KVM: x86: Avoid issuing wbinvd twice
[deliverable/linux.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/module.h>
36 #include <linux/mman.h>
37 #include <linux/highmem.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/cpufreq.h>
41 #include <linux/user-return-notifier.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/perf_event.h>
45 #include <linux/uaccess.h>
46 #include <linux/hash.h>
47 #include <trace/events/kvm.h>
48
49 #define CREATE_TRACE_POINTS
50 #include "trace.h"
51
52 #include <asm/debugreg.h>
53 #include <asm/msr.h>
54 #include <asm/desc.h>
55 #include <asm/mtrr.h>
56 #include <asm/mce.h>
57 #include <asm/i387.h>
58 #include <asm/xcr.h>
59 #include <asm/pvclock.h>
60 #include <asm/div64.h>
61
62 #define MAX_IO_MSRS 256
63 #define CR0_RESERVED_BITS \
64 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
65 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
66 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
67 #define CR4_RESERVED_BITS \
68 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
69 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
70 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
71 | X86_CR4_OSXSAVE \
72 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
73
74 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
75
76 #define KVM_MAX_MCE_BANKS 32
77 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
78
79 /* EFER defaults:
80 * - enable syscall per default because its emulated by KVM
81 * - enable LME and LMA per default on 64 bit KVM
82 */
83 #ifdef CONFIG_X86_64
84 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
85 #else
86 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
87 #endif
88
89 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
90 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
91
92 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
93 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
94 struct kvm_cpuid_entry2 __user *entries);
95
96 struct kvm_x86_ops *kvm_x86_ops;
97 EXPORT_SYMBOL_GPL(kvm_x86_ops);
98
99 int ignore_msrs = 0;
100 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
101
102 #define KVM_NR_SHARED_MSRS 16
103
104 struct kvm_shared_msrs_global {
105 int nr;
106 u32 msrs[KVM_NR_SHARED_MSRS];
107 };
108
109 struct kvm_shared_msrs {
110 struct user_return_notifier urn;
111 bool registered;
112 struct kvm_shared_msr_values {
113 u64 host;
114 u64 curr;
115 } values[KVM_NR_SHARED_MSRS];
116 };
117
118 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
119 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
120
121 struct kvm_stats_debugfs_item debugfs_entries[] = {
122 { "pf_fixed", VCPU_STAT(pf_fixed) },
123 { "pf_guest", VCPU_STAT(pf_guest) },
124 { "tlb_flush", VCPU_STAT(tlb_flush) },
125 { "invlpg", VCPU_STAT(invlpg) },
126 { "exits", VCPU_STAT(exits) },
127 { "io_exits", VCPU_STAT(io_exits) },
128 { "mmio_exits", VCPU_STAT(mmio_exits) },
129 { "signal_exits", VCPU_STAT(signal_exits) },
130 { "irq_window", VCPU_STAT(irq_window_exits) },
131 { "nmi_window", VCPU_STAT(nmi_window_exits) },
132 { "halt_exits", VCPU_STAT(halt_exits) },
133 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
134 { "hypercalls", VCPU_STAT(hypercalls) },
135 { "request_irq", VCPU_STAT(request_irq_exits) },
136 { "irq_exits", VCPU_STAT(irq_exits) },
137 { "host_state_reload", VCPU_STAT(host_state_reload) },
138 { "efer_reload", VCPU_STAT(efer_reload) },
139 { "fpu_reload", VCPU_STAT(fpu_reload) },
140 { "insn_emulation", VCPU_STAT(insn_emulation) },
141 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
142 { "irq_injections", VCPU_STAT(irq_injections) },
143 { "nmi_injections", VCPU_STAT(nmi_injections) },
144 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
145 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
146 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
147 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
148 { "mmu_flooded", VM_STAT(mmu_flooded) },
149 { "mmu_recycled", VM_STAT(mmu_recycled) },
150 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
151 { "mmu_unsync", VM_STAT(mmu_unsync) },
152 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
153 { "largepages", VM_STAT(lpages) },
154 { NULL }
155 };
156
157 u64 __read_mostly host_xcr0;
158
159 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
160 {
161 int i;
162 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
163 vcpu->arch.apf.gfns[i] = ~0;
164 }
165
166 static void kvm_on_user_return(struct user_return_notifier *urn)
167 {
168 unsigned slot;
169 struct kvm_shared_msrs *locals
170 = container_of(urn, struct kvm_shared_msrs, urn);
171 struct kvm_shared_msr_values *values;
172
173 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
174 values = &locals->values[slot];
175 if (values->host != values->curr) {
176 wrmsrl(shared_msrs_global.msrs[slot], values->host);
177 values->curr = values->host;
178 }
179 }
180 locals->registered = false;
181 user_return_notifier_unregister(urn);
182 }
183
184 static void shared_msr_update(unsigned slot, u32 msr)
185 {
186 struct kvm_shared_msrs *smsr;
187 u64 value;
188
189 smsr = &__get_cpu_var(shared_msrs);
190 /* only read, and nobody should modify it at this time,
191 * so don't need lock */
192 if (slot >= shared_msrs_global.nr) {
193 printk(KERN_ERR "kvm: invalid MSR slot!");
194 return;
195 }
196 rdmsrl_safe(msr, &value);
197 smsr->values[slot].host = value;
198 smsr->values[slot].curr = value;
199 }
200
201 void kvm_define_shared_msr(unsigned slot, u32 msr)
202 {
203 if (slot >= shared_msrs_global.nr)
204 shared_msrs_global.nr = slot + 1;
205 shared_msrs_global.msrs[slot] = msr;
206 /* we need ensured the shared_msr_global have been updated */
207 smp_wmb();
208 }
209 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
210
211 static void kvm_shared_msr_cpu_online(void)
212 {
213 unsigned i;
214
215 for (i = 0; i < shared_msrs_global.nr; ++i)
216 shared_msr_update(i, shared_msrs_global.msrs[i]);
217 }
218
219 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
220 {
221 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
222
223 if (((value ^ smsr->values[slot].curr) & mask) == 0)
224 return;
225 smsr->values[slot].curr = value;
226 wrmsrl(shared_msrs_global.msrs[slot], value);
227 if (!smsr->registered) {
228 smsr->urn.on_user_return = kvm_on_user_return;
229 user_return_notifier_register(&smsr->urn);
230 smsr->registered = true;
231 }
232 }
233 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
234
235 static void drop_user_return_notifiers(void *ignore)
236 {
237 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
238
239 if (smsr->registered)
240 kvm_on_user_return(&smsr->urn);
241 }
242
243 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
244 {
245 if (irqchip_in_kernel(vcpu->kvm))
246 return vcpu->arch.apic_base;
247 else
248 return vcpu->arch.apic_base;
249 }
250 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
251
252 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
253 {
254 /* TODO: reserve bits check */
255 if (irqchip_in_kernel(vcpu->kvm))
256 kvm_lapic_set_base(vcpu, data);
257 else
258 vcpu->arch.apic_base = data;
259 }
260 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
261
262 #define EXCPT_BENIGN 0
263 #define EXCPT_CONTRIBUTORY 1
264 #define EXCPT_PF 2
265
266 static int exception_class(int vector)
267 {
268 switch (vector) {
269 case PF_VECTOR:
270 return EXCPT_PF;
271 case DE_VECTOR:
272 case TS_VECTOR:
273 case NP_VECTOR:
274 case SS_VECTOR:
275 case GP_VECTOR:
276 return EXCPT_CONTRIBUTORY;
277 default:
278 break;
279 }
280 return EXCPT_BENIGN;
281 }
282
283 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
284 unsigned nr, bool has_error, u32 error_code,
285 bool reinject)
286 {
287 u32 prev_nr;
288 int class1, class2;
289
290 kvm_make_request(KVM_REQ_EVENT, vcpu);
291
292 if (!vcpu->arch.exception.pending) {
293 queue:
294 vcpu->arch.exception.pending = true;
295 vcpu->arch.exception.has_error_code = has_error;
296 vcpu->arch.exception.nr = nr;
297 vcpu->arch.exception.error_code = error_code;
298 vcpu->arch.exception.reinject = reinject;
299 return;
300 }
301
302 /* to check exception */
303 prev_nr = vcpu->arch.exception.nr;
304 if (prev_nr == DF_VECTOR) {
305 /* triple fault -> shutdown */
306 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
307 return;
308 }
309 class1 = exception_class(prev_nr);
310 class2 = exception_class(nr);
311 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
312 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
313 /* generate double fault per SDM Table 5-5 */
314 vcpu->arch.exception.pending = true;
315 vcpu->arch.exception.has_error_code = true;
316 vcpu->arch.exception.nr = DF_VECTOR;
317 vcpu->arch.exception.error_code = 0;
318 } else
319 /* replace previous exception with a new one in a hope
320 that instruction re-execution will regenerate lost
321 exception */
322 goto queue;
323 }
324
325 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
326 {
327 kvm_multiple_exception(vcpu, nr, false, 0, false);
328 }
329 EXPORT_SYMBOL_GPL(kvm_queue_exception);
330
331 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
332 {
333 kvm_multiple_exception(vcpu, nr, false, 0, true);
334 }
335 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
336
337 void kvm_inject_page_fault(struct kvm_vcpu *vcpu)
338 {
339 unsigned error_code = vcpu->arch.fault.error_code;
340
341 ++vcpu->stat.pf_guest;
342 vcpu->arch.cr2 = vcpu->arch.fault.address;
343 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
344 }
345
346 void kvm_propagate_fault(struct kvm_vcpu *vcpu)
347 {
348 if (mmu_is_nested(vcpu) && !vcpu->arch.fault.nested)
349 vcpu->arch.nested_mmu.inject_page_fault(vcpu);
350 else
351 vcpu->arch.mmu.inject_page_fault(vcpu);
352
353 vcpu->arch.fault.nested = false;
354 }
355
356 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
357 {
358 kvm_make_request(KVM_REQ_EVENT, vcpu);
359 vcpu->arch.nmi_pending = 1;
360 }
361 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
362
363 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
364 {
365 kvm_multiple_exception(vcpu, nr, true, error_code, false);
366 }
367 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
368
369 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
370 {
371 kvm_multiple_exception(vcpu, nr, true, error_code, true);
372 }
373 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
374
375 /*
376 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
377 * a #GP and return false.
378 */
379 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
380 {
381 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
382 return true;
383 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
384 return false;
385 }
386 EXPORT_SYMBOL_GPL(kvm_require_cpl);
387
388 /*
389 * This function will be used to read from the physical memory of the currently
390 * running guest. The difference to kvm_read_guest_page is that this function
391 * can read from guest physical or from the guest's guest physical memory.
392 */
393 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
394 gfn_t ngfn, void *data, int offset, int len,
395 u32 access)
396 {
397 gfn_t real_gfn;
398 gpa_t ngpa;
399
400 ngpa = gfn_to_gpa(ngfn);
401 real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
402 if (real_gfn == UNMAPPED_GVA)
403 return -EFAULT;
404
405 real_gfn = gpa_to_gfn(real_gfn);
406
407 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
408 }
409 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
410
411 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
412 void *data, int offset, int len, u32 access)
413 {
414 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
415 data, offset, len, access);
416 }
417
418 /*
419 * Load the pae pdptrs. Return true is they are all valid.
420 */
421 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
422 {
423 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
424 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
425 int i;
426 int ret;
427 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
428
429 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
430 offset * sizeof(u64), sizeof(pdpte),
431 PFERR_USER_MASK|PFERR_WRITE_MASK);
432 if (ret < 0) {
433 ret = 0;
434 goto out;
435 }
436 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
437 if (is_present_gpte(pdpte[i]) &&
438 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
439 ret = 0;
440 goto out;
441 }
442 }
443 ret = 1;
444
445 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
446 __set_bit(VCPU_EXREG_PDPTR,
447 (unsigned long *)&vcpu->arch.regs_avail);
448 __set_bit(VCPU_EXREG_PDPTR,
449 (unsigned long *)&vcpu->arch.regs_dirty);
450 out:
451
452 return ret;
453 }
454 EXPORT_SYMBOL_GPL(load_pdptrs);
455
456 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
457 {
458 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
459 bool changed = true;
460 int offset;
461 gfn_t gfn;
462 int r;
463
464 if (is_long_mode(vcpu) || !is_pae(vcpu))
465 return false;
466
467 if (!test_bit(VCPU_EXREG_PDPTR,
468 (unsigned long *)&vcpu->arch.regs_avail))
469 return true;
470
471 gfn = (vcpu->arch.cr3 & ~31u) >> PAGE_SHIFT;
472 offset = (vcpu->arch.cr3 & ~31u) & (PAGE_SIZE - 1);
473 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
474 PFERR_USER_MASK | PFERR_WRITE_MASK);
475 if (r < 0)
476 goto out;
477 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
478 out:
479
480 return changed;
481 }
482
483 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
484 {
485 unsigned long old_cr0 = kvm_read_cr0(vcpu);
486 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
487 X86_CR0_CD | X86_CR0_NW;
488
489 cr0 |= X86_CR0_ET;
490
491 #ifdef CONFIG_X86_64
492 if (cr0 & 0xffffffff00000000UL)
493 return 1;
494 #endif
495
496 cr0 &= ~CR0_RESERVED_BITS;
497
498 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
499 return 1;
500
501 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
502 return 1;
503
504 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
505 #ifdef CONFIG_X86_64
506 if ((vcpu->arch.efer & EFER_LME)) {
507 int cs_db, cs_l;
508
509 if (!is_pae(vcpu))
510 return 1;
511 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
512 if (cs_l)
513 return 1;
514 } else
515 #endif
516 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
517 vcpu->arch.cr3))
518 return 1;
519 }
520
521 kvm_x86_ops->set_cr0(vcpu, cr0);
522
523 if ((cr0 ^ old_cr0) & update_bits)
524 kvm_mmu_reset_context(vcpu);
525 return 0;
526 }
527 EXPORT_SYMBOL_GPL(kvm_set_cr0);
528
529 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
530 {
531 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
532 }
533 EXPORT_SYMBOL_GPL(kvm_lmsw);
534
535 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
536 {
537 u64 xcr0;
538
539 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
540 if (index != XCR_XFEATURE_ENABLED_MASK)
541 return 1;
542 xcr0 = xcr;
543 if (kvm_x86_ops->get_cpl(vcpu) != 0)
544 return 1;
545 if (!(xcr0 & XSTATE_FP))
546 return 1;
547 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
548 return 1;
549 if (xcr0 & ~host_xcr0)
550 return 1;
551 vcpu->arch.xcr0 = xcr0;
552 vcpu->guest_xcr0_loaded = 0;
553 return 0;
554 }
555
556 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
557 {
558 if (__kvm_set_xcr(vcpu, index, xcr)) {
559 kvm_inject_gp(vcpu, 0);
560 return 1;
561 }
562 return 0;
563 }
564 EXPORT_SYMBOL_GPL(kvm_set_xcr);
565
566 static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
567 {
568 struct kvm_cpuid_entry2 *best;
569
570 best = kvm_find_cpuid_entry(vcpu, 1, 0);
571 return best && (best->ecx & bit(X86_FEATURE_XSAVE));
572 }
573
574 static void update_cpuid(struct kvm_vcpu *vcpu)
575 {
576 struct kvm_cpuid_entry2 *best;
577
578 best = kvm_find_cpuid_entry(vcpu, 1, 0);
579 if (!best)
580 return;
581
582 /* Update OSXSAVE bit */
583 if (cpu_has_xsave && best->function == 0x1) {
584 best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
585 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
586 best->ecx |= bit(X86_FEATURE_OSXSAVE);
587 }
588 }
589
590 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
591 {
592 unsigned long old_cr4 = kvm_read_cr4(vcpu);
593 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
594
595 if (cr4 & CR4_RESERVED_BITS)
596 return 1;
597
598 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
599 return 1;
600
601 if (is_long_mode(vcpu)) {
602 if (!(cr4 & X86_CR4_PAE))
603 return 1;
604 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
605 && ((cr4 ^ old_cr4) & pdptr_bits)
606 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3))
607 return 1;
608
609 if (cr4 & X86_CR4_VMXE)
610 return 1;
611
612 kvm_x86_ops->set_cr4(vcpu, cr4);
613
614 if ((cr4 ^ old_cr4) & pdptr_bits)
615 kvm_mmu_reset_context(vcpu);
616
617 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
618 update_cpuid(vcpu);
619
620 return 0;
621 }
622 EXPORT_SYMBOL_GPL(kvm_set_cr4);
623
624 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
625 {
626 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
627 kvm_mmu_sync_roots(vcpu);
628 kvm_mmu_flush_tlb(vcpu);
629 return 0;
630 }
631
632 if (is_long_mode(vcpu)) {
633 if (cr3 & CR3_L_MODE_RESERVED_BITS)
634 return 1;
635 } else {
636 if (is_pae(vcpu)) {
637 if (cr3 & CR3_PAE_RESERVED_BITS)
638 return 1;
639 if (is_paging(vcpu) &&
640 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
641 return 1;
642 }
643 /*
644 * We don't check reserved bits in nonpae mode, because
645 * this isn't enforced, and VMware depends on this.
646 */
647 }
648
649 /*
650 * Does the new cr3 value map to physical memory? (Note, we
651 * catch an invalid cr3 even in real-mode, because it would
652 * cause trouble later on when we turn on paging anyway.)
653 *
654 * A real CPU would silently accept an invalid cr3 and would
655 * attempt to use it - with largely undefined (and often hard
656 * to debug) behavior on the guest side.
657 */
658 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
659 return 1;
660 vcpu->arch.cr3 = cr3;
661 vcpu->arch.mmu.new_cr3(vcpu);
662 return 0;
663 }
664 EXPORT_SYMBOL_GPL(kvm_set_cr3);
665
666 int __kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
667 {
668 if (cr8 & CR8_RESERVED_BITS)
669 return 1;
670 if (irqchip_in_kernel(vcpu->kvm))
671 kvm_lapic_set_tpr(vcpu, cr8);
672 else
673 vcpu->arch.cr8 = cr8;
674 return 0;
675 }
676
677 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
678 {
679 if (__kvm_set_cr8(vcpu, cr8))
680 kvm_inject_gp(vcpu, 0);
681 }
682 EXPORT_SYMBOL_GPL(kvm_set_cr8);
683
684 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
685 {
686 if (irqchip_in_kernel(vcpu->kvm))
687 return kvm_lapic_get_cr8(vcpu);
688 else
689 return vcpu->arch.cr8;
690 }
691 EXPORT_SYMBOL_GPL(kvm_get_cr8);
692
693 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
694 {
695 switch (dr) {
696 case 0 ... 3:
697 vcpu->arch.db[dr] = val;
698 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
699 vcpu->arch.eff_db[dr] = val;
700 break;
701 case 4:
702 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
703 return 1; /* #UD */
704 /* fall through */
705 case 6:
706 if (val & 0xffffffff00000000ULL)
707 return -1; /* #GP */
708 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
709 break;
710 case 5:
711 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
712 return 1; /* #UD */
713 /* fall through */
714 default: /* 7 */
715 if (val & 0xffffffff00000000ULL)
716 return -1; /* #GP */
717 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
718 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
719 kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
720 vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
721 }
722 break;
723 }
724
725 return 0;
726 }
727
728 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
729 {
730 int res;
731
732 res = __kvm_set_dr(vcpu, dr, val);
733 if (res > 0)
734 kvm_queue_exception(vcpu, UD_VECTOR);
735 else if (res < 0)
736 kvm_inject_gp(vcpu, 0);
737
738 return res;
739 }
740 EXPORT_SYMBOL_GPL(kvm_set_dr);
741
742 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
743 {
744 switch (dr) {
745 case 0 ... 3:
746 *val = vcpu->arch.db[dr];
747 break;
748 case 4:
749 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
750 return 1;
751 /* fall through */
752 case 6:
753 *val = vcpu->arch.dr6;
754 break;
755 case 5:
756 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
757 return 1;
758 /* fall through */
759 default: /* 7 */
760 *val = vcpu->arch.dr7;
761 break;
762 }
763
764 return 0;
765 }
766
767 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
768 {
769 if (_kvm_get_dr(vcpu, dr, val)) {
770 kvm_queue_exception(vcpu, UD_VECTOR);
771 return 1;
772 }
773 return 0;
774 }
775 EXPORT_SYMBOL_GPL(kvm_get_dr);
776
777 /*
778 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
779 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
780 *
781 * This list is modified at module load time to reflect the
782 * capabilities of the host cpu. This capabilities test skips MSRs that are
783 * kvm-specific. Those are put in the beginning of the list.
784 */
785
786 #define KVM_SAVE_MSRS_BEGIN 8
787 static u32 msrs_to_save[] = {
788 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
789 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
790 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
791 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN,
792 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
793 MSR_STAR,
794 #ifdef CONFIG_X86_64
795 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
796 #endif
797 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
798 };
799
800 static unsigned num_msrs_to_save;
801
802 static u32 emulated_msrs[] = {
803 MSR_IA32_MISC_ENABLE,
804 MSR_IA32_MCG_STATUS,
805 MSR_IA32_MCG_CTL,
806 };
807
808 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
809 {
810 u64 old_efer = vcpu->arch.efer;
811
812 if (efer & efer_reserved_bits)
813 return 1;
814
815 if (is_paging(vcpu)
816 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
817 return 1;
818
819 if (efer & EFER_FFXSR) {
820 struct kvm_cpuid_entry2 *feat;
821
822 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
823 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
824 return 1;
825 }
826
827 if (efer & EFER_SVME) {
828 struct kvm_cpuid_entry2 *feat;
829
830 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
831 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
832 return 1;
833 }
834
835 efer &= ~EFER_LMA;
836 efer |= vcpu->arch.efer & EFER_LMA;
837
838 kvm_x86_ops->set_efer(vcpu, efer);
839
840 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
841
842 /* Update reserved bits */
843 if ((efer ^ old_efer) & EFER_NX)
844 kvm_mmu_reset_context(vcpu);
845
846 return 0;
847 }
848
849 void kvm_enable_efer_bits(u64 mask)
850 {
851 efer_reserved_bits &= ~mask;
852 }
853 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
854
855
856 /*
857 * Writes msr value into into the appropriate "register".
858 * Returns 0 on success, non-0 otherwise.
