4863 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
4864 break;
4865 default:
4866 ret = -KVM_ENOSYS;
4867 break;
4868 }
4869 out:
4870 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4871 ++vcpu->stat.hypercalls;
4872 return r;
4873 }
4874 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
4875
4876 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
4877 {
4878 char instruction[3];
4879 unsigned long rip = kvm_rip_read(vcpu);
4880
4881 /*
4882 * Blow out the MMU to ensure that no other VCPU has an active mapping
4883 * to ensure that the updated hypercall appears atomically across all
4884 * VCPUs.
4885 */
4886 kvm_mmu_zap_all(vcpu->kvm);
4887
4888 kvm_x86_ops->patch_hypercall(vcpu, instruction);
4889
4890 return emulator_write_emulated(rip, instruction, 3, NULL, vcpu);
4891 }
4892
4893 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4894 {
4895 struct desc_ptr dt = { limit, base };
4896
4897 kvm_x86_ops->set_gdt(vcpu, &dt);
4898 }
4899
4900 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4901 {
4902 struct desc_ptr dt = { limit, base };
4903
4904 kvm_x86_ops->set_idt(vcpu, &dt);
4905 }
4906
4907 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
4908 {
4909 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
4910 int j, nent = vcpu->arch.cpuid_nent;
4911
4912 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
4913 /* when no next entry is found, the current entry[i] is reselected */
4914 for (j = i + 1; ; j = (j + 1) % nent) {
4915 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
4916 if (ej->function == e->function) {
4917 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
4918 return j;
4919 }
4920 }
4921 return 0; /* silence gcc, even though control never reaches here */
4922 }
4923
4924 /* find an entry with matching function, matching index (if needed), and that
4925 * should be read next (if it's stateful) */
4926 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
4927 u32 function, u32 index)
4928 {
4929 if (e->function != function)
4930 return 0;
4931 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
4932 return 0;
4933 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
4934 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
4935 return 0;
4936 return 1;
4937 }
4938
4939 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
4940 u32 function, u32 index)
4941 {
4942 int i;
4943 struct kvm_cpuid_entry2 *best = NULL;
4944
4945 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
4946 struct kvm_cpuid_entry2 *e;
4947
4948 e = &vcpu->arch.cpuid_entries[i];
4949 if (is_matching_cpuid_entry(e, function, index)) {
4950 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
4951 move_to_next_stateful_cpuid_entry(vcpu, i);
4952 best = e;
4953 break;
4954 }
4955 /*
4956 * Both basic or both extended?
4957 */
4958 if (((e->function ^ function) & 0x80000000) == 0)
4959 if (!best || e->function > best->function)
4960 best = e;
4961 }
4962 return best;
4963 }
4964 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
4965
4966 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
4967 {
4968 struct kvm_cpuid_entry2 *best;
4969
4970 best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
4971 if (!best || best->eax < 0x80000008)
4972 goto not_found;
4973 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
4974 if (best)
4975 return best->eax & 0xff;
4976 not_found:
4977 return 36;
4978 }
4979
4980 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
4981 {
4982 u32 function, index;
4983 struct kvm_cpuid_entry2 *best;
4984
4985 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
4986 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4987 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
4988 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
4989 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
4990 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
4991 best = kvm_find_cpuid_entry(vcpu, function, index);
4992 if (best) {
4993 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
4994 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
4995 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
4996 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
4997 }
4998 kvm_x86_ops->skip_emulated_instruction(vcpu);
4999 trace_kvm_cpuid(function,
5000 kvm_register_read(vcpu, VCPU_REGS_RAX),
5001 kvm_register_read(vcpu, VCPU_REGS_RBX),
5002 kvm_register_read(vcpu, VCPU_REGS_RCX),
5003 kvm_register_read(vcpu, VCPU_REGS_RDX));
5004 }
5005 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
5006
5007 /*
5008 * Check if userspace requested an interrupt window, and that the
5009 * interrupt window is open.
5010 *
5011 * No need to exit to userspace if we already have an interrupt queued.
