kvm/x86: move Hyper-V MSR's/hypercall code into hyperv.c file
[deliverable/linux.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/module.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <trace/events/kvm.h>
55
56 #define CREATE_TRACE_POINTS
57 #include "trace.h"
58
59 #include <asm/debugreg.h>
60 #include <asm/msr.h>
61 #include <asm/desc.h>
62 #include <asm/mce.h>
63 #include <linux/kernel_stat.h>
64 #include <asm/fpu/internal.h> /* Ugh! */
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67
68 #define MAX_IO_MSRS 256
69 #define KVM_MAX_MCE_BANKS 32
70 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
71
72 #define emul_to_vcpu(ctxt) \
73 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
74
75 /* EFER defaults:
76 * - enable syscall per default because its emulated by KVM
77 * - enable LME and LMA per default on 64 bit KVM
78 */
79 #ifdef CONFIG_X86_64
80 static
81 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
82 #else
83 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
84 #endif
85
86 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
87 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
88
89 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
90 static void process_nmi(struct kvm_vcpu *vcpu);
91 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
92
93 struct kvm_x86_ops *kvm_x86_ops;
94 EXPORT_SYMBOL_GPL(kvm_x86_ops);
95
96 static bool ignore_msrs = 0;
97 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
98
99 unsigned int min_timer_period_us = 500;
100 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
101
102 static bool __read_mostly kvmclock_periodic_sync = true;
103 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
104
105 bool kvm_has_tsc_control;
106 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
107 u32 kvm_max_guest_tsc_khz;
108 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
109
110 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
111 static u32 tsc_tolerance_ppm = 250;
112 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
113
114 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
115 unsigned int lapic_timer_advance_ns = 0;
116 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
117
118 static bool backwards_tsc_observed = false;
119
120 #define KVM_NR_SHARED_MSRS 16
121
122 struct kvm_shared_msrs_global {
123 int nr;
124 u32 msrs[KVM_NR_SHARED_MSRS];
125 };
126
127 struct kvm_shared_msrs {
128 struct user_return_notifier urn;
129 bool registered;
130 struct kvm_shared_msr_values {
131 u64 host;
132 u64 curr;
133 } values[KVM_NR_SHARED_MSRS];
134 };
135
136 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
137 static struct kvm_shared_msrs __percpu *shared_msrs;
138
139 struct kvm_stats_debugfs_item debugfs_entries[] = {
140 { "pf_fixed", VCPU_STAT(pf_fixed) },
141 { "pf_guest", VCPU_STAT(pf_guest) },
142 { "tlb_flush", VCPU_STAT(tlb_flush) },
143 { "invlpg", VCPU_STAT(invlpg) },
144 { "exits", VCPU_STAT(exits) },
145 { "io_exits", VCPU_STAT(io_exits) },
146 { "mmio_exits", VCPU_STAT(mmio_exits) },
147 { "signal_exits", VCPU_STAT(signal_exits) },
148 { "irq_window", VCPU_STAT(irq_window_exits) },
149 { "nmi_window", VCPU_STAT(nmi_window_exits) },
150 { "halt_exits", VCPU_STAT(halt_exits) },
151 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
152 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
153 { "hypercalls", VCPU_STAT(hypercalls) },
154 { "request_irq", VCPU_STAT(request_irq_exits) },
155 { "irq_exits", VCPU_STAT(irq_exits) },
156 { "host_state_reload", VCPU_STAT(host_state_reload) },
157 { "efer_reload", VCPU_STAT(efer_reload) },
158 { "fpu_reload", VCPU_STAT(fpu_reload) },
159 { "insn_emulation", VCPU_STAT(insn_emulation) },
160 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
161 { "irq_injections", VCPU_STAT(irq_injections) },
162 { "nmi_injections", VCPU_STAT(nmi_injections) },
163 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
164 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
165 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
166 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
167 { "mmu_flooded", VM_STAT(mmu_flooded) },
168 { "mmu_recycled", VM_STAT(mmu_recycled) },
169 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
170 { "mmu_unsync", VM_STAT(mmu_unsync) },
171 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
172 { "largepages", VM_STAT(lpages) },
173 { NULL }
174 };
175
176 u64 __read_mostly host_xcr0;
177
178 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
179
180 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
181 {
182 int i;
183 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
184 vcpu->arch.apf.gfns[i] = ~0;
185 }
186
187 static void kvm_on_user_return(struct user_return_notifier *urn)
188 {
189 unsigned slot;
190 struct kvm_shared_msrs *locals
191 = container_of(urn, struct kvm_shared_msrs, urn);
192 struct kvm_shared_msr_values *values;
193
194 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
195 values = &locals->values[slot];
196 if (values->host != values->curr) {
197 wrmsrl(shared_msrs_global.msrs[slot], values->host);
198 values->curr = values->host;
199 }
200 }
201 locals->registered = false;
202 user_return_notifier_unregister(urn);
203 }
204
205 static void shared_msr_update(unsigned slot, u32 msr)
206 {
207 u64 value;
208 unsigned int cpu = smp_processor_id();
209 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
210
211 /* only read, and nobody should modify it at this time,
212 * so don't need lock */
213 if (slot >= shared_msrs_global.nr) {
214 printk(KERN_ERR "kvm: invalid MSR slot!");
215 return;
216 }
217 rdmsrl_safe(msr, &value);
218 smsr->values[slot].host = value;
219 smsr->values[slot].curr = value;
220 }
221
222 void kvm_define_shared_msr(unsigned slot, u32 msr)
223 {
224 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
225 if (slot >= shared_msrs_global.nr)
226 shared_msrs_global.nr = slot + 1;
227 shared_msrs_global.msrs[slot] = msr;
228 /* we need ensured the shared_msr_global have been updated */
229 smp_wmb();
230 }
231 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
232
233 static void kvm_shared_msr_cpu_online(void)
234 {
235 unsigned i;
236
237 for (i = 0; i < shared_msrs_global.nr; ++i)
238 shared_msr_update(i, shared_msrs_global.msrs[i]);
239 }
240
241 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
242 {
243 unsigned int cpu = smp_processor_id();
244 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
245 int err;
246
247 if (((value ^ smsr->values[slot].curr) & mask) == 0)
248 return 0;
249 smsr->values[slot].curr = value;
250 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
251 if (err)
252 return 1;
253
254 if (!smsr->registered) {
255 smsr->urn.on_user_return = kvm_on_user_return;
256 user_return_notifier_register(&smsr->urn);
257 smsr->registered = true;
258 }
259 return 0;
260 }
261 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
262
263 static void drop_user_return_notifiers(void)
264 {
265 unsigned int cpu = smp_processor_id();
266 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
267
268 if (smsr->registered)
269 kvm_on_user_return(&smsr->urn);
270 }
271
272 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
273 {
274 return vcpu->arch.apic_base;
275 }
276 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
277
278 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
279 {
280 u64 old_state = vcpu->arch.apic_base &
281 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
282 u64 new_state = msr_info->data &
283 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
284 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
285 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
286
287 if (!msr_info->host_initiated &&
288 ((msr_info->data & reserved_bits) != 0 ||
289 new_state == X2APIC_ENABLE ||
290 (new_state == MSR_IA32_APICBASE_ENABLE &&
291 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
292 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
293 old_state == 0)))
294 return 1;
295
296 kvm_lapic_set_base(vcpu, msr_info->data);
297 return 0;
298 }
299 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
300
301 asmlinkage __visible void kvm_spurious_fault(void)
302 {
303 /* Fault while not rebooting. We want the trace. */
304 BUG();
305 }
306 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
307
308 #define EXCPT_BENIGN 0
309 #define EXCPT_CONTRIBUTORY 1
310 #define EXCPT_PF 2
311
312 static int exception_class(int vector)
313 {
314 switch (vector) {
315 case PF_VECTOR:
316 return EXCPT_PF;
317 case DE_VECTOR:
318 case TS_VECTOR:
319 case NP_VECTOR:
320 case SS_VECTOR:
321 case GP_VECTOR:
322 return EXCPT_CONTRIBUTORY;
323 default:
324 break;
325 }
326 return EXCPT_BENIGN;
327 }
328
329 #define EXCPT_FAULT 0
330 #define EXCPT_TRAP 1
331 #define EXCPT_ABORT 2
332 #define EXCPT_INTERRUPT 3
333
334 static int exception_type(int vector)
335 {
336 unsigned int mask;
337
338 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
339 return EXCPT_INTERRUPT;
340
341 mask = 1 << vector;
342
343 /* #DB is trap, as instruction watchpoints are handled elsewhere */
344 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
345 return EXCPT_TRAP;
346
347 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
348 return EXCPT_ABORT;
349
350 /* Reserved exceptions will result in fault */
351 return EXCPT_FAULT;
352 }
353
354 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
355 unsigned nr, bool has_error, u32 error_code,
356 bool reinject)
357 {
358 u32 prev_nr;
359 int class1, class2;
360
361 kvm_make_request(KVM_REQ_EVENT, vcpu);
362
363 if (!vcpu->arch.exception.pending) {
364 queue:
365 if (has_error && !is_protmode(vcpu))
366 has_error = false;
367 vcpu->arch.exception.pending = true;
368 vcpu->arch.exception.has_error_code = has_error;
369 vcpu->arch.exception.nr = nr;
370 vcpu->arch.exception.error_code = error_code;
371 vcpu->arch.exception.reinject = reinject;
372 return;
373 }
374
375 /* to check exception */
376 prev_nr = vcpu->arch.exception.nr;
377 if (prev_nr == DF_VECTOR) {
378 /* triple fault -> shutdown */
379 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
380 return;
381 }
382 class1 = exception_class(prev_nr);
383 class2 = exception_class(nr);
384 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
385 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
386 /* generate double fault per SDM Table 5-5 */
387 vcpu->arch.exception.pending = true;
388 vcpu->arch.exception.has_error_code = true;
389 vcpu->arch.exception.nr = DF_VECTOR;
390 vcpu->arch.exception.error_code = 0;
391 } else
392 /* replace previous exception with a new one in a hope
393 that instruction re-execution will regenerate lost
394 exception */
395 goto queue;
396 }
397
398 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
399 {
400 kvm_multiple_exception(vcpu, nr, false, 0, false);
401 }
402 EXPORT_SYMBOL_GPL(kvm_queue_exception);
403
404 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
405 {
406 kvm_multiple_exception(vcpu, nr, false, 0, true);
407 }
408 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
409
410 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
411 {
412 if (err)
413 kvm_inject_gp(vcpu, 0);
414 else
415 kvm_x86_ops->skip_emulated_instruction(vcpu);
416 }
417 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
418
419 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
420 {
421 ++vcpu->stat.pf_guest;
422 vcpu->arch.cr2 = fault->address;
423 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
424 }
425 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
426
427 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
428 {
429 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
430 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
431 else
432 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
433
434 return fault->nested_page_fault;
435 }
436
437 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
438 {
439 atomic_inc(&vcpu->arch.nmi_queued);
440 kvm_make_request(KVM_REQ_NMI, vcpu);
441 }
442 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
443
444 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
445 {
446 kvm_multiple_exception(vcpu, nr, true, error_code, false);
447 }
448 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
449
450 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
451 {
452 kvm_multiple_exception(vcpu, nr, true, error_code, true);
453 }
454 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
455
456 /*
457 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
458 * a #GP and return false.
459 */
460 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
461 {
462 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
463 return true;
464 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
465 return false;
466 }
467 EXPORT_SYMBOL_GPL(kvm_require_cpl);
468
469 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
470 {
471 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
472 return true;
473
474 kvm_queue_exception(vcpu, UD_VECTOR);
475 return false;
476 }
477 EXPORT_SYMBOL_GPL(kvm_require_dr);
478
479 /*
480 * This function will be used to read from the physical memory of the currently
481 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
482 * can read from guest physical or from the guest's guest physical memory.
483 */
484 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
485 gfn_t ngfn, void *data, int offset, int len,
486 u32 access)
487 {
488 struct x86_exception exception;
489 gfn_t real_gfn;
490 gpa_t ngpa;
491
492 ngpa = gfn_to_gpa(ngfn);
493 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
494 if (real_gfn == UNMAPPED_GVA)
495 return -EFAULT;
496
497 real_gfn = gpa_to_gfn(real_gfn);
498
499 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
500 }
501 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
502
503 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
504 void *data, int offset, int len, u32 access)
505 {
506 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
507 data, offset, len, access);
508 }
509
510 /*
511 * Load the pae pdptrs. Return true is they are all valid.
512 */
513 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
514 {
515 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
516 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
517 int i;
518 int ret;
519 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
520
521 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
522 offset * sizeof(u64), sizeof(pdpte),
523 PFERR_USER_MASK|PFERR_WRITE_MASK);
524 if (ret < 0) {
525 ret = 0;
526 goto out;
527 }
528 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
529 if (is_present_gpte(pdpte[i]) &&
530 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
531 ret = 0;
532 goto out;
533 }
534 }
535 ret = 1;
536
537 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
538 __set_bit(VCPU_EXREG_PDPTR,
539 (unsigned long *)&vcpu->arch.regs_avail);
540 __set_bit(VCPU_EXREG_PDPTR,
541 (unsigned long *)&vcpu->arch.regs_dirty);
542 out:
543
544 return ret;
545 }
546 EXPORT_SYMBOL_GPL(load_pdptrs);
547
548 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
549 {
550 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
551 bool changed = true;
552 int offset;
553 gfn_t gfn;
554 int r;
555
556 if (is_long_mode(vcpu) || !is_pae(vcpu))
557 return false;
558
559 if (!test_bit(VCPU_EXREG_PDPTR,
560 (unsigned long *)&vcpu->arch.regs_avail))
561 return true;
562
563 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
564 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
565 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
566 PFERR_USER_MASK | PFERR_WRITE_MASK);
567 if (r < 0)
568 goto out;
569 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
570 out:
571
572 return changed;
573 }
574
575 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
576 {
577 unsigned long old_cr0 = kvm_read_cr0(vcpu);
578 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
579
580 cr0 |= X86_CR0_ET;
581
582 #ifdef CONFIG_X86_64
583 if (cr0 & 0xffffffff00000000UL)
584 return 1;
585 #endif
586
587 cr0 &= ~CR0_RESERVED_BITS;
588
589 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
590 return 1;
591
592 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
593 return 1;
594
595 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
596 #ifdef CONFIG_X86_64
597 if ((vcpu->arch.efer & EFER_LME)) {
598 int cs_db, cs_l;
599
600 if (!is_pae(vcpu))
601 return 1;
602 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
603 if (cs_l)
604 return 1;
605 } else
606 #endif
607 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
608 kvm_read_cr3(vcpu)))
609 return 1;
610 }
611
612 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
613 return 1;
614
615 kvm_x86_ops->set_cr0(vcpu, cr0);
616
617 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
618 kvm_clear_async_pf_completion_queue(vcpu);
619 kvm_async_pf_hash_reset(vcpu);
620 }
621
622 if ((cr0 ^ old_cr0) & update_bits)
623 kvm_mmu_reset_context(vcpu);
624
625 if ((cr0 ^ old_cr0) & X86_CR0_CD)
626 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
627
628 return 0;
629 }
630 EXPORT_SYMBOL_GPL(kvm_set_cr0);
631
632 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
633 {
634 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
635 }
636 EXPORT_SYMBOL_GPL(kvm_lmsw);
637
638 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
639 {
640 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
641 !vcpu->guest_xcr0_loaded) {
642 /* kvm_set_xcr() also depends on this */
643 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
644 vcpu->guest_xcr0_loaded = 1;
645 }
646 }
647
648 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
649 {
650 if (vcpu->guest_xcr0_loaded) {
651 if (vcpu->arch.xcr0 != host_xcr0)
652 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
653 vcpu->guest_xcr0_loaded = 0;
654 }
655 }
656
657 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
658 {
659 u64 xcr0 = xcr;
660 u64 old_xcr0 = vcpu->arch.xcr0;
661 u64 valid_bits;
662
663 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
664 if (index != XCR_XFEATURE_ENABLED_MASK)
665 return 1;
666 if (!(xcr0 & XSTATE_FP))
667 return 1;
668 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
669 return 1;
670
671 /*
672 * Do not allow the guest to set bits that we do not support
673 * saving. However, xcr0 bit 0 is always set, even if the
674 * emulated CPU does not support XSAVE (see fx_init).
675 */
676 valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
677 if (xcr0 & ~valid_bits)
678 return 1;
679
680 if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR)))
681 return 1;
682
683 if (xcr0 & XSTATE_AVX512) {
684 if (!(xcr0 & XSTATE_YMM))
685 return 1;
686 if ((xcr0 & XSTATE_AVX512) != XSTATE_AVX512)
687 return 1;
688 }
689 kvm_put_guest_xcr0(vcpu);
690 vcpu->arch.xcr0 = xcr0;
691
692 if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK)
693 kvm_update_cpuid(vcpu);
694 return 0;
695 }
696
697 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
698 {
699 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
700 __kvm_set_xcr(vcpu, index, xcr)) {
701 kvm_inject_gp(vcpu, 0);
702 return 1;
703 }
704 return 0;
705 }
706 EXPORT_SYMBOL_GPL(kvm_set_xcr);
707
708 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
709 {
710 unsigned long old_cr4 = kvm_read_cr4(vcpu);
711 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
712 X86_CR4_SMEP | X86_CR4_SMAP;
713
714 if (cr4 & CR4_RESERVED_BITS)
715 return 1;
716
717 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
718 return 1;
719
720 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
721 return 1;
722
723 if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
724 return 1;
725
726 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
727 return 1;
728
729 if (is_long_mode(vcpu)) {
730 if (!(cr4 & X86_CR4_PAE))
731 return 1;
732 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
733 && ((cr4 ^ old_cr4) & pdptr_bits)
734 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
735 kvm_read_cr3(vcpu)))
736 return 1;
737
738 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
739 if (!guest_cpuid_has_pcid(vcpu))
740 return 1;
741
742 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
743 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
744 return 1;
745 }
746
747 if (kvm_x86_ops->set_cr4(vcpu, cr4))
748 return 1;
749
750 if (((cr4 ^ old_cr4) & pdptr_bits) ||
751 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
752 kvm_mmu_reset_context(vcpu);
753
754 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
755 kvm_update_cpuid(vcpu);
756
757 return 0;
758 }
759 EXPORT_SYMBOL_GPL(kvm_set_cr4);
760
761 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
762 {
763 #ifdef CONFIG_X86_64
764 cr3 &= ~CR3_PCID_INVD;
765 #endif
766
767 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
768 kvm_mmu_sync_roots(vcpu);
769 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
770 return 0;
771 }
772
773 if (is_long_mode(vcpu)) {
774 if (cr3 & CR3_L_MODE_RESERVED_BITS)
775 return 1;
776 } else if (is_pae(vcpu) && is_paging(vcpu) &&
777 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
778 return 1;
779
780 vcpu->arch.cr3 = cr3;
781 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
782 kvm_mmu_new_cr3(vcpu);
783 return 0;
784 }
785 EXPORT_SYMBOL_GPL(kvm_set_cr3);
786
787 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
788 {
789 if (cr8 & CR8_RESERVED_BITS)
790 return 1;
791 if (irqchip_in_kernel(vcpu->kvm))
792 kvm_lapic_set_tpr(vcpu, cr8);
793 else
794 vcpu->arch.cr8 = cr8;
795 return 0;
796 }
797 EXPORT_SYMBOL_GPL(kvm_set_cr8);
798
799 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
800 {
801 if (irqchip_in_kernel(vcpu->kvm))
802 return kvm_lapic_get_cr8(vcpu);
803 else
804 return vcpu->arch.cr8;
805 }
806 EXPORT_SYMBOL_GPL(kvm_get_cr8);
807
808 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
809 {
810 int i;
811
812 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
813 for (i = 0; i < KVM_NR_DB_REGS; i++)
814 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
815 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
816 }
817 }
818
819 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
820 {
821 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
822 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
823 }
824
825 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
826 {
827 unsigned long dr7;
828
829 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
830 dr7 = vcpu->arch.guest_debug_dr7;
831 else
832 dr7 = vcpu->arch.dr7;
833 kvm_x86_ops->set_dr7(vcpu, dr7);
834 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
835 if (dr7 & DR7_BP_EN_MASK)
836 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
837 }
838
839 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
840 {
841 u64 fixed = DR6_FIXED_1;
842
843 if (!guest_cpuid_has_rtm(vcpu))
844 fixed |= DR6_RTM;
845 return fixed;
846 }
847
848 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
849 {
850 switch (dr) {
851 case 0 ... 3:
852 vcpu->arch.db[dr] = val;
853 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
854 vcpu->arch.eff_db[dr] = val;
855 break;
856 case 4:
857 /* fall through */
858 case 6:
859 if (val & 0xffffffff00000000ULL)
860 return -1; /* #GP */
861 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
862 kvm_update_dr6(vcpu);
863 break;
864 case 5:
865 /* fall through */
866 default: /* 7 */
867 if (val & 0xffffffff00000000ULL)
868 return -1; /* #GP */
869 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
870 kvm_update_dr7(vcpu);
871 break;
872 }
873
874 return 0;
875 }
876
877 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
878 {
879 if (__kvm_set_dr(vcpu, dr, val)) {
880 kvm_inject_gp(vcpu, 0);
881 return 1;
882 }
883 return 0;
884 }
885 EXPORT_SYMBOL_GPL(kvm_set_dr);
886
887 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
888 {
889 switch (dr) {
890 case 0 ... 3:
891 *val = vcpu->arch.db[dr];
892 break;
893 case 4:
894 /* fall through */
895 case 6:
896 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
897 *val = vcpu->arch.dr6;
898 else
899 *val = kvm_x86_ops->get_dr6(vcpu);
900 break;
901 case 5:
902 /* fall through */
903 default: /* 7 */
904 *val = vcpu->arch.dr7;
905 break;
906 }
907 return 0;
908 }
909 EXPORT_SYMBOL_GPL(kvm_get_dr);
910
911 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
912 {
913 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
914 u64 data;
915 int err;
916
917 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
918 if (err)
919 return err;
920 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
921 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
922 return err;
923 }
924 EXPORT_SYMBOL_GPL(kvm_rdpmc);
925
926 /*
927 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
928 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
929 *
930 * This list is modified at module load time to reflect the
931 * capabilities of the host cpu. This capabilities test skips MSRs that are
932 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
933 * may depend on host virtualization features rather than host cpu features.
934 */
935
936 static u32 msrs_to_save[] = {
937 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
938 MSR_STAR,
939 #ifdef CONFIG_X86_64
940 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
941 #endif
942 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
943 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
944 };
945
946 static unsigned num_msrs_to_save;
947
948 static u32 emulated_msrs[] = {
949 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
950 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
951 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
952 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
953 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
954 MSR_KVM_PV_EOI_EN,
955
956 MSR_IA32_TSC_ADJUST,
957 MSR_IA32_TSCDEADLINE,
958 MSR_IA32_MISC_ENABLE,
959 MSR_IA32_MCG_STATUS,
960 MSR_IA32_MCG_CTL,
961 MSR_IA32_SMBASE,
962 };
963
964 static unsigned num_emulated_msrs;
965
966 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
967 {
968 if (efer & efer_reserved_bits)
969 return false;
970
971 if (efer & EFER_FFXSR) {
972 struct kvm_cpuid_entry2 *feat;
973
974 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
975 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
976 return false;
977 }
978
979 if (efer & EFER_SVME) {
980 struct kvm_cpuid_entry2 *feat;
981
982 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
983 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
984 return false;
985 }
986
987 return true;
988 }
989 EXPORT_SYMBOL_GPL(kvm_valid_efer);
990
991 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
992 {
993 u64 old_efer = vcpu->arch.efer;
994
995 if (!kvm_valid_efer(vcpu, efer))
996 return 1;
997
998 if (is_paging(vcpu)
999 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1000 return 1;
1001
1002 efer &= ~EFER_LMA;
1003 efer |= vcpu->arch.efer & EFER_LMA;
1004
1005 kvm_x86_ops->set_efer(vcpu, efer);
1006
1007 /* Update reserved bits */
1008 if ((efer ^ old_efer) & EFER_NX)
1009 kvm_mmu_reset_context(vcpu);
1010
1011 return 0;
1012 }
1013
1014 void kvm_enable_efer_bits(u64 mask)
1015 {
1016 efer_reserved_bits &= ~mask;
1017 }
1018 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1019
1020 /*
1021 * Writes msr value into into the appropriate "register".
1022 * Returns 0 on success, non-0 otherwise.
1023 * Assumes vcpu_load() was already called.
1024 */
1025 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1026 {
1027 switch (msr->index) {
1028 case MSR_FS_BASE:
1029 case MSR_GS_BASE:
1030 case MSR_KERNEL_GS_BASE:
1031 case MSR_CSTAR:
1032 case MSR_LSTAR:
1033 if (is_noncanonical_address(msr->data))
1034 return 1;
1035 break;
1036 case MSR_IA32_SYSENTER_EIP:
1037 case MSR_IA32_SYSENTER_ESP:
1038 /*
1039 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1040 * non-canonical address is written on Intel but not on
1041 * AMD (which ignores the top 32-bits, because it does
1042 * not implement 64-bit SYSENTER).
1043 *
1044 * 64-bit code should hence be able to write a non-canonical
1045 * value on AMD. Making the address canonical ensures that
1046 * vmentry does not fail on Intel after writing a non-canonical
1047 * value, and that something deterministic happens if the guest
1048 * invokes 64-bit SYSENTER.
1049 */
1050 msr->data = get_canonical(msr->data);
1051 }
1052 return kvm_x86_ops->set_msr(vcpu, msr);
1053 }
1054 EXPORT_SYMBOL_GPL(kvm_set_msr);
1055
1056 /*
1057 * Adapt set_msr() to msr_io()'s calling convention
1058 */
1059 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1060 {
1061 struct msr_data msr;
1062 int r;
1063
1064 msr.index = index;
1065 msr.host_initiated = true;
1066 r = kvm_get_msr(vcpu, &msr);
1067 if (r)
1068 return r;
1069
1070 *data = msr.data;
1071 return 0;
1072 }
1073
1074 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1075 {
1076 struct msr_data msr;
1077
1078 msr.data = *data;
1079 msr.index = index;
1080 msr.host_initiated = true;
1081 return kvm_set_msr(vcpu, &msr);
1082 }
1083
1084 #ifdef CONFIG_X86_64
1085 struct pvclock_gtod_data {
1086 seqcount_t seq;
1087
1088 struct { /* extract of a clocksource struct */
1089 int vclock_mode;
1090 cycle_t cycle_last;
1091 cycle_t mask;
1092 u32 mult;
1093 u32 shift;
1094 } clock;
1095
1096 u64 boot_ns;
1097 u64 nsec_base;
1098 };
1099
1100 static struct pvclock_gtod_data pvclock_gtod_data;
1101
1102 static void update_pvclock_gtod(struct timekeeper *tk)
1103 {
1104 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1105 u64 boot_ns;
1106
1107 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1108
1109 write_seqcount_begin(&vdata->seq);
1110
1111 /* copy pvclock gtod data */
1112 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
1113 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1114 vdata->clock.mask = tk->tkr_mono.mask;
1115 vdata->clock.mult = tk->tkr_mono.mult;
1116 vdata->clock.shift = tk->tkr_mono.shift;
1117
1118 vdata->boot_ns = boot_ns;
1119 vdata->nsec_base = tk->tkr_mono.xtime_nsec;
1120
1121 write_seqcount_end(&vdata->seq);
1122 }
1123 #endif
1124
1125 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1126 {
1127 /*
1128 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1129 * vcpu_enter_guest. This function is only called from
1130 * the physical CPU that is running vcpu.