859 * Assumes vcpu_load() was already called.
860 */
861 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
862 {
863 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
864 }
865
866 /*
867 * Adapt set_msr() to msr_io()'s calling convention
868 */
869 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
870 {
871 return kvm_set_msr(vcpu, index, *data);
872 }
873
874 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
875 {
876 int version;
877 int r;
878 struct pvclock_wall_clock wc;
879 struct timespec boot;
880
881 if (!wall_clock)
882 return;
883
884 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
885 if (r)
886 return;
887
888 if (version & 1)
889 ++version; /* first time write, random junk */
890
891 ++version;
892
893 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
894
895 /*
896 * The guest calculates current wall clock time by adding
897 * system time (updated by kvm_guest_time_update below) to the
898 * wall clock specified here. guest system time equals host
899 * system time for us, thus we must fill in host boot time here.
900 */
901 getboottime(&boot);
902
903 wc.sec = boot.tv_sec;
904 wc.nsec = boot.tv_nsec;
905 wc.version = version;
906
907 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
908
909 version++;
910 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
911 }
912
913 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
914 {
915 uint32_t quotient, remainder;
916
917 /* Don't try to replace with do_div(), this one calculates
918 * "(dividend << 32) / divisor" */
919 __asm__ ( "divl %4"
920 : "=a" (quotient), "=d" (remainder)
921 : "0" (0), "1" (dividend), "r" (divisor) );
922 return quotient;
923 }
924
925 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
926 s8 *pshift, u32 *pmultiplier)
927 {
928 uint64_t scaled64;
929 int32_t shift = 0;
930 uint64_t tps64;
931 uint32_t tps32;
932
933 tps64 = base_khz * 1000LL;
934 scaled64 = scaled_khz * 1000LL;
935 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
936 tps64 >>= 1;
937 shift--;
938 }
939
940 tps32 = (uint32_t)tps64;
941 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
942 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
943 scaled64 >>= 1;
944 else
945 tps32 <<= 1;
946 shift++;
947 }
948
949 *pshift = shift;
950 *pmultiplier = div_frac(scaled64, tps32);
951
952 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
953 __func__, base_khz, scaled_khz, shift, *pmultiplier);
954 }
955
956 static inline u64 get_kernel_ns(void)
957 {
958 struct timespec ts;
959
960 WARN_ON(preemptible());
961 ktime_get_ts(&ts);
962 monotonic_to_bootbased(&ts);
963 return timespec_to_ns(&ts);
964 }
965
966 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
967 unsigned long max_tsc_khz;
968
969 static inline int kvm_tsc_changes_freq(void)
970 {
971 int cpu = get_cpu();
972 int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
973 cpufreq_quick_get(cpu) != 0;
974 put_cpu();
975 return ret;
976 }
977
978 static inline u64 nsec_to_cycles(u64 nsec)
979 {
980 u64 ret;
981
982 WARN_ON(preemptible());
983 if (kvm_tsc_changes_freq())
984 printk_once(KERN_WARNING
985 "kvm: unreliable cycle conversion on adjustable rate TSC\n");
986 ret = nsec * __get_cpu_var(cpu_tsc_khz);
987 do_div(ret, USEC_PER_SEC);
988 return ret;
989 }
990
991 static void kvm_arch_set_tsc_khz(struct kvm *kvm, u32 this_tsc_khz)
992 {
993 /* Compute a scale to convert nanoseconds in TSC cycles */
994 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
995 &kvm->arch.virtual_tsc_shift,
996 &kvm->arch.virtual_tsc_mult);
997 kvm->arch.virtual_tsc_khz = this_tsc_khz;
998 }
999
1000 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1001 {
1002 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
1003 vcpu->kvm->arch.virtual_tsc_mult,
1004 vcpu->kvm->arch.virtual_tsc_shift);
1005 tsc += vcpu->arch.last_tsc_write;
1006 return tsc;
1007 }
1008
1009 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1010 {
1011 struct kvm *kvm = vcpu->kvm;
1012 u64 offset, ns, elapsed;
1013 unsigned long flags;
1014 s64 sdiff;
1015
1016 spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1017 offset = data - native_read_tsc();
1018 ns = get_kernel_ns();
1019 elapsed = ns - kvm->arch.last_tsc_nsec;
1020 sdiff = data - kvm->arch.last_tsc_write;
1021 if (sdiff < 0)
1022 sdiff = -sdiff;
1023
1024 /*
1025 * Special case: close write to TSC within 5 seconds of
1026 * another CPU is interpreted as an attempt to synchronize
1027 * The 5 seconds is to accomodate host load / swapping as
1028 * well as any reset of TSC during the boot process.
1029 *
1030 * In that case, for a reliable TSC, we can match TSC offsets,
1031 * or make a best guest using elapsed value.
1032 */
1033 if (sdiff < nsec_to_cycles(5ULL * NSEC_PER_SEC) &&
1034 elapsed < 5ULL * NSEC_PER_SEC) {
1035 if (!check_tsc_unstable()) {
1036 offset = kvm->arch.last_tsc_offset;
1037 pr_debug("kvm: matched tsc offset for %llu\n", data);
1038 } else {
1039 u64 delta = nsec_to_cycles(elapsed);
1040 offset += delta;
1041 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1042 }
1043 ns = kvm->arch.last_tsc_nsec;
1044 }
1045 kvm->arch.last_tsc_nsec = ns;
1046 kvm->arch.last_tsc_write = data;
1047 kvm->arch.last_tsc_offset = offset;
1048 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1049 spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1050
1051 /* Reset of TSC must disable overshoot protection below */
1052 vcpu->arch.hv_clock.tsc_timestamp = 0;
1053 vcpu->arch.last_tsc_write = data;
1054 vcpu->arch.last_tsc_nsec = ns;
1055 }
1056 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1057
1058 static int kvm_guest_time_update(struct kvm_vcpu *v)
1059 {
1060 unsigned long flags;
1061 struct kvm_vcpu_arch *vcpu = &v->arch;
1062 void *shared_kaddr;
1063 unsigned long this_tsc_khz;
1064 s64 kernel_ns, max_kernel_ns;
1065 u64 tsc_timestamp;
1066
1067 /* Keep irq disabled to prevent changes to the clock */
1068 local_irq_save(flags);
1069 kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
1070 kernel_ns = get_kernel_ns();
1071 this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1072
1073 if (unlikely(this_tsc_khz == 0)) {
1074 local_irq_restore(flags);
1075 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1076 return 1;
1077 }
1078
1079 /*
1080 * We may have to catch up the TSC to match elapsed wall clock
1081 * time for two reasons, even if kvmclock is used.
1082 * 1) CPU could have been running below the maximum TSC rate
1083 * 2) Broken TSC compensation resets the base at each VCPU
1084 * entry to avoid unknown leaps of TSC even when running
1085 * again on the same CPU. This may cause apparent elapsed
1086 * time to disappear, and the guest to stand still or run
1087 * very slowly.
1088 */
1089 if (vcpu->tsc_catchup) {
1090 u64 tsc = compute_guest_tsc(v, kernel_ns);
1091 if (tsc > tsc_timestamp) {
1092 kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp);
1093 tsc_timestamp = tsc;
1094 }
1095 }
1096
1097 local_irq_restore(flags);
1098
1099 if (!vcpu->time_page)
1100 return 0;
1101
1102 /*
1103 * Time as measured by the TSC may go backwards when resetting the base
1104 * tsc_timestamp. The reason for this is that the TSC resolution is
1105 * higher than the resolution of the other clock scales. Thus, many
1106 * possible measurments of the TSC correspond to one measurement of any
1107 * other clock, and so a spread of values is possible. This is not a
1108 * problem for the computation of the nanosecond clock; with TSC rates
1109 * around 1GHZ, there can only be a few cycles which correspond to one
1110 * nanosecond value, and any path through this code will inevitably
1111 * take longer than that. However, with the kernel_ns value itself,
1112 * the precision may be much lower, down to HZ granularity. If the
1113 * first sampling of TSC against kernel_ns ends in the low part of the
1114 * range, and the second in the high end of the range, we can get:
1115 *
1116 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1117 *
1118 * As the sampling errors potentially range in the thousands of cycles,
1119 * it is possible such a time value has already been observed by the
1120 * guest. To protect against this, we must compute the system time as
1121 * observed by the guest and ensure the new system time is greater.
1122 */
1123 max_kernel_ns = 0;
1124 if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
1125 max_kernel_ns = vcpu->last_guest_tsc -
1126 vcpu->hv_clock.tsc_timestamp;
1127 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1128 vcpu->hv_clock.tsc_to_system_mul,
1129 vcpu->hv_clock.tsc_shift);
1130 max_kernel_ns += vcpu->last_kernel_ns;
1131 }
1132
1133 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1134 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1135 &vcpu->hv_clock.tsc_shift,
1136 &vcpu->hv_clock.tsc_to_system_mul);
1137 vcpu->hw_tsc_khz = this_tsc_khz;
1138 }
1139
1140 if (max_kernel_ns > kernel_ns)
1141 kernel_ns = max_kernel_ns;
1142
1143 /* With all the info we got, fill in the values */
1144 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1145 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1146 vcpu->last_kernel_ns = kernel_ns;
1147 vcpu->last_guest_tsc = tsc_timestamp;
1148 vcpu->hv_clock.flags = 0;
1149
1150 /*
1151 * The interface expects us to write an even number signaling that the
1152 * update is finished. Since the guest won't see the intermediate
1153 * state, we just increase by 2 at the end.
1154 */
1155 vcpu->hv_clock.version += 2;
1156
1157 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
1158
1159 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1160 sizeof(vcpu->hv_clock));
1161
1162 kunmap_atomic(shared_kaddr, KM_USER0);
1163
1164 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1165 return 0;
1166 }
1167
1168 static bool msr_mtrr_valid(unsigned msr)
1169 {
1170 switch (msr) {
1171 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1172 case MSR_MTRRfix64K_00000:
1173 case MSR_MTRRfix16K_80000:
1174 case MSR_MTRRfix16K_A0000:
1175 case MSR_MTRRfix4K_C0000:
1176 case MSR_MTRRfix4K_C8000:
1177 case MSR_MTRRfix4K_D0000:
1178 case MSR_MTRRfix4K_D8000:
1179 case MSR_MTRRfix4K_E0000:
1180 case MSR_MTRRfix4K_E8000:
1181 case MSR_MTRRfix4K_F0000:
1182 case MSR_MTRRfix4K_F8000:
1183 case MSR_MTRRdefType:
1184 case MSR_IA32_CR_PAT:
1185 return true;
1186 case 0x2f8:
1187 return true;
1188 }
1189 return false;
1190 }
1191
1192 static bool valid_pat_type(unsigned t)
1193 {
1194 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1195 }
1196
1197 static bool valid_mtrr_type(unsigned t)
1198 {
1199 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1200 }
1201
1202 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1203 {
1204 int i;
1205
1206 if (!msr_mtrr_valid(msr))
1207 return false;
1208
1209 if (msr == MSR_IA32_CR_PAT) {
1210 for (i = 0; i < 8; i++)
1211 if (!valid_pat_type((data >> (i * 8)) & 0xff))
1212 return false;
1213 return true;
1214 } else if (msr == MSR_MTRRdefType) {
1215 if (data & ~0xcff)
1216 return false;
1217 return valid_mtrr_type(data & 0xff);
1218 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1219 for (i = 0; i < 8 ; i++)
1220 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1221 return false;
1222 return true;
1223 }
1224
1225 /* variable MTRRs */
1226 return valid_mtrr_type(data & 0xff);
1227 }
1228
1229 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1230 {
1231 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1232
1233 if (!mtrr_valid(vcpu, msr, data))
1234 return 1;
1235
1236 if (msr == MSR_MTRRdefType) {
1237 vcpu->arch.mtrr_state.def_type = data;
1238 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1239 } else if (msr == MSR_MTRRfix64K_00000)
1240 p[0] = data;
1241 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1242 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1243 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1244 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1245 else if (msr == MSR_IA32_CR_PAT)
1246 vcpu->arch.pat = data;
1247 else { /* Variable MTRRs */
1248 int idx, is_mtrr_mask;
1249 u64 *pt;
1250
1251 idx = (msr - 0x200) / 2;
1252 is_mtrr_mask = msr - 0x200 - 2 * idx;
1253 if (!is_mtrr_mask)
1254 pt =
1255 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1256 else
1257 pt =
1258 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1259 *pt = data;
1260 }
1261
1262 kvm_mmu_reset_context(vcpu);
1263 return 0;
1264 }
1265
1266 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1267 {
1268 u64 mcg_cap = vcpu->arch.mcg_cap;
1269 unsigned bank_num = mcg_cap & 0xff;
1270
1271 switch (msr) {
1272 case MSR_IA32_MCG_STATUS:
1273 vcpu->arch.mcg_status = data;
1274 break;
1275 case MSR_IA32_MCG_CTL:
1276 if (!(mcg_cap & MCG_CTL_P))
1277 return 1;
1278 if (data != 0 && data != ~(u64)0)
1279 return -1;
1280 vcpu->arch.mcg_ctl = data;
1281 break;
1282 default:
1283 if (msr >= MSR_IA32_MC0_CTL &&
1284 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1285 u32 offset = msr - MSR_IA32_MC0_CTL;
1286 /* only 0 or all 1s can be written to IA32_MCi_CTL
1287 * some Linux kernels though clear bit 10 in bank 4 to
1288 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1289 * this to avoid an uncatched #GP in the guest
1290 */
1291 if ((offset & 0x3) == 0 &&
1292 data != 0 && (data | (1 << 10)) != ~(u64)0)
1293 return -1;
1294 vcpu->arch.mce_banks[offset] = data;
1295 break;
1296 }
1297 return 1;
1298 }
1299 return 0;
1300 }
1301
1302 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1303 {
1304 struct kvm *kvm = vcpu->kvm;
1305 int lm = is_long_mode(vcpu);
1306 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1307 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1308 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1309 : kvm->arch.xen_hvm_config.blob_size_32;
1310 u32 page_num = data & ~PAGE_MASK;
1311 u64 page_addr = data & PAGE_MASK;
1312 u8 *page;
1313 int r;
1314
1315 r = -E2BIG;
1316 if (page_num >= blob_size)
1317 goto out;
1318 r = -ENOMEM;
1319 page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1320 if (!page)
1321 goto out;
1322 r = -EFAULT;
1323 if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1324 goto out_free;
1325 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1326 goto out_free;
1327 r = 0;
1328 out_free:
1329 kfree(page);
1330 out:
1331 return r;
1332 }
1333
1334 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1335 {
1336 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1337 }
1338
1339 static bool kvm_hv_msr_partition_wide(u32 msr)
1340 {
1341 bool r = false;
1342 switch (msr) {
1343 case HV_X64_MSR_GUEST_OS_ID:
1344 case HV_X64_MSR_HYPERCALL:
1345 r = true;
1346 break;
1347 }
1348
1349 return r;
1350 }
1351
1352 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1353 {
1354 struct kvm *kvm = vcpu->kvm;
1355
1356 switch (msr) {
1357 case HV_X64_MSR_GUEST_OS_ID:
1358 kvm->arch.hv_guest_os_id = data;
1359 /* setting guest os id to zero disables hypercall page */
1360 if (!kvm->arch.hv_guest_os_id)
1361 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1362 break;
1363 case HV_X64_MSR_HYPERCALL: {
1364 u64 gfn;
1365 unsigned long addr;
1366 u8 instructions[4];
1367
1368 /* if guest os id is not set hypercall should remain disabled */
1369 if (!kvm->arch.hv_guest_os_id)
1370 break;
1371 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1372 kvm->arch.hv_hypercall = data;
1373 break;
1374 }
1375 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1376 addr = gfn_to_hva(kvm, gfn);
1377 if (kvm_is_error_hva(addr))
1378 return 1;
1379 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1380 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1381 if (copy_to_user((void __user *)addr, instructions, 4))
1382 return 1;
1383 kvm->arch.hv_hypercall = data;
1384 break;
1385 }
1386 default:
1387 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1388 "data 0x%llx\n", msr, data);
1389 return 1;
1390 }
1391 return 0;
1392 }
1393
1394 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1395 {
1396 switch (msr) {
1397 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1398 unsigned long addr;
1399
1400 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1401 vcpu->arch.hv_vapic = data;
1402 break;
1403 }
1404 addr = gfn_to_hva(vcpu->kvm, data >>
1405 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1406 if (kvm_is_error_hva(addr))
1407 return 1;
1408 if (clear_user((void __user *)addr, PAGE_SIZE))
1409 return 1;
1410 vcpu->arch.hv_vapic = data;
1411 break;
1412 }
1413 case HV_X64_MSR_EOI:
1414 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1415 case HV_X64_MSR_ICR:
1416 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1417 case HV_X64_MSR_TPR:
1418 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1419 default:
1420 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1421 "data 0x%llx\n", msr, data);
1422 return 1;
1423 }
1424
1425 return 0;
1426 }
1427
1428 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1429 {
1430 gpa_t gpa = data & ~0x3f;
1431
1432 /* Bits 2:5 are resrved, Should be zero */
1433 if (data & 0x3c)
1434 return 1;
1435
1436 vcpu->arch.apf.msr_val = data;
1437
1438 if (!(data & KVM_ASYNC_PF_ENABLED)) {
1439 kvm_clear_async_pf_completion_queue(vcpu);
1440 kvm_async_pf_hash_reset(vcpu);
1441 return 0;
1442 }
1443
1444 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1445 return 1;
1446
1447 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1448 kvm_async_pf_wakeup_all(vcpu);
1449 return 0;
1450 }
1451
1452 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1453 {
1454 switch (msr) {
1455 case MSR_EFER:
1456 return set_efer(vcpu, data);
1457 case MSR_K7_HWCR:
1458 data &= ~(u64)0x40; /* ignore flush filter disable */
1459 data &= ~(u64)0x100; /* ignore ignne emulation enable */
1460 if (data != 0) {
1461 pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1462 data);
1463 return 1;
1464 }
1465 break;
1466 case MSR_FAM10H_MMIO_CONF_BASE:
1467 if (data != 0) {
1468 pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1469 "0x%llx\n", data);
1470 return 1;
1471 }
1472 break;
1473 case MSR_AMD64_NB_CFG:
1474 break;
1475 case MSR_IA32_DEBUGCTLMSR:
1476 if (!data) {
1477 /* We support the non-activated case already */
1478 break;
1479 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1480 /* Values other than LBR and BTF are vendor-specific,
1481 thus reserved and should throw a #GP */
1482 return 1;
1483 }
1484 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1485 __func__, data);
1486 break;
1487 case MSR_IA32_UCODE_REV:
1488 case MSR_IA32_UCODE_WRITE:
1489 case MSR_VM_HSAVE_PA:
1490 case MSR_AMD64_PATCH_LOADER:
1491 break;
1492 case 0x200 ... 0x2ff:
1493 return set_msr_mtrr(vcpu, msr, data);
1494 case MSR_IA32_APICBASE:
1495 kvm_set_apic_base(vcpu, data);
1496 break;
1497 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1498 return kvm_x2apic_msr_write(vcpu, msr, data);
1499 case MSR_IA32_MISC_ENABLE:
1500 vcpu->arch.ia32_misc_enable_msr = data;
1501 break;
1502 case MSR_KVM_WALL_CLOCK_NEW:
1503 case MSR_KVM_WALL_CLOCK:
1504 vcpu->kvm->arch.wall_clock = data;
1505 kvm_write_wall_clock(vcpu->kvm, data);
1506 break;
1507 case MSR_KVM_SYSTEM_TIME_NEW:
1508 case MSR_KVM_SYSTEM_TIME: {
1509 if (vcpu->arch.time_page) {
1510 kvm_release_page_dirty(vcpu->arch.time_page);
1511 vcpu->arch.time_page = NULL;
1512 }
1513
1514 vcpu->arch.time = data;
1515 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1516
1517 /* we verify if the enable bit is set... */
1518 if (!(data & 1))
1519 break;
1520
1521 /* ...but clean it before doing the actual write */
1522 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1523
1524 vcpu->arch.time_page =
1525 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1526
1527 if (is_error_page(vcpu->arch.time_page)) {
1528 kvm_release_page_clean(vcpu->arch.time_page);
1529 vcpu->arch.time_page = NULL;
1530 }
1531 break;
1532 }
1533 case MSR_KVM_ASYNC_PF_EN:
1534 if (kvm_pv_enable_async_pf(vcpu, data))
1535 return 1;
1536 break;
1537 case MSR_IA32_MCG_CTL:
1538 case MSR_IA32_MCG_STATUS:
1539 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1540 return set_msr_mce(vcpu, msr, data);
1541
1542 /* Performance counters are not protected by a CPUID bit,
1543 * so we should check all of them in the generic path for the sake of
1544 * cross vendor migration.
1545 * Writing a zero into the event select MSRs disables them,
1546 * which we perfectly emulate ;-). Any other value should be at least
1547 * reported, some guests depend on them.
1548 */
1549 case MSR_P6_EVNTSEL0:
1550 case MSR_P6_EVNTSEL1:
1551 case MSR_K7_EVNTSEL0:
1552 case MSR_K7_EVNTSEL1:
1553 case MSR_K7_EVNTSEL2:
1554 case MSR_K7_EVNTSEL3:
1555 if (data != 0)
1556 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1557 "0x%x data 0x%llx\n", msr, data);
1558 break;
1559 /* at least RHEL 4 unconditionally writes to the perfctr registers,
1560 * so we ignore writes to make it happy.
1561 */
1562 case MSR_P6_PERFCTR0:
1563 case MSR_P6_PERFCTR1:
1564 case MSR_K7_PERFCTR0:
1565 case MSR_K7_PERFCTR1:
1566 case MSR_K7_PERFCTR2:
1567 case MSR_K7_PERFCTR3:
1568 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1569 "0x%x data 0x%llx\n", msr, data);
1570 break;
1571 case MSR_K7_CLK_CTL:
1572 /*
1573 * Ignore all writes to this no longer documented MSR.
1574 * Writes are only relevant for old K7 processors,
1575 * all pre-dating SVM, but a recommended workaround from
1576 * AMD for these chips. It is possible to speicify the
1577 * affected processor models on the command line, hence
1578 * the need to ignore the workaround.