5012 */
5013 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5014 {
5015 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5016 vcpu->run->request_interrupt_window &&
5017 kvm_arch_interrupt_allowed(vcpu));
5018 }
5019
5020 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5021 {
5022 struct kvm_run *kvm_run = vcpu->run;
5023
5024 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5025 kvm_run->cr8 = kvm_get_cr8(vcpu);
5026 kvm_run->apic_base = kvm_get_apic_base(vcpu);
5027 if (irqchip_in_kernel(vcpu->kvm))
5028 kvm_run->ready_for_interrupt_injection = 1;
5029 else
5030 kvm_run->ready_for_interrupt_injection =
5031 kvm_arch_interrupt_allowed(vcpu) &&
5032 !kvm_cpu_has_interrupt(vcpu) &&
5033 !kvm_event_needs_reinjection(vcpu);
5034 }
5035
5036 static void vapic_enter(struct kvm_vcpu *vcpu)
5037 {
5038 struct kvm_lapic *apic = vcpu->arch.apic;
5039 struct page *page;
5040
5041 if (!apic || !apic->vapic_addr)
5042 return;
5043
5044 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5045
5046 vcpu->arch.apic->vapic_page = page;
5047 }
5048
5049 static void vapic_exit(struct kvm_vcpu *vcpu)
5050 {
5051 struct kvm_lapic *apic = vcpu->arch.apic;
5052 int idx;
5053
5054 if (!apic || !apic->vapic_addr)
5055 return;
5056
5057 idx = srcu_read_lock(&vcpu->kvm->srcu);
5058 kvm_release_page_dirty(apic->vapic_page);
5059 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5060 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5061 }
5062
5063 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5064 {
5065 int max_irr, tpr;
5066
5067 if (!kvm_x86_ops->update_cr8_intercept)
5068 return;
5069
5070 if (!vcpu->arch.apic)
5071 return;
5072
5073 if (!vcpu->arch.apic->vapic_addr)
5074 max_irr = kvm_lapic_find_highest_irr(vcpu);
5075 else
5076 max_irr = -1;
5077
5078 if (max_irr != -1)
5079 max_irr >>= 4;
5080
5081 tpr = kvm_lapic_get_cr8(vcpu);
5082
5083 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5084 }
5085
5086 static void inject_pending_event(struct kvm_vcpu *vcpu)
5087 {
5088 /* try to reinject previous events if any */
5089 if (vcpu->arch.exception.pending) {
5090 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5091 vcpu->arch.exception.has_error_code,
5092 vcpu->arch.exception.error_code);
5093 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5094 vcpu->arch.exception.has_error_code,
5095 vcpu->arch.exception.error_code,
5096 vcpu->arch.exception.reinject);
5097 return;
5098 }
5099
5100 if (vcpu->arch.nmi_injected) {
5101 kvm_x86_ops->set_nmi(vcpu);
5102 return;
5103 }
5104
5105 if (vcpu->arch.interrupt.pending) {
5106 kvm_x86_ops->set_irq(vcpu);
5107 return;
5108 }
5109
5110 /* try to inject new event if pending */
5111 if (vcpu->arch.nmi_pending) {
5112 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5113 vcpu->arch.nmi_pending = false;
5114 vcpu->arch.nmi_injected = true;
5115 kvm_x86_ops->set_nmi(vcpu);
5116 }
5117 } else if (kvm_cpu_has_interrupt(vcpu)) {
5118 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5119 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5120 false);
5121 kvm_x86_ops->set_irq(vcpu);
5122 }
5123 }
5124 }
5125
5126 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5127 {
5128 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5129 !vcpu->guest_xcr0_loaded) {
5130 /* kvm_set_xcr() also depends on this */
5131 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5132 vcpu->guest_xcr0_loaded = 1;
5133 }
5134 }
5135
5136 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5137 {
5138 if (vcpu->guest_xcr0_loaded) {
5139 if (vcpu->arch.xcr0 != host_xcr0)
5140 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5141 vcpu->guest_xcr0_loaded = 0;
5142 }
5143 }
5144
5145 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5146 {
5147 int r;
5148 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5149 vcpu->run->request_interrupt_window;
5150
5151 if (vcpu->requests) {
5152 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5153 kvm_mmu_unload(vcpu);
5154 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5155 __kvm_migrate_timers(vcpu);
5156 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5157 r = kvm_guest_time_update(vcpu);
5158 if (unlikely(r))
5159 goto out;
5160 }
5161 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5162 kvm_mmu_sync_roots(vcpu);
5163 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5164 kvm_x86_ops->tlb_flush(vcpu);
5165 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5166 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5167 r = 0;
5168 goto out;
5169 }
5170 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5171 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5172 r = 0;
5173 goto out;
5174 }
5175 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5176 vcpu->fpu_active = 0;
5177 kvm_x86_ops->fpu_deactivate(vcpu);
5178 }
5179 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5180 /* Page is swapped out. Do synthetic halt */
5181 vcpu->arch.apf.halted = true;
5182 r = 1;
5183 goto out;
5184 }
5185 }
5186
5187 r = kvm_mmu_reload(vcpu);
5188 if (unlikely(r))
5189 goto out;
5190
5191 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5192 inject_pending_event(vcpu);
5193
5194 /* enable NMI/IRQ window open exits if needed */
5195 if (vcpu->arch.nmi_pending)
5196 kvm_x86_ops->enable_nmi_window(vcpu);
5197 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5198 kvm_x86_ops->enable_irq_window(vcpu);
5199
5200 if (kvm_lapic_enabled(vcpu)) {
5201 update_cr8_intercept(vcpu);
5202 kvm_lapic_sync_to_vapic(vcpu);
5203 }
5204 }
5205
5206 preempt_disable();
5207
5208 kvm_x86_ops->prepare_guest_switch(vcpu);
5209 if (vcpu->fpu_active)
5210 kvm_load_guest_fpu(vcpu);
5211 kvm_load_guest_xcr0(vcpu);
5212
5213 atomic_set(&vcpu->guest_mode, 1);
5214 smp_wmb();
5215
5216 local_irq_disable();
5217
5218 if (!atomic_read(&vcpu->guest_mode) || vcpu->requests
5219 || need_resched() || signal_pending(current)) {
5220 atomic_set(&vcpu->guest_mode, 0);
5221 smp_wmb();
5222 local_irq_enable();
5223 preempt_enable();
5224 kvm_x86_ops->cancel_injection(vcpu);
5225 r = 1;
5226 goto out;
5227 }
5228
5229 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5230
5231 kvm_guest_enter();
5232
5233 if (unlikely(vcpu->arch.switch_db_regs)) {
5234 set_debugreg(0, 7);
5235 set_debugreg(vcpu->arch.eff_db[0], 0);
5236 set_debugreg(vcpu->arch.eff_db[1], 1);
5237 set_debugreg(vcpu->arch.eff_db[2], 2);
5238 set_debugreg(vcpu->arch.eff_db[3], 3);
5239 }
5240
5241 trace_kvm_entry(vcpu->vcpu_id);
5242 kvm_x86_ops->run(vcpu);
5243
5244 /*
5245 * If the guest has used debug registers, at least dr7
5246 * will be disabled while returning to the host.
