KVM: x86: disallow KVM_{SET,GET}_LAPIC without allocated in-kernel lapic
[deliverable/linux.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Amit Shah <amit.shah@qumranet.com>
14 * Ben-Ami Yassour <benami@il.ibm.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
28
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40 #include <linux/user-return-notifier.h>
41 #include <trace/events/kvm.h>
42 #undef TRACE_INCLUDE_FILE
43 #define CREATE_TRACE_POINTS
44 #include "trace.h"
45
46 #include <asm/uaccess.h>
47 #include <asm/msr.h>
48 #include <asm/desc.h>
49 #include <asm/mtrr.h>
50 #include <asm/mce.h>
51
52 #define MAX_IO_MSRS 256
53 #define CR0_RESERVED_BITS \
54 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
55 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
56 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
57 #define CR4_RESERVED_BITS \
58 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
59 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
60 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
61 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
62
63 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
64
65 #define KVM_MAX_MCE_BANKS 32
66 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
67
68 /* EFER defaults:
69 * - enable syscall per default because its emulated by KVM
70 * - enable LME and LMA per default on 64 bit KVM
71 */
72 #ifdef CONFIG_X86_64
73 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
74 #else
75 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
76 #endif
77
78 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
79 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
80
81 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
82 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
83 struct kvm_cpuid_entry2 __user *entries);
84
85 struct kvm_x86_ops *kvm_x86_ops;
86 EXPORT_SYMBOL_GPL(kvm_x86_ops);
87
88 int ignore_msrs = 0;
89 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
90
91 #define KVM_NR_SHARED_MSRS 16
92
93 struct kvm_shared_msrs_global {
94 int nr;
95 struct kvm_shared_msr {
96 u32 msr;
97 u64 value;
98 } msrs[KVM_NR_SHARED_MSRS];
99 };
100
101 struct kvm_shared_msrs {
102 struct user_return_notifier urn;
103 bool registered;
104 u64 current_value[KVM_NR_SHARED_MSRS];
105 };
106
107 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
108 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
109
110 struct kvm_stats_debugfs_item debugfs_entries[] = {
111 { "pf_fixed", VCPU_STAT(pf_fixed) },
112 { "pf_guest", VCPU_STAT(pf_guest) },
113 { "tlb_flush", VCPU_STAT(tlb_flush) },
114 { "invlpg", VCPU_STAT(invlpg) },
115 { "exits", VCPU_STAT(exits) },
116 { "io_exits", VCPU_STAT(io_exits) },
117 { "mmio_exits", VCPU_STAT(mmio_exits) },
118 { "signal_exits", VCPU_STAT(signal_exits) },
119 { "irq_window", VCPU_STAT(irq_window_exits) },
120 { "nmi_window", VCPU_STAT(nmi_window_exits) },
121 { "halt_exits", VCPU_STAT(halt_exits) },
122 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
123 { "hypercalls", VCPU_STAT(hypercalls) },
124 { "request_irq", VCPU_STAT(request_irq_exits) },
125 { "irq_exits", VCPU_STAT(irq_exits) },
126 { "host_state_reload", VCPU_STAT(host_state_reload) },
127 { "efer_reload", VCPU_STAT(efer_reload) },
128 { "fpu_reload", VCPU_STAT(fpu_reload) },
129 { "insn_emulation", VCPU_STAT(insn_emulation) },
130 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
131 { "irq_injections", VCPU_STAT(irq_injections) },
132 { "nmi_injections", VCPU_STAT(nmi_injections) },
133 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
134 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
135 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
136 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
137 { "mmu_flooded", VM_STAT(mmu_flooded) },
138 { "mmu_recycled", VM_STAT(mmu_recycled) },
139 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
140 { "mmu_unsync", VM_STAT(mmu_unsync) },
141 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
142 { "largepages", VM_STAT(lpages) },
143 { NULL }
144 };
145
146 static void kvm_on_user_return(struct user_return_notifier *urn)
147 {
148 unsigned slot;
149 struct kvm_shared_msr *global;
150 struct kvm_shared_msrs *locals
151 = container_of(urn, struct kvm_shared_msrs, urn);
152
153 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
154 global = &shared_msrs_global.msrs[slot];
155 if (global->value != locals->current_value[slot]) {
156 wrmsrl(global->msr, global->value);
157 locals->current_value[slot] = global->value;
158 }
159 }
160 locals->registered = false;
161 user_return_notifier_unregister(urn);
162 }
163
164 void kvm_define_shared_msr(unsigned slot, u32 msr)
165 {
166 int cpu;
167 u64 value;
168
169 if (slot >= shared_msrs_global.nr)
170 shared_msrs_global.nr = slot + 1;
171 shared_msrs_global.msrs[slot].msr = msr;
172 rdmsrl_safe(msr, &value);
173 shared_msrs_global.msrs[slot].value = value;
174 for_each_online_cpu(cpu)
175 per_cpu(shared_msrs, cpu).current_value[slot] = value;
176 }
177 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
178
179 static void kvm_shared_msr_cpu_online(void)
180 {
181 unsigned i;
182 struct kvm_shared_msrs *locals = &__get_cpu_var(shared_msrs);
183
184 for (i = 0; i < shared_msrs_global.nr; ++i)
185 locals->current_value[i] = shared_msrs_global.msrs[i].value;
186 }
187
188 void kvm_set_shared_msr(unsigned slot, u64 value)
189 {
190 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
191
192 if (value == smsr->current_value[slot])
193 return;
194 smsr->current_value[slot] = value;
195 wrmsrl(shared_msrs_global.msrs[slot].msr, value);
196 if (!smsr->registered) {
197 smsr->urn.on_user_return = kvm_on_user_return;
198 user_return_notifier_register(&smsr->urn);
199 smsr->registered = true;
200 }
201 }
202 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
203
204 unsigned long segment_base(u16 selector)
205 {
206 struct descriptor_table gdt;
207 struct desc_struct *d;
208 unsigned long table_base;
209 unsigned long v;
210
211 if (selector == 0)
212 return 0;
213
214 kvm_get_gdt(&gdt);
215 table_base = gdt.base;
216
217 if (selector & 4) { /* from ldt */
218 u16 ldt_selector = kvm_read_ldt();
219
220 table_base = segment_base(ldt_selector);
221 }
222 d = (struct desc_struct *)(table_base + (selector & ~7));
223 v = get_desc_base(d);
224 #ifdef CONFIG_X86_64
225 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
226 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
227 #endif
228 return v;
229 }
230 EXPORT_SYMBOL_GPL(segment_base);
231
232 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
233 {
234 if (irqchip_in_kernel(vcpu->kvm))
235 return vcpu->arch.apic_base;
236 else
237 return vcpu->arch.apic_base;
238 }
239 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
240
241 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
242 {
243 /* TODO: reserve bits check */
244 if (irqchip_in_kernel(vcpu->kvm))
245 kvm_lapic_set_base(vcpu, data);
246 else
247 vcpu->arch.apic_base = data;
248 }
249 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
250
251 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
252 {
253 WARN_ON(vcpu->arch.exception.pending);
254 vcpu->arch.exception.pending = true;
255 vcpu->arch.exception.has_error_code = false;
256 vcpu->arch.exception.nr = nr;
257 }
258 EXPORT_SYMBOL_GPL(kvm_queue_exception);
259
260 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
261 u32 error_code)
262 {
263 ++vcpu->stat.pf_guest;
264
265 if (vcpu->arch.exception.pending) {
266 switch(vcpu->arch.exception.nr) {
267 case DF_VECTOR:
268 /* triple fault -> shutdown */
269 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
270 return;
271 case PF_VECTOR:
272 vcpu->arch.exception.nr = DF_VECTOR;
273 vcpu->arch.exception.error_code = 0;
274 return;
275 default:
276 /* replace previous exception with a new one in a hope
277 that instruction re-execution will regenerate lost
278 exception */
279 vcpu->arch.exception.pending = false;
280 break;
281 }
282 }
283 vcpu->arch.cr2 = addr;
284 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
285 }
286
287 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
288 {
289 vcpu->arch.nmi_pending = 1;
290 }
291 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
292
293 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
294 {
295 WARN_ON(vcpu->arch.exception.pending);
296 vcpu->arch.exception.pending = true;
297 vcpu->arch.exception.has_error_code = true;
298 vcpu->arch.exception.nr = nr;
299 vcpu->arch.exception.error_code = error_code;
300 }
301 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
302
303 /*
304 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
305 * a #GP and return false.
306 */
307 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
308 {
309 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
310 return true;
311 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
312 return false;
313 }
314 EXPORT_SYMBOL_GPL(kvm_require_cpl);
315
316 /*
317 * Load the pae pdptrs. Return true is they are all valid.
318 */
319 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
320 {
321 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
322 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
323 int i;
324 int ret;
325 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
326
327 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
328 offset * sizeof(u64), sizeof(pdpte));
329 if (ret < 0) {
330 ret = 0;
331 goto out;
332 }
333 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
334 if (is_present_gpte(pdpte[i]) &&
335 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
336 ret = 0;
337 goto out;
338 }
339 }
340 ret = 1;
341
342 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
343 __set_bit(VCPU_EXREG_PDPTR,
344 (unsigned long *)&vcpu->arch.regs_avail);
345 __set_bit(VCPU_EXREG_PDPTR,
346 (unsigned long *)&vcpu->arch.regs_dirty);
347 out:
348
349 return ret;
350 }
351 EXPORT_SYMBOL_GPL(load_pdptrs);
352
353 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
354 {
355 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
356 bool changed = true;
357 int r;
358
359 if (is_long_mode(vcpu) || !is_pae(vcpu))
360 return false;
361
362 if (!test_bit(VCPU_EXREG_PDPTR,
363 (unsigned long *)&vcpu->arch.regs_avail))
364 return true;
365
366 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
367 if (r < 0)
368 goto out;
369 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
370 out:
371
372 return changed;
373 }
374
375 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
376 {
377 if (cr0 & CR0_RESERVED_BITS) {
378 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
379 cr0, vcpu->arch.cr0);
380 kvm_inject_gp(vcpu, 0);
381 return;
382 }
383
384 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
385 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
386 kvm_inject_gp(vcpu, 0);
387 return;
388 }
389
390 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
391 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
392 "and a clear PE flag\n");
393 kvm_inject_gp(vcpu, 0);
394 return;
395 }
396
397 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
398 #ifdef CONFIG_X86_64
399 if ((vcpu->arch.shadow_efer & EFER_LME)) {
400 int cs_db, cs_l;
401
402 if (!is_pae(vcpu)) {
403 printk(KERN_DEBUG "set_cr0: #GP, start paging "
404 "in long mode while PAE is disabled\n");
405 kvm_inject_gp(vcpu, 0);
406 return;
407 }
408 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
409 if (cs_l) {
410 printk(KERN_DEBUG "set_cr0: #GP, start paging "
411 "in long mode while CS.L == 1\n");
412 kvm_inject_gp(vcpu, 0);
413 return;
414
415 }
416 } else
417 #endif
418 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
419 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
420 "reserved bits\n");
421 kvm_inject_gp(vcpu, 0);
422 return;
423 }
424
425 }
426
427 kvm_x86_ops->set_cr0(vcpu, cr0);
428 vcpu->arch.cr0 = cr0;
429
430 kvm_mmu_reset_context(vcpu);
431 return;
432 }
433 EXPORT_SYMBOL_GPL(kvm_set_cr0);
434
435 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
436 {
437 kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
438 }
439 EXPORT_SYMBOL_GPL(kvm_lmsw);
440
441 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
442 {
443 unsigned long old_cr4 = vcpu->arch.cr4;
444 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
445
446 if (cr4 & CR4_RESERVED_BITS) {
447 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
448 kvm_inject_gp(vcpu, 0);
449 return;
450 }
451
452 if (is_long_mode(vcpu)) {
453 if (!(cr4 & X86_CR4_PAE)) {
454 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
455 "in long mode\n");
456 kvm_inject_gp(vcpu, 0);
457 return;
458 }
459 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
460 && ((cr4 ^ old_cr4) & pdptr_bits)
461 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
462 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
463 kvm_inject_gp(vcpu, 0);
464 return;
465 }
466
467 if (cr4 & X86_CR4_VMXE) {
468 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
469 kvm_inject_gp(vcpu, 0);
470 return;
471 }
472 kvm_x86_ops->set_cr4(vcpu, cr4);
473 vcpu->arch.cr4 = cr4;
474 vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
475 kvm_mmu_reset_context(vcpu);
476 }
477 EXPORT_SYMBOL_GPL(kvm_set_cr4);
478
479 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
480 {
481 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
482 kvm_mmu_sync_roots(vcpu);
483 kvm_mmu_flush_tlb(vcpu);
484 return;
485 }
486
487 if (is_long_mode(vcpu)) {
488 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
489 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
490 kvm_inject_gp(vcpu, 0);
491 return;
492 }
493 } else {
494 if (is_pae(vcpu)) {
495 if (cr3 & CR3_PAE_RESERVED_BITS) {
496 printk(KERN_DEBUG
497 "set_cr3: #GP, reserved bits\n");
498 kvm_inject_gp(vcpu, 0);
499 return;
500 }
501 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
502 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
503 "reserved bits\n");
504 kvm_inject_gp(vcpu, 0);
505 return;
506 }
507 }
508 /*
509 * We don't check reserved bits in nonpae mode, because
510 * this isn't enforced, and VMware depends on this.
511 */
512 }
513
514 /*
515 * Does the new cr3 value map to physical memory? (Note, we
516 * catch an invalid cr3 even in real-mode, because it would
517 * cause trouble later on when we turn on paging anyway.)
518 *
519 * A real CPU would silently accept an invalid cr3 and would
520 * attempt to use it - with largely undefined (and often hard
521 * to debug) behavior on the guest side.
522 */
523 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
524 kvm_inject_gp(vcpu, 0);
525 else {
526 vcpu->arch.cr3 = cr3;
527 vcpu->arch.mmu.new_cr3(vcpu);
528 }
529 }
530 EXPORT_SYMBOL_GPL(kvm_set_cr3);
531
532 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
533 {
534 if (cr8 & CR8_RESERVED_BITS) {
535 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
536 kvm_inject_gp(vcpu, 0);
537 return;
538 }
539 if (irqchip_in_kernel(vcpu->kvm))
540 kvm_lapic_set_tpr(vcpu, cr8);
541 else
542 vcpu->arch.cr8 = cr8;
543 }
544 EXPORT_SYMBOL_GPL(kvm_set_cr8);
545
546 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
547 {
548 if (irqchip_in_kernel(vcpu->kvm))
549 return kvm_lapic_get_cr8(vcpu);
550 else
551 return vcpu->arch.cr8;
552 }
553 EXPORT_SYMBOL_GPL(kvm_get_cr8);
554
555 static inline u32 bit(int bitno)
556 {
557 return 1 << (bitno & 31);
558 }
559
560 /*
561 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
562 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
563 *
564 * This list is modified at module load time to reflect the
565 * capabilities of the host cpu. This capabilities test skips MSRs that are
566 * kvm-specific. Those are put in the beginning of the list.
567 */
568
569 #define KVM_SAVE_MSRS_BEGIN 2
570 static u32 msrs_to_save[] = {
571 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
572 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
573 MSR_K6_STAR,
574 #ifdef CONFIG_X86_64
575 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
576 #endif
577 MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
578 };
579
580 static unsigned num_msrs_to_save;
581
582 static u32 emulated_msrs[] = {
583 MSR_IA32_MISC_ENABLE,
584 };
585
586 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
587 {
588 if (efer & efer_reserved_bits) {
589 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
590 efer);
591 kvm_inject_gp(vcpu, 0);
592 return;
593 }
594
595 if (is_paging(vcpu)
596 && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
597 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
598 kvm_inject_gp(vcpu, 0);
599 return;
600 }
601
602 if (efer & EFER_FFXSR) {
603 struct kvm_cpuid_entry2 *feat;
604
605 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
606 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
607 printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
608 kvm_inject_gp(vcpu, 0);
609 return;
610 }
611 }
612
613 if (efer & EFER_SVME) {
614 struct kvm_cpuid_entry2 *feat;
615
616 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
617 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
618 printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
619 kvm_inject_gp(vcpu, 0);
620 return;
621 }
622 }
623
624 kvm_x86_ops->set_efer(vcpu, efer);
625
626 efer &= ~EFER_LMA;
627 efer |= vcpu->arch.shadow_efer & EFER_LMA;
628
629 vcpu->arch.shadow_efer = efer;
630
631 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
632 kvm_mmu_reset_context(vcpu);
633 }
634
635 void kvm_enable_efer_bits(u64 mask)
636 {
637 efer_reserved_bits &= ~mask;
638 }
639 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
640
641
642 /*
643 * Writes msr value into into the appropriate "register".
644 * Returns 0 on success, non-0 otherwise.
645 * Assumes vcpu_load() was already called.
646 */
647 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
648 {
649 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
650 }
651
652 /*
653 * Adapt set_msr() to msr_io()'s calling convention
654 */
655 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
656 {
657 return kvm_set_msr(vcpu, index, *data);
658 }
659
660 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
661 {
662 static int version;
663 struct pvclock_wall_clock wc;
664 struct timespec now, sys, boot;
665
666 if (!wall_clock)
667 return;
668
669 version++;
670
671 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
672
673 /*
674 * The guest calculates current wall clock time by adding
675 * system time (updated by kvm_write_guest_time below) to the
676 * wall clock specified here. guest system time equals host
677 * system time for us, thus we must fill in host boot time here.