1579 */
1580 break;
1581 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1582 if (kvm_hv_msr_partition_wide(msr)) {
1583 int r;
1584 mutex_lock(&vcpu->kvm->lock);
1585 r = set_msr_hyperv_pw(vcpu, msr, data);
1586 mutex_unlock(&vcpu->kvm->lock);
1587 return r;
1588 } else
1589 return set_msr_hyperv(vcpu, msr, data);
1590 break;
1591 default:
1592 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1593 return xen_hvm_config(vcpu, data);
1594 if (!ignore_msrs) {
1595 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1596 msr, data);
1597 return 1;
1598 } else {
1599 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1600 msr, data);
1601 break;
1602 }
1603 }
1604 return 0;
1605 }
1606 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1607
1608
1609 /*
1610 * Reads an msr value (of 'msr_index') into 'pdata'.
1611 * Returns 0 on success, non-0 otherwise.
1612 * Assumes vcpu_load() was already called.
1613 */
1614 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1615 {
1616 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1617 }
1618
1619 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1620 {
1621 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1622
1623 if (!msr_mtrr_valid(msr))
1624 return 1;
1625
1626 if (msr == MSR_MTRRdefType)
1627 *pdata = vcpu->arch.mtrr_state.def_type +
1628 (vcpu->arch.mtrr_state.enabled << 10);
1629 else if (msr == MSR_MTRRfix64K_00000)
1630 *pdata = p[0];
1631 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1632 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1633 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1634 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1635 else if (msr == MSR_IA32_CR_PAT)
1636 *pdata = vcpu->arch.pat;
1637 else { /* Variable MTRRs */
1638 int idx, is_mtrr_mask;
1639 u64 *pt;
1640
1641 idx = (msr - 0x200) / 2;
1642 is_mtrr_mask = msr - 0x200 - 2 * idx;
1643 if (!is_mtrr_mask)
1644 pt =
1645 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1646 else
1647 pt =
1648 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1649 *pdata = *pt;
1650 }
1651
1652 return 0;
1653 }
1654
1655 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1656 {
1657 u64 data;
1658 u64 mcg_cap = vcpu->arch.mcg_cap;
1659 unsigned bank_num = mcg_cap & 0xff;
1660
1661 switch (msr) {
1662 case MSR_IA32_P5_MC_ADDR:
1663 case MSR_IA32_P5_MC_TYPE:
1664 data = 0;
1665 break;
1666 case MSR_IA32_MCG_CAP:
1667 data = vcpu->arch.mcg_cap;
1668 break;
1669 case MSR_IA32_MCG_CTL:
1670 if (!(mcg_cap & MCG_CTL_P))
1671 return 1;
1672 data = vcpu->arch.mcg_ctl;
1673 break;
1674 case MSR_IA32_MCG_STATUS:
1675 data = vcpu->arch.mcg_status;
1676 break;
1677 default:
1678 if (msr >= MSR_IA32_MC0_CTL &&
1679 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1680 u32 offset = msr - MSR_IA32_MC0_CTL;
1681 data = vcpu->arch.mce_banks[offset];
1682 break;
1683 }
1684 return 1;
1685 }
1686 *pdata = data;
1687 return 0;
1688 }
1689
1690 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1691 {
1692 u64 data = 0;
1693 struct kvm *kvm = vcpu->kvm;
1694
1695 switch (msr) {
1696 case HV_X64_MSR_GUEST_OS_ID:
1697 data = kvm->arch.hv_guest_os_id;
1698 break;
1699 case HV_X64_MSR_HYPERCALL:
1700 data = kvm->arch.hv_hypercall;
1701 break;
1702 default:
1703 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1704 return 1;
1705 }
1706
1707 *pdata = data;
1708 return 0;
1709 }
1710
1711 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1712 {
1713 u64 data = 0;
1714
1715 switch (msr) {
1716 case HV_X64_MSR_VP_INDEX: {
1717 int r;
1718 struct kvm_vcpu *v;
1719 kvm_for_each_vcpu(r, v, vcpu->kvm)
1720 if (v == vcpu)
1721 data = r;
1722 break;
1723 }
1724 case HV_X64_MSR_EOI:
1725 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1726 case HV_X64_MSR_ICR:
1727 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1728 case HV_X64_MSR_TPR:
1729 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1730 default:
1731 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1732 return 1;
1733 }
1734 *pdata = data;
1735 return 0;
1736 }
1737
1738 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1739 {
1740 u64 data;
1741
1742 switch (msr) {
1743 case MSR_IA32_PLATFORM_ID:
1744 case MSR_IA32_UCODE_REV:
1745 case MSR_IA32_EBL_CR_POWERON:
1746 case MSR_IA32_DEBUGCTLMSR:
1747 case MSR_IA32_LASTBRANCHFROMIP:
1748 case MSR_IA32_LASTBRANCHTOIP:
1749 case MSR_IA32_LASTINTFROMIP:
1750 case MSR_IA32_LASTINTTOIP:
1751 case MSR_K8_SYSCFG:
1752 case MSR_K7_HWCR:
1753 case MSR_VM_HSAVE_PA:
1754 case MSR_P6_PERFCTR0:
1755 case MSR_P6_PERFCTR1:
1756 case MSR_P6_EVNTSEL0:
1757 case MSR_P6_EVNTSEL1:
1758 case MSR_K7_EVNTSEL0:
1759 case MSR_K7_PERFCTR0:
1760 case MSR_K8_INT_PENDING_MSG:
1761 case MSR_AMD64_NB_CFG:
1762 case MSR_FAM10H_MMIO_CONF_BASE:
1763 data = 0;
1764 break;
1765 case MSR_MTRRcap:
1766 data = 0x500 | KVM_NR_VAR_MTRR;
1767 break;
1768 case 0x200 ... 0x2ff:
1769 return get_msr_mtrr(vcpu, msr, pdata);
1770 case 0xcd: /* fsb frequency */
1771 data = 3;
1772 break;
1773 /*
1774 * MSR_EBC_FREQUENCY_ID
1775 * Conservative value valid for even the basic CPU models.
1776 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1777 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1778 * and 266MHz for model 3, or 4. Set Core Clock
1779 * Frequency to System Bus Frequency Ratio to 1 (bits
1780 * 31:24) even though these are only valid for CPU
1781 * models > 2, however guests may end up dividing or
1782 * multiplying by zero otherwise.
1783 */
1784 case MSR_EBC_FREQUENCY_ID:
1785 data = 1 << 24;
1786 break;
1787 case MSR_IA32_APICBASE:
1788 data = kvm_get_apic_base(vcpu);
1789 break;
1790 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1791 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1792 break;
1793 case MSR_IA32_MISC_ENABLE:
1794 data = vcpu->arch.ia32_misc_enable_msr;
1795 break;
1796 case MSR_IA32_PERF_STATUS:
1797 /* TSC increment by tick */
1798 data = 1000ULL;
1799 /* CPU multiplier */
1800 data |= (((uint64_t)4ULL) << 40);
1801 break;
1802 case MSR_EFER:
1803 data = vcpu->arch.efer;
1804 break;
1805 case MSR_KVM_WALL_CLOCK:
1806 case MSR_KVM_WALL_CLOCK_NEW:
1807 data = vcpu->kvm->arch.wall_clock;
1808 break;
1809 case MSR_KVM_SYSTEM_TIME:
1810 case MSR_KVM_SYSTEM_TIME_NEW:
1811 data = vcpu->arch.time;
1812 break;
1813 case MSR_KVM_ASYNC_PF_EN:
1814 data = vcpu->arch.apf.msr_val;
1815 break;
1816 case MSR_IA32_P5_MC_ADDR:
1817 case MSR_IA32_P5_MC_TYPE:
1818 case MSR_IA32_MCG_CAP:
1819 case MSR_IA32_MCG_CTL:
1820 case MSR_IA32_MCG_STATUS:
1821 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1822 return get_msr_mce(vcpu, msr, pdata);
1823 case MSR_K7_CLK_CTL:
1824 /*
1825 * Provide expected ramp-up count for K7. All other
1826 * are set to zero, indicating minimum divisors for
1827 * every field.
1828 *
1829 * This prevents guest kernels on AMD host with CPU
1830 * type 6, model 8 and higher from exploding due to
1831 * the rdmsr failing.
1832 */
1833 data = 0x20000000;
1834 break;
1835 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1836 if (kvm_hv_msr_partition_wide(msr)) {
1837 int r;
1838 mutex_lock(&vcpu->kvm->lock);
1839 r = get_msr_hyperv_pw(vcpu, msr, pdata);
1840 mutex_unlock(&vcpu->kvm->lock);
1841 return r;
1842 } else
1843 return get_msr_hyperv(vcpu, msr, pdata);
1844 break;
1845 default:
1846 if (!ignore_msrs) {
1847 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1848 return 1;
1849 } else {
1850 pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1851 data = 0;
1852 }
1853 break;
1854 }
1855 *pdata = data;
1856 return 0;
1857 }
1858 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1859
1860 /*
1861 * Read or write a bunch of msrs. All parameters are kernel addresses.
1862 *
1863 * @return number of msrs set successfully.
1864 */
1865 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1866 struct kvm_msr_entry *entries,
1867 int (*do_msr)(struct kvm_vcpu *vcpu,
1868 unsigned index, u64 *data))
1869 {
1870 int i, idx;
1871
1872 idx = srcu_read_lock(&vcpu->kvm->srcu);
1873 for (i = 0; i < msrs->nmsrs; ++i)
1874 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1875 break;
1876 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1877
1878 return i;
1879 }
1880
1881 /*
1882 * Read or write a bunch of msrs. Parameters are user addresses.
1883 *
1884 * @return number of msrs set successfully.
1885 */
1886 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1887 int (*do_msr)(struct kvm_vcpu *vcpu,
1888 unsigned index, u64 *data),
1889 int writeback)
1890 {
1891 struct kvm_msrs msrs;
1892 struct kvm_msr_entry *entries;
1893 int r, n;
1894 unsigned size;
1895
1896 r = -EFAULT;
1897 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1898 goto out;
1899
1900 r = -E2BIG;
1901 if (msrs.nmsrs >= MAX_IO_MSRS)
1902 goto out;
1903
1904 r = -ENOMEM;
1905 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1906 entries = kmalloc(size, GFP_KERNEL);
1907 if (!entries)
1908 goto out;
1909
1910 r = -EFAULT;
1911 if (copy_from_user(entries, user_msrs->entries, size))
1912 goto out_free;
1913
1914 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1915 if (r < 0)
1916 goto out_free;
1917
1918 r = -EFAULT;
1919 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1920 goto out_free;
1921
1922 r = n;
1923
1924 out_free:
1925 kfree(entries);
1926 out:
1927 return r;
1928 }
1929
1930 int kvm_dev_ioctl_check_extension(long ext)
1931 {
1932 int r;
1933
1934 switch (ext) {
1935 case KVM_CAP_IRQCHIP:
1936 case KVM_CAP_HLT:
1937 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1938 case KVM_CAP_SET_TSS_ADDR:
1939 case KVM_CAP_EXT_CPUID:
1940 case KVM_CAP_CLOCKSOURCE:
1941 case KVM_CAP_PIT:
1942 case KVM_CAP_NOP_IO_DELAY:
1943 case KVM_CAP_MP_STATE:
1944 case KVM_CAP_SYNC_MMU:
1945 case KVM_CAP_REINJECT_CONTROL:
1946 case KVM_CAP_IRQ_INJECT_STATUS:
1947 case KVM_CAP_ASSIGN_DEV_IRQ:
1948 case KVM_CAP_IRQFD:
1949 case KVM_CAP_IOEVENTFD:
1950 case KVM_CAP_PIT2:
1951 case KVM_CAP_PIT_STATE2:
1952 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1953 case KVM_CAP_XEN_HVM:
1954 case KVM_CAP_ADJUST_CLOCK:
1955 case KVM_CAP_VCPU_EVENTS:
1956 case KVM_CAP_HYPERV:
1957 case KVM_CAP_HYPERV_VAPIC:
1958 case KVM_CAP_HYPERV_SPIN:
1959 case KVM_CAP_PCI_SEGMENT:
1960 case KVM_CAP_DEBUGREGS:
1961 case KVM_CAP_X86_ROBUST_SINGLESTEP:
1962 case KVM_CAP_XSAVE:
1963 case KVM_CAP_ASYNC_PF:
1964 r = 1;
1965 break;
1966 case KVM_CAP_COALESCED_MMIO:
1967 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1968 break;
1969 case KVM_CAP_VAPIC:
1970 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1971 break;
1972 case KVM_CAP_NR_VCPUS:
1973 r = KVM_MAX_VCPUS;
1974 break;
1975 case KVM_CAP_NR_MEMSLOTS:
1976 r = KVM_MEMORY_SLOTS;
1977 break;
1978 case KVM_CAP_PV_MMU: /* obsolete */
1979 r = 0;
1980 break;
1981 case KVM_CAP_IOMMU:
1982 r = iommu_found();
1983 break;
1984 case KVM_CAP_MCE:
1985 r = KVM_MAX_MCE_BANKS;
1986 break;
1987 case KVM_CAP_XCRS:
1988 r = cpu_has_xsave;
1989 break;
1990 default:
1991 r = 0;
1992 break;
1993 }
1994 return r;
1995
1996 }
1997
1998 long kvm_arch_dev_ioctl(struct file *filp,
1999 unsigned int ioctl, unsigned long arg)
2000 {
2001 void __user *argp = (void __user *)arg;
2002 long r;
2003
2004 switch (ioctl) {
2005 case KVM_GET_MSR_INDEX_LIST: {
2006 struct kvm_msr_list __user *user_msr_list = argp;
2007 struct kvm_msr_list msr_list;
2008 unsigned n;
2009
2010 r = -EFAULT;
2011 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2012 goto out;
2013 n = msr_list.nmsrs;
2014 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2015 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2016 goto out;
2017 r = -E2BIG;
2018 if (n < msr_list.nmsrs)
2019 goto out;
2020 r = -EFAULT;
2021 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2022 num_msrs_to_save * sizeof(u32)))
2023 goto out;
2024 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2025 &emulated_msrs,
2026 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2027 goto out;
2028 r = 0;
2029 break;
2030 }
2031 case KVM_GET_SUPPORTED_CPUID: {
2032 struct kvm_cpuid2 __user *cpuid_arg = argp;
2033 struct kvm_cpuid2 cpuid;
2034
2035 r = -EFAULT;
2036 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2037 goto out;
2038 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2039 cpuid_arg->entries);
2040 if (r)
2041 goto out;
2042
2043 r = -EFAULT;
2044 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2045 goto out;
2046 r = 0;
2047 break;
2048 }
2049 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2050 u64 mce_cap;
2051
2052 mce_cap = KVM_MCE_CAP_SUPPORTED;
2053 r = -EFAULT;
2054 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2055 goto out;
2056 r = 0;
2057 break;
2058 }
2059 default:
2060 r = -EINVAL;
2061 }
2062 out:
2063 return r;
2064 }
2065
2066 static void wbinvd_ipi(void *garbage)
2067 {
2068 wbinvd();
2069 }
2070
2071 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2072 {
2073 return vcpu->kvm->arch.iommu_domain &&
2074 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2075 }
2076
2077 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2078 {
2079 /* Address WBINVD may be executed by guest */
2080 if (need_emulate_wbinvd(vcpu)) {
2081 if (kvm_x86_ops->has_wbinvd_exit())
2082 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2083 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2084 smp_call_function_single(vcpu->cpu,
2085 wbinvd_ipi, NULL, 1);
2086 }
2087
2088 kvm_x86_ops->vcpu_load(vcpu, cpu);
2089 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2090 /* Make sure TSC doesn't go backwards */
2091 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2092 native_read_tsc() - vcpu->arch.last_host_tsc;
2093 if (tsc_delta < 0)
2094 mark_tsc_unstable("KVM discovered backwards TSC");
2095 if (check_tsc_unstable()) {
2096 kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
2097 vcpu->arch.tsc_catchup = 1;
2098 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2099 }
2100 if (vcpu->cpu != cpu)
2101 kvm_migrate_timers(vcpu);
2102 vcpu->cpu = cpu;
2103 }
2104 }
2105
2106 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2107 {
2108 kvm_x86_ops->vcpu_put(vcpu);
2109 kvm_put_guest_fpu(vcpu);
2110 vcpu->arch.last_host_tsc = native_read_tsc();
2111 }
2112
2113 static int is_efer_nx(void)
2114 {
2115 unsigned long long efer = 0;
2116
2117 rdmsrl_safe(MSR_EFER, &efer);
2118 return efer & EFER_NX;
2119 }
2120
2121 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2122 {
2123 int i;
2124 struct kvm_cpuid_entry2 *e, *entry;
2125
2126 entry = NULL;
2127 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2128 e = &vcpu->arch.cpuid_entries[i];
2129 if (e->function == 0x80000001) {
2130 entry = e;
2131 break;
2132 }
2133 }
2134 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
2135 entry->edx &= ~(1 << 20);
2136 printk(KERN_INFO "kvm: guest NX capability removed\n");
2137 }
2138 }
2139
2140 /* when an old userspace process fills a new kernel module */
2141 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2142 struct kvm_cpuid *cpuid,
2143 struct kvm_cpuid_entry __user *entries)
2144 {
2145 int r, i;
2146 struct kvm_cpuid_entry *cpuid_entries;
2147
2148 r = -E2BIG;
2149 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2150 goto out;
2151 r = -ENOMEM;
2152 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
2153 if (!cpuid_entries)
2154 goto out;
2155 r = -EFAULT;
2156 if (copy_from_user(cpuid_entries, entries,
2157 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2158 goto out_free;
2159 for (i = 0; i < cpuid->nent; i++) {
2160 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
2161 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
2162 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
2163 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
2164 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
2165 vcpu->arch.cpuid_entries[i].index = 0;
2166 vcpu->arch.cpuid_entries[i].flags = 0;
2167 vcpu->arch.cpuid_entries[i].padding[0] = 0;
2168 vcpu->arch.cpuid_entries[i].padding[1] = 0;
2169 vcpu->arch.cpuid_entries[i].padding[2] = 0;
2170 }
2171 vcpu->arch.cpuid_nent = cpuid->nent;
2172 cpuid_fix_nx_cap(vcpu);
2173 r = 0;
2174 kvm_apic_set_version(vcpu);
2175 kvm_x86_ops->cpuid_update(vcpu);
2176 update_cpuid(vcpu);
2177
2178 out_free:
2179 vfree(cpuid_entries);
2180 out:
2181 return r;
2182 }
2183
2184 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
2185 struct kvm_cpuid2 *cpuid,
2186 struct kvm_cpuid_entry2 __user *entries)
2187 {
2188 int r;
2189
2190 r = -E2BIG;
2191 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2192 goto out;
2193 r = -EFAULT;
2194 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
2195 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
2196 goto out;
2197 vcpu->arch.cpuid_nent = cpuid->nent;
2198 kvm_apic_set_version(vcpu);
2199 kvm_x86_ops->cpuid_update(vcpu);
2200 update_cpuid(vcpu);
2201 return 0;
2202
2203 out:
2204 return r;
2205 }
2206
2207 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
2208 struct kvm_cpuid2 *cpuid,
2209 struct kvm_cpuid_entry2 __user *entries)
2210 {
2211 int r;
2212
2213 r = -E2BIG;
2214 if (cpuid->nent < vcpu->arch.cpuid_nent)
2215 goto out;
2216 r = -EFAULT;
2217 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
2218 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
2219 goto out;
2220 return 0;
2221
2222 out:
2223 cpuid->nent = vcpu->arch.cpuid_nent;
2224 return r;
2225 }
2226
2227 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2228 u32 index)
2229 {
2230 entry->function = function;
2231 entry->index = index;
2232 cpuid_count(entry->function, entry->index,
2233 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
2234 entry->flags = 0;
2235 }
2236
2237 #define F(x) bit(X86_FEATURE_##x)
2238
2239 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2240 u32 index, int *nent, int maxnent)
2241 {
2242 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
2243 #ifdef CONFIG_X86_64
2244 unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
2245 ? F(GBPAGES) : 0;
2246 unsigned f_lm = F(LM);
2247 #else
2248 unsigned f_gbpages = 0;
2249 unsigned f_lm = 0;
2250 #endif
2251 unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
2252
2253 /* cpuid 1.edx */
2254 const u32 kvm_supported_word0_x86_features =
2255 F(FPU) | F(VME) | F(DE) | F(PSE) |
2256 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2257 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
2258 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2259 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
2260 0 /* Reserved, DS, ACPI */ | F(MMX) |
2261 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
2262 0 /* HTT, TM, Reserved, PBE */;
2263 /* cpuid 0x80000001.edx */
2264 const u32 kvm_supported_word1_x86_features =
2265 F(FPU) | F(VME) | F(DE) | F(PSE) |
2266 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2267 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
2268 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2269 F(PAT) | F(PSE36) | 0 /* Reserved */ |
2270 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
2271 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
2272 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
2273 /* cpuid 1.ecx */
2274 const u32 kvm_supported_word4_x86_features =
2275 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
2276 0 /* DS-CPL, VMX, SMX, EST */ |
2277 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
2278 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
2279 0 /* Reserved, DCA */ | F(XMM4_1) |
2280 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
2281 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
2282 F(F16C);
2283 /* cpuid 0x80000001.ecx */
2284 const u32 kvm_supported_word6_x86_features =
2285 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
2286 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
2287 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP) |
2288 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
2289
2290 /* all calls to cpuid_count() should be made on the same cpu */
2291 get_cpu();
2292 do_cpuid_1_ent(entry, function, index);
2293 ++*nent;
2294
2295 switch (function) {
2296 case 0:
2297 entry->eax = min(entry->eax, (u32)0xd);
2298 break;
2299 case 1:
2300 entry->edx &= kvm_supported_word0_x86_features;
2301 entry->ecx &= kvm_supported_word4_x86_features;
2302 /* we support x2apic emulation even if host does not support
2303 * it since we emulate x2apic in software */
2304 entry->ecx |= F(X2APIC);
2305 break;
2306 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
2307 * may return different values. This forces us to get_cpu() before
2308 * issuing the first command, and also to emulate this annoying behavior
2309 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
2310 case 2: {
2311 int t, times = entry->eax & 0xff;
2312
2313 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2314 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2315 for (t = 1; t < times && *nent < maxnent; ++t) {
2316 do_cpuid_1_ent(&entry[t], function, 0);
2317 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2318 ++*nent;
2319 }
2320 break;
2321 }
2322 /* function 4 and 0xb have additional index. */
2323 case 4: {
2324 int i, cache_type;
2325
2326 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2327 /* read more entries until cache_type is zero */
2328 for (i = 1; *nent < maxnent; ++i) {
2329 cache_type = entry[i - 1].eax & 0x1f;
2330 if (!cache_type)
2331 break;
2332 do_cpuid_1_ent(&entry[i], function, i);
2333 entry[i].flags |=
2334 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2335 ++*nent;
2336 }
2337 break;
2338 }
2339 case 0xb: {
2340 int i, level_type;
2341
2342 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2343 /* read more entries until level_type is zero */
2344 for (i = 1; *nent < maxnent; ++i) {
2345 level_type = entry[i - 1].ecx & 0xff00;
2346 if (!level_type)
2347 break;
2348 do_cpuid_1_ent(&entry[i], function, i);
2349 entry[i].flags |=
2350 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2351 ++*nent;
2352 }
2353 break;
2354 }
2355 case 0xd: {
2356 int i;
2357
2358 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2359 for (i = 1; *nent < maxnent; ++i) {
2360 if (entry[i - 1].eax == 0 && i != 2)