5247 * If we don't have active breakpoints in the host, we don't
5248 * care about the messed up debug address registers. But if
5249 * we have some of them active, restore the old state.
5250 */
5251 if (hw_breakpoint_active())
5252 hw_breakpoint_restore();
5253
5254 kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
5255
5256 atomic_set(&vcpu->guest_mode, 0);
5257 smp_wmb();
5258 local_irq_enable();
5259
5260 ++vcpu->stat.exits;
5261
5262 /*
5263 * We must have an instruction between local_irq_enable() and
5264 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5265 * the interrupt shadow. The stat.exits increment will do nicely.
5266 * But we need to prevent reordering, hence this barrier():
5267 */
5268 barrier();
5269
5270 kvm_guest_exit();
5271
5272 preempt_enable();
5273
5274 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5275
5276 /*
5277 * Profile KVM exit RIPs:
5278 */
5279 if (unlikely(prof_on == KVM_PROFILING)) {
5280 unsigned long rip = kvm_rip_read(vcpu);
5281 profile_hit(KVM_PROFILING, (void *)rip);
5282 }
5283
5284
5285 kvm_lapic_sync_from_vapic(vcpu);
5286
5287 r = kvm_x86_ops->handle_exit(vcpu);
5288 out:
5289 return r;
5290 }
5291
5292
5293 static int __vcpu_run(struct kvm_vcpu *vcpu)
5294 {
5295 int r;
5296 struct kvm *kvm = vcpu->kvm;
5297
5298 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5299 pr_debug("vcpu %d received sipi with vector # %x\n",
5300 vcpu->vcpu_id, vcpu->arch.sipi_vector);
5301 kvm_lapic_reset(vcpu);
5302 r = kvm_arch_vcpu_reset(vcpu);
5303 if (r)
5304 return r;
5305 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5306 }
5307
5308 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5309 vapic_enter(vcpu);
5310
5311 r = 1;
5312 while (r > 0) {
5313 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5314 !vcpu->arch.apf.halted)
5315 r = vcpu_enter_guest(vcpu);
5316 else {
5317 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5318 kvm_vcpu_block(vcpu);
5319 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5320 if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5321 {
5322 switch(vcpu->arch.mp_state) {
5323 case KVM_MP_STATE_HALTED:
5324 vcpu->arch.mp_state =
5325 KVM_MP_STATE_RUNNABLE;
5326 case KVM_MP_STATE_RUNNABLE:
5327 vcpu->arch.apf.halted = false;
5328 break;
5329 case KVM_MP_STATE_SIPI_RECEIVED:
5330 default:
5331 r = -EINTR;
5332 break;
5333 }
5334 }
5335 }
5336
5337 if (r <= 0)
5338 break;
5339
5340 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5341 if (kvm_cpu_has_pending_timer(vcpu))
5342 kvm_inject_pending_timer_irqs(vcpu);
5343
5344 if (dm_request_for_irq_injection(vcpu)) {
5345 r = -EINTR;
5346 vcpu->run->exit_reason = KVM_EXIT_INTR;
5347 ++vcpu->stat.request_irq_exits;
5348 }
5349
5350 kvm_check_async_pf_completion(vcpu);
5351
5352 if (signal_pending(current)) {
5353 r = -EINTR;
5354 vcpu->run->exit_reason = KVM_EXIT_INTR;
5355 ++vcpu->stat.signal_exits;
5356 }
5357 if (need_resched()) {
5358 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5359 kvm_resched(vcpu);
5360 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5361 }
5362 }
5363
5364 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5365
5366 vapic_exit(vcpu);
5367
5368 return r;
5369 }
5370
5371 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5372 {
5373 int r;
5374 sigset_t sigsaved;
5375
5376 if (vcpu->sigset_active)
5377 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5378
5379 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5380 kvm_vcpu_block(vcpu);
5381 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5382 r = -EAGAIN;
5383 goto out;
5384 }
5385
5386 /* re-sync apic's tpr */
5387 if (!irqchip_in_kernel(vcpu->kvm))
5388 kvm_set_cr8(vcpu, kvm_run->cr8);
5389
5390 if (vcpu->arch.pio.count || vcpu->mmio_needed) {
5391 if (vcpu->mmio_needed) {
5392 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
5393 vcpu->mmio_read_completed = 1;
5394 vcpu->mmio_needed = 0;
5395 }
5396 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5397 r = emulate_instruction(vcpu, 0, 0, EMULTYPE_NO_DECODE);
5398 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5399 if (r != EMULATE_DONE) {
5400 r = 0;
5401 goto out;
5402 }
5403 }
5404 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
5405 kvm_register_write(vcpu, VCPU_REGS_RAX,
5406 kvm_run->hypercall.ret);
5407
5408 r = __vcpu_run(vcpu);
5409
5410 out:
5411 post_kvm_run_save(vcpu);
5412 if (vcpu->sigset_active)
5413 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5414
5415 return r;
5416 }
5417
5418 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5419 {
5420 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5421 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5422 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5423 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5424 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5425 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5426 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5427 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5428 #ifdef CONFIG_X86_64
5429 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5430 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5431 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5432 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5433 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5434 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5435 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5436 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5437 #endif
5438
5439 regs->rip = kvm_rip_read(vcpu);
5440 regs->rflags = kvm_get_rflags(vcpu);
5441
5442 return 0;
5443 }
5444
5445 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5446 {
5447 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5448 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5449 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5450 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5451 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5452 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5453 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5454 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5455 #ifdef CONFIG_X86_64
