KVM: Report IRQ injection status to userspace.
[deliverable/linux.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Amit Shah <amit.shah@qumranet.com>
14 * Ben-Ami Yassour <benami@il.ibm.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
28
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40
41 #include <asm/uaccess.h>
42 #include <asm/msr.h>
43 #include <asm/desc.h>
44 #include <asm/mtrr.h>
45
46 #define MAX_IO_MSRS 256
47 #define CR0_RESERVED_BITS \
48 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
49 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
50 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
51 #define CR4_RESERVED_BITS \
52 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
53 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
54 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
55 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
56
57 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
58 /* EFER defaults:
59 * - enable syscall per default because its emulated by KVM
60 * - enable LME and LMA per default on 64 bit KVM
61 */
62 #ifdef CONFIG_X86_64
63 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
64 #else
65 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
66 #endif
67
68 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
69 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
70
71 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
72 struct kvm_cpuid_entry2 __user *entries);
73 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
74 u32 function, u32 index);
75
76 struct kvm_x86_ops *kvm_x86_ops;
77 EXPORT_SYMBOL_GPL(kvm_x86_ops);
78
79 struct kvm_stats_debugfs_item debugfs_entries[] = {
80 { "pf_fixed", VCPU_STAT(pf_fixed) },
81 { "pf_guest", VCPU_STAT(pf_guest) },
82 { "tlb_flush", VCPU_STAT(tlb_flush) },
83 { "invlpg", VCPU_STAT(invlpg) },
84 { "exits", VCPU_STAT(exits) },
85 { "io_exits", VCPU_STAT(io_exits) },
86 { "mmio_exits", VCPU_STAT(mmio_exits) },
87 { "signal_exits", VCPU_STAT(signal_exits) },
88 { "irq_window", VCPU_STAT(irq_window_exits) },
89 { "nmi_window", VCPU_STAT(nmi_window_exits) },
90 { "halt_exits", VCPU_STAT(halt_exits) },
91 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
92 { "hypercalls", VCPU_STAT(hypercalls) },
93 { "request_irq", VCPU_STAT(request_irq_exits) },
94 { "request_nmi", VCPU_STAT(request_nmi_exits) },
95 { "irq_exits", VCPU_STAT(irq_exits) },
96 { "host_state_reload", VCPU_STAT(host_state_reload) },
97 { "efer_reload", VCPU_STAT(efer_reload) },
98 { "fpu_reload", VCPU_STAT(fpu_reload) },
99 { "insn_emulation", VCPU_STAT(insn_emulation) },
100 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
101 { "irq_injections", VCPU_STAT(irq_injections) },
102 { "nmi_injections", VCPU_STAT(nmi_injections) },
103 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
104 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
105 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
106 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
107 { "mmu_flooded", VM_STAT(mmu_flooded) },
108 { "mmu_recycled", VM_STAT(mmu_recycled) },
109 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
110 { "mmu_unsync", VM_STAT(mmu_unsync) },
111 { "mmu_unsync_global", VM_STAT(mmu_unsync_global) },
112 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
113 { "largepages", VM_STAT(lpages) },
114 { NULL }
115 };
116
117 unsigned long segment_base(u16 selector)
118 {
119 struct descriptor_table gdt;
120 struct desc_struct *d;
121 unsigned long table_base;
122 unsigned long v;
123
124 if (selector == 0)
125 return 0;
126
127 asm("sgdt %0" : "=m"(gdt));
128 table_base = gdt.base;
129
130 if (selector & 4) { /* from ldt */
131 u16 ldt_selector;
132
133 asm("sldt %0" : "=g"(ldt_selector));
134 table_base = segment_base(ldt_selector);
135 }
136 d = (struct desc_struct *)(table_base + (selector & ~7));
137 v = d->base0 | ((unsigned long)d->base1 << 16) |
138 ((unsigned long)d->base2 << 24);
139 #ifdef CONFIG_X86_64
140 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
141 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
142 #endif
143 return v;
144 }
145 EXPORT_SYMBOL_GPL(segment_base);
146
147 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
148 {
149 if (irqchip_in_kernel(vcpu->kvm))
150 return vcpu->arch.apic_base;
151 else
152 return vcpu->arch.apic_base;
153 }
154 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
155
156 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
157 {
158 /* TODO: reserve bits check */
159 if (irqchip_in_kernel(vcpu->kvm))
160 kvm_lapic_set_base(vcpu, data);
161 else
162 vcpu->arch.apic_base = data;
163 }
164 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
165
166 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
167 {
168 WARN_ON(vcpu->arch.exception.pending);
169 vcpu->arch.exception.pending = true;
170 vcpu->arch.exception.has_error_code = false;
171 vcpu->arch.exception.nr = nr;
172 }
173 EXPORT_SYMBOL_GPL(kvm_queue_exception);
174
175 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
176 u32 error_code)
177 {
178 ++vcpu->stat.pf_guest;
179
180 if (vcpu->arch.exception.pending) {
181 if (vcpu->arch.exception.nr == PF_VECTOR) {
182 printk(KERN_DEBUG "kvm: inject_page_fault:"
183 " double fault 0x%lx\n", addr);
184 vcpu->arch.exception.nr = DF_VECTOR;
185 vcpu->arch.exception.error_code = 0;
186 } else if (vcpu->arch.exception.nr == DF_VECTOR) {
187 /* triple fault -> shutdown */
188 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
189 }
190 return;
191 }
192 vcpu->arch.cr2 = addr;
193 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
194 }
195
196 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
197 {
198 vcpu->arch.nmi_pending = 1;
199 }
200 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
201
202 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
203 {
204 WARN_ON(vcpu->arch.exception.pending);
205 vcpu->arch.exception.pending = true;
206 vcpu->arch.exception.has_error_code = true;
207 vcpu->arch.exception.nr = nr;
208 vcpu->arch.exception.error_code = error_code;
209 }
210 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
211
212 static void __queue_exception(struct kvm_vcpu *vcpu)
213 {
214 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
215 vcpu->arch.exception.has_error_code,
216 vcpu->arch.exception.error_code);
217 }
218
219 /*
220 * Load the pae pdptrs. Return true is they are all valid.