1131 */
1132 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1133 }
1134
1135 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1136 {
1137 int version;
1138 int r;
1139 struct pvclock_wall_clock wc;
1140 struct timespec boot;
1141
1142 if (!wall_clock)
1143 return;
1144
1145 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1146 if (r)
1147 return;
1148
1149 if (version & 1)
1150 ++version; /* first time write, random junk */
1151
1152 ++version;
1153
1154 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1155
1156 /*
1157 * The guest calculates current wall clock time by adding
1158 * system time (updated by kvm_guest_time_update below) to the
1159 * wall clock specified here. guest system time equals host
1160 * system time for us, thus we must fill in host boot time here.
1161 */
1162 getboottime(&boot);
1163
1164 if (kvm->arch.kvmclock_offset) {
1165 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1166 boot = timespec_sub(boot, ts);
1167 }
1168 wc.sec = boot.tv_sec;
1169 wc.nsec = boot.tv_nsec;
1170 wc.version = version;
1171
1172 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1173
1174 version++;
1175 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1176 }
1177
1178 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1179 {
1180 uint32_t quotient, remainder;
1181
1182 /* Don't try to replace with do_div(), this one calculates
1183 * "(dividend << 32) / divisor" */
1184 __asm__ ( "divl %4"
1185 : "=a" (quotient), "=d" (remainder)
1186 : "0" (0), "1" (dividend), "r" (divisor) );
1187 return quotient;
1188 }
1189
1190 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1191 s8 *pshift, u32 *pmultiplier)
1192 {
1193 uint64_t scaled64;
1194 int32_t shift = 0;
1195 uint64_t tps64;
1196 uint32_t tps32;
1197
1198 tps64 = base_khz * 1000LL;
1199 scaled64 = scaled_khz * 1000LL;
1200 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1201 tps64 >>= 1;
1202 shift--;
1203 }
1204
1205 tps32 = (uint32_t)tps64;
1206 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1207 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1208 scaled64 >>= 1;
1209 else
1210 tps32 <<= 1;
1211 shift++;
1212 }
1213
1214 *pshift = shift;
1215 *pmultiplier = div_frac(scaled64, tps32);
1216
1217 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1218 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1219 }
1220
1221 #ifdef CONFIG_X86_64
1222 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1223 #endif
1224
1225 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1226 static unsigned long max_tsc_khz;
1227
1228 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1229 {
1230 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1231 vcpu->arch.virtual_tsc_shift);
1232 }
1233
1234 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1235 {
1236 u64 v = (u64)khz * (1000000 + ppm);
1237 do_div(v, 1000000);
1238 return v;
1239 }
1240
1241 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1242 {
1243 u32 thresh_lo, thresh_hi;
1244 int use_scaling = 0;
1245
1246 /* tsc_khz can be zero if TSC calibration fails */
1247 if (this_tsc_khz == 0)
1248 return;
1249
1250 /* Compute a scale to convert nanoseconds in TSC cycles */
1251 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1252 &vcpu->arch.virtual_tsc_shift,
1253 &vcpu->arch.virtual_tsc_mult);
1254 vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1255
1256 /*
1257 * Compute the variation in TSC rate which is acceptable
1258 * within the range of tolerance and decide if the
1259 * rate being applied is within that bounds of the hardware
1260 * rate. If so, no scaling or compensation need be done.
1261 */
1262 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1263 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1264 if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1265 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1266 use_scaling = 1;
1267 }
1268 kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1269 }
1270
1271 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1272 {
1273 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1274 vcpu->arch.virtual_tsc_mult,
1275 vcpu->arch.virtual_tsc_shift);
1276 tsc += vcpu->arch.this_tsc_write;
1277 return tsc;
1278 }
1279
1280 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1281 {
1282 #ifdef CONFIG_X86_64
1283 bool vcpus_matched;
1284 struct kvm_arch *ka = &vcpu->kvm->arch;
1285 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1286
1287 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1288 atomic_read(&vcpu->kvm->online_vcpus));
1289
1290 /*
1291 * Once the masterclock is enabled, always perform request in
1292 * order to update it.
1293 *
1294 * In order to enable masterclock, the host clocksource must be TSC
1295 * and the vcpus need to have matched TSCs. When that happens,
1296 * perform request to enable masterclock.
1297 */
1298 if (ka->use_master_clock ||
1299 (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1300 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1301
1302 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1303 atomic_read(&vcpu->kvm->online_vcpus),
1304 ka->use_master_clock, gtod->clock.vclock_mode);
1305 #endif
1306 }
1307
1308 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1309 {
1310 u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1311 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1312 }
1313
1314 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1315 {
1316 struct kvm *kvm = vcpu->kvm;
1317 u64 offset, ns, elapsed;
1318 unsigned long flags;
1319 s64 usdiff;
1320 bool matched;
1321 bool already_matched;
1322 u64 data = msr->data;
1323
1324 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1325 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1326 ns = get_kernel_ns();
1327 elapsed = ns - kvm->arch.last_tsc_nsec;
1328
1329 if (vcpu->arch.virtual_tsc_khz) {
1330 int faulted = 0;
1331
1332 /* n.b - signed multiplication and division required */
1333 usdiff = data - kvm->arch.last_tsc_write;
1334 #ifdef CONFIG_X86_64
1335 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1336 #else
1337 /* do_div() only does unsigned */
1338 asm("1: idivl %[divisor]\n"
1339 "2: xor %%edx, %%edx\n"
1340 " movl $0, %[faulted]\n"
1341 "3:\n"
1342 ".section .fixup,\"ax\"\n"
1343 "4: movl $1, %[faulted]\n"
1344 " jmp 3b\n"
1345 ".previous\n"
1346
1347 _ASM_EXTABLE(1b, 4b)
1348
1349 : "=A"(usdiff), [faulted] "=r" (faulted)
1350 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1351
1352 #endif
1353 do_div(elapsed, 1000);
1354 usdiff -= elapsed;
1355 if (usdiff < 0)
1356 usdiff = -usdiff;
1357
1358 /* idivl overflow => difference is larger than USEC_PER_SEC */
1359 if (faulted)
1360 usdiff = USEC_PER_SEC;
1361 } else
1362 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1363
1364 /*
1365 * Special case: TSC write with a small delta (1 second) of virtual
1366 * cycle time against real time is interpreted as an attempt to
1367 * synchronize the CPU.
1368 *
1369 * For a reliable TSC, we can match TSC offsets, and for an unstable
1370 * TSC, we add elapsed time in this computation. We could let the
1371 * compensation code attempt to catch up if we fall behind, but
1372 * it's better to try to match offsets from the beginning.
1373 */
1374 if (usdiff < USEC_PER_SEC &&
1375 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1376 if (!check_tsc_unstable()) {
1377 offset = kvm->arch.cur_tsc_offset;
1378 pr_debug("kvm: matched tsc offset for %llu\n", data);
1379 } else {
1380 u64 delta = nsec_to_cycles(vcpu, elapsed);
1381 data += delta;
1382 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1383 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1384 }
1385 matched = true;
1386 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1387 } else {
1388 /*
1389 * We split periods of matched TSC writes into generations.
1390 * For each generation, we track the original measured
1391 * nanosecond time, offset, and write, so if TSCs are in
1392 * sync, we can match exact offset, and if not, we can match
1393 * exact software computation in compute_guest_tsc()
1394 *
1395 * These values are tracked in kvm->arch.cur_xxx variables.
1396 */
1397 kvm->arch.cur_tsc_generation++;
1398 kvm->arch.cur_tsc_nsec = ns;
1399 kvm->arch.cur_tsc_write = data;
1400 kvm->arch.cur_tsc_offset = offset;
1401 matched = false;
1402 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1403 kvm->arch.cur_tsc_generation, data);
1404 }
1405
1406 /*
1407 * We also track th most recent recorded KHZ, write and time to
1408 * allow the matching interval to be extended at each write.
1409 */
1410 kvm->arch.last_tsc_nsec = ns;
1411 kvm->arch.last_tsc_write = data;
1412 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1413
1414 vcpu->arch.last_guest_tsc = data;
1415
1416 /* Keep track of which generation this VCPU has synchronized to */
1417 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1418 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1419 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1420
1421 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1422 update_ia32_tsc_adjust_msr(vcpu, offset);
1423 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1424 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1425
1426 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1427 if (!matched) {
1428 kvm->arch.nr_vcpus_matched_tsc = 0;
1429 } else if (!already_matched) {
1430 kvm->arch.nr_vcpus_matched_tsc++;
1431 }
1432
1433 kvm_track_tsc_matching(vcpu);
1434 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1435 }
1436
1437 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1438
1439 #ifdef CONFIG_X86_64
1440
1441 static cycle_t read_tsc(void)
1442 {
1443 cycle_t ret;
1444 u64 last;
1445
1446 /*
1447 * Empirically, a fence (of type that depends on the CPU)
1448 * before rdtsc is enough to ensure that rdtsc is ordered
1449 * with respect to loads. The various CPU manuals are unclear
1450 * as to whether rdtsc can be reordered with later loads,
1451 * but no one has ever seen it happen.
1452 */
1453 rdtsc_barrier();
1454 ret = (cycle_t)vget_cycles();
1455
1456 last = pvclock_gtod_data.clock.cycle_last;
1457
1458 if (likely(ret >= last))
1459 return ret;
1460
1461 /*
1462 * GCC likes to generate cmov here, but this branch is extremely
1463 * predictable (it's just a funciton of time and the likely is
1464 * very likely) and there's a data dependence, so force GCC
1465 * to generate a branch instead. I don't barrier() because
1466 * we don't actually need a barrier, and if this function
1467 * ever gets inlined it will generate worse code.
1468 */
1469 asm volatile ("");
1470 return last;
1471 }
1472
1473 static inline u64 vgettsc(cycle_t *cycle_now)
1474 {
1475 long v;
1476 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1477
1478 *cycle_now = read_tsc();
1479
1480 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1481 return v * gtod->clock.mult;
1482 }
1483
1484 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1485 {
1486 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1487 unsigned long seq;
1488 int mode;
1489 u64 ns;
1490
1491 do {
1492 seq = read_seqcount_begin(&gtod->seq);
1493 mode = gtod->clock.vclock_mode;
1494 ns = gtod->nsec_base;
1495 ns += vgettsc(cycle_now);
1496 ns >>= gtod->clock.shift;
1497 ns += gtod->boot_ns;
1498 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1499 *t = ns;
1500
1501 return mode;
1502 }
1503
1504 /* returns true if host is using tsc clocksource */
1505 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1506 {
1507 /* checked again under seqlock below */
1508 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1509 return false;
1510
1511 return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1512 }
1513 #endif
1514
1515 /*
1516 *
1517 * Assuming a stable TSC across physical CPUS, and a stable TSC
1518 * across virtual CPUs, the following condition is possible.
1519 * Each numbered line represents an event visible to both
1520 * CPUs at the next numbered event.
1521 *
1522 * "timespecX" represents host monotonic time. "tscX" represents
1523 * RDTSC value.
1524 *
1525 * VCPU0 on CPU0 | VCPU1 on CPU1
1526 *
1527 * 1. read timespec0,tsc0
1528 * 2. | timespec1 = timespec0 + N
1529 * | tsc1 = tsc0 + M
1530 * 3. transition to guest | transition to guest
1531 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1532 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1533 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1534 *
1535 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1536 *
1537 * - ret0 < ret1
1538 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1539 * ...
1540 * - 0 < N - M => M < N
1541 *
1542 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1543 * always the case (the difference between two distinct xtime instances
1544 * might be smaller then the difference between corresponding TSC reads,
1545 * when updating guest vcpus pvclock areas).
1546 *
1547 * To avoid that problem, do not allow visibility of distinct
1548 * system_timestamp/tsc_timestamp values simultaneously: use a master
1549 * copy of host monotonic time values. Update that master copy
1550 * in lockstep.
1551 *
1552 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1553 *
1554 */
1555
1556 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1557 {
1558 #ifdef CONFIG_X86_64
1559 struct kvm_arch *ka = &kvm->arch;
1560 int vclock_mode;
1561 bool host_tsc_clocksource, vcpus_matched;
1562
1563 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1564 atomic_read(&kvm->online_vcpus));
1565
1566 /*
1567 * If the host uses TSC clock, then passthrough TSC as stable
1568 * to the guest.
1569 */
1570 host_tsc_clocksource = kvm_get_time_and_clockread(
1571 &ka->master_kernel_ns,
1572 &ka->master_cycle_now);
1573
1574 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1575 && !backwards_tsc_observed
1576 && !ka->boot_vcpu_runs_old_kvmclock;
1577
1578 if (ka->use_master_clock)
1579 atomic_set(&kvm_guest_has_master_clock, 1);
1580
1581 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1582 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1583 vcpus_matched);
1584 #endif
1585 }
1586
1587 static void kvm_gen_update_masterclock(struct kvm *kvm)
1588 {
1589 #ifdef CONFIG_X86_64
1590 int i;
1591 struct kvm_vcpu *vcpu;
1592 struct kvm_arch *ka = &kvm->arch;
1593
1594 spin_lock(&ka->pvclock_gtod_sync_lock);
1595 kvm_make_mclock_inprogress_request(kvm);
1596 /* no guest entries from this point */
1597 pvclock_update_vm_gtod_copy(kvm);
1598
1599 kvm_for_each_vcpu(i, vcpu, kvm)
1600 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1601
1602 /* guest entries allowed */
1603 kvm_for_each_vcpu(i, vcpu, kvm)
1604 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1605
1606 spin_unlock(&ka->pvclock_gtod_sync_lock);
1607 #endif
1608 }
1609
1610 static int kvm_guest_time_update(struct kvm_vcpu *v)
1611 {
1612 unsigned long flags, this_tsc_khz;
1613 struct kvm_vcpu_arch *vcpu = &v->arch;
1614 struct kvm_arch *ka = &v->kvm->arch;
1615 s64 kernel_ns;
1616 u64 tsc_timestamp, host_tsc;
1617 struct pvclock_vcpu_time_info guest_hv_clock;
1618 u8 pvclock_flags;
1619 bool use_master_clock;
1620
1621 kernel_ns = 0;
1622 host_tsc = 0;
1623
1624 /*
1625 * If the host uses TSC clock, then passthrough TSC as stable
1626 * to the guest.
1627 */
1628 spin_lock(&ka->pvclock_gtod_sync_lock);
1629 use_master_clock = ka->use_master_clock;
1630 if (use_master_clock) {
1631 host_tsc = ka->master_cycle_now;
1632 kernel_ns = ka->master_kernel_ns;
1633 }
1634 spin_unlock(&ka->pvclock_gtod_sync_lock);
1635
1636 /* Keep irq disabled to prevent changes to the clock */
1637 local_irq_save(flags);
1638 this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1639 if (unlikely(this_tsc_khz == 0)) {
1640 local_irq_restore(flags);
1641 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1642 return 1;
1643 }
1644 if (!use_master_clock) {
1645 host_tsc = native_read_tsc();
1646 kernel_ns = get_kernel_ns();
1647 }
1648
1649 tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1650
1651 /*
1652 * We may have to catch up the TSC to match elapsed wall clock
1653 * time for two reasons, even if kvmclock is used.
1654 * 1) CPU could have been running below the maximum TSC rate
1655 * 2) Broken TSC compensation resets the base at each VCPU
1656 * entry to avoid unknown leaps of TSC even when running
1657 * again on the same CPU. This may cause apparent elapsed
1658 * time to disappear, and the guest to stand still or run
1659 * very slowly.
1660 */
1661 if (vcpu->tsc_catchup) {
1662 u64 tsc = compute_guest_tsc(v, kernel_ns);
1663 if (tsc > tsc_timestamp) {
1664 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1665 tsc_timestamp = tsc;
1666 }
1667 }
1668
1669 local_irq_restore(flags);
1670
1671 if (!vcpu->pv_time_enabled)
1672 return 0;
1673
1674 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1675 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1676 &vcpu->hv_clock.tsc_shift,
1677 &vcpu->hv_clock.tsc_to_system_mul);
1678 vcpu->hw_tsc_khz = this_tsc_khz;
1679 }
1680
1681 /* With all the info we got, fill in the values */
1682 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1683 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1684 vcpu->last_guest_tsc = tsc_timestamp;
1685
1686 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1687 &guest_hv_clock, sizeof(guest_hv_clock))))
1688 return 0;
1689
1690 /* This VCPU is paused, but it's legal for a guest to read another
1691 * VCPU's kvmclock, so we really have to follow the specification where
1692 * it says that version is odd if data is being modified, and even after
1693 * it is consistent.
1694 *
1695 * Version field updates must be kept separate. This is because
1696 * kvm_write_guest_cached might use a "rep movs" instruction, and
1697 * writes within a string instruction are weakly ordered. So there
1698 * are three writes overall.
1699 *
1700 * As a small optimization, only write the version field in the first
1701 * and third write. The vcpu->pv_time cache is still valid, because the
1702 * version field is the first in the struct.
1703 */
1704 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1705
1706 vcpu->hv_clock.version = guest_hv_clock.version + 1;
1707 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1708 &vcpu->hv_clock,
1709 sizeof(vcpu->hv_clock.version));
1710
1711 smp_wmb();
1712
1713 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1714 pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1715
1716 if (vcpu->pvclock_set_guest_stopped_request) {
1717 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1718 vcpu->pvclock_set_guest_stopped_request = false;
1719 }
1720
1721 pvclock_flags |= PVCLOCK_COUNTS_FROM_ZERO;
1722
1723 /* If the host uses TSC clocksource, then it is stable */
1724 if (use_master_clock)
1725 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1726
1727 vcpu->hv_clock.flags = pvclock_flags;
1728
1729 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1730
1731 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1732 &vcpu->hv_clock,
1733 sizeof(vcpu->hv_clock));
1734
1735 smp_wmb();
1736
1737 vcpu->hv_clock.version++;
1738 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1739 &vcpu->hv_clock,
1740 sizeof(vcpu->hv_clock.version));
1741 return 0;
1742 }
1743
1744 /*
1745 * kvmclock updates which are isolated to a given vcpu, such as
1746 * vcpu->cpu migration, should not allow system_timestamp from
1747 * the rest of the vcpus to remain static. Otherwise ntp frequency
1748 * correction applies to one vcpu's system_timestamp but not
1749 * the others.
1750 *
1751 * So in those cases, request a kvmclock update for all vcpus.
1752 * We need to rate-limit these requests though, as they can
1753 * considerably slow guests that have a large number of vcpus.
1754 * The time for a remote vcpu to update its kvmclock is bound
1755 * by the delay we use to rate-limit the updates.
1756 */
1757
1758 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1759
1760 static void kvmclock_update_fn(struct work_struct *work)
1761 {
1762 int i;
1763 struct delayed_work *dwork = to_delayed_work(work);
1764 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1765 kvmclock_update_work);
1766 struct kvm *kvm = container_of(ka, struct kvm, arch);
1767 struct kvm_vcpu *vcpu;
1768
1769 kvm_for_each_vcpu(i, vcpu, kvm) {
1770 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1771 kvm_vcpu_kick(vcpu);
1772 }
1773 }
1774
1775 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1776 {
1777 struct kvm *kvm = v->kvm;
1778
1779 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1780 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1781 KVMCLOCK_UPDATE_DELAY);
1782 }
1783
1784 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1785
1786 static void kvmclock_sync_fn(struct work_struct *work)
1787 {
1788 struct delayed_work *dwork = to_delayed_work(work);
1789 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1790 kvmclock_sync_work);
1791 struct kvm *kvm = container_of(ka, struct kvm, arch);
1792
1793 if (!kvmclock_periodic_sync)
1794 return;
1795
1796 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1797 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1798 KVMCLOCK_SYNC_PERIOD);
1799 }
1800
1801 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1802 {
1803 u64 mcg_cap = vcpu->arch.mcg_cap;
1804 unsigned bank_num = mcg_cap & 0xff;
1805
1806 switch (msr) {
1807 case MSR_IA32_MCG_STATUS:
1808 vcpu->arch.mcg_status = data;
1809 break;
1810 case MSR_IA32_MCG_CTL:
1811 if (!(mcg_cap & MCG_CTL_P))
1812 return 1;
1813 if (data != 0 && data != ~(u64)0)
1814 return -1;
1815 vcpu->arch.mcg_ctl = data;
1816 break;
1817 default:
1818 if (msr >= MSR_IA32_MC0_CTL &&
1819 msr < MSR_IA32_MCx_CTL(bank_num)) {
1820 u32 offset = msr - MSR_IA32_MC0_CTL;
1821 /* only 0 or all 1s can be written to IA32_MCi_CTL
1822 * some Linux kernels though clear bit 10 in bank 4 to
1823 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1824 * this to avoid an uncatched #GP in the guest
1825 */
1826 if ((offset & 0x3) == 0 &&
1827 data != 0 && (data | (1 << 10)) != ~(u64)0)
1828 return -1;
1829 vcpu->arch.mce_banks[offset] = data;
1830 break;
1831 }
1832 return 1;
1833 }
1834 return 0;
1835 }
1836
1837 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1838 {
1839 struct kvm *kvm = vcpu->kvm;
1840 int lm = is_long_mode(vcpu);
1841 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1842 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1843 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1844 : kvm->arch.xen_hvm_config.blob_size_32;
1845 u32 page_num = data & ~PAGE_MASK;
1846 u64 page_addr = data & PAGE_MASK;
1847 u8 *page;
1848 int r;
1849
1850 r = -E2BIG;
1851 if (page_num >= blob_size)
1852 goto out;
1853 r = -ENOMEM;
1854 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1855 if (IS_ERR(page)) {
1856 r = PTR_ERR(page);
1857 goto out;
1858 }
1859 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
1860 goto out_free;
1861 r = 0;
1862 out_free:
1863 kfree(page);
1864 out:
1865 return r;
1866 }
1867
1868 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1869 {
1870 gpa_t gpa = data & ~0x3f;
1871
1872 /* Bits 2:5 are reserved, Should be zero */
1873 if (data & 0x3c)
1874 return 1;
1875
1876 vcpu->arch.apf.msr_val = data;
1877
1878 if (!(data & KVM_ASYNC_PF_ENABLED)) {
1879 kvm_clear_async_pf_completion_queue(vcpu);
1880 kvm_async_pf_hash_reset(vcpu);
1881 return 0;
1882 }
1883
1884 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1885 sizeof(u32)))
1886 return 1;
1887
1888 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1889 kvm_async_pf_wakeup_all(vcpu);
1890 return 0;
1891 }
1892
1893 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1894 {
1895 vcpu->arch.pv_time_enabled = false;
1896 }
1897
1898 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1899 {
1900 u64 delta;
1901
1902 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1903 return;
1904
1905 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1906 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1907 vcpu->arch.st.accum_steal = delta;
1908 }
1909
1910 static void record_steal_time(struct kvm_vcpu *vcpu)
1911 {
1912 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1913 return;
1914
1915 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1916 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1917 return;
1918
1919 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1920 vcpu->arch.st.steal.version += 2;
1921 vcpu->arch.st.accum_steal = 0;
1922
1923 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1924 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1925 }
1926
1927 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1928 {
1929 bool pr = false;
1930 u32 msr = msr_info->index;
1931 u64 data = msr_info->data;
1932
1933 switch (msr) {
1934 case MSR_AMD64_NB_CFG:
1935 case MSR_IA32_UCODE_REV:
1936 case MSR_IA32_UCODE_WRITE:
1937 case MSR_VM_HSAVE_PA:
1938 case MSR_AMD64_PATCH_LOADER:
1939 case MSR_AMD64_BU_CFG2:
1940 break;
1941
1942 case MSR_EFER:
1943 return set_efer(vcpu, data);
1944 case MSR_K7_HWCR:
1945 data &= ~(u64)0x40; /* ignore flush filter disable */
1946 data &= ~(u64)0x100; /* ignore ignne emulation enable */
1947 data &= ~(u64)0x8; /* ignore TLB cache disable */
1948 data &= ~(u64)0x40000; /* ignore Mc status write enable */
1949 if (data != 0) {
1950 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1951 data);
1952 return 1;
1953 }
1954 break;
1955 case MSR_FAM10H_MMIO_CONF_BASE:
1956 if (data != 0) {
1957 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1958 "0x%llx\n", data);
1959 return 1;
1960 }
1961 break;
1962 case MSR_IA32_DEBUGCTLMSR:
1963 if (!data) {
1964 /* We support the non-activated case already */
1965 break;
1966 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1967 /* Values other than LBR and BTF are vendor-specific,
1968 thus reserved and should throw a #GP */
1969 return 1;
1970 }
1971 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1972 __func__, data);
1973 break;
1974 case 0x200 ... 0x2ff:
1975 return kvm_mtrr_set_msr(vcpu, msr, data);
1976 case MSR_IA32_APICBASE:
1977 return kvm_set_apic_base(vcpu, msr_info);
1978 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1979 return kvm_x2apic_msr_write(vcpu, msr, data);
1980 case MSR_IA32_TSCDEADLINE:
1981 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1982 break;
1983 case MSR_IA32_TSC_ADJUST:
1984 if (guest_cpuid_has_tsc_adjust(vcpu)) {
1985 if (!msr_info->host_initiated) {
1986 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
1987 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
1988 }
1989 vcpu->arch.ia32_tsc_adjust_msr = data;
1990 }
1991 break;
1992 case MSR_IA32_MISC_ENABLE:
1993 vcpu->arch.ia32_misc_enable_msr = data;
1994 break;
1995 case MSR_IA32_SMBASE:
1996 if (!msr_info->host_initiated)
1997 return 1;
1998 vcpu->arch.smbase = data;
1999 break;
2000 case MSR_KVM_WALL_CLOCK_NEW:
2001 case MSR_KVM_WALL_CLOCK:
2002 vcpu->kvm->arch.wall_clock = data;
2003 kvm_write_wall_clock(vcpu->kvm, data);
2004 break;
2005 case MSR_KVM_SYSTEM_TIME_NEW:
2006 case MSR_KVM_SYSTEM_TIME: {
2007 u64 gpa_offset;
2008 struct kvm_arch *ka = &vcpu->kvm->arch;
2009
2010 kvmclock_reset(vcpu);
2011
2012 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2013 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2014
2015 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2016 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2017 &vcpu->requests);
2018
2019 ka->boot_vcpu_runs_old_kvmclock = tmp;
2020
2021 ka->kvmclock_offset = -get_kernel_ns();
2022 }
2023
2024 vcpu->arch.time = data;
2025 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2026
2027 /* we verify if the enable bit is set... */
2028 if (!(data & 1))
2029 break;
2030
2031 gpa_offset = data & ~(PAGE_MASK | 1);
2032
2033 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2034 &vcpu->arch.pv_time, data & ~1ULL,
2035 sizeof(struct pvclock_vcpu_time_info)))
2036 vcpu->arch.pv_time_enabled = false;
2037 else
2038 vcpu->arch.pv_time_enabled = true;
2039
2040 break;
2041 }
2042 case MSR_KVM_ASYNC_PF_EN:
2043 if (kvm_pv_enable_async_pf(vcpu, data))
2044 return 1;
2045 break;
2046 case MSR_KVM_STEAL_TIME:
2047
2048 if (unlikely(!sched_info_on()))
2049 return 1;
2050
2051 if (data & KVM_STEAL_RESERVED_MASK)
2052 return 1;
2053
2054 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2055 data & KVM_STEAL_VALID_BITS,
2056 sizeof(struct kvm_steal_time)))
2057 return 1;
2058
2059 vcpu->arch.st.msr_val = data;
2060
2061 if (!(data & KVM_MSR_ENABLED))
2062 break;
2063
2064 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2065
2066 preempt_disable();
2067 accumulate_steal_time(vcpu);
2068 preempt_enable();
2069
2070 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2071
2072 break;
2073 case MSR_KVM_PV_EOI_EN:
2074 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2075 return 1;
2076 break;
2077
2078 case MSR_IA32_MCG_CTL:
2079 case MSR_IA32_MCG_STATUS:
2080 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2081 return set_msr_mce(vcpu, msr, data);
2082
2083 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2084 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2085 pr = true; /* fall through */
2086 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2087 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2088 if (kvm_pmu_is_valid_msr(vcpu, msr))
2089 return kvm_pmu_set_msr(vcpu, msr_info);
2090
2091 if (pr || data != 0)
2092 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2093 "0x%x data 0x%llx\n", msr, data);
2094 break;
2095 case MSR_K7_CLK_CTL:
2096 /*
2097 * Ignore all writes to this no longer documented MSR.