5456 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5457 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5458 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5459 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5460 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5461 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5462 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5463 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5464 #endif
5465
5466 kvm_rip_write(vcpu, regs->rip);
5467 kvm_set_rflags(vcpu, regs->rflags);
5468
5469 vcpu->arch.exception.pending = false;
5470
5471 kvm_make_request(KVM_REQ_EVENT, vcpu);
5472
5473 return 0;
5474 }
5475
5476 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5477 {
5478 struct kvm_segment cs;
5479
5480 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5481 *db = cs.db;
5482 *l = cs.l;
5483 }
5484 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5485
5486 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5487 struct kvm_sregs *sregs)
5488 {
5489 struct desc_ptr dt;
5490
5491 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5492 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5493 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5494 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5495 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5496 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5497
5498 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5499 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5500
5501 kvm_x86_ops->get_idt(vcpu, &dt);
5502 sregs->idt.limit = dt.size;
5503 sregs->idt.base = dt.address;
5504 kvm_x86_ops->get_gdt(vcpu, &dt);
5505 sregs->gdt.limit = dt.size;
5506 sregs->gdt.base = dt.address;
5507
5508 sregs->cr0 = kvm_read_cr0(vcpu);
5509 sregs->cr2 = vcpu->arch.cr2;
5510 sregs->cr3 = vcpu->arch.cr3;
5511 sregs->cr4 = kvm_read_cr4(vcpu);
5512 sregs->cr8 = kvm_get_cr8(vcpu);
5513 sregs->efer = vcpu->arch.efer;
5514 sregs->apic_base = kvm_get_apic_base(vcpu);
5515
5516 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5517
5518 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5519 set_bit(vcpu->arch.interrupt.nr,
5520 (unsigned long *)sregs->interrupt_bitmap);
5521
5522 return 0;
5523 }
5524
5525 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5526 struct kvm_mp_state *mp_state)
5527 {
5528 mp_state->mp_state = vcpu->arch.mp_state;
5529 return 0;
5530 }
5531
5532 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5533 struct kvm_mp_state *mp_state)
5534 {
5535 vcpu->arch.mp_state = mp_state->mp_state;
5536 kvm_make_request(KVM_REQ_EVENT, vcpu);
5537 return 0;
5538 }
5539
5540 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
5541 bool has_error_code, u32 error_code)
5542 {
5543 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
5544 int ret;
5545
5546 init_emulate_ctxt(vcpu);
5547
5548 ret = emulator_task_switch(&vcpu->arch.emulate_ctxt,
5549 tss_selector, reason, has_error_code,
5550 error_code);
5551
5552 if (ret)
5553 return EMULATE_FAIL;
5554
5555 memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
5556 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
5557 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
5558 kvm_make_request(KVM_REQ_EVENT, vcpu);
5559 return EMULATE_DONE;
5560 }
5561 EXPORT_SYMBOL_GPL(kvm_task_switch);
5562
5563 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5564 struct kvm_sregs *sregs)
5565 {
5566 int mmu_reset_needed = 0;
5567 int pending_vec, max_bits;
5568 struct desc_ptr dt;
5569
5570 dt.size = sregs->idt.limit;
5571 dt.address = sregs->idt.base;
5572 kvm_x86_ops->set_idt(vcpu, &dt);
5573 dt.size = sregs->gdt.limit;
5574 dt.address = sregs->gdt.base;
5575 kvm_x86_ops->set_gdt(vcpu, &dt);
5576
5577 vcpu->arch.cr2 = sregs->cr2;
5578 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
5579 vcpu->arch.cr3 = sregs->cr3;
5580
5581 kvm_set_cr8(vcpu, sregs->cr8);
5582
5583 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5584 kvm_x86_ops->set_efer(vcpu, sregs->efer);
5585 kvm_set_apic_base(vcpu, sregs->apic_base);
5586
5587 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5588 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5589 vcpu->arch.cr0 = sregs->cr0;
5590
5591 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5592 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5593 if (sregs->cr4 & X86_CR4_OSXSAVE)
5594 update_cpuid(vcpu);
5595 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5596 load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3);
5597 mmu_reset_needed = 1;
5598 }
5599
5600 if (mmu_reset_needed)
5601 kvm_mmu_reset_context(vcpu);
5602
5603 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5604 pending_vec = find_first_bit(
5605 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5606 if (pending_vec < max_bits) {
5607 kvm_queue_interrupt(vcpu, pending_vec, false);
5608 pr_debug("Set back pending irq %d\n", pending_vec);
5609 if (irqchip_in_kernel(vcpu->kvm))
5610 kvm_pic_clear_isr_ack(vcpu->kvm);
5611 }
5612
5613 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5614 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5615 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5616 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5617 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5618 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5619
5620 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5621 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5622
5623 update_cr8_intercept(vcpu);
5624
5625 /* Older userspace won't unhalt the vcpu on reset. */
5626 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5627 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5628 !is_protmode(vcpu))
5629 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5630
5631 kvm_make_request(KVM_REQ_EVENT, vcpu);
5632
5633 return 0;
5634 }
5635
5636 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5637 struct kvm_guest_debug *dbg)
5638 {
5639 unsigned long rflags;
5640 int i, r;
5641
5642 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5643 r = -EBUSY;
5644 if (vcpu->arch.exception.pending)
5645 goto out;
5646 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5647 kvm_queue_exception(vcpu, DB_VECTOR);
5648 else
5649 kvm_queue_exception(vcpu, BP_VECTOR);
5650 }
5651
5652 /*
5653 * Read rflags as long as potentially injected trace flags are still
5654 * filtered out.