221 */
222 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
223 {
224 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
225 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
226 int i;
227 int ret;
228 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
229
230 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
231 offset * sizeof(u64), sizeof(pdpte));
232 if (ret < 0) {
233 ret = 0;
234 goto out;
235 }
236 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
237 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
238 ret = 0;
239 goto out;
240 }
241 }
242 ret = 1;
243
244 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
245 out:
246
247 return ret;
248 }
249 EXPORT_SYMBOL_GPL(load_pdptrs);
250
251 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
252 {
253 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
254 bool changed = true;
255 int r;
256
257 if (is_long_mode(vcpu) || !is_pae(vcpu))
258 return false;
259
260 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
261 if (r < 0)
262 goto out;
263 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
264 out:
265
266 return changed;
267 }
268
269 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
270 {
271 if (cr0 & CR0_RESERVED_BITS) {
272 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
273 cr0, vcpu->arch.cr0);
274 kvm_inject_gp(vcpu, 0);
275 return;
276 }
277
278 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
279 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
280 kvm_inject_gp(vcpu, 0);
281 return;
282 }
283
284 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
285 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
286 "and a clear PE flag\n");
287 kvm_inject_gp(vcpu, 0);
288 return;
289 }
290
291 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
292 #ifdef CONFIG_X86_64
293 if ((vcpu->arch.shadow_efer & EFER_LME)) {
294 int cs_db, cs_l;
295
296 if (!is_pae(vcpu)) {
297 printk(KERN_DEBUG "set_cr0: #GP, start paging "
298 "in long mode while PAE is disabled\n");
299 kvm_inject_gp(vcpu, 0);
300 return;
301 }
302 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
303 if (cs_l) {
304 printk(KERN_DEBUG "set_cr0: #GP, start paging "
305 "in long mode while CS.L == 1\n");
306 kvm_inject_gp(vcpu, 0);
307 return;
308
309 }
310 } else
311 #endif
312 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
313 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
314 "reserved bits\n");
315 kvm_inject_gp(vcpu, 0);
316 return;
317 }
318
319 }
320
321 kvm_x86_ops->set_cr0(vcpu, cr0);
322 vcpu->arch.cr0 = cr0;
323
324 kvm_mmu_sync_global(vcpu);
325 kvm_mmu_reset_context(vcpu);
326 return;
327 }
328 EXPORT_SYMBOL_GPL(kvm_set_cr0);
329
330 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
331 {
332 kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
333 KVMTRACE_1D(LMSW, vcpu,
334 (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
335 handler);
336 }
337 EXPORT_SYMBOL_GPL(kvm_lmsw);
338
339 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
340 {
341 if (cr4 & CR4_RESERVED_BITS) {
342 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
343 kvm_inject_gp(vcpu, 0);
344 return;
345 }
346
347 if (is_long_mode(vcpu)) {
348 if (!(cr4 & X86_CR4_PAE)) {
349 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
350 "in long mode\n");
351 kvm_inject_gp(vcpu, 0);
352 return;
353 }
354 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
355 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
356 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
357 kvm_inject_gp(vcpu, 0);
358 return;
359 }
360
361 if (cr4 & X86_CR4_VMXE) {
362 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
363 kvm_inject_gp(vcpu, 0);
364 return;
365 }
366 kvm_x86_ops->set_cr4(vcpu, cr4);
367 vcpu->arch.cr4 = cr4;
368 vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
369 kvm_mmu_sync_global(vcpu);
370 kvm_mmu_reset_context(vcpu);
371 }
372 EXPORT_SYMBOL_GPL(kvm_set_cr4);
373
374 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
375 {
376 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
377 kvm_mmu_sync_roots(vcpu);
378 kvm_mmu_flush_tlb(vcpu);
379 return;
380 }
381
382 if (is_long_mode(vcpu)) {
383 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
384 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
385 kvm_inject_gp(vcpu, 0);
386 return;
387 }
388 } else {
389 if (is_pae(vcpu)) {
390 if (cr3 & CR3_PAE_RESERVED_BITS) {
391 printk(KERN_DEBUG
392 "set_cr3: #GP, reserved bits\n");
393 kvm_inject_gp(vcpu, 0);
394 return;
395 }
396 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
397 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
398 "reserved bits\n");
399 kvm_inject_gp(vcpu, 0);
400 return;
401 }
402 }
403 /*
404 * We don't check reserved bits in nonpae mode, because
405 * this isn't enforced, and VMware depends on this.
406 */
407 }
408
409 /*
410 * Does the new cr3 value map to physical memory? (Note, we
411 * catch an invalid cr3 even in real-mode, because it would
412 * cause trouble later on when we turn on paging anyway.)
413 *
414 * A real CPU would silently accept an invalid cr3 and would
415 * attempt to use it - with largely undefined (and often hard
416 * to debug) behavior on the guest side.
417 */
418 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
419 kvm_inject_gp(vcpu, 0);
420 else {
421 vcpu->arch.cr3 = cr3;
422 vcpu->arch.mmu.new_cr3(vcpu);
423 }
424 }
425 EXPORT_SYMBOL_GPL(kvm_set_cr3);
426
427 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
428 {
429 if (cr8 & CR8_RESERVED_BITS) {
430 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
431 kvm_inject_gp(vcpu, 0);
432 return;
433 }
434 if (irqchip_in_kernel(vcpu->kvm))
435 kvm_lapic_set_tpr(vcpu, cr8);
436 else
437 vcpu->arch.cr8 = cr8;
438 }
439 EXPORT_SYMBOL_GPL(kvm_set_cr8);
440
441 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
442 {
443 if (irqchip_in_kernel(vcpu->kvm))
444 return kvm_lapic_get_cr8(vcpu);
445 else
446 return vcpu->arch.cr8;
447 }
448 EXPORT_SYMBOL_GPL(kvm_get_cr8);
449
450 static inline u32 bit(int bitno)
451 {
452 return 1 << (bitno & 31);
453 }
454
455 /*
456 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
457 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
458 *
459 * This list is modified at module load time to reflect the
460 * capabilities of the host cpu.
461 */
462 static u32 msrs_to_save[] = {
463 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
464 MSR_K6_STAR,
465 #ifdef CONFIG_X86_64
466 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
467 #endif
468 MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
469 MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
470 };
471
472 static unsigned num_msrs_to_save;
473
474 static u32 emulated_msrs[] = {
475 MSR_IA32_MISC_ENABLE,
476 };
477
478 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
479 {
480 if (efer & efer_reserved_bits) {
481 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
482 efer);
483 kvm_inject_gp(vcpu, 0);
484 return;
485 }
486
487 if (is_paging(vcpu)
488 && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
489 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
490 kvm_inject_gp(vcpu, 0);
491 return;
492 }
493
494 if (efer & EFER_FFXSR) {
495 struct kvm_cpuid_entry2 *feat;
496
497 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
498 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
499 printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
500 kvm_inject_gp(vcpu, 0);
501 return;
502 }
503 }
504
505 if (efer & EFER_SVME) {
506 struct kvm_cpuid_entry2 *feat;
507
508 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
509 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
510 printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
511 kvm_inject_gp(vcpu, 0);
512 return;
513 }
514 }
515
516 kvm_x86_ops->set_efer(vcpu, efer);
517
518 efer &= ~EFER_LMA;
519 efer |= vcpu->arch.shadow_efer & EFER_LMA;
520
521 vcpu->arch.shadow_efer = efer;
522 }
523
524 void kvm_enable_efer_bits(u64 mask)
525 {
526 efer_reserved_bits &= ~mask;
527 }
528 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
529
530
531 /*
532 * Writes msr value into into the appropriate "register".