2361 break;
2362 do_cpuid_1_ent(&entry[i], function, i);
2363 entry[i].flags |=
2364 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2365 ++*nent;
2366 }
2367 break;
2368 }
2369 case KVM_CPUID_SIGNATURE: {
2370 char signature[12] = "KVMKVMKVM\0\0";
2371 u32 *sigptr = (u32 *)signature;
2372 entry->eax = 0;
2373 entry->ebx = sigptr[0];
2374 entry->ecx = sigptr[1];
2375 entry->edx = sigptr[2];
2376 break;
2377 }
2378 case KVM_CPUID_FEATURES:
2379 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
2380 (1 << KVM_FEATURE_NOP_IO_DELAY) |
2381 (1 << KVM_FEATURE_CLOCKSOURCE2) |
2382 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
2383 entry->ebx = 0;
2384 entry->ecx = 0;
2385 entry->edx = 0;
2386 break;
2387 case 0x80000000:
2388 entry->eax = min(entry->eax, 0x8000001a);
2389 break;
2390 case 0x80000001:
2391 entry->edx &= kvm_supported_word1_x86_features;
2392 entry->ecx &= kvm_supported_word6_x86_features;
2393 break;
2394 }
2395
2396 kvm_x86_ops->set_supported_cpuid(function, entry);
2397
2398 put_cpu();
2399 }
2400
2401 #undef F
2402
2403 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
2404 struct kvm_cpuid_entry2 __user *entries)
2405 {
2406 struct kvm_cpuid_entry2 *cpuid_entries;
2407 int limit, nent = 0, r = -E2BIG;
2408 u32 func;
2409
2410 if (cpuid->nent < 1)
2411 goto out;
2412 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2413 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
2414 r = -ENOMEM;
2415 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
2416 if (!cpuid_entries)
2417 goto out;
2418
2419 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
2420 limit = cpuid_entries[0].eax;
2421 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
2422 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2423 &nent, cpuid->nent);
2424 r = -E2BIG;
2425 if (nent >= cpuid->nent)
2426 goto out_free;
2427
2428 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
2429 limit = cpuid_entries[nent - 1].eax;
2430 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
2431 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2432 &nent, cpuid->nent);
2433
2434
2435
2436 r = -E2BIG;
2437 if (nent >= cpuid->nent)
2438 goto out_free;
2439
2440 do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
2441 cpuid->nent);
2442
2443 r = -E2BIG;
2444 if (nent >= cpuid->nent)
2445 goto out_free;
2446
2447 do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
2448 cpuid->nent);
2449
2450 r = -E2BIG;
2451 if (nent >= cpuid->nent)
2452 goto out_free;
2453
2454 r = -EFAULT;
2455 if (copy_to_user(entries, cpuid_entries,
2456 nent * sizeof(struct kvm_cpuid_entry2)))
2457 goto out_free;
2458 cpuid->nent = nent;
2459 r = 0;
2460
2461 out_free:
2462 vfree(cpuid_entries);
2463 out:
2464 return r;
2465 }
2466
2467 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2468 struct kvm_lapic_state *s)
2469 {
2470 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2471
2472 return 0;
2473 }
2474
2475 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2476 struct kvm_lapic_state *s)
2477 {
2478 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2479 kvm_apic_post_state_restore(vcpu);
2480 update_cr8_intercept(vcpu);
2481
2482 return 0;
2483 }
2484
2485 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2486 struct kvm_interrupt *irq)
2487 {
2488 if (irq->irq < 0 || irq->irq >= 256)
2489 return -EINVAL;
2490 if (irqchip_in_kernel(vcpu->kvm))
2491 return -ENXIO;
2492
2493 kvm_queue_interrupt(vcpu, irq->irq, false);
2494 kvm_make_request(KVM_REQ_EVENT, vcpu);
2495
2496 return 0;
2497 }
2498
2499 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2500 {
2501 kvm_inject_nmi(vcpu);
2502
2503 return 0;
2504 }
2505
2506 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2507 struct kvm_tpr_access_ctl *tac)
2508 {
2509 if (tac->flags)
2510 return -EINVAL;
2511 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2512 return 0;
2513 }
2514
2515 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2516 u64 mcg_cap)
2517 {
2518 int r;
2519 unsigned bank_num = mcg_cap & 0xff, bank;
2520
2521 r = -EINVAL;
2522 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2523 goto out;
2524 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2525 goto out;
2526 r = 0;
2527 vcpu->arch.mcg_cap = mcg_cap;
2528 /* Init IA32_MCG_CTL to all 1s */
2529 if (mcg_cap & MCG_CTL_P)
2530 vcpu->arch.mcg_ctl = ~(u64)0;
2531 /* Init IA32_MCi_CTL to all 1s */
2532 for (bank = 0; bank < bank_num; bank++)
2533 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2534 out:
2535 return r;
2536 }
2537
2538 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2539 struct kvm_x86_mce *mce)
2540 {
2541 u64 mcg_cap = vcpu->arch.mcg_cap;
2542 unsigned bank_num = mcg_cap & 0xff;
2543 u64 *banks = vcpu->arch.mce_banks;
2544
2545 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2546 return -EINVAL;
2547 /*
2548 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2549 * reporting is disabled
2550 */
2551 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2552 vcpu->arch.mcg_ctl != ~(u64)0)
2553 return 0;
2554 banks += 4 * mce->bank;
2555 /*
2556 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2557 * reporting is disabled for the bank
2558 */
2559 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2560 return 0;
2561 if (mce->status & MCI_STATUS_UC) {
2562 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2563 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2564 printk(KERN_DEBUG "kvm: set_mce: "
2565 "injects mce exception while "
2566 "previous one is in progress!\n");
2567 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2568 return 0;
2569 }
2570 if (banks[1] & MCI_STATUS_VAL)
2571 mce->status |= MCI_STATUS_OVER;
2572 banks[2] = mce->addr;
2573 banks[3] = mce->misc;
2574 vcpu->arch.mcg_status = mce->mcg_status;
2575 banks[1] = mce->status;
2576 kvm_queue_exception(vcpu, MC_VECTOR);
2577 } else if (!(banks[1] & MCI_STATUS_VAL)
2578 || !(banks[1] & MCI_STATUS_UC)) {
2579 if (banks[1] & MCI_STATUS_VAL)
2580 mce->status |= MCI_STATUS_OVER;
2581 banks[2] = mce->addr;
2582 banks[3] = mce->misc;
2583 banks[1] = mce->status;
2584 } else
2585 banks[1] |= MCI_STATUS_OVER;
2586 return 0;
2587 }
2588
2589 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2590 struct kvm_vcpu_events *events)
2591 {
2592 events->exception.injected =
2593 vcpu->arch.exception.pending &&
2594 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2595 events->exception.nr = vcpu->arch.exception.nr;
2596 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2597 events->exception.pad = 0;
2598 events->exception.error_code = vcpu->arch.exception.error_code;
2599
2600 events->interrupt.injected =
2601 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2602 events->interrupt.nr = vcpu->arch.interrupt.nr;
2603 events->interrupt.soft = 0;
2604 events->interrupt.shadow =
2605 kvm_x86_ops->get_interrupt_shadow(vcpu,
2606 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2607
2608 events->nmi.injected = vcpu->arch.nmi_injected;
2609 events->nmi.pending = vcpu->arch.nmi_pending;
2610 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2611 events->nmi.pad = 0;
2612
2613 events->sipi_vector = vcpu->arch.sipi_vector;
2614
2615 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2616 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2617 | KVM_VCPUEVENT_VALID_SHADOW);
2618 memset(&events->reserved, 0, sizeof(events->reserved));
2619 }
2620
2621 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2622 struct kvm_vcpu_events *events)
2623 {
2624 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2625 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2626 | KVM_VCPUEVENT_VALID_SHADOW))
2627 return -EINVAL;
2628
2629 vcpu->arch.exception.pending = events->exception.injected;
2630 vcpu->arch.exception.nr = events->exception.nr;
2631 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2632 vcpu->arch.exception.error_code = events->exception.error_code;
2633
2634 vcpu->arch.interrupt.pending = events->interrupt.injected;
2635 vcpu->arch.interrupt.nr = events->interrupt.nr;
2636 vcpu->arch.interrupt.soft = events->interrupt.soft;
2637 if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
2638 kvm_pic_clear_isr_ack(vcpu->kvm);
2639 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2640 kvm_x86_ops->set_interrupt_shadow(vcpu,
2641 events->interrupt.shadow);
2642
2643 vcpu->arch.nmi_injected = events->nmi.injected;
2644 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2645 vcpu->arch.nmi_pending = events->nmi.pending;
2646 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2647
2648 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2649 vcpu->arch.sipi_vector = events->sipi_vector;
2650
2651 kvm_make_request(KVM_REQ_EVENT, vcpu);
2652
2653 return 0;
2654 }
2655
2656 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2657 struct kvm_debugregs *dbgregs)
2658 {
2659 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2660 dbgregs->dr6 = vcpu->arch.dr6;
2661 dbgregs->dr7 = vcpu->arch.dr7;
2662 dbgregs->flags = 0;
2663 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2664 }
2665
2666 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2667 struct kvm_debugregs *dbgregs)
2668 {
2669 if (dbgregs->flags)
2670 return -EINVAL;
2671
2672 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2673 vcpu->arch.dr6 = dbgregs->dr6;
2674 vcpu->arch.dr7 = dbgregs->dr7;
2675
2676 return 0;
2677 }
2678
2679 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2680 struct kvm_xsave *guest_xsave)
2681 {
2682 if (cpu_has_xsave)
2683 memcpy(guest_xsave->region,
2684 &vcpu->arch.guest_fpu.state->xsave,
2685 xstate_size);
2686 else {
2687 memcpy(guest_xsave->region,
2688 &vcpu->arch.guest_fpu.state->fxsave,
2689 sizeof(struct i387_fxsave_struct));
2690 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2691 XSTATE_FPSSE;
2692 }
2693 }
2694
2695 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2696 struct kvm_xsave *guest_xsave)
2697 {
2698 u64 xstate_bv =
2699 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2700
2701 if (cpu_has_xsave)
2702 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2703 guest_xsave->region, xstate_size);
2704 else {
2705 if (xstate_bv & ~XSTATE_FPSSE)
2706 return -EINVAL;
2707 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2708 guest_xsave->region, sizeof(struct i387_fxsave_struct));
2709 }
2710 return 0;
2711 }
2712
2713 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2714 struct kvm_xcrs *guest_xcrs)
2715 {
2716 if (!cpu_has_xsave) {
2717 guest_xcrs->nr_xcrs = 0;
2718 return;
2719 }
2720
2721 guest_xcrs->nr_xcrs = 1;
2722 guest_xcrs->flags = 0;
2723 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2724 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2725 }
2726
2727 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2728 struct kvm_xcrs *guest_xcrs)
2729 {
2730 int i, r = 0;
2731
2732 if (!cpu_has_xsave)
2733 return -EINVAL;
2734
2735 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2736 return -EINVAL;
2737
2738 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2739 /* Only support XCR0 currently */
2740 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2741 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2742 guest_xcrs->xcrs[0].value);
2743 break;
2744 }
2745 if (r)
2746 r = -EINVAL;
2747 return r;
2748 }
2749
2750 long kvm_arch_vcpu_ioctl(struct file *filp,
2751 unsigned int ioctl, unsigned long arg)
2752 {
2753 struct kvm_vcpu *vcpu = filp->private_data;
2754 void __user *argp = (void __user *)arg;
2755 int r;
2756 union {
2757 struct kvm_lapic_state *lapic;
2758 struct kvm_xsave *xsave;
2759 struct kvm_xcrs *xcrs;
2760 void *buffer;
2761 } u;
2762
2763 u.buffer = NULL;
2764 switch (ioctl) {
2765 case KVM_GET_LAPIC: {
2766 r = -EINVAL;
2767 if (!vcpu->arch.apic)
2768 goto out;
2769 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2770
2771 r = -ENOMEM;
2772 if (!u.lapic)
2773 goto out;
2774 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2775 if (r)
2776 goto out;
2777 r = -EFAULT;
2778 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2779 goto out;
2780 r = 0;
2781 break;
2782 }
2783 case KVM_SET_LAPIC: {
2784 r = -EINVAL;
2785 if (!vcpu->arch.apic)
2786 goto out;
2787 u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2788 r = -ENOMEM;
2789 if (!u.lapic)
2790 goto out;
2791 r = -EFAULT;
2792 if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
2793 goto out;
2794 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2795 if (r)
2796 goto out;
2797 r = 0;
2798 break;
2799 }
2800 case KVM_INTERRUPT: {
2801 struct kvm_interrupt irq;
2802
2803 r = -EFAULT;
2804 if (copy_from_user(&irq, argp, sizeof irq))
2805 goto out;
2806 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2807 if (r)
2808 goto out;
2809 r = 0;
2810 break;
2811 }
2812 case KVM_NMI: {
2813 r = kvm_vcpu_ioctl_nmi(vcpu);
2814 if (r)
2815 goto out;
2816 r = 0;
2817 break;
2818 }
2819 case KVM_SET_CPUID: {
2820 struct kvm_cpuid __user *cpuid_arg = argp;
2821 struct kvm_cpuid cpuid;
2822
2823 r = -EFAULT;
2824 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2825 goto out;
2826 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2827 if (r)
2828 goto out;
2829 break;
2830 }
2831 case KVM_SET_CPUID2: {
2832 struct kvm_cpuid2 __user *cpuid_arg = argp;
2833 struct kvm_cpuid2 cpuid;
2834
2835 r = -EFAULT;
2836 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2837 goto out;
2838 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2839 cpuid_arg->entries);
2840 if (r)
2841 goto out;
2842 break;
2843 }
2844 case KVM_GET_CPUID2: {
2845 struct kvm_cpuid2 __user *cpuid_arg = argp;
2846 struct kvm_cpuid2 cpuid;
2847
2848 r = -EFAULT;
2849 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2850 goto out;
2851 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2852 cpuid_arg->entries);
2853 if (r)
2854 goto out;
2855 r = -EFAULT;
2856 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2857 goto out;
2858 r = 0;
2859 break;
2860 }
2861 case KVM_GET_MSRS:
2862 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2863 break;
2864 case KVM_SET_MSRS:
2865 r = msr_io(vcpu, argp, do_set_msr, 0);
2866 break;
2867 case KVM_TPR_ACCESS_REPORTING: {
2868 struct kvm_tpr_access_ctl tac;
2869
2870 r = -EFAULT;
2871 if (copy_from_user(&tac, argp, sizeof tac))
2872 goto out;
2873 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2874 if (r)
2875 goto out;
2876 r = -EFAULT;
2877 if (copy_to_user(argp, &tac, sizeof tac))
2878 goto out;
2879 r = 0;
2880 break;
2881 };
2882 case KVM_SET_VAPIC_ADDR: {
2883 struct kvm_vapic_addr va;
2884
2885 r = -EINVAL;
2886 if (!irqchip_in_kernel(vcpu->kvm))
2887 goto out;
2888 r = -EFAULT;
2889 if (copy_from_user(&va, argp, sizeof va))
2890 goto out;
2891 r = 0;
2892 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2893 break;
2894 }
2895 case KVM_X86_SETUP_MCE: {
2896 u64 mcg_cap;
2897
2898 r = -EFAULT;
2899 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2900 goto out;
2901 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2902 break;
2903 }
2904 case KVM_X86_SET_MCE: {
2905 struct kvm_x86_mce mce;
2906
2907 r = -EFAULT;
2908 if (copy_from_user(&mce, argp, sizeof mce))
2909 goto out;
2910 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2911 break;
2912 }
2913 case KVM_GET_VCPU_EVENTS: {
2914 struct kvm_vcpu_events events;
2915
2916 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2917
2918 r = -EFAULT;
2919 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2920 break;
2921 r = 0;
2922 break;
2923 }
2924 case KVM_SET_VCPU_EVENTS: {
2925 struct kvm_vcpu_events events;
2926
2927 r = -EFAULT;
2928 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2929 break;
2930
2931 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2932 break;
2933 }
2934 case KVM_GET_DEBUGREGS: {
2935 struct kvm_debugregs dbgregs;
2936
2937 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2938
2939 r = -EFAULT;
2940 if (copy_to_user(argp, &dbgregs,
2941 sizeof(struct kvm_debugregs)))
2942 break;
2943 r = 0;
2944 break;
2945 }
2946 case KVM_SET_DEBUGREGS: {
2947 struct kvm_debugregs dbgregs;
2948
2949 r = -EFAULT;
2950 if (copy_from_user(&dbgregs, argp,
2951 sizeof(struct kvm_debugregs)))
2952 break;
2953
2954 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2955 break;
2956 }
2957 case KVM_GET_XSAVE: {
2958 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2959 r = -ENOMEM;
2960 if (!u.xsave)
2961 break;
2962
2963 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2964
2965 r = -EFAULT;
2966 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2967 break;
2968 r = 0;
2969 break;
2970 }
2971 case KVM_SET_XSAVE: {
2972 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2973 r = -ENOMEM;
2974 if (!u.xsave)
2975 break;
2976
2977 r = -EFAULT;
2978 if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
2979 break;
2980
2981 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2982 break;
2983 }
2984 case KVM_GET_XCRS: {
2985 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2986 r = -ENOMEM;
2987 if (!u.xcrs)
2988 break;
2989
2990 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
2991
2992 r = -EFAULT;
2993 if (copy_to_user(argp, u.xcrs,
2994 sizeof(struct kvm_xcrs)))
2995 break;
2996 r = 0;
2997 break;
2998 }
2999 case KVM_SET_XCRS: {
3000 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3001 r = -ENOMEM;
3002 if (!u.xcrs)
3003 break;
3004
3005 r = -EFAULT;
3006 if (copy_from_user(u.xcrs, argp,
3007 sizeof(struct kvm_xcrs)))
3008 break;
3009
3010 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3011 break;
3012 }
3013 default:
3014 r = -EINVAL;
3015 }
3016 out:
3017 kfree(u.buffer);
3018 return r;
3019 }
3020
3021 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3022 {
3023 int ret;
3024
3025 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3026 return -1;
3027 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3028 return ret;
3029 }
3030
3031 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3032 u64 ident_addr)
3033 {
3034 kvm->arch.ept_identity_map_addr = ident_addr;
3035 return 0;
3036 }
3037
3038 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3039 u32 kvm_nr_mmu_pages)
3040 {
3041 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3042 return -EINVAL;
3043
3044 mutex_lock(&kvm->slots_lock);
3045 spin_lock(&kvm->mmu_lock);
3046
3047 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3048 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3049
3050 spin_unlock(&kvm->mmu_lock);
3051 mutex_unlock(&kvm->slots_lock);
3052 return 0;
3053 }
3054
3055 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3056 {
3057 return kvm->arch.n_max_mmu_pages;
3058 }
3059
3060 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3061 {
3062 int r;
3063
3064 r = 0;
3065 switch (chip->chip_id) {
3066 case KVM_IRQCHIP_PIC_MASTER:
3067 memcpy(&chip->chip.pic,
3068 &pic_irqchip(kvm)->pics[0],
3069 sizeof(struct kvm_pic_state));
3070 break;
3071 case KVM_IRQCHIP_PIC_SLAVE:
3072 memcpy(&chip->chip.pic,
3073 &pic_irqchip(kvm)->pics[1],
3074 sizeof(struct kvm_pic_state));
3075 break;
3076 case KVM_IRQCHIP_IOAPIC:
3077 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3078 break;
3079 default:
3080 r = -EINVAL;
3081 break;
3082 }
3083 return r;
3084 }
3085
3086 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3087 {
3088 int r;
3089
3090 r = 0;
3091 switch (chip->chip_id) {
3092 case KVM_IRQCHIP_PIC_MASTER:
3093 spin_lock(&pic_irqchip(kvm)->lock);
3094 memcpy(&pic_irqchip(kvm)->pics[0],
3095 &chip->chip.pic,
3096 sizeof(struct kvm_pic_state));
3097 spin_unlock(&pic_irqchip(kvm)->lock);
3098 break;
3099 case KVM_IRQCHIP_PIC_SLAVE:
3100 spin_lock(&pic_irqchip(kvm)->lock);
3101 memcpy(&pic_irqchip(kvm)->pics[1],
3102 &chip->chip.pic,
3103 sizeof(struct kvm_pic_state));
3104 spin_unlock(&pic_irqchip(kvm)->lock);
3105 break;
3106 case KVM_IRQCHIP_IOAPIC:
3107 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3108 break;
3109 default:
3110 r = -EINVAL;
3111 break;
3112 }
3113 kvm_pic_update_irq(pic_irqchip(kvm));
3114 return r;
3115 }
3116
3117 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3118 {
3119 int r = 0;
3120
3121 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3122 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3123 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3124 return r;
3125 }
3126
3127 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3128 {
3129 int r = 0;
3130
3131 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3132 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3133 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3134 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3135 return r;
3136 }
3137
3138 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3139 {
3140 int r = 0;
3141
3142 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3143 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3144 sizeof(ps->channels));
3145 ps->flags = kvm->arch.vpit->pit_state.flags;
3146 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3147 memset(&ps->reserved, 0, sizeof(ps->reserved));
3148 return r;
3149 }
3150
3151 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3152 {
3153 int r = 0, start = 0;
3154 u32 prev_legacy, cur_legacy;
3155 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3156 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3157 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3158 if (!prev_legacy && cur_legacy)
3159 start = 1;
3160 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3161 sizeof(kvm->arch.vpit->pit_state.channels));
3162 kvm->arch.vpit->pit_state.flags = ps->flags;
3163 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3164 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3165 return r;
3166 }
3167
3168 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3169 struct kvm_reinject_control *control)
3170 {
3171 if (!kvm->arch.vpit)
3172 return -ENXIO;
3173 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3174 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
3175 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3176 return 0;
3177 }
3178
3179 /*
3180 * Get (and clear) the dirty memory log for a memory slot.