5655 */
5656 rflags = kvm_get_rflags(vcpu);
5657
5658 vcpu->guest_debug = dbg->control;
5659 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5660 vcpu->guest_debug = 0;
5661
5662 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5663 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5664 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5665 vcpu->arch.switch_db_regs =
5666 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5667 } else {
5668 for (i = 0; i < KVM_NR_DB_REGS; i++)
5669 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5670 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5671 }
5672
5673 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5674 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5675 get_segment_base(vcpu, VCPU_SREG_CS);
5676
5677 /*
5678 * Trigger an rflags update that will inject or remove the trace
5679 * flags.
5680 */
5681 kvm_set_rflags(vcpu, rflags);
5682
5683 kvm_x86_ops->set_guest_debug(vcpu, dbg);
5684
5685 r = 0;
5686
5687 out:
5688
5689 return r;
5690 }
5691
5692 /*
5693 * Translate a guest virtual address to a guest physical address.
5694 */
5695 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5696 struct kvm_translation *tr)
5697 {
5698 unsigned long vaddr = tr->linear_address;
5699 gpa_t gpa;
5700 int idx;
5701
5702 idx = srcu_read_lock(&vcpu->kvm->srcu);
5703 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5704 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5705 tr->physical_address = gpa;
5706 tr->valid = gpa != UNMAPPED_GVA;
5707 tr->writeable = 1;
5708 tr->usermode = 0;
5709
5710 return 0;
5711 }
5712
5713 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5714 {
5715 struct i387_fxsave_struct *fxsave =
5716 &vcpu->arch.guest_fpu.state->fxsave;
5717
5718 memcpy(fpu->fpr, fxsave->st_space, 128);
5719 fpu->fcw = fxsave->cwd;
5720 fpu->fsw = fxsave->swd;
5721 fpu->ftwx = fxsave->twd;
5722 fpu->last_opcode = fxsave->fop;
5723 fpu->last_ip = fxsave->rip;
5724 fpu->last_dp = fxsave->rdp;
5725 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5726
5727 return 0;
5728 }
5729
5730 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5731 {
5732 struct i387_fxsave_struct *fxsave =
5733 &vcpu->arch.guest_fpu.state->fxsave;
5734
5735 memcpy(fxsave->st_space, fpu->fpr, 128);
5736 fxsave->cwd = fpu->fcw;
5737 fxsave->swd = fpu->fsw;
5738 fxsave->twd = fpu->ftwx;
5739 fxsave->fop = fpu->last_opcode;
5740 fxsave->rip = fpu->last_ip;
5741 fxsave->rdp = fpu->last_dp;
5742 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5743
5744 return 0;
5745 }
5746
5747 int fx_init(struct kvm_vcpu *vcpu)
5748 {
5749 int err;
5750
5751 err = fpu_alloc(&vcpu->arch.guest_fpu);
5752 if (err)
5753 return err;
5754
5755 fpu_finit(&vcpu->arch.guest_fpu);
5756
5757 /*
5758 * Ensure guest xcr0 is valid for loading
5759 */
5760 vcpu->arch.xcr0 = XSTATE_FP;
5761
5762 vcpu->arch.cr0 |= X86_CR0_ET;
5763
5764 return 0;
5765 }
5766 EXPORT_SYMBOL_GPL(fx_init);
5767
5768 static void fx_free(struct kvm_vcpu *vcpu)
5769 {
5770 fpu_free(&vcpu->arch.guest_fpu);
5771 }
5772
5773 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5774 {
5775 if (vcpu->guest_fpu_loaded)
5776 return;
5777
5778 /*
5779 * Restore all possible states in the guest,
5780 * and assume host would use all available bits.
5781 * Guest xcr0 would be loaded later.