533 * Returns 0 on success, non-0 otherwise.
534 * Assumes vcpu_load() was already called.
535 */
536 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
537 {
538 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
539 }
540
541 /*
542 * Adapt set_msr() to msr_io()'s calling convention
543 */
544 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
545 {
546 return kvm_set_msr(vcpu, index, *data);
547 }
548
549 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
550 {
551 static int version;
552 struct pvclock_wall_clock wc;
553 struct timespec now, sys, boot;
554
555 if (!wall_clock)
556 return;
557
558 version++;
559
560 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
561
562 /*
563 * The guest calculates current wall clock time by adding
564 * system time (updated by kvm_write_guest_time below) to the
565 * wall clock specified here. guest system time equals host
566 * system time for us, thus we must fill in host boot time here.
567 */
568 now = current_kernel_time();
569 ktime_get_ts(&sys);
570 boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
571
572 wc.sec = boot.tv_sec;
573 wc.nsec = boot.tv_nsec;
574 wc.version = version;
575
576 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
577
578 version++;
579 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
580 }
581
582 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
583 {
584 uint32_t quotient, remainder;
585
586 /* Don't try to replace with do_div(), this one calculates
587 * "(dividend << 32) / divisor" */
588 __asm__ ( "divl %4"
589 : "=a" (quotient), "=d" (remainder)
590 : "0" (0), "1" (dividend), "r" (divisor) );
591 return quotient;
592 }
593
594 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
595 {
596 uint64_t nsecs = 1000000000LL;
597 int32_t shift = 0;
598 uint64_t tps64;
599 uint32_t tps32;
600
601 tps64 = tsc_khz * 1000LL;
602 while (tps64 > nsecs*2) {
603 tps64 >>= 1;
604 shift--;
605 }
606
607 tps32 = (uint32_t)tps64;
608 while (tps32 <= (uint32_t)nsecs) {
609 tps32 <<= 1;
610 shift++;
611 }
612
613 hv_clock->tsc_shift = shift;
614 hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
615
616 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
617 __func__, tsc_khz, hv_clock->tsc_shift,
618 hv_clock->tsc_to_system_mul);
619 }
620
621 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
622
623 static void kvm_write_guest_time(struct kvm_vcpu *v)
624 {
625 struct timespec ts;
626 unsigned long flags;
627 struct kvm_vcpu_arch *vcpu = &v->arch;
628 void *shared_kaddr;
629
630 if ((!vcpu->time_page))
631 return;
632
633 if (unlikely(vcpu->hv_clock_tsc_khz != __get_cpu_var(cpu_tsc_khz))) {
634 kvm_set_time_scale(__get_cpu_var(cpu_tsc_khz), &vcpu->hv_clock);
635 vcpu->hv_clock_tsc_khz = __get_cpu_var(cpu_tsc_khz);
636 }
637
638 /* Keep irq disabled to prevent changes to the clock */
639 local_irq_save(flags);
640 kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
641 &vcpu->hv_clock.tsc_timestamp);
642 ktime_get_ts(&ts);
643 local_irq_restore(flags);
644
645 /* With all the info we got, fill in the values */
646
647 vcpu->hv_clock.system_time = ts.tv_nsec +
648 (NSEC_PER_SEC * (u64)ts.tv_sec);
649 /*
650 * The interface expects us to write an even number signaling that the
651 * update is finished. Since the guest won't see the intermediate
652 * state, we just increase by 2 at the end.
653 */
654 vcpu->hv_clock.version += 2;
655
656 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
657
658 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
659 sizeof(vcpu->hv_clock));
660
661 kunmap_atomic(shared_kaddr, KM_USER0);
662
663 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
664 }
665
666 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
667 {
668 struct kvm_vcpu_arch *vcpu = &v->arch;
669
670 if (!vcpu->time_page)
671 return 0;
672 set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
673 return 1;
674 }
675
676 static bool msr_mtrr_valid(unsigned msr)
677 {
678 switch (msr) {
679 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
680 case MSR_MTRRfix64K_00000:
681 case MSR_MTRRfix16K_80000:
682 case MSR_MTRRfix16K_A0000:
683 case MSR_MTRRfix4K_C0000:
684 case MSR_MTRRfix4K_C8000:
685 case MSR_MTRRfix4K_D0000:
686 case MSR_MTRRfix4K_D8000:
687 case MSR_MTRRfix4K_E0000:
688 case MSR_MTRRfix4K_E8000:
689 case MSR_MTRRfix4K_F0000:
690 case MSR_MTRRfix4K_F8000:
691 case MSR_MTRRdefType:
692 case MSR_IA32_CR_PAT:
693 return true;
694 case 0x2f8:
695 return true;
696 }
697 return false;
698 }
699
700 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
701 {
702 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
703
704 if (!msr_mtrr_valid(msr))
705 return 1;
706
707 if (msr == MSR_MTRRdefType) {
708 vcpu->arch.mtrr_state.def_type = data;
709 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
710 } else if (msr == MSR_MTRRfix64K_00000)
711 p[0] = data;
712 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
713 p[1 + msr - MSR_MTRRfix16K_80000] = data;
714 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
715 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
716 else if (msr == MSR_IA32_CR_PAT)
717 vcpu->arch.pat = data;
718 else { /* Variable MTRRs */
719 int idx, is_mtrr_mask;
720 u64 *pt;
721
722 idx = (msr - 0x200) / 2;
723 is_mtrr_mask = msr - 0x200 - 2 * idx;
724 if (!is_mtrr_mask)
725 pt =
726 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
727 else
728 pt =
729 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
730 *pt = data;
731 }
732
733 kvm_mmu_reset_context(vcpu);
734 return 0;
735 }
736
737 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
738 {
739 switch (msr) {
740 case MSR_EFER:
741 set_efer(vcpu, data);
742 break;
743 case MSR_IA32_MC0_STATUS:
744 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
745 __func__, data);
746 break;
747 case MSR_IA32_MCG_STATUS:
748 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
749 __func__, data);
750 break;
751 case MSR_IA32_MCG_CTL:
752 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
753 __func__, data);
754 break;
755 case MSR_IA32_DEBUGCTLMSR:
756 if (!data) {
757 /* We support the non-activated case already */
758 break;
759 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
760 /* Values other than LBR and BTF are vendor-specific,
761 thus reserved and should throw a #GP */
762 return 1;
763 }
764 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
765 __func__, data);
766 break;
767 case MSR_IA32_UCODE_REV:
768 case MSR_IA32_UCODE_WRITE:
769 case MSR_VM_HSAVE_PA:
770 break;
771 case 0x200 ... 0x2ff:
772 return set_msr_mtrr(vcpu, msr, data);
773 case MSR_IA32_APICBASE:
774 kvm_set_apic_base(vcpu, data);
775 break;
776 case MSR_IA32_MISC_ENABLE:
777 vcpu->arch.ia32_misc_enable_msr = data;
778 break;
779 case MSR_KVM_WALL_CLOCK:
780 vcpu->kvm->arch.wall_clock = data;
781 kvm_write_wall_clock(vcpu->kvm, data);
782 break;
783 case MSR_KVM_SYSTEM_TIME: {
784 if (vcpu->arch.time_page) {
785 kvm_release_page_dirty(vcpu->arch.time_page);
786 vcpu->arch.time_page = NULL;
787 }
788
789 vcpu->arch.time = data;
790
791 /* we verify if the enable bit is set... */
792 if (!(data & 1))
793 break;
794
795 /* ...but clean it before doing the actual write */
796 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
797
798 vcpu->arch.time_page =
799 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
800
801 if (is_error_page(vcpu->arch.time_page)) {
802 kvm_release_page_clean(vcpu->arch.time_page);
803 vcpu->arch.time_page = NULL;
804 }
805
806 kvm_request_guest_time_update(vcpu);
807 break;
808 }
809 default:
810 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
811 return 1;
812 }
813 return 0;
814 }
815 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
816
817
818 /*
819 * Reads an msr value (of 'msr_index') into 'pdata'.