3181 */
3182 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
3183 struct kvm_dirty_log *log)
3184 {
3185 int r, i;
3186 struct kvm_memory_slot *memslot;
3187 unsigned long n;
3188 unsigned long is_dirty = 0;
3189
3190 mutex_lock(&kvm->slots_lock);
3191
3192 r = -EINVAL;
3193 if (log->slot >= KVM_MEMORY_SLOTS)
3194 goto out;
3195
3196 memslot = &kvm->memslots->memslots[log->slot];
3197 r = -ENOENT;
3198 if (!memslot->dirty_bitmap)
3199 goto out;
3200
3201 n = kvm_dirty_bitmap_bytes(memslot);
3202
3203 for (i = 0; !is_dirty && i < n/sizeof(long); i++)
3204 is_dirty = memslot->dirty_bitmap[i];
3205
3206 /* If nothing is dirty, don't bother messing with page tables. */
3207 if (is_dirty) {
3208 struct kvm_memslots *slots, *old_slots;
3209 unsigned long *dirty_bitmap;
3210
3211 dirty_bitmap = memslot->dirty_bitmap_head;
3212 if (memslot->dirty_bitmap == dirty_bitmap)
3213 dirty_bitmap += n / sizeof(long);
3214 memset(dirty_bitmap, 0, n);
3215
3216 r = -ENOMEM;
3217 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
3218 if (!slots)
3219 goto out;
3220 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
3221 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
3222 slots->generation++;
3223
3224 old_slots = kvm->memslots;
3225 rcu_assign_pointer(kvm->memslots, slots);
3226 synchronize_srcu_expedited(&kvm->srcu);
3227 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
3228 kfree(old_slots);
3229
3230 spin_lock(&kvm->mmu_lock);
3231 kvm_mmu_slot_remove_write_access(kvm, log->slot);
3232 spin_unlock(&kvm->mmu_lock);
3233
3234 r = -EFAULT;
3235 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
3236 goto out;
3237 } else {
3238 r = -EFAULT;
3239 if (clear_user(log->dirty_bitmap, n))
3240 goto out;
3241 }
3242
3243 r = 0;
3244 out:
3245 mutex_unlock(&kvm->slots_lock);
3246 return r;
3247 }
3248
3249 long kvm_arch_vm_ioctl(struct file *filp,
3250 unsigned int ioctl, unsigned long arg)
3251 {
3252 struct kvm *kvm = filp->private_data;
3253 void __user *argp = (void __user *)arg;
3254 int r = -ENOTTY;
3255 /*
3256 * This union makes it completely explicit to gcc-3.x
3257 * that these two variables' stack usage should be
3258 * combined, not added together.
3259 */
3260 union {
3261 struct kvm_pit_state ps;
3262 struct kvm_pit_state2 ps2;
3263 struct kvm_pit_config pit_config;
3264 } u;
3265
3266 switch (ioctl) {
3267 case KVM_SET_TSS_ADDR:
3268 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3269 if (r < 0)
3270 goto out;
3271 break;
3272 case KVM_SET_IDENTITY_MAP_ADDR: {
3273 u64 ident_addr;
3274
3275 r = -EFAULT;
3276 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3277 goto out;
3278 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3279 if (r < 0)
3280 goto out;
3281 break;
3282 }
3283 case KVM_SET_NR_MMU_PAGES:
3284 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3285 if (r)
3286 goto out;
3287 break;
3288 case KVM_GET_NR_MMU_PAGES:
3289 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3290 break;
3291 case KVM_CREATE_IRQCHIP: {
3292 struct kvm_pic *vpic;
3293
3294 mutex_lock(&kvm->lock);
3295 r = -EEXIST;
3296 if (kvm->arch.vpic)
3297 goto create_irqchip_unlock;
3298 r = -ENOMEM;
3299 vpic = kvm_create_pic(kvm);
3300 if (vpic) {
3301 r = kvm_ioapic_init(kvm);
3302 if (r) {
3303 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3304 &vpic->dev);
3305 kfree(vpic);
3306 goto create_irqchip_unlock;
3307 }
3308 } else
3309 goto create_irqchip_unlock;
3310 smp_wmb();
3311 kvm->arch.vpic = vpic;
3312 smp_wmb();
3313 r = kvm_setup_default_irq_routing(kvm);
3314 if (r) {
3315 mutex_lock(&kvm->irq_lock);
3316 kvm_ioapic_destroy(kvm);
3317 kvm_destroy_pic(kvm);
3318 mutex_unlock(&kvm->irq_lock);
3319 }
3320 create_irqchip_unlock:
3321 mutex_unlock(&kvm->lock);
3322 break;
3323 }
3324 case KVM_CREATE_PIT:
3325 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3326 goto create_pit;
3327 case KVM_CREATE_PIT2:
3328 r = -EFAULT;
3329 if (copy_from_user(&u.pit_config, argp,
3330 sizeof(struct kvm_pit_config)))
3331 goto out;
3332 create_pit:
3333 mutex_lock(&kvm->slots_lock);
3334 r = -EEXIST;
3335 if (kvm->arch.vpit)
3336 goto create_pit_unlock;
3337 r = -ENOMEM;
3338 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3339 if (kvm->arch.vpit)
3340 r = 0;
3341 create_pit_unlock:
3342 mutex_unlock(&kvm->slots_lock);
3343 break;
3344 case KVM_IRQ_LINE_STATUS:
3345 case KVM_IRQ_LINE: {
3346 struct kvm_irq_level irq_event;
3347
3348 r = -EFAULT;
3349 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3350 goto out;
3351 r = -ENXIO;
3352 if (irqchip_in_kernel(kvm)) {
3353 __s32 status;
3354 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3355 irq_event.irq, irq_event.level);
3356 if (ioctl == KVM_IRQ_LINE_STATUS) {
3357 r = -EFAULT;
3358 irq_event.status = status;
3359 if (copy_to_user(argp, &irq_event,
3360 sizeof irq_event))
3361 goto out;
3362 }
3363 r = 0;
3364 }
3365 break;
3366 }
3367 case KVM_GET_IRQCHIP: {
3368 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3369 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3370
3371 r = -ENOMEM;
3372 if (!chip)
3373 goto out;
3374 r = -EFAULT;
3375 if (copy_from_user(chip, argp, sizeof *chip))
3376 goto get_irqchip_out;
3377 r = -ENXIO;
3378 if (!irqchip_in_kernel(kvm))
3379 goto get_irqchip_out;
3380 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3381 if (r)
3382 goto get_irqchip_out;
3383 r = -EFAULT;
3384 if (copy_to_user(argp, chip, sizeof *chip))
3385 goto get_irqchip_out;
3386 r = 0;
3387 get_irqchip_out:
3388 kfree(chip);
3389 if (r)
3390 goto out;
3391 break;
3392 }
3393 case KVM_SET_IRQCHIP: {
3394 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3395 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3396
3397 r = -ENOMEM;
3398 if (!chip)
3399 goto out;
3400 r = -EFAULT;
3401 if (copy_from_user(chip, argp, sizeof *chip))
3402 goto set_irqchip_out;
3403 r = -ENXIO;
3404 if (!irqchip_in_kernel(kvm))
3405 goto set_irqchip_out;
3406 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3407 if (r)
3408 goto set_irqchip_out;
3409 r = 0;
3410 set_irqchip_out:
3411 kfree(chip);
3412 if (r)
3413 goto out;
3414 break;
3415 }
3416 case KVM_GET_PIT: {
3417 r = -EFAULT;
3418 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3419 goto out;
3420 r = -ENXIO;
3421 if (!kvm->arch.vpit)
3422 goto out;
3423 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3424 if (r)
3425 goto out;
3426 r = -EFAULT;
3427 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3428 goto out;
3429 r = 0;
3430 break;
3431 }
3432 case KVM_SET_PIT: {
3433 r = -EFAULT;
3434 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3435 goto out;
3436 r = -ENXIO;
3437 if (!kvm->arch.vpit)
3438 goto out;
3439 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3440 if (r)
3441 goto out;
3442 r = 0;
3443 break;
3444 }
3445 case KVM_GET_PIT2: {
3446 r = -ENXIO;
3447 if (!kvm->arch.vpit)
3448 goto out;
3449 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3450 if (r)
3451 goto out;
3452 r = -EFAULT;
3453 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3454 goto out;
3455 r = 0;
3456 break;
3457 }
3458 case KVM_SET_PIT2: {
3459 r = -EFAULT;
3460 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3461 goto out;
3462 r = -ENXIO;
3463 if (!kvm->arch.vpit)
3464 goto out;
3465 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3466 if (r)
3467 goto out;
3468 r = 0;
3469 break;
3470 }
3471 case KVM_REINJECT_CONTROL: {
3472 struct kvm_reinject_control control;
3473 r = -EFAULT;
3474 if (copy_from_user(&control, argp, sizeof(control)))
3475 goto out;
3476 r = kvm_vm_ioctl_reinject(kvm, &control);
3477 if (r)
3478 goto out;
3479 r = 0;
3480 break;
3481 }
3482 case KVM_XEN_HVM_CONFIG: {
3483 r = -EFAULT;
3484 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3485 sizeof(struct kvm_xen_hvm_config)))
3486 goto out;
3487 r = -EINVAL;
3488 if (kvm->arch.xen_hvm_config.flags)
3489 goto out;
3490 r = 0;
3491 break;
3492 }
3493 case KVM_SET_CLOCK: {
3494 struct kvm_clock_data user_ns;
3495 u64 now_ns;
3496 s64 delta;
3497
3498 r = -EFAULT;
3499 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3500 goto out;
3501
3502 r = -EINVAL;
3503 if (user_ns.flags)
3504 goto out;
3505
3506 r = 0;
3507 local_irq_disable();
3508 now_ns = get_kernel_ns();
3509 delta = user_ns.clock - now_ns;
3510 local_irq_enable();
3511 kvm->arch.kvmclock_offset = delta;
3512 break;
3513 }
3514 case KVM_GET_CLOCK: {
3515 struct kvm_clock_data user_ns;
3516 u64 now_ns;
3517
3518 local_irq_disable();
3519 now_ns = get_kernel_ns();
3520 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3521 local_irq_enable();
3522 user_ns.flags = 0;
3523 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3524
3525 r = -EFAULT;
3526 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3527 goto out;
3528 r = 0;
3529 break;
3530 }
3531
3532 default:
3533 ;
3534 }
3535 out:
3536 return r;
3537 }
3538
3539 static void kvm_init_msr_list(void)
3540 {
3541 u32 dummy[2];
3542 unsigned i, j;
3543
3544 /* skip the first msrs in the list. KVM-specific */
3545 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3546 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3547 continue;
3548 if (j < i)
3549 msrs_to_save[j] = msrs_to_save[i];
3550 j++;
3551 }
3552 num_msrs_to_save = j;
3553 }
3554
3555 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3556 const void *v)
3557 {
3558 if (vcpu->arch.apic &&
3559 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
3560 return 0;
3561
3562 return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3563 }
3564
3565 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3566 {
3567 if (vcpu->arch.apic &&
3568 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
3569 return 0;
3570
3571 return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3572 }
3573
3574 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3575 struct kvm_segment *var, int seg)
3576 {
3577 kvm_x86_ops->set_segment(vcpu, var, seg);
3578 }
3579
3580 void kvm_get_segment(struct kvm_vcpu *vcpu,
3581 struct kvm_segment *var, int seg)
3582 {
3583 kvm_x86_ops->get_segment(vcpu, var, seg);
3584 }
3585
3586 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3587 {
3588 return gpa;
3589 }
3590
3591 static gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3592 {
3593 gpa_t t_gpa;
3594 u32 error;
3595
3596 BUG_ON(!mmu_is_nested(vcpu));
3597
3598 /* NPT walks are always user-walks */
3599 access |= PFERR_USER_MASK;
3600 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &error);
3601 if (t_gpa == UNMAPPED_GVA)
3602 vcpu->arch.fault.nested = true;
3603
3604 return t_gpa;
3605 }
3606
3607 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3608 {
3609 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3610 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
3611 }
3612
3613 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3614 {
3615 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3616 access |= PFERR_FETCH_MASK;
3617 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
3618 }
3619
3620 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3621 {
3622 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3623 access |= PFERR_WRITE_MASK;
3624 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
3625 }
3626
3627 /* uses this to access any guest's mapped memory without checking CPL */
3628 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3629 {
3630 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, error);
3631 }
3632
3633 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3634 struct kvm_vcpu *vcpu, u32 access,
3635 u32 *error)
3636 {
3637 void *data = val;
3638 int r = X86EMUL_CONTINUE;
3639
3640 while (bytes) {
3641 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3642 error);
3643 unsigned offset = addr & (PAGE_SIZE-1);
3644 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3645 int ret;
3646
3647 if (gpa == UNMAPPED_GVA) {
3648 r = X86EMUL_PROPAGATE_FAULT;
3649 goto out;
3650 }
3651 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3652 if (ret < 0) {
3653 r = X86EMUL_IO_NEEDED;
3654 goto out;
3655 }
3656
3657 bytes -= toread;
3658 data += toread;
3659 addr += toread;
3660 }
3661 out:
3662 return r;
3663 }
3664
3665 /* used for instruction fetching */
3666 static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
3667 struct kvm_vcpu *vcpu, u32 *error)
3668 {
3669 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3670 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3671 access | PFERR_FETCH_MASK, error);
3672 }
3673
3674 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
3675 struct kvm_vcpu *vcpu, u32 *error)
3676 {
3677 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3678 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3679 error);
3680 }
3681
3682 static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
3683 struct kvm_vcpu *vcpu, u32 *error)
3684 {
3685 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
3686 }
3687
3688 static int kvm_write_guest_virt_system(gva_t addr, void *val,
3689 unsigned int bytes,
3690 struct kvm_vcpu *vcpu,
3691 u32 *error)
3692 {
3693 void *data = val;
3694 int r = X86EMUL_CONTINUE;
3695
3696 while (bytes) {
3697 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3698 PFERR_WRITE_MASK,
3699 error);
3700 unsigned offset = addr & (PAGE_SIZE-1);
3701 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3702 int ret;
3703
3704 if (gpa == UNMAPPED_GVA) {
3705 r = X86EMUL_PROPAGATE_FAULT;
3706 goto out;
3707 }
3708 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3709 if (ret < 0) {
3710 r = X86EMUL_IO_NEEDED;
3711 goto out;
3712 }
3713
3714 bytes -= towrite;
3715 data += towrite;
3716 addr += towrite;
3717 }
3718 out:
3719 return r;
3720 }
3721
3722 static int emulator_read_emulated(unsigned long addr,
3723 void *val,
3724 unsigned int bytes,
3725 unsigned int *error_code,
3726 struct kvm_vcpu *vcpu)
3727 {
3728 gpa_t gpa;
3729
3730 if (vcpu->mmio_read_completed) {
3731 memcpy(val, vcpu->mmio_data, bytes);
3732 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3733 vcpu->mmio_phys_addr, *(u64 *)val);
3734 vcpu->mmio_read_completed = 0;
3735 return X86EMUL_CONTINUE;
3736 }
3737
3738 gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, error_code);
3739
3740 if (gpa == UNMAPPED_GVA)
3741 return X86EMUL_PROPAGATE_FAULT;
3742
3743 /* For APIC access vmexit */
3744 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3745 goto mmio;
3746
3747 if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
3748 == X86EMUL_CONTINUE)
3749 return X86EMUL_CONTINUE;
3750
3751 mmio:
3752 /*
3753 * Is this MMIO handled locally?
3754 */
3755 if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
3756 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
3757 return X86EMUL_CONTINUE;
3758 }
3759
3760 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3761
3762 vcpu->mmio_needed = 1;
3763 vcpu->run->exit_reason = KVM_EXIT_MMIO;
3764 vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3765 vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3766 vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
3767
3768 return X86EMUL_IO_NEEDED;
3769 }
3770
3771 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3772 const void *val, int bytes)
3773 {
3774 int ret;
3775
3776 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3777 if (ret < 0)
3778 return 0;
3779 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3780 return 1;
3781 }
3782
3783 static int emulator_write_emulated_onepage(unsigned long addr,
3784 const void *val,
3785 unsigned int bytes,
3786 unsigned int *error_code,
3787 struct kvm_vcpu *vcpu)
3788 {
3789 gpa_t gpa;
3790
3791 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, error_code);
3792
3793 if (gpa == UNMAPPED_GVA)
3794 return X86EMUL_PROPAGATE_FAULT;
3795
3796 /* For APIC access vmexit */
3797 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3798 goto mmio;
3799
3800 if (emulator_write_phys(vcpu, gpa, val, bytes))
3801 return X86EMUL_CONTINUE;
3802
3803 mmio:
3804 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3805 /*
3806 * Is this MMIO handled locally?