2098 * Writes are only relevant for old K7 processors,
2099 * all pre-dating SVM, but a recommended workaround from
2100 * AMD for these chips. It is possible to specify the
2101 * affected processor models on the command line, hence
2102 * the need to ignore the workaround.
2103 */
2104 break;
2105 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2106 return kvm_hv_set_msr_common(vcpu, msr, data);
2107 case MSR_IA32_BBL_CR_CTL3:
2108 /* Drop writes to this legacy MSR -- see rdmsr
2109 * counterpart for further detail.
2110 */
2111 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2112 break;
2113 case MSR_AMD64_OSVW_ID_LENGTH:
2114 if (!guest_cpuid_has_osvw(vcpu))
2115 return 1;
2116 vcpu->arch.osvw.length = data;
2117 break;
2118 case MSR_AMD64_OSVW_STATUS:
2119 if (!guest_cpuid_has_osvw(vcpu))
2120 return 1;
2121 vcpu->arch.osvw.status = data;
2122 break;
2123 default:
2124 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2125 return xen_hvm_config(vcpu, data);
2126 if (kvm_pmu_is_valid_msr(vcpu, msr))
2127 return kvm_pmu_set_msr(vcpu, msr_info);
2128 if (!ignore_msrs) {
2129 vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2130 msr, data);
2131 return 1;
2132 } else {
2133 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2134 msr, data);
2135 break;
2136 }
2137 }
2138 return 0;
2139 }
2140 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2141
2142
2143 /*
2144 * Reads an msr value (of 'msr_index') into 'pdata'.
2145 * Returns 0 on success, non-0 otherwise.
2146 * Assumes vcpu_load() was already called.
2147 */
2148 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2149 {
2150 return kvm_x86_ops->get_msr(vcpu, msr);
2151 }
2152 EXPORT_SYMBOL_GPL(kvm_get_msr);
2153
2154 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2155 {
2156 u64 data;
2157 u64 mcg_cap = vcpu->arch.mcg_cap;
2158 unsigned bank_num = mcg_cap & 0xff;
2159
2160 switch (msr) {
2161 case MSR_IA32_P5_MC_ADDR:
2162 case MSR_IA32_P5_MC_TYPE:
2163 data = 0;
2164 break;
2165 case MSR_IA32_MCG_CAP:
2166 data = vcpu->arch.mcg_cap;
2167 break;
2168 case MSR_IA32_MCG_CTL:
2169 if (!(mcg_cap & MCG_CTL_P))
2170 return 1;
2171 data = vcpu->arch.mcg_ctl;
2172 break;
2173 case MSR_IA32_MCG_STATUS:
2174 data = vcpu->arch.mcg_status;
2175 break;
2176 default:
2177 if (msr >= MSR_IA32_MC0_CTL &&
2178 msr < MSR_IA32_MCx_CTL(bank_num)) {
2179 u32 offset = msr - MSR_IA32_MC0_CTL;
2180 data = vcpu->arch.mce_banks[offset];
2181 break;
2182 }
2183 return 1;
2184 }
2185 *pdata = data;
2186 return 0;
2187 }
2188
2189 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2190 {
2191 switch (msr_info->index) {
2192 case MSR_IA32_PLATFORM_ID:
2193 case MSR_IA32_EBL_CR_POWERON:
2194 case MSR_IA32_DEBUGCTLMSR:
2195 case MSR_IA32_LASTBRANCHFROMIP:
2196 case MSR_IA32_LASTBRANCHTOIP:
2197 case MSR_IA32_LASTINTFROMIP:
2198 case MSR_IA32_LASTINTTOIP:
2199 case MSR_K8_SYSCFG:
2200 case MSR_K7_HWCR:
2201 case MSR_VM_HSAVE_PA:
2202 case MSR_K8_INT_PENDING_MSG:
2203 case MSR_AMD64_NB_CFG:
2204 case MSR_FAM10H_MMIO_CONF_BASE:
2205 case MSR_AMD64_BU_CFG2:
2206 msr_info->data = 0;
2207 break;
2208 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2209 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2210 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2211 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2212 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2213 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2214 msr_info->data = 0;
2215 break;
2216 case MSR_IA32_UCODE_REV:
2217 msr_info->data = 0x100000000ULL;
2218 break;
2219 case MSR_MTRRcap:
2220 case 0x200 ... 0x2ff:
2221 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2222 case 0xcd: /* fsb frequency */
2223 msr_info->data = 3;
2224 break;
2225 /*
2226 * MSR_EBC_FREQUENCY_ID
2227 * Conservative value valid for even the basic CPU models.
2228 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2229 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2230 * and 266MHz for model 3, or 4. Set Core Clock
2231 * Frequency to System Bus Frequency Ratio to 1 (bits
2232 * 31:24) even though these are only valid for CPU
2233 * models > 2, however guests may end up dividing or
2234 * multiplying by zero otherwise.
2235 */
2236 case MSR_EBC_FREQUENCY_ID:
2237 msr_info->data = 1 << 24;
2238 break;
2239 case MSR_IA32_APICBASE:
2240 msr_info->data = kvm_get_apic_base(vcpu);
2241 break;
2242 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2243 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2244 break;
2245 case MSR_IA32_TSCDEADLINE:
2246 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2247 break;
2248 case MSR_IA32_TSC_ADJUST:
2249 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2250 break;
2251 case MSR_IA32_MISC_ENABLE:
2252 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2253 break;
2254 case MSR_IA32_SMBASE:
2255 if (!msr_info->host_initiated)
2256 return 1;
2257 msr_info->data = vcpu->arch.smbase;
2258 break;
2259 case MSR_IA32_PERF_STATUS:
2260 /* TSC increment by tick */
2261 msr_info->data = 1000ULL;
2262 /* CPU multiplier */
2263 msr_info->data |= (((uint64_t)4ULL) << 40);
2264 break;
2265 case MSR_EFER:
2266 msr_info->data = vcpu->arch.efer;
2267 break;
2268 case MSR_KVM_WALL_CLOCK:
2269 case MSR_KVM_WALL_CLOCK_NEW:
2270 msr_info->data = vcpu->kvm->arch.wall_clock;
2271 break;
2272 case MSR_KVM_SYSTEM_TIME:
2273 case MSR_KVM_SYSTEM_TIME_NEW:
2274 msr_info->data = vcpu->arch.time;
2275 break;
2276 case MSR_KVM_ASYNC_PF_EN:
2277 msr_info->data = vcpu->arch.apf.msr_val;
2278 break;
2279 case MSR_KVM_STEAL_TIME:
2280 msr_info->data = vcpu->arch.st.msr_val;
2281 break;
2282 case MSR_KVM_PV_EOI_EN:
2283 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2284 break;
2285 case MSR_IA32_P5_MC_ADDR:
2286 case MSR_IA32_P5_MC_TYPE:
2287 case MSR_IA32_MCG_CAP:
2288 case MSR_IA32_MCG_CTL:
2289 case MSR_IA32_MCG_STATUS:
2290 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2291 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2292 case MSR_K7_CLK_CTL:
2293 /*
2294 * Provide expected ramp-up count for K7. All other
2295 * are set to zero, indicating minimum divisors for
2296 * every field.
2297 *
2298 * This prevents guest kernels on AMD host with CPU
2299 * type 6, model 8 and higher from exploding due to
2300 * the rdmsr failing.
2301 */
2302 msr_info->data = 0x20000000;
2303 break;
2304 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2305 return kvm_hv_get_msr_common(vcpu,
2306 msr_info->index, &msr_info->data);
2307 break;
2308 case MSR_IA32_BBL_CR_CTL3:
2309 /* This legacy MSR exists but isn't fully documented in current
2310 * silicon. It is however accessed by winxp in very narrow
2311 * scenarios where it sets bit #19, itself documented as
2312 * a "reserved" bit. Best effort attempt to source coherent
2313 * read data here should the balance of the register be
2314 * interpreted by the guest:
2315 *
2316 * L2 cache control register 3: 64GB range, 256KB size,
2317 * enabled, latency 0x1, configured
2318 */
2319 msr_info->data = 0xbe702111;
2320 break;
2321 case MSR_AMD64_OSVW_ID_LENGTH:
2322 if (!guest_cpuid_has_osvw(vcpu))
2323 return 1;
2324 msr_info->data = vcpu->arch.osvw.length;
2325 break;
2326 case MSR_AMD64_OSVW_STATUS:
2327 if (!guest_cpuid_has_osvw(vcpu))
2328 return 1;
2329 msr_info->data = vcpu->arch.osvw.status;
2330 break;
2331 default:
2332 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2333 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2334 if (!ignore_msrs) {
2335 vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2336 return 1;
2337 } else {
2338 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2339 msr_info->data = 0;
2340 }
2341 break;
2342 }
2343 return 0;
2344 }
2345 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2346
2347 /*
2348 * Read or write a bunch of msrs. All parameters are kernel addresses.
2349 *
2350 * @return number of msrs set successfully.
2351 */
2352 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2353 struct kvm_msr_entry *entries,
2354 int (*do_msr)(struct kvm_vcpu *vcpu,
2355 unsigned index, u64 *data))
2356 {
2357 int i, idx;
2358
2359 idx = srcu_read_lock(&vcpu->kvm->srcu);
2360 for (i = 0; i < msrs->nmsrs; ++i)
2361 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2362 break;
2363 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2364
2365 return i;
2366 }
2367
2368 /*
2369 * Read or write a bunch of msrs. Parameters are user addresses.
2370 *
2371 * @return number of msrs set successfully.
2372 */
2373 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2374 int (*do_msr)(struct kvm_vcpu *vcpu,
2375 unsigned index, u64 *data),
2376 int writeback)
2377 {
2378 struct kvm_msrs msrs;
2379 struct kvm_msr_entry *entries;
2380 int r, n;
2381 unsigned size;
2382
2383 r = -EFAULT;
2384 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2385 goto out;
2386
2387 r = -E2BIG;
2388 if (msrs.nmsrs >= MAX_IO_MSRS)
2389 goto out;
2390
2391 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2392 entries = memdup_user(user_msrs->entries, size);
2393 if (IS_ERR(entries)) {
2394 r = PTR_ERR(entries);
2395 goto out;
2396 }
2397
2398 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2399 if (r < 0)
2400 goto out_free;
2401
2402 r = -EFAULT;
2403 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2404 goto out_free;
2405
2406 r = n;
2407
2408 out_free:
2409 kfree(entries);
2410 out:
2411 return r;
2412 }
2413
2414 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2415 {
2416 int r;
2417
2418 switch (ext) {
2419 case KVM_CAP_IRQCHIP:
2420 case KVM_CAP_HLT:
2421 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2422 case KVM_CAP_SET_TSS_ADDR:
2423 case KVM_CAP_EXT_CPUID:
2424 case KVM_CAP_EXT_EMUL_CPUID:
2425 case KVM_CAP_CLOCKSOURCE:
2426 case KVM_CAP_PIT:
2427 case KVM_CAP_NOP_IO_DELAY:
2428 case KVM_CAP_MP_STATE:
2429 case KVM_CAP_SYNC_MMU:
2430 case KVM_CAP_USER_NMI:
2431 case KVM_CAP_REINJECT_CONTROL:
2432 case KVM_CAP_IRQ_INJECT_STATUS:
2433 case KVM_CAP_IOEVENTFD:
2434 case KVM_CAP_IOEVENTFD_NO_LENGTH:
2435 case KVM_CAP_PIT2:
2436 case KVM_CAP_PIT_STATE2:
2437 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2438 case KVM_CAP_XEN_HVM:
2439 case KVM_CAP_ADJUST_CLOCK:
2440 case KVM_CAP_VCPU_EVENTS:
2441 case KVM_CAP_HYPERV:
2442 case KVM_CAP_HYPERV_VAPIC:
2443 case KVM_CAP_HYPERV_SPIN:
2444 case KVM_CAP_PCI_SEGMENT:
2445 case KVM_CAP_DEBUGREGS:
2446 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2447 case KVM_CAP_XSAVE:
2448 case KVM_CAP_ASYNC_PF:
2449 case KVM_CAP_GET_TSC_KHZ:
2450 case KVM_CAP_KVMCLOCK_CTRL:
2451 case KVM_CAP_READONLY_MEM:
2452 case KVM_CAP_HYPERV_TIME:
2453 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2454 case KVM_CAP_TSC_DEADLINE_TIMER:
2455 case KVM_CAP_ENABLE_CAP_VM:
2456 case KVM_CAP_DISABLE_QUIRKS:
2457 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2458 case KVM_CAP_ASSIGN_DEV_IRQ:
2459 case KVM_CAP_PCI_2_3:
2460 #endif
2461 r = 1;
2462 break;
2463 case KVM_CAP_X86_SMM:
2464 /* SMBASE is usually relocated above 1M on modern chipsets,
2465 * and SMM handlers might indeed rely on 4G segment limits,
2466 * so do not report SMM to be available if real mode is
2467 * emulated via vm86 mode. Still, do not go to great lengths
2468 * to avoid userspace's usage of the feature, because it is a
2469 * fringe case that is not enabled except via specific settings
2470 * of the module parameters.
2471 */
2472 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2473 break;
2474 case KVM_CAP_COALESCED_MMIO:
2475 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2476 break;
2477 case KVM_CAP_VAPIC:
2478 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2479 break;
2480 case KVM_CAP_NR_VCPUS:
2481 r = KVM_SOFT_MAX_VCPUS;
2482 break;
2483 case KVM_CAP_MAX_VCPUS:
2484 r = KVM_MAX_VCPUS;
2485 break;
2486 case KVM_CAP_NR_MEMSLOTS:
2487 r = KVM_USER_MEM_SLOTS;
2488 break;
2489 case KVM_CAP_PV_MMU: /* obsolete */
2490 r = 0;
2491 break;
2492 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2493 case KVM_CAP_IOMMU:
2494 r = iommu_present(&pci_bus_type);
2495 break;
2496 #endif
2497 case KVM_CAP_MCE:
2498 r = KVM_MAX_MCE_BANKS;
2499 break;
2500 case KVM_CAP_XCRS:
2501 r = cpu_has_xsave;
2502 break;
2503 case KVM_CAP_TSC_CONTROL:
2504 r = kvm_has_tsc_control;
2505 break;
2506 default:
2507 r = 0;
2508 break;
2509 }
2510 return r;
2511
2512 }
2513
2514 long kvm_arch_dev_ioctl(struct file *filp,
2515 unsigned int ioctl, unsigned long arg)
2516 {
2517 void __user *argp = (void __user *)arg;
2518 long r;
2519
2520 switch (ioctl) {
2521 case KVM_GET_MSR_INDEX_LIST: {
2522 struct kvm_msr_list __user *user_msr_list = argp;
2523 struct kvm_msr_list msr_list;
2524 unsigned n;
2525
2526 r = -EFAULT;
2527 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2528 goto out;
2529 n = msr_list.nmsrs;
2530 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2531 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2532 goto out;
2533 r = -E2BIG;
2534 if (n < msr_list.nmsrs)
2535 goto out;
2536 r = -EFAULT;
2537 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2538 num_msrs_to_save * sizeof(u32)))
2539 goto out;
2540 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2541 &emulated_msrs,
2542 num_emulated_msrs * sizeof(u32)))
2543 goto out;
2544 r = 0;
2545 break;
2546 }
2547 case KVM_GET_SUPPORTED_CPUID:
2548 case KVM_GET_EMULATED_CPUID: {
2549 struct kvm_cpuid2 __user *cpuid_arg = argp;
2550 struct kvm_cpuid2 cpuid;
2551
2552 r = -EFAULT;
2553 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2554 goto out;
2555
2556 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2557 ioctl);
2558 if (r)
2559 goto out;
2560
2561 r = -EFAULT;
2562 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2563 goto out;
2564 r = 0;
2565 break;
2566 }
2567 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2568 u64 mce_cap;
2569
2570 mce_cap = KVM_MCE_CAP_SUPPORTED;
2571 r = -EFAULT;
2572 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2573 goto out;
2574 r = 0;
2575 break;
2576 }
2577 default:
2578 r = -EINVAL;
2579 }
2580 out:
2581 return r;
2582 }
2583
2584 static void wbinvd_ipi(void *garbage)
2585 {
2586 wbinvd();
2587 }
2588
2589 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2590 {
2591 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2592 }
2593
2594 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2595 {
2596 /* Address WBINVD may be executed by guest */
2597 if (need_emulate_wbinvd(vcpu)) {
2598 if (kvm_x86_ops->has_wbinvd_exit())
2599 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2600 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2601 smp_call_function_single(vcpu->cpu,
2602 wbinvd_ipi, NULL, 1);
2603 }
2604
2605 kvm_x86_ops->vcpu_load(vcpu, cpu);
2606
2607 /* Apply any externally detected TSC adjustments (due to suspend) */
2608 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2609 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2610 vcpu->arch.tsc_offset_adjustment = 0;
2611 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2612 }
2613
2614 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2615 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2616 native_read_tsc() - vcpu->arch.last_host_tsc;
2617 if (tsc_delta < 0)
2618 mark_tsc_unstable("KVM discovered backwards TSC");
2619 if (check_tsc_unstable()) {
2620 u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2621 vcpu->arch.last_guest_tsc);
2622 kvm_x86_ops->write_tsc_offset(vcpu, offset);
2623 vcpu->arch.tsc_catchup = 1;
2624 }
2625 /*
2626 * On a host with synchronized TSC, there is no need to update
2627 * kvmclock on vcpu->cpu migration
2628 */
2629 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2630 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2631 if (vcpu->cpu != cpu)
2632 kvm_migrate_timers(vcpu);
2633 vcpu->cpu = cpu;
2634 }
2635
2636 accumulate_steal_time(vcpu);
2637 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2638 }
2639
2640 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2641 {
2642 kvm_x86_ops->vcpu_put(vcpu);
2643 kvm_put_guest_fpu(vcpu);
2644 vcpu->arch.last_host_tsc = native_read_tsc();
2645 }
2646
2647 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2648 struct kvm_lapic_state *s)
2649 {
2650 kvm_x86_ops->sync_pir_to_irr(vcpu);
2651 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2652
2653 return 0;
2654 }
2655
2656 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2657 struct kvm_lapic_state *s)
2658 {
2659 kvm_apic_post_state_restore(vcpu, s);
2660 update_cr8_intercept(vcpu);
2661
2662 return 0;
2663 }
2664
2665 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2666 struct kvm_interrupt *irq)
2667 {
2668 if (irq->irq >= KVM_NR_INTERRUPTS)
2669 return -EINVAL;
2670 if (irqchip_in_kernel(vcpu->kvm))
2671 return -ENXIO;
2672
2673 kvm_queue_interrupt(vcpu, irq->irq, false);
2674 kvm_make_request(KVM_REQ_EVENT, vcpu);
2675
2676 return 0;
2677 }
2678
2679 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2680 {
2681 kvm_inject_nmi(vcpu);
2682
2683 return 0;
2684 }
2685
2686 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2687 {
2688 kvm_make_request(KVM_REQ_SMI, vcpu);
2689
2690 return 0;
2691 }
2692
2693 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2694 struct kvm_tpr_access_ctl *tac)
2695 {
2696 if (tac->flags)
2697 return -EINVAL;
2698 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2699 return 0;
2700 }
2701
2702 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2703 u64 mcg_cap)
2704 {
2705 int r;
2706 unsigned bank_num = mcg_cap & 0xff, bank;
2707
2708 r = -EINVAL;
2709 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2710 goto out;
2711 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2712 goto out;
2713 r = 0;
2714 vcpu->arch.mcg_cap = mcg_cap;
2715 /* Init IA32_MCG_CTL to all 1s */
2716 if (mcg_cap & MCG_CTL_P)
2717 vcpu->arch.mcg_ctl = ~(u64)0;
2718 /* Init IA32_MCi_CTL to all 1s */
2719 for (bank = 0; bank < bank_num; bank++)
2720 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2721 out:
2722 return r;
2723 }
2724
2725 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2726 struct kvm_x86_mce *mce)
2727 {
2728 u64 mcg_cap = vcpu->arch.mcg_cap;
2729 unsigned bank_num = mcg_cap & 0xff;
2730 u64 *banks = vcpu->arch.mce_banks;
2731
2732 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2733 return -EINVAL;
2734 /*
2735 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2736 * reporting is disabled
2737 */
2738 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2739 vcpu->arch.mcg_ctl != ~(u64)0)
2740 return 0;
2741 banks += 4 * mce->bank;
2742 /*
2743 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2744 * reporting is disabled for the bank
2745 */
2746 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2747 return 0;
2748 if (mce->status & MCI_STATUS_UC) {
2749 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2750 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2751 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2752 return 0;
2753 }
2754 if (banks[1] & MCI_STATUS_VAL)
2755 mce->status |= MCI_STATUS_OVER;
2756 banks[2] = mce->addr;
2757 banks[3] = mce->misc;
2758 vcpu->arch.mcg_status = mce->mcg_status;
2759 banks[1] = mce->status;
2760 kvm_queue_exception(vcpu, MC_VECTOR);
2761 } else if (!(banks[1] & MCI_STATUS_VAL)
2762 || !(banks[1] & MCI_STATUS_UC)) {
2763 if (banks[1] & MCI_STATUS_VAL)
2764 mce->status |= MCI_STATUS_OVER;
2765 banks[2] = mce->addr;
2766 banks[3] = mce->misc;
2767 banks[1] = mce->status;
2768 } else
2769 banks[1] |= MCI_STATUS_OVER;
2770 return 0;
2771 }
2772
2773 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2774 struct kvm_vcpu_events *events)
2775 {
2776 process_nmi(vcpu);
2777 events->exception.injected =
2778 vcpu->arch.exception.pending &&
2779 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2780 events->exception.nr = vcpu->arch.exception.nr;
2781 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2782 events->exception.pad = 0;
2783 events->exception.error_code = vcpu->arch.exception.error_code;
2784
2785 events->interrupt.injected =
2786 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2787 events->interrupt.nr = vcpu->arch.interrupt.nr;
2788 events->interrupt.soft = 0;
2789 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
2790
2791 events->nmi.injected = vcpu->arch.nmi_injected;
2792 events->nmi.pending = vcpu->arch.nmi_pending != 0;
2793 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2794 events->nmi.pad = 0;
2795
2796 events->sipi_vector = 0; /* never valid when reporting to user space */
2797
2798 events->smi.smm = is_smm(vcpu);
2799 events->smi.pending = vcpu->arch.smi_pending;
2800 events->smi.smm_inside_nmi =
2801 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
2802 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
2803
2804 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2805 | KVM_VCPUEVENT_VALID_SHADOW
2806 | KVM_VCPUEVENT_VALID_SMM);
2807 memset(&events->reserved, 0, sizeof(events->reserved));
2808 }
2809
2810 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2811 struct kvm_vcpu_events *events)
2812 {
2813 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2814 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2815 | KVM_VCPUEVENT_VALID_SHADOW
2816 | KVM_VCPUEVENT_VALID_SMM))
2817 return -EINVAL;
2818
2819 process_nmi(vcpu);
2820 vcpu->arch.exception.pending = events->exception.injected;
2821 vcpu->arch.exception.nr = events->exception.nr;
2822 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2823 vcpu->arch.exception.error_code = events->exception.error_code;
2824
2825 vcpu->arch.interrupt.pending = events->interrupt.injected;
2826 vcpu->arch.interrupt.nr = events->interrupt.nr;
2827 vcpu->arch.interrupt.soft = events->interrupt.soft;
2828 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2829 kvm_x86_ops->set_interrupt_shadow(vcpu,
2830 events->interrupt.shadow);
2831
2832 vcpu->arch.nmi_injected = events->nmi.injected;
2833 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2834 vcpu->arch.nmi_pending = events->nmi.pending;
2835 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2836
2837 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2838 kvm_vcpu_has_lapic(vcpu))
2839 vcpu->arch.apic->sipi_vector = events->sipi_vector;
2840
2841 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
2842 if (events->smi.smm)
2843 vcpu->arch.hflags |= HF_SMM_MASK;
2844 else
2845 vcpu->arch.hflags &= ~HF_SMM_MASK;
2846 vcpu->arch.smi_pending = events->smi.pending;
2847 if (events->smi.smm_inside_nmi)
2848 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
2849 else
2850 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
2851 if (kvm_vcpu_has_lapic(vcpu)) {
2852 if (events->smi.latched_init)
2853 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
2854 else
2855 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
2856 }
2857 }
2858
2859 kvm_make_request(KVM_REQ_EVENT, vcpu);
2860
2861 return 0;
2862 }
2863
2864 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2865 struct kvm_debugregs *dbgregs)
2866 {
2867 unsigned long val;
2868
2869 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2870 kvm_get_dr(vcpu, 6, &val);
2871 dbgregs->dr6 = val;
2872 dbgregs->dr7 = vcpu->arch.dr7;
2873 dbgregs->flags = 0;
2874 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2875 }
2876
2877 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2878 struct kvm_debugregs *dbgregs)
2879 {
2880 if (dbgregs->flags)
2881 return -EINVAL;
2882
2883 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2884 kvm_update_dr0123(vcpu);
2885 vcpu->arch.dr6 = dbgregs->dr6;
2886 kvm_update_dr6(vcpu);
2887 vcpu->arch.dr7 = dbgregs->dr7;
2888 kvm_update_dr7(vcpu);
2889
2890 return 0;
2891 }
2892
2893 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
2894
2895 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
2896 {
2897 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
2898 u64 xstate_bv = xsave->header.xfeatures;
2899 u64 valid;
2900
2901 /*
2902 * Copy legacy XSAVE area, to avoid complications with CPUID
2903 * leaves 0 and 1 in the loop below.
2904 */
2905 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
2906
2907 /* Set XSTATE_BV */
2908 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
2909
2910 /*
2911 * Copy each region from the possibly compacted offset to the
2912 * non-compacted offset.
2913 */
2914 valid = xstate_bv & ~XSTATE_FPSSE;
2915 while (valid) {
2916 u64 feature = valid & -valid;
2917 int index = fls64(feature) - 1;
2918 void *src = get_xsave_addr(xsave, feature);
2919
2920 if (src) {
2921 u32 size, offset, ecx, edx;
2922 cpuid_count(XSTATE_CPUID, index,
2923 &size, &offset, &ecx, &edx);
2924 memcpy(dest + offset, src, size);
2925 }
2926
2927 valid -= feature;
2928 }
2929 }
2930
2931 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
2932 {
2933 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
2934 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
2935 u64 valid;
2936
2937 /*
2938 * Copy legacy XSAVE area, to avoid complications with CPUID
2939 * leaves 0 and 1 in the loop below.
2940 */
2941 memcpy(xsave, src, XSAVE_HDR_OFFSET);
2942
2943 /* Set XSTATE_BV and possibly XCOMP_BV. */
2944 xsave->header.xfeatures = xstate_bv;
2945 if (cpu_has_xsaves)
2946 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
2947
2948 /*
2949 * Copy each region from the non-compacted offset to the
2950 * possibly compacted offset.