678 */
679 now = current_kernel_time();
680 ktime_get_ts(&sys);
681 boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
682
683 wc.sec = boot.tv_sec;
684 wc.nsec = boot.tv_nsec;
685 wc.version = version;
686
687 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
688
689 version++;
690 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
691 }
692
693 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
694 {
695 uint32_t quotient, remainder;
696
697 /* Don't try to replace with do_div(), this one calculates
698 * "(dividend << 32) / divisor" */
699 __asm__ ( "divl %4"
700 : "=a" (quotient), "=d" (remainder)
701 : "0" (0), "1" (dividend), "r" (divisor) );
702 return quotient;
703 }
704
705 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
706 {
707 uint64_t nsecs = 1000000000LL;
708 int32_t shift = 0;
709 uint64_t tps64;
710 uint32_t tps32;
711
712 tps64 = tsc_khz * 1000LL;
713 while (tps64 > nsecs*2) {
714 tps64 >>= 1;
715 shift--;
716 }
717
718 tps32 = (uint32_t)tps64;
719 while (tps32 <= (uint32_t)nsecs) {
720 tps32 <<= 1;
721 shift++;
722 }
723
724 hv_clock->tsc_shift = shift;
725 hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
726
727 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
728 __func__, tsc_khz, hv_clock->tsc_shift,
729 hv_clock->tsc_to_system_mul);
730 }
731
732 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
733
734 static void kvm_write_guest_time(struct kvm_vcpu *v)
735 {
736 struct timespec ts;
737 unsigned long flags;
738 struct kvm_vcpu_arch *vcpu = &v->arch;
739 void *shared_kaddr;
740 unsigned long this_tsc_khz;
741
742 if ((!vcpu->time_page))
743 return;
744
745 this_tsc_khz = get_cpu_var(cpu_tsc_khz);
746 if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
747 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
748 vcpu->hv_clock_tsc_khz = this_tsc_khz;
749 }
750 put_cpu_var(cpu_tsc_khz);
751
752 /* Keep irq disabled to prevent changes to the clock */
753 local_irq_save(flags);
754 kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
755 ktime_get_ts(&ts);
756 local_irq_restore(flags);
757
758 /* With all the info we got, fill in the values */
759
760 vcpu->hv_clock.system_time = ts.tv_nsec +
761 (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
762
763 /*
764 * The interface expects us to write an even number signaling that the
765 * update is finished. Since the guest won't see the intermediate
766 * state, we just increase by 2 at the end.
767 */
768 vcpu->hv_clock.version += 2;
769
770 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
771
772 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
773 sizeof(vcpu->hv_clock));
774
775 kunmap_atomic(shared_kaddr, KM_USER0);
776
777 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
778 }
779
780 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
781 {
782 struct kvm_vcpu_arch *vcpu = &v->arch;
783
784 if (!vcpu->time_page)
785 return 0;
786 set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
787 return 1;
788 }
789
790 static bool msr_mtrr_valid(unsigned msr)
791 {
792 switch (msr) {
793 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
794 case MSR_MTRRfix64K_00000:
795 case MSR_MTRRfix16K_80000:
796 case MSR_MTRRfix16K_A0000:
797 case MSR_MTRRfix4K_C0000:
798 case MSR_MTRRfix4K_C8000:
799 case MSR_MTRRfix4K_D0000:
800 case MSR_MTRRfix4K_D8000:
801 case MSR_MTRRfix4K_E0000:
802 case MSR_MTRRfix4K_E8000:
803 case MSR_MTRRfix4K_F0000:
804 case MSR_MTRRfix4K_F8000:
805 case MSR_MTRRdefType:
806 case MSR_IA32_CR_PAT:
807 return true;
808 case 0x2f8:
809 return true;
810 }
811 return false;
812 }
813
814 static bool valid_pat_type(unsigned t)
815 {
816 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
817 }
818
819 static bool valid_mtrr_type(unsigned t)
820 {
821 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
822 }
823
824 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
825 {
826 int i;
827
828 if (!msr_mtrr_valid(msr))
829 return false;
830
831 if (msr == MSR_IA32_CR_PAT) {
832 for (i = 0; i < 8; i++)
833 if (!valid_pat_type((data >> (i * 8)) & 0xff))
834 return false;
835 return true;
836 } else if (msr == MSR_MTRRdefType) {
837 if (data & ~0xcff)
838 return false;
839 return valid_mtrr_type(data & 0xff);
840 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
841 for (i = 0; i < 8 ; i++)
842 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
843 return false;
844 return true;
845 }
846
847 /* variable MTRRs */
848 return valid_mtrr_type(data & 0xff);
849 }
850
851 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
852 {
853 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
854
855 if (!mtrr_valid(vcpu, msr, data))
856 return 1;
857
858 if (msr == MSR_MTRRdefType) {
859 vcpu->arch.mtrr_state.def_type = data;
860 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
861 } else if (msr == MSR_MTRRfix64K_00000)
862 p[0] = data;
863 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
864 p[1 + msr - MSR_MTRRfix16K_80000] = data;
865 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
866 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
867 else if (msr == MSR_IA32_CR_PAT)
868 vcpu->arch.pat = data;
869 else { /* Variable MTRRs */
870 int idx, is_mtrr_mask;
871 u64 *pt;
872
873 idx = (msr - 0x200) / 2;
874 is_mtrr_mask = msr - 0x200 - 2 * idx;
875 if (!is_mtrr_mask)
876 pt =
877 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
878 else
879 pt =
880 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
881 *pt = data;
882 }
883
884 kvm_mmu_reset_context(vcpu);
885 return 0;
886 }
887
888 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
889 {
890 u64 mcg_cap = vcpu->arch.mcg_cap;
891 unsigned bank_num = mcg_cap & 0xff;
892
893 switch (msr) {
894 case MSR_IA32_MCG_STATUS:
895 vcpu->arch.mcg_status = data;
896 break;
897 case MSR_IA32_MCG_CTL:
898 if (!(mcg_cap & MCG_CTL_P))
899 return 1;
900 if (data != 0 && data != ~(u64)0)
901 return -1;
902 vcpu->arch.mcg_ctl = data;
903 break;
904 default:
905 if (msr >= MSR_IA32_MC0_CTL &&
906 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
907 u32 offset = msr - MSR_IA32_MC0_CTL;
908 /* only 0 or all 1s can be written to IA32_MCi_CTL */
909 if ((offset & 0x3) == 0 &&
910 data != 0 && data != ~(u64)0)
911 return -1;
912 vcpu->arch.mce_banks[offset] = data;
913 break;
914 }
915 return 1;
916 }
917 return 0;
918 }
919
920 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
921 {
922 struct kvm *kvm = vcpu->kvm;
923 int lm = is_long_mode(vcpu);
924 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
925 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
926 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
927 : kvm->arch.xen_hvm_config.blob_size_32;
928 u32 page_num = data & ~PAGE_MASK;
929 u64 page_addr = data & PAGE_MASK;
930 u8 *page;
931 int r;
932
933 r = -E2BIG;
934 if (page_num >= blob_size)
935 goto out;
936 r = -ENOMEM;
937 page = kzalloc(PAGE_SIZE, GFP_KERNEL);
938 if (!page)
939 goto out;
940 r = -EFAULT;
941 if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
942 goto out_free;
943 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
944 goto out_free;
945 r = 0;
946 out_free:
947 kfree(page);
948 out:
949 return r;
950 }
951
952 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
953 {
954 switch (msr) {
955 case MSR_EFER:
956 set_efer(vcpu, data);
957 break;
958 case MSR_K7_HWCR:
959 data &= ~(u64)0x40; /* ignore flush filter disable */
960 if (data != 0) {
961 pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
962 data);
963 return 1;
964 }
965 break;
966 case MSR_FAM10H_MMIO_CONF_BASE:
967 if (data != 0) {
968 pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
969 "0x%llx\n", data);
970 return 1;
971 }
972 break;
973 case MSR_AMD64_NB_CFG:
974 break;
975 case MSR_IA32_DEBUGCTLMSR:
976 if (!data) {
977 /* We support the non-activated case already */
978 break;
979 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
980 /* Values other than LBR and BTF are vendor-specific,
981 thus reserved and should throw a #GP */
982 return 1;
983 }
984 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
985 __func__, data);
986 break;
987 case MSR_IA32_UCODE_REV:
988 case MSR_IA32_UCODE_WRITE:
989 case MSR_VM_HSAVE_PA:
990 case MSR_AMD64_PATCH_LOADER:
991 break;
992 case 0x200 ... 0x2ff:
993 return set_msr_mtrr(vcpu, msr, data);
994 case MSR_IA32_APICBASE:
995 kvm_set_apic_base(vcpu, data);
996 break;
997 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
998 return kvm_x2apic_msr_write(vcpu, msr, data);
999 case MSR_IA32_MISC_ENABLE:
1000 vcpu->arch.ia32_misc_enable_msr = data;
1001 break;
1002 case MSR_KVM_WALL_CLOCK:
1003 vcpu->kvm->arch.wall_clock = data;
1004 kvm_write_wall_clock(vcpu->kvm, data);
1005 break;
1006 case MSR_KVM_SYSTEM_TIME: {
1007 if (vcpu->arch.time_page) {
1008 kvm_release_page_dirty(vcpu->arch.time_page);
1009 vcpu->arch.time_page = NULL;
1010 }
1011
1012 vcpu->arch.time = data;
1013
1014 /* we verify if the enable bit is set... */
1015 if (!(data & 1))
1016 break;
1017
1018 /* ...but clean it before doing the actual write */
1019 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1020
1021 vcpu->arch.time_page =
1022 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1023
1024 if (is_error_page(vcpu->arch.time_page)) {
1025 kvm_release_page_clean(vcpu->arch.time_page);
1026 vcpu->arch.time_page = NULL;
1027 }
1028
1029 kvm_request_guest_time_update(vcpu);
1030 break;
1031 }
1032 case MSR_IA32_MCG_CTL:
1033 case MSR_IA32_MCG_STATUS:
1034 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1035 return set_msr_mce(vcpu, msr, data);
1036
1037 /* Performance counters are not protected by a CPUID bit,
1038 * so we should check all of them in the generic path for the sake of
1039 * cross vendor migration.
1040 * Writing a zero into the event select MSRs disables them,
1041 * which we perfectly emulate ;-). Any other value should be at least
1042 * reported, some guests depend on them.
1043 */
1044 case MSR_P6_EVNTSEL0:
1045 case MSR_P6_EVNTSEL1:
1046 case MSR_K7_EVNTSEL0:
1047 case MSR_K7_EVNTSEL1:
1048 case MSR_K7_EVNTSEL2:
1049 case MSR_K7_EVNTSEL3:
1050 if (data != 0)
1051 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1052 "0x%x data 0x%llx\n", msr, data);
1053 break;
1054 /* at least RHEL 4 unconditionally writes to the perfctr registers,
1055 * so we ignore writes to make it happy.
1056 */
1057 case MSR_P6_PERFCTR0:
1058 case MSR_P6_PERFCTR1:
1059 case MSR_K7_PERFCTR0:
1060 case MSR_K7_PERFCTR1:
1061 case MSR_K7_PERFCTR2:
1062 case MSR_K7_PERFCTR3:
1063 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1064 "0x%x data 0x%llx\n", msr, data);
1065 break;
1066 default:
1067 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1068 return xen_hvm_config(vcpu, data);
1069 if (!ignore_msrs) {
1070 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1071 msr, data);
1072 return 1;
1073 } else {
1074 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1075 msr, data);
1076 break;
1077 }
1078 }
1079 return 0;
1080 }
1081 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1082
1083
1084 /*
1085 * Reads an msr value (of 'msr_index') into 'pdata'.
1086 * Returns 0 on success, non-0 otherwise.
1087 * Assumes vcpu_load() was already called.
1088 */
1089 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1090 {
1091 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1092 }
1093
1094 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1095 {
1096 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1097
1098 if (!msr_mtrr_valid(msr))
1099 return 1;
1100
1101 if (msr == MSR_MTRRdefType)
1102 *pdata = vcpu->arch.mtrr_state.def_type +
1103 (vcpu->arch.mtrr_state.enabled << 10);
1104 else if (msr == MSR_MTRRfix64K_00000)
1105 *pdata = p[0];
1106 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1107 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1108 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1109 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1110 else if (msr == MSR_IA32_CR_PAT)
1111 *pdata = vcpu->arch.pat;
1112 else { /* Variable MTRRs */
1113 int idx, is_mtrr_mask;
1114 u64 *pt;
1115
1116 idx = (msr - 0x200) / 2;
1117 is_mtrr_mask = msr - 0x200 - 2 * idx;
1118 if (!is_mtrr_mask)
1119 pt =
1120 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1121 else
1122 pt =
1123 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1124 *pdata = *pt;
1125 }
1126
1127 return 0;
1128 }
1129
1130 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1131 {
1132 u64 data;
1133 u64 mcg_cap = vcpu->arch.mcg_cap;
1134 unsigned bank_num = mcg_cap & 0xff;
1135
1136 switch (msr) {
1137 case MSR_IA32_P5_MC_ADDR:
1138 case MSR_IA32_P5_MC_TYPE:
1139 data = 0;
1140 break;
1141 case MSR_IA32_MCG_CAP:
1142 data = vcpu->arch.mcg_cap;
1143 break;
1144 case MSR_IA32_MCG_CTL:
1145 if (!(mcg_cap & MCG_CTL_P))
1146 return 1;
1147 data = vcpu->arch.mcg_ctl;
1148 break;
1149 case MSR_IA32_MCG_STATUS:
1150 data = vcpu->arch.mcg_status;
1151 break;
1152 default:
1153 if (msr >= MSR_IA32_MC0_CTL &&
1154 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1155 u32 offset = msr - MSR_IA32_MC0_CTL;
1156 data = vcpu->arch.mce_banks[offset];
1157 break;
1158 }
1159 return 1;
1160 }
1161 *pdata = data;
1162 return 0;
1163 }
1164
1165 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1166 {
1167 u64 data;
1168
1169 switch (msr) {
1170 case MSR_IA32_PLATFORM_ID:
1171 case MSR_IA32_UCODE_REV:
1172 case MSR_IA32_EBL_CR_POWERON:
1173 case MSR_IA32_DEBUGCTLMSR:
1174 case MSR_IA32_LASTBRANCHFROMIP:
1175 case MSR_IA32_LASTBRANCHTOIP:
1176 case MSR_IA32_LASTINTFROMIP:
1177 case MSR_IA32_LASTINTTOIP:
1178 case MSR_K8_SYSCFG:
1179 case MSR_K7_HWCR:
1180 case MSR_VM_HSAVE_PA:
1181 case MSR_P6_PERFCTR0:
1182 case MSR_P6_PERFCTR1:
1183 case MSR_P6_EVNTSEL0:
1184 case MSR_P6_EVNTSEL1:
1185 case MSR_K7_EVNTSEL0:
1186 case MSR_K7_PERFCTR0:
1187 case MSR_K8_INT_PENDING_MSG:
1188 case MSR_AMD64_NB_CFG:
1189 case MSR_FAM10H_MMIO_CONF_BASE:
1190 data = 0;
1191 break;
1192 case MSR_MTRRcap:
1193 data = 0x500 | KVM_NR_VAR_MTRR;
1194 break;
1195 case 0x200 ... 0x2ff:
1196 return get_msr_mtrr(vcpu, msr, pdata);
1197 case 0xcd: /* fsb frequency */
1198 data = 3;
1199 break;
1200 case MSR_IA32_APICBASE:
1201 data = kvm_get_apic_base(vcpu);
1202 break;
1203 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1204 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1205 break;
1206 case MSR_IA32_MISC_ENABLE:
1207 data = vcpu->arch.ia32_misc_enable_msr;
1208 break;
1209 case MSR_IA32_PERF_STATUS:
1210 /* TSC increment by tick */
1211 data = 1000ULL;
1212 /* CPU multiplier */
1213 data |= (((uint64_t)4ULL) << 40);
1214 break;
1215 case MSR_EFER:
1216 data = vcpu->arch.shadow_efer;
1217 break;
1218 case MSR_KVM_WALL_CLOCK:
1219 data = vcpu->kvm->arch.wall_clock;
1220 break;
1221 case MSR_KVM_SYSTEM_TIME:
1222 data = vcpu->arch.time;
1223 break;
1224 case MSR_IA32_P5_MC_ADDR:
1225 case MSR_IA32_P5_MC_TYPE:
1226 case MSR_IA32_MCG_CAP:
1227 case MSR_IA32_MCG_CTL:
1228 case MSR_IA32_MCG_STATUS:
1229 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1230 return get_msr_mce(vcpu, msr, pdata);
1231 default:
1232 if (!ignore_msrs) {
1233 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1234 return 1;
1235 } else {
1236 pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1237 data = 0;
1238 }
1239 break;
1240 }
1241 *pdata = data;
1242 return 0;
1243 }
1244 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1245
1246 /*
1247 * Read or write a bunch of msrs. All parameters are kernel addresses.
1248 *
1249 * @return number of msrs set successfully.
1250 */
1251 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1252 struct kvm_msr_entry *entries,
1253 int (*do_msr)(struct kvm_vcpu *vcpu,
1254 unsigned index, u64 *data))
1255 {
1256 int i;
1257
1258 vcpu_load(vcpu);
1259
1260 down_read(&vcpu->kvm->slots_lock);
1261 for (i = 0; i < msrs->nmsrs; ++i)
1262 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1263 break;
1264 up_read(&vcpu->kvm->slots_lock);
1265
1266 vcpu_put(vcpu);
1267
1268 return i;
1269 }
1270
1271 /*
1272 * Read or write a bunch of msrs. Parameters are user addresses.
1273 *
1274 * @return number of msrs set successfully.