3807 */
3808 if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
3809 return X86EMUL_CONTINUE;
3810
3811 vcpu->mmio_needed = 1;
3812 vcpu->run->exit_reason = KVM_EXIT_MMIO;
3813 vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3814 vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3815 vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
3816 memcpy(vcpu->run->mmio.data, val, bytes);
3817
3818 return X86EMUL_CONTINUE;
3819 }
3820
3821 int emulator_write_emulated(unsigned long addr,
3822 const void *val,
3823 unsigned int bytes,
3824 unsigned int *error_code,
3825 struct kvm_vcpu *vcpu)
3826 {
3827 /* Crossing a page boundary? */
3828 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3829 int rc, now;
3830
3831 now = -addr & ~PAGE_MASK;
3832 rc = emulator_write_emulated_onepage(addr, val, now, error_code,
3833 vcpu);
3834 if (rc != X86EMUL_CONTINUE)
3835 return rc;
3836 addr += now;
3837 val += now;
3838 bytes -= now;
3839 }
3840 return emulator_write_emulated_onepage(addr, val, bytes, error_code,
3841 vcpu);
3842 }
3843
3844 #define CMPXCHG_TYPE(t, ptr, old, new) \
3845 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3846
3847 #ifdef CONFIG_X86_64
3848 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3849 #else
3850 # define CMPXCHG64(ptr, old, new) \
3851 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3852 #endif
3853
3854 static int emulator_cmpxchg_emulated(unsigned long addr,
3855 const void *old,
3856 const void *new,
3857 unsigned int bytes,
3858 unsigned int *error_code,
3859 struct kvm_vcpu *vcpu)
3860 {
3861 gpa_t gpa;
3862 struct page *page;
3863 char *kaddr;
3864 bool exchanged;
3865
3866 /* guests cmpxchg8b have to be emulated atomically */
3867 if (bytes > 8 || (bytes & (bytes - 1)))
3868 goto emul_write;
3869
3870 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3871
3872 if (gpa == UNMAPPED_GVA ||
3873 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3874 goto emul_write;
3875
3876 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3877 goto emul_write;
3878
3879 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3880 if (is_error_page(page)) {
3881 kvm_release_page_clean(page);
3882 goto emul_write;
3883 }
3884
3885 kaddr = kmap_atomic(page, KM_USER0);
3886 kaddr += offset_in_page(gpa);
3887 switch (bytes) {
3888 case 1:
3889 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3890 break;
3891 case 2:
3892 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3893 break;
3894 case 4:
3895 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3896 break;
3897 case 8:
3898 exchanged = CMPXCHG64(kaddr, old, new);
3899 break;
3900 default:
3901 BUG();
3902 }
3903 kunmap_atomic(kaddr, KM_USER0);
3904 kvm_release_page_dirty(page);
3905
3906 if (!exchanged)
3907 return X86EMUL_CMPXCHG_FAILED;
3908
3909 kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
3910
3911 return X86EMUL_CONTINUE;
3912
3913 emul_write:
3914 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3915
3916 return emulator_write_emulated(addr, new, bytes, error_code, vcpu);
3917 }
3918
3919 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3920 {
3921 /* TODO: String I/O for in kernel device */
3922 int r;
3923
3924 if (vcpu->arch.pio.in)
3925 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3926 vcpu->arch.pio.size, pd);
3927 else
3928 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3929 vcpu->arch.pio.port, vcpu->arch.pio.size,
3930 pd);
3931 return r;
3932 }
3933
3934
3935 static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
3936 unsigned int count, struct kvm_vcpu *vcpu)
3937 {
3938 if (vcpu->arch.pio.count)
3939 goto data_avail;
3940
3941 trace_kvm_pio(0, port, size, 1);
3942
3943 vcpu->arch.pio.port = port;
3944 vcpu->arch.pio.in = 1;
3945 vcpu->arch.pio.count = count;
3946 vcpu->arch.pio.size = size;
3947
3948 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3949 data_avail:
3950 memcpy(val, vcpu->arch.pio_data, size * count);
3951 vcpu->arch.pio.count = 0;
3952 return 1;
3953 }
3954
3955 vcpu->run->exit_reason = KVM_EXIT_IO;
3956 vcpu->run->io.direction = KVM_EXIT_IO_IN;
3957 vcpu->run->io.size = size;
3958 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3959 vcpu->run->io.count = count;
3960 vcpu->run->io.port = port;
3961
3962 return 0;
3963 }
3964
3965 static int emulator_pio_out_emulated(int size, unsigned short port,
3966 const void *val, unsigned int count,
3967 struct kvm_vcpu *vcpu)
3968 {
3969 trace_kvm_pio(1, port, size, 1);
3970
3971 vcpu->arch.pio.port = port;
3972 vcpu->arch.pio.in = 0;
3973 vcpu->arch.pio.count = count;
3974 vcpu->arch.pio.size = size;
3975
3976 memcpy(vcpu->arch.pio_data, val, size * count);
3977
3978 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3979 vcpu->arch.pio.count = 0;
3980 return 1;
3981 }
3982
3983 vcpu->run->exit_reason = KVM_EXIT_IO;
3984 vcpu->run->io.direction = KVM_EXIT_IO_OUT;
3985 vcpu->run->io.size = size;
3986 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3987 vcpu->run->io.count = count;
3988 vcpu->run->io.port = port;
3989
3990 return 0;
3991 }
3992
3993 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
3994 {
3995 return kvm_x86_ops->get_segment_base(vcpu, seg);
3996 }
3997
3998 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
3999 {
4000 kvm_mmu_invlpg(vcpu, address);
4001 return X86EMUL_CONTINUE;
4002 }
4003
4004 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4005 {
4006 if (!need_emulate_wbinvd(vcpu))
4007 return X86EMUL_CONTINUE;
4008
4009 if (kvm_x86_ops->has_wbinvd_exit()) {
4010 int cpu = get_cpu();
4011
4012 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4013 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4014 wbinvd_ipi, NULL, 1);
4015 put_cpu();
4016 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4017 } else
4018 wbinvd();
4019 return X86EMUL_CONTINUE;
4020 }
4021 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4022
4023 int emulate_clts(struct kvm_vcpu *vcpu)
4024 {
4025 kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4026 kvm_x86_ops->fpu_activate(vcpu);
4027 return X86EMUL_CONTINUE;
4028 }
4029
4030 int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu)
4031 {
4032 return _kvm_get_dr(vcpu, dr, dest);
4033 }
4034
4035 int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu)
4036 {
4037
4038 return __kvm_set_dr(vcpu, dr, value);
4039 }
4040
4041 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4042 {
4043 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4044 }
4045
4046 static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
4047 {
4048 unsigned long value;
4049
4050 switch (cr) {
4051 case 0:
4052 value = kvm_read_cr0(vcpu);
4053 break;
4054 case 2:
4055 value = vcpu->arch.cr2;
4056 break;
4057 case 3:
4058 value = vcpu->arch.cr3;
4059 break;
4060 case 4:
4061 value = kvm_read_cr4(vcpu);
4062 break;
4063 case 8:
4064 value = kvm_get_cr8(vcpu);
4065 break;
4066 default:
4067 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4068 return 0;
4069 }
4070
4071 return value;
4072 }
4073
4074 static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
4075 {
4076 int res = 0;
4077
4078 switch (cr) {
4079 case 0:
4080 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4081 break;
4082 case 2:
4083 vcpu->arch.cr2 = val;
4084 break;
4085 case 3:
4086 res = kvm_set_cr3(vcpu, val);
4087 break;
4088 case 4:
4089 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4090 break;
4091 case 8:
4092 res = __kvm_set_cr8(vcpu, val & 0xfUL);
4093 break;
4094 default:
4095 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4096 res = -1;
4097 }
4098
4099 return res;
4100 }
4101
4102 static int emulator_get_cpl(struct kvm_vcpu *vcpu)
4103 {
4104 return kvm_x86_ops->get_cpl(vcpu);
4105 }
4106
4107 static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
4108 {
4109 kvm_x86_ops->get_gdt(vcpu, dt);
4110 }
4111
4112 static void emulator_get_idt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
4113 {
4114 kvm_x86_ops->get_idt(vcpu, dt);
4115 }
4116
4117 static unsigned long emulator_get_cached_segment_base(int seg,
4118 struct kvm_vcpu *vcpu)
4119 {
4120 return get_segment_base(vcpu, seg);
4121 }
4122
4123 static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
4124 struct kvm_vcpu *vcpu)
4125 {
4126 struct kvm_segment var;
4127
4128 kvm_get_segment(vcpu, &var, seg);
4129
4130 if (var.unusable)
4131 return false;
4132
4133 if (var.g)
4134 var.limit >>= 12;
4135 set_desc_limit(desc, var.limit);
4136 set_desc_base(desc, (unsigned long)var.base);
4137 desc->type = var.type;
4138 desc->s = var.s;
4139 desc->dpl = var.dpl;
4140 desc->p = var.present;
4141 desc->avl = var.avl;
4142 desc->l = var.l;
4143 desc->d = var.db;
4144 desc->g = var.g;
4145
4146 return true;
4147 }
4148
4149 static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
4150 struct kvm_vcpu *vcpu)
4151 {
4152 struct kvm_segment var;
4153
4154 /* needed to preserve selector */
4155 kvm_get_segment(vcpu, &var, seg);
4156
4157 var.base = get_desc_base(desc);
4158 var.limit = get_desc_limit(desc);
4159 if (desc->g)
4160 var.limit = (var.limit << 12) | 0xfff;
4161 var.type = desc->type;
4162 var.present = desc->p;
4163 var.dpl = desc->dpl;
4164 var.db = desc->d;
4165 var.s = desc->s;
4166 var.l = desc->l;
4167 var.g = desc->g;
4168 var.avl = desc->avl;
4169 var.present = desc->p;
4170 var.unusable = !var.present;
4171 var.padding = 0;
4172
4173 kvm_set_segment(vcpu, &var, seg);
4174 return;
4175 }
4176
4177 static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
4178 {
4179 struct kvm_segment kvm_seg;
4180
4181 kvm_get_segment(vcpu, &kvm_seg, seg);
4182 return kvm_seg.selector;
4183 }
4184
4185 static void emulator_set_segment_selector(u16 sel, int seg,
4186 struct kvm_vcpu *vcpu)
4187 {
4188 struct kvm_segment kvm_seg;
4189
4190 kvm_get_segment(vcpu, &kvm_seg, seg);
4191 kvm_seg.selector = sel;
4192 kvm_set_segment(vcpu, &kvm_seg, seg);
4193 }
4194
4195 static struct x86_emulate_ops emulate_ops = {
4196 .read_std = kvm_read_guest_virt_system,
4197 .write_std = kvm_write_guest_virt_system,
4198 .fetch = kvm_fetch_guest_virt,
4199 .read_emulated = emulator_read_emulated,
4200 .write_emulated = emulator_write_emulated,
4201 .cmpxchg_emulated = emulator_cmpxchg_emulated,
4202 .pio_in_emulated = emulator_pio_in_emulated,
4203 .pio_out_emulated = emulator_pio_out_emulated,
4204 .get_cached_descriptor = emulator_get_cached_descriptor,
4205 .set_cached_descriptor = emulator_set_cached_descriptor,
4206 .get_segment_selector = emulator_get_segment_selector,
4207 .set_segment_selector = emulator_set_segment_selector,
4208 .get_cached_segment_base = emulator_get_cached_segment_base,
4209 .get_gdt = emulator_get_gdt,
4210 .get_idt = emulator_get_idt,
4211 .get_cr = emulator_get_cr,
4212 .set_cr = emulator_set_cr,
4213 .cpl = emulator_get_cpl,
4214 .get_dr = emulator_get_dr,
4215 .set_dr = emulator_set_dr,
4216 .set_msr = kvm_set_msr,
4217 .get_msr = kvm_get_msr,
4218 };
4219
4220 static void cache_all_regs(struct kvm_vcpu *vcpu)
4221 {
4222 kvm_register_read(vcpu, VCPU_REGS_RAX);
4223 kvm_register_read(vcpu, VCPU_REGS_RSP);
4224 kvm_register_read(vcpu, VCPU_REGS_RIP);
4225 vcpu->arch.regs_dirty = ~0;
4226 }
4227
4228 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4229 {
4230 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4231 /*
4232 * an sti; sti; sequence only disable interrupts for the first
4233 * instruction. So, if the last instruction, be it emulated or
4234 * not, left the system with the INT_STI flag enabled, it
4235 * means that the last instruction is an sti. We should not
4236 * leave the flag on in this case. The same goes for mov ss
4237 */
4238 if (!(int_shadow & mask))
4239 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4240 }
4241
4242 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4243 {
4244 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4245 if (ctxt->exception == PF_VECTOR)
4246 kvm_propagate_fault(vcpu);
4247 else if (ctxt->error_code_valid)
4248 kvm_queue_exception_e(vcpu, ctxt->exception, ctxt->error_code);
4249 else
4250 kvm_queue_exception(vcpu, ctxt->exception);
4251 }
4252
4253 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4254 {
4255 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4256 int cs_db, cs_l;
4257
4258 cache_all_regs(vcpu);
4259
4260 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4261
4262 vcpu->arch.emulate_ctxt.vcpu = vcpu;
4263 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
4264 vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
4265 vcpu->arch.emulate_ctxt.mode =
4266 (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4267 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
4268 ? X86EMUL_MODE_VM86 : cs_l
4269 ? X86EMUL_MODE_PROT64 : cs_db
4270 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
4271 memset(c, 0, sizeof(struct decode_cache));
4272 memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4273 }
4274
4275 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq)
4276 {
4277 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4278 int ret;
4279
4280 init_emulate_ctxt(vcpu);
4281
4282 vcpu->arch.emulate_ctxt.decode.op_bytes = 2;
4283 vcpu->arch.emulate_ctxt.decode.ad_bytes = 2;
4284 vcpu->arch.emulate_ctxt.decode.eip = vcpu->arch.emulate_ctxt.eip;
4285 ret = emulate_int_real(&vcpu->arch.emulate_ctxt, &emulate_ops, irq);
4286
4287 if (ret != X86EMUL_CONTINUE)
4288 return EMULATE_FAIL;
4289
4290 vcpu->arch.emulate_ctxt.eip = c->eip;
4291 memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4292 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4293 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4294
4295 if (irq == NMI_VECTOR)
4296 vcpu->arch.nmi_pending = false;
4297 else
4298 vcpu->arch.interrupt.pending = false;
4299
4300 return EMULATE_DONE;
4301 }
4302 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4303
4304 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4305 {
4306 ++vcpu->stat.insn_emulation_fail;
4307 trace_kvm_emulate_insn_failed(vcpu);
4308 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4309 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4310 vcpu->run->internal.ndata = 0;
4311 kvm_queue_exception(vcpu, UD_VECTOR);
4312 return EMULATE_FAIL;
4313 }
4314
4315 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4316 {
4317 gpa_t gpa;
4318
4319 if (tdp_enabled)
4320 return false;
4321
4322 /*
4323 * if emulation was due to access to shadowed page table
4324 * and it failed try to unshadow page and re-entetr the
4325 * guest to let CPU execute the instruction.
4326 */
4327 if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4328 return true;
4329
4330 gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4331
4332 if (gpa == UNMAPPED_GVA)
4333 return true; /* let cpu generate fault */
4334
4335 if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4336 return true;
4337
4338 return false;
4339 }
4340
4341 int emulate_instruction(struct kvm_vcpu *vcpu,
4342 unsigned long cr2,
4343 u16 error_code,
4344 int emulation_type)
4345 {
4346 int r;
4347 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4348
4349 kvm_clear_exception_queue(vcpu);
4350 vcpu->arch.mmio_fault_cr2 = cr2;
4351 /*
4352 * TODO: fix emulate.c to use guest_read/write_register
4353 * instead of direct ->regs accesses, can save hundred cycles
4354 * on Intel for instructions that don't read/change RSP, for
4355 * for example.
4356 */
4357 cache_all_regs(vcpu);
4358
4359 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4360 init_emulate_ctxt(vcpu);
4361 vcpu->arch.emulate_ctxt.interruptibility = 0;
4362 vcpu->arch.emulate_ctxt.exception = -1;
4363 vcpu->arch.emulate_ctxt.perm_ok = false;
4364
4365 r = x86_decode_insn(&vcpu->arch.emulate_ctxt);
4366 if (r == X86EMUL_PROPAGATE_FAULT)
4367 goto done;
4368
4369 trace_kvm_emulate_insn_start(vcpu);
4370
4371 /* Only allow emulation of specific instructions on #UD
4372 * (namely VMMCALL, sysenter, sysexit, syscall)*/
4373 if (emulation_type & EMULTYPE_TRAP_UD) {
4374 if (!c->twobyte)
4375 return EMULATE_FAIL;
4376 switch (c->b) {
4377 case 0x01: /* VMMCALL */
4378 if (c->modrm_mod != 3 || c->modrm_rm != 1)
4379 return EMULATE_FAIL;
4380 break;
4381 case 0x34: /* sysenter */
4382 case 0x35: /* sysexit */
4383 if (c->modrm_mod != 0 || c->modrm_rm != 0)
4384 return EMULATE_FAIL;
4385 break;
4386 case 0x05: /* syscall */
4387 if (c->modrm_mod != 0 || c->modrm_rm != 0)
4388 return EMULATE_FAIL;
4389 break;
4390 default:
4391 return EMULATE_FAIL;
4392 }
4393
4394 if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
4395 return EMULATE_FAIL;
4396 }
4397
4398 ++vcpu->stat.insn_emulation;
4399 if (r) {
4400 if (reexecute_instruction(vcpu, cr2))
4401 return EMULATE_DONE;
4402 if (emulation_type & EMULTYPE_SKIP)
4403 return EMULATE_FAIL;
4404 return handle_emulation_failure(vcpu);
4405 }
4406 }
4407
4408 if (emulation_type & EMULTYPE_SKIP) {
4409 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
4410 return EMULATE_DONE;
4411 }
4412
4413 /* this is needed for vmware backdor interface to work since it
4414 changes registers values during IO operation */
4415 memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4416
4417 restart:
4418 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt);
4419
4420 if (r == EMULATION_FAILED) {
4421 if (reexecute_instruction(vcpu, cr2))
4422 return EMULATE_DONE;
4423
4424 return handle_emulation_failure(vcpu);
4425 }
4426
4427 done:
4428 if (vcpu->arch.emulate_ctxt.exception >= 0) {
4429 inject_emulated_exception(vcpu);
4430 r = EMULATE_DONE;
4431 } else if (vcpu->arch.pio.count) {
4432 if (!vcpu->arch.pio.in)
4433 vcpu->arch.pio.count = 0;
4434 r = EMULATE_DO_MMIO;
4435 } else if (vcpu->mmio_needed) {
4436 if (vcpu->mmio_is_write)
4437 vcpu->mmio_needed = 0;
4438 r = EMULATE_DO_MMIO;
4439 } else if (r == EMULATION_RESTART)
4440 goto restart;
4441 else
4442 r = EMULATE_DONE;
4443
4444 toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility);
4445 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4446 kvm_make_request(KVM_REQ_EVENT, vcpu);
4447 memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4448 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4449
4450 return r;
4451 }
4452 EXPORT_SYMBOL_GPL(emulate_instruction);
4453
4454 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4455 {
4456 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4457 int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
4458 /* do not return to emulator after return from userspace */
4459 vcpu->arch.pio.count = 0;
4460 return ret;
4461 }
4462 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4463
4464 static void tsc_bad(void *info)
4465 {
4466 __get_cpu_var(cpu_tsc_khz) = 0;
4467 }
4468
4469 static void tsc_khz_changed(void *data)
4470 {
4471 struct cpufreq_freqs *freq = data;
4472 unsigned long khz = 0;
4473
4474 if (data)
4475 khz = freq->new;
4476 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4477 khz = cpufreq_quick_get(raw_smp_processor_id());
4478 if (!khz)
4479 khz = tsc_khz;
4480 __get_cpu_var(cpu_tsc_khz) = khz;
4481 }
4482
4483 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4484 void *data)
4485 {
4486 struct cpufreq_freqs *freq = data;
4487 struct kvm *kvm;
4488 struct kvm_vcpu *vcpu;
4489 int i, send_ipi = 0;
4490
4491 /*
4492 * We allow guests to temporarily run on slowing clocks,
4493 * provided we notify them after, or to run on accelerating
4494 * clocks, provided we notify them before. Thus time never
4495 * goes backwards.
4496 *
4497 * However, we have a problem. We can't atomically update
4498 * the frequency of a given CPU from this function; it is
4499 * merely a notifier, which can be called from any CPU.
4500 * Changing the TSC frequency at arbitrary points in time
4501 * requires a recomputation of local variables related to
4502 * the TSC for each VCPU. We must flag these local variables
4503 * to be updated and be sure the update takes place with the
4504 * new frequency before any guests proceed.
4505 *
4506 * Unfortunately, the combination of hotplug CPU and frequency
4507 * change creates an intractable locking scenario; the order
4508 * of when these callouts happen is undefined with respect to
4509 * CPU hotplug, and they can race with each other. As such,
4510 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4511 * undefined; you can actually have a CPU frequency change take
4512 * place in between the computation of X and the setting of the
4513 * variable. To protect against this problem, all updates of
4514 * the per_cpu tsc_khz variable are done in an interrupt
4515 * protected IPI, and all callers wishing to update the value
4516 * must wait for a synchronous IPI to complete (which is trivial
4517 * if the caller is on the CPU already). This establishes the
4518 * necessary total order on variable updates.
4519 *
4520 * Note that because a guest time update may take place
4521 * anytime after the setting of the VCPU's request bit, the
4522 * correct TSC value must be set before the request. However,
4523 * to ensure the update actually makes it to any guest which
4524 * starts running in hardware virtualization between the set
4525 * and the acquisition of the spinlock, we must also ping the
4526 * CPU after setting the request bit.
4527 *
4528 */
4529
4530 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4531 return 0;
4532 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4533 return 0;
4534
4535 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4536
4537 spin_lock(&kvm_lock);
4538 list_for_each_entry(kvm, &vm_list, vm_list) {
4539 kvm_for_each_vcpu(i, vcpu, kvm) {
4540 if (vcpu->cpu != freq->cpu)
4541 continue;
4542 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4543 if (vcpu->cpu != smp_processor_id())
4544 send_ipi = 1;
4545 }
4546 }
4547 spin_unlock(&kvm_lock);
4548
4549 if (freq->old < freq->new && send_ipi) {
4550 /*
4551 * We upscale the frequency. Must make the guest
4552 * doesn't see old kvmclock values while running with
4553 * the new frequency, otherwise we risk the guest sees
4554 * time go backwards.
4555 *
4556 * In case we update the frequency for another cpu
4557 * (which might be in guest context) send an interrupt
4558 * to kick the cpu out of guest context. Next time
4559 * guest context is entered kvmclock will be updated,
4560 * so the guest will not see stale values.