2951 */
2952 valid = xstate_bv & ~XSTATE_FPSSE;
2953 while (valid) {
2954 u64 feature = valid & -valid;
2955 int index = fls64(feature) - 1;
2956 void *dest = get_xsave_addr(xsave, feature);
2957
2958 if (dest) {
2959 u32 size, offset, ecx, edx;
2960 cpuid_count(XSTATE_CPUID, index,
2961 &size, &offset, &ecx, &edx);
2962 memcpy(dest, src + offset, size);
2963 }
2964
2965 valid -= feature;
2966 }
2967 }
2968
2969 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2970 struct kvm_xsave *guest_xsave)
2971 {
2972 if (cpu_has_xsave) {
2973 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
2974 fill_xsave((u8 *) guest_xsave->region, vcpu);
2975 } else {
2976 memcpy(guest_xsave->region,
2977 &vcpu->arch.guest_fpu.state.fxsave,
2978 sizeof(struct fxregs_state));
2979 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2980 XSTATE_FPSSE;
2981 }
2982 }
2983
2984 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2985 struct kvm_xsave *guest_xsave)
2986 {
2987 u64 xstate_bv =
2988 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2989
2990 if (cpu_has_xsave) {
2991 /*
2992 * Here we allow setting states that are not present in
2993 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
2994 * with old userspace.
2995 */
2996 if (xstate_bv & ~kvm_supported_xcr0())
2997 return -EINVAL;
2998 load_xsave(vcpu, (u8 *)guest_xsave->region);
2999 } else {
3000 if (xstate_bv & ~XSTATE_FPSSE)
3001 return -EINVAL;
3002 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3003 guest_xsave->region, sizeof(struct fxregs_state));
3004 }
3005 return 0;
3006 }
3007
3008 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3009 struct kvm_xcrs *guest_xcrs)
3010 {
3011 if (!cpu_has_xsave) {
3012 guest_xcrs->nr_xcrs = 0;
3013 return;
3014 }
3015
3016 guest_xcrs->nr_xcrs = 1;
3017 guest_xcrs->flags = 0;
3018 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3019 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3020 }
3021
3022 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3023 struct kvm_xcrs *guest_xcrs)
3024 {
3025 int i, r = 0;
3026
3027 if (!cpu_has_xsave)
3028 return -EINVAL;
3029
3030 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3031 return -EINVAL;
3032
3033 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3034 /* Only support XCR0 currently */
3035 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3036 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3037 guest_xcrs->xcrs[i].value);
3038 break;
3039 }
3040 if (r)
3041 r = -EINVAL;
3042 return r;
3043 }
3044
3045 /*
3046 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3047 * stopped by the hypervisor. This function will be called from the host only.
3048 * EINVAL is returned when the host attempts to set the flag for a guest that
3049 * does not support pv clocks.
3050 */
3051 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3052 {
3053 if (!vcpu->arch.pv_time_enabled)
3054 return -EINVAL;
3055 vcpu->arch.pvclock_set_guest_stopped_request = true;
3056 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3057 return 0;
3058 }
3059
3060 long kvm_arch_vcpu_ioctl(struct file *filp,
3061 unsigned int ioctl, unsigned long arg)
3062 {
3063 struct kvm_vcpu *vcpu = filp->private_data;
3064 void __user *argp = (void __user *)arg;
3065 int r;
3066 union {
3067 struct kvm_lapic_state *lapic;
3068 struct kvm_xsave *xsave;
3069 struct kvm_xcrs *xcrs;
3070 void *buffer;
3071 } u;
3072
3073 u.buffer = NULL;
3074 switch (ioctl) {
3075 case KVM_GET_LAPIC: {
3076 r = -EINVAL;
3077 if (!vcpu->arch.apic)
3078 goto out;
3079 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3080
3081 r = -ENOMEM;
3082 if (!u.lapic)
3083 goto out;
3084 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3085 if (r)
3086 goto out;
3087 r = -EFAULT;
3088 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3089 goto out;
3090 r = 0;
3091 break;
3092 }
3093 case KVM_SET_LAPIC: {
3094 r = -EINVAL;
3095 if (!vcpu->arch.apic)
3096 goto out;
3097 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3098 if (IS_ERR(u.lapic))
3099 return PTR_ERR(u.lapic);
3100
3101 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3102 break;
3103 }
3104 case KVM_INTERRUPT: {
3105 struct kvm_interrupt irq;
3106
3107 r = -EFAULT;
3108 if (copy_from_user(&irq, argp, sizeof irq))
3109 goto out;
3110 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3111 break;
3112 }
3113 case KVM_NMI: {
3114 r = kvm_vcpu_ioctl_nmi(vcpu);
3115 break;
3116 }
3117 case KVM_SMI: {
3118 r = kvm_vcpu_ioctl_smi(vcpu);
3119 break;
3120 }
3121 case KVM_SET_CPUID: {
3122 struct kvm_cpuid __user *cpuid_arg = argp;
3123 struct kvm_cpuid cpuid;
3124
3125 r = -EFAULT;
3126 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3127 goto out;
3128 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3129 break;
3130 }
3131 case KVM_SET_CPUID2: {
3132 struct kvm_cpuid2 __user *cpuid_arg = argp;
3133 struct kvm_cpuid2 cpuid;
3134
3135 r = -EFAULT;
3136 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3137 goto out;
3138 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3139 cpuid_arg->entries);
3140 break;
3141 }
3142 case KVM_GET_CPUID2: {
3143 struct kvm_cpuid2 __user *cpuid_arg = argp;
3144 struct kvm_cpuid2 cpuid;
3145
3146 r = -EFAULT;
3147 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3148 goto out;
3149 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3150 cpuid_arg->entries);
3151 if (r)
3152 goto out;
3153 r = -EFAULT;
3154 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3155 goto out;
3156 r = 0;
3157 break;
3158 }
3159 case KVM_GET_MSRS:
3160 r = msr_io(vcpu, argp, do_get_msr, 1);
3161 break;
3162 case KVM_SET_MSRS:
3163 r = msr_io(vcpu, argp, do_set_msr, 0);
3164 break;
3165 case KVM_TPR_ACCESS_REPORTING: {
3166 struct kvm_tpr_access_ctl tac;
3167
3168 r = -EFAULT;
3169 if (copy_from_user(&tac, argp, sizeof tac))
3170 goto out;
3171 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3172 if (r)
3173 goto out;
3174 r = -EFAULT;
3175 if (copy_to_user(argp, &tac, sizeof tac))
3176 goto out;
3177 r = 0;
3178 break;
3179 };
3180 case KVM_SET_VAPIC_ADDR: {
3181 struct kvm_vapic_addr va;
3182
3183 r = -EINVAL;
3184 if (!irqchip_in_kernel(vcpu->kvm))
3185 goto out;
3186 r = -EFAULT;
3187 if (copy_from_user(&va, argp, sizeof va))
3188 goto out;
3189 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3190 break;
3191 }
3192 case KVM_X86_SETUP_MCE: {
3193 u64 mcg_cap;
3194
3195 r = -EFAULT;
3196 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3197 goto out;
3198 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3199 break;
3200 }
3201 case KVM_X86_SET_MCE: {
3202 struct kvm_x86_mce mce;
3203
3204 r = -EFAULT;
3205 if (copy_from_user(&mce, argp, sizeof mce))
3206 goto out;
3207 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3208 break;
3209 }
3210 case KVM_GET_VCPU_EVENTS: {
3211 struct kvm_vcpu_events events;
3212
3213 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3214
3215 r = -EFAULT;
3216 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3217 break;
3218 r = 0;
3219 break;
3220 }
3221 case KVM_SET_VCPU_EVENTS: {
3222 struct kvm_vcpu_events events;
3223
3224 r = -EFAULT;
3225 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3226 break;
3227
3228 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3229 break;
3230 }
3231 case KVM_GET_DEBUGREGS: {
3232 struct kvm_debugregs dbgregs;
3233
3234 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3235
3236 r = -EFAULT;
3237 if (copy_to_user(argp, &dbgregs,
3238 sizeof(struct kvm_debugregs)))
3239 break;
3240 r = 0;
3241 break;
3242 }
3243 case KVM_SET_DEBUGREGS: {
3244 struct kvm_debugregs dbgregs;
3245
3246 r = -EFAULT;
3247 if (copy_from_user(&dbgregs, argp,
3248 sizeof(struct kvm_debugregs)))
3249 break;
3250
3251 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3252 break;
3253 }
3254 case KVM_GET_XSAVE: {
3255 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3256 r = -ENOMEM;
3257 if (!u.xsave)
3258 break;
3259
3260 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3261
3262 r = -EFAULT;
3263 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3264 break;
3265 r = 0;
3266 break;
3267 }
3268 case KVM_SET_XSAVE: {
3269 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3270 if (IS_ERR(u.xsave))
3271 return PTR_ERR(u.xsave);
3272
3273 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3274 break;
3275 }
3276 case KVM_GET_XCRS: {
3277 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3278 r = -ENOMEM;
3279 if (!u.xcrs)
3280 break;
3281
3282 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3283
3284 r = -EFAULT;
3285 if (copy_to_user(argp, u.xcrs,
3286 sizeof(struct kvm_xcrs)))
3287 break;
3288 r = 0;
3289 break;
3290 }
3291 case KVM_SET_XCRS: {
3292 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3293 if (IS_ERR(u.xcrs))
3294 return PTR_ERR(u.xcrs);
3295
3296 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3297 break;
3298 }
3299 case KVM_SET_TSC_KHZ: {
3300 u32 user_tsc_khz;
3301
3302 r = -EINVAL;
3303 user_tsc_khz = (u32)arg;
3304
3305 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3306 goto out;
3307
3308 if (user_tsc_khz == 0)
3309 user_tsc_khz = tsc_khz;
3310
3311 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3312
3313 r = 0;
3314 goto out;
3315 }
3316 case KVM_GET_TSC_KHZ: {
3317 r = vcpu->arch.virtual_tsc_khz;
3318 goto out;
3319 }
3320 case KVM_KVMCLOCK_CTRL: {
3321 r = kvm_set_guest_paused(vcpu);
3322 goto out;
3323 }
3324 default:
3325 r = -EINVAL;
3326 }
3327 out:
3328 kfree(u.buffer);
3329 return r;
3330 }
3331
3332 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3333 {
3334 return VM_FAULT_SIGBUS;
3335 }
3336
3337 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3338 {
3339 int ret;
3340
3341 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3342 return -EINVAL;
3343 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3344 return ret;
3345 }
3346
3347 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3348 u64 ident_addr)
3349 {
3350 kvm->arch.ept_identity_map_addr = ident_addr;
3351 return 0;
3352 }
3353
3354 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3355 u32 kvm_nr_mmu_pages)
3356 {
3357 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3358 return -EINVAL;
3359
3360 mutex_lock(&kvm->slots_lock);
3361
3362 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3363 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3364
3365 mutex_unlock(&kvm->slots_lock);
3366 return 0;
3367 }
3368
3369 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3370 {
3371 return kvm->arch.n_max_mmu_pages;
3372 }
3373
3374 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3375 {
3376 int r;
3377
3378 r = 0;
3379 switch (chip->chip_id) {
3380 case KVM_IRQCHIP_PIC_MASTER:
3381 memcpy(&chip->chip.pic,
3382 &pic_irqchip(kvm)->pics[0],
3383 sizeof(struct kvm_pic_state));
3384 break;
3385 case KVM_IRQCHIP_PIC_SLAVE:
3386 memcpy(&chip->chip.pic,
3387 &pic_irqchip(kvm)->pics[1],
3388 sizeof(struct kvm_pic_state));
3389 break;
3390 case KVM_IRQCHIP_IOAPIC:
3391 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3392 break;
3393 default:
3394 r = -EINVAL;
3395 break;
3396 }
3397 return r;
3398 }
3399
3400 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3401 {
3402 int r;
3403
3404 r = 0;
3405 switch (chip->chip_id) {
3406 case KVM_IRQCHIP_PIC_MASTER:
3407 spin_lock(&pic_irqchip(kvm)->lock);
3408 memcpy(&pic_irqchip(kvm)->pics[0],
3409 &chip->chip.pic,
3410 sizeof(struct kvm_pic_state));
3411 spin_unlock(&pic_irqchip(kvm)->lock);
3412 break;
3413 case KVM_IRQCHIP_PIC_SLAVE:
3414 spin_lock(&pic_irqchip(kvm)->lock);
3415 memcpy(&pic_irqchip(kvm)->pics[1],
3416 &chip->chip.pic,
3417 sizeof(struct kvm_pic_state));
3418 spin_unlock(&pic_irqchip(kvm)->lock);
3419 break;
3420 case KVM_IRQCHIP_IOAPIC:
3421 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3422 break;
3423 default:
3424 r = -EINVAL;
3425 break;
3426 }
3427 kvm_pic_update_irq(pic_irqchip(kvm));
3428 return r;
3429 }
3430
3431 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3432 {
3433 int r = 0;
3434
3435 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3436 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3437 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3438 return r;
3439 }
3440
3441 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3442 {
3443 int r = 0;
3444
3445 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3446 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3447 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3448 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3449 return r;
3450 }
3451
3452 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3453 {
3454 int r = 0;
3455
3456 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3457 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3458 sizeof(ps->channels));
3459 ps->flags = kvm->arch.vpit->pit_state.flags;
3460 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3461 memset(&ps->reserved, 0, sizeof(ps->reserved));
3462 return r;
3463 }
3464
3465 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3466 {
3467 int r = 0, start = 0;
3468 u32 prev_legacy, cur_legacy;
3469 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3470 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3471 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3472 if (!prev_legacy && cur_legacy)
3473 start = 1;
3474 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3475 sizeof(kvm->arch.vpit->pit_state.channels));
3476 kvm->arch.vpit->pit_state.flags = ps->flags;
3477 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3478 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3479 return r;
3480 }
3481
3482 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3483 struct kvm_reinject_control *control)
3484 {
3485 if (!kvm->arch.vpit)
3486 return -ENXIO;
3487 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3488 kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3489 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3490 return 0;
3491 }
3492
3493 /**
3494 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3495 * @kvm: kvm instance
3496 * @log: slot id and address to which we copy the log
3497 *
3498 * Steps 1-4 below provide general overview of dirty page logging. See
3499 * kvm_get_dirty_log_protect() function description for additional details.
3500 *
3501 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3502 * always flush the TLB (step 4) even if previous step failed and the dirty
3503 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3504 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3505 * writes will be marked dirty for next log read.
3506 *
3507 * 1. Take a snapshot of the bit and clear it if needed.
3508 * 2. Write protect the corresponding page.
3509 * 3. Copy the snapshot to the userspace.
3510 * 4. Flush TLB's if needed.
3511 */
3512 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3513 {
3514 bool is_dirty = false;
3515 int r;
3516
3517 mutex_lock(&kvm->slots_lock);
3518
3519 /*
3520 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3521 */
3522 if (kvm_x86_ops->flush_log_dirty)
3523 kvm_x86_ops->flush_log_dirty(kvm);
3524
3525 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3526
3527 /*
3528 * All the TLBs can be flushed out of mmu lock, see the comments in
3529 * kvm_mmu_slot_remove_write_access().
3530 */
3531 lockdep_assert_held(&kvm->slots_lock);
3532 if (is_dirty)
3533 kvm_flush_remote_tlbs(kvm);
3534
3535 mutex_unlock(&kvm->slots_lock);
3536 return r;
3537 }
3538
3539 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3540 bool line_status)
3541 {
3542 if (!irqchip_in_kernel(kvm))
3543 return -ENXIO;
3544
3545 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3546 irq_event->irq, irq_event->level,
3547 line_status);
3548 return 0;
3549 }
3550
3551 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3552 struct kvm_enable_cap *cap)
3553 {
3554 int r;
3555
3556 if (cap->flags)
3557 return -EINVAL;
3558
3559 switch (cap->cap) {
3560 case KVM_CAP_DISABLE_QUIRKS:
3561 kvm->arch.disabled_quirks = cap->args[0];
3562 r = 0;
3563 break;
3564 default:
3565 r = -EINVAL;
3566 break;
3567 }
3568 return r;
3569 }
3570
3571 long kvm_arch_vm_ioctl(struct file *filp,
3572 unsigned int ioctl, unsigned long arg)
3573 {
3574 struct kvm *kvm = filp->private_data;
3575 void __user *argp = (void __user *)arg;
3576 int r = -ENOTTY;
3577 /*
3578 * This union makes it completely explicit to gcc-3.x
3579 * that these two variables' stack usage should be
3580 * combined, not added together.
3581 */
3582 union {
3583 struct kvm_pit_state ps;
3584 struct kvm_pit_state2 ps2;
3585 struct kvm_pit_config pit_config;
3586 } u;
3587
3588 switch (ioctl) {
3589 case KVM_SET_TSS_ADDR:
3590 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3591 break;
3592 case KVM_SET_IDENTITY_MAP_ADDR: {
3593 u64 ident_addr;
3594
3595 r = -EFAULT;
3596 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3597 goto out;
3598 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3599 break;
3600 }
3601 case KVM_SET_NR_MMU_PAGES:
3602 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3603 break;
3604 case KVM_GET_NR_MMU_PAGES:
3605 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3606 break;
3607 case KVM_CREATE_IRQCHIP: {
3608 struct kvm_pic *vpic;
3609
3610 mutex_lock(&kvm->lock);
3611 r = -EEXIST;
3612 if (kvm->arch.vpic)
3613 goto create_irqchip_unlock;
3614 r = -EINVAL;
3615 if (atomic_read(&kvm->online_vcpus))
3616 goto create_irqchip_unlock;
3617 r = -ENOMEM;
3618 vpic = kvm_create_pic(kvm);
3619 if (vpic) {
3620 r = kvm_ioapic_init(kvm);
3621 if (r) {
3622 mutex_lock(&kvm->slots_lock);
3623 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3624 &vpic->dev_master);
3625 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3626 &vpic->dev_slave);
3627 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3628 &vpic->dev_eclr);
3629 mutex_unlock(&kvm->slots_lock);
3630 kfree(vpic);
3631 goto create_irqchip_unlock;
3632 }
3633 } else
3634 goto create_irqchip_unlock;
3635 smp_wmb();
3636 kvm->arch.vpic = vpic;
3637 smp_wmb();
3638 r = kvm_setup_default_irq_routing(kvm);
3639 if (r) {
3640 mutex_lock(&kvm->slots_lock);
3641 mutex_lock(&kvm->irq_lock);
3642 kvm_ioapic_destroy(kvm);
3643 kvm_destroy_pic(kvm);
3644 mutex_unlock(&kvm->irq_lock);
3645 mutex_unlock(&kvm->slots_lock);
3646 }
3647 create_irqchip_unlock:
3648 mutex_unlock(&kvm->lock);
3649 break;
3650 }
3651 case KVM_CREATE_PIT:
3652 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3653 goto create_pit;
3654 case KVM_CREATE_PIT2:
3655 r = -EFAULT;
3656 if (copy_from_user(&u.pit_config, argp,
3657 sizeof(struct kvm_pit_config)))
3658 goto out;
3659 create_pit:
3660 mutex_lock(&kvm->slots_lock);
3661 r = -EEXIST;
3662 if (kvm->arch.vpit)
3663 goto create_pit_unlock;
3664 r = -ENOMEM;
3665 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3666 if (kvm->arch.vpit)
3667 r = 0;
3668 create_pit_unlock:
3669 mutex_unlock(&kvm->slots_lock);
3670 break;
3671 case KVM_GET_IRQCHIP: {
3672 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3673 struct kvm_irqchip *chip;
3674
3675 chip = memdup_user(argp, sizeof(*chip));
3676 if (IS_ERR(chip)) {
3677 r = PTR_ERR(chip);
3678 goto out;
3679 }
3680
3681 r = -ENXIO;
3682 if (!irqchip_in_kernel(kvm))
3683 goto get_irqchip_out;
3684 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3685 if (r)
3686 goto get_irqchip_out;
3687 r = -EFAULT;
3688 if (copy_to_user(argp, chip, sizeof *chip))
3689 goto get_irqchip_out;
3690 r = 0;
3691 get_irqchip_out:
3692 kfree(chip);
3693 break;
3694 }
3695 case KVM_SET_IRQCHIP: {
3696 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3697 struct kvm_irqchip *chip;
3698
3699 chip = memdup_user(argp, sizeof(*chip));
3700 if (IS_ERR(chip)) {
3701 r = PTR_ERR(chip);
3702 goto out;
3703 }
3704
3705 r = -ENXIO;
3706 if (!irqchip_in_kernel(kvm))
3707 goto set_irqchip_out;
3708 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3709 if (r)
3710 goto set_irqchip_out;
3711 r = 0;
3712 set_irqchip_out:
3713 kfree(chip);
3714 break;
3715 }
3716 case KVM_GET_PIT: {
3717 r = -EFAULT;
3718 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3719 goto out;
3720 r = -ENXIO;
3721 if (!kvm->arch.vpit)
3722 goto out;
3723 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3724 if (r)
3725 goto out;
3726 r = -EFAULT;
3727 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3728 goto out;
3729 r = 0;
3730 break;
3731 }
3732 case KVM_SET_PIT: {
3733 r = -EFAULT;
3734 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3735 goto out;
3736 r = -ENXIO;
3737 if (!kvm->arch.vpit)
3738 goto out;
3739 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3740 break;
3741 }
3742 case KVM_GET_PIT2: {
3743 r = -ENXIO;
3744 if (!kvm->arch.vpit)
3745 goto out;
3746 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3747 if (r)
3748 goto out;
3749 r = -EFAULT;
3750 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3751 goto out;
3752 r = 0;
3753 break;
3754 }
3755 case KVM_SET_PIT2: {
3756 r = -EFAULT;
3757 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3758 goto out;
3759 r = -ENXIO;
3760 if (!kvm->arch.vpit)
3761 goto out;
3762 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3763 break;
3764 }
3765 case KVM_REINJECT_CONTROL: {
3766 struct kvm_reinject_control control;
3767 r = -EFAULT;
3768 if (copy_from_user(&control, argp, sizeof(control)))
3769 goto out;
3770 r = kvm_vm_ioctl_reinject(kvm, &control);
3771 break;
3772 }
3773 case KVM_XEN_HVM_CONFIG: {
3774 r = -EFAULT;
3775 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3776 sizeof(struct kvm_xen_hvm_config)))
3777 goto out;
3778 r = -EINVAL;
3779 if (kvm->arch.xen_hvm_config.flags)
3780 goto out;
3781 r = 0;
3782 break;
3783 }
3784 case KVM_SET_CLOCK: {
3785 struct kvm_clock_data user_ns;
3786 u64 now_ns;
3787 s64 delta;
3788
3789 r = -EFAULT;
3790 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3791 goto out;
3792
3793 r = -EINVAL;
3794 if (user_ns.flags)
3795 goto out;
3796
3797 r = 0;
3798 local_irq_disable();
3799 now_ns = get_kernel_ns();
3800 delta = user_ns.clock - now_ns;
3801 local_irq_enable();
3802 kvm->arch.kvmclock_offset = delta;
3803 kvm_gen_update_masterclock(kvm);
3804 break;
3805 }
3806 case KVM_GET_CLOCK: {
3807 struct kvm_clock_data user_ns;
3808 u64 now_ns;
3809
3810 local_irq_disable();
3811 now_ns = get_kernel_ns();
3812 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3813 local_irq_enable();
3814 user_ns.flags = 0;
3815 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3816
3817 r = -EFAULT;
3818 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3819 goto out;
3820 r = 0;
3821 break;
3822 }
3823 case KVM_ENABLE_CAP: {
3824 struct kvm_enable_cap cap;
3825
3826 r = -EFAULT;
3827 if (copy_from_user(&cap, argp, sizeof(cap)))
3828 goto out;
3829 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
3830 break;
3831 }
3832 default:
3833 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
3834 }
3835 out:
3836 return r;
3837 }
3838
3839 static void kvm_init_msr_list(void)
3840 {
3841 u32 dummy[2];
3842 unsigned i, j;
3843
3844 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
3845 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3846 continue;
3847
3848 /*
3849 * Even MSRs that are valid in the host may not be exposed
3850 * to the guests in some cases. We could work around this
3851 * in VMX with the generic MSR save/load machinery, but it
3852 * is not really worthwhile since it will really only
3853 * happen with nested virtualization.