5782 */
5783 kvm_put_guest_xcr0(vcpu);
5784 vcpu->guest_fpu_loaded = 1;
5785 unlazy_fpu(current);
5786 fpu_restore_checking(&vcpu->arch.guest_fpu);
5787 trace_kvm_fpu(1);
5788 }
5789
5790 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5791 {
5792 kvm_put_guest_xcr0(vcpu);
5793
5794 if (!vcpu->guest_fpu_loaded)
5795 return;
5796
5797 vcpu->guest_fpu_loaded = 0;
5798 fpu_save_init(&vcpu->arch.guest_fpu);
5799 ++vcpu->stat.fpu_reload;
5800 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
5801 trace_kvm_fpu(0);
5802 }
5803
5804 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5805 {
5806 if (vcpu->arch.time_page) {
5807 kvm_release_page_dirty(vcpu->arch.time_page);
5808 vcpu->arch.time_page = NULL;
5809 }
5810
5811 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
5812 fx_free(vcpu);
5813 kvm_x86_ops->vcpu_free(vcpu);
5814 }
5815
5816 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5817 unsigned int id)
5818 {
5819 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
5820 printk_once(KERN_WARNING
5821 "kvm: SMP vm created on host with unstable TSC; "
5822 "guest TSC will not be reliable\n");
5823 return kvm_x86_ops->vcpu_create(kvm, id);
5824 }
5825
5826 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5827 {
5828 int r;
5829
5830 vcpu->arch.mtrr_state.have_fixed = 1;
5831 vcpu_load(vcpu);
5832 r = kvm_arch_vcpu_reset(vcpu);
5833 if (r == 0)
5834 r = kvm_mmu_setup(vcpu);
5835 vcpu_put(vcpu);
5836 if (r < 0)
5837 goto free_vcpu;
5838
5839 return 0;
5840 free_vcpu:
5841 kvm_x86_ops->vcpu_free(vcpu);
5842 return r;
5843 }
5844
5845 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5846 {
5847 vcpu->arch.apf.msr_val = 0;
5848
5849 vcpu_load(vcpu);
5850 kvm_mmu_unload(vcpu);
5851 vcpu_put(vcpu);
5852
5853 fx_free(vcpu);
5854 kvm_x86_ops->vcpu_free(vcpu);
5855 }
5856
5857 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5858 {
5859 vcpu->arch.nmi_pending = false;
5860 vcpu->arch.nmi_injected = false;
5861
5862 vcpu->arch.switch_db_regs = 0;
5863 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5864 vcpu->arch.dr6 = DR6_FIXED_1;
5865 vcpu->arch.dr7 = DR7_FIXED_1;
5866
5867 kvm_make_request(KVM_REQ_EVENT, vcpu);
5868 vcpu->arch.apf.msr_val = 0;
5869
5870 kvm_clear_async_pf_completion_queue(vcpu);
5871 kvm_async_pf_hash_reset(vcpu);
5872 vcpu->arch.apf.halted = false;
5873
5874 return kvm_x86_ops->vcpu_reset(vcpu);
5875 }
5876
5877 int kvm_arch_hardware_enable(void *garbage)
5878 {
5879 struct kvm *kvm;
5880 struct kvm_vcpu *vcpu;
5881 int i;
5882
5883 kvm_shared_msr_cpu_online();
5884 list_for_each_entry(kvm, &vm_list, vm_list)
5885 kvm_for_each_vcpu(i, vcpu, kvm)
5886 if (vcpu->cpu == smp_processor_id())
5887 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5888 return kvm_x86_ops->hardware_enable(garbage);
5889 }
5890
5891 void kvm_arch_hardware_disable(void *garbage)
5892 {
5893 kvm_x86_ops->hardware_disable(garbage);
5894 drop_user_return_notifiers(garbage);
5895 }
5896
5897 int kvm_arch_hardware_setup(void)
5898 {
5899 return kvm_x86_ops->hardware_setup();
5900 }
5901
5902 void kvm_arch_hardware_unsetup(void)
5903 {
5904 kvm_x86_ops->hardware_unsetup();
5905 }
5906
5907 void kvm_arch_check_processor_compat(void *rtn)
5908 {
5909 kvm_x86_ops->check_processor_compatibility(rtn);
5910 }
5911
5912 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5913 {
5914 struct page *page;
5915 struct kvm *kvm;
5916 int r;
5917
5918 BUG_ON(vcpu->kvm == NULL);
5919 kvm = vcpu->kvm;
5920
5921 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
5922 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
5923 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5924 vcpu->arch.mmu.translate_gpa = translate_gpa;
5925 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5926 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5927 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5928 else
5929 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5930
5931 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5932 if (!page) {
5933 r = -ENOMEM;
5934 goto fail;
5935 }
5936 vcpu->arch.pio_data = page_address(page);
5937
5938 if (!kvm->arch.virtual_tsc_khz)
5939 kvm_arch_set_tsc_khz(kvm, max_tsc_khz);
5940
5941 r = kvm_mmu_create(vcpu);
5942 if (r < 0)
5943 goto fail_free_pio_data;
5944
5945 if (irqchip_in_kernel(kvm)) {
5946 r = kvm_create_lapic(vcpu);
5947 if (r < 0)
5948 goto fail_mmu_destroy;
5949 }
5950
5951 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5952 GFP_KERNEL);
5953 if (!vcpu->arch.mce_banks) {
5954 r = -ENOMEM;
5955 goto fail_free_lapic;
5956 }
5957 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5958
5959 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
5960 goto fail_free_mce_banks;
5961
5962 kvm_async_pf_hash_reset(vcpu);
5963
5964 return 0;
5965 fail_free_mce_banks:
5966 kfree(vcpu->arch.mce_banks);
5967 fail_free_lapic:
5968 kvm_free_lapic(vcpu);
5969 fail_mmu_destroy:
5970 kvm_mmu_destroy(vcpu);
5971 fail_free_pio_data:
5972 free_page((unsigned long)vcpu->arch.pio_data);
5973 fail:
5974 return r;
5975 }
5976
5977 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
5978 {
5979 int idx;
5980
5981 kfree(vcpu->arch.mce_banks);
5982 kvm_free_lapic(vcpu);
5983 idx = srcu_read_lock(&vcpu->kvm->srcu);
5984 kvm_mmu_destroy(vcpu);
5985 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5986 free_page((unsigned long)vcpu->arch.pio_data);
5987 }
5988
5989 int kvm_arch_init_vm(struct kvm *kvm)
5990 {
5991 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5992 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
5993
5994 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5995 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
5996
5997 spin_lock_init(&kvm->arch.tsc_write_lock);
5998
5999 return 0;
6000 }
6001
6002 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6003 {
6004 vcpu_load(vcpu);
6005 kvm_mmu_unload(vcpu);
6006 vcpu_put(vcpu);
6007 }
6008
6009 static void kvm_free_vcpus(struct kvm *kvm)
6010 {
6011 unsigned int i;
6012 struct kvm_vcpu *vcpu;
6013
6014 /*
6015 * Unpin any mmu pages first.