4561 */
4562 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4563 }
4564 return 0;
4565 }
4566
4567 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4568 .notifier_call = kvmclock_cpufreq_notifier
4569 };
4570
4571 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4572 unsigned long action, void *hcpu)
4573 {
4574 unsigned int cpu = (unsigned long)hcpu;
4575
4576 switch (action) {
4577 case CPU_ONLINE:
4578 case CPU_DOWN_FAILED:
4579 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4580 break;
4581 case CPU_DOWN_PREPARE:
4582 smp_call_function_single(cpu, tsc_bad, NULL, 1);
4583 break;
4584 }
4585 return NOTIFY_OK;
4586 }
4587
4588 static struct notifier_block kvmclock_cpu_notifier_block = {
4589 .notifier_call = kvmclock_cpu_notifier,
4590 .priority = -INT_MAX
4591 };
4592
4593 static void kvm_timer_init(void)
4594 {
4595 int cpu;
4596
4597 max_tsc_khz = tsc_khz;
4598 register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4599 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4600 #ifdef CONFIG_CPU_FREQ
4601 struct cpufreq_policy policy;
4602 memset(&policy, 0, sizeof(policy));
4603 cpu = get_cpu();
4604 cpufreq_get_policy(&policy, cpu);
4605 if (policy.cpuinfo.max_freq)
4606 max_tsc_khz = policy.cpuinfo.max_freq;
4607 put_cpu();
4608 #endif
4609 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4610 CPUFREQ_TRANSITION_NOTIFIER);
4611 }
4612 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
4613 for_each_online_cpu(cpu)
4614 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4615 }
4616
4617 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4618
4619 static int kvm_is_in_guest(void)
4620 {
4621 return percpu_read(current_vcpu) != NULL;
4622 }
4623
4624 static int kvm_is_user_mode(void)
4625 {
4626 int user_mode = 3;
4627
4628 if (percpu_read(current_vcpu))
4629 user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
4630
4631 return user_mode != 0;
4632 }
4633
4634 static unsigned long kvm_get_guest_ip(void)
4635 {
4636 unsigned long ip = 0;
4637
4638 if (percpu_read(current_vcpu))
4639 ip = kvm_rip_read(percpu_read(current_vcpu));
4640
4641 return ip;
4642 }
4643
4644 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4645 .is_in_guest = kvm_is_in_guest,
4646 .is_user_mode = kvm_is_user_mode,
4647 .get_guest_ip = kvm_get_guest_ip,
4648 };
4649
4650 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4651 {
4652 percpu_write(current_vcpu, vcpu);
4653 }
4654 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4655
4656 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4657 {
4658 percpu_write(current_vcpu, NULL);
4659 }
4660 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4661
4662 int kvm_arch_init(void *opaque)
4663 {
4664 int r;
4665 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4666
4667 if (kvm_x86_ops) {
4668 printk(KERN_ERR "kvm: already loaded the other module\n");
4669 r = -EEXIST;
4670 goto out;
4671 }
4672
4673 if (!ops->cpu_has_kvm_support()) {
4674 printk(KERN_ERR "kvm: no hardware support\n");
4675 r = -EOPNOTSUPP;
4676 goto out;
4677 }
4678 if (ops->disabled_by_bios()) {
4679 printk(KERN_ERR "kvm: disabled by bios\n");
4680 r = -EOPNOTSUPP;
4681 goto out;
4682 }
4683
4684 r = kvm_mmu_module_init();
4685 if (r)
4686 goto out;
4687
4688 kvm_init_msr_list();
4689
4690 kvm_x86_ops = ops;
4691 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
4692 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4693 PT_DIRTY_MASK, PT64_NX_MASK, 0);
4694
4695 kvm_timer_init();
4696
4697 perf_register_guest_info_callbacks(&kvm_guest_cbs);
4698
4699 if (cpu_has_xsave)
4700 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4701
4702 return 0;
4703
4704 out:
4705 return r;
4706 }
4707
4708 void kvm_arch_exit(void)
4709 {
4710 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4711
4712 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4713 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4714 CPUFREQ_TRANSITION_NOTIFIER);
4715 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4716 kvm_x86_ops = NULL;
4717 kvm_mmu_module_exit();
4718 }
4719
4720 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4721 {
4722 ++vcpu->stat.halt_exits;
4723 if (irqchip_in_kernel(vcpu->kvm)) {
4724 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4725 return 1;
4726 } else {
4727 vcpu->run->exit_reason = KVM_EXIT_HLT;
4728 return 0;
4729 }
4730 }
4731 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4732
4733 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
4734 unsigned long a1)
4735 {
4736 if (is_long_mode(vcpu))
4737 return a0;
4738 else
4739 return a0 | ((gpa_t)a1 << 32);
4740 }
4741
4742 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4743 {
4744 u64 param, ingpa, outgpa, ret;
4745 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4746 bool fast, longmode;
4747 int cs_db, cs_l;
4748
4749 /*
4750 * hypercall generates UD from non zero cpl and real mode
4751 * per HYPER-V spec
4752 */
4753 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4754 kvm_queue_exception(vcpu, UD_VECTOR);
4755 return 0;
4756 }
4757
4758 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4759 longmode = is_long_mode(vcpu) && cs_l == 1;
4760
4761 if (!longmode) {
4762 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4763 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4764 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4765 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4766 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4767 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4768 }
4769 #ifdef CONFIG_X86_64
4770 else {
4771 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4772 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4773 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4774 }
4775 #endif
4776
4777 code = param & 0xffff;
4778 fast = (param >> 16) & 0x1;
4779 rep_cnt = (param >> 32) & 0xfff;
4780 rep_idx = (param >> 48) & 0xfff;
4781
4782 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4783
4784 switch (code) {
4785 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4786 kvm_vcpu_on_spin(vcpu);
4787 break;
4788 default:
4789 res = HV_STATUS_INVALID_HYPERCALL_CODE;
4790 break;
4791 }
4792
4793 ret = res | (((u64)rep_done & 0xfff) << 32);
4794 if (longmode) {
4795 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4796 } else {
4797 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
4798 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
4799 }
4800
4801 return 1;
4802 }
4803
4804 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
4805 {
4806 unsigned long nr, a0, a1, a2, a3, ret;
4807 int r = 1;
4808
4809 if (kvm_hv_hypercall_enabled(vcpu->kvm))
4810 return kvm_hv_hypercall(vcpu);
4811
4812 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
4813 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
4814 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
4815 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
4816 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
4817
4818 trace_kvm_hypercall(nr, a0, a1, a2, a3);
4819
4820 if (!is_long_mode(vcpu)) {
4821 nr &= 0xFFFFFFFF;
4822 a0 &= 0xFFFFFFFF;
4823 a1 &= 0xFFFFFFFF;
4824 a2 &= 0xFFFFFFFF;
4825 a3 &= 0xFFFFFFFF;
4826 }
4827
4828 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
4829 ret = -KVM_EPERM;
4830 goto out;
4831 }
4832
4833 switch (nr) {
4834 case KVM_HC_VAPIC_POLL_IRQ:
4835 ret = 0;
4836 break;
4837 case KVM_HC_MMU_OP:
4838 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
4839 break;
4840 default:
4841 ret = -KVM_ENOSYS;
4842 break;
4843 }
4844 out:
4845 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4846 ++vcpu->stat.hypercalls;
4847 return r;
4848 }
4849 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
4850
4851 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
4852 {
4853 char instruction[3];
4854 unsigned long rip = kvm_rip_read(vcpu);
4855
4856 /*
4857 * Blow out the MMU to ensure that no other VCPU has an active mapping
4858 * to ensure that the updated hypercall appears atomically across all
4859 * VCPUs.
4860 */
4861 kvm_mmu_zap_all(vcpu->kvm);
4862
4863 kvm_x86_ops->patch_hypercall(vcpu, instruction);
4864
4865 return emulator_write_emulated(rip, instruction, 3, NULL, vcpu);
4866 }
4867
4868 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4869 {
4870 struct desc_ptr dt = { limit, base };
4871
4872 kvm_x86_ops->set_gdt(vcpu, &dt);
4873 }
4874
4875 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4876 {
4877 struct desc_ptr dt = { limit, base };
4878
4879 kvm_x86_ops->set_idt(vcpu, &dt);
4880 }
4881
4882 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
4883 {
4884 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
4885 int j, nent = vcpu->arch.cpuid_nent;
4886
4887 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
4888 /* when no next entry is found, the current entry[i] is reselected */
4889 for (j = i + 1; ; j = (j + 1) % nent) {
4890 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
4891 if (ej->function == e->function) {
4892 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
4893 return j;
4894 }
4895 }
4896 return 0; /* silence gcc, even though control never reaches here */
4897 }
4898
4899 /* find an entry with matching function, matching index (if needed), and that
4900 * should be read next (if it's stateful) */
4901 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
4902 u32 function, u32 index)
4903 {
4904 if (e->function != function)
4905 return 0;
4906 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
4907 return 0;
4908 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
4909 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
4910 return 0;
4911 return 1;
4912 }
4913
4914 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
4915 u32 function, u32 index)
4916 {
4917 int i;
4918 struct kvm_cpuid_entry2 *best = NULL;
4919
4920 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
4921 struct kvm_cpuid_entry2 *e;
4922
4923 e = &vcpu->arch.cpuid_entries[i];
4924 if (is_matching_cpuid_entry(e, function, index)) {
4925 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
4926 move_to_next_stateful_cpuid_entry(vcpu, i);
4927 best = e;
4928 break;
4929 }
4930 /*
4931 * Both basic or both extended?
4932 */
4933 if (((e->function ^ function) & 0x80000000) == 0)
4934 if (!best || e->function > best->function)
4935 best = e;
4936 }
4937 return best;
4938 }
4939 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
4940
4941 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
4942 {
4943 struct kvm_cpuid_entry2 *best;
4944
4945 best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
4946 if (!best || best->eax < 0x80000008)
4947 goto not_found;
4948 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
4949 if (best)
4950 return best->eax & 0xff;
4951 not_found:
4952 return 36;
4953 }
4954
4955 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
4956 {
4957 u32 function, index;
4958 struct kvm_cpuid_entry2 *best;
4959
4960 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
4961 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4962 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
4963 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
4964 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
4965 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
4966 best = kvm_find_cpuid_entry(vcpu, function, index);
4967 if (best) {
4968 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
4969 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
4970 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
4971 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
4972 }
4973 kvm_x86_ops->skip_emulated_instruction(vcpu);
4974 trace_kvm_cpuid(function,
4975 kvm_register_read(vcpu, VCPU_REGS_RAX),
4976 kvm_register_read(vcpu, VCPU_REGS_RBX),
4977 kvm_register_read(vcpu, VCPU_REGS_RCX),
4978 kvm_register_read(vcpu, VCPU_REGS_RDX));
4979 }
4980 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
4981
4982 /*
4983 * Check if userspace requested an interrupt window, and that the
4984 * interrupt window is open.
4985 *
4986 * No need to exit to userspace if we already have an interrupt queued.
4987 */
4988 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
4989 {
4990 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
4991 vcpu->run->request_interrupt_window &&
4992 kvm_arch_interrupt_allowed(vcpu));
4993 }
4994
4995 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
4996 {
4997 struct kvm_run *kvm_run = vcpu->run;
4998
4999 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5000 kvm_run->cr8 = kvm_get_cr8(vcpu);
5001 kvm_run->apic_base = kvm_get_apic_base(vcpu);
5002 if (irqchip_in_kernel(vcpu->kvm))
5003 kvm_run->ready_for_interrupt_injection = 1;
5004 else
5005 kvm_run->ready_for_interrupt_injection =
5006 kvm_arch_interrupt_allowed(vcpu) &&
5007 !kvm_cpu_has_interrupt(vcpu) &&
5008 !kvm_event_needs_reinjection(vcpu);
5009 }
5010
5011 static void vapic_enter(struct kvm_vcpu *vcpu)
5012 {
5013 struct kvm_lapic *apic = vcpu->arch.apic;
5014 struct page *page;
5015
5016 if (!apic || !apic->vapic_addr)
5017 return;
5018
5019 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5020
5021 vcpu->arch.apic->vapic_page = page;
5022 }
5023
5024 static void vapic_exit(struct kvm_vcpu *vcpu)
5025 {
5026 struct kvm_lapic *apic = vcpu->arch.apic;
5027 int idx;
5028
5029 if (!apic || !apic->vapic_addr)
5030 return;
5031
5032 idx = srcu_read_lock(&vcpu->kvm->srcu);
5033 kvm_release_page_dirty(apic->vapic_page);
5034 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5035 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5036 }
5037
5038 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5039 {
5040 int max_irr, tpr;
5041
5042 if (!kvm_x86_ops->update_cr8_intercept)
5043 return;
5044
5045 if (!vcpu->arch.apic)
5046 return;
5047
5048 if (!vcpu->arch.apic->vapic_addr)
5049 max_irr = kvm_lapic_find_highest_irr(vcpu);
5050 else
5051 max_irr = -1;
5052
5053 if (max_irr != -1)
5054 max_irr >>= 4;
5055
5056 tpr = kvm_lapic_get_cr8(vcpu);
5057
5058 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5059 }
5060
5061 static void inject_pending_event(struct kvm_vcpu *vcpu)
5062 {
5063 /* try to reinject previous events if any */
5064 if (vcpu->arch.exception.pending) {
5065 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5066 vcpu->arch.exception.has_error_code,
5067 vcpu->arch.exception.error_code);
5068 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5069 vcpu->arch.exception.has_error_code,
5070 vcpu->arch.exception.error_code,
5071 vcpu->arch.exception.reinject);
5072 return;
5073 }
5074
5075 if (vcpu->arch.nmi_injected) {
5076 kvm_x86_ops->set_nmi(vcpu);
5077 return;
5078 }
5079
5080 if (vcpu->arch.interrupt.pending) {
5081 kvm_x86_ops->set_irq(vcpu);
5082 return;
5083 }
5084
5085 /* try to inject new event if pending */
5086 if (vcpu->arch.nmi_pending) {
5087 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5088 vcpu->arch.nmi_pending = false;
5089 vcpu->arch.nmi_injected = true;
5090 kvm_x86_ops->set_nmi(vcpu);
5091 }
5092 } else if (kvm_cpu_has_interrupt(vcpu)) {
5093 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5094 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5095 false);
5096 kvm_x86_ops->set_irq(vcpu);
5097 }
5098 }
5099 }
5100
5101 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5102 {
5103 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5104 !vcpu->guest_xcr0_loaded) {
5105 /* kvm_set_xcr() also depends on this */
5106 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5107 vcpu->guest_xcr0_loaded = 1;
5108 }
5109 }
5110
5111 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5112 {
5113 if (vcpu->guest_xcr0_loaded) {
5114 if (vcpu->arch.xcr0 != host_xcr0)
5115 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5116 vcpu->guest_xcr0_loaded = 0;
5117 }
5118 }
5119
5120 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5121 {
5122 int r;
5123 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5124 vcpu->run->request_interrupt_window;
5125
5126 if (vcpu->requests) {
5127 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5128 kvm_mmu_unload(vcpu);
5129 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5130 __kvm_migrate_timers(vcpu);
5131 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5132 r = kvm_guest_time_update(vcpu);
5133 if (unlikely(r))
5134 goto out;
5135 }
5136 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5137 kvm_mmu_sync_roots(vcpu);
5138 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5139 kvm_x86_ops->tlb_flush(vcpu);
5140 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5141 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5142 r = 0;
5143 goto out;
5144 }
5145 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5146 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5147 r = 0;
5148 goto out;
5149 }
5150 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5151 vcpu->fpu_active = 0;
5152 kvm_x86_ops->fpu_deactivate(vcpu);
5153 }
5154 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5155 /* Page is swapped out. Do synthetic halt */
5156 vcpu->arch.apf.halted = true;
5157 r = 1;
5158 goto out;
5159 }
5160 }
5161
5162 r = kvm_mmu_reload(vcpu);
5163 if (unlikely(r))
5164 goto out;
5165
5166 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5167 inject_pending_event(vcpu);
5168
5169 /* enable NMI/IRQ window open exits if needed */
5170 if (vcpu->arch.nmi_pending)
5171 kvm_x86_ops->enable_nmi_window(vcpu);
5172 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5173 kvm_x86_ops->enable_irq_window(vcpu);
5174
5175 if (kvm_lapic_enabled(vcpu)) {
5176 update_cr8_intercept(vcpu);
5177 kvm_lapic_sync_to_vapic(vcpu);
5178 }
5179 }
5180
5181 preempt_disable();
5182
5183 kvm_x86_ops->prepare_guest_switch(vcpu);
5184 if (vcpu->fpu_active)
5185 kvm_load_guest_fpu(vcpu);
5186 kvm_load_guest_xcr0(vcpu);
5187
5188 atomic_set(&vcpu->guest_mode, 1);
5189 smp_wmb();
5190
5191 local_irq_disable();
5192
5193 if (!atomic_read(&vcpu->guest_mode) || vcpu->requests
5194 || need_resched() || signal_pending(current)) {
5195 atomic_set(&vcpu->guest_mode, 0);
5196 smp_wmb();
5197 local_irq_enable();
5198 preempt_enable();
5199 kvm_x86_ops->cancel_injection(vcpu);
5200 r = 1;
5201 goto out;
5202 }
5203
5204 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5205
5206 kvm_guest_enter();
5207
5208 if (unlikely(vcpu->arch.switch_db_regs)) {
5209 set_debugreg(0, 7);
5210 set_debugreg(vcpu->arch.eff_db[0], 0);
5211 set_debugreg(vcpu->arch.eff_db[1], 1);
5212 set_debugreg(vcpu->arch.eff_db[2], 2);
5213 set_debugreg(vcpu->arch.eff_db[3], 3);
5214 }
5215
5216 trace_kvm_entry(vcpu->vcpu_id);
5217 kvm_x86_ops->run(vcpu);
5218
5219 /*
5220 * If the guest has used debug registers, at least dr7
5221 * will be disabled while returning to the host.
5222 * If we don't have active breakpoints in the host, we don't
5223 * care about the messed up debug address registers. But if
5224 * we have some of them active, restore the old state.
5225 */
5226 if (hw_breakpoint_active())
5227 hw_breakpoint_restore();
5228
5229 kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
5230
5231 atomic_set(&vcpu->guest_mode, 0);
5232 smp_wmb();
5233 local_irq_enable();
5234
5235 ++vcpu->stat.exits;
5236
5237 /*
5238 * We must have an instruction between local_irq_enable() and
5239 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5240 * the interrupt shadow. The stat.exits increment will do nicely.
5241 * But we need to prevent reordering, hence this barrier():
5242 */
5243 barrier();
5244
5245 kvm_guest_exit();
5246
5247 preempt_enable();
5248
5249 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5250
5251 /*
5252 * Profile KVM exit RIPs:
5253 */
5254 if (unlikely(prof_on == KVM_PROFILING)) {
5255 unsigned long rip = kvm_rip_read(vcpu);
5256 profile_hit(KVM_PROFILING, (void *)rip);
5257 }
5258
5259
5260 kvm_lapic_sync_from_vapic(vcpu);
5261
5262 r = kvm_x86_ops->handle_exit(vcpu);
5263 out:
5264 return r;
5265 }
5266
5267
5268 static int __vcpu_run(struct kvm_vcpu *vcpu)
5269 {
5270 int r;
5271 struct kvm *kvm = vcpu->kvm;
5272
5273 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5274 pr_debug("vcpu %d received sipi with vector # %x\n",
5275 vcpu->vcpu_id, vcpu->arch.sipi_vector);
5276 kvm_lapic_reset(vcpu);
5277 r = kvm_arch_vcpu_reset(vcpu);
5278 if (r)
5279 return r;
5280 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5281 }
5282
5283 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5284 vapic_enter(vcpu);
5285
5286 r = 1;
5287 while (r > 0) {
5288 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5289 !vcpu->arch.apf.halted)
5290 r = vcpu_enter_guest(vcpu);
5291 else {
5292 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5293 kvm_vcpu_block(vcpu);
5294 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5295 if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5296 {
5297 switch(vcpu->arch.mp_state) {
5298 case KVM_MP_STATE_HALTED:
5299 vcpu->arch.mp_state =
5300 KVM_MP_STATE_RUNNABLE;
5301 case KVM_MP_STATE_RUNNABLE:
5302 vcpu->arch.apf.halted = false;
5303 break;
5304 case KVM_MP_STATE_SIPI_RECEIVED:
5305 default:
5306 r = -EINTR;
5307 break;
5308 }
5309 }
5310 }
5311
5312 if (r <= 0)
5313 break;
5314
5315 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5316 if (kvm_cpu_has_pending_timer(vcpu))
5317 kvm_inject_pending_timer_irqs(vcpu);
5318
5319 if (dm_request_for_irq_injection(vcpu)) {
5320 r = -EINTR;
5321 vcpu->run->exit_reason = KVM_EXIT_INTR;
5322 ++vcpu->stat.request_irq_exits;
5323 }
5324
5325 kvm_check_async_pf_completion(vcpu);
5326
5327 if (signal_pending(current)) {
5328 r = -EINTR;
5329 vcpu->run->exit_reason = KVM_EXIT_INTR;
5330 ++vcpu->stat.signal_exits;
5331 }
5332 if (need_resched()) {
5333 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5334 kvm_resched(vcpu);
5335 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5336 }
5337 }
5338
5339 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5340
5341 vapic_exit(vcpu);
5342
5343 return r;
5344 }
5345
5346 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5347 {
5348 int r;
5349 sigset_t sigsaved;
5350
5351 if (vcpu->sigset_active)
5352 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5353
5354 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5355 kvm_vcpu_block(vcpu);
5356 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5357 r = -EAGAIN;
5358 goto out;
5359 }
5360
5361 /* re-sync apic's tpr */
5362 if (!irqchip_in_kernel(vcpu->kvm))
5363 kvm_set_cr8(vcpu, kvm_run->cr8);
5364
5365 if (vcpu->arch.pio.count || vcpu->mmio_needed) {
5366 if (vcpu->mmio_needed) {
5367 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
5368 vcpu->mmio_read_completed = 1;
5369 vcpu->mmio_needed = 0;
5370 }
5371 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5372 r = emulate_instruction(vcpu, 0, 0, EMULTYPE_NO_DECODE);
5373 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5374 if (r != EMULATE_DONE) {
5375 r = 0;
5376 goto out;
5377 }
5378 }
5379 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
5380 kvm_register_write(vcpu, VCPU_REGS_RAX,
5381 kvm_run->hypercall.ret);
5382
5383 r = __vcpu_run(vcpu);
5384
5385 out:
5386 post_kvm_run_save(vcpu);
5387 if (vcpu->sigset_active)
5388 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5389
5390 return r;
5391 }
5392
5393 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5394 {
5395 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5396 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5397 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5398 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5399 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5400 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5401 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5402 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5403 #ifdef CONFIG_X86_64
5404 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5405 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5406 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5407 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5408 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5409 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5410 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5411 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5412 #endif
5413
5414 regs->rip = kvm_rip_read(vcpu);
5415 regs->rflags = kvm_get_rflags(vcpu);
5416
5417 return 0;
5418 }
5419
5420 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5421 {
5422 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5423 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5424 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5425 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5426 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5427 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5428 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5429 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5430 #ifdef CONFIG_X86_64
5431 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5432 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5433 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5434 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5435 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5436 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5437 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5438 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5439 #endif
5440
5441 kvm_rip_write(vcpu, regs->rip);
5442 kvm_set_rflags(vcpu, regs->rflags);
5443
5444 vcpu->arch.exception.pending = false;
5445
5446 kvm_make_request(KVM_REQ_EVENT, vcpu);
5447
5448 return 0;
5449 }
5450
5451 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5452 {
5453 struct kvm_segment cs;
5454
5455 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5456 *db = cs.db;
5457 *l = cs.l;
5458 }
5459 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5460
5461 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5462 struct kvm_sregs *sregs)
5463 {
5464 struct desc_ptr dt;
5465
5466 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5467 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5468 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5469 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5470 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5471 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5472
5473 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5474 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5475
5476 kvm_x86_ops->get_idt(vcpu, &dt);
5477 sregs->idt.limit = dt.size;
5478 sregs->idt.base = dt.address;
5479 kvm_x86_ops->get_gdt(vcpu, &dt);
5480 sregs->gdt.limit = dt.size;
5481 sregs->gdt.base = dt.address;
5482
5483 sregs->cr0 = kvm_read_cr0(vcpu);
5484 sregs->cr2 = vcpu->arch.cr2;
5485 sregs->cr3 = vcpu->arch.cr3;
5486 sregs->cr4 = kvm_read_cr4(vcpu);
5487 sregs->cr8 = kvm_get_cr8(vcpu);
5488 sregs->efer = vcpu->arch.efer;
5489 sregs->apic_base = kvm_get_apic_base(vcpu);
5490
5491 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5492
5493 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5494 set_bit(vcpu->arch.interrupt.nr,
5495 (unsigned long *)sregs->interrupt_bitmap);
5496
5497 return 0;
5498 }
5499
5500 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5501 struct kvm_mp_state *mp_state)
5502 {
5503 mp_state->mp_state = vcpu->arch.mp_state;
5504 return 0;
5505 }
5506
5507 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5508 struct kvm_mp_state *mp_state)
5509 {
5510 vcpu->arch.mp_state = mp_state->mp_state;
5511 kvm_make_request(KVM_REQ_EVENT, vcpu);
5512 return 0;
5513 }
5514
5515 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
5516 bool has_error_code, u32 error_code)
5517 {
5518 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
5519 int ret;
5520
5521 init_emulate_ctxt(vcpu);
5522
5523 ret = emulator_task_switch(&vcpu->arch.emulate_ctxt,
5524 tss_selector, reason, has_error_code,
5525 error_code);
5526
5527 if (ret)
5528 return EMULATE_FAIL;
5529
5530 memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
5531 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
5532 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
5533 kvm_make_request(KVM_REQ_EVENT, vcpu);
5534 return EMULATE_DONE;
5535 }
5536 EXPORT_SYMBOL_GPL(kvm_task_switch);
5537
5538 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5539 struct kvm_sregs *sregs)
5540 {
5541 int mmu_reset_needed = 0;
5542 int pending_vec, max_bits;
5543 struct desc_ptr dt;
5544
5545 dt.size = sregs->idt.limit;
5546 dt.address = sregs->idt.base;
5547 kvm_x86_ops->set_idt(vcpu, &dt);
5548 dt.size = sregs->gdt.limit;
5549 dt.address = sregs->gdt.base;
5550 kvm_x86_ops->set_gdt(vcpu, &dt);
5551
5552 vcpu->arch.cr2 = sregs->cr2;
5553 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
5554 vcpu->arch.cr3 = sregs->cr3;
5555
5556 kvm_set_cr8(vcpu, sregs->cr8);
5557
5558 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5559 kvm_x86_ops->set_efer(vcpu, sregs->efer);
5560 kvm_set_apic_base(vcpu, sregs->apic_base);
5561
5562 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5563 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5564 vcpu->arch.cr0 = sregs->cr0;
5565
5566 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5567 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5568 if (sregs->cr4 & X86_CR4_OSXSAVE)
5569 update_cpuid(vcpu);
5570 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5571 load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3);
5572 mmu_reset_needed = 1;
5573 }
5574
5575 if (mmu_reset_needed)
5576 kvm_mmu_reset_context(vcpu);
5577
5578 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5579 pending_vec = find_first_bit(
5580 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5581 if (pending_vec < max_bits) {
5582 kvm_queue_interrupt(vcpu, pending_vec, false);
5583 pr_debug("Set back pending irq %d\n", pending_vec);
5584 if (irqchip_in_kernel(vcpu->kvm))
5585 kvm_pic_clear_isr_ack(vcpu->kvm);
5586 }
5587
5588 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5589 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5590 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5591 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5592 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5593 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5594
5595 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5596 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5597
5598 update_cr8_intercept(vcpu);
5599
5600 /* Older userspace won't unhalt the vcpu on reset. */
5601 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5602 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5603 !is_protmode(vcpu))
5604 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5605
5606 kvm_make_request(KVM_REQ_EVENT, vcpu);
5607
5608 return 0;
5609 }
5610
5611 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5612 struct kvm_guest_debug *dbg)
5613 {
5614 unsigned long rflags;
5615 int i, r;
5616
5617 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5618 r = -EBUSY;
5619 if (vcpu->arch.exception.pending)
5620 goto out;
5621 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5622 kvm_queue_exception(vcpu, DB_VECTOR);
5623 else
5624 kvm_queue_exception(vcpu, BP_VECTOR);
5625 }
5626
5627 /*
5628 * Read rflags as long as potentially injected trace flags are still
5629 * filtered out.