3854 */
3855 switch (msrs_to_save[i]) {
3856 case MSR_IA32_BNDCFGS:
3857 if (!kvm_x86_ops->mpx_supported())
3858 continue;
3859 break;
3860 default:
3861 break;
3862 }
3863
3864 if (j < i)
3865 msrs_to_save[j] = msrs_to_save[i];
3866 j++;
3867 }
3868 num_msrs_to_save = j;
3869
3870 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
3871 switch (emulated_msrs[i]) {
3872 case MSR_IA32_SMBASE:
3873 if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
3874 continue;
3875 break;
3876 default:
3877 break;
3878 }
3879
3880 if (j < i)
3881 emulated_msrs[j] = emulated_msrs[i];
3882 j++;
3883 }
3884 num_emulated_msrs = j;
3885 }
3886
3887 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3888 const void *v)
3889 {
3890 int handled = 0;
3891 int n;
3892
3893 do {
3894 n = min(len, 8);
3895 if (!(vcpu->arch.apic &&
3896 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
3897 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
3898 break;
3899 handled += n;
3900 addr += n;
3901 len -= n;
3902 v += n;
3903 } while (len);
3904
3905 return handled;
3906 }
3907
3908 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3909 {
3910 int handled = 0;
3911 int n;
3912
3913 do {
3914 n = min(len, 8);
3915 if (!(vcpu->arch.apic &&
3916 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
3917 addr, n, v))
3918 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
3919 break;
3920 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3921 handled += n;
3922 addr += n;
3923 len -= n;
3924 v += n;
3925 } while (len);
3926
3927 return handled;
3928 }
3929
3930 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3931 struct kvm_segment *var, int seg)
3932 {
3933 kvm_x86_ops->set_segment(vcpu, var, seg);
3934 }
3935
3936 void kvm_get_segment(struct kvm_vcpu *vcpu,
3937 struct kvm_segment *var, int seg)
3938 {
3939 kvm_x86_ops->get_segment(vcpu, var, seg);
3940 }
3941
3942 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
3943 struct x86_exception *exception)
3944 {
3945 gpa_t t_gpa;
3946
3947 BUG_ON(!mmu_is_nested(vcpu));
3948
3949 /* NPT walks are always user-walks */
3950 access |= PFERR_USER_MASK;
3951 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
3952
3953 return t_gpa;
3954 }
3955
3956 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3957 struct x86_exception *exception)
3958 {
3959 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3960 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3961 }
3962
3963 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3964 struct x86_exception *exception)
3965 {
3966 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3967 access |= PFERR_FETCH_MASK;
3968 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3969 }
3970
3971 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3972 struct x86_exception *exception)
3973 {
3974 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3975 access |= PFERR_WRITE_MASK;
3976 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3977 }
3978
3979 /* uses this to access any guest's mapped memory without checking CPL */
3980 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3981 struct x86_exception *exception)
3982 {
3983 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3984 }
3985
3986 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3987 struct kvm_vcpu *vcpu, u32 access,
3988 struct x86_exception *exception)
3989 {
3990 void *data = val;
3991 int r = X86EMUL_CONTINUE;
3992
3993 while (bytes) {
3994 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3995 exception);
3996 unsigned offset = addr & (PAGE_SIZE-1);
3997 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3998 int ret;
3999
4000 if (gpa == UNMAPPED_GVA)
4001 return X86EMUL_PROPAGATE_FAULT;
4002 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4003 offset, toread);
4004 if (ret < 0) {
4005 r = X86EMUL_IO_NEEDED;
4006 goto out;
4007 }
4008
4009 bytes -= toread;
4010 data += toread;
4011 addr += toread;
4012 }
4013 out:
4014 return r;
4015 }
4016
4017 /* used for instruction fetching */
4018 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4019 gva_t addr, void *val, unsigned int bytes,
4020 struct x86_exception *exception)
4021 {
4022 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4023 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4024 unsigned offset;
4025 int ret;
4026
4027 /* Inline kvm_read_guest_virt_helper for speed. */
4028 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4029 exception);
4030 if (unlikely(gpa == UNMAPPED_GVA))
4031 return X86EMUL_PROPAGATE_FAULT;
4032
4033 offset = addr & (PAGE_SIZE-1);
4034 if (WARN_ON(offset + bytes > PAGE_SIZE))
4035 bytes = (unsigned)PAGE_SIZE - offset;
4036 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4037 offset, bytes);
4038 if (unlikely(ret < 0))
4039 return X86EMUL_IO_NEEDED;
4040
4041 return X86EMUL_CONTINUE;
4042 }
4043
4044 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4045 gva_t addr, void *val, unsigned int bytes,
4046 struct x86_exception *exception)
4047 {
4048 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4049 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4050
4051 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4052 exception);
4053 }
4054 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4055
4056 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4057 gva_t addr, void *val, unsigned int bytes,
4058 struct x86_exception *exception)
4059 {
4060 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4061 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4062 }
4063
4064 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4065 gva_t addr, void *val,
4066 unsigned int bytes,
4067 struct x86_exception *exception)
4068 {
4069 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4070 void *data = val;
4071 int r = X86EMUL_CONTINUE;
4072
4073 while (bytes) {
4074 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4075 PFERR_WRITE_MASK,
4076 exception);
4077 unsigned offset = addr & (PAGE_SIZE-1);
4078 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4079 int ret;
4080
4081 if (gpa == UNMAPPED_GVA)
4082 return X86EMUL_PROPAGATE_FAULT;
4083 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4084 if (ret < 0) {
4085 r = X86EMUL_IO_NEEDED;
4086 goto out;
4087 }
4088
4089 bytes -= towrite;
4090 data += towrite;
4091 addr += towrite;
4092 }
4093 out:
4094 return r;
4095 }
4096 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4097
4098 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4099 gpa_t *gpa, struct x86_exception *exception,
4100 bool write)
4101 {
4102 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4103 | (write ? PFERR_WRITE_MASK : 0);
4104
4105 if (vcpu_match_mmio_gva(vcpu, gva)
4106 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4107 vcpu->arch.access, access)) {
4108 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4109 (gva & (PAGE_SIZE - 1));
4110 trace_vcpu_match_mmio(gva, *gpa, write, false);
4111 return 1;
4112 }
4113
4114 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4115
4116 if (*gpa == UNMAPPED_GVA)
4117 return -1;
4118
4119 /* For APIC access vmexit */
4120 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4121 return 1;
4122
4123 if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4124 trace_vcpu_match_mmio(gva, *gpa, write, true);
4125 return 1;
4126 }
4127
4128 return 0;
4129 }
4130
4131 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4132 const void *val, int bytes)
4133 {
4134 int ret;
4135
4136 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4137 if (ret < 0)
4138 return 0;
4139 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4140 return 1;
4141 }
4142
4143 struct read_write_emulator_ops {
4144 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4145 int bytes);
4146 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4147 void *val, int bytes);
4148 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4149 int bytes, void *val);
4150 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4151 void *val, int bytes);
4152 bool write;
4153 };
4154
4155 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4156 {
4157 if (vcpu->mmio_read_completed) {
4158 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4159 vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4160 vcpu->mmio_read_completed = 0;
4161 return 1;
4162 }
4163
4164 return 0;
4165 }
4166
4167 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4168 void *val, int bytes)
4169 {
4170 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4171 }
4172
4173 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4174 void *val, int bytes)
4175 {
4176 return emulator_write_phys(vcpu, gpa, val, bytes);
4177 }
4178
4179 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4180 {
4181 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4182 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4183 }
4184
4185 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4186 void *val, int bytes)
4187 {
4188 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4189 return X86EMUL_IO_NEEDED;
4190 }
4191
4192 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4193 void *val, int bytes)
4194 {
4195 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4196
4197 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4198 return X86EMUL_CONTINUE;
4199 }
4200
4201 static const struct read_write_emulator_ops read_emultor = {
4202 .read_write_prepare = read_prepare,
4203 .read_write_emulate = read_emulate,
4204 .read_write_mmio = vcpu_mmio_read,
4205 .read_write_exit_mmio = read_exit_mmio,
4206 };
4207
4208 static const struct read_write_emulator_ops write_emultor = {
4209 .read_write_emulate = write_emulate,
4210 .read_write_mmio = write_mmio,
4211 .read_write_exit_mmio = write_exit_mmio,
4212 .write = true,
4213 };
4214
4215 static int emulator_read_write_onepage(unsigned long addr, void *val,
4216 unsigned int bytes,
4217 struct x86_exception *exception,
4218 struct kvm_vcpu *vcpu,
4219 const struct read_write_emulator_ops *ops)
4220 {
4221 gpa_t gpa;
4222 int handled, ret;
4223 bool write = ops->write;
4224 struct kvm_mmio_fragment *frag;
4225
4226 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4227
4228 if (ret < 0)
4229 return X86EMUL_PROPAGATE_FAULT;
4230
4231 /* For APIC access vmexit */
4232 if (ret)
4233 goto mmio;
4234
4235 if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4236 return X86EMUL_CONTINUE;
4237
4238 mmio:
4239 /*
4240 * Is this MMIO handled locally?
4241 */
4242 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4243 if (handled == bytes)
4244 return X86EMUL_CONTINUE;
4245
4246 gpa += handled;
4247 bytes -= handled;
4248 val += handled;
4249
4250 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4251 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4252 frag->gpa = gpa;
4253 frag->data = val;
4254 frag->len = bytes;
4255 return X86EMUL_CONTINUE;
4256 }
4257
4258 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4259 unsigned long addr,
4260 void *val, unsigned int bytes,
4261 struct x86_exception *exception,
4262 const struct read_write_emulator_ops *ops)
4263 {
4264 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4265 gpa_t gpa;
4266 int rc;
4267
4268 if (ops->read_write_prepare &&
4269 ops->read_write_prepare(vcpu, val, bytes))
4270 return X86EMUL_CONTINUE;
4271
4272 vcpu->mmio_nr_fragments = 0;
4273
4274 /* Crossing a page boundary? */
4275 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4276 int now;
4277
4278 now = -addr & ~PAGE_MASK;
4279 rc = emulator_read_write_onepage(addr, val, now, exception,
4280 vcpu, ops);
4281
4282 if (rc != X86EMUL_CONTINUE)
4283 return rc;
4284 addr += now;
4285 if (ctxt->mode != X86EMUL_MODE_PROT64)
4286 addr = (u32)addr;
4287 val += now;
4288 bytes -= now;
4289 }
4290
4291 rc = emulator_read_write_onepage(addr, val, bytes, exception,
4292 vcpu, ops);
4293 if (rc != X86EMUL_CONTINUE)
4294 return rc;
4295
4296 if (!vcpu->mmio_nr_fragments)
4297 return rc;
4298
4299 gpa = vcpu->mmio_fragments[0].gpa;
4300
4301 vcpu->mmio_needed = 1;
4302 vcpu->mmio_cur_fragment = 0;
4303
4304 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4305 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4306 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4307 vcpu->run->mmio.phys_addr = gpa;
4308
4309 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4310 }
4311
4312 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4313 unsigned long addr,
4314 void *val,
4315 unsigned int bytes,
4316 struct x86_exception *exception)
4317 {
4318 return emulator_read_write(ctxt, addr, val, bytes,
4319 exception, &read_emultor);
4320 }
4321
4322 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4323 unsigned long addr,
4324 const void *val,
4325 unsigned int bytes,
4326 struct x86_exception *exception)
4327 {
4328 return emulator_read_write(ctxt, addr, (void *)val, bytes,
4329 exception, &write_emultor);
4330 }
4331
4332 #define CMPXCHG_TYPE(t, ptr, old, new) \
4333 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4334
4335 #ifdef CONFIG_X86_64
4336 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4337 #else
4338 # define CMPXCHG64(ptr, old, new) \
4339 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4340 #endif
4341
4342 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4343 unsigned long addr,
4344 const void *old,
4345 const void *new,
4346 unsigned int bytes,
4347 struct x86_exception *exception)
4348 {
4349 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4350 gpa_t gpa;
4351 struct page *page;
4352 char *kaddr;
4353 bool exchanged;
4354
4355 /* guests cmpxchg8b have to be emulated atomically */
4356 if (bytes > 8 || (bytes & (bytes - 1)))
4357 goto emul_write;
4358
4359 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4360
4361 if (gpa == UNMAPPED_GVA ||
4362 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4363 goto emul_write;
4364
4365 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4366 goto emul_write;
4367
4368 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4369 if (is_error_page(page))
4370 goto emul_write;
4371
4372 kaddr = kmap_atomic(page);
4373 kaddr += offset_in_page(gpa);
4374 switch (bytes) {
4375 case 1:
4376 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4377 break;
4378 case 2:
4379 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4380 break;
4381 case 4:
4382 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4383 break;
4384 case 8:
4385 exchanged = CMPXCHG64(kaddr, old, new);
4386 break;
4387 default:
4388 BUG();
4389 }
4390 kunmap_atomic(kaddr);
4391 kvm_release_page_dirty(page);
4392
4393 if (!exchanged)
4394 return X86EMUL_CMPXCHG_FAILED;
4395
4396 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4397 kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4398
4399 return X86EMUL_CONTINUE;
4400
4401 emul_write:
4402 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4403
4404 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4405 }
4406
4407 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4408 {
4409 /* TODO: String I/O for in kernel device */
4410 int r;
4411
4412 if (vcpu->arch.pio.in)
4413 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4414 vcpu->arch.pio.size, pd);
4415 else
4416 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4417 vcpu->arch.pio.port, vcpu->arch.pio.size,
4418 pd);
4419 return r;
4420 }
4421
4422 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4423 unsigned short port, void *val,
4424 unsigned int count, bool in)
4425 {
4426 vcpu->arch.pio.port = port;
4427 vcpu->arch.pio.in = in;
4428 vcpu->arch.pio.count = count;
4429 vcpu->arch.pio.size = size;
4430
4431 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4432 vcpu->arch.pio.count = 0;
4433 return 1;
4434 }
4435
4436 vcpu->run->exit_reason = KVM_EXIT_IO;
4437 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4438 vcpu->run->io.size = size;
4439 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4440 vcpu->run->io.count = count;
4441 vcpu->run->io.port = port;
4442
4443 return 0;
4444 }
4445
4446 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4447 int size, unsigned short port, void *val,
4448 unsigned int count)
4449 {
4450 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4451 int ret;
4452
4453 if (vcpu->arch.pio.count)
4454 goto data_avail;
4455
4456 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4457 if (ret) {
4458 data_avail:
4459 memcpy(val, vcpu->arch.pio_data, size * count);
4460 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4461 vcpu->arch.pio.count = 0;
4462 return 1;
4463 }
4464
4465 return 0;
4466 }
4467
4468 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4469 int size, unsigned short port,
4470 const void *val, unsigned int count)
4471 {
4472 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4473
4474 memcpy(vcpu->arch.pio_data, val, size * count);
4475 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4476 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4477 }
4478
4479 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4480 {
4481 return kvm_x86_ops->get_segment_base(vcpu, seg);
4482 }
4483
4484 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4485 {
4486 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4487 }
4488
4489 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4490 {
4491 if (!need_emulate_wbinvd(vcpu))
4492 return X86EMUL_CONTINUE;
4493
4494 if (kvm_x86_ops->has_wbinvd_exit()) {
4495 int cpu = get_cpu();
4496
4497 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4498 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4499 wbinvd_ipi, NULL, 1);
4500 put_cpu();
4501 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4502 } else
4503 wbinvd();
4504 return X86EMUL_CONTINUE;
4505 }
4506
4507 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4508 {
4509 kvm_x86_ops->skip_emulated_instruction(vcpu);
4510 return kvm_emulate_wbinvd_noskip(vcpu);
4511 }
4512 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4513
4514
4515
4516 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4517 {
4518 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4519 }
4520
4521 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4522 unsigned long *dest)
4523 {
4524 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4525 }
4526
4527 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4528 unsigned long value)
4529 {
4530
4531 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4532 }
4533
4534 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4535 {
4536 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4537 }
4538
4539 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4540 {
4541 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4542 unsigned long value;
4543
4544 switch (cr) {
4545 case 0:
4546 value = kvm_read_cr0(vcpu);
4547 break;
4548 case 2:
4549 value = vcpu->arch.cr2;
4550 break;
4551 case 3:
4552 value = kvm_read_cr3(vcpu);
4553 break;
4554 case 4:
4555 value = kvm_read_cr4(vcpu);
4556 break;
4557 case 8:
4558 value = kvm_get_cr8(vcpu);
4559 break;
4560 default:
4561 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4562 return 0;
4563 }
4564
4565 return value;
4566 }
4567
4568 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4569 {
4570 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4571 int res = 0;
4572
4573 switch (cr) {
4574 case 0:
4575 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4576 break;
4577 case 2:
4578 vcpu->arch.cr2 = val;
4579 break;
4580 case 3:
4581 res = kvm_set_cr3(vcpu, val);
4582 break;
4583 case 4:
4584 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4585 break;
4586 case 8:
4587 res = kvm_set_cr8(vcpu, val);
4588 break;
4589 default:
4590 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4591 res = -1;
4592 }
4593
4594 return res;
4595 }
4596
4597 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4598 {
4599 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4600 }
4601
4602 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4603 {
4604 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4605 }
4606
4607 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4608 {
4609 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4610 }
4611
4612 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4613 {
4614 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4615 }
4616
4617 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4618 {
4619 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4620 }
4621
4622 static unsigned long emulator_get_cached_segment_base(
4623 struct x86_emulate_ctxt *ctxt, int seg)
4624 {
4625 return get_segment_base(emul_to_vcpu(ctxt), seg);
4626 }
4627
4628 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4629 struct desc_struct *desc, u32 *base3,
4630 int seg)
4631 {
4632 struct kvm_segment var;
4633
4634 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4635 *selector = var.selector;
4636
4637 if (var.unusable) {
4638 memset(desc, 0, sizeof(*desc));
4639 return false;
4640 }
4641
4642 if (var.g)
4643 var.limit >>= 12;
4644 set_desc_limit(desc, var.limit);
4645 set_desc_base(desc, (unsigned long)var.base);
4646 #ifdef CONFIG_X86_64
4647 if (base3)
4648 *base3 = var.base >> 32;
4649 #endif
4650 desc->type = var.type;
4651 desc->s = var.s;
4652 desc->dpl = var.dpl;
4653 desc->p = var.present;
4654 desc->avl = var.avl;
4655 desc->l = var.l;
4656 desc->d = var.db;
4657 desc->g = var.g;
4658
4659 return true;
4660 }
4661
4662 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4663 struct desc_struct *desc, u32 base3,
4664 int seg)
4665 {
4666 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4667 struct kvm_segment var;
4668
4669 var.selector = selector;
4670 var.base = get_desc_base(desc);
4671 #ifdef CONFIG_X86_64
4672 var.base |= ((u64)base3) << 32;
4673 #endif
4674 var.limit = get_desc_limit(desc);
4675 if (desc->g)
4676 var.limit = (var.limit << 12) | 0xfff;
4677 var.type = desc->type;
4678 var.dpl = desc->dpl;
4679 var.db = desc->d;
4680 var.s = desc->s;
4681 var.l = desc->l;
4682 var.g = desc->g;
4683 var.avl = desc->avl;
4684 var.present = desc->p;
4685 var.unusable = !var.present;
4686 var.padding = 0;
4687
4688 kvm_set_segment(vcpu, &var, seg);
4689 return;
4690 }
4691
4692 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4693 u32 msr_index, u64 *pdata)
4694 {
4695 struct msr_data msr;
4696 int r;
4697
4698 msr.index = msr_index;
4699 msr.host_initiated = false;
4700 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
4701 if (r)
4702 return r;
4703
4704 *pdata = msr.data;
4705 return 0;
4706 }
4707
4708 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4709 u32 msr_index, u64 data)
4710 {
4711 struct msr_data msr;
4712
4713 msr.data = data;
4714 msr.index = msr_index;
4715 msr.host_initiated = false;
4716 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4717 }
4718
4719 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
4720 {
4721 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4722
4723 return vcpu->arch.smbase;
4724 }
4725
4726 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
4727 {
4728 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4729
4730 vcpu->arch.smbase = smbase;
4731 }
4732
4733 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4734 u32 pmc)
4735 {
4736 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
4737 }
4738
4739 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4740 u32 pmc, u64 *pdata)
4741 {
4742 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
4743 }
4744
4745 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4746 {
4747 emul_to_vcpu(ctxt)->arch.halt_request = 1;
4748 }
4749
4750 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4751 {
4752 preempt_disable();
4753 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4754 /*
4755 * CR0.TS may reference the host fpu state, not the guest fpu state,
4756 * so it may be clear at this point.
4757 */
4758 clts();
4759 }
4760
4761 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4762 {
4763 preempt_enable();
4764 }
4765
4766 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4767 struct x86_instruction_info *info,
4768 enum x86_intercept_stage stage)
4769 {
4770 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4771 }
4772
4773 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4774 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4775 {
4776 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4777 }
4778
4779 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4780 {
4781 return kvm_register_read(emul_to_vcpu(ctxt), reg);
4782 }
4783
4784 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4785 {
4786 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4787 }
4788
4789 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
4790 {
4791 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
4792 }
4793
4794 static const struct x86_emulate_ops emulate_ops = {
4795 .read_gpr = emulator_read_gpr,
4796 .write_gpr = emulator_write_gpr,
4797 .read_std = kvm_read_guest_virt_system,
4798 .write_std = kvm_write_guest_virt_system,
4799 .fetch = kvm_fetch_guest_virt,
4800 .read_emulated = emulator_read_emulated,
4801 .write_emulated = emulator_write_emulated,
4802 .cmpxchg_emulated = emulator_cmpxchg_emulated,
4803 .invlpg = emulator_invlpg,
4804 .pio_in_emulated = emulator_pio_in_emulated,
4805 .pio_out_emulated = emulator_pio_out_emulated,
4806 .get_segment = emulator_get_segment,
4807 .set_segment = emulator_set_segment,
4808 .get_cached_segment_base = emulator_get_cached_segment_base,
4809 .get_gdt = emulator_get_gdt,
4810 .get_idt = emulator_get_idt,
4811 .set_gdt = emulator_set_gdt,
4812 .set_idt = emulator_set_idt,
4813 .get_cr = emulator_get_cr,
4814 .set_cr = emulator_set_cr,
4815 .cpl = emulator_get_cpl,
4816 .get_dr = emulator_get_dr,
4817 .set_dr = emulator_set_dr,
4818 .get_smbase = emulator_get_smbase,
4819 .set_smbase = emulator_set_smbase,
4820 .set_msr = emulator_set_msr,
4821 .get_msr = emulator_get_msr,
4822 .check_pmc = emulator_check_pmc,
4823 .read_pmc = emulator_read_pmc,
4824 .halt = emulator_halt,
4825 .wbinvd = emulator_wbinvd,
4826 .fix_hypercall = emulator_fix_hypercall,
4827 .get_fpu = emulator_get_fpu,
4828 .put_fpu = emulator_put_fpu,
4829 .intercept = emulator_intercept,
4830 .get_cpuid = emulator_get_cpuid,
4831 .set_nmi_mask = emulator_set_nmi_mask,
4832 };
4833
4834 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4835 {
4836 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
4837 /*
4838 * an sti; sti; sequence only disable interrupts for the first
4839 * instruction. So, if the last instruction, be it emulated or
4840 * not, left the system with the INT_STI flag enabled, it
4841 * means that the last instruction is an sti. We should not
4842 * leave the flag on in this case. The same goes for mov ss
4843 */
4844 if (int_shadow & mask)
4845 mask = 0;
4846 if (unlikely(int_shadow || mask)) {
4847 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4848 if (!mask)
4849 kvm_make_request(KVM_REQ_EVENT, vcpu);
4850 }
4851 }
4852
4853 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
4854 {
4855 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4856 if (ctxt->exception.vector == PF_VECTOR)
4857 return kvm_propagate_fault(vcpu, &ctxt->exception);
4858
4859 if (ctxt->exception.error_code_valid)
4860 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4861 ctxt->exception.error_code);
4862 else
4863 kvm_queue_exception(vcpu, ctxt->exception.vector);
4864 return false;
4865 }
4866
4867 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4868 {
4869 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4870 int cs_db, cs_l;
4871
4872 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4873
4874 ctxt->eflags = kvm_get_rflags(vcpu);
4875 ctxt->eip = kvm_rip_read(vcpu);
4876 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4877 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
4878 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
4879 cs_db ? X86EMUL_MODE_PROT32 :
4880 X86EMUL_MODE_PROT16;
4881 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
4882 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
4883 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
4884 ctxt->emul_flags = vcpu->arch.hflags;
4885
4886 init_decode_cache(ctxt);
4887 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4888 }
4889
4890 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4891 {
4892 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4893 int ret;
4894
4895 init_emulate_ctxt(vcpu);
4896
4897 ctxt->op_bytes = 2;
4898 ctxt->ad_bytes = 2;
4899 ctxt->_eip = ctxt->eip + inc_eip;
4900 ret = emulate_int_real(ctxt, irq);
4901
4902 if (ret != X86EMUL_CONTINUE)
4903 return EMULATE_FAIL;
4904
4905 ctxt->eip = ctxt->_eip;
4906 kvm_rip_write(vcpu, ctxt->eip);
4907 kvm_set_rflags(vcpu, ctxt->eflags);
4908
4909 if (irq == NMI_VECTOR)
4910 vcpu->arch.nmi_pending = 0;
4911 else
4912 vcpu->arch.interrupt.pending = false;
4913
4914 return EMULATE_DONE;
4915 }
4916 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4917
4918 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4919 {
4920 int r = EMULATE_DONE;
4921
4922 ++vcpu->stat.insn_emulation_fail;
4923 trace_kvm_emulate_insn_failed(vcpu);
4924 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
4925 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4926 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4927 vcpu->run->internal.ndata = 0;
4928 r = EMULATE_FAIL;
4929 }
4930 kvm_queue_exception(vcpu, UD_VECTOR);
4931
4932 return r;
4933 }
4934
4935 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
4936 bool write_fault_to_shadow_pgtable,
4937 int emulation_type)
4938 {
4939 gpa_t gpa = cr2;
4940 pfn_t pfn;
4941
4942 if (emulation_type & EMULTYPE_NO_REEXECUTE)
4943 return false;
4944
4945 if (!vcpu->arch.mmu.direct_map) {
4946 /*
4947 * Write permission should be allowed since only
4948 * write access need to be emulated.
4949 */
4950 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4951
4952 /*
4953 * If the mapping is invalid in guest, let cpu retry
4954 * it to generate fault.
4955 */
4956 if (gpa == UNMAPPED_GVA)
4957 return true;
4958 }
4959
4960 /*
4961 * Do not retry the unhandleable instruction if it faults on the
4962 * readonly host memory, otherwise it will goto a infinite loop:
4963 * retry instruction -> write #PF -> emulation fail -> retry
4964 * instruction -> ...
4965 */
4966 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4967
4968 /*
4969 * If the instruction failed on the error pfn, it can not be fixed,
4970 * report the error to userspace.
4971 */
4972 if (is_error_noslot_pfn(pfn))
4973 return false;
4974
4975 kvm_release_pfn_clean(pfn);
4976
4977 /* The instructions are well-emulated on direct mmu. */
4978 if (vcpu->arch.mmu.direct_map) {
4979 unsigned int indirect_shadow_pages;
4980
4981 spin_lock(&vcpu->kvm->mmu_lock);
4982 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
4983 spin_unlock(&vcpu->kvm->mmu_lock);
4984
4985 if (indirect_shadow_pages)
4986 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4987
4988 return true;
4989 }
4990
4991 /*
4992 * if emulation was due to access to shadowed page table
4993 * and it failed try to unshadow page and re-enter the
4994 * guest to let CPU execute the instruction.
4995 */
4996 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4997
4998 /*
4999 * If the access faults on its page table, it can not
5000 * be fixed by unprotecting shadow page and it should
5001 * be reported to userspace.
5002 */
5003 return !write_fault_to_shadow_pgtable;
5004 }
5005
5006 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5007 unsigned long cr2, int emulation_type)
5008 {
5009 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5010 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5011
5012 last_retry_eip = vcpu->arch.last_retry_eip;
5013 last_retry_addr = vcpu->arch.last_retry_addr;
5014
5015 /*
5016 * If the emulation is caused by #PF and it is non-page_table
5017 * writing instruction, it means the VM-EXIT is caused by shadow
5018 * page protected, we can zap the shadow page and retry this
5019 * instruction directly.
5020 *
5021 * Note: if the guest uses a non-page-table modifying instruction
5022 * on the PDE that points to the instruction, then we will unmap
5023 * the instruction and go to an infinite loop. So, we cache the
5024 * last retried eip and the last fault address, if we meet the eip
5025 * and the address again, we can break out of the potential infinite
5026 * loop.
5027 */
5028 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5029
5030 if (!(emulation_type & EMULTYPE_RETRY))
5031 return false;
5032
5033 if (x86_page_table_writing_insn(ctxt))
5034 return false;
5035
5036 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5037 return false;
5038
5039 vcpu->arch.last_retry_eip = ctxt->eip;
5040 vcpu->arch.last_retry_addr = cr2;
5041
5042 if (!vcpu->arch.mmu.direct_map)
5043 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5044
5045 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5046
5047 return true;
5048 }
5049
5050 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5051 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5052
5053 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5054 {
5055 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5056 /* This is a good place to trace that we are exiting SMM. */
5057 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5058
5059 if (unlikely(vcpu->arch.smi_pending)) {
5060 kvm_make_request(KVM_REQ_SMI, vcpu);
5061 vcpu->arch.smi_pending = 0;
5062 } else {
5063 /* Process a latched INIT, if any. */
5064 kvm_make_request(KVM_REQ_EVENT, vcpu);
5065 }
5066 }
5067
5068 kvm_mmu_reset_context(vcpu);
5069 }
5070
5071 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5072 {
5073 unsigned changed = vcpu->arch.hflags ^ emul_flags;
5074
5075 vcpu->arch.hflags = emul_flags;
5076
5077 if (changed & HF_SMM_MASK)
5078 kvm_smm_changed(vcpu);
5079 }
5080
5081 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5082 unsigned long *db)
5083 {
5084 u32 dr6 = 0;
5085 int i;
5086 u32 enable, rwlen;
5087
5088 enable = dr7;
5089 rwlen = dr7 >> 16;
5090 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5091 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5092 dr6 |= (1 << i);
5093 return dr6;
5094 }
5095
5096 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5097 {
5098 struct kvm_run *kvm_run = vcpu->run;
5099
5100 /*
5101 * rflags is the old, "raw" value of the flags. The new value has
5102 * not been saved yet.
5103 *
5104 * This is correct even for TF set by the guest, because "the
5105 * processor will not generate this exception after the instruction
5106 * that sets the TF flag".
5107 */
5108 if (unlikely(rflags & X86_EFLAGS_TF)) {
5109 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5110 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5111 DR6_RTM;
5112 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5113 kvm_run->debug.arch.exception = DB_VECTOR;
5114 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5115 *r = EMULATE_USER_EXIT;
5116 } else {
5117 vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5118 /*
5119 * "Certain debug exceptions may clear bit 0-3. The
5120 * remaining contents of the DR6 register are never
5121 * cleared by the processor".