820 * Returns 0 on success, non-0 otherwise.
821 * Assumes vcpu_load() was already called.
822 */
823 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
824 {
825 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
826 }
827
828 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
829 {
830 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
831
832 if (!msr_mtrr_valid(msr))
833 return 1;
834
835 if (msr == MSR_MTRRdefType)
836 *pdata = vcpu->arch.mtrr_state.def_type +
837 (vcpu->arch.mtrr_state.enabled << 10);
838 else if (msr == MSR_MTRRfix64K_00000)
839 *pdata = p[0];
840 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
841 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
842 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
843 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
844 else if (msr == MSR_IA32_CR_PAT)
845 *pdata = vcpu->arch.pat;
846 else { /* Variable MTRRs */
847 int idx, is_mtrr_mask;
848 u64 *pt;
849
850 idx = (msr - 0x200) / 2;
851 is_mtrr_mask = msr - 0x200 - 2 * idx;
852 if (!is_mtrr_mask)
853 pt =
854 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
855 else
856 pt =
857 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
858 *pdata = *pt;
859 }
860
861 return 0;
862 }
863
864 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
865 {
866 u64 data;
867
868 switch (msr) {
869 case 0xc0010010: /* SYSCFG */
870 case 0xc0010015: /* HWCR */
871 case MSR_IA32_PLATFORM_ID:
872 case MSR_IA32_P5_MC_ADDR:
873 case MSR_IA32_P5_MC_TYPE:
874 case MSR_IA32_MC0_CTL:
875 case MSR_IA32_MCG_STATUS:
876 case MSR_IA32_MCG_CAP:
877 case MSR_IA32_MCG_CTL:
878 case MSR_IA32_MC0_MISC:
879 case MSR_IA32_MC0_MISC+4:
880 case MSR_IA32_MC0_MISC+8:
881 case MSR_IA32_MC0_MISC+12:
882 case MSR_IA32_MC0_MISC+16:
883 case MSR_IA32_MC0_MISC+20:
884 case MSR_IA32_UCODE_REV:
885 case MSR_IA32_EBL_CR_POWERON:
886 case MSR_IA32_DEBUGCTLMSR:
887 case MSR_IA32_LASTBRANCHFROMIP:
888 case MSR_IA32_LASTBRANCHTOIP:
889 case MSR_IA32_LASTINTFROMIP:
890 case MSR_IA32_LASTINTTOIP:
891 case MSR_VM_HSAVE_PA:
892 data = 0;
893 break;
894 case MSR_MTRRcap:
895 data = 0x500 | KVM_NR_VAR_MTRR;
896 break;
897 case 0x200 ... 0x2ff:
898 return get_msr_mtrr(vcpu, msr, pdata);
899 case 0xcd: /* fsb frequency */
900 data = 3;
901 break;
902 case MSR_IA32_APICBASE:
903 data = kvm_get_apic_base(vcpu);
904 break;
905 case MSR_IA32_MISC_ENABLE:
906 data = vcpu->arch.ia32_misc_enable_msr;
907 break;
908 case MSR_IA32_PERF_STATUS:
909 /* TSC increment by tick */
910 data = 1000ULL;
911 /* CPU multiplier */
912 data |= (((uint64_t)4ULL) << 40);
913 break;
914 case MSR_EFER:
915 data = vcpu->arch.shadow_efer;
916 break;
917 case MSR_KVM_WALL_CLOCK:
918 data = vcpu->kvm->arch.wall_clock;
919 break;
920 case MSR_KVM_SYSTEM_TIME:
921 data = vcpu->arch.time;
922 break;
923 default:
924 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
925 return 1;
926 }
927 *pdata = data;
928 return 0;
929 }
930 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
931
932 /*
933 * Read or write a bunch of msrs. All parameters are kernel addresses.
934 *
935 * @return number of msrs set successfully.
936 */
937 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
938 struct kvm_msr_entry *entries,
939 int (*do_msr)(struct kvm_vcpu *vcpu,
940 unsigned index, u64 *data))
941 {
942 int i;
943
944 vcpu_load(vcpu);
945
946 down_read(&vcpu->kvm->slots_lock);
947 for (i = 0; i < msrs->nmsrs; ++i)
948 if (do_msr(vcpu, entries[i].index, &entries[i].data))
949 break;
950 up_read(&vcpu->kvm->slots_lock);
951
952 vcpu_put(vcpu);
953
954 return i;
955 }
956
957 /*
958 * Read or write a bunch of msrs. Parameters are user addresses.
959 *
960 * @return number of msrs set successfully.