6016 */
6017 kvm_for_each_vcpu(i, vcpu, kvm) {
6018 kvm_clear_async_pf_completion_queue(vcpu);
6019 kvm_unload_vcpu_mmu(vcpu);
6020 }
6021 kvm_for_each_vcpu(i, vcpu, kvm)
6022 kvm_arch_vcpu_free(vcpu);
6023
6024 mutex_lock(&kvm->lock);
6025 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6026 kvm->vcpus[i] = NULL;
6027
6028 atomic_set(&kvm->online_vcpus, 0);
6029 mutex_unlock(&kvm->lock);
6030 }
6031
6032 void kvm_arch_sync_events(struct kvm *kvm)
6033 {
6034 kvm_free_all_assigned_devices(kvm);
6035 kvm_free_pit(kvm);
6036 }
6037
6038 void kvm_arch_destroy_vm(struct kvm *kvm)
6039 {
6040 kvm_iommu_unmap_guest(kvm);
6041 kfree(kvm->arch.vpic);
6042 kfree(kvm->arch.vioapic);
6043 kvm_free_vcpus(kvm);
6044 if (kvm->arch.apic_access_page)
6045 put_page(kvm->arch.apic_access_page);
6046 if (kvm->arch.ept_identity_pagetable)
6047 put_page(kvm->arch.ept_identity_pagetable);
6048 }
6049
6050 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6051 struct kvm_memory_slot *memslot,
6052 struct kvm_memory_slot old,
6053 struct kvm_userspace_memory_region *mem,
6054 int user_alloc)
6055 {
6056 int npages = memslot->npages;
6057 int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6058
6059 /* Prevent internal slot pages from being moved by fork()/COW. */
6060 if (memslot->id >= KVM_MEMORY_SLOTS)
6061 map_flags = MAP_SHARED | MAP_ANONYMOUS;
6062
6063 /*To keep backward compatibility with older userspace,
6064 *x86 needs to hanlde !user_alloc case.
6065 */
6066 if (!user_alloc) {
6067 if (npages && !old.rmap) {
6068 unsigned long userspace_addr;
6069
6070 down_write(&current->mm->mmap_sem);
6071 userspace_addr = do_mmap(NULL, 0,
6072 npages * PAGE_SIZE,
6073 PROT_READ | PROT_WRITE,
6074 map_flags,
6075 0);
6076 up_write(&current->mm->mmap_sem);
6077
6078 if (IS_ERR((void *)userspace_addr))
6079 return PTR_ERR((void *)userspace_addr);
6080
6081 memslot->userspace_addr = userspace_addr;
6082 }
6083 }
6084
6085
6086 return 0;
6087 }
6088
6089 void kvm_arch_commit_memory_region(struct kvm *kvm,
6090 struct kvm_userspace_memory_region *mem,
6091 struct kvm_memory_slot old,
6092 int user_alloc)
6093 {
6094
6095 int npages = mem->memory_size >> PAGE_SHIFT;
6096
6097 if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
6098 int ret;
6099
6100 down_write(&current->mm->mmap_sem);
6101 ret = do_munmap(current->mm, old.userspace_addr,
6102 old.npages * PAGE_SIZE);
6103 up_write(&current->mm->mmap_sem);
6104 if (ret < 0)
6105 printk(KERN_WARNING
6106 "kvm_vm_ioctl_set_memory_region: "
6107 "failed to munmap memory\n");
6108 }
6109
6110 spin_lock(&kvm->mmu_lock);
6111 if (!kvm->arch.n_requested_mmu_pages) {
6112 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6113 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6114 }
6115
6116 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6117 spin_unlock(&kvm->mmu_lock);
6118 }
6119
6120 void kvm_arch_flush_shadow(struct kvm *kvm)
6121 {
6122 kvm_mmu_zap_all(kvm);
6123 kvm_reload_remote_mmus(kvm);
6124 }
6125
6126 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6127 {
6128 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6129 !vcpu->arch.apf.halted)
6130 || !list_empty_careful(&vcpu->async_pf.done)
6131 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6132 || vcpu->arch.nmi_pending ||
6133 (kvm_arch_interrupt_allowed(vcpu) &&
6134 kvm_cpu_has_interrupt(vcpu));
6135 }
6136
6137 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
6138 {
6139 int me;
6140 int cpu = vcpu->cpu;
6141
6142 if (waitqueue_active(&vcpu->wq)) {
6143 wake_up_interruptible(&vcpu->wq);
6144 ++vcpu->stat.halt_wakeup;
6145 }
6146
6147 me = get_cpu();
6148 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
6149 if (atomic_xchg(&vcpu->guest_mode, 0))
6150 smp_send_reschedule(cpu);
6151 put_cpu();
6152 }
6153
6154 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6155 {
6156 return kvm_x86_ops->interrupt_allowed(vcpu);
6157 }
6158
6159 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6160 {
6161 unsigned long current_rip = kvm_rip_read(vcpu) +
6162 get_segment_base(vcpu, VCPU_SREG_CS);
6163
6164 return current_rip == linear_rip;
6165 }
6166 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6167
6168 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6169 {
6170 unsigned long rflags;
6171
6172 rflags = kvm_x86_ops->get_rflags(vcpu);
6173 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6174 rflags &= ~X86_EFLAGS_TF;
6175 return rflags;
6176 }
6177 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6178
6179 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6180 {