5122 */
5123 vcpu->arch.dr6 &= ~15;
5124 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5125 kvm_queue_exception(vcpu, DB_VECTOR);
5126 }
5127 }
5128 }
5129
5130 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5131 {
5132 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5133 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5134 struct kvm_run *kvm_run = vcpu->run;
5135 unsigned long eip = kvm_get_linear_rip(vcpu);
5136 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5137 vcpu->arch.guest_debug_dr7,
5138 vcpu->arch.eff_db);
5139
5140 if (dr6 != 0) {
5141 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5142 kvm_run->debug.arch.pc = eip;
5143 kvm_run->debug.arch.exception = DB_VECTOR;
5144 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5145 *r = EMULATE_USER_EXIT;
5146 return true;
5147 }
5148 }
5149
5150 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5151 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5152 unsigned long eip = kvm_get_linear_rip(vcpu);
5153 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5154 vcpu->arch.dr7,
5155 vcpu->arch.db);
5156
5157 if (dr6 != 0) {
5158 vcpu->arch.dr6 &= ~15;
5159 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5160 kvm_queue_exception(vcpu, DB_VECTOR);
5161 *r = EMULATE_DONE;
5162 return true;
5163 }
5164 }
5165
5166 return false;
5167 }
5168
5169 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5170 unsigned long cr2,
5171 int emulation_type,
5172 void *insn,
5173 int insn_len)
5174 {
5175 int r;
5176 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5177 bool writeback = true;
5178 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5179
5180 /*
5181 * Clear write_fault_to_shadow_pgtable here to ensure it is
5182 * never reused.
5183 */
5184 vcpu->arch.write_fault_to_shadow_pgtable = false;
5185 kvm_clear_exception_queue(vcpu);
5186
5187 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5188 init_emulate_ctxt(vcpu);
5189
5190 /*
5191 * We will reenter on the same instruction since
5192 * we do not set complete_userspace_io. This does not
5193 * handle watchpoints yet, those would be handled in
5194 * the emulate_ops.
5195 */
5196 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5197 return r;
5198
5199 ctxt->interruptibility = 0;
5200 ctxt->have_exception = false;
5201 ctxt->exception.vector = -1;
5202 ctxt->perm_ok = false;
5203
5204 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5205
5206 r = x86_decode_insn(ctxt, insn, insn_len);
5207
5208 trace_kvm_emulate_insn_start(vcpu);
5209 ++vcpu->stat.insn_emulation;
5210 if (r != EMULATION_OK) {
5211 if (emulation_type & EMULTYPE_TRAP_UD)
5212 return EMULATE_FAIL;
5213 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5214 emulation_type))
5215 return EMULATE_DONE;
5216 if (emulation_type & EMULTYPE_SKIP)
5217 return EMULATE_FAIL;
5218 return handle_emulation_failure(vcpu);
5219 }
5220 }
5221
5222 if (emulation_type & EMULTYPE_SKIP) {
5223 kvm_rip_write(vcpu, ctxt->_eip);
5224 if (ctxt->eflags & X86_EFLAGS_RF)
5225 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5226 return EMULATE_DONE;
5227 }
5228
5229 if (retry_instruction(ctxt, cr2, emulation_type))
5230 return EMULATE_DONE;
5231
5232 /* this is needed for vmware backdoor interface to work since it
5233 changes registers values during IO operation */
5234 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5235 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5236 emulator_invalidate_register_cache(ctxt);
5237 }
5238
5239 restart:
5240 r = x86_emulate_insn(ctxt);
5241
5242 if (r == EMULATION_INTERCEPTED)
5243 return EMULATE_DONE;
5244
5245 if (r == EMULATION_FAILED) {
5246 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5247 emulation_type))
5248 return EMULATE_DONE;
5249
5250 return handle_emulation_failure(vcpu);
5251 }
5252
5253 if (ctxt->have_exception) {
5254 r = EMULATE_DONE;
5255 if (inject_emulated_exception(vcpu))
5256 return r;
5257 } else if (vcpu->arch.pio.count) {
5258 if (!vcpu->arch.pio.in) {
5259 /* FIXME: return into emulator if single-stepping. */
5260 vcpu->arch.pio.count = 0;
5261 } else {
5262 writeback = false;
5263 vcpu->arch.complete_userspace_io = complete_emulated_pio;
5264 }
5265 r = EMULATE_USER_EXIT;
5266 } else if (vcpu->mmio_needed) {
5267 if (!vcpu->mmio_is_write)
5268 writeback = false;
5269 r = EMULATE_USER_EXIT;
5270 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5271 } else if (r == EMULATION_RESTART)
5272 goto restart;
5273 else
5274 r = EMULATE_DONE;
5275
5276 if (writeback) {
5277 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5278 toggle_interruptibility(vcpu, ctxt->interruptibility);
5279 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5280 if (vcpu->arch.hflags != ctxt->emul_flags)
5281 kvm_set_hflags(vcpu, ctxt->emul_flags);
5282 kvm_rip_write(vcpu, ctxt->eip);
5283 if (r == EMULATE_DONE)
5284 kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5285 if (!ctxt->have_exception ||
5286 exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5287 __kvm_set_rflags(vcpu, ctxt->eflags);
5288
5289 /*
5290 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5291 * do nothing, and it will be requested again as soon as
5292 * the shadow expires. But we still need to check here,
5293 * because POPF has no interrupt shadow.
5294 */
5295 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5296 kvm_make_request(KVM_REQ_EVENT, vcpu);
5297 } else
5298 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5299
5300 return r;
5301 }
5302 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5303
5304 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5305 {
5306 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5307 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5308 size, port, &val, 1);
5309 /* do not return to emulator after return from userspace */
5310 vcpu->arch.pio.count = 0;
5311 return ret;
5312 }
5313 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5314
5315 static void tsc_bad(void *info)
5316 {
5317 __this_cpu_write(cpu_tsc_khz, 0);
5318 }
5319
5320 static void tsc_khz_changed(void *data)
5321 {
5322 struct cpufreq_freqs *freq = data;
5323 unsigned long khz = 0;
5324
5325 if (data)
5326 khz = freq->new;
5327 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5328 khz = cpufreq_quick_get(raw_smp_processor_id());
5329 if (!khz)
5330 khz = tsc_khz;
5331 __this_cpu_write(cpu_tsc_khz, khz);
5332 }
5333
5334 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5335 void *data)
5336 {
5337 struct cpufreq_freqs *freq = data;
5338 struct kvm *kvm;
5339 struct kvm_vcpu *vcpu;
5340 int i, send_ipi = 0;
5341
5342 /*
5343 * We allow guests to temporarily run on slowing clocks,
5344 * provided we notify them after, or to run on accelerating
5345 * clocks, provided we notify them before. Thus time never
5346 * goes backwards.
5347 *
5348 * However, we have a problem. We can't atomically update
5349 * the frequency of a given CPU from this function; it is
5350 * merely a notifier, which can be called from any CPU.
5351 * Changing the TSC frequency at arbitrary points in time
5352 * requires a recomputation of local variables related to
5353 * the TSC for each VCPU. We must flag these local variables
5354 * to be updated and be sure the update takes place with the
5355 * new frequency before any guests proceed.
5356 *
5357 * Unfortunately, the combination of hotplug CPU and frequency
5358 * change creates an intractable locking scenario; the order
5359 * of when these callouts happen is undefined with respect to
5360 * CPU hotplug, and they can race with each other. As such,
5361 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5362 * undefined; you can actually have a CPU frequency change take
5363 * place in between the computation of X and the setting of the
5364 * variable. To protect against this problem, all updates of
5365 * the per_cpu tsc_khz variable are done in an interrupt
5366 * protected IPI, and all callers wishing to update the value
5367 * must wait for a synchronous IPI to complete (which is trivial
5368 * if the caller is on the CPU already). This establishes the
5369 * necessary total order on variable updates.
5370 *
5371 * Note that because a guest time update may take place
5372 * anytime after the setting of the VCPU's request bit, the
5373 * correct TSC value must be set before the request. However,
5374 * to ensure the update actually makes it to any guest which
5375 * starts running in hardware virtualization between the set
5376 * and the acquisition of the spinlock, we must also ping the
5377 * CPU after setting the request bit.
5378 *
5379 */
5380
5381 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5382 return 0;
5383 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5384 return 0;
5385
5386 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5387
5388 spin_lock(&kvm_lock);
5389 list_for_each_entry(kvm, &vm_list, vm_list) {
5390 kvm_for_each_vcpu(i, vcpu, kvm) {
5391 if (vcpu->cpu != freq->cpu)
5392 continue;
5393 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5394 if (vcpu->cpu != smp_processor_id())
5395 send_ipi = 1;
5396 }
5397 }
5398 spin_unlock(&kvm_lock);
5399
5400 if (freq->old < freq->new && send_ipi) {
5401 /*
5402 * We upscale the frequency. Must make the guest
5403 * doesn't see old kvmclock values while running with
5404 * the new frequency, otherwise we risk the guest sees
5405 * time go backwards.
5406 *
5407 * In case we update the frequency for another cpu
5408 * (which might be in guest context) send an interrupt
5409 * to kick the cpu out of guest context. Next time
5410 * guest context is entered kvmclock will be updated,
5411 * so the guest will not see stale values.
5412 */
5413 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5414 }
5415 return 0;
5416 }
5417
5418 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5419 .notifier_call = kvmclock_cpufreq_notifier
5420 };
5421
5422 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5423 unsigned long action, void *hcpu)
5424 {
5425 unsigned int cpu = (unsigned long)hcpu;
5426
5427 switch (action) {
5428 case CPU_ONLINE:
5429 case CPU_DOWN_FAILED:
5430 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5431 break;
5432 case CPU_DOWN_PREPARE:
5433 smp_call_function_single(cpu, tsc_bad, NULL, 1);
5434 break;
5435 }
5436 return NOTIFY_OK;
5437 }
5438
5439 static struct notifier_block kvmclock_cpu_notifier_block = {
5440 .notifier_call = kvmclock_cpu_notifier,
5441 .priority = -INT_MAX
5442 };
5443
5444 static void kvm_timer_init(void)
5445 {
5446 int cpu;
5447
5448 max_tsc_khz = tsc_khz;
5449
5450 cpu_notifier_register_begin();
5451 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5452 #ifdef CONFIG_CPU_FREQ
5453 struct cpufreq_policy policy;
5454 memset(&policy, 0, sizeof(policy));
5455 cpu = get_cpu();
5456 cpufreq_get_policy(&policy, cpu);
5457 if (policy.cpuinfo.max_freq)
5458 max_tsc_khz = policy.cpuinfo.max_freq;
5459 put_cpu();
5460 #endif
5461 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5462 CPUFREQ_TRANSITION_NOTIFIER);
5463 }
5464 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5465 for_each_online_cpu(cpu)
5466 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5467
5468 __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5469 cpu_notifier_register_done();
5470
5471 }
5472
5473 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5474
5475 int kvm_is_in_guest(void)
5476 {
5477 return __this_cpu_read(current_vcpu) != NULL;
5478 }
5479
5480 static int kvm_is_user_mode(void)
5481 {
5482 int user_mode = 3;
5483
5484 if (__this_cpu_read(current_vcpu))
5485 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5486
5487 return user_mode != 0;
5488 }
5489
5490 static unsigned long kvm_get_guest_ip(void)
5491 {
5492 unsigned long ip = 0;
5493
5494 if (__this_cpu_read(current_vcpu))
5495 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5496
5497 return ip;
5498 }
5499
5500 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5501 .is_in_guest = kvm_is_in_guest,
5502 .is_user_mode = kvm_is_user_mode,
5503 .get_guest_ip = kvm_get_guest_ip,
5504 };
5505
5506 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5507 {
5508 __this_cpu_write(current_vcpu, vcpu);
5509 }
5510 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5511
5512 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5513 {
5514 __this_cpu_write(current_vcpu, NULL);
5515 }
5516 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5517
5518 static void kvm_set_mmio_spte_mask(void)
5519 {
5520 u64 mask;
5521 int maxphyaddr = boot_cpu_data.x86_phys_bits;
5522
5523 /*
5524 * Set the reserved bits and the present bit of an paging-structure
5525 * entry to generate page fault with PFER.RSV = 1.
5526 */
5527 /* Mask the reserved physical address bits. */
5528 mask = rsvd_bits(maxphyaddr, 51);
5529
5530 /* Bit 62 is always reserved for 32bit host. */
5531 mask |= 0x3ull << 62;
5532
5533 /* Set the present bit. */
5534 mask |= 1ull;
5535
5536 #ifdef CONFIG_X86_64
5537 /*
5538 * If reserved bit is not supported, clear the present bit to disable
5539 * mmio page fault.
5540 */
5541 if (maxphyaddr == 52)
5542 mask &= ~1ull;
5543 #endif
5544
5545 kvm_mmu_set_mmio_spte_mask(mask);
5546 }
5547
5548 #ifdef CONFIG_X86_64
5549 static void pvclock_gtod_update_fn(struct work_struct *work)
5550 {
5551 struct kvm *kvm;
5552
5553 struct kvm_vcpu *vcpu;
5554 int i;
5555
5556 spin_lock(&kvm_lock);
5557 list_for_each_entry(kvm, &vm_list, vm_list)
5558 kvm_for_each_vcpu(i, vcpu, kvm)
5559 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5560 atomic_set(&kvm_guest_has_master_clock, 0);
5561 spin_unlock(&kvm_lock);
5562 }
5563
5564 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5565
5566 /*
5567 * Notification about pvclock gtod data update.
5568 */
5569 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5570 void *priv)
5571 {
5572 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5573 struct timekeeper *tk = priv;
5574
5575 update_pvclock_gtod(tk);
5576
5577 /* disable master clock if host does not trust, or does not
5578 * use, TSC clocksource
5579 */
5580 if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5581 atomic_read(&kvm_guest_has_master_clock) != 0)
5582 queue_work(system_long_wq, &pvclock_gtod_work);
5583
5584 return 0;
5585 }
5586
5587 static struct notifier_block pvclock_gtod_notifier = {
5588 .notifier_call = pvclock_gtod_notify,
5589 };
5590 #endif
5591
5592 int kvm_arch_init(void *opaque)
5593 {
5594 int r;
5595 struct kvm_x86_ops *ops = opaque;
5596
5597 if (kvm_x86_ops) {
5598 printk(KERN_ERR "kvm: already loaded the other module\n");
5599 r = -EEXIST;
5600 goto out;
5601 }
5602
5603 if (!ops->cpu_has_kvm_support()) {
5604 printk(KERN_ERR "kvm: no hardware support\n");
5605 r = -EOPNOTSUPP;
5606 goto out;
5607 }
5608 if (ops->disabled_by_bios()) {
5609 printk(KERN_ERR "kvm: disabled by bios\n");
5610 r = -EOPNOTSUPP;
5611 goto out;
5612 }
5613
5614 r = -ENOMEM;
5615 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5616 if (!shared_msrs) {
5617 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5618 goto out;
5619 }
5620
5621 r = kvm_mmu_module_init();
5622 if (r)
5623 goto out_free_percpu;
5624
5625 kvm_set_mmio_spte_mask();
5626
5627 kvm_x86_ops = ops;
5628
5629 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5630 PT_DIRTY_MASK, PT64_NX_MASK, 0);
5631
5632 kvm_timer_init();
5633
5634 perf_register_guest_info_callbacks(&kvm_guest_cbs);
5635
5636 if (cpu_has_xsave)
5637 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5638
5639 kvm_lapic_init();
5640 #ifdef CONFIG_X86_64
5641 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5642 #endif
5643
5644 return 0;
5645
5646 out_free_percpu:
5647 free_percpu(shared_msrs);
5648 out:
5649 return r;
5650 }
5651
5652 void kvm_arch_exit(void)
5653 {
5654 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5655
5656 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5657 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5658 CPUFREQ_TRANSITION_NOTIFIER);
5659 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5660 #ifdef CONFIG_X86_64
5661 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5662 #endif
5663 kvm_x86_ops = NULL;
5664 kvm_mmu_module_exit();
5665 free_percpu(shared_msrs);
5666 }
5667
5668 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5669 {
5670 ++vcpu->stat.halt_exits;
5671 if (irqchip_in_kernel(vcpu->kvm)) {
5672 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5673 return 1;
5674 } else {
5675 vcpu->run->exit_reason = KVM_EXIT_HLT;
5676 return 0;
5677 }
5678 }
5679 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5680
5681 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5682 {
5683 kvm_x86_ops->skip_emulated_instruction(vcpu);
5684 return kvm_vcpu_halt(vcpu);
5685 }
5686 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5687
5688 /*
5689 * kvm_pv_kick_cpu_op: Kick a vcpu.
5690 *
5691 * @apicid - apicid of vcpu to be kicked.
5692 */
5693 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5694 {
5695 struct kvm_lapic_irq lapic_irq;
5696
5697 lapic_irq.shorthand = 0;
5698 lapic_irq.dest_mode = 0;
5699 lapic_irq.dest_id = apicid;
5700 lapic_irq.msi_redir_hint = false;
5701
5702 lapic_irq.delivery_mode = APIC_DM_REMRD;
5703 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5704 }
5705
5706 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5707 {
5708 unsigned long nr, a0, a1, a2, a3, ret;
5709 int op_64_bit, r = 1;
5710
5711 kvm_x86_ops->skip_emulated_instruction(vcpu);
5712
5713 if (kvm_hv_hypercall_enabled(vcpu->kvm))
5714 return kvm_hv_hypercall(vcpu);
5715
5716 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5717 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5718 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5719 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5720 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5721
5722 trace_kvm_hypercall(nr, a0, a1, a2, a3);
5723
5724 op_64_bit = is_64_bit_mode(vcpu);
5725 if (!op_64_bit) {
5726 nr &= 0xFFFFFFFF;
5727 a0 &= 0xFFFFFFFF;
5728 a1 &= 0xFFFFFFFF;
5729 a2 &= 0xFFFFFFFF;
5730 a3 &= 0xFFFFFFFF;
5731 }
5732
5733 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5734 ret = -KVM_EPERM;
5735 goto out;
5736 }
5737
5738 switch (nr) {
5739 case KVM_HC_VAPIC_POLL_IRQ:
5740 ret = 0;
5741 break;
5742 case KVM_HC_KICK_CPU:
5743 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5744 ret = 0;
5745 break;
5746 default:
5747 ret = -KVM_ENOSYS;
5748 break;
5749 }
5750 out:
5751 if (!op_64_bit)
5752 ret = (u32)ret;
5753 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5754 ++vcpu->stat.hypercalls;
5755 return r;
5756 }
5757 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5758
5759 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5760 {
5761 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5762 char instruction[3];
5763 unsigned long rip = kvm_rip_read(vcpu);
5764
5765 kvm_x86_ops->patch_hypercall(vcpu, instruction);
5766
5767 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5768 }
5769
5770 /*
5771 * Check if userspace requested an interrupt window, and that the
5772 * interrupt window is open.
5773 *
5774 * No need to exit to userspace if we already have an interrupt queued.
5775 */
5776 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5777 {
5778 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5779 vcpu->run->request_interrupt_window &&
5780 kvm_arch_interrupt_allowed(vcpu));
5781 }
5782
5783 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5784 {
5785 struct kvm_run *kvm_run = vcpu->run;
5786
5787 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5788 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
5789 kvm_run->cr8 = kvm_get_cr8(vcpu);
5790 kvm_run->apic_base = kvm_get_apic_base(vcpu);
5791 if (irqchip_in_kernel(vcpu->kvm))
5792 kvm_run->ready_for_interrupt_injection = 1;
5793 else
5794 kvm_run->ready_for_interrupt_injection =
5795 kvm_arch_interrupt_allowed(vcpu) &&
5796 !kvm_cpu_has_interrupt(vcpu) &&
5797 !kvm_event_needs_reinjection(vcpu);
5798 }
5799
5800 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5801 {
5802 int max_irr, tpr;
5803
5804 if (!kvm_x86_ops->update_cr8_intercept)
5805 return;
5806
5807 if (!vcpu->arch.apic)
5808 return;
5809
5810 if (!vcpu->arch.apic->vapic_addr)
5811 max_irr = kvm_lapic_find_highest_irr(vcpu);
5812 else
5813 max_irr = -1;
5814
5815 if (max_irr != -1)
5816 max_irr >>= 4;
5817
5818 tpr = kvm_lapic_get_cr8(vcpu);
5819
5820 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5821 }
5822
5823 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
5824 {
5825 int r;
5826
5827 /* try to reinject previous events if any */
5828 if (vcpu->arch.exception.pending) {
5829 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5830 vcpu->arch.exception.has_error_code,
5831 vcpu->arch.exception.error_code);
5832
5833 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
5834 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
5835 X86_EFLAGS_RF);
5836
5837 if (vcpu->arch.exception.nr == DB_VECTOR &&
5838 (vcpu->arch.dr7 & DR7_GD)) {
5839 vcpu->arch.dr7 &= ~DR7_GD;
5840 kvm_update_dr7(vcpu);
5841 }
5842
5843 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5844 vcpu->arch.exception.has_error_code,
5845 vcpu->arch.exception.error_code,
5846 vcpu->arch.exception.reinject);
5847 return 0;
5848 }
5849
5850 if (vcpu->arch.nmi_injected) {
5851 kvm_x86_ops->set_nmi(vcpu);
5852 return 0;
5853 }
5854
5855 if (vcpu->arch.interrupt.pending) {
5856 kvm_x86_ops->set_irq(vcpu);
5857 return 0;
5858 }
5859
5860 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
5861 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
5862 if (r != 0)
5863 return r;
5864 }
5865
5866 /* try to inject new event if pending */
5867 if (vcpu->arch.nmi_pending) {
5868 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5869 --vcpu->arch.nmi_pending;
5870 vcpu->arch.nmi_injected = true;
5871 kvm_x86_ops->set_nmi(vcpu);
5872 }
5873 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
5874 /*
5875 * Because interrupts can be injected asynchronously, we are
5876 * calling check_nested_events again here to avoid a race condition.
5877 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
5878 * proposal and current concerns. Perhaps we should be setting
5879 * KVM_REQ_EVENT only on certain events and not unconditionally?
5880 */
5881 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
5882 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
5883 if (r != 0)
5884 return r;
5885 }
5886 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5887 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5888 false);
5889 kvm_x86_ops->set_irq(vcpu);
5890 }
5891 }
5892 return 0;
5893 }
5894
5895 static void process_nmi(struct kvm_vcpu *vcpu)
5896 {
5897 unsigned limit = 2;
5898
5899 /*
5900 * x86 is limited to one NMI running, and one NMI pending after it.
5901 * If an NMI is already in progress, limit further NMIs to just one.
5902 * Otherwise, allow two (and we'll inject the first one immediately).
5903 */
5904 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5905 limit = 1;
5906
5907 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5908 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5909 kvm_make_request(KVM_REQ_EVENT, vcpu);
5910 }
5911
5912 #define put_smstate(type, buf, offset, val) \
5913 *(type *)((buf) + (offset) - 0x7e00) = val
5914
5915 static u32 process_smi_get_segment_flags(struct kvm_segment *seg)
5916 {
5917 u32 flags = 0;
5918 flags |= seg->g << 23;
5919 flags |= seg->db << 22;
5920 flags |= seg->l << 21;
5921 flags |= seg->avl << 20;
5922 flags |= seg->present << 15;
5923 flags |= seg->dpl << 13;
5924 flags |= seg->s << 12;
5925 flags |= seg->type << 8;
5926 return flags;
5927 }
5928
5929 static void process_smi_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
5930 {
5931 struct kvm_segment seg;
5932 int offset;
5933
5934 kvm_get_segment(vcpu, &seg, n);
5935 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
5936
5937 if (n < 3)
5938 offset = 0x7f84 + n * 12;
5939 else
5940 offset = 0x7f2c + (n - 3) * 12;
5941
5942 put_smstate(u32, buf, offset + 8, seg.base);
5943 put_smstate(u32, buf, offset + 4, seg.limit);
5944 put_smstate(u32, buf, offset, process_smi_get_segment_flags(&seg));
5945 }
5946
5947 static void process_smi_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
5948 {
5949 struct kvm_segment seg;
5950 int offset;
5951 u16 flags;
5952
5953 kvm_get_segment(vcpu, &seg, n);
5954 offset = 0x7e00 + n * 16;
5955
5956 flags = process_smi_get_segment_flags(&seg) >> 8;
5957 put_smstate(u16, buf, offset, seg.selector);
5958 put_smstate(u16, buf, offset + 2, flags);
5959 put_smstate(u32, buf, offset + 4, seg.limit);
5960 put_smstate(u64, buf, offset + 8, seg.base);
5961 }
5962
5963 static void process_smi_save_state_32(struct kvm_vcpu *vcpu, char *buf)
5964 {
5965 struct desc_ptr dt;
5966 struct kvm_segment seg;
5967 unsigned long val;
5968 int i;
5969
5970 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
5971 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
5972 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
5973 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
5974
5975 for (i = 0; i < 8; i++)
5976 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
5977
5978 kvm_get_dr(vcpu, 6, &val);
5979 put_smstate(u32, buf, 0x7fcc, (u32)val);
5980 kvm_get_dr(vcpu, 7, &val);
5981 put_smstate(u32, buf, 0x7fc8, (u32)val);
5982
5983 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
5984 put_smstate(u32, buf, 0x7fc4, seg.selector);
5985 put_smstate(u32, buf, 0x7f64, seg.base);
5986 put_smstate(u32, buf, 0x7f60, seg.limit);
5987 put_smstate(u32, buf, 0x7f5c, process_smi_get_segment_flags(&seg));
5988
5989 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
5990 put_smstate(u32, buf, 0x7fc0, seg.selector);
5991 put_smstate(u32, buf, 0x7f80, seg.base);
5992 put_smstate(u32, buf, 0x7f7c, seg.limit);
5993 put_smstate(u32, buf, 0x7f78, process_smi_get_segment_flags(&seg));
5994
5995 kvm_x86_ops->get_gdt(vcpu, &dt);
5996 put_smstate(u32, buf, 0x7f74, dt.address);
5997 put_smstate(u32, buf, 0x7f70, dt.size);
5998
5999 kvm_x86_ops->get_idt(vcpu, &dt);
6000 put_smstate(u32, buf, 0x7f58, dt.address);
6001 put_smstate(u32, buf, 0x7f54, dt.size);
6002
6003 for (i = 0; i < 6; i++)
6004 process_smi_save_seg_32(vcpu, buf, i);
6005
6006 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6007
6008 /* revision id */
6009 put_smstate(u32, buf, 0x7efc, 0x00020000);
6010 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6011 }
6012
6013 static void process_smi_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6014 {
6015 #ifdef CONFIG_X86_64
6016 struct desc_ptr dt;
6017 struct kvm_segment seg;
6018 unsigned long val;
6019 int i;
6020
6021 for (i = 0; i < 16; i++)
6022 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6023
6024 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6025 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6026
6027 kvm_get_dr(vcpu, 6, &val);
6028 put_smstate(u64, buf, 0x7f68, val);
6029 kvm_get_dr(vcpu, 7, &val);
6030 put_smstate(u64, buf, 0x7f60, val);
6031
6032 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6033 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6034 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6035
6036 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6037
6038 /* revision id */
6039 put_smstate(u32, buf, 0x7efc, 0x00020064);
6040
6041 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6042
6043 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6044 put_smstate(u16, buf, 0x7e90, seg.selector);
6045 put_smstate(u16, buf, 0x7e92, process_smi_get_segment_flags(&seg) >> 8);
6046 put_smstate(u32, buf, 0x7e94, seg.limit);
6047 put_smstate(u64, buf, 0x7e98, seg.base);
6048
6049 kvm_x86_ops->get_idt(vcpu, &dt);
6050 put_smstate(u32, buf, 0x7e84, dt.size);
6051 put_smstate(u64, buf, 0x7e88, dt.address);
6052
6053 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6054 put_smstate(u16, buf, 0x7e70, seg.selector);
6055 put_smstate(u16, buf, 0x7e72, process_smi_get_segment_flags(&seg) >> 8);
6056 put_smstate(u32, buf, 0x7e74, seg.limit);
6057 put_smstate(u64, buf, 0x7e78, seg.base);
6058
6059 kvm_x86_ops->get_gdt(vcpu, &dt);
6060 put_smstate(u32, buf, 0x7e64, dt.size);
6061 put_smstate(u64, buf, 0x7e68, dt.address);
6062
6063 for (i = 0; i < 6; i++)
6064 process_smi_save_seg_64(vcpu, buf, i);
6065 #else
6066 WARN_ON_ONCE(1);
6067 #endif
6068 }
6069
6070 static void process_smi(struct kvm_vcpu *vcpu)
6071 {
6072 struct kvm_segment cs, ds;
6073 char buf[512];
6074 u32 cr0;
6075
6076 if (is_smm(vcpu)) {
6077 vcpu->arch.smi_pending = true;
6078 return;
6079 }
6080
6081 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6082 vcpu->arch.hflags |= HF_SMM_MASK;
6083 memset(buf, 0, 512);
6084 if (guest_cpuid_has_longmode(vcpu))
6085 process_smi_save_state_64(vcpu, buf);
6086 else
6087 process_smi_save_state_32(vcpu, buf);
6088
6089 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6090
6091 if (kvm_x86_ops->get_nmi_mask(vcpu))
6092 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6093 else
6094 kvm_x86_ops->set_nmi_mask(vcpu, true);
6095
6096 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6097 kvm_rip_write(vcpu, 0x8000);
6098
6099 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6100 kvm_x86_ops->set_cr0(vcpu, cr0);
6101 vcpu->arch.cr0 = cr0;
6102
6103 kvm_x86_ops->set_cr4(vcpu, 0);
6104
6105 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6106
6107 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6108 cs.base = vcpu->arch.smbase;
6109
6110 ds.selector = 0;
6111 ds.base = 0;
6112
6113 cs.limit = ds.limit = 0xffffffff;
6114 cs.type = ds.type = 0x3;
6115 cs.dpl = ds.dpl = 0;
6116 cs.db = ds.db = 0;
6117 cs.s = ds.s = 1;
6118 cs.l = ds.l = 0;
6119 cs.g = ds.g = 1;
6120 cs.avl = ds.avl = 0;
6121 cs.present = ds.present = 1;
6122 cs.unusable = ds.unusable = 0;
6123 cs.padding = ds.padding = 0;
6124
6125 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6126 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6127 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6128 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6129 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6130 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6131
6132 if (guest_cpuid_has_longmode(vcpu))
6133 kvm_x86_ops->set_efer(vcpu, 0);
6134
6135 kvm_update_cpuid(vcpu);
6136 kvm_mmu_reset_context(vcpu);
6137 }
6138
6139 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6140 {
6141 u64 eoi_exit_bitmap[4];
6142 u32 tmr[8];
6143
6144 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6145 return;
6146
6147 memset(eoi_exit_bitmap, 0, 32);
6148 memset(tmr, 0, 32);
6149
6150 kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
6151 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6152 kvm_apic_update_tmr(vcpu, tmr);
6153 }
6154
6155 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6156 {
6157 ++vcpu->stat.tlb_flush;
6158 kvm_x86_ops->tlb_flush(vcpu);
6159 }
6160
6161 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6162 {
6163 struct page *page = NULL;
6164
6165 if (!irqchip_in_kernel(vcpu->kvm))
6166 return;
6167
6168 if (!kvm_x86_ops->set_apic_access_page_addr)
6169 return;
6170
6171 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6172 if (is_error_page(page))
6173 return;
6174 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6175
6176 /*
6177 * Do not pin apic access page in memory, the MMU notifier
6178 * will call us again if it is migrated or swapped out.