5630 */
5631 rflags = kvm_get_rflags(vcpu);
5632
5633 vcpu->guest_debug = dbg->control;
5634 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5635 vcpu->guest_debug = 0;
5636
5637 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5638 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5639 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5640 vcpu->arch.switch_db_regs =
5641 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5642 } else {
5643 for (i = 0; i < KVM_NR_DB_REGS; i++)
5644 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5645 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5646 }
5647
5648 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5649 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5650 get_segment_base(vcpu, VCPU_SREG_CS);
5651
5652 /*
5653 * Trigger an rflags update that will inject or remove the trace
5654 * flags.
5655 */
5656 kvm_set_rflags(vcpu, rflags);
5657
5658 kvm_x86_ops->set_guest_debug(vcpu, dbg);
5659
5660 r = 0;
5661
5662 out:
5663
5664 return r;
5665 }
5666
5667 /*
5668 * Translate a guest virtual address to a guest physical address.
5669 */
5670 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5671 struct kvm_translation *tr)
5672 {
5673 unsigned long vaddr = tr->linear_address;
5674 gpa_t gpa;
5675 int idx;
5676
5677 idx = srcu_read_lock(&vcpu->kvm->srcu);
5678 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5679 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5680 tr->physical_address = gpa;
5681 tr->valid = gpa != UNMAPPED_GVA;
5682 tr->writeable = 1;
5683 tr->usermode = 0;
5684
5685 return 0;
5686 }
5687
5688 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5689 {
5690 struct i387_fxsave_struct *fxsave =
5691 &vcpu->arch.guest_fpu.state->fxsave;
5692
5693 memcpy(fpu->fpr, fxsave->st_space, 128);
5694 fpu->fcw = fxsave->cwd;
5695 fpu->fsw = fxsave->swd;
5696 fpu->ftwx = fxsave->twd;
5697 fpu->last_opcode = fxsave->fop;
5698 fpu->last_ip = fxsave->rip;
5699 fpu->last_dp = fxsave->rdp;
5700 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5701
5702 return 0;
5703 }
5704
5705 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5706 {
5707 struct i387_fxsave_struct *fxsave =
5708 &vcpu->arch.guest_fpu.state->fxsave;
5709
5710 memcpy(fxsave->st_space, fpu->fpr, 128);
5711 fxsave->cwd = fpu->fcw;
5712 fxsave->swd = fpu->fsw;
5713 fxsave->twd = fpu->ftwx;
5714 fxsave->fop = fpu->last_opcode;
5715 fxsave->rip = fpu->last_ip;
5716 fxsave->rdp = fpu->last_dp;
5717 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5718
5719 return 0;
5720 }
5721
5722 int fx_init(struct kvm_vcpu *vcpu)
5723 {
5724 int err;
5725
5726 err = fpu_alloc(&vcpu->arch.guest_fpu);
5727 if (err)
5728 return err;
5729
5730 fpu_finit(&vcpu->arch.guest_fpu);
5731
5732 /*
5733 * Ensure guest xcr0 is valid for loading
5734 */
5735 vcpu->arch.xcr0 = XSTATE_FP;
5736
5737 vcpu->arch.cr0 |= X86_CR0_ET;
5738
5739 return 0;
5740 }
5741 EXPORT_SYMBOL_GPL(fx_init);
5742
5743 static void fx_free(struct kvm_vcpu *vcpu)
5744 {
5745 fpu_free(&vcpu->arch.guest_fpu);
5746 }
5747
5748 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5749 {
5750 if (vcpu->guest_fpu_loaded)
5751 return;
5752
5753 /*
5754 * Restore all possible states in the guest,
5755 * and assume host would use all available bits.
5756 * Guest xcr0 would be loaded later.
5757 */
5758 kvm_put_guest_xcr0(vcpu);
5759 vcpu->guest_fpu_loaded = 1;
5760 unlazy_fpu(current);
5761 fpu_restore_checking(&vcpu->arch.guest_fpu);
5762 trace_kvm_fpu(1);
5763 }
5764
5765 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5766 {
5767 kvm_put_guest_xcr0(vcpu);
5768
5769 if (!vcpu->guest_fpu_loaded)
5770 return;
5771
5772 vcpu->guest_fpu_loaded = 0;
5773 fpu_save_init(&vcpu->arch.guest_fpu);
5774 ++vcpu->stat.fpu_reload;
5775 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
5776 trace_kvm_fpu(0);
5777 }
5778
5779 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5780 {
5781 if (vcpu->arch.time_page) {
5782 kvm_release_page_dirty(vcpu->arch.time_page);
5783 vcpu->arch.time_page = NULL;
5784 }
5785
5786 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
5787 fx_free(vcpu);
5788 kvm_x86_ops->vcpu_free(vcpu);
5789 }
5790
5791 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5792 unsigned int id)
5793 {
5794 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
5795 printk_once(KERN_WARNING
5796 "kvm: SMP vm created on host with unstable TSC; "
5797 "guest TSC will not be reliable\n");
5798 return kvm_x86_ops->vcpu_create(kvm, id);
5799 }
5800
5801 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5802 {
5803 int r;
5804
5805 vcpu->arch.mtrr_state.have_fixed = 1;
5806 vcpu_load(vcpu);
5807 r = kvm_arch_vcpu_reset(vcpu);
5808 if (r == 0)
5809 r = kvm_mmu_setup(vcpu);
5810 vcpu_put(vcpu);
5811 if (r < 0)
5812 goto free_vcpu;
5813
5814 return 0;
5815 free_vcpu:
5816 kvm_x86_ops->vcpu_free(vcpu);
5817 return r;
5818 }
5819
5820 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5821 {
5822 vcpu->arch.apf.msr_val = 0;
5823
5824 vcpu_load(vcpu);
5825 kvm_mmu_unload(vcpu);
5826 vcpu_put(vcpu);
5827
5828 fx_free(vcpu);
5829 kvm_x86_ops->vcpu_free(vcpu);
5830 }
5831
5832 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5833 {
5834 vcpu->arch.nmi_pending = false;
5835 vcpu->arch.nmi_injected = false;
5836
5837 vcpu->arch.switch_db_regs = 0;
5838 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5839 vcpu->arch.dr6 = DR6_FIXED_1;
5840 vcpu->arch.dr7 = DR7_FIXED_1;
5841
5842 kvm_make_request(KVM_REQ_EVENT, vcpu);
5843 vcpu->arch.apf.msr_val = 0;
5844
5845 kvm_clear_async_pf_completion_queue(vcpu);
5846 kvm_async_pf_hash_reset(vcpu);
5847 vcpu->arch.apf.halted = false;
5848
5849 return kvm_x86_ops->vcpu_reset(vcpu);
5850 }
5851
5852 int kvm_arch_hardware_enable(void *garbage)
5853 {
5854 struct kvm *kvm;
5855 struct kvm_vcpu *vcpu;
5856 int i;
5857
5858 kvm_shared_msr_cpu_online();
5859 list_for_each_entry(kvm, &vm_list, vm_list)
5860 kvm_for_each_vcpu(i, vcpu, kvm)
5861 if (vcpu->cpu == smp_processor_id())
5862 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5863 return kvm_x86_ops->hardware_enable(garbage);
5864 }
5865
5866 void kvm_arch_hardware_disable(void *garbage)
5867 {
5868 kvm_x86_ops->hardware_disable(garbage);
5869 drop_user_return_notifiers(garbage);
5870 }
5871
5872 int kvm_arch_hardware_setup(void)
5873 {
5874 return kvm_x86_ops->hardware_setup();
5875 }
5876
5877 void kvm_arch_hardware_unsetup(void)
5878 {
5879 kvm_x86_ops->hardware_unsetup();
5880 }
5881
5882 void kvm_arch_check_processor_compat(void *rtn)
5883 {
5884 kvm_x86_ops->check_processor_compatibility(rtn);
5885 }
5886
5887 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5888 {
5889 struct page *page;
5890 struct kvm *kvm;
5891 int r;
5892
5893 BUG_ON(vcpu->kvm == NULL);
5894 kvm = vcpu->kvm;
5895
5896 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
5897 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
5898 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5899 vcpu->arch.mmu.translate_gpa = translate_gpa;
5900 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5901 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5902 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5903 else
5904 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5905
5906 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5907 if (!page) {
5908 r = -ENOMEM;
5909 goto fail;
5910 }
5911 vcpu->arch.pio_data = page_address(page);
5912
5913 if (!kvm->arch.virtual_tsc_khz)
5914 kvm_arch_set_tsc_khz(kvm, max_tsc_khz);
5915
5916 r = kvm_mmu_create(vcpu);
5917 if (r < 0)
5918 goto fail_free_pio_data;
5919
5920 if (irqchip_in_kernel(kvm)) {
5921 r = kvm_create_lapic(vcpu);
5922 if (r < 0)
5923 goto fail_mmu_destroy;
5924 }
5925
5926 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5927 GFP_KERNEL);
5928 if (!vcpu->arch.mce_banks) {
5929 r = -ENOMEM;
5930 goto fail_free_lapic;
5931 }
5932 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5933
5934 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
5935 goto fail_free_mce_banks;
5936
5937 kvm_async_pf_hash_reset(vcpu);
5938
5939 return 0;
5940 fail_free_mce_banks:
5941 kfree(vcpu->arch.mce_banks);
5942 fail_free_lapic:
5943 kvm_free_lapic(vcpu);
5944 fail_mmu_destroy:
5945 kvm_mmu_destroy(vcpu);
5946 fail_free_pio_data:
5947 free_page((unsigned long)vcpu->arch.pio_data);
5948 fail:
5949 return r;
5950 }
5951
5952 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
5953 {
5954 int idx;
5955
5956 kfree(vcpu->arch.mce_banks);
5957 kvm_free_lapic(vcpu);
5958 idx = srcu_read_lock(&vcpu->kvm->srcu);
5959 kvm_mmu_destroy(vcpu);
5960 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5961 free_page((unsigned long)vcpu->arch.pio_data);
5962 }
5963
5964 struct kvm *kvm_arch_create_vm(void)
5965 {
5966 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
5967
5968 if (!kvm)
5969 return ERR_PTR(-ENOMEM);
5970
5971 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5972 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
5973
5974 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5975 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
5976
5977 spin_lock_init(&kvm->arch.tsc_write_lock);
5978
5979 return kvm;
5980 }
5981
5982 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
5983 {
5984 vcpu_load(vcpu);
5985 kvm_mmu_unload(vcpu);
5986 vcpu_put(vcpu);
5987 }
5988
5989 static void kvm_free_vcpus(struct kvm *kvm)
5990 {
5991 unsigned int i;
5992 struct kvm_vcpu *vcpu;
5993
5994 /*
5995 * Unpin any mmu pages first.
5996 */
5997 kvm_for_each_vcpu(i, vcpu, kvm) {
5998 kvm_clear_async_pf_completion_queue(vcpu);
5999 kvm_unload_vcpu_mmu(vcpu);
6000 }
6001 kvm_for_each_vcpu(i, vcpu, kvm)
6002 kvm_arch_vcpu_free(vcpu);
6003
6004 mutex_lock(&kvm->lock);
6005 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6006 kvm->vcpus[i] = NULL;
6007
6008 atomic_set(&kvm->online_vcpus, 0);
6009 mutex_unlock(&kvm->lock);
6010 }
6011
6012 void kvm_arch_sync_events(struct kvm *kvm)
6013 {
6014 kvm_free_all_assigned_devices(kvm);
6015 kvm_free_pit(kvm);
6016 }
6017
6018 void kvm_arch_destroy_vm(struct kvm *kvm)
6019 {
6020 kvm_iommu_unmap_guest(kvm);
6021 kfree(kvm->arch.vpic);
6022 kfree(kvm->arch.vioapic);
6023 kvm_free_vcpus(kvm);
6024 kvm_free_physmem(kvm);
6025 if (kvm->arch.apic_access_page)
6026 put_page(kvm->arch.apic_access_page);
6027 if (kvm->arch.ept_identity_pagetable)
6028 put_page(kvm->arch.ept_identity_pagetable);
6029 cleanup_srcu_struct(&kvm->srcu);
6030 kfree(kvm);
6031 }
6032
6033 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6034 struct kvm_memory_slot *memslot,
6035 struct kvm_memory_slot old,
6036 struct kvm_userspace_memory_region *mem,
6037 int user_alloc)
6038 {
6039 int npages = memslot->npages;
6040 int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6041
6042 /* Prevent internal slot pages from being moved by fork()/COW. */
6043 if (memslot->id >= KVM_MEMORY_SLOTS)
6044 map_flags = MAP_SHARED | MAP_ANONYMOUS;
6045
6046 /*To keep backward compatibility with older userspace,
6047 *x86 needs to hanlde !user_alloc case.
6048 */
6049 if (!user_alloc) {
6050 if (npages && !old.rmap) {
6051 unsigned long userspace_addr;
6052
6053 down_write(&current->mm->mmap_sem);
6054 userspace_addr = do_mmap(NULL, 0,
6055 npages * PAGE_SIZE,
6056 PROT_READ | PROT_WRITE,
6057 map_flags,
6058 0);
6059 up_write(&current->mm->mmap_sem);
6060
6061 if (IS_ERR((void *)userspace_addr))
6062 return PTR_ERR((void *)userspace_addr);
6063
6064 memslot->userspace_addr = userspace_addr;
6065 }
6066 }
6067
6068
6069 return 0;
6070 }
6071
6072 void kvm_arch_commit_memory_region(struct kvm *kvm,
6073 struct kvm_userspace_memory_region *mem,
6074 struct kvm_memory_slot old,
6075 int user_alloc)
6076 {
6077
6078 int npages = mem->memory_size >> PAGE_SHIFT;
6079
6080 if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
6081 int ret;
6082
6083 down_write(&current->mm->mmap_sem);
6084 ret = do_munmap(current->mm, old.userspace_addr,
6085 old.npages * PAGE_SIZE);
6086 up_write(&current->mm->mmap_sem);
6087 if (ret < 0)
6088 printk(KERN_WARNING
6089 "kvm_vm_ioctl_set_memory_region: "
6090 "failed to munmap memory\n");
6091 }
6092
6093 spin_lock(&kvm->mmu_lock);
6094 if (!kvm->arch.n_requested_mmu_pages) {
6095 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6096 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6097 }
6098
6099 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6100 spin_unlock(&kvm->mmu_lock);
6101 }
6102
6103 void kvm_arch_flush_shadow(struct kvm *kvm)
6104 {
6105 kvm_mmu_zap_all(kvm);
6106 kvm_reload_remote_mmus(kvm);
6107 }
6108
6109 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6110 {
6111 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6112 !vcpu->arch.apf.halted)
6113 || !list_empty_careful(&vcpu->async_pf.done)
6114 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6115 || vcpu->arch.nmi_pending ||
6116 (kvm_arch_interrupt_allowed(vcpu) &&
6117 kvm_cpu_has_interrupt(vcpu));
6118 }
6119
6120 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
6121 {
6122 int me;
6123 int cpu = vcpu->cpu;
6124
6125 if (waitqueue_active(&vcpu->wq)) {
6126 wake_up_interruptible(&vcpu->wq);
6127 ++vcpu->stat.halt_wakeup;
6128 }
6129
6130 me = get_cpu();
6131 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
6132 if (atomic_xchg(&vcpu->guest_mode, 0))
6133 smp_send_reschedule(cpu);
6134 put_cpu();
6135 }
6136
6137 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6138 {
6139 return kvm_x86_ops->interrupt_allowed(vcpu);
6140 }
6141
6142 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6143 {
6144 unsigned long current_rip = kvm_rip_read(vcpu) +
6145 get_segment_base(vcpu, VCPU_SREG_CS);
6146
6147 return current_rip == linear_rip;
6148 }
6149 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6150
6151 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6152 {
6153 unsigned long rflags;
6154
6155 rflags = kvm_x86_ops->get_rflags(vcpu);
6156 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6157 rflags &= ~X86_EFLAGS_TF;
6158 return rflags;
6159 }
6160 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6161
6162 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6163 {
6164 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6165 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6166 rflags |= X86_EFLAGS_TF;
6167 kvm_x86_ops->set_rflags(vcpu, rflags);
6168 kvm_make_request(KVM_REQ_EVENT, vcpu);
6169 }
6170 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6171
6172 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6173 {
6174 int r;
6175
6176 if (!vcpu->arch.mmu.direct_map || is_error_page(work->page))
6177 return;
6178
6179 r = kvm_mmu_reload(vcpu);
6180 if (unlikely(r))
6181 return;
6182
6183 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
6184 }
6185
6186 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
6187 {
6188 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
6189 }
6190
6191 static inline u32 kvm_async_pf_next_probe(u32 key)
6192 {
6193 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
6194 }
6195
6196 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6197 {
6198 u32 key = kvm_async_pf_hash_fn(gfn);
6199
6200 while (vcpu->arch.apf.gfns[key] != ~0)
6201 key = kvm_async_pf_next_probe(key);
6202
6203 vcpu->arch.apf.gfns[key] = gfn;
6204 }
6205
6206 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
6207 {
6208 int i;
6209 u32 key = kvm_async_pf_hash_fn(gfn);
6210
6211 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
6212 (vcpu->arch.apf.gfns[key] != gfn ||
6213 vcpu->arch.apf.gfns[key] == ~0); i++)
6214 key = kvm_async_pf_next_probe(key);
6215
6216 return key;
6217 }
6218
6219 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6220 {
6221 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
6222 }
6223
6224 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6225 {
6226 u32 i, j, k;
6227
6228 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
6229 while (true) {
6230 vcpu->arch.apf.gfns[i] = ~0;
6231 do {
6232 j = kvm_async_pf_next_probe(j);
6233 if (vcpu->arch.apf.gfns[j] == ~0)
6234 return;
6235 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
6236 /*
6237 * k lies cyclically in ]i,j]
6238 * | i.k.j |
6239 * |....j i.k.| or |.k..j i...|
6240 */
6241 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
6242 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
6243 i = j;
6244 }
6245 }
6246
6247 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
6248 {
6249
6250 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
6251 sizeof(val));
6252 }
6253
6254 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
6255 struct kvm_async_pf *work)
6256 {
6257 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
6258 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
6259
6260 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
6261 (vcpu->arch.apf.send_user_only &&
6262 kvm_x86_ops->get_cpl(vcpu) == 0))
6263 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
6264 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
6265 vcpu->arch.fault.error_code = 0;
6266 vcpu->arch.fault.address = work->arch.token;
6267 kvm_inject_page_fault(vcpu);
6268 }
6269 }
6270
6271 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
6272 struct kvm_async_pf *work)
6273 {
6274 trace_kvm_async_pf_ready(work->arch.token, work->gva);
6275 if (is_error_page(work->page))
6276 work->arch.token = ~0; /* broadcast wakeup */
6277 else
6278 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
6279
6280 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
6281 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
6282 vcpu->arch.fault.error_code = 0;
6283 vcpu->arch.fault.address = work->arch.token;
6284 kvm_inject_page_fault(vcpu);
6285 }
6286 }
6287
6288 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
6289 {
6290 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
6291 return true;
6292 else
6293 return !kvm_event_needs_reinjection(vcpu) &&
6294 kvm_x86_ops->interrupt_allowed(vcpu);
6295 }
6296
6297 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6298 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6299 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6300 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6301 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6302 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6303 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6304 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6305 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6306 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6307 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6308 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
This page took 0.167229 seconds and 5 git commands to generate.