6181 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6182 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6183 rflags |= X86_EFLAGS_TF;
6184 kvm_x86_ops->set_rflags(vcpu, rflags);
6185 kvm_make_request(KVM_REQ_EVENT, vcpu);
6186 }
6187 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6188
6189 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6190 {
6191 int r;
6192
6193 if (!vcpu->arch.mmu.direct_map || !work->arch.direct_map ||
6194 is_error_page(work->page))
6195 return;
6196
6197 r = kvm_mmu_reload(vcpu);
6198 if (unlikely(r))
6199 return;
6200
6201 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
6202 }
6203
6204 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
6205 {
6206 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
6207 }
6208
6209 static inline u32 kvm_async_pf_next_probe(u32 key)
6210 {
6211 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
6212 }
6213
6214 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6215 {
6216 u32 key = kvm_async_pf_hash_fn(gfn);
6217
6218 while (vcpu->arch.apf.gfns[key] != ~0)
6219 key = kvm_async_pf_next_probe(key);
6220
6221 vcpu->arch.apf.gfns[key] = gfn;
6222 }
6223
6224 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
6225 {
6226 int i;
6227 u32 key = kvm_async_pf_hash_fn(gfn);
6228
6229 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
6230 (vcpu->arch.apf.gfns[key] != gfn &&
6231 vcpu->arch.apf.gfns[key] != ~0); i++)
6232 key = kvm_async_pf_next_probe(key);
6233
6234 return key;
6235 }
6236
6237 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6238 {
6239 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
6240 }
6241
6242 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6243 {
6244 u32 i, j, k;
6245
6246 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
6247 while (true) {
6248 vcpu->arch.apf.gfns[i] = ~0;
6249 do {
6250 j = kvm_async_pf_next_probe(j);
6251 if (vcpu->arch.apf.gfns[j] == ~0)
6252 return;
6253 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
6254 /*
6255 * k lies cyclically in ]i,j]
6256 * | i.k.j |
6257 * |....j i.k.| or |.k..j i...|
6258 */
6259 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
6260 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
6261 i = j;
6262 }
6263 }
6264
6265 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
6266 {
6267
6268 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
6269 sizeof(val));
6270 }
6271
6272 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
6273 struct kvm_async_pf *work)
6274 {
6275 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
6276 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
6277
6278 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
6279 (vcpu->arch.apf.send_user_only &&
6280 kvm_x86_ops->get_cpl(vcpu) == 0))
6281 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
6282 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
6283 vcpu->arch.fault.error_code = 0;
6284 vcpu->arch.fault.address = work->arch.token;
6285 kvm_inject_page_fault(vcpu);
6286 }
6287 }
6288
6289 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
6290 struct kvm_async_pf *work)
6291 {
6292 trace_kvm_async_pf_ready(work->arch.token, work->gva);
6293 if (is_error_page(work->page))
6294 work->arch.token = ~0; /* broadcast wakeup */
6295 else
6296 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
6297
6298 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
6299 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
6300 vcpu->arch.fault.error_code = 0;
6301 vcpu->arch.fault.address = work->arch.token;
6302 kvm_inject_page_fault(vcpu);
6303 }
6304 vcpu->arch.apf.halted = false;
6305 }
6306
6307 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
6308 {
6309 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
6310 return true;
6311 else
6312 return !kvm_event_needs_reinjection(vcpu) &&
6313 kvm_x86_ops->interrupt_allowed(vcpu);
6314 }
6315
6316 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6317 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6318 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6319 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6320 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6321 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6322 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6323 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6324 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6325 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6326 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6327 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
This page took 1.583578 seconds and 5 git commands to generate.