6179 */
6180 put_page(page);
6181 }
6182 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6183
6184 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6185 unsigned long address)
6186 {
6187 /*
6188 * The physical address of apic access page is stored in the VMCS.
6189 * Update it when it becomes invalid.
6190 */
6191 if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6192 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6193 }
6194
6195 /*
6196 * Returns 1 to let vcpu_run() continue the guest execution loop without
6197 * exiting to the userspace. Otherwise, the value will be returned to the
6198 * userspace.
6199 */
6200 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6201 {
6202 int r;
6203 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
6204 vcpu->run->request_interrupt_window;
6205 bool req_immediate_exit = false;
6206
6207 if (vcpu->requests) {
6208 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6209 kvm_mmu_unload(vcpu);
6210 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6211 __kvm_migrate_timers(vcpu);
6212 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6213 kvm_gen_update_masterclock(vcpu->kvm);
6214 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6215 kvm_gen_kvmclock_update(vcpu);
6216 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6217 r = kvm_guest_time_update(vcpu);
6218 if (unlikely(r))
6219 goto out;
6220 }
6221 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6222 kvm_mmu_sync_roots(vcpu);
6223 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6224 kvm_vcpu_flush_tlb(vcpu);
6225 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6226 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6227 r = 0;
6228 goto out;
6229 }
6230 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6231 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6232 r = 0;
6233 goto out;
6234 }
6235 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6236 vcpu->fpu_active = 0;
6237 kvm_x86_ops->fpu_deactivate(vcpu);
6238 }
6239 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6240 /* Page is swapped out. Do synthetic halt */
6241 vcpu->arch.apf.halted = true;
6242 r = 1;
6243 goto out;
6244 }
6245 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6246 record_steal_time(vcpu);
6247 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6248 process_smi(vcpu);
6249 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6250 process_nmi(vcpu);
6251 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6252 kvm_pmu_handle_event(vcpu);
6253 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6254 kvm_pmu_deliver_pmi(vcpu);
6255 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6256 vcpu_scan_ioapic(vcpu);
6257 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6258 kvm_vcpu_reload_apic_access_page(vcpu);
6259 }
6260
6261 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6262 kvm_apic_accept_events(vcpu);
6263 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6264 r = 1;
6265 goto out;
6266 }
6267
6268 if (inject_pending_event(vcpu, req_int_win) != 0)
6269 req_immediate_exit = true;
6270 /* enable NMI/IRQ window open exits if needed */
6271 else if (vcpu->arch.nmi_pending)
6272 kvm_x86_ops->enable_nmi_window(vcpu);
6273 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6274 kvm_x86_ops->enable_irq_window(vcpu);
6275
6276 if (kvm_lapic_enabled(vcpu)) {
6277 /*
6278 * Update architecture specific hints for APIC
6279 * virtual interrupt delivery.
6280 */
6281 if (kvm_x86_ops->hwapic_irr_update)
6282 kvm_x86_ops->hwapic_irr_update(vcpu,
6283 kvm_lapic_find_highest_irr(vcpu));
6284 update_cr8_intercept(vcpu);
6285 kvm_lapic_sync_to_vapic(vcpu);
6286 }
6287 }
6288
6289 r = kvm_mmu_reload(vcpu);
6290 if (unlikely(r)) {
6291 goto cancel_injection;
6292 }
6293
6294 preempt_disable();
6295
6296 kvm_x86_ops->prepare_guest_switch(vcpu);
6297 if (vcpu->fpu_active)
6298 kvm_load_guest_fpu(vcpu);
6299 kvm_load_guest_xcr0(vcpu);
6300
6301 vcpu->mode = IN_GUEST_MODE;
6302
6303 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6304
6305 /* We should set ->mode before check ->requests,
6306 * see the comment in make_all_cpus_request.
6307 */
6308 smp_mb__after_srcu_read_unlock();
6309
6310 local_irq_disable();
6311
6312 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6313 || need_resched() || signal_pending(current)) {
6314 vcpu->mode = OUTSIDE_GUEST_MODE;
6315 smp_wmb();
6316 local_irq_enable();
6317 preempt_enable();
6318 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6319 r = 1;
6320 goto cancel_injection;
6321 }
6322
6323 if (req_immediate_exit)
6324 smp_send_reschedule(vcpu->cpu);
6325
6326 __kvm_guest_enter();
6327
6328 if (unlikely(vcpu->arch.switch_db_regs)) {
6329 set_debugreg(0, 7);
6330 set_debugreg(vcpu->arch.eff_db[0], 0);
6331 set_debugreg(vcpu->arch.eff_db[1], 1);
6332 set_debugreg(vcpu->arch.eff_db[2], 2);
6333 set_debugreg(vcpu->arch.eff_db[3], 3);
6334 set_debugreg(vcpu->arch.dr6, 6);
6335 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6336 }
6337
6338 trace_kvm_entry(vcpu->vcpu_id);
6339 wait_lapic_expire(vcpu);
6340 kvm_x86_ops->run(vcpu);
6341
6342 /*
6343 * Do this here before restoring debug registers on the host. And
6344 * since we do this before handling the vmexit, a DR access vmexit
6345 * can (a) read the correct value of the debug registers, (b) set
6346 * KVM_DEBUGREG_WONT_EXIT again.
6347 */
6348 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6349 int i;
6350
6351 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6352 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6353 for (i = 0; i < KVM_NR_DB_REGS; i++)
6354 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6355 }
6356
6357 /*
6358 * If the guest has used debug registers, at least dr7
6359 * will be disabled while returning to the host.
6360 * If we don't have active breakpoints in the host, we don't
6361 * care about the messed up debug address registers. But if
6362 * we have some of them active, restore the old state.
6363 */
6364 if (hw_breakpoint_active())
6365 hw_breakpoint_restore();
6366
6367 vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
6368 native_read_tsc());
6369
6370 vcpu->mode = OUTSIDE_GUEST_MODE;
6371 smp_wmb();
6372
6373 /* Interrupt is enabled by handle_external_intr() */
6374 kvm_x86_ops->handle_external_intr(vcpu);
6375
6376 ++vcpu->stat.exits;
6377
6378 /*
6379 * We must have an instruction between local_irq_enable() and
6380 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6381 * the interrupt shadow. The stat.exits increment will do nicely.
6382 * But we need to prevent reordering, hence this barrier():
6383 */
6384 barrier();
6385
6386 kvm_guest_exit();
6387
6388 preempt_enable();
6389
6390 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6391
6392 /*
6393 * Profile KVM exit RIPs:
6394 */
6395 if (unlikely(prof_on == KVM_PROFILING)) {
6396 unsigned long rip = kvm_rip_read(vcpu);
6397 profile_hit(KVM_PROFILING, (void *)rip);
6398 }
6399
6400 if (unlikely(vcpu->arch.tsc_always_catchup))
6401 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6402
6403 if (vcpu->arch.apic_attention)
6404 kvm_lapic_sync_from_vapic(vcpu);
6405
6406 r = kvm_x86_ops->handle_exit(vcpu);
6407 return r;
6408
6409 cancel_injection:
6410 kvm_x86_ops->cancel_injection(vcpu);
6411 if (unlikely(vcpu->arch.apic_attention))
6412 kvm_lapic_sync_from_vapic(vcpu);
6413 out:
6414 return r;
6415 }
6416
6417 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6418 {
6419 if (!kvm_arch_vcpu_runnable(vcpu)) {
6420 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6421 kvm_vcpu_block(vcpu);
6422 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6423 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6424 return 1;
6425 }
6426
6427 kvm_apic_accept_events(vcpu);
6428 switch(vcpu->arch.mp_state) {
6429 case KVM_MP_STATE_HALTED:
6430 vcpu->arch.pv.pv_unhalted = false;
6431 vcpu->arch.mp_state =
6432 KVM_MP_STATE_RUNNABLE;
6433 case KVM_MP_STATE_RUNNABLE:
6434 vcpu->arch.apf.halted = false;
6435 break;
6436 case KVM_MP_STATE_INIT_RECEIVED:
6437 break;
6438 default:
6439 return -EINTR;
6440 break;
6441 }
6442 return 1;
6443 }
6444
6445 static int vcpu_run(struct kvm_vcpu *vcpu)
6446 {
6447 int r;
6448 struct kvm *kvm = vcpu->kvm;
6449
6450 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6451
6452 for (;;) {
6453 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6454 !vcpu->arch.apf.halted)
6455 r = vcpu_enter_guest(vcpu);
6456 else
6457 r = vcpu_block(kvm, vcpu);
6458 if (r <= 0)
6459 break;
6460
6461 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6462 if (kvm_cpu_has_pending_timer(vcpu))
6463 kvm_inject_pending_timer_irqs(vcpu);
6464
6465 if (dm_request_for_irq_injection(vcpu)) {
6466 r = -EINTR;
6467 vcpu->run->exit_reason = KVM_EXIT_INTR;
6468 ++vcpu->stat.request_irq_exits;
6469 break;
6470 }
6471
6472 kvm_check_async_pf_completion(vcpu);
6473
6474 if (signal_pending(current)) {
6475 r = -EINTR;
6476 vcpu->run->exit_reason = KVM_EXIT_INTR;
6477 ++vcpu->stat.signal_exits;
6478 break;
6479 }
6480 if (need_resched()) {
6481 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6482 cond_resched();
6483 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6484 }
6485 }
6486
6487 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6488
6489 return r;
6490 }
6491
6492 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6493 {
6494 int r;
6495 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6496 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6497 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6498 if (r != EMULATE_DONE)
6499 return 0;
6500 return 1;
6501 }
6502
6503 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6504 {
6505 BUG_ON(!vcpu->arch.pio.count);
6506
6507 return complete_emulated_io(vcpu);
6508 }
6509
6510 /*
6511 * Implements the following, as a state machine:
6512 *
6513 * read:
6514 * for each fragment
6515 * for each mmio piece in the fragment
6516 * write gpa, len
6517 * exit
6518 * copy data
6519 * execute insn
6520 *
6521 * write:
6522 * for each fragment
6523 * for each mmio piece in the fragment
6524 * write gpa, len
6525 * copy data
6526 * exit
6527 */
6528 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6529 {
6530 struct kvm_run *run = vcpu->run;
6531 struct kvm_mmio_fragment *frag;
6532 unsigned len;
6533
6534 BUG_ON(!vcpu->mmio_needed);
6535
6536 /* Complete previous fragment */
6537 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6538 len = min(8u, frag->len);
6539 if (!vcpu->mmio_is_write)
6540 memcpy(frag->data, run->mmio.data, len);
6541
6542 if (frag->len <= 8) {
6543 /* Switch to the next fragment. */
6544 frag++;
6545 vcpu->mmio_cur_fragment++;
6546 } else {
6547 /* Go forward to the next mmio piece. */
6548 frag->data += len;
6549 frag->gpa += len;
6550 frag->len -= len;
6551 }
6552
6553 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6554 vcpu->mmio_needed = 0;
6555
6556 /* FIXME: return into emulator if single-stepping. */
6557 if (vcpu->mmio_is_write)
6558 return 1;
6559 vcpu->mmio_read_completed = 1;
6560 return complete_emulated_io(vcpu);
6561 }
6562
6563 run->exit_reason = KVM_EXIT_MMIO;
6564 run->mmio.phys_addr = frag->gpa;
6565 if (vcpu->mmio_is_write)
6566 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6567 run->mmio.len = min(8u, frag->len);
6568 run->mmio.is_write = vcpu->mmio_is_write;
6569 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6570 return 0;
6571 }
6572
6573
6574 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6575 {
6576 struct fpu *fpu = &current->thread.fpu;
6577 int r;
6578 sigset_t sigsaved;
6579
6580 fpu__activate_curr(fpu);
6581
6582 if (vcpu->sigset_active)
6583 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6584
6585 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6586 kvm_vcpu_block(vcpu);
6587 kvm_apic_accept_events(vcpu);
6588 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6589 r = -EAGAIN;
6590 goto out;
6591 }
6592
6593 /* re-sync apic's tpr */
6594 if (!irqchip_in_kernel(vcpu->kvm)) {
6595 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6596 r = -EINVAL;
6597 goto out;
6598 }
6599 }
6600
6601 if (unlikely(vcpu->arch.complete_userspace_io)) {
6602 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6603 vcpu->arch.complete_userspace_io = NULL;
6604 r = cui(vcpu);
6605 if (r <= 0)
6606 goto out;
6607 } else
6608 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6609
6610 r = vcpu_run(vcpu);
6611
6612 out:
6613 post_kvm_run_save(vcpu);
6614 if (vcpu->sigset_active)
6615 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6616
6617 return r;
6618 }
6619
6620 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6621 {
6622 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6623 /*
6624 * We are here if userspace calls get_regs() in the middle of
6625 * instruction emulation. Registers state needs to be copied
6626 * back from emulation context to vcpu. Userspace shouldn't do
6627 * that usually, but some bad designed PV devices (vmware
6628 * backdoor interface) need this to work
6629 */
6630 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6631 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6632 }
6633 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6634 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6635 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6636 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6637 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6638 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6639 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6640 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6641 #ifdef CONFIG_X86_64
6642 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6643 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6644 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6645 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6646 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6647 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6648 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6649 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6650 #endif
6651
6652 regs->rip = kvm_rip_read(vcpu);
6653 regs->rflags = kvm_get_rflags(vcpu);
6654
6655 return 0;
6656 }
6657
6658 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6659 {
6660 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6661 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6662
6663 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6664 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6665 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6666 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6667 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6668 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6669 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6670 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6671 #ifdef CONFIG_X86_64
6672 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6673 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6674 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6675 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6676 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6677 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6678 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6679 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6680 #endif
6681
6682 kvm_rip_write(vcpu, regs->rip);
6683 kvm_set_rflags(vcpu, regs->rflags);
6684
6685 vcpu->arch.exception.pending = false;
6686
6687 kvm_make_request(KVM_REQ_EVENT, vcpu);
6688
6689 return 0;
6690 }
6691
6692 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6693 {
6694 struct kvm_segment cs;
6695
6696 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6697 *db = cs.db;
6698 *l = cs.l;
6699 }
6700 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6701
6702 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6703 struct kvm_sregs *sregs)
6704 {
6705 struct desc_ptr dt;
6706
6707 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6708 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6709 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6710 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6711 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6712 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6713
6714 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6715 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6716
6717 kvm_x86_ops->get_idt(vcpu, &dt);
6718 sregs->idt.limit = dt.size;
6719 sregs->idt.base = dt.address;
6720 kvm_x86_ops->get_gdt(vcpu, &dt);
6721 sregs->gdt.limit = dt.size;
6722 sregs->gdt.base = dt.address;
6723
6724 sregs->cr0 = kvm_read_cr0(vcpu);
6725 sregs->cr2 = vcpu->arch.cr2;
6726 sregs->cr3 = kvm_read_cr3(vcpu);
6727 sregs->cr4 = kvm_read_cr4(vcpu);
6728 sregs->cr8 = kvm_get_cr8(vcpu);
6729 sregs->efer = vcpu->arch.efer;
6730 sregs->apic_base = kvm_get_apic_base(vcpu);
6731
6732 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6733
6734 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6735 set_bit(vcpu->arch.interrupt.nr,
6736 (unsigned long *)sregs->interrupt_bitmap);
6737
6738 return 0;
6739 }
6740
6741 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6742 struct kvm_mp_state *mp_state)
6743 {
6744 kvm_apic_accept_events(vcpu);
6745 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6746 vcpu->arch.pv.pv_unhalted)
6747 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6748 else
6749 mp_state->mp_state = vcpu->arch.mp_state;
6750
6751 return 0;
6752 }
6753
6754 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6755 struct kvm_mp_state *mp_state)
6756 {
6757 if (!kvm_vcpu_has_lapic(vcpu) &&
6758 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6759 return -EINVAL;
6760
6761 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6762 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6763 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6764 } else
6765 vcpu->arch.mp_state = mp_state->mp_state;
6766 kvm_make_request(KVM_REQ_EVENT, vcpu);
6767 return 0;
6768 }
6769
6770 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6771 int reason, bool has_error_code, u32 error_code)
6772 {
6773 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6774 int ret;
6775
6776 init_emulate_ctxt(vcpu);
6777
6778 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6779 has_error_code, error_code);
6780
6781 if (ret)
6782 return EMULATE_FAIL;
6783
6784 kvm_rip_write(vcpu, ctxt->eip);
6785 kvm_set_rflags(vcpu, ctxt->eflags);
6786 kvm_make_request(KVM_REQ_EVENT, vcpu);
6787 return EMULATE_DONE;
6788 }
6789 EXPORT_SYMBOL_GPL(kvm_task_switch);
6790
6791 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6792 struct kvm_sregs *sregs)
6793 {
6794 struct msr_data apic_base_msr;
6795 int mmu_reset_needed = 0;
6796 int pending_vec, max_bits, idx;
6797 struct desc_ptr dt;
6798
6799 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6800 return -EINVAL;
6801
6802 dt.size = sregs->idt.limit;
6803 dt.address = sregs->idt.base;
6804 kvm_x86_ops->set_idt(vcpu, &dt);
6805 dt.size = sregs->gdt.limit;
6806 dt.address = sregs->gdt.base;
6807 kvm_x86_ops->set_gdt(vcpu, &dt);
6808
6809 vcpu->arch.cr2 = sregs->cr2;
6810 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6811 vcpu->arch.cr3 = sregs->cr3;
6812 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6813
6814 kvm_set_cr8(vcpu, sregs->cr8);
6815
6816 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6817 kvm_x86_ops->set_efer(vcpu, sregs->efer);
6818 apic_base_msr.data = sregs->apic_base;
6819 apic_base_msr.host_initiated = true;
6820 kvm_set_apic_base(vcpu, &apic_base_msr);
6821
6822 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6823 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6824 vcpu->arch.cr0 = sregs->cr0;
6825
6826 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6827 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6828 if (sregs->cr4 & X86_CR4_OSXSAVE)
6829 kvm_update_cpuid(vcpu);
6830
6831 idx = srcu_read_lock(&vcpu->kvm->srcu);
6832 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6833 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6834 mmu_reset_needed = 1;
6835 }
6836 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6837
6838 if (mmu_reset_needed)
6839 kvm_mmu_reset_context(vcpu);
6840
6841 max_bits = KVM_NR_INTERRUPTS;
6842 pending_vec = find_first_bit(
6843 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6844 if (pending_vec < max_bits) {
6845 kvm_queue_interrupt(vcpu, pending_vec, false);
6846 pr_debug("Set back pending irq %d\n", pending_vec);
6847 }
6848
6849 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6850 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6851 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6852 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6853 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6854 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6855
6856 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6857 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6858
6859 update_cr8_intercept(vcpu);
6860
6861 /* Older userspace won't unhalt the vcpu on reset. */
6862 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6863 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6864 !is_protmode(vcpu))
6865 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6866
6867 kvm_make_request(KVM_REQ_EVENT, vcpu);
6868
6869 return 0;
6870 }
6871
6872 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6873 struct kvm_guest_debug *dbg)
6874 {
6875 unsigned long rflags;
6876 int i, r;
6877
6878 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6879 r = -EBUSY;
6880 if (vcpu->arch.exception.pending)
6881 goto out;
6882 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6883 kvm_queue_exception(vcpu, DB_VECTOR);
6884 else
6885 kvm_queue_exception(vcpu, BP_VECTOR);
6886 }
6887
6888 /*
6889 * Read rflags as long as potentially injected trace flags are still
6890 * filtered out.
6891 */
6892 rflags = kvm_get_rflags(vcpu);
6893
6894 vcpu->guest_debug = dbg->control;
6895 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6896 vcpu->guest_debug = 0;
6897
6898 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6899 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6900 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6901 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6902 } else {
6903 for (i = 0; i < KVM_NR_DB_REGS; i++)
6904 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6905 }
6906 kvm_update_dr7(vcpu);
6907
6908 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6909 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6910 get_segment_base(vcpu, VCPU_SREG_CS);
6911
6912 /*
6913 * Trigger an rflags update that will inject or remove the trace
6914 * flags.
6915 */
6916 kvm_set_rflags(vcpu, rflags);
6917
6918 kvm_x86_ops->update_db_bp_intercept(vcpu);
6919
6920 r = 0;
6921
6922 out:
6923
6924 return r;
6925 }
6926
6927 /*
6928 * Translate a guest virtual address to a guest physical address.
6929 */
6930 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6931 struct kvm_translation *tr)
6932 {
6933 unsigned long vaddr = tr->linear_address;
6934 gpa_t gpa;
6935 int idx;
6936
6937 idx = srcu_read_lock(&vcpu->kvm->srcu);
6938 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6939 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6940 tr->physical_address = gpa;
6941 tr->valid = gpa != UNMAPPED_GVA;
6942 tr->writeable = 1;
6943 tr->usermode = 0;
6944
6945 return 0;
6946 }
6947
6948 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6949 {
6950 struct fxregs_state *fxsave =
6951 &vcpu->arch.guest_fpu.state.fxsave;
6952
6953 memcpy(fpu->fpr, fxsave->st_space, 128);
6954 fpu->fcw = fxsave->cwd;
6955 fpu->fsw = fxsave->swd;
6956 fpu->ftwx = fxsave->twd;
6957 fpu->last_opcode = fxsave->fop;
6958 fpu->last_ip = fxsave->rip;
6959 fpu->last_dp = fxsave->rdp;
6960 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6961
6962 return 0;
6963 }
6964
6965 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6966 {
6967 struct fxregs_state *fxsave =
6968 &vcpu->arch.guest_fpu.state.fxsave;
6969
6970 memcpy(fxsave->st_space, fpu->fpr, 128);
6971 fxsave->cwd = fpu->fcw;
6972 fxsave->swd = fpu->fsw;
6973 fxsave->twd = fpu->ftwx;
6974 fxsave->fop = fpu->last_opcode;
6975 fxsave->rip = fpu->last_ip;
6976 fxsave->rdp = fpu->last_dp;
6977 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6978
6979 return 0;
6980 }
6981
6982 static void fx_init(struct kvm_vcpu *vcpu)
6983 {
6984 fpstate_init(&vcpu->arch.guest_fpu.state);
6985 if (cpu_has_xsaves)
6986 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
6987 host_xcr0 | XSTATE_COMPACTION_ENABLED;
6988
6989 /*
6990 * Ensure guest xcr0 is valid for loading
6991 */
6992 vcpu->arch.xcr0 = XSTATE_FP;
6993
6994 vcpu->arch.cr0 |= X86_CR0_ET;
6995 }
6996
6997 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6998 {
6999 if (vcpu->guest_fpu_loaded)
7000 return;
7001
7002 /*
7003 * Restore all possible states in the guest,
7004 * and assume host would use all available bits.
7005 * Guest xcr0 would be loaded later.
7006 */
7007 kvm_put_guest_xcr0(vcpu);
7008 vcpu->guest_fpu_loaded = 1;
7009 __kernel_fpu_begin();
7010 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7011 trace_kvm_fpu(1);
7012 }
7013
7014 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7015 {
7016 kvm_put_guest_xcr0(vcpu);
7017
7018 if (!vcpu->guest_fpu_loaded) {
7019 vcpu->fpu_counter = 0;
7020 return;
7021 }
7022
7023 vcpu->guest_fpu_loaded = 0;
7024 copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7025 __kernel_fpu_end();
7026 ++vcpu->stat.fpu_reload;
7027 /*
7028 * If using eager FPU mode, or if the guest is a frequent user
7029 * of the FPU, just leave the FPU active for next time.
7030 * Every 255 times fpu_counter rolls over to 0; a guest that uses
7031 * the FPU in bursts will revert to loading it on demand.