1275 */
1276 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1277 int (*do_msr)(struct kvm_vcpu *vcpu,
1278 unsigned index, u64 *data),
1279 int writeback)
1280 {
1281 struct kvm_msrs msrs;
1282 struct kvm_msr_entry *entries;
1283 int r, n;
1284 unsigned size;
1285
1286 r = -EFAULT;
1287 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1288 goto out;
1289
1290 r = -E2BIG;
1291 if (msrs.nmsrs >= MAX_IO_MSRS)
1292 goto out;
1293
1294 r = -ENOMEM;
1295 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1296 entries = vmalloc(size);
1297 if (!entries)
1298 goto out;
1299
1300 r = -EFAULT;
1301 if (copy_from_user(entries, user_msrs->entries, size))
1302 goto out_free;
1303
1304 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1305 if (r < 0)
1306 goto out_free;
1307
1308 r = -EFAULT;
1309 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1310 goto out_free;
1311
1312 r = n;
1313
1314 out_free:
1315 vfree(entries);
1316 out:
1317 return r;
1318 }
1319
1320 int kvm_dev_ioctl_check_extension(long ext)
1321 {
1322 int r;
1323
1324 switch (ext) {
1325 case KVM_CAP_IRQCHIP:
1326 case KVM_CAP_HLT:
1327 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1328 case KVM_CAP_SET_TSS_ADDR:
1329 case KVM_CAP_EXT_CPUID:
1330 case KVM_CAP_CLOCKSOURCE:
1331 case KVM_CAP_PIT:
1332 case KVM_CAP_NOP_IO_DELAY:
1333 case KVM_CAP_MP_STATE:
1334 case KVM_CAP_SYNC_MMU:
1335 case KVM_CAP_REINJECT_CONTROL:
1336 case KVM_CAP_IRQ_INJECT_STATUS:
1337 case KVM_CAP_ASSIGN_DEV_IRQ:
1338 case KVM_CAP_IRQFD:
1339 case KVM_CAP_IOEVENTFD:
1340 case KVM_CAP_PIT2:
1341 case KVM_CAP_PIT_STATE2:
1342 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1343 case KVM_CAP_XEN_HVM:
1344 case KVM_CAP_ADJUST_CLOCK:
1345 r = 1;
1346 break;
1347 case KVM_CAP_COALESCED_MMIO:
1348 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1349 break;
1350 case KVM_CAP_VAPIC:
1351 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1352 break;
1353 case KVM_CAP_NR_VCPUS:
1354 r = KVM_MAX_VCPUS;
1355 break;
1356 case KVM_CAP_NR_MEMSLOTS:
1357 r = KVM_MEMORY_SLOTS;
1358 break;
1359 case KVM_CAP_PV_MMU: /* obsolete */
1360 r = 0;
1361 break;
1362 case KVM_CAP_IOMMU:
1363 r = iommu_found();
1364 break;
1365 case KVM_CAP_MCE:
1366 r = KVM_MAX_MCE_BANKS;
1367 break;
1368 default:
1369 r = 0;
1370 break;
1371 }
1372 return r;
1373
1374 }
1375
1376 long kvm_arch_dev_ioctl(struct file *filp,
1377 unsigned int ioctl, unsigned long arg)
1378 {
1379 void __user *argp = (void __user *)arg;
1380 long r;
1381
1382 switch (ioctl) {
1383 case KVM_GET_MSR_INDEX_LIST: {
1384 struct kvm_msr_list __user *user_msr_list = argp;
1385 struct kvm_msr_list msr_list;
1386 unsigned n;
1387
1388 r = -EFAULT;
1389 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1390 goto out;
1391 n = msr_list.nmsrs;
1392 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1393 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1394 goto out;
1395 r = -E2BIG;
1396 if (n < msr_list.nmsrs)
1397 goto out;
1398 r = -EFAULT;
1399 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1400 num_msrs_to_save * sizeof(u32)))
1401 goto out;
1402 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1403 &emulated_msrs,
1404 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1405 goto out;
1406 r = 0;
1407 break;
1408 }
1409 case KVM_GET_SUPPORTED_CPUID: {
1410 struct kvm_cpuid2 __user *cpuid_arg = argp;
1411 struct kvm_cpuid2 cpuid;
1412
1413 r = -EFAULT;
1414 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1415 goto out;
1416 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1417 cpuid_arg->entries);
1418 if (r)
1419 goto out;
1420
1421 r = -EFAULT;
1422 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1423 goto out;
1424 r = 0;
1425 break;
1426 }
1427 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1428 u64 mce_cap;
1429
1430 mce_cap = KVM_MCE_CAP_SUPPORTED;
1431 r = -EFAULT;
1432 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1433 goto out;
1434 r = 0;
1435 break;
1436 }
1437 default:
1438 r = -EINVAL;
1439 }
1440 out:
1441 return r;
1442 }
1443
1444 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1445 {
1446 kvm_x86_ops->vcpu_load(vcpu, cpu);
1447 if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) {
1448 unsigned long khz = cpufreq_quick_get(cpu);
1449 if (!khz)
1450 khz = tsc_khz;
1451 per_cpu(cpu_tsc_khz, cpu) = khz;
1452 }
1453 kvm_request_guest_time_update(vcpu);
1454 }
1455
1456 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1457 {
1458 kvm_x86_ops->vcpu_put(vcpu);
1459 kvm_put_guest_fpu(vcpu);
1460 }
1461
1462 static int is_efer_nx(void)
1463 {
1464 unsigned long long efer = 0;
1465
1466 rdmsrl_safe(MSR_EFER, &efer);
1467 return efer & EFER_NX;
1468 }
1469
1470 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1471 {
1472 int i;
1473 struct kvm_cpuid_entry2 *e, *entry;
1474
1475 entry = NULL;
1476 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1477 e = &vcpu->arch.cpuid_entries[i];
1478 if (e->function == 0x80000001) {
1479 entry = e;
1480 break;
1481 }
1482 }
1483 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1484 entry->edx &= ~(1 << 20);
1485 printk(KERN_INFO "kvm: guest NX capability removed\n");
1486 }
1487 }
1488
1489 /* when an old userspace process fills a new kernel module */
1490 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1491 struct kvm_cpuid *cpuid,
1492 struct kvm_cpuid_entry __user *entries)
1493 {
1494 int r, i;
1495 struct kvm_cpuid_entry *cpuid_entries;
1496
1497 r = -E2BIG;
1498 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1499 goto out;
1500 r = -ENOMEM;
1501 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1502 if (!cpuid_entries)
1503 goto out;
1504 r = -EFAULT;
1505 if (copy_from_user(cpuid_entries, entries,
1506 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1507 goto out_free;
1508 for (i = 0; i < cpuid->nent; i++) {
1509 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1510 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1511 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1512 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1513 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1514 vcpu->arch.cpuid_entries[i].index = 0;
1515 vcpu->arch.cpuid_entries[i].flags = 0;
1516 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1517 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1518 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1519 }
1520 vcpu->arch.cpuid_nent = cpuid->nent;
1521 cpuid_fix_nx_cap(vcpu);
1522 r = 0;
1523 kvm_apic_set_version(vcpu);
1524
1525 out_free:
1526 vfree(cpuid_entries);
1527 out:
1528 return r;
1529 }
1530
1531 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1532 struct kvm_cpuid2 *cpuid,
1533 struct kvm_cpuid_entry2 __user *entries)
1534 {
1535 int r;
1536
1537 r = -E2BIG;
1538 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1539 goto out;
1540 r = -EFAULT;
1541 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1542 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1543 goto out;
1544 vcpu->arch.cpuid_nent = cpuid->nent;
1545 kvm_apic_set_version(vcpu);
1546 return 0;
1547
1548 out:
1549 return r;
1550 }
1551
1552 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1553 struct kvm_cpuid2 *cpuid,
1554 struct kvm_cpuid_entry2 __user *entries)
1555 {
1556 int r;
1557
1558 r = -E2BIG;
1559 if (cpuid->nent < vcpu->arch.cpuid_nent)
1560 goto out;
1561 r = -EFAULT;
1562 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1563 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1564 goto out;
1565 return 0;
1566
1567 out:
1568 cpuid->nent = vcpu->arch.cpuid_nent;
1569 return r;
1570 }
1571
1572 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1573 u32 index)
1574 {
1575 entry->function = function;
1576 entry->index = index;
1577 cpuid_count(entry->function, entry->index,
1578 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1579 entry->flags = 0;
1580 }
1581
1582 #define F(x) bit(X86_FEATURE_##x)
1583
1584 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1585 u32 index, int *nent, int maxnent)
1586 {
1587 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
1588 unsigned f_gbpages = kvm_x86_ops->gb_page_enable() ? F(GBPAGES) : 0;
1589 #ifdef CONFIG_X86_64
1590 unsigned f_lm = F(LM);
1591 #else
1592 unsigned f_lm = 0;
1593 #endif
1594
1595 /* cpuid 1.edx */
1596 const u32 kvm_supported_word0_x86_features =
1597 F(FPU) | F(VME) | F(DE) | F(PSE) |
1598 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1599 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
1600 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1601 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
1602 0 /* Reserved, DS, ACPI */ | F(MMX) |
1603 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
1604 0 /* HTT, TM, Reserved, PBE */;
1605 /* cpuid 0x80000001.edx */
1606 const u32 kvm_supported_word1_x86_features =
1607 F(FPU) | F(VME) | F(DE) | F(PSE) |
1608 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1609 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
1610 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1611 F(PAT) | F(PSE36) | 0 /* Reserved */ |
1612 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
1613 F(FXSR) | F(FXSR_OPT) | f_gbpages | 0 /* RDTSCP */ |
1614 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
1615 /* cpuid 1.ecx */
1616 const u32 kvm_supported_word4_x86_features =
1617 F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
1618 0 /* DS-CPL, VMX, SMX, EST */ |
1619 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1620 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
1621 0 /* Reserved, DCA */ | F(XMM4_1) |
1622 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
1623 0 /* Reserved, XSAVE, OSXSAVE */;
1624 /* cpuid 0x80000001.ecx */
1625 const u32 kvm_supported_word6_x86_features =
1626 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
1627 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
1628 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
1629 0 /* SKINIT */ | 0 /* WDT */;
1630
1631 /* all calls to cpuid_count() should be made on the same cpu */
1632 get_cpu();
1633 do_cpuid_1_ent(entry, function, index);
1634 ++*nent;
1635
1636 switch (function) {
1637 case 0:
1638 entry->eax = min(entry->eax, (u32)0xb);
1639 break;
1640 case 1:
1641 entry->edx &= kvm_supported_word0_x86_features;
1642 entry->ecx &= kvm_supported_word4_x86_features;
1643 /* we support x2apic emulation even if host does not support
1644 * it since we emulate x2apic in software */
1645 entry->ecx |= F(X2APIC);
1646 break;
1647 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1648 * may return different values. This forces us to get_cpu() before
1649 * issuing the first command, and also to emulate this annoying behavior
1650 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1651 case 2: {
1652 int t, times = entry->eax & 0xff;
1653
1654 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1655 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1656 for (t = 1; t < times && *nent < maxnent; ++t) {
1657 do_cpuid_1_ent(&entry[t], function, 0);
1658 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1659 ++*nent;
1660 }
1661 break;
1662 }
1663 /* function 4 and 0xb have additional index. */
1664 case 4: {
1665 int i, cache_type;
1666
1667 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1668 /* read more entries until cache_type is zero */
1669 for (i = 1; *nent < maxnent; ++i) {
1670 cache_type = entry[i - 1].eax & 0x1f;
1671 if (!cache_type)
1672 break;
1673 do_cpuid_1_ent(&entry[i], function, i);
1674 entry[i].flags |=
1675 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1676 ++*nent;
1677 }
1678 break;
1679 }
1680 case 0xb: {
1681 int i, level_type;
1682
1683 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1684 /* read more entries until level_type is zero */
1685 for (i = 1; *nent < maxnent; ++i) {
1686 level_type = entry[i - 1].ecx & 0xff00;
1687 if (!level_type)
1688 break;
1689 do_cpuid_1_ent(&entry[i], function, i);
1690 entry[i].flags |=
1691 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1692 ++*nent;
1693 }
1694 break;
1695 }
1696 case 0x80000000:
1697 entry->eax = min(entry->eax, 0x8000001a);
1698 break;
1699 case 0x80000001:
1700 entry->edx &= kvm_supported_word1_x86_features;
1701 entry->ecx &= kvm_supported_word6_x86_features;
1702 break;
1703 }
1704 put_cpu();
1705 }
1706
1707 #undef F
1708
1709 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1710 struct kvm_cpuid_entry2 __user *entries)
1711 {
1712 struct kvm_cpuid_entry2 *cpuid_entries;
1713 int limit, nent = 0, r = -E2BIG;
1714 u32 func;
1715
1716 if (cpuid->nent < 1)
1717 goto out;
1718 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1719 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1720 r = -ENOMEM;
1721 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1722 if (!cpuid_entries)
1723 goto out;
1724
1725 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1726 limit = cpuid_entries[0].eax;
1727 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1728 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1729 &nent, cpuid->nent);
1730 r = -E2BIG;
1731 if (nent >= cpuid->nent)
1732 goto out_free;
1733
1734 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1735 limit = cpuid_entries[nent - 1].eax;
1736 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1737 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1738 &nent, cpuid->nent);
1739 r = -E2BIG;
1740 if (nent >= cpuid->nent)
1741 goto out_free;
1742
1743 r = -EFAULT;
1744 if (copy_to_user(entries, cpuid_entries,
1745 nent * sizeof(struct kvm_cpuid_entry2)))
1746 goto out_free;
1747 cpuid->nent = nent;
1748 r = 0;
1749
1750 out_free:
1751 vfree(cpuid_entries);
1752 out:
1753 return r;
1754 }
1755
1756 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1757 struct kvm_lapic_state *s)
1758 {
1759 vcpu_load(vcpu);
1760 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1761 vcpu_put(vcpu);
1762
1763 return 0;
1764 }
1765
1766 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1767 struct kvm_lapic_state *s)
1768 {
1769 vcpu_load(vcpu);
1770 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1771 kvm_apic_post_state_restore(vcpu);
1772 update_cr8_intercept(vcpu);
1773 vcpu_put(vcpu);
1774
1775 return 0;
1776 }
1777
1778 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1779 struct kvm_interrupt *irq)
1780 {
1781 if (irq->irq < 0 || irq->irq >= 256)
1782 return -EINVAL;
1783 if (irqchip_in_kernel(vcpu->kvm))
1784 return -ENXIO;
1785 vcpu_load(vcpu);
1786
1787 kvm_queue_interrupt(vcpu, irq->irq, false);
1788
1789 vcpu_put(vcpu);
1790
1791 return 0;
1792 }
1793
1794 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
1795 {
1796 vcpu_load(vcpu);
1797 kvm_inject_nmi(vcpu);
1798 vcpu_put(vcpu);
1799
1800 return 0;
1801 }
1802
1803 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1804 struct kvm_tpr_access_ctl *tac)
1805 {
1806 if (tac->flags)
1807 return -EINVAL;
1808 vcpu->arch.tpr_access_reporting = !!tac->enabled;
1809 return 0;
1810 }
1811
1812 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
1813 u64 mcg_cap)
1814 {
1815 int r;
1816 unsigned bank_num = mcg_cap & 0xff, bank;
1817
1818 r = -EINVAL;
1819 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
1820 goto out;
1821 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
1822 goto out;
1823 r = 0;
1824 vcpu->arch.mcg_cap = mcg_cap;
1825 /* Init IA32_MCG_CTL to all 1s */
1826 if (mcg_cap & MCG_CTL_P)
1827 vcpu->arch.mcg_ctl = ~(u64)0;
1828 /* Init IA32_MCi_CTL to all 1s */
1829 for (bank = 0; bank < bank_num; bank++)
1830 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
1831 out:
1832 return r;
1833 }
1834
1835 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
1836 struct kvm_x86_mce *mce)
1837 {
1838 u64 mcg_cap = vcpu->arch.mcg_cap;
1839 unsigned bank_num = mcg_cap & 0xff;
1840 u64 *banks = vcpu->arch.mce_banks;
1841
1842 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
1843 return -EINVAL;
1844 /*
1845 * if IA32_MCG_CTL is not all 1s, the uncorrected error
1846 * reporting is disabled
1847 */
1848 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
1849 vcpu->arch.mcg_ctl != ~(u64)0)
1850 return 0;
1851 banks += 4 * mce->bank;
1852 /*
1853 * if IA32_MCi_CTL is not all 1s, the uncorrected error
1854 * reporting is disabled for the bank
1855 */
1856 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
1857 return 0;
1858 if (mce->status & MCI_STATUS_UC) {
1859 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
1860 !(vcpu->arch.cr4 & X86_CR4_MCE)) {
1861 printk(KERN_DEBUG "kvm: set_mce: "
1862 "injects mce exception while "
1863 "previous one is in progress!\n");
1864 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
1865 return 0;
1866 }
1867 if (banks[1] & MCI_STATUS_VAL)
1868 mce->status |= MCI_STATUS_OVER;
1869 banks[2] = mce->addr;
1870 banks[3] = mce->misc;
1871 vcpu->arch.mcg_status = mce->mcg_status;
1872 banks[1] = mce->status;
1873 kvm_queue_exception(vcpu, MC_VECTOR);
1874 } else if (!(banks[1] & MCI_STATUS_VAL)
1875 || !(banks[1] & MCI_STATUS_UC)) {
1876 if (banks[1] & MCI_STATUS_VAL)
1877 mce->status |= MCI_STATUS_OVER;
1878 banks[2] = mce->addr;
1879 banks[3] = mce->misc;
1880 banks[1] = mce->status;
1881 } else
1882 banks[1] |= MCI_STATUS_OVER;
1883 return 0;
1884 }
1885
1886 long kvm_arch_vcpu_ioctl(struct file *filp,
1887 unsigned int ioctl, unsigned long arg)
1888 {
1889 struct kvm_vcpu *vcpu = filp->private_data;
1890 void __user *argp = (void __user *)arg;
1891 int r;
1892 struct kvm_lapic_state *lapic = NULL;
1893
1894 switch (ioctl) {
1895 case KVM_GET_LAPIC: {
1896 r = -EINVAL;
1897 if (!vcpu->arch.apic)
1898 goto out;
1899 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1900
1901 r = -ENOMEM;
1902 if (!lapic)
1903 goto out;
1904 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
1905 if (r)
1906 goto out;
1907 r = -EFAULT;
1908 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
1909 goto out;
1910 r = 0;
1911 break;
1912 }
1913 case KVM_SET_LAPIC: {
1914 r = -EINVAL;
1915 if (!vcpu->arch.apic)
1916 goto out;
1917 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1918 r = -ENOMEM;
1919 if (!lapic)
1920 goto out;
1921 r = -EFAULT;
1922 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
1923 goto out;
1924 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
1925 if (r)
1926 goto out;
1927 r = 0;
1928 break;
1929 }
1930 case KVM_INTERRUPT: {
1931 struct kvm_interrupt irq;
1932
1933 r = -EFAULT;
1934 if (copy_from_user(&irq, argp, sizeof irq))
1935 goto out;
1936 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1937 if (r)
1938 goto out;
1939 r = 0;
1940 break;
1941 }
1942 case KVM_NMI: {
1943 r = kvm_vcpu_ioctl_nmi(vcpu);
1944 if (r)
1945 goto out;
1946 r = 0;
1947 break;
1948 }
1949 case KVM_SET_CPUID: {
1950 struct kvm_cpuid __user *cpuid_arg = argp;
1951 struct kvm_cpuid cpuid;
1952
1953 r = -EFAULT;
1954 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1955 goto out;
1956 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1957 if (r)
1958 goto out;
1959 break;
1960 }
1961 case KVM_SET_CPUID2: {
1962 struct kvm_cpuid2 __user *cpuid_arg = argp;
1963 struct kvm_cpuid2 cpuid;
1964
1965 r = -EFAULT;
1966 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1967 goto out;
1968 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1969 cpuid_arg->entries);
1970 if (r)
1971 goto out;
1972 break;
1973 }
1974 case KVM_GET_CPUID2: {
1975 struct kvm_cpuid2 __user *cpuid_arg = argp;
1976 struct kvm_cpuid2 cpuid;
1977
1978 r = -EFAULT;
1979 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1980 goto out;
1981 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1982 cpuid_arg->entries);
1983 if (r)
1984 goto out;
1985 r = -EFAULT;
1986 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1987 goto out;
1988 r = 0;
1989 break;
1990 }
1991 case KVM_GET_MSRS:
1992 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1993 break;
1994 case KVM_SET_MSRS:
1995 r = msr_io(vcpu, argp, do_set_msr, 0);
1996 break;
1997 case KVM_TPR_ACCESS_REPORTING: {
1998 struct kvm_tpr_access_ctl tac;
1999
2000 r = -EFAULT;
2001 if (copy_from_user(&tac, argp, sizeof tac))
2002 goto out;
2003 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2004 if (r)
2005 goto out;
2006 r = -EFAULT;
2007 if (copy_to_user(argp, &tac, sizeof tac))
2008 goto out;
2009 r = 0;
2010 break;
2011 };
2012 case KVM_SET_VAPIC_ADDR: {
2013 struct kvm_vapic_addr va;
2014
2015 r = -EINVAL;
2016 if (!irqchip_in_kernel(vcpu->kvm))
2017 goto out;
2018 r = -EFAULT;
2019 if (copy_from_user(&va, argp, sizeof va))
2020 goto out;
2021 r = 0;
2022 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2023 break;
2024 }
2025 case KVM_X86_SETUP_MCE: {
2026 u64 mcg_cap;
2027
2028 r = -EFAULT;
2029 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2030 goto out;
2031 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2032 break;
2033 }
2034 case KVM_X86_SET_MCE: {
2035 struct kvm_x86_mce mce;
2036
2037 r = -EFAULT;
2038 if (copy_from_user(&mce, argp, sizeof mce))
2039 goto out;
2040 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2041 break;
2042 }
2043 default:
2044 r = -EINVAL;
2045 }
2046 out:
2047 kfree(lapic);
2048 return r;
2049 }
2050
2051 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2052 {
2053 int ret;
2054
2055 if (addr > (unsigned int)(-3 * PAGE_SIZE))
2056 return -1;
2057 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2058 return ret;
2059 }
2060
2061 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2062 u64 ident_addr)
2063 {
2064 kvm->arch.ept_identity_map_addr = ident_addr;
2065 return 0;
2066 }
2067
2068 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2069 u32 kvm_nr_mmu_pages)
2070 {
2071 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2072 return -EINVAL;
2073
2074 down_write(&kvm->slots_lock);
2075 spin_lock(&kvm->mmu_lock);
2076
2077 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2078 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2079
2080 spin_unlock(&kvm->mmu_lock);
2081 up_write(&kvm->slots_lock);
2082 return 0;
2083 }
2084
2085 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2086 {
2087 return kvm->arch.n_alloc_mmu_pages;
2088 }
2089
2090 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
2091 {
2092 int i;
2093 struct kvm_mem_alias *alias;
2094
2095 for (i = 0; i < kvm->arch.naliases; ++i) {
2096 alias = &kvm->arch.aliases[i];
2097 if (gfn >= alias->base_gfn
2098 && gfn < alias->base_gfn + alias->npages)
2099 return alias->target_gfn + gfn - alias->base_gfn;
2100 }
2101 return gfn;
2102 }
2103
2104 /*
2105 * Set a new alias region. Aliases map a portion of physical memory into
2106 * another portion. This is useful for memory windows, for example the PC
2107 * VGA region.