961 */
962 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
963 int (*do_msr)(struct kvm_vcpu *vcpu,
964 unsigned index, u64 *data),
965 int writeback)
966 {
967 struct kvm_msrs msrs;
968 struct kvm_msr_entry *entries;
969 int r, n;
970 unsigned size;
971
972 r = -EFAULT;
973 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
974 goto out;
975
976 r = -E2BIG;
977 if (msrs.nmsrs >= MAX_IO_MSRS)
978 goto out;
979
980 r = -ENOMEM;
981 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
982 entries = vmalloc(size);
983 if (!entries)
984 goto out;
985
986 r = -EFAULT;
987 if (copy_from_user(entries, user_msrs->entries, size))
988 goto out_free;
989
990 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
991 if (r < 0)
992 goto out_free;
993
994 r = -EFAULT;
995 if (writeback && copy_to_user(user_msrs->entries, entries, size))
996 goto out_free;
997
998 r = n;
999
1000 out_free:
1001 vfree(entries);
1002 out:
1003 return r;
1004 }
1005
1006 int kvm_dev_ioctl_check_extension(long ext)
1007 {
1008 int r;
1009
1010 switch (ext) {
1011 case KVM_CAP_IRQCHIP:
1012 case KVM_CAP_HLT:
1013 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1014 case KVM_CAP_SET_TSS_ADDR:
1015 case KVM_CAP_EXT_CPUID:
1016 case KVM_CAP_CLOCKSOURCE:
1017 case KVM_CAP_PIT:
1018 case KVM_CAP_NOP_IO_DELAY:
1019 case KVM_CAP_MP_STATE:
1020 case KVM_CAP_SYNC_MMU:
1021 case KVM_CAP_REINJECT_CONTROL:
1022 case KVM_CAP_IRQ_INJECT_STATUS:
1023 r = 1;
1024 break;
1025 case KVM_CAP_COALESCED_MMIO:
1026 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1027 break;
1028 case KVM_CAP_VAPIC:
1029 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1030 break;
1031 case KVM_CAP_NR_VCPUS:
1032 r = KVM_MAX_VCPUS;
1033 break;
1034 case KVM_CAP_NR_MEMSLOTS:
1035 r = KVM_MEMORY_SLOTS;
1036 break;
1037 case KVM_CAP_PV_MMU:
1038 r = !tdp_enabled;
1039 break;
1040 case KVM_CAP_IOMMU:
1041 r = iommu_found();
1042 break;
1043 default:
1044 r = 0;
1045 break;
1046 }
1047 return r;
1048
1049 }
1050
1051 long kvm_arch_dev_ioctl(struct file *filp,
1052 unsigned int ioctl, unsigned long arg)
1053 {
1054 void __user *argp = (void __user *)arg;
1055 long r;
1056
1057 switch (ioctl) {
1058 case KVM_GET_MSR_INDEX_LIST: {
1059 struct kvm_msr_list __user *user_msr_list = argp;
1060 struct kvm_msr_list msr_list;
1061 unsigned n;
1062
1063 r = -EFAULT;
1064 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1065 goto out;
1066 n = msr_list.nmsrs;
1067 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1068 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1069 goto out;
1070 r = -E2BIG;
1071 if (n < num_msrs_to_save)
1072 goto out;
1073 r = -EFAULT;
1074 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1075 num_msrs_to_save * sizeof(u32)))
1076 goto out;
1077 if (copy_to_user(user_msr_list->indices
1078 + num_msrs_to_save * sizeof(u32),
1079 &emulated_msrs,
1080 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1081 goto out;
1082 r = 0;
1083 break;
1084 }
1085 case KVM_GET_SUPPORTED_CPUID: {
1086 struct kvm_cpuid2 __user *cpuid_arg = argp;
1087 struct kvm_cpuid2 cpuid;
1088
1089 r = -EFAULT;
1090 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1091 goto out;
1092 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1093 cpuid_arg->entries);
1094 if (r)
1095 goto out;
1096
1097 r = -EFAULT;
1098 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1099 goto out;
1100 r = 0;
1101 break;
1102 }
1103 default:
1104 r = -EINVAL;
1105 }
1106 out:
1107 return r;
1108 }
1109
1110 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1111 {
1112 kvm_x86_ops->vcpu_load(vcpu, cpu);
1113 kvm_request_guest_time_update(vcpu);
1114 }
1115
1116 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1117 {
1118 kvm_x86_ops->vcpu_put(vcpu);
1119 kvm_put_guest_fpu(vcpu);
1120 }
1121
1122 static int is_efer_nx(void)
1123 {
1124 u64 efer;
1125
1126 rdmsrl(MSR_EFER, efer);
1127 return efer & EFER_NX;
1128 }
1129
1130 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1131 {
1132 int i;
1133 struct kvm_cpuid_entry2 *e, *entry;
1134
1135 entry = NULL;
1136 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1137 e = &vcpu->arch.cpuid_entries[i];
1138 if (e->function == 0x80000001) {
1139 entry = e;
1140 break;
1141 }
1142 }
1143 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1144 entry->edx &= ~(1 << 20);
1145 printk(KERN_INFO "kvm: guest NX capability removed\n");
1146 }
1147 }
1148
1149 /* when an old userspace process fills a new kernel module */
1150 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1151 struct kvm_cpuid *cpuid,
1152 struct kvm_cpuid_entry __user *entries)
1153 {
1154 int r, i;
1155 struct kvm_cpuid_entry *cpuid_entries;
1156
1157 r = -E2BIG;
1158 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1159 goto out;
1160 r = -ENOMEM;
1161 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1162 if (!cpuid_entries)
1163 goto out;
1164 r = -EFAULT;
1165 if (copy_from_user(cpuid_entries, entries,
1166 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1167 goto out_free;
1168 for (i = 0; i < cpuid->nent; i++) {
1169 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1170 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1171 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1172 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1173 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1174 vcpu->arch.cpuid_entries[i].index = 0;
1175 vcpu->arch.cpuid_entries[i].flags = 0;
1176 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1177 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1178 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1179 }
1180 vcpu->arch.cpuid_nent = cpuid->nent;
1181 cpuid_fix_nx_cap(vcpu);
1182 r = 0;
1183
1184 out_free:
1185 vfree(cpuid_entries);
1186 out:
1187 return r;
1188 }
1189
1190 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1191 struct kvm_cpuid2 *cpuid,
1192 struct kvm_cpuid_entry2 __user *entries)
1193 {
1194 int r;
1195
1196 r = -E2BIG;
1197 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1198 goto out;
1199 r = -EFAULT;
1200 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1201 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1202 goto out;
1203 vcpu->arch.cpuid_nent = cpuid->nent;
1204 return 0;
1205
1206 out:
1207 return r;
1208 }
1209
1210 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1211 struct kvm_cpuid2 *cpuid,
1212 struct kvm_cpuid_entry2 __user *entries)
1213 {
1214 int r;
1215
1216 r = -E2BIG;
1217 if (cpuid->nent < vcpu->arch.cpuid_nent)
1218 goto out;
1219 r = -EFAULT;
1220 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1221 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1222 goto out;
1223 return 0;
1224
1225 out:
1226 cpuid->nent = vcpu->arch.cpuid_nent;
1227 return r;
1228 }
1229
1230 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1231 u32 index)
1232 {
1233 entry->function = function;
1234 entry->index = index;
1235 cpuid_count(entry->function, entry->index,
1236 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1237 entry->flags = 0;
1238 }
1239