7032 */
7033 if (!vcpu->arch.eager_fpu) {
7034 if (++vcpu->fpu_counter < 5)
7035 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7036 }
7037 trace_kvm_fpu(0);
7038 }
7039
7040 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7041 {
7042 kvmclock_reset(vcpu);
7043
7044 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7045 kvm_x86_ops->vcpu_free(vcpu);
7046 }
7047
7048 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7049 unsigned int id)
7050 {
7051 struct kvm_vcpu *vcpu;
7052
7053 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7054 printk_once(KERN_WARNING
7055 "kvm: SMP vm created on host with unstable TSC; "
7056 "guest TSC will not be reliable\n");
7057
7058 vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7059
7060 return vcpu;
7061 }
7062
7063 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7064 {
7065 int r;
7066
7067 kvm_vcpu_mtrr_init(vcpu);
7068 r = vcpu_load(vcpu);
7069 if (r)
7070 return r;
7071 kvm_vcpu_reset(vcpu, false);
7072 kvm_mmu_setup(vcpu);
7073 vcpu_put(vcpu);
7074 return r;
7075 }
7076
7077 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7078 {
7079 struct msr_data msr;
7080 struct kvm *kvm = vcpu->kvm;
7081
7082 if (vcpu_load(vcpu))
7083 return;
7084 msr.data = 0x0;
7085 msr.index = MSR_IA32_TSC;
7086 msr.host_initiated = true;
7087 kvm_write_tsc(vcpu, &msr);
7088 vcpu_put(vcpu);
7089
7090 if (!kvmclock_periodic_sync)
7091 return;
7092
7093 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7094 KVMCLOCK_SYNC_PERIOD);
7095 }
7096
7097 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7098 {
7099 int r;
7100 vcpu->arch.apf.msr_val = 0;
7101
7102 r = vcpu_load(vcpu);
7103 BUG_ON(r);
7104 kvm_mmu_unload(vcpu);
7105 vcpu_put(vcpu);
7106
7107 kvm_x86_ops->vcpu_free(vcpu);
7108 }
7109
7110 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7111 {
7112 vcpu->arch.hflags = 0;
7113
7114 atomic_set(&vcpu->arch.nmi_queued, 0);
7115 vcpu->arch.nmi_pending = 0;
7116 vcpu->arch.nmi_injected = false;
7117 kvm_clear_interrupt_queue(vcpu);
7118 kvm_clear_exception_queue(vcpu);
7119
7120 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7121 kvm_update_dr0123(vcpu);
7122 vcpu->arch.dr6 = DR6_INIT;
7123 kvm_update_dr6(vcpu);
7124 vcpu->arch.dr7 = DR7_FIXED_1;
7125 kvm_update_dr7(vcpu);
7126
7127 vcpu->arch.cr2 = 0;
7128
7129 kvm_make_request(KVM_REQ_EVENT, vcpu);
7130 vcpu->arch.apf.msr_val = 0;
7131 vcpu->arch.st.msr_val = 0;
7132
7133 kvmclock_reset(vcpu);
7134
7135 kvm_clear_async_pf_completion_queue(vcpu);
7136 kvm_async_pf_hash_reset(vcpu);
7137 vcpu->arch.apf.halted = false;
7138
7139 if (!init_event) {
7140 kvm_pmu_reset(vcpu);
7141 vcpu->arch.smbase = 0x30000;
7142 }
7143
7144 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7145 vcpu->arch.regs_avail = ~0;
7146 vcpu->arch.regs_dirty = ~0;
7147
7148 kvm_x86_ops->vcpu_reset(vcpu, init_event);
7149 }
7150
7151 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7152 {
7153 struct kvm_segment cs;
7154
7155 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7156 cs.selector = vector << 8;
7157 cs.base = vector << 12;
7158 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7159 kvm_rip_write(vcpu, 0);
7160 }
7161
7162 int kvm_arch_hardware_enable(void)
7163 {
7164 struct kvm *kvm;
7165 struct kvm_vcpu *vcpu;
7166 int i;
7167 int ret;
7168 u64 local_tsc;
7169 u64 max_tsc = 0;
7170 bool stable, backwards_tsc = false;
7171
7172 kvm_shared_msr_cpu_online();
7173 ret = kvm_x86_ops->hardware_enable();
7174 if (ret != 0)
7175 return ret;
7176
7177 local_tsc = native_read_tsc();
7178 stable = !check_tsc_unstable();
7179 list_for_each_entry(kvm, &vm_list, vm_list) {
7180 kvm_for_each_vcpu(i, vcpu, kvm) {
7181 if (!stable && vcpu->cpu == smp_processor_id())
7182 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7183 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7184 backwards_tsc = true;
7185 if (vcpu->arch.last_host_tsc > max_tsc)
7186 max_tsc = vcpu->arch.last_host_tsc;
7187 }
7188 }
7189 }
7190
7191 /*
7192 * Sometimes, even reliable TSCs go backwards. This happens on
7193 * platforms that reset TSC during suspend or hibernate actions, but
7194 * maintain synchronization. We must compensate. Fortunately, we can
7195 * detect that condition here, which happens early in CPU bringup,
7196 * before any KVM threads can be running. Unfortunately, we can't
7197 * bring the TSCs fully up to date with real time, as we aren't yet far
7198 * enough into CPU bringup that we know how much real time has actually
7199 * elapsed; our helper function, get_kernel_ns() will be using boot
7200 * variables that haven't been updated yet.
7201 *
7202 * So we simply find the maximum observed TSC above, then record the
7203 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
7204 * the adjustment will be applied. Note that we accumulate
7205 * adjustments, in case multiple suspend cycles happen before some VCPU
7206 * gets a chance to run again. In the event that no KVM threads get a
7207 * chance to run, we will miss the entire elapsed period, as we'll have
7208 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7209 * loose cycle time. This isn't too big a deal, since the loss will be
7210 * uniform across all VCPUs (not to mention the scenario is extremely
7211 * unlikely). It is possible that a second hibernate recovery happens
7212 * much faster than a first, causing the observed TSC here to be
7213 * smaller; this would require additional padding adjustment, which is
7214 * why we set last_host_tsc to the local tsc observed here.
7215 *
7216 * N.B. - this code below runs only on platforms with reliable TSC,
7217 * as that is the only way backwards_tsc is set above. Also note
7218 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7219 * have the same delta_cyc adjustment applied if backwards_tsc
7220 * is detected. Note further, this adjustment is only done once,
7221 * as we reset last_host_tsc on all VCPUs to stop this from being
7222 * called multiple times (one for each physical CPU bringup).
7223 *
7224 * Platforms with unreliable TSCs don't have to deal with this, they
7225 * will be compensated by the logic in vcpu_load, which sets the TSC to
7226 * catchup mode. This will catchup all VCPUs to real time, but cannot
7227 * guarantee that they stay in perfect synchronization.
7228 */
7229 if (backwards_tsc) {
7230 u64 delta_cyc = max_tsc - local_tsc;
7231 backwards_tsc_observed = true;
7232 list_for_each_entry(kvm, &vm_list, vm_list) {
7233 kvm_for_each_vcpu(i, vcpu, kvm) {
7234 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7235 vcpu->arch.last_host_tsc = local_tsc;
7236 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7237 }
7238
7239 /*
7240 * We have to disable TSC offset matching.. if you were
7241 * booting a VM while issuing an S4 host suspend....
7242 * you may have some problem. Solving this issue is
7243 * left as an exercise to the reader.
7244 */
7245 kvm->arch.last_tsc_nsec = 0;
7246 kvm->arch.last_tsc_write = 0;
7247 }
7248
7249 }
7250 return 0;
7251 }
7252
7253 void kvm_arch_hardware_disable(void)
7254 {
7255 kvm_x86_ops->hardware_disable();
7256 drop_user_return_notifiers();
7257 }
7258
7259 int kvm_arch_hardware_setup(void)
7260 {
7261 int r;
7262
7263 r = kvm_x86_ops->hardware_setup();
7264 if (r != 0)
7265 return r;
7266
7267 kvm_init_msr_list();
7268 return 0;
7269 }
7270
7271 void kvm_arch_hardware_unsetup(void)
7272 {
7273 kvm_x86_ops->hardware_unsetup();
7274 }
7275
7276 void kvm_arch_check_processor_compat(void *rtn)
7277 {
7278 kvm_x86_ops->check_processor_compatibility(rtn);
7279 }
7280
7281 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7282 {
7283 return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
7284 }
7285
7286 struct static_key kvm_no_apic_vcpu __read_mostly;
7287
7288 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7289 {
7290 struct page *page;
7291 struct kvm *kvm;
7292 int r;
7293
7294 BUG_ON(vcpu->kvm == NULL);
7295 kvm = vcpu->kvm;
7296
7297 vcpu->arch.pv.pv_unhalted = false;
7298 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7299 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7300 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7301 else
7302 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7303
7304 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7305 if (!page) {
7306 r = -ENOMEM;
7307 goto fail;
7308 }
7309 vcpu->arch.pio_data = page_address(page);
7310
7311 kvm_set_tsc_khz(vcpu, max_tsc_khz);
7312
7313 r = kvm_mmu_create(vcpu);
7314 if (r < 0)
7315 goto fail_free_pio_data;
7316
7317 if (irqchip_in_kernel(kvm)) {
7318 r = kvm_create_lapic(vcpu);
7319 if (r < 0)
7320 goto fail_mmu_destroy;
7321 } else
7322 static_key_slow_inc(&kvm_no_apic_vcpu);
7323
7324 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7325 GFP_KERNEL);
7326 if (!vcpu->arch.mce_banks) {
7327 r = -ENOMEM;
7328 goto fail_free_lapic;
7329 }
7330 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7331
7332 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7333 r = -ENOMEM;
7334 goto fail_free_mce_banks;
7335 }
7336
7337 fx_init(vcpu);
7338
7339 vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7340 vcpu->arch.pv_time_enabled = false;
7341
7342 vcpu->arch.guest_supported_xcr0 = 0;
7343 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7344
7345 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7346
7347 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7348
7349 kvm_async_pf_hash_reset(vcpu);
7350 kvm_pmu_init(vcpu);
7351
7352 return 0;
7353
7354 fail_free_mce_banks:
7355 kfree(vcpu->arch.mce_banks);
7356 fail_free_lapic:
7357 kvm_free_lapic(vcpu);
7358 fail_mmu_destroy:
7359 kvm_mmu_destroy(vcpu);
7360 fail_free_pio_data:
7361 free_page((unsigned long)vcpu->arch.pio_data);
7362 fail:
7363 return r;
7364 }
7365
7366 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7367 {
7368 int idx;
7369
7370 kvm_pmu_destroy(vcpu);
7371 kfree(vcpu->arch.mce_banks);
7372 kvm_free_lapic(vcpu);
7373 idx = srcu_read_lock(&vcpu->kvm->srcu);
7374 kvm_mmu_destroy(vcpu);
7375 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7376 free_page((unsigned long)vcpu->arch.pio_data);
7377 if (!irqchip_in_kernel(vcpu->kvm))
7378 static_key_slow_dec(&kvm_no_apic_vcpu);
7379 }
7380
7381 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7382 {
7383 kvm_x86_ops->sched_in(vcpu, cpu);
7384 }
7385
7386 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7387 {
7388 if (type)
7389 return -EINVAL;
7390
7391 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7392 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7393 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7394 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7395 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7396
7397 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7398 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7399 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7400 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7401 &kvm->arch.irq_sources_bitmap);
7402
7403 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7404 mutex_init(&kvm->arch.apic_map_lock);
7405 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7406
7407 pvclock_update_vm_gtod_copy(kvm);
7408
7409 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7410 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7411
7412 return 0;
7413 }
7414
7415 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7416 {
7417 int r;
7418 r = vcpu_load(vcpu);
7419 BUG_ON(r);
7420 kvm_mmu_unload(vcpu);
7421 vcpu_put(vcpu);
7422 }
7423
7424 static void kvm_free_vcpus(struct kvm *kvm)
7425 {
7426 unsigned int i;
7427 struct kvm_vcpu *vcpu;
7428
7429 /*
7430 * Unpin any mmu pages first.
7431 */
7432 kvm_for_each_vcpu(i, vcpu, kvm) {
7433 kvm_clear_async_pf_completion_queue(vcpu);
7434 kvm_unload_vcpu_mmu(vcpu);
7435 }
7436 kvm_for_each_vcpu(i, vcpu, kvm)
7437 kvm_arch_vcpu_free(vcpu);
7438
7439 mutex_lock(&kvm->lock);
7440 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7441 kvm->vcpus[i] = NULL;
7442
7443 atomic_set(&kvm->online_vcpus, 0);
7444 mutex_unlock(&kvm->lock);
7445 }
7446
7447 void kvm_arch_sync_events(struct kvm *kvm)
7448 {
7449 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7450 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7451 kvm_free_all_assigned_devices(kvm);
7452 kvm_free_pit(kvm);
7453 }
7454
7455 int __x86_set_memory_region(struct kvm *kvm,
7456 const struct kvm_userspace_memory_region *mem)
7457 {
7458 int i, r;
7459
7460 /* Called with kvm->slots_lock held. */
7461 BUG_ON(mem->slot >= KVM_MEM_SLOTS_NUM);
7462
7463 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7464 struct kvm_userspace_memory_region m = *mem;
7465
7466 m.slot |= i << 16;
7467 r = __kvm_set_memory_region(kvm, &m);
7468 if (r < 0)
7469 return r;
7470 }
7471
7472 return 0;
7473 }
7474 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7475
7476 int x86_set_memory_region(struct kvm *kvm,
7477 const struct kvm_userspace_memory_region *mem)
7478 {
7479 int r;
7480
7481 mutex_lock(&kvm->slots_lock);
7482 r = __x86_set_memory_region(kvm, mem);
7483 mutex_unlock(&kvm->slots_lock);
7484
7485 return r;
7486 }
7487 EXPORT_SYMBOL_GPL(x86_set_memory_region);
7488
7489 void kvm_arch_destroy_vm(struct kvm *kvm)
7490 {
7491 if (current->mm == kvm->mm) {
7492 /*
7493 * Free memory regions allocated on behalf of userspace,
7494 * unless the the memory map has changed due to process exit
7495 * or fd copying.
7496 */
7497 struct kvm_userspace_memory_region mem;
7498 memset(&mem, 0, sizeof(mem));
7499 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7500 x86_set_memory_region(kvm, &mem);
7501
7502 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7503 x86_set_memory_region(kvm, &mem);
7504
7505 mem.slot = TSS_PRIVATE_MEMSLOT;
7506 x86_set_memory_region(kvm, &mem);
7507 }
7508 kvm_iommu_unmap_guest(kvm);
7509 kfree(kvm->arch.vpic);
7510 kfree(kvm->arch.vioapic);
7511 kvm_free_vcpus(kvm);
7512 kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7513 }
7514
7515 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7516 struct kvm_memory_slot *dont)
7517 {
7518 int i;
7519
7520 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7521 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7522 kvfree(free->arch.rmap[i]);
7523 free->arch.rmap[i] = NULL;
7524 }
7525 if (i == 0)
7526 continue;
7527
7528 if (!dont || free->arch.lpage_info[i - 1] !=
7529 dont->arch.lpage_info[i - 1]) {
7530 kvfree(free->arch.lpage_info[i - 1]);
7531 free->arch.lpage_info[i - 1] = NULL;
7532 }
7533 }
7534 }
7535
7536 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7537 unsigned long npages)
7538 {
7539 int i;
7540
7541 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7542 unsigned long ugfn;
7543 int lpages;
7544 int level = i + 1;
7545
7546 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7547 slot->base_gfn, level) + 1;
7548
7549 slot->arch.rmap[i] =
7550 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7551 if (!slot->arch.rmap[i])
7552 goto out_free;
7553 if (i == 0)
7554 continue;
7555
7556 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7557 sizeof(*slot->arch.lpage_info[i - 1]));
7558 if (!slot->arch.lpage_info[i - 1])
7559 goto out_free;
7560
7561 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7562 slot->arch.lpage_info[i - 1][0].write_count = 1;
7563 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7564 slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7565 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7566 /*
7567 * If the gfn and userspace address are not aligned wrt each
7568 * other, or if explicitly asked to, disable large page
7569 * support for this slot
7570 */
7571 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7572 !kvm_largepages_enabled()) {
7573 unsigned long j;
7574
7575 for (j = 0; j < lpages; ++j)
7576 slot->arch.lpage_info[i - 1][j].write_count = 1;
7577 }
7578 }
7579
7580 return 0;
7581
7582 out_free:
7583 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7584 kvfree(slot->arch.rmap[i]);
7585 slot->arch.rmap[i] = NULL;
7586 if (i == 0)
7587 continue;
7588
7589 kvfree(slot->arch.lpage_info[i - 1]);
7590 slot->arch.lpage_info[i - 1] = NULL;
7591 }
7592 return -ENOMEM;
7593 }
7594
7595 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
7596 {
7597 /*
7598 * memslots->generation has been incremented.
7599 * mmio generation may have reached its maximum value.
7600 */
7601 kvm_mmu_invalidate_mmio_sptes(kvm, slots);
7602 }
7603
7604 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7605 struct kvm_memory_slot *memslot,
7606 const struct kvm_userspace_memory_region *mem,
7607 enum kvm_mr_change change)
7608 {
7609 /*
7610 * Only private memory slots need to be mapped here since
7611 * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7612 */
7613 if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7614 unsigned long userspace_addr;
7615
7616 /*
7617 * MAP_SHARED to prevent internal slot pages from being moved
7618 * by fork()/COW.
7619 */
7620 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7621 PROT_READ | PROT_WRITE,
7622 MAP_SHARED | MAP_ANONYMOUS, 0);
7623
7624 if (IS_ERR((void *)userspace_addr))
7625 return PTR_ERR((void *)userspace_addr);
7626
7627 memslot->userspace_addr = userspace_addr;
7628 }
7629
7630 return 0;
7631 }
7632
7633 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
7634 struct kvm_memory_slot *new)
7635 {
7636 /* Still write protect RO slot */
7637 if (new->flags & KVM_MEM_READONLY) {
7638 kvm_mmu_slot_remove_write_access(kvm, new);
7639 return;
7640 }
7641
7642 /*
7643 * Call kvm_x86_ops dirty logging hooks when they are valid.
7644 *
7645 * kvm_x86_ops->slot_disable_log_dirty is called when:
7646 *
7647 * - KVM_MR_CREATE with dirty logging is disabled
7648 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
7649 *
7650 * The reason is, in case of PML, we need to set D-bit for any slots
7651 * with dirty logging disabled in order to eliminate unnecessary GPA
7652 * logging in PML buffer (and potential PML buffer full VMEXT). This
7653 * guarantees leaving PML enabled during guest's lifetime won't have
7654 * any additonal overhead from PML when guest is running with dirty
7655 * logging disabled for memory slots.
7656 *
7657 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
7658 * to dirty logging mode.
7659 *
7660 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
7661 *
7662 * In case of write protect:
7663 *
7664 * Write protect all pages for dirty logging.
7665 *
7666 * All the sptes including the large sptes which point to this
7667 * slot are set to readonly. We can not create any new large
7668 * spte on this slot until the end of the logging.
7669 *
7670 * See the comments in fast_page_fault().
7671 */
7672 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
7673 if (kvm_x86_ops->slot_enable_log_dirty)
7674 kvm_x86_ops->slot_enable_log_dirty(kvm, new);
7675 else
7676 kvm_mmu_slot_remove_write_access(kvm, new);
7677 } else {
7678 if (kvm_x86_ops->slot_disable_log_dirty)
7679 kvm_x86_ops->slot_disable_log_dirty(kvm, new);
7680 }
7681 }
7682
7683 void kvm_arch_commit_memory_region(struct kvm *kvm,
7684 const struct kvm_userspace_memory_region *mem,
7685 const struct kvm_memory_slot *old,
7686 const struct kvm_memory_slot *new,
7687 enum kvm_mr_change change)
7688 {
7689 int nr_mmu_pages = 0;
7690
7691 if (change == KVM_MR_DELETE && old->id >= KVM_USER_MEM_SLOTS) {
7692 int ret;
7693
7694 ret = vm_munmap(old->userspace_addr,
7695 old->npages * PAGE_SIZE);
7696 if (ret < 0)
7697 printk(KERN_WARNING
7698 "kvm_vm_ioctl_set_memory_region: "
7699 "failed to munmap memory\n");
7700 }
7701
7702 if (!kvm->arch.n_requested_mmu_pages)
7703 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7704
7705 if (nr_mmu_pages)
7706 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7707
7708 /*
7709 * Dirty logging tracks sptes in 4k granularity, meaning that large
7710 * sptes have to be split. If live migration is successful, the guest
7711 * in the source machine will be destroyed and large sptes will be
7712 * created in the destination. However, if the guest continues to run
7713 * in the source machine (for example if live migration fails), small
7714 * sptes will remain around and cause bad performance.
7715 *
7716 * Scan sptes if dirty logging has been stopped, dropping those
7717 * which can be collapsed into a single large-page spte. Later
7718 * page faults will create the large-page sptes.
7719 */
7720 if ((change != KVM_MR_DELETE) &&
7721 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
7722 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
7723 kvm_mmu_zap_collapsible_sptes(kvm, new);
7724
7725 /*
7726 * Set up write protection and/or dirty logging for the new slot.
7727 *
7728 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
7729 * been zapped so no dirty logging staff is needed for old slot. For
7730 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
7731 * new and it's also covered when dealing with the new slot.
7732 *
7733 * FIXME: const-ify all uses of struct kvm_memory_slot.
7734 */
7735 if (change != KVM_MR_DELETE)
7736 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
7737 }
7738
7739 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7740 {
7741 kvm_mmu_invalidate_zap_all_pages(kvm);
7742 }
7743
7744 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7745 struct kvm_memory_slot *slot)
7746 {
7747 kvm_mmu_invalidate_zap_all_pages(kvm);
7748 }
7749
7750 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7751 {
7752 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7753 kvm_x86_ops->check_nested_events(vcpu, false);
7754
7755 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7756 !vcpu->arch.apf.halted)
7757 || !list_empty_careful(&vcpu->async_pf.done)
7758 || kvm_apic_has_events(vcpu)
7759 || vcpu->arch.pv.pv_unhalted
7760 || atomic_read(&vcpu->arch.nmi_queued) ||
7761 (kvm_arch_interrupt_allowed(vcpu) &&
7762 kvm_cpu_has_interrupt(vcpu));
7763 }
7764
7765 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7766 {
7767 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7768 }
7769
7770 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7771 {
7772 return kvm_x86_ops->interrupt_allowed(vcpu);
7773 }
7774
7775 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
7776 {
7777 if (is_64_bit_mode(vcpu))
7778 return kvm_rip_read(vcpu);
7779 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
7780 kvm_rip_read(vcpu));
7781 }
7782 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
7783
7784 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7785 {
7786 return kvm_get_linear_rip(vcpu) == linear_rip;
7787 }
7788 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7789
7790 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7791 {
7792 unsigned long rflags;
7793
7794 rflags = kvm_x86_ops->get_rflags(vcpu);
7795 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7796 rflags &= ~X86_EFLAGS_TF;
7797 return rflags;
7798 }
7799 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7800
7801 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7802 {
7803 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7804 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7805 rflags |= X86_EFLAGS_TF;
7806 kvm_x86_ops->set_rflags(vcpu, rflags);
7807 }
7808
7809 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7810 {
7811 __kvm_set_rflags(vcpu, rflags);
7812 kvm_make_request(KVM_REQ_EVENT, vcpu);
7813 }
7814 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7815
7816 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7817 {
7818 int r;
7819
7820 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7821 work->wakeup_all)
7822 return;
7823
7824 r = kvm_mmu_reload(vcpu);
7825 if (unlikely(r))
7826 return;
7827
7828 if (!vcpu->arch.mmu.direct_map &&
7829 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7830 return;
7831
7832 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7833 }
7834
7835 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7836 {
7837 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7838 }
7839
7840 static inline u32 kvm_async_pf_next_probe(u32 key)
7841 {
7842 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7843 }
7844
7845 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7846 {
7847 u32 key = kvm_async_pf_hash_fn(gfn);
7848
7849 while (vcpu->arch.apf.gfns[key] != ~0)
7850 key = kvm_async_pf_next_probe(key);
7851
7852 vcpu->arch.apf.gfns[key] = gfn;
7853 }
7854
7855 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7856 {
7857 int i;
7858 u32 key = kvm_async_pf_hash_fn(gfn);
7859
7860 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7861 (vcpu->arch.apf.gfns[key] != gfn &&
7862 vcpu->arch.apf.gfns[key] != ~0); i++)
7863 key = kvm_async_pf_next_probe(key);
7864
7865 return key;
7866 }
7867
7868 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7869 {
7870 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7871 }
7872
7873 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7874 {
7875 u32 i, j, k;
7876
7877 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7878 while (true) {
7879 vcpu->arch.apf.gfns[i] = ~0;
7880 do {
7881 j = kvm_async_pf_next_probe(j);
7882 if (vcpu->arch.apf.gfns[j] == ~0)
7883 return;
7884 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7885 /*
7886 * k lies cyclically in ]i,j]
7887 * | i.k.j |
7888 * |....j i.k.| or |.k..j i...|
7889 */
7890 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7891 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7892 i = j;
7893 }
7894 }
7895
7896 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7897 {
7898
7899 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7900 sizeof(val));
7901 }
7902
7903 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7904 struct kvm_async_pf *work)
7905 {
7906 struct x86_exception fault;
7907
7908 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7909 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7910
7911 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7912 (vcpu->arch.apf.send_user_only &&
7913 kvm_x86_ops->get_cpl(vcpu) == 0))
7914 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7915 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7916 fault.vector = PF_VECTOR;
7917 fault.error_code_valid = true;
7918 fault.error_code = 0;
7919 fault.nested_page_fault = false;
7920 fault.address = work->arch.token;
7921 kvm_inject_page_fault(vcpu, &fault);
7922 }
7923 }
7924
7925 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7926 struct kvm_async_pf *work)
7927 {
7928 struct x86_exception fault;
7929
7930 trace_kvm_async_pf_ready(work->arch.token, work->gva);
7931 if (work->wakeup_all)
7932 work->arch.token = ~0; /* broadcast wakeup */
7933 else
7934 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7935
7936 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7937 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7938 fault.vector = PF_VECTOR;
7939 fault.error_code_valid = true;
7940 fault.error_code = 0;
7941 fault.nested_page_fault = false;
7942 fault.address = work->arch.token;
7943 kvm_inject_page_fault(vcpu, &fault);
7944 }
7945 vcpu->arch.apf.halted = false;
7946 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7947 }
7948
7949 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7950 {
7951 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7952 return true;
7953 else
7954 return !kvm_event_needs_reinjection(vcpu) &&
7955 kvm_x86_ops->interrupt_allowed(vcpu);
7956 }
7957
7958 void kvm_arch_start_assignment(struct kvm *kvm)
7959 {
7960 atomic_inc(&kvm->arch.assigned_device_count);
7961 }
7962 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
7963
7964 void kvm_arch_end_assignment(struct kvm *kvm)
7965 {
7966 atomic_dec(&kvm->arch.assigned_device_count);
7967 }
7968 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
7969
7970 bool kvm_arch_has_assigned_device(struct kvm *kvm)
7971 {
7972 return atomic_read(&kvm->arch.assigned_device_count);
7973 }
7974 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
7975
7976 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
7977 {
7978 atomic_inc(&kvm->arch.noncoherent_dma_count);
7979 }
7980 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
7981
7982 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
7983 {
7984 atomic_dec(&kvm->arch.noncoherent_dma_count);
7985 }
7986 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
7987
7988 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
7989 {
7990 return atomic_read(&kvm->arch.noncoherent_dma_count);
7991 }
7992 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
7993
7994 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7995 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7996 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7997 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7998 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7999 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8000 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8001 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8002 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8003 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8004 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8005 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8006 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8007 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8008 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
This page took 0.276617 seconds and 5 git commands to generate.