2108 */
2109 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
2110 struct kvm_memory_alias *alias)
2111 {
2112 int r, n;
2113 struct kvm_mem_alias *p;
2114
2115 r = -EINVAL;
2116 /* General sanity checks */
2117 if (alias->memory_size & (PAGE_SIZE - 1))
2118 goto out;
2119 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
2120 goto out;
2121 if (alias->slot >= KVM_ALIAS_SLOTS)
2122 goto out;
2123 if (alias->guest_phys_addr + alias->memory_size
2124 < alias->guest_phys_addr)
2125 goto out;
2126 if (alias->target_phys_addr + alias->memory_size
2127 < alias->target_phys_addr)
2128 goto out;
2129
2130 down_write(&kvm->slots_lock);
2131 spin_lock(&kvm->mmu_lock);
2132
2133 p = &kvm->arch.aliases[alias->slot];
2134 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
2135 p->npages = alias->memory_size >> PAGE_SHIFT;
2136 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
2137
2138 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
2139 if (kvm->arch.aliases[n - 1].npages)
2140 break;
2141 kvm->arch.naliases = n;
2142
2143 spin_unlock(&kvm->mmu_lock);
2144 kvm_mmu_zap_all(kvm);
2145
2146 up_write(&kvm->slots_lock);
2147
2148 return 0;
2149
2150 out:
2151 return r;
2152 }
2153
2154 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2155 {
2156 int r;
2157
2158 r = 0;
2159 switch (chip->chip_id) {
2160 case KVM_IRQCHIP_PIC_MASTER:
2161 memcpy(&chip->chip.pic,
2162 &pic_irqchip(kvm)->pics[0],
2163 sizeof(struct kvm_pic_state));
2164 break;
2165 case KVM_IRQCHIP_PIC_SLAVE:
2166 memcpy(&chip->chip.pic,
2167 &pic_irqchip(kvm)->pics[1],
2168 sizeof(struct kvm_pic_state));
2169 break;
2170 case KVM_IRQCHIP_IOAPIC:
2171 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2172 break;
2173 default:
2174 r = -EINVAL;
2175 break;
2176 }
2177 return r;
2178 }
2179
2180 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2181 {
2182 int r;
2183
2184 r = 0;
2185 switch (chip->chip_id) {
2186 case KVM_IRQCHIP_PIC_MASTER:
2187 spin_lock(&pic_irqchip(kvm)->lock);
2188 memcpy(&pic_irqchip(kvm)->pics[0],
2189 &chip->chip.pic,
2190 sizeof(struct kvm_pic_state));
2191 spin_unlock(&pic_irqchip(kvm)->lock);
2192 break;
2193 case KVM_IRQCHIP_PIC_SLAVE:
2194 spin_lock(&pic_irqchip(kvm)->lock);
2195 memcpy(&pic_irqchip(kvm)->pics[1],
2196 &chip->chip.pic,
2197 sizeof(struct kvm_pic_state));
2198 spin_unlock(&pic_irqchip(kvm)->lock);
2199 break;
2200 case KVM_IRQCHIP_IOAPIC:
2201 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
2202 break;
2203 default:
2204 r = -EINVAL;
2205 break;
2206 }
2207 kvm_pic_update_irq(pic_irqchip(kvm));
2208 return r;
2209 }
2210
2211 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2212 {
2213 int r = 0;
2214
2215 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2216 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2217 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2218 return r;
2219 }
2220
2221 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2222 {
2223 int r = 0;
2224
2225 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2226 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2227 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2228 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2229 return r;
2230 }
2231
2232 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2233 {
2234 int r = 0;
2235
2236 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2237 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2238 sizeof(ps->channels));
2239 ps->flags = kvm->arch.vpit->pit_state.flags;
2240 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2241 return r;
2242 }
2243
2244 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2245 {
2246 int r = 0, start = 0;
2247 u32 prev_legacy, cur_legacy;
2248 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2249 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2250 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2251 if (!prev_legacy && cur_legacy)
2252 start = 1;
2253 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2254 sizeof(kvm->arch.vpit->pit_state.channels));
2255 kvm->arch.vpit->pit_state.flags = ps->flags;
2256 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2257 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2258 return r;
2259 }
2260
2261 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2262 struct kvm_reinject_control *control)
2263 {
2264 if (!kvm->arch.vpit)
2265 return -ENXIO;
2266 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2267 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2268 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2269 return 0;
2270 }
2271
2272 /*
2273 * Get (and clear) the dirty memory log for a memory slot.
2274 */
2275 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2276 struct kvm_dirty_log *log)
2277 {
2278 int r;
2279 int n;
2280 struct kvm_memory_slot *memslot;
2281 int is_dirty = 0;
2282
2283 down_write(&kvm->slots_lock);
2284
2285 r = kvm_get_dirty_log(kvm, log, &is_dirty);
2286 if (r)
2287 goto out;
2288
2289 /* If nothing is dirty, don't bother messing with page tables. */
2290 if (is_dirty) {
2291 spin_lock(&kvm->mmu_lock);
2292 kvm_mmu_slot_remove_write_access(kvm, log->slot);
2293 spin_unlock(&kvm->mmu_lock);
2294 memslot = &kvm->memslots[log->slot];
2295 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
2296 memset(memslot->dirty_bitmap, 0, n);
2297 }
2298 r = 0;
2299 out:
2300 up_write(&kvm->slots_lock);
2301 return r;
2302 }
2303
2304 long kvm_arch_vm_ioctl(struct file *filp,
2305 unsigned int ioctl, unsigned long arg)
2306 {
2307 struct kvm *kvm = filp->private_data;
2308 void __user *argp = (void __user *)arg;
2309 int r = -ENOTTY;
2310 /*
2311 * This union makes it completely explicit to gcc-3.x
2312 * that these two variables' stack usage should be
2313 * combined, not added together.
2314 */
2315 union {
2316 struct kvm_pit_state ps;
2317 struct kvm_pit_state2 ps2;
2318 struct kvm_memory_alias alias;
2319 struct kvm_pit_config pit_config;
2320 } u;
2321
2322 switch (ioctl) {
2323 case KVM_SET_TSS_ADDR:
2324 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
2325 if (r < 0)
2326 goto out;
2327 break;
2328 case KVM_SET_IDENTITY_MAP_ADDR: {
2329 u64 ident_addr;
2330
2331 r = -EFAULT;
2332 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
2333 goto out;
2334 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
2335 if (r < 0)
2336 goto out;
2337 break;
2338 }
2339 case KVM_SET_MEMORY_REGION: {
2340 struct kvm_memory_region kvm_mem;
2341 struct kvm_userspace_memory_region kvm_userspace_mem;
2342
2343 r = -EFAULT;
2344 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2345 goto out;
2346 kvm_userspace_mem.slot = kvm_mem.slot;
2347 kvm_userspace_mem.flags = kvm_mem.flags;
2348 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
2349 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
2350 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
2351 if (r)
2352 goto out;
2353 break;
2354 }
2355 case KVM_SET_NR_MMU_PAGES:
2356 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
2357 if (r)
2358 goto out;
2359 break;
2360 case KVM_GET_NR_MMU_PAGES:
2361 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
2362 break;
2363 case KVM_SET_MEMORY_ALIAS:
2364 r = -EFAULT;
2365 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
2366 goto out;
2367 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
2368 if (r)
2369 goto out;
2370 break;
2371 case KVM_CREATE_IRQCHIP: {
2372 struct kvm_pic *vpic;
2373
2374 mutex_lock(&kvm->lock);
2375 r = -EEXIST;
2376 if (kvm->arch.vpic)
2377 goto create_irqchip_unlock;
2378 r = -ENOMEM;
2379 vpic = kvm_create_pic(kvm);
2380 if (vpic) {
2381 r = kvm_ioapic_init(kvm);
2382 if (r) {
2383 kfree(vpic);
2384 goto create_irqchip_unlock;
2385 }
2386 } else
2387 goto create_irqchip_unlock;
2388 smp_wmb();
2389 kvm->arch.vpic = vpic;
2390 smp_wmb();
2391 r = kvm_setup_default_irq_routing(kvm);
2392 if (r) {
2393 mutex_lock(&kvm->irq_lock);
2394 kfree(kvm->arch.vpic);
2395 kfree(kvm->arch.vioapic);
2396 kvm->arch.vpic = NULL;
2397 kvm->arch.vioapic = NULL;
2398 mutex_unlock(&kvm->irq_lock);
2399 }
2400 create_irqchip_unlock:
2401 mutex_unlock(&kvm->lock);
2402 break;
2403 }
2404 case KVM_CREATE_PIT:
2405 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
2406 goto create_pit;
2407 case KVM_CREATE_PIT2:
2408 r = -EFAULT;
2409 if (copy_from_user(&u.pit_config, argp,
2410 sizeof(struct kvm_pit_config)))
2411 goto out;
2412 create_pit:
2413 down_write(&kvm->slots_lock);
2414 r = -EEXIST;
2415 if (kvm->arch.vpit)
2416 goto create_pit_unlock;
2417 r = -ENOMEM;
2418 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
2419 if (kvm->arch.vpit)
2420 r = 0;
2421 create_pit_unlock:
2422 up_write(&kvm->slots_lock);
2423 break;
2424 case KVM_IRQ_LINE_STATUS:
2425 case KVM_IRQ_LINE: {
2426 struct kvm_irq_level irq_event;
2427
2428 r = -EFAULT;
2429 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2430 goto out;
2431 if (irqchip_in_kernel(kvm)) {
2432 __s32 status;
2433 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2434 irq_event.irq, irq_event.level);
2435 if (ioctl == KVM_IRQ_LINE_STATUS) {
2436 irq_event.status = status;
2437 if (copy_to_user(argp, &irq_event,
2438 sizeof irq_event))
2439 goto out;
2440 }
2441 r = 0;
2442 }
2443 break;
2444 }
2445 case KVM_GET_IRQCHIP: {
2446 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2447 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2448
2449 r = -ENOMEM;
2450 if (!chip)
2451 goto out;
2452 r = -EFAULT;
2453 if (copy_from_user(chip, argp, sizeof *chip))
2454 goto get_irqchip_out;
2455 r = -ENXIO;
2456 if (!irqchip_in_kernel(kvm))
2457 goto get_irqchip_out;
2458 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
2459 if (r)
2460 goto get_irqchip_out;
2461 r = -EFAULT;
2462 if (copy_to_user(argp, chip, sizeof *chip))
2463 goto get_irqchip_out;
2464 r = 0;
2465 get_irqchip_out:
2466 kfree(chip);
2467 if (r)
2468 goto out;
2469 break;
2470 }
2471 case KVM_SET_IRQCHIP: {
2472 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2473 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2474
2475 r = -ENOMEM;
2476 if (!chip)
2477 goto out;
2478 r = -EFAULT;
2479 if (copy_from_user(chip, argp, sizeof *chip))
2480 goto set_irqchip_out;
2481 r = -ENXIO;
2482 if (!irqchip_in_kernel(kvm))
2483 goto set_irqchip_out;
2484 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
2485 if (r)
2486 goto set_irqchip_out;
2487 r = 0;
2488 set_irqchip_out:
2489 kfree(chip);
2490 if (r)
2491 goto out;
2492 break;
2493 }
2494 case KVM_GET_PIT: {
2495 r = -EFAULT;
2496 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
2497 goto out;
2498 r = -ENXIO;
2499 if (!kvm->arch.vpit)
2500 goto out;
2501 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
2502 if (r)
2503 goto out;
2504 r = -EFAULT;
2505 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
2506 goto out;
2507 r = 0;
2508 break;
2509 }
2510 case KVM_SET_PIT: {
2511 r = -EFAULT;
2512 if (copy_from_user(&u.ps, argp, sizeof u.ps))
2513 goto out;
2514 r = -ENXIO;
2515 if (!kvm->arch.vpit)
2516 goto out;
2517 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
2518 if (r)
2519 goto out;
2520 r = 0;
2521 break;
2522 }
2523 case KVM_GET_PIT2: {
2524 r = -ENXIO;
2525 if (!kvm->arch.vpit)
2526 goto out;
2527 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
2528 if (r)
2529 goto out;
2530 r = -EFAULT;
2531 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
2532 goto out;
2533 r = 0;
2534 break;
2535 }
2536 case KVM_SET_PIT2: {
2537 r = -EFAULT;
2538 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
2539 goto out;
2540 r = -ENXIO;
2541 if (!kvm->arch.vpit)
2542 goto out;
2543 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
2544 if (r)
2545 goto out;
2546 r = 0;
2547 break;
2548 }
2549 case KVM_REINJECT_CONTROL: {
2550 struct kvm_reinject_control control;
2551 r = -EFAULT;
2552 if (copy_from_user(&control, argp, sizeof(control)))
2553 goto out;
2554 r = kvm_vm_ioctl_reinject(kvm, &control);
2555 if (r)
2556 goto out;
2557 r = 0;
2558 break;
2559 }
2560 case KVM_XEN_HVM_CONFIG: {
2561 r = -EFAULT;
2562 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
2563 sizeof(struct kvm_xen_hvm_config)))
2564 goto out;
2565 r = -EINVAL;
2566 if (kvm->arch.xen_hvm_config.flags)
2567 goto out;
2568 r = 0;
2569 break;
2570 }
2571 case KVM_SET_CLOCK: {
2572 struct timespec now;
2573 struct kvm_clock_data user_ns;
2574 u64 now_ns;
2575 s64 delta;
2576
2577 r = -EFAULT;
2578 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
2579 goto out;
2580
2581 r = -EINVAL;
2582 if (user_ns.flags)
2583 goto out;
2584
2585 r = 0;
2586 ktime_get_ts(&now);
2587 now_ns = timespec_to_ns(&now);
2588 delta = user_ns.clock - now_ns;
2589 kvm->arch.kvmclock_offset = delta;
2590 break;
2591 }
2592 case KVM_GET_CLOCK: {
2593 struct timespec now;
2594 struct kvm_clock_data user_ns;
2595 u64 now_ns;
2596
2597 ktime_get_ts(&now);
2598 now_ns = timespec_to_ns(&now);
2599 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
2600 user_ns.flags = 0;
2601
2602 r = -EFAULT;
2603 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
2604 goto out;
2605 r = 0;
2606 break;
2607 }
2608
2609 default:
2610 ;
2611 }
2612 out:
2613 return r;
2614 }
2615
2616 static void kvm_init_msr_list(void)
2617 {
2618 u32 dummy[2];
2619 unsigned i, j;
2620
2621 /* skip the first msrs in the list. KVM-specific */
2622 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
2623 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2624 continue;
2625 if (j < i)
2626 msrs_to_save[j] = msrs_to_save[i];
2627 j++;
2628 }
2629 num_msrs_to_save = j;
2630 }
2631
2632 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
2633 const void *v)
2634 {
2635 if (vcpu->arch.apic &&
2636 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
2637 return 0;
2638
2639 return kvm_io_bus_write(&vcpu->kvm->mmio_bus, addr, len, v);
2640 }
2641
2642 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
2643 {
2644 if (vcpu->arch.apic &&
2645 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
2646 return 0;
2647
2648 return kvm_io_bus_read(&vcpu->kvm->mmio_bus, addr, len, v);
2649 }
2650
2651 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
2652 struct kvm_vcpu *vcpu)
2653 {
2654 void *data = val;
2655 int r = X86EMUL_CONTINUE;
2656
2657 while (bytes) {
2658 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2659 unsigned offset = addr & (PAGE_SIZE-1);
2660 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
2661 int ret;
2662
2663 if (gpa == UNMAPPED_GVA) {
2664 r = X86EMUL_PROPAGATE_FAULT;
2665 goto out;
2666 }
2667 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
2668 if (ret < 0) {
2669 r = X86EMUL_UNHANDLEABLE;
2670 goto out;
2671 }
2672
2673 bytes -= toread;
2674 data += toread;
2675 addr += toread;
2676 }
2677 out:
2678 return r;
2679 }
2680
2681 static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
2682 struct kvm_vcpu *vcpu)
2683 {
2684 void *data = val;
2685 int r = X86EMUL_CONTINUE;
2686
2687 while (bytes) {
2688 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2689 unsigned offset = addr & (PAGE_SIZE-1);
2690 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
2691 int ret;
2692
2693 if (gpa == UNMAPPED_GVA) {
2694 r = X86EMUL_PROPAGATE_FAULT;
2695 goto out;
2696 }
2697 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
2698 if (ret < 0) {
2699 r = X86EMUL_UNHANDLEABLE;
2700 goto out;
2701 }
2702
2703 bytes -= towrite;
2704 data += towrite;
2705 addr += towrite;
2706 }
2707 out:
2708 return r;
2709 }
2710
2711
2712 static int emulator_read_emulated(unsigned long addr,
2713 void *val,
2714 unsigned int bytes,
2715 struct kvm_vcpu *vcpu)
2716 {
2717 gpa_t gpa;
2718
2719 if (vcpu->mmio_read_completed) {
2720 memcpy(val, vcpu->mmio_data, bytes);
2721 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
2722 vcpu->mmio_phys_addr, *(u64 *)val);
2723 vcpu->mmio_read_completed = 0;
2724 return X86EMUL_CONTINUE;
2725 }
2726
2727 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2728
2729 /* For APIC access vmexit */
2730 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2731 goto mmio;
2732
2733 if (kvm_read_guest_virt(addr, val, bytes, vcpu)
2734 == X86EMUL_CONTINUE)
2735 return X86EMUL_CONTINUE;
2736 if (gpa == UNMAPPED_GVA)
2737 return X86EMUL_PROPAGATE_FAULT;
2738
2739 mmio:
2740 /*
2741 * Is this MMIO handled locally?