1240 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1241 u32 index, int *nent, int maxnent)
1242 {
1243 const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
1244 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1245 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1246 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1247 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1248 bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
1249 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1250 bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
1251 bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
1252 bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
1253 const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
1254 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1255 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1256 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1257 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1258 bit(X86_FEATURE_PGE) |
1259 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1260 bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
1261 bit(X86_FEATURE_SYSCALL) |
1262 (bit(X86_FEATURE_NX) && is_efer_nx()) |
1263 #ifdef CONFIG_X86_64
1264 bit(X86_FEATURE_LM) |
1265 #endif
1266 bit(X86_FEATURE_FXSR_OPT) |
1267 bit(X86_FEATURE_MMXEXT) |
1268 bit(X86_FEATURE_3DNOWEXT) |
1269 bit(X86_FEATURE_3DNOW);
1270 const u32 kvm_supported_word3_x86_features =
1271 bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
1272 const u32 kvm_supported_word6_x86_features =
1273 bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY) |
1274 bit(X86_FEATURE_SVM);
1275
1276 /* all calls to cpuid_count() should be made on the same cpu */
1277 get_cpu();
1278 do_cpuid_1_ent(entry, function, index);
1279 ++*nent;
1280
1281 switch (function) {
1282 case 0:
1283 entry->eax = min(entry->eax, (u32)0xb);
1284 break;
1285 case 1:
1286 entry->edx &= kvm_supported_word0_x86_features;
1287 entry->ecx &= kvm_supported_word3_x86_features;
1288 break;
1289 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1290 * may return different values. This forces us to get_cpu() before
1291 * issuing the first command, and also to emulate this annoying behavior
1292 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1293 case 2: {
1294 int t, times = entry->eax & 0xff;
1295
1296 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1297 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1298 for (t = 1; t < times && *nent < maxnent; ++t) {
1299 do_cpuid_1_ent(&entry[t], function, 0);
1300 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1301 ++*nent;
1302 }
1303 break;
1304 }
1305 /* function 4 and 0xb have additional index. */
1306 case 4: {
1307 int i, cache_type;
1308
1309 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1310 /* read more entries until cache_type is zero */
1311 for (i = 1; *nent < maxnent; ++i) {
1312 cache_type = entry[i - 1].eax & 0x1f;
1313 if (!cache_type)
1314 break;
1315 do_cpuid_1_ent(&entry[i], function, i);
1316 entry[i].flags |=
1317 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1318 ++*nent;
1319 }
1320 break;
1321 }
1322 case 0xb: {
1323 int i, level_type;
1324
1325 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1326 /* read more entries until level_type is zero */
1327 for (i = 1; *nent < maxnent; ++i) {
1328 level_type = entry[i - 1].ecx & 0xff00;
1329 if (!level_type)
1330 break;
1331 do_cpuid_1_ent(&entry[i], function, i);
1332 entry[i].flags |=
1333 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1334 ++*nent;
1335 }
1336 break;
1337 }
1338 case 0x80000000:
1339 entry->eax = min(entry->eax, 0x8000001a);
1340 break;
1341 case 0x80000001:
1342 entry->edx &= kvm_supported_word1_x86_features;
1343 entry->ecx &= kvm_supported_word6_x86_features;
1344 break;
1345 }
1346 put_cpu();
1347 }
1348
1349 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1350 struct kvm_cpuid_entry2 __user *entries)
1351 {
1352 struct kvm_cpuid_entry2 *cpuid_entries;
1353 int limit, nent = 0, r = -E2BIG;
1354 u32 func;
1355
1356 if (cpuid->nent < 1)
1357 goto out;
1358 r = -ENOMEM;
1359 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1360 if (!cpuid_entries)
1361 goto out;
1362
1363 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1364 limit = cpuid_entries[0].eax;
1365 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1366 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1367 &nent, cpuid->nent);
1368 r = -E2BIG;
1369 if (nent >= cpuid->nent)
1370 goto out_free;
1371
1372 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1373 limit = cpuid_entries[nent - 1].eax;
1374 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1375 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1376 &nent, cpuid->nent);
1377 r = -EFAULT;
1378 if (copy_to_user(entries, cpuid_entries,
1379 nent * sizeof(struct kvm_cpuid_entry2)))
1380 goto out_free;
1381 cpuid->nent = nent;
1382 r = 0;
1383
1384 out_free:
1385 vfree(cpuid_entries);
1386 out:
1387 return r;
1388 }
1389
1390 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1391 struct kvm_lapic_state *s)
1392 {
1393 vcpu_load(vcpu);
1394 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1395 vcpu_put(vcpu);
1396
1397 return 0;
1398 }
1399
1400 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1401 struct kvm_lapic_state *s)
1402 {
1403 vcpu_load(vcpu);
1404 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1405 kvm_apic_post_state_restore(vcpu);
1406 vcpu_put(vcpu);
1407
1408 return 0;
1409 }
1410
1411 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1412 struct kvm_interrupt *irq)
1413 {
1414 if (irq->irq < 0 || irq->irq >= 256)
1415 return -EINVAL;
1416 if (irqchip_in_kernel(vcpu->kvm))
1417 return -ENXIO;
1418 vcpu_load(vcpu);
1419
1420 set_bit(irq->irq, vcpu->arch.irq_pending);
1421 set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1422
1423 vcpu_put(vcpu);
1424
1425 return 0;
1426 }
1427
1428 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
1429 {
1430 vcpu_load(vcpu);
1431 kvm_inject_nmi(vcpu);
1432 vcpu_put(vcpu);
1433
1434 return 0;
1435 }
1436
1437 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1438 struct kvm_tpr_access_ctl *tac)
1439 {
1440 if (tac->flags)
1441 return -EINVAL;
1442 vcpu->arch.tpr_access_reporting = !!tac->enabled;
1443 return 0;
1444 }
1445
1446 long kvm_arch_vcpu_ioctl(struct file *filp,
1447 unsigned int ioctl, unsigned long arg)
1448 {
1449 struct kvm_vcpu *vcpu = filp->private_data;
1450 void __user *argp = (void __user *)arg;
1451 int r;
1452 struct kvm_lapic_state *lapic = NULL;
1453
1454 switch (ioctl) {
1455 case KVM_GET_LAPIC: {
1456 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1457
1458 r = -ENOMEM;
1459 if (!lapic)
1460 goto out;
1461 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
1462 if (r)
1463 goto out;
1464 r = -EFAULT;
1465 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
1466 goto out;
1467 r = 0;
1468 break;
1469 }
1470 case KVM_SET_LAPIC: {
1471 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1472 r = -ENOMEM;
1473 if (!lapic)
1474 goto out;
1475 r = -EFAULT;