2742 */
2743 if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
2744 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
2745 return X86EMUL_CONTINUE;
2746 }
2747
2748 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
2749
2750 vcpu->mmio_needed = 1;
2751 vcpu->mmio_phys_addr = gpa;
2752 vcpu->mmio_size = bytes;
2753 vcpu->mmio_is_write = 0;
2754
2755 return X86EMUL_UNHANDLEABLE;
2756 }
2757
2758 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2759 const void *val, int bytes)
2760 {
2761 int ret;
2762
2763 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
2764 if (ret < 0)
2765 return 0;
2766 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
2767 return 1;
2768 }
2769
2770 static int emulator_write_emulated_onepage(unsigned long addr,
2771 const void *val,
2772 unsigned int bytes,
2773 struct kvm_vcpu *vcpu)
2774 {
2775 gpa_t gpa;
2776
2777 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2778
2779 if (gpa == UNMAPPED_GVA) {
2780 kvm_inject_page_fault(vcpu, addr, 2);
2781 return X86EMUL_PROPAGATE_FAULT;
2782 }
2783
2784 /* For APIC access vmexit */
2785 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2786 goto mmio;
2787
2788 if (emulator_write_phys(vcpu, gpa, val, bytes))
2789 return X86EMUL_CONTINUE;
2790
2791 mmio:
2792 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
2793 /*
2794 * Is this MMIO handled locally?
2795 */
2796 if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
2797 return X86EMUL_CONTINUE;
2798
2799 vcpu->mmio_needed = 1;
2800 vcpu->mmio_phys_addr = gpa;
2801 vcpu->mmio_size = bytes;
2802 vcpu->mmio_is_write = 1;
2803 memcpy(vcpu->mmio_data, val, bytes);
2804
2805 return X86EMUL_CONTINUE;
2806 }
2807
2808 int emulator_write_emulated(unsigned long addr,
2809 const void *val,
2810 unsigned int bytes,
2811 struct kvm_vcpu *vcpu)
2812 {
2813 /* Crossing a page boundary? */
2814 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
2815 int rc, now;
2816
2817 now = -addr & ~PAGE_MASK;
2818 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
2819 if (rc != X86EMUL_CONTINUE)
2820 return rc;
2821 addr += now;
2822 val += now;
2823 bytes -= now;
2824 }
2825 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
2826 }
2827 EXPORT_SYMBOL_GPL(emulator_write_emulated);
2828
2829 static int emulator_cmpxchg_emulated(unsigned long addr,
2830 const void *old,
2831 const void *new,
2832 unsigned int bytes,
2833 struct kvm_vcpu *vcpu)
2834 {
2835 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
2836 #ifndef CONFIG_X86_64
2837 /* guests cmpxchg8b have to be emulated atomically */
2838 if (bytes == 8) {
2839 gpa_t gpa;
2840 struct page *page;
2841 char *kaddr;
2842 u64 val;
2843
2844 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2845
2846 if (gpa == UNMAPPED_GVA ||
2847 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2848 goto emul_write;
2849
2850 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2851 goto emul_write;
2852
2853 val = *(u64 *)new;
2854
2855 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2856
2857 kaddr = kmap_atomic(page, KM_USER0);
2858 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2859 kunmap_atomic(kaddr, KM_USER0);
2860 kvm_release_page_dirty(page);
2861 }
2862 emul_write:
2863 #endif
2864
2865 return emulator_write_emulated(addr, new, bytes, vcpu);
2866 }
2867
2868 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2869 {
2870 return kvm_x86_ops->get_segment_base(vcpu, seg);
2871 }
2872
2873 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2874 {
2875 kvm_mmu_invlpg(vcpu, address);
2876 return X86EMUL_CONTINUE;
2877 }
2878
2879 int emulate_clts(struct kvm_vcpu *vcpu)
2880 {
2881 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2882 return X86EMUL_CONTINUE;
2883 }
2884
2885 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2886 {
2887 struct kvm_vcpu *vcpu = ctxt->vcpu;
2888
2889 switch (dr) {
2890 case 0 ... 3:
2891 *dest = kvm_x86_ops->get_dr(vcpu, dr);
2892 return X86EMUL_CONTINUE;
2893 default:
2894 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2895 return X86EMUL_UNHANDLEABLE;
2896 }
2897 }
2898
2899 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2900 {
2901 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2902 int exception;
2903
2904 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2905 if (exception) {
2906 /* FIXME: better handling */
2907 return X86EMUL_UNHANDLEABLE;
2908 }
2909 return X86EMUL_CONTINUE;
2910 }
2911
2912 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2913 {
2914 u8 opcodes[4];
2915 unsigned long rip = kvm_rip_read(vcpu);
2916 unsigned long rip_linear;
2917
2918 if (!printk_ratelimit())
2919 return;
2920
2921 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2922
2923 kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
2924
2925 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2926 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2927 }
2928 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2929
2930 static struct x86_emulate_ops emulate_ops = {
2931 .read_std = kvm_read_guest_virt,
2932 .read_emulated = emulator_read_emulated,
2933 .write_emulated = emulator_write_emulated,
2934 .cmpxchg_emulated = emulator_cmpxchg_emulated,
2935 };
2936
2937 static void cache_all_regs(struct kvm_vcpu *vcpu)
2938 {
2939 kvm_register_read(vcpu, VCPU_REGS_RAX);
2940 kvm_register_read(vcpu, VCPU_REGS_RSP);
2941 kvm_register_read(vcpu, VCPU_REGS_RIP);
2942 vcpu->arch.regs_dirty = ~0;
2943 }
2944
2945 int emulate_instruction(struct kvm_vcpu *vcpu,
2946 unsigned long cr2,
2947 u16 error_code,
2948 int emulation_type)
2949 {
2950 int r, shadow_mask;
2951 struct decode_cache *c;
2952 struct kvm_run *run = vcpu->run;
2953
2954 kvm_clear_exception_queue(vcpu);
2955 vcpu->arch.mmio_fault_cr2 = cr2;
2956 /*
2957 * TODO: fix emulate.c to use guest_read/write_register
2958 * instead of direct ->regs accesses, can save hundred cycles
2959 * on Intel for instructions that don't read/change RSP, for
2960 * for example.
2961 */
2962 cache_all_regs(vcpu);
2963
2964 vcpu->mmio_is_write = 0;
2965 vcpu->arch.pio.string = 0;
2966
2967 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2968 int cs_db, cs_l;
2969 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2970
2971 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2972 vcpu->arch.emulate_ctxt.eflags = kvm_get_rflags(vcpu);
2973 vcpu->arch.emulate_ctxt.mode =
2974 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2975 ? X86EMUL_MODE_REAL : cs_l
2976 ? X86EMUL_MODE_PROT64 : cs_db
2977 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2978
2979 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2980
2981 /* Only allow emulation of specific instructions on #UD
2982 * (namely VMMCALL, sysenter, sysexit, syscall)*/
2983 c = &vcpu->arch.emulate_ctxt.decode;
2984 if (emulation_type & EMULTYPE_TRAP_UD) {
2985 if (!c->twobyte)
2986 return EMULATE_FAIL;
2987 switch (c->b) {
2988 case 0x01: /* VMMCALL */
2989 if (c->modrm_mod != 3 || c->modrm_rm != 1)
2990 return EMULATE_FAIL;
2991 break;
2992 case 0x34: /* sysenter */
2993 case 0x35: /* sysexit */
2994 if (c->modrm_mod != 0 || c->modrm_rm != 0)
2995 return EMULATE_FAIL;
2996 break;
2997 case 0x05: /* syscall */
2998 if (c->modrm_mod != 0 || c->modrm_rm != 0)
2999 return EMULATE_FAIL;
3000 break;
3001 default:
3002 return EMULATE_FAIL;
3003 }
3004
3005 if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
3006 return EMULATE_FAIL;
3007 }
3008
3009 ++vcpu->stat.insn_emulation;
3010 if (r) {
3011 ++vcpu->stat.insn_emulation_fail;
3012 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
3013 return EMULATE_DONE;
3014 return EMULATE_FAIL;
3015 }
3016 }
3017
3018 if (emulation_type & EMULTYPE_SKIP) {
3019 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
3020 return EMULATE_DONE;
3021 }
3022
3023 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
3024 shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
3025
3026 if (r == 0)
3027 kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
3028
3029 if (vcpu->arch.pio.string)
3030 return EMULATE_DO_MMIO;
3031
3032 if ((r || vcpu->mmio_is_write) && run) {
3033 run->exit_reason = KVM_EXIT_MMIO;
3034 run->mmio.phys_addr = vcpu->mmio_phys_addr;
3035 memcpy(run->mmio.data, vcpu->mmio_data, 8);
3036 run->mmio.len = vcpu->mmio_size;
3037 run->mmio.is_write = vcpu->mmio_is_write;
3038 }
3039
3040 if (r) {
3041 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
3042 return EMULATE_DONE;
3043 if (!vcpu->mmio_needed) {
3044 kvm_report_emulation_failure(vcpu, "mmio");
3045 return EMULATE_FAIL;
3046 }
3047 return EMULATE_DO_MMIO;
3048 }
3049
3050 kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
3051
3052 if (vcpu->mmio_is_write) {
3053 vcpu->mmio_needed = 0;
3054 return EMULATE_DO_MMIO;
3055 }
3056
3057 return EMULATE_DONE;
3058 }
3059 EXPORT_SYMBOL_GPL(emulate_instruction);
3060
3061 static int pio_copy_data(struct kvm_vcpu *vcpu)
3062 {
3063 void *p = vcpu->arch.pio_data;
3064 gva_t q = vcpu->arch.pio.guest_gva;
3065 unsigned bytes;
3066 int ret;
3067
3068 bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
3069 if (vcpu->arch.pio.in)
3070 ret = kvm_write_guest_virt(q, p, bytes, vcpu);
3071 else
3072 ret = kvm_read_guest_virt(q, p, bytes, vcpu);
3073 return ret;
3074 }
3075
3076 int complete_pio(struct kvm_vcpu *vcpu)
3077 {
3078 struct kvm_pio_request *io = &vcpu->arch.pio;
3079 long delta;
3080 int r;
3081 unsigned long val;
3082
3083 if (!io->string) {
3084 if (io->in) {
3085 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
3086 memcpy(&val, vcpu->arch.pio_data, io->size);
3087 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
3088 }
3089 } else {
3090 if (io->in) {
3091 r = pio_copy_data(vcpu);
3092 if (r)
3093 return r;
3094 }
3095
3096 delta = 1;
3097 if (io->rep) {
3098 delta *= io->cur_count;
3099 /*
3100 * The size of the register should really depend on
3101 * current address size.
3102 */
3103 val = kvm_register_read(vcpu, VCPU_REGS_RCX);
3104 val -= delta;
3105 kvm_register_write(vcpu, VCPU_REGS_RCX, val);
3106 }
3107 if (io->down)
3108 delta = -delta;
3109 delta *= io->size;
3110 if (io->in) {
3111 val = kvm_register_read(vcpu, VCPU_REGS_RDI);
3112 val += delta;
3113 kvm_register_write(vcpu, VCPU_REGS_RDI, val);
3114 } else {
3115 val = kvm_register_read(vcpu, VCPU_REGS_RSI);
3116 val += delta;
3117 kvm_register_write(vcpu, VCPU_REGS_RSI, val);
3118 }
3119 }
3120
3121 io->count -= io->cur_count;
3122 io->cur_count = 0;
3123
3124 return 0;
3125 }
3126
3127 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3128 {
3129 /* TODO: String I/O for in kernel device */
3130 int r;
3131
3132 if (vcpu->arch.pio.in)
3133 r = kvm_io_bus_read(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
3134 vcpu->arch.pio.size, pd);
3135 else
3136 r = kvm_io_bus_write(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
3137 vcpu->arch.pio.size, pd);
3138 return r;
3139 }
3140
3141 static int pio_string_write(struct kvm_vcpu *vcpu)
3142 {
3143 struct kvm_pio_request *io = &vcpu->arch.pio;
3144 void *pd = vcpu->arch.pio_data;
3145 int i, r = 0;
3146
3147 for (i = 0; i < io->cur_count; i++) {
3148 if (kvm_io_bus_write(&vcpu->kvm->pio_bus,
3149 io->port, io->size, pd)) {
3150 r = -EOPNOTSUPP;
3151 break;
3152 }
3153 pd += io->size;
3154 }
3155 return r;
3156 }
3157
3158 int kvm_emulate_pio(struct kvm_vcpu *vcpu, int in, int size, unsigned port)
3159 {
3160 unsigned long val;
3161
3162 vcpu->run->exit_reason = KVM_EXIT_IO;
3163 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3164 vcpu->run->io.size = vcpu->arch.pio.size = size;
3165 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3166 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
3167 vcpu->run->io.port = vcpu->arch.pio.port = port;
3168 vcpu->arch.pio.in = in;
3169 vcpu->arch.pio.string = 0;
3170 vcpu->arch.pio.down = 0;
3171 vcpu->arch.pio.rep = 0;
3172
3173 trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
3174 size, 1);
3175
3176 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
3177 memcpy(vcpu->arch.pio_data, &val, 4);
3178
3179 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3180 complete_pio(vcpu);
3181 return 1;
3182 }
3183 return 0;
3184 }
3185 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
3186
3187 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, int in,
3188 int size, unsigned long count, int down,
3189 gva_t address, int rep, unsigned port)
3190 {
3191 unsigned now, in_page;
3192 int ret = 0;
3193
3194 vcpu->run->exit_reason = KVM_EXIT_IO;
3195 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3196 vcpu->run->io.size = vcpu->arch.pio.size = size;
3197 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3198 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
3199 vcpu->run->io.port = vcpu->arch.pio.port = port;
3200 vcpu->arch.pio.in = in;
3201 vcpu->arch.pio.string = 1;
3202 vcpu->arch.pio.down = down;
3203 vcpu->arch.pio.rep = rep;
3204
3205 trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
3206 size, count);
3207
3208 if (!count) {
3209 kvm_x86_ops->skip_emulated_instruction(vcpu);
3210 return 1;
3211 }
3212
3213 if (!down)
3214 in_page = PAGE_SIZE - offset_in_page(address);
3215 else
3216 in_page = offset_in_page(address) + size;
3217 now = min(count, (unsigned long)in_page / size);
3218 if (!now)
3219 now = 1;
3220 if (down) {
3221 /*
3222 * String I/O in reverse. Yuck. Kill the guest, fix later.
3223 */
3224 pr_unimpl(vcpu, "guest string pio down\n");
3225 kvm_inject_gp(vcpu, 0);
3226 return 1;
3227 }
3228 vcpu->run->io.count = now;
3229 vcpu->arch.pio.cur_count = now;
3230
3231 if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
3232 kvm_x86_ops->skip_emulated_instruction(vcpu);
3233
3234 vcpu->arch.pio.guest_gva = address;
3235
3236 if (!vcpu->arch.pio.in) {
3237 /* string PIO write */
3238 ret = pio_copy_data(vcpu);
3239 if (ret == X86EMUL_PROPAGATE_FAULT) {
3240 kvm_inject_gp(vcpu, 0);
3241 return 1;
3242 }
3243 if (ret == 0 && !pio_string_write(vcpu)) {
3244 complete_pio(vcpu);
3245 if (vcpu->arch.pio.count == 0)
3246 ret = 1;
3247 }
3248 }
3249 /* no string PIO read support yet */
3250
3251 return ret;
3252 }
3253 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
3254
3255 static void bounce_off(void *info)
3256 {
3257 /* nothing */
3258 }
3259
3260 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
3261 void *data)
3262 {
3263 struct cpufreq_freqs *freq = data;
3264 struct kvm *kvm;
3265 struct kvm_vcpu *vcpu;
3266 int i, send_ipi = 0;
3267
3268 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
3269 return 0;
3270 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
3271 return 0;
3272 per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
3273
3274 spin_lock(&kvm_lock);
3275 list_for_each_entry(kvm, &vm_list, vm_list) {
3276 kvm_for_each_vcpu(i, vcpu, kvm) {
3277 if (vcpu->cpu != freq->cpu)
3278 continue;
3279 if (!kvm_request_guest_time_update(vcpu))
3280 continue;
3281 if (vcpu->cpu != smp_processor_id())
3282 send_ipi++;
3283 }
3284 }
3285 spin_unlock(&kvm_lock);
3286
3287 if (freq->old < freq->new && send_ipi) {
3288 /*
3289 * We upscale the frequency. Must make the guest
3290 * doesn't see old kvmclock values while running with
3291 * the new frequency, otherwise we risk the guest sees
3292 * time go backwards.
3293 *
3294 * In case we update the frequency for another cpu
3295 * (which might be in guest context) send an interrupt
3296 * to kick the cpu out of guest context. Next time
3297 * guest context is entered kvmclock will be updated,
3298 * so the guest will not see stale values.
3299 */
3300 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
3301 }
3302 return 0;
3303 }
3304
3305 static struct notifier_block kvmclock_cpufreq_notifier_block = {
3306 .notifier_call = kvmclock_cpufreq_notifier
3307 };
3308
3309 static void kvm_timer_init(void)
3310 {
3311 int cpu;
3312
3313 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
3314 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
3315 CPUFREQ_TRANSITION_NOTIFIER);
3316 for_each_online_cpu(cpu) {
3317 unsigned long khz = cpufreq_get(cpu);
3318 if (!khz)
3319 khz = tsc_khz;
3320 per_cpu(cpu_tsc_khz, cpu) = khz;
3321 }
3322 } else {
3323 for_each_possible_cpu(cpu)
3324 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
3325 }
3326 }
3327
3328 int kvm_arch_init(void *opaque)
3329 {
3330 int r;
3331 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
3332
3333 if (kvm_x86_ops) {
3334 printk(KERN_ERR "kvm: already loaded the other module\n");
3335 r = -EEXIST;
3336 goto out;
3337 }
3338
3339 if (!ops->cpu_has_kvm_support()) {
3340 printk(KERN_ERR "kvm: no hardware support\n");
3341 r = -EOPNOTSUPP;
3342 goto out;
3343 }
3344 if (ops->disabled_by_bios()) {
3345 printk(KERN_ERR "kvm: disabled by bios\n");
3346 r = -EOPNOTSUPP;
3347 goto out;
3348 }
3349
3350 r = kvm_mmu_module_init();
3351 if (r)
3352 goto out;
3353
3354 kvm_init_msr_list();
3355
3356 kvm_x86_ops = ops;
3357 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
3358 kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
3359 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
3360 PT_DIRTY_MASK, PT64_NX_MASK, 0);
3361
3362 kvm_timer_init();
3363
3364 return 0;
3365
3366 out:
3367 return r;
3368 }
3369
3370 void kvm_arch_exit(void)
3371 {
3372 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
3373 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
3374 CPUFREQ_TRANSITION_NOTIFIER);
3375 kvm_x86_ops = NULL;
3376 kvm_mmu_module_exit();
3377 }
3378
3379 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
3380 {
3381 ++vcpu->stat.halt_exits;
3382 if (irqchip_in_kernel(vcpu->kvm)) {
3383 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
3384 return 1;
3385 } else {
3386 vcpu->run->exit_reason = KVM_EXIT_HLT;
3387 return 0;
3388 }
3389 }
3390 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
3391
3392 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
3393 unsigned long a1)
3394 {
3395 if (is_long_mode(vcpu))
3396 return a0;
3397 else
3398 return a0 | ((gpa_t)a1 << 32);
3399 }
3400
3401 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
3402 {
3403 unsigned long nr, a0, a1, a2, a3, ret;
3404 int r = 1;
3405
3406 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
3407 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
3408 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
3409 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
3410 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
3411
3412 trace_kvm_hypercall(nr, a0, a1, a2, a3);
3413
3414 if (!is_long_mode(vcpu)) {
3415 nr &= 0xFFFFFFFF;
3416 a0 &= 0xFFFFFFFF;
3417 a1 &= 0xFFFFFFFF;
3418 a2 &= 0xFFFFFFFF;
3419 a3 &= 0xFFFFFFFF;
3420 }
3421
3422 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
3423 ret = -KVM_EPERM;
3424 goto out;
3425 }
3426
3427 switch (nr) {
3428 case KVM_HC_VAPIC_POLL_IRQ:
3429 ret = 0;
3430 break;
3431 case KVM_HC_MMU_OP:
3432 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
3433 break;
3434 default:
3435 ret = -KVM_ENOSYS;
3436 break;
3437 }
3438 out:
3439 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
3440 ++vcpu->stat.hypercalls;
3441 return r;
3442 }
3443 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
3444
3445 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
3446 {
3447 char instruction[3];
3448 int ret = 0;
3449 unsigned long rip = kvm_rip_read(vcpu);
3450
3451
3452 /*
3453 * Blow out the MMU to ensure that no other VCPU has an active mapping
3454 * to ensure that the updated hypercall appears atomically across all
3455 * VCPUs.
3456 */
3457 kvm_mmu_zap_all(vcpu->kvm);
3458
3459 kvm_x86_ops->patch_hypercall(vcpu, instruction);
3460 if (emulator_write_emulated(rip, instruction, 3, vcpu)
3461 != X86EMUL_CONTINUE)
3462 ret = -EFAULT;
3463
3464 return ret;
3465 }
3466
3467 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3468 {
3469 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3470 }
3471
3472 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3473 {
3474 struct descriptor_table dt = { limit, base };
3475
3476 kvm_x86_ops->set_gdt(vcpu, &dt);
3477 }
3478
3479 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3480 {
3481 struct descriptor_table dt = { limit, base };
3482
3483 kvm_x86_ops->set_idt(vcpu, &dt);
3484 }
3485
3486 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
3487 unsigned long *rflags)
3488 {
3489 kvm_lmsw(vcpu, msw);
3490 *rflags = kvm_get_rflags(vcpu);
3491 }
3492
3493 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
3494 {
3495 unsigned long value;
3496
3497 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3498 switch (cr) {
3499 case 0:
3500 value = vcpu->arch.cr0;
3501 break;
3502 case 2:
3503 value = vcpu->arch.cr2;
3504 break;
3505 case 3:
3506 value = vcpu->arch.cr3;
3507 break;
3508 case 4:
3509 value = vcpu->arch.cr4;
3510 break;
3511 case 8:
3512 value = kvm_get_cr8(vcpu);
3513 break;
3514 default:
3515 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3516 return 0;
3517 }
3518
3519 return value;
3520 }
3521
3522 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
3523 unsigned long *rflags)
3524 {
3525 switch (cr) {
3526 case 0:
3527 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
3528 *rflags = kvm_get_rflags(vcpu);
3529 break;
3530 case 2:
3531 vcpu->arch.cr2 = val;
3532 break;
3533 case 3:
3534 kvm_set_cr3(vcpu, val);
3535 break;
3536 case 4:
3537 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
3538 break;
3539 case 8:
3540 kvm_set_cr8(vcpu, val & 0xfUL);
3541 break;
3542 default:
3543 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3544 }
3545 }
3546
3547 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
3548 {
3549 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
3550 int j, nent = vcpu->arch.cpuid_nent;
3551
3552 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
3553 /* when no next entry is found, the current entry[i] is reselected */
3554 for (j = i + 1; ; j = (j + 1) % nent) {
3555 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
3556 if (ej->function == e->function) {
3557 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
3558 return j;
3559 }
3560 }
3561 return 0; /* silence gcc, even though control never reaches here */
3562 }
3563
3564 /* find an entry with matching function, matching index (if needed), and that
3565 * should be read next (if it's stateful) */
3566 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
3567 u32 function, u32 index)
3568 {
3569 if (e->function != function)
3570 return 0;
3571 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
3572 return 0;
3573 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
3574 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
3575 return 0;
3576 return 1;
3577 }
3578
3579 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
3580 u32 function, u32 index)
3581 {
3582 int i;
3583 struct kvm_cpuid_entry2 *best = NULL;
3584
3585 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
3586 struct kvm_cpuid_entry2 *e;
3587
3588 e = &vcpu->arch.cpuid_entries[i];
3589 if (is_matching_cpuid_entry(e, function, index)) {
3590 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
3591 move_to_next_stateful_cpuid_entry(vcpu, i);
3592 best = e;
3593 break;
3594 }
3595 /*
3596 * Both basic or both extended?
3597 */
3598 if (((e->function ^ function) & 0x80000000) == 0)
3599 if (!best || e->function > best->function)
3600 best = e;
3601 }
3602 return best;
3603 }
3604
3605 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
3606 {
3607 struct kvm_cpuid_entry2 *best;
3608
3609 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
3610 if (best)
3611 return best->eax & 0xff;
3612 return 36;
3613 }
3614
3615 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
3616 {
3617 u32 function, index;
3618 struct kvm_cpuid_entry2 *best;
3619
3620 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
3621 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3622 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
3623 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
3624 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
3625 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
3626 best = kvm_find_cpuid_entry(vcpu, function, index);
3627 if (best) {
3628 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
3629 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
3630 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
3631 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
3632 }
3633 kvm_x86_ops->skip_emulated_instruction(vcpu);
3634 trace_kvm_cpuid(function,
3635 kvm_register_read(vcpu, VCPU_REGS_RAX),
3636 kvm_register_read(vcpu, VCPU_REGS_RBX),
3637 kvm_register_read(vcpu, VCPU_REGS_RCX),
3638 kvm_register_read(vcpu, VCPU_REGS_RDX));
3639 }
3640 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
3641
3642 /*
3643 * Check if userspace requested an interrupt window, and that the
3644 * interrupt window is open.
3645 *
3646 * No need to exit to userspace if we already have an interrupt queued.
3647 */
3648 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
3649 {
3650 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
3651 vcpu->run->request_interrupt_window &&
3652 kvm_arch_interrupt_allowed(vcpu));
3653 }
3654
3655 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
3656 {
3657 struct kvm_run *kvm_run = vcpu->run;
3658
3659 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
3660 kvm_run->cr8 = kvm_get_cr8(vcpu);
3661 kvm_run->apic_base = kvm_get_apic_base(vcpu);
3662 if (irqchip_in_kernel(vcpu->kvm))
3663 kvm_run->ready_for_interrupt_injection = 1;
3664 else
3665 kvm_run->ready_for_interrupt_injection =
3666 kvm_arch_interrupt_allowed(vcpu) &&
3667 !kvm_cpu_has_interrupt(vcpu) &&
3668 !kvm_event_needs_reinjection(vcpu);
3669 }
3670
3671 static void vapic_enter(struct kvm_vcpu *vcpu)
3672 {
3673 struct kvm_lapic *apic = vcpu->arch.apic;
3674 struct page *page;
3675
3676 if (!apic || !apic->vapic_addr)
3677 return;
3678
3679 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3680
3681 vcpu->arch.apic->vapic_page = page;
3682 }
3683
3684 static void vapic_exit(struct kvm_vcpu *vcpu)
3685 {
3686 struct kvm_lapic *apic = vcpu->arch.apic;
3687
3688 if (!apic || !apic->vapic_addr)
3689 return;
3690
3691 down_read(&vcpu->kvm->slots_lock);
3692 kvm_release_page_dirty(apic->vapic_page);
3693 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3694 up_read(&vcpu->kvm->slots_lock);
3695 }
3696
3697 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
3698 {
3699 int max_irr, tpr;
3700
3701 if (!kvm_x86_ops->update_cr8_intercept)
3702 return;
3703
3704 if (!vcpu->arch.apic)
3705 return;
3706
3707 if (!vcpu->arch.apic->vapic_addr)
3708 max_irr = kvm_lapic_find_highest_irr(vcpu);
3709 else
3710 max_irr = -1;
3711
3712 if (max_irr != -1)
3713 max_irr >>= 4;
3714
3715 tpr = kvm_lapic_get_cr8(vcpu);
3716
3717 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
3718 }
3719
3720 static void inject_pending_event(struct kvm_vcpu *vcpu)
3721 {
3722 /* try to reinject previous events if any */
3723 if (vcpu->arch.exception.pending) {
3724 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
3725 vcpu->arch.exception.has_error_code,
3726 vcpu->arch.exception.error_code);
3727 return;
3728 }
3729
3730 if (vcpu->arch.nmi_injected) {
3731 kvm_x86_ops->set_nmi(vcpu);
3732 return;
3733 }
3734
3735 if (vcpu->arch.interrupt.pending) {
3736 kvm_x86_ops->set_irq(vcpu);
3737 return;
3738 }
3739
3740 /* try to inject new event if pending */
3741 if (vcpu->arch.nmi_pending) {
3742 if (kvm_x86_ops->nmi_allowed(vcpu)) {
3743 vcpu->arch.nmi_pending = false;
3744 vcpu->arch.nmi_injected = true;
3745 kvm_x86_ops->set_nmi(vcpu);
3746 }
3747 } else if (kvm_cpu_has_interrupt(vcpu)) {
3748 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
3749 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
3750 false);
3751 kvm_x86_ops->set_irq(vcpu);
3752 }
3753 }
3754 }
3755
3756 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
3757 {
3758 int r;
3759 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
3760 vcpu->run->request_interrupt_window;
3761
3762 if (vcpu->requests)
3763 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
3764 kvm_mmu_unload(vcpu);
3765
3766 r = kvm_mmu_reload(vcpu);
3767 if (unlikely(r))
3768 goto out;
3769
3770 if (vcpu->requests) {
3771 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
3772 __kvm_migrate_timers(vcpu);
3773 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
3774 kvm_write_guest_time(vcpu);
3775 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
3776 kvm_mmu_sync_roots(vcpu);
3777 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
3778 kvm_x86_ops->tlb_flush(vcpu);
3779 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
3780 &vcpu->requests)) {
3781 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
3782 r = 0;
3783 goto out;
3784 }
3785 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
3786 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
3787 r = 0;
3788 goto out;
3789 }
3790 }
3791
3792 preempt_disable();
3793
3794 kvm_x86_ops->prepare_guest_switch(vcpu);
3795 kvm_load_guest_fpu(vcpu);
3796
3797 local_irq_disable();
3798
3799 clear_bit(KVM_REQ_KICK, &vcpu->requests);
3800 smp_mb__after_clear_bit();
3801
3802 if (vcpu->requests || need_resched() || signal_pending(current)) {
3803 set_bit(KVM_REQ_KICK, &vcpu->requests);
3804 local_irq_enable();
3805 preempt_enable();
3806 r = 1;
3807 goto out;
3808 }
3809
3810 inject_pending_event(vcpu);
3811
3812 /* enable NMI/IRQ window open exits if needed */
3813 if (vcpu->arch.nmi_pending)
3814 kvm_x86_ops->enable_nmi_window(vcpu);
3815 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
3816 kvm_x86_ops->enable_irq_window(vcpu);
3817
3818 if (kvm_lapic_enabled(vcpu)) {
3819 update_cr8_intercept(vcpu);
3820 kvm_lapic_sync_to_vapic(vcpu);
3821 }
3822
3823 up_read(&vcpu->kvm->slots_lock);
3824
3825 kvm_guest_enter();
3826
3827 if (unlikely(vcpu->arch.switch_db_regs)) {
3828 set_debugreg(0, 7);
3829 set_debugreg(vcpu->arch.eff_db[0], 0);
3830 set_debugreg(vcpu->arch.eff_db[1], 1);
3831 set_debugreg(vcpu->arch.eff_db[2], 2);
3832 set_debugreg(vcpu->arch.eff_db[3], 3);
3833 }
3834
3835 trace_kvm_entry(vcpu->vcpu_id);
3836 kvm_x86_ops->run(vcpu);
3837
3838 if (unlikely(vcpu->arch.switch_db_regs || test_thread_flag(TIF_DEBUG))) {
3839 set_debugreg(current->thread.debugreg0, 0);
3840 set_debugreg(current->thread.debugreg1, 1);
3841 set_debugreg(current->thread.debugreg2, 2);
3842 set_debugreg(current->thread.debugreg3, 3);
3843 set_debugreg(current->thread.debugreg6, 6);
3844 set_debugreg(current->thread.debugreg7, 7);
3845 }
3846
3847 set_bit(KVM_REQ_KICK, &vcpu->requests);
3848 local_irq_enable();
3849
3850 ++vcpu->stat.exits;
3851
3852 /*
3853 * We must have an instruction between local_irq_enable() and
3854 * kvm_guest_exit(), so the timer interrupt isn't delayed by
3855 * the interrupt shadow. The stat.exits increment will do nicely.