1476 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
1477 goto out;
1478 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
1479 if (r)
1480 goto out;
1481 r = 0;
1482 break;
1483 }
1484 case KVM_INTERRUPT: {
1485 struct kvm_interrupt irq;
1486
1487 r = -EFAULT;
1488 if (copy_from_user(&irq, argp, sizeof irq))
1489 goto out;
1490 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1491 if (r)
1492 goto out;
1493 r = 0;
1494 break;
1495 }
1496 case KVM_NMI: {
1497 r = kvm_vcpu_ioctl_nmi(vcpu);
1498 if (r)
1499 goto out;
1500 r = 0;
1501 break;
1502 }
1503 case KVM_SET_CPUID: {
1504 struct kvm_cpuid __user *cpuid_arg = argp;
1505 struct kvm_cpuid cpuid;
1506
1507 r = -EFAULT;
1508 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1509 goto out;
1510 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1511 if (r)
1512 goto out;
1513 break;
1514 }
1515 case KVM_SET_CPUID2: {
1516 struct kvm_cpuid2 __user *cpuid_arg = argp;
1517 struct kvm_cpuid2 cpuid;
1518
1519 r = -EFAULT;
1520 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1521 goto out;
1522 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1523 cpuid_arg->entries);
1524 if (r)
1525 goto out;
1526 break;
1527 }
1528 case KVM_GET_CPUID2: {
1529 struct kvm_cpuid2 __user *cpuid_arg = argp;
1530 struct kvm_cpuid2 cpuid;
1531
1532 r = -EFAULT;
1533 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1534 goto out;
1535 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1536 cpuid_arg->entries);
1537 if (r)
1538 goto out;
1539 r = -EFAULT;
1540 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1541 goto out;
1542 r = 0;
1543 break;
1544 }
1545 case KVM_GET_MSRS:
1546 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1547 break;
1548 case KVM_SET_MSRS:
1549 r = msr_io(vcpu, argp, do_set_msr, 0);
1550 break;
1551 case KVM_TPR_ACCESS_REPORTING: {
1552 struct kvm_tpr_access_ctl tac;
1553
1554 r = -EFAULT;
1555 if (copy_from_user(&tac, argp, sizeof tac))
1556 goto out;
1557 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1558 if (r)
1559 goto out;
1560 r = -EFAULT;
1561 if (copy_to_user(argp, &tac, sizeof tac))
1562 goto out;
1563 r = 0;
1564 break;
1565 };
1566 case KVM_SET_VAPIC_ADDR: {
1567 struct kvm_vapic_addr va;
1568
1569 r = -EINVAL;
1570 if (!irqchip_in_kernel(vcpu->kvm))
1571 goto out;
1572 r = -EFAULT;
1573 if (copy_from_user(&va, argp, sizeof va))
1574 goto out;
1575 r = 0;
1576 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1577 break;
1578 }
1579 default:
1580 r = -EINVAL;
1581 }
1582 out:
1583 if (lapic)
1584 kfree(lapic);
1585 return r;
1586 }
1587
1588 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1589 {
1590 int ret;
1591
1592 if (addr > (unsigned int)(-3 * PAGE_SIZE))
1593 return -1;
1594 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1595 return ret;
1596 }
1597
1598 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1599 u32 kvm_nr_mmu_pages)
1600 {
1601 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1602 return -EINVAL;
1603
1604 down_write(&kvm->slots_lock);
1605
1606 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1607 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1608
1609 up_write(&kvm->slots_lock);
1610 return 0;
1611 }
1612
1613 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1614 {
1615 return kvm->arch.n_alloc_mmu_pages;
1616 }
1617
1618 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1619 {
1620 int i;
1621 struct kvm_mem_alias *alias;
1622
1623 for (i = 0; i < kvm->arch.naliases; ++i) {
1624 alias = &kvm->arch.aliases[i];
1625 if (gfn >= alias->base_gfn
1626 && gfn < alias->base_gfn + alias->npages)
1627 return alias->target_gfn + gfn - alias->base_gfn;
1628 }
1629 return gfn;
1630 }
1631
1632 /*
1633 * Set a new alias region. Aliases map a portion of physical memory into
1634 * another portion. This is useful for memory windows, for example the PC
1635 * VGA region.
1636 */
1637 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1638 struct kvm_memory_alias *alias)
1639 {
1640 int r, n;
1641 struct kvm_mem_alias *p;
1642
1643 r = -EINVAL;
1644 /* General sanity checks */
1645 if (alias->memory_size & (PAGE_SIZE - 1))
1646 goto out;
1647 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1648 goto out;
1649 if (alias->slot >= KVM_ALIAS_SLOTS)
1650 goto out;
1651 if (alias->guest_phys_addr + alias->memory_size
1652 < alias->guest_phys_addr)
1653 goto out;
1654 if (alias->target_phys_addr + alias->memory_size
1655 < alias->target_phys_addr)
1656 goto out;
1657
1658 down_write(&kvm->slots_lock);
1659 spin_lock(&kvm->mmu_lock);
1660
1661 p = &kvm->arch.aliases[alias->slot];
1662 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1663 p->npages = alias->memory_size >> PAGE_SHIFT;
1664 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1665
1666 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1667 if (kvm->arch.aliases[n - 1].npages)
1668 break;
1669 kvm->arch.naliases = n;
1670
1671 spin_unlock(&kvm->mmu_lock);
1672 kvm_mmu_zap_all(kvm);
1673
1674 up_write(&kvm->slots_lock);
1675
1676 return 0;
1677
1678 out:
1679 return r;
1680 }
1681
1682 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1683 {
1684 int r;
1685
1686 r = 0;
1687 switch (chip->chip_id) {
1688 case KVM_IRQCHIP_PIC_MASTER:
1689 memcpy(&chip->chip.pic,
1690 &pic_irqchip(kvm)->pics[0],
1691 sizeof(struct kvm_pic_state));
1692 break;
1693 case KVM_IRQCHIP_PIC_SLAVE:
1694 memcpy(&chip->chip.pic,
1695 &pic_irqchip(kvm)->pics[1],
1696 sizeof(struct kvm_pic_state));
1697 break;
1698 case KVM_IRQCHIP_IOAPIC:
1699 memcpy(&chip->chip.ioapic,
1700 ioapic_irqchip(kvm),
1701 sizeof(struct kvm_ioapic_state));
1702 break;
1703 default:
1704 r = -EINVAL;
1705 break;
1706 }
1707 return r;
1708 }
1709
1710 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1711 {
1712 int r;
1713
1714 r = 0;
1715 switch (chip->chip_id) {
1716 case KVM_IRQCHIP_PIC_MASTER:
1717 memcpy(&pic_irqchip(kvm)->pics[0],
1718 &chip->chip.pic,
1719 sizeof(struct kvm_pic_state));
1720 break;
1721 case KVM_IRQCHIP_PIC_SLAVE:
1722 memcpy(&pic_irqchip(kvm)->pics[1],
1723 &chip->chip.pic,
1724 sizeof(struct kvm_pic_state));
1725 break;
1726 case KVM_IRQCHIP_IOAPIC:
1727 memcpy(ioapic_irqchip(kvm),
1728 &chip->chip.ioapic,
1729 sizeof(struct kvm_ioapic_state));
1730 break;
1731 default:
1732 r = -EINVAL;
1733 break;
1734 }
1735 kvm_pic_update_irq(pic_irqchip(kvm));
1736 return r;
1737 }
1738
1739 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1740 {
1741 int r = 0;
1742
1743 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
1744 return r;
1745 }
1746
1747 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1748 {
1749 int r = 0;
1750
1751 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
1752 kvm_pit_load_count(kvm, 0, ps->channels[0].count);
1753 return r;
1754 }
1755
1756 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
1757 struct kvm_reinject_control *control)
1758 {
1759 if (!kvm->arch.vpit)
1760 return -ENXIO;
1761 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
1762 return 0;
1763 }
1764
1765 /*
1766 * Get (and clear) the dirty memory log for a memory slot.
1767 */
1768 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1769 struct kvm_dirty_log *log)
1770 {
1771 int r;
1772 int n;
1773 struct kvm_memory_slot *memslot;
1774 int is_dirty = 0;
1775
1776 down_write(&kvm->slots_lock);
1777
1778 r = kvm_get_dirty_log(kvm, log, &is_dirty);
1779 if (r)
1780 goto out;
1781
1782 /* If nothing is dirty, don't bother messing with page tables. */
1783 if (is_dirty) {
1784 kvm_mmu_slot_remove_write_access(kvm, log->slot);
1785 kvm_flush_remote_tlbs(kvm);
1786 memslot = &kvm->memslots[log->slot];
1787 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1788 memset(memslot->dirty_bitmap, 0, n);
1789 }
1790 r = 0;
1791 out:
1792 up_write(&kvm->slots_lock);
1793 return r;
1794 }
1795
1796 long kvm_arch_vm_ioctl(struct file *filp,
1797 unsigned int ioctl, unsigned long arg)
1798 {
1799 struct kvm *kvm = filp->private_data;
1800 void __user *argp = (void __user *)arg;
1801 int r = -EINVAL;
1802 /*
1803 * This union makes it completely explicit to gcc-3.x
1804 * that these two variables' stack usage should be
1805 * combined, not added together.
1806 */
1807 union {
1808 struct kvm_pit_state ps;
1809 struct kvm_memory_alias alias;
1810 } u;
1811
1812 switch (ioctl) {
1813 case KVM_SET_TSS_ADDR:
1814 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
1815 if (r < 0)
1816 goto out;
1817 break;
1818 case KVM_SET_MEMORY_REGION: {
1819 struct kvm_memory_region kvm_mem;
1820 struct kvm_userspace_memory_region kvm_userspace_mem;
1821
1822 r = -EFAULT;
1823 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
1824 goto out;
1825 kvm_userspace_mem.slot = kvm_mem.slot;
1826 kvm_userspace_mem.flags = kvm_mem.flags;
1827 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
1828 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
1829 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
1830 if (r)
1831 goto out;
1832 break;
1833 }
1834 case KVM_SET_NR_MMU_PAGES:
1835 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
1836 if (r)
1837 goto out;
1838 break;
1839 case KVM_GET_NR_MMU_PAGES:
1840 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
1841 break;
1842 case KVM_SET_MEMORY_ALIAS:
1843 r = -EFAULT;
1844 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
1845 goto out;
1846 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
1847 if (r)
1848 goto out;
1849 break;
1850 case KVM_CREATE_IRQCHIP:
1851 r = -ENOMEM;
1852 kvm->arch.vpic = kvm_create_pic(kvm);
1853 if (kvm->arch.vpic) {
1854 r = kvm_ioapic_init(kvm);
1855 if (r) {
1856 kfree(kvm->arch.vpic);
1857 kvm->arch.vpic = NULL;
1858 goto out;
1859 }
1860 } else
1861 goto out;
1862 r = kvm_setup_default_irq_routing(kvm);
1863 if (r) {
1864 kfree(kvm->arch.vpic);
1865 kfree(kvm->arch.vioapic);
1866 goto out;
1867 }
1868 break;
1869 case KVM_CREATE_PIT:
1870 mutex_lock(&kvm->lock);
1871 r = -EEXIST;
1872 if (kvm->arch.vpit)
1873 goto create_pit_unlock;
1874 r = -ENOMEM;
1875 kvm->arch.vpit = kvm_create_pit(kvm);
1876 if (kvm->arch.vpit)
1877 r = 0;
1878 create_pit_unlock:
1879 mutex_unlock(&kvm->lock);
1880 break;
1881 case KVM_IRQ_LINE_STATUS:
1882 case KVM_IRQ_LINE: {
1883 struct kvm_irq_level irq_event;
1884
1885 r = -EFAULT;
1886 if (copy_from_user(&irq_event, argp, sizeof irq_event))
1887 goto out;
1888 if (irqchip_in_kernel(kvm)) {
1889 __s32 status;
1890 mutex_lock(&kvm->lock);
1891 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1892 irq_event.irq, irq_event.level);
1893 mutex_unlock(&kvm->lock);
1894 if (ioctl == KVM_IRQ_LINE_STATUS) {
1895 irq_event.status = status;
1896 if (copy_to_user(argp, &irq_event,
1897 sizeof irq_event))
1898 goto out;
1899 }
1900 r = 0;
1901 }
1902 break;
1903 }
1904 case KVM_GET_IRQCHIP: {
1905 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1906 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1907
1908 r = -ENOMEM;
1909 if (!chip)
1910 goto out;
1911 r = -EFAULT;
1912 if (copy_from_user(chip, argp, sizeof *chip))
1913 goto get_irqchip_out;
1914 r = -ENXIO;
1915 if (!irqchip_in_kernel(kvm))