3856 * But we need to prevent reordering, hence this barrier():
3857 */
3858 barrier();
3859
3860 kvm_guest_exit();
3861
3862 preempt_enable();
3863
3864 down_read(&vcpu->kvm->slots_lock);
3865
3866 /*
3867 * Profile KVM exit RIPs:
3868 */
3869 if (unlikely(prof_on == KVM_PROFILING)) {
3870 unsigned long rip = kvm_rip_read(vcpu);
3871 profile_hit(KVM_PROFILING, (void *)rip);
3872 }
3873
3874
3875 kvm_lapic_sync_from_vapic(vcpu);
3876
3877 r = kvm_x86_ops->handle_exit(vcpu);
3878 out:
3879 return r;
3880 }
3881
3882
3883 static int __vcpu_run(struct kvm_vcpu *vcpu)
3884 {
3885 int r;
3886
3887 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
3888 pr_debug("vcpu %d received sipi with vector # %x\n",
3889 vcpu->vcpu_id, vcpu->arch.sipi_vector);
3890 kvm_lapic_reset(vcpu);
3891 r = kvm_arch_vcpu_reset(vcpu);
3892 if (r)
3893 return r;
3894 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3895 }
3896
3897 down_read(&vcpu->kvm->slots_lock);
3898 vapic_enter(vcpu);
3899
3900 r = 1;
3901 while (r > 0) {
3902 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
3903 r = vcpu_enter_guest(vcpu);
3904 else {
3905 up_read(&vcpu->kvm->slots_lock);
3906 kvm_vcpu_block(vcpu);
3907 down_read(&vcpu->kvm->slots_lock);
3908 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
3909 {
3910 switch(vcpu->arch.mp_state) {
3911 case KVM_MP_STATE_HALTED:
3912 vcpu->arch.mp_state =
3913 KVM_MP_STATE_RUNNABLE;
3914 case KVM_MP_STATE_RUNNABLE:
3915 break;
3916 case KVM_MP_STATE_SIPI_RECEIVED:
3917 default:
3918 r = -EINTR;
3919 break;
3920 }
3921 }
3922 }
3923
3924 if (r <= 0)
3925 break;
3926
3927 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
3928 if (kvm_cpu_has_pending_timer(vcpu))
3929 kvm_inject_pending_timer_irqs(vcpu);
3930
3931 if (dm_request_for_irq_injection(vcpu)) {
3932 r = -EINTR;
3933 vcpu->run->exit_reason = KVM_EXIT_INTR;
3934 ++vcpu->stat.request_irq_exits;
3935 }
3936 if (signal_pending(current)) {
3937 r = -EINTR;
3938 vcpu->run->exit_reason = KVM_EXIT_INTR;
3939 ++vcpu->stat.signal_exits;
3940 }
3941 if (need_resched()) {
3942 up_read(&vcpu->kvm->slots_lock);
3943 kvm_resched(vcpu);
3944 down_read(&vcpu->kvm->slots_lock);
3945 }
3946 }
3947
3948 up_read(&vcpu->kvm->slots_lock);
3949 post_kvm_run_save(vcpu);
3950
3951 vapic_exit(vcpu);
3952
3953 return r;
3954 }
3955
3956 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3957 {
3958 int r;
3959 sigset_t sigsaved;
3960
3961 vcpu_load(vcpu);
3962
3963 if (vcpu->sigset_active)
3964 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
3965
3966 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
3967 kvm_vcpu_block(vcpu);
3968 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
3969 r = -EAGAIN;
3970 goto out;
3971 }
3972
3973 /* re-sync apic's tpr */
3974 if (!irqchip_in_kernel(vcpu->kvm))
3975 kvm_set_cr8(vcpu, kvm_run->cr8);
3976
3977 if (vcpu->arch.pio.cur_count) {
3978 r = complete_pio(vcpu);
3979 if (r)
3980 goto out;
3981 }
3982 if (vcpu->mmio_needed) {
3983 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
3984 vcpu->mmio_read_completed = 1;
3985 vcpu->mmio_needed = 0;
3986
3987 down_read(&vcpu->kvm->slots_lock);
3988 r = emulate_instruction(vcpu, vcpu->arch.mmio_fault_cr2, 0,
3989 EMULTYPE_NO_DECODE);
3990 up_read(&vcpu->kvm->slots_lock);
3991 if (r == EMULATE_DO_MMIO) {
3992 /*
3993 * Read-modify-write. Back to userspace.
3994 */
3995 r = 0;
3996 goto out;
3997 }
3998 }
3999 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
4000 kvm_register_write(vcpu, VCPU_REGS_RAX,
4001 kvm_run->hypercall.ret);
4002
4003 r = __vcpu_run(vcpu);
4004
4005 out:
4006 if (vcpu->sigset_active)
4007 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
4008
4009 vcpu_put(vcpu);
4010 return r;
4011 }
4012
4013 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4014 {
4015 vcpu_load(vcpu);
4016
4017 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4018 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4019 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4020 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4021 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4022 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4023 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4024 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4025 #ifdef CONFIG_X86_64
4026 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
4027 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
4028 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
4029 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
4030 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
4031 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
4032 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
4033 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
4034 #endif
4035
4036 regs->rip = kvm_rip_read(vcpu);
4037 regs->rflags = kvm_get_rflags(vcpu);
4038
4039 vcpu_put(vcpu);
4040
4041 return 0;
4042 }
4043
4044 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4045 {
4046 vcpu_load(vcpu);
4047
4048 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
4049 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
4050 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
4051 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
4052 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
4053 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
4054 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
4055 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
4056 #ifdef CONFIG_X86_64
4057 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
4058 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
4059 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
4060 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
4061 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
4062 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
4063 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
4064 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
4065 #endif
4066
4067 kvm_rip_write(vcpu, regs->rip);
4068 kvm_set_rflags(vcpu, regs->rflags);
4069
4070 vcpu->arch.exception.pending = false;
4071
4072 vcpu_put(vcpu);
4073
4074 return 0;
4075 }
4076
4077 void kvm_get_segment(struct kvm_vcpu *vcpu,
4078 struct kvm_segment *var, int seg)
4079 {
4080 kvm_x86_ops->get_segment(vcpu, var, seg);
4081 }
4082
4083 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4084 {
4085 struct kvm_segment cs;
4086
4087 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
4088 *db = cs.db;
4089 *l = cs.l;
4090 }
4091 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
4092
4093 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
4094 struct kvm_sregs *sregs)
4095 {
4096 struct descriptor_table dt;
4097
4098 vcpu_load(vcpu);
4099
4100 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4101 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4102 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4103 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4104 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4105 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4106
4107 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4108 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4109
4110 kvm_x86_ops->get_idt(vcpu, &dt);
4111 sregs->idt.limit = dt.limit;
4112 sregs->idt.base = dt.base;
4113 kvm_x86_ops->get_gdt(vcpu, &dt);
4114 sregs->gdt.limit = dt.limit;
4115 sregs->gdt.base = dt.base;
4116
4117 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
4118 sregs->cr0 = vcpu->arch.cr0;
4119 sregs->cr2 = vcpu->arch.cr2;
4120 sregs->cr3 = vcpu->arch.cr3;
4121 sregs->cr4 = vcpu->arch.cr4;
4122 sregs->cr8 = kvm_get_cr8(vcpu);
4123 sregs->efer = vcpu->arch.shadow_efer;
4124 sregs->apic_base = kvm_get_apic_base(vcpu);
4125
4126 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
4127
4128 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
4129 set_bit(vcpu->arch.interrupt.nr,
4130 (unsigned long *)sregs->interrupt_bitmap);
4131
4132 vcpu_put(vcpu);
4133
4134 return 0;
4135 }
4136
4137 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
4138 struct kvm_mp_state *mp_state)
4139 {
4140 vcpu_load(vcpu);
4141 mp_state->mp_state = vcpu->arch.mp_state;
4142 vcpu_put(vcpu);
4143 return 0;
4144 }
4145
4146 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
4147 struct kvm_mp_state *mp_state)
4148 {
4149 vcpu_load(vcpu);
4150 vcpu->arch.mp_state = mp_state->mp_state;
4151 vcpu_put(vcpu);
4152 return 0;
4153 }
4154
4155 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4156 struct kvm_segment *var, int seg)
4157 {
4158 kvm_x86_ops->set_segment(vcpu, var, seg);
4159 }
4160
4161 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
4162 struct kvm_segment *kvm_desct)
4163 {
4164 kvm_desct->base = get_desc_base(seg_desc);
4165 kvm_desct->limit = get_desc_limit(seg_desc);
4166 if (seg_desc->g) {
4167 kvm_desct->limit <<= 12;
4168 kvm_desct->limit |= 0xfff;
4169 }
4170 kvm_desct->selector = selector;
4171 kvm_desct->type = seg_desc->type;
4172 kvm_desct->present = seg_desc->p;
4173 kvm_desct->dpl = seg_desc->dpl;
4174 kvm_desct->db = seg_desc->d;
4175 kvm_desct->s = seg_desc->s;
4176 kvm_desct->l = seg_desc->l;
4177 kvm_desct->g = seg_desc->g;
4178 kvm_desct->avl = seg_desc->avl;
4179 if (!selector)
4180 kvm_desct->unusable = 1;
4181 else
4182 kvm_desct->unusable = 0;
4183 kvm_desct->padding = 0;
4184 }
4185
4186 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
4187 u16 selector,
4188 struct descriptor_table *dtable)
4189 {
4190 if (selector & 1 << 2) {
4191 struct kvm_segment kvm_seg;
4192
4193 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
4194
4195 if (kvm_seg.unusable)
4196 dtable->limit = 0;
4197 else
4198 dtable->limit = kvm_seg.limit;
4199 dtable->base = kvm_seg.base;
4200 }
4201 else
4202 kvm_x86_ops->get_gdt(vcpu, dtable);
4203 }
4204
4205 /* allowed just for 8 bytes segments */
4206 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4207 struct desc_struct *seg_desc)
4208 {
4209 struct descriptor_table dtable;
4210 u16 index = selector >> 3;
4211
4212 get_segment_descriptor_dtable(vcpu, selector, &dtable);
4213
4214 if (dtable.limit < index * 8 + 7) {
4215 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
4216 return 1;
4217 }
4218 return kvm_read_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
4219 }
4220
4221 /* allowed just for 8 bytes segments */
4222 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4223 struct desc_struct *seg_desc)
4224 {
4225 struct descriptor_table dtable;
4226 u16 index = selector >> 3;
4227
4228 get_segment_descriptor_dtable(vcpu, selector, &dtable);
4229
4230 if (dtable.limit < index * 8 + 7)
4231 return 1;
4232 return kvm_write_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
4233 }
4234
4235 static gpa_t get_tss_base_addr(struct kvm_vcpu *vcpu,
4236 struct desc_struct *seg_desc)
4237 {
4238 u32 base_addr = get_desc_base(seg_desc);
4239
4240 return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
4241 }
4242
4243 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
4244 {
4245 struct kvm_segment kvm_seg;
4246
4247 kvm_get_segment(vcpu, &kvm_seg, seg);
4248 return kvm_seg.selector;
4249 }
4250
4251 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
4252 u16 selector,
4253 struct kvm_segment *kvm_seg)
4254 {
4255 struct desc_struct seg_desc;
4256
4257 if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
4258 return 1;
4259 seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
4260 return 0;
4261 }
4262
4263 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
4264 {
4265 struct kvm_segment segvar = {
4266 .base = selector << 4,
4267 .limit = 0xffff,
4268 .selector = selector,
4269 .type = 3,
4270 .present = 1,
4271 .dpl = 3,
4272 .db = 0,
4273 .s = 1,
4274 .l = 0,
4275 .g = 0,
4276 .avl = 0,
4277 .unusable = 0,
4278 };
4279 kvm_x86_ops->set_segment(vcpu, &segvar, seg);
4280 return 0;
4281 }
4282
4283 static int is_vm86_segment(struct kvm_vcpu *vcpu, int seg)
4284 {
4285 return (seg != VCPU_SREG_LDTR) &&
4286 (seg != VCPU_SREG_TR) &&
4287 (kvm_get_rflags(vcpu) & X86_EFLAGS_VM);
4288 }
4289
4290 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4291 int type_bits, int seg)
4292 {
4293 struct kvm_segment kvm_seg;
4294
4295 if (is_vm86_segment(vcpu, seg) || !(vcpu->arch.cr0 & X86_CR0_PE))
4296 return kvm_load_realmode_segment(vcpu, selector, seg);
4297 if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
4298 return 1;
4299 kvm_seg.type |= type_bits;
4300
4301 if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
4302 seg != VCPU_SREG_LDTR)
4303 if (!kvm_seg.s)
4304 kvm_seg.unusable = 1;
4305
4306 kvm_set_segment(vcpu, &kvm_seg, seg);
4307 return 0;
4308 }
4309
4310 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
4311 struct tss_segment_32 *tss)
4312 {
4313 tss->cr3 = vcpu->arch.cr3;
4314 tss->eip = kvm_rip_read(vcpu);
4315 tss->eflags = kvm_get_rflags(vcpu);
4316 tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4317 tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4318 tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4319 tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4320 tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4321 tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4322 tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4323 tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4324 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4325 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4326 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4327 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4328 tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
4329 tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
4330 tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4331 }
4332
4333 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
4334 struct tss_segment_32 *tss)
4335 {
4336 kvm_set_cr3(vcpu, tss->cr3);
4337
4338 kvm_rip_write(vcpu, tss->eip);
4339 kvm_set_rflags(vcpu, tss->eflags | 2);
4340
4341 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
4342 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
4343 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
4344 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
4345 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
4346 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
4347 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
4348 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
4349
4350 if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
4351 return 1;
4352
4353 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4354 return 1;
4355
4356 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4357 return 1;
4358
4359 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4360 return 1;
4361
4362 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4363 return 1;
4364
4365 if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
4366 return 1;
4367
4368 if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
4369 return 1;
4370 return 0;
4371 }
4372
4373 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
4374 struct tss_segment_16 *tss)
4375 {
4376 tss->ip = kvm_rip_read(vcpu);
4377 tss->flag = kvm_get_rflags(vcpu);
4378 tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4379 tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4380 tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4381 tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4382 tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4383 tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4384 tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
4385 tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
4386
4387 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4388 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4389 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4390 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4391 tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4392 }
4393
4394 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
4395 struct tss_segment_16 *tss)
4396 {
4397 kvm_rip_write(vcpu, tss->ip);
4398 kvm_set_rflags(vcpu, tss->flag | 2);
4399 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
4400 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
4401 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
4402 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
4403 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
4404 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
4405 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
4406 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
4407
4408 if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
4409 return 1;
4410
4411 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4412 return 1;
4413
4414 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4415 return 1;
4416
4417 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4418 return 1;
4419
4420 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4421 return 1;
4422 return 0;
4423 }
4424
4425 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
4426 u16 old_tss_sel, u32 old_tss_base,
4427 struct desc_struct *nseg_desc)
4428 {
4429 struct tss_segment_16 tss_segment_16;
4430 int ret = 0;
4431
4432 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4433 sizeof tss_segment_16))
4434 goto out;
4435
4436 save_state_to_tss16(vcpu, &tss_segment_16);
4437
4438 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4439 sizeof tss_segment_16))
4440 goto out;
4441
4442 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4443 &tss_segment_16, sizeof tss_segment_16))
4444 goto out;
4445
4446 if (old_tss_sel != 0xffff) {
4447 tss_segment_16.prev_task_link = old_tss_sel;
4448
4449 if (kvm_write_guest(vcpu->kvm,
4450 get_tss_base_addr(vcpu, nseg_desc),
4451 &tss_segment_16.prev_task_link,
4452 sizeof tss_segment_16.prev_task_link))
4453 goto out;
4454 }
4455
4456 if (load_state_from_tss16(vcpu, &tss_segment_16))
4457 goto out;
4458
4459 ret = 1;
4460 out:
4461 return ret;
4462 }
4463
4464 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
4465 u16 old_tss_sel, u32 old_tss_base,
4466 struct desc_struct *nseg_desc)
4467 {
4468 struct tss_segment_32 tss_segment_32;
4469 int ret = 0;
4470
4471 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4472 sizeof tss_segment_32))
4473 goto out;
4474
4475 save_state_to_tss32(vcpu, &tss_segment_32);
4476
4477 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4478 sizeof tss_segment_32))
4479 goto out;
4480
4481 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4482 &tss_segment_32, sizeof tss_segment_32))
4483 goto out;
4484
4485 if (old_tss_sel != 0xffff) {
4486 tss_segment_32.prev_task_link = old_tss_sel;
4487
4488 if (kvm_write_guest(vcpu->kvm,
4489 get_tss_base_addr(vcpu, nseg_desc),
4490 &tss_segment_32.prev_task_link,
4491 sizeof tss_segment_32.prev_task_link))
4492 goto out;
4493 }
4494
4495 if (load_state_from_tss32(vcpu, &tss_segment_32))
4496 goto out;
4497
4498 ret = 1;
4499 out:
4500 return ret;
4501 }
4502
4503 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
4504 {
4505 struct kvm_segment tr_seg;
4506 struct desc_struct cseg_desc;
4507 struct desc_struct nseg_desc;
4508 int ret = 0;
4509 u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
4510 u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
4511
4512 old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
4513
4514 /* FIXME: Handle errors. Failure to read either TSS or their
4515 * descriptors should generate a pagefault.
4516 */
4517 if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
4518 goto out;
4519
4520 if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
4521 goto out;
4522
4523 if (reason != TASK_SWITCH_IRET) {
4524 int cpl;
4525
4526 cpl = kvm_x86_ops->get_cpl(vcpu);
4527 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
4528 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4529 return 1;
4530 }
4531 }
4532
4533 if (!nseg_desc.p || get_desc_limit(&nseg_desc) < 0x67) {
4534 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
4535 return 1;
4536 }
4537
4538 if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
4539 cseg_desc.type &= ~(1 << 1); //clear the B flag
4540 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
4541 }
4542
4543 if (reason == TASK_SWITCH_IRET) {
4544 u32 eflags = kvm_get_rflags(vcpu);
4545 kvm_set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
4546 }
4547
4548 /* set back link to prev task only if NT bit is set in eflags
4549 note that old_tss_sel is not used afetr this point */
4550 if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4551 old_tss_sel = 0xffff;
4552
4553 if (nseg_desc.type & 8)
4554 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
4555 old_tss_base, &nseg_desc);
4556 else
4557 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
4558 old_tss_base, &nseg_desc);
4559
4560 if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
4561 u32 eflags = kvm_get_rflags(vcpu);
4562 kvm_set_rflags(vcpu, eflags | X86_EFLAGS_NT);
4563 }
4564
4565 if (reason != TASK_SWITCH_IRET) {
4566 nseg_desc.type |= (1 << 1);
4567 save_guest_segment_descriptor(vcpu, tss_selector,
4568 &nseg_desc);
4569 }
4570
4571 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
4572 seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
4573 tr_seg.type = 11;
4574 kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
4575 out:
4576 return ret;
4577 }
4578 EXPORT_SYMBOL_GPL(kvm_task_switch);
4579
4580 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
4581 struct kvm_sregs *sregs)
4582 {
4583 int mmu_reset_needed = 0;
4584 int pending_vec, max_bits;
4585 struct descriptor_table dt;
4586
4587 vcpu_load(vcpu);
4588
4589 dt.limit = sregs->idt.limit;
4590 dt.base = sregs->idt.base;
4591 kvm_x86_ops->set_idt(vcpu, &dt);
4592 dt.limit = sregs->gdt.limit;
4593 dt.base = sregs->gdt.base;
4594 kvm_x86_ops->set_gdt(vcpu, &dt);
4595
4596 vcpu->arch.cr2 = sregs->cr2;
4597 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
4598 vcpu->arch.cr3 = sregs->cr3;
4599
4600 kvm_set_cr8(vcpu, sregs->cr8);
4601
4602 mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
4603 kvm_x86_ops->set_efer(vcpu, sregs->efer);
4604 kvm_set_apic_base(vcpu, sregs->apic_base);
4605
4606 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
4607
4608 mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
4609 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
4610 vcpu->arch.cr0 = sregs->cr0;
4611
4612 mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
4613 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
4614 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
4615 load_pdptrs(vcpu, vcpu->arch.cr3);
4616 mmu_reset_needed = 1;
4617 }
4618
4619 if (mmu_reset_needed)
4620 kvm_mmu_reset_context(vcpu);
4621
4622 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
4623 pending_vec = find_first_bit(
4624 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
4625 if (pending_vec < max_bits) {
4626 kvm_queue_interrupt(vcpu, pending_vec, false);
4627 pr_debug("Set back pending irq %d\n", pending_vec);
4628 if (irqchip_in_kernel(vcpu->kvm))
4629 kvm_pic_clear_isr_ack(vcpu->kvm);
4630 }
4631
4632 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4633 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4634 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4635 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4636 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4637 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4638
4639 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4640 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4641
4642 update_cr8_intercept(vcpu);
4643
4644 /* Older userspace won't unhalt the vcpu on reset. */
4645 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
4646 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
4647 !(vcpu->arch.cr0 & X86_CR0_PE))
4648 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4649
4650 vcpu_put(vcpu);
4651
4652 return 0;
4653 }
4654
4655 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
4656 struct kvm_guest_debug *dbg)
4657 {
4658 unsigned long rflags;
4659 int i;
4660
4661 vcpu_load(vcpu);
4662
4663 /*
4664 * Read rflags as long as potentially injected trace flags are still
4665 * filtered out.
4666 */
4667 rflags = kvm_get_rflags(vcpu);
4668
4669 vcpu->guest_debug = dbg->control;
4670 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
4671 vcpu->guest_debug = 0;
4672
4673 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4674 for (i = 0; i < KVM_NR_DB_REGS; ++i)
4675 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
4676 vcpu->arch.switch_db_regs =
4677 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
4678 } else {
4679 for (i = 0; i < KVM_NR_DB_REGS; i++)
4680 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
4681 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
4682 }
4683
4684 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
4685 vcpu->arch.singlestep_cs =
4686 get_segment_selector(vcpu, VCPU_SREG_CS);
4687 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu);
4688 }
4689
4690 /*
4691 * Trigger an rflags update that will inject or remove the trace
4692 * flags.
4693 */
4694 kvm_set_rflags(vcpu, rflags);
4695
4696 kvm_x86_ops->set_guest_debug(vcpu, dbg);
4697
4698 if (vcpu->guest_debug & KVM_GUESTDBG_INJECT_DB)
4699 kvm_queue_exception(vcpu, DB_VECTOR);
4700 else if (vcpu->guest_debug & KVM_GUESTDBG_INJECT_BP)
4701 kvm_queue_exception(vcpu, BP_VECTOR);
4702
4703 vcpu_put(vcpu);
4704
4705 return 0;
4706 }
4707
4708 /*
4709 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
4710 * we have asm/x86/processor.h
4711 */
4712 struct fxsave {
4713 u16 cwd;
4714 u16 swd;
4715 u16 twd;
4716 u16 fop;
4717 u64 rip;
4718 u64 rdp;
4719 u32 mxcsr;
4720 u32 mxcsr_mask;
4721 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
4722 #ifdef CONFIG_X86_64
4723 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
4724 #else
4725 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
4726 #endif
4727 };
4728
4729 /*
4730 * Translate a guest virtual address to a guest physical address.
4731 */
4732 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
4733 struct kvm_translation *tr)
4734 {
4735 unsigned long vaddr = tr->linear_address;
4736 gpa_t gpa;
4737
4738 vcpu_load(vcpu);
4739 down_read(&vcpu->kvm->slots_lock);
4740 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
4741 up_read(&vcpu->kvm->slots_lock);
4742 tr->physical_address = gpa;
4743 tr->valid = gpa != UNMAPPED_GVA;
4744 tr->writeable = 1;
4745 tr->usermode = 0;
4746 vcpu_put(vcpu);
4747
4748 return 0;
4749 }
4750
4751 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4752 {
4753 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4754
4755 vcpu_load(vcpu);
4756
4757 memcpy(fpu->fpr, fxsave->st_space, 128);
4758 fpu->fcw = fxsave->cwd;
4759 fpu->fsw = fxsave->swd;
4760 fpu->ftwx = fxsave->twd;
4761 fpu->last_opcode = fxsave->fop;
4762 fpu->last_ip = fxsave->rip;
4763 fpu->last_dp = fxsave->rdp;
4764 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
4765
4766 vcpu_put(vcpu);
4767
4768 return 0;
4769 }
4770
4771 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4772 {
4773 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4774
4775 vcpu_load(vcpu);
4776
4777 memcpy(fxsave->st_space, fpu->fpr, 128);
4778 fxsave->cwd = fpu->fcw;
4779 fxsave->swd = fpu->fsw;
4780 fxsave->twd = fpu->ftwx;
4781 fxsave->fop = fpu->last_opcode;
4782 fxsave->rip = fpu->last_ip;
4783 fxsave->rdp = fpu->last_dp;
4784 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
4785
4786 vcpu_put(vcpu);
4787
4788 return 0;
4789 }
4790
4791 void fx_init(struct kvm_vcpu *vcpu)
4792 {
4793 unsigned after_mxcsr_mask;
4794
4795 /*
4796 * Touch the fpu the first time in non atomic context as if
4797 * this is the first fpu instruction the exception handler
4798 * will fire before the instruction returns and it'll have to
4799 * allocate ram with GFP_KERNEL.
4800 */
4801 if (!used_math())
4802 kvm_fx_save(&vcpu->arch.host_fx_image);
4803
4804 /* Initialize guest FPU by resetting ours and saving into guest's */
4805 preempt_disable();
4806 kvm_fx_save(&vcpu->arch.host_fx_image);
4807 kvm_fx_finit();
4808 kvm_fx_save(&vcpu->arch.guest_fx_image);
4809 kvm_fx_restore(&vcpu->arch.host_fx_image);
4810 preempt_enable();
4811
4812 vcpu->arch.cr0 |= X86_CR0_ET;
4813 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
4814 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
4815 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
4816 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
4817 }
4818 EXPORT_SYMBOL_GPL(fx_init);
4819
4820 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
4821 {
4822 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
4823 return;
4824
4825 vcpu->guest_fpu_loaded = 1;
4826 kvm_fx_save(&vcpu->arch.host_fx_image);
4827 kvm_fx_restore(&vcpu->arch.guest_fx_image);
4828 }
4829 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
4830
4831 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
4832 {
4833 if (!vcpu->guest_fpu_loaded)
4834 return;
4835
4836 vcpu->guest_fpu_loaded = 0;
4837 kvm_fx_save(&vcpu->arch.guest_fx_image);
4838 kvm_fx_restore(&vcpu->arch.host_fx_image);
4839 ++vcpu->stat.fpu_reload;
4840 }
4841 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
4842
4843 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
4844 {
4845 if (vcpu->arch.time_page) {
4846 kvm_release_page_dirty(vcpu->arch.time_page);
4847 vcpu->arch.time_page = NULL;
4848 }
4849
4850 kvm_x86_ops->vcpu_free(vcpu);
4851 }
4852
4853 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
4854 unsigned int id)
4855 {
4856 return kvm_x86_ops->vcpu_create(kvm, id);
4857 }
4858
4859 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
4860 {
4861 int r;
4862
4863 /* We do fxsave: this must be aligned. */
4864 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
4865
4866 vcpu->arch.mtrr_state.have_fixed = 1;
4867 vcpu_load(vcpu);
4868 r = kvm_arch_vcpu_reset(vcpu);
4869 if (r == 0)
4870 r = kvm_mmu_setup(vcpu);
4871 vcpu_put(vcpu);
4872 if (r < 0)
4873 goto free_vcpu;
4874
4875 return 0;
4876 free_vcpu:
4877 kvm_x86_ops->vcpu_free(vcpu);
4878 return r;
4879 }
4880
4881 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
4882 {
4883 vcpu_load(vcpu);
4884 kvm_mmu_unload(vcpu);
4885 vcpu_put(vcpu);
4886
4887 kvm_x86_ops->vcpu_free(vcpu);
4888 }
4889
4890 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
4891 {
4892 vcpu->arch.nmi_pending = false;
4893 vcpu->arch.nmi_injected = false;
4894
4895 vcpu->arch.switch_db_regs = 0;
4896 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
4897 vcpu->arch.dr6 = DR6_FIXED_1;
4898 vcpu->arch.dr7 = DR7_FIXED_1;
4899
4900 return kvm_x86_ops->vcpu_reset(vcpu);
4901 }
4902
4903 int kvm_arch_hardware_enable(void *garbage)
4904 {
4905 /*
4906 * Since this may be called from a hotplug notifcation,
4907 * we can't get the CPU frequency directly.
4908 */
4909 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4910 int cpu = raw_smp_processor_id();
4911 per_cpu(cpu_tsc_khz, cpu) = 0;
4912 }
4913
4914 kvm_shared_msr_cpu_online();
4915
4916 return kvm_x86_ops->hardware_enable(garbage);
4917 }
4918
4919 void kvm_arch_hardware_disable(void *garbage)
4920 {
4921 kvm_x86_ops->hardware_disable(garbage);
4922 }
4923
4924 int kvm_arch_hardware_setup(void)
4925 {
4926 return kvm_x86_ops->hardware_setup();
4927 }
4928
4929 void kvm_arch_hardware_unsetup(void)
4930 {
4931 kvm_x86_ops->hardware_unsetup();
4932 }
4933
4934 void kvm_arch_check_processor_compat(void *rtn)
4935 {
4936 kvm_x86_ops->check_processor_compatibility(rtn);
4937 }
4938
4939 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
4940 {
4941 struct page *page;
4942 struct kvm *kvm;
4943 int r;
4944
4945 BUG_ON(vcpu->kvm == NULL);
4946 kvm = vcpu->kvm;
4947
4948 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4949 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
4950 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4951 else
4952 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
4953
4954 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
4955 if (!page) {
4956 r = -ENOMEM;
4957 goto fail;
4958 }
4959 vcpu->arch.pio_data = page_address(page);
4960
4961 r = kvm_mmu_create(vcpu);
4962 if (r < 0)
4963 goto fail_free_pio_data;
4964
4965 if (irqchip_in_kernel(kvm)) {
4966 r = kvm_create_lapic(vcpu);
4967 if (r < 0)
4968 goto fail_mmu_destroy;
4969 }
4970
4971 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
4972 GFP_KERNEL);
4973 if (!vcpu->arch.mce_banks) {
4974 r = -ENOMEM;
4975 goto fail_mmu_destroy;
4976 }
4977 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
4978
4979 return 0;
4980
4981 fail_mmu_destroy:
4982 kvm_mmu_destroy(vcpu);
4983 fail_free_pio_data:
4984 free_page((unsigned long)vcpu->arch.pio_data);
4985 fail:
4986 return r;
4987 }
4988
4989 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
4990 {
4991 kvm_free_lapic(vcpu);
4992 down_read(&vcpu->kvm->slots_lock);
4993 kvm_mmu_destroy(vcpu);
4994 up_read(&vcpu->kvm->slots_lock);
4995 free_page((unsigned long)vcpu->arch.pio_data);
4996 }
4997
4998 struct kvm *kvm_arch_create_vm(void)
4999 {
5000 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
5001
5002 if (!kvm)
5003 return ERR_PTR(-ENOMEM);
5004
5005 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5006 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
5007
5008 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5009 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
5010
5011 rdtscll(kvm->arch.vm_init_tsc);
5012
5013 return kvm;
5014 }
5015
5016 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
5017 {
5018 vcpu_load(vcpu);
5019 kvm_mmu_unload(vcpu);
5020 vcpu_put(vcpu);
5021 }
5022
5023 static void kvm_free_vcpus(struct kvm *kvm)
5024 {
5025 unsigned int i;
5026 struct kvm_vcpu *vcpu;
5027
5028 /*
5029 * Unpin any mmu pages first.
5030 */
5031 kvm_for_each_vcpu(i, vcpu, kvm)
5032 kvm_unload_vcpu_mmu(vcpu);
5033 kvm_for_each_vcpu(i, vcpu, kvm)
5034 kvm_arch_vcpu_free(vcpu);
5035
5036 mutex_lock(&kvm->lock);
5037 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
5038 kvm->vcpus[i] = NULL;
5039
5040 atomic_set(&kvm->online_vcpus, 0);
5041 mutex_unlock(&kvm->lock);
5042 }
5043
5044 void kvm_arch_sync_events(struct kvm *kvm)
5045 {
5046 kvm_free_all_assigned_devices(kvm);
5047 }
5048
5049 void kvm_arch_destroy_vm(struct kvm *kvm)
5050 {
5051 kvm_iommu_unmap_guest(kvm);
5052 kvm_free_pit(kvm);
5053 kfree(kvm->arch.vpic);
5054 kfree(kvm->arch.vioapic);
5055 kvm_free_vcpus(kvm);
5056 kvm_free_physmem(kvm);
5057 if (kvm->arch.apic_access_page)
5058 put_page(kvm->arch.apic_access_page);
5059 if (kvm->arch.ept_identity_pagetable)
5060 put_page(kvm->arch.ept_identity_pagetable);
5061 kfree(kvm);
5062 }
5063
5064 int kvm_arch_set_memory_region(struct kvm *kvm,
5065 struct kvm_userspace_memory_region *mem,
5066 struct kvm_memory_slot old,
5067 int user_alloc)
5068 {
5069 int npages = mem->memory_size >> PAGE_SHIFT;
5070 struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
5071
5072 /*To keep backward compatibility with older userspace,
5073 *x86 needs to hanlde !user_alloc case.
5074 */
5075 if (!user_alloc) {
5076 if (npages && !old.rmap) {
5077 unsigned long userspace_addr;
5078
5079 down_write(&current->mm->mmap_sem);
5080 userspace_addr = do_mmap(NULL, 0,
5081 npages * PAGE_SIZE,
5082 PROT_READ | PROT_WRITE,
5083 MAP_PRIVATE | MAP_ANONYMOUS,
5084 0);
5085 up_write(&current->mm->mmap_sem);
5086
5087 if (IS_ERR((void *)userspace_addr))
5088 return PTR_ERR((void *)userspace_addr);
5089
5090 /* set userspace_addr atomically for kvm_hva_to_rmapp */
5091 spin_lock(&kvm->mmu_lock);
5092 memslot->userspace_addr = userspace_addr;
5093 spin_unlock(&kvm->mmu_lock);
5094 } else {
5095 if (!old.user_alloc && old.rmap) {
5096 int ret;
5097
5098 down_write(&current->mm->mmap_sem);
5099 ret = do_munmap(current->mm, old.userspace_addr,
5100 old.npages * PAGE_SIZE);
5101 up_write(&current->mm->mmap_sem);
5102 if (ret < 0)
5103 printk(KERN_WARNING
5104 "kvm_vm_ioctl_set_memory_region: "
5105 "failed to munmap memory\n");
5106 }
5107 }
5108 }
5109
5110 spin_lock(&kvm->mmu_lock);
5111 if (!kvm->arch.n_requested_mmu_pages) {
5112 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
5113 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
5114 }
5115
5116 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
5117 spin_unlock(&kvm->mmu_lock);
5118
5119 return 0;
5120 }
5121
5122 void kvm_arch_flush_shadow(struct kvm *kvm)
5123 {
5124 kvm_mmu_zap_all(kvm);
5125 kvm_reload_remote_mmus(kvm);
5126 }
5127
5128 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
5129 {
5130 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
5131 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
5132 || vcpu->arch.nmi_pending ||
5133 (kvm_arch_interrupt_allowed(vcpu) &&
5134 kvm_cpu_has_interrupt(vcpu));
5135 }
5136
5137 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
5138 {
5139 int me;
5140 int cpu = vcpu->cpu;
5141
5142 if (waitqueue_active(&vcpu->wq)) {
5143 wake_up_interruptible(&vcpu->wq);
5144 ++vcpu->stat.halt_wakeup;
5145 }
5146
5147 me = get_cpu();
5148 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
5149 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
5150 smp_send_reschedule(cpu);
5151 put_cpu();
5152 }
5153
5154 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
5155 {
5156 return kvm_x86_ops->interrupt_allowed(vcpu);
5157 }
5158
5159 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
5160 {
5161 unsigned long rflags;
5162
5163 rflags = kvm_x86_ops->get_rflags(vcpu);
5164 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5165 rflags &= ~(unsigned long)(X86_EFLAGS_TF | X86_EFLAGS_RF);
5166 return rflags;
5167 }
5168 EXPORT_SYMBOL_GPL(kvm_get_rflags);
5169
5170 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
5171 {
5172 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
5173 vcpu->arch.singlestep_cs ==
5174 get_segment_selector(vcpu, VCPU_SREG_CS) &&
5175 vcpu->arch.singlestep_rip == kvm_rip_read(vcpu))
5176 rflags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
5177 kvm_x86_ops->set_rflags(vcpu, rflags);
5178 }
5179 EXPORT_SYMBOL_GPL(kvm_set_rflags);
5180
5181 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
5182 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
5183 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
5184 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
5185 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
5186 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
5187 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
5188 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
5189 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
5190 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
5191 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
This page took 0.136292 seconds and 5 git commands to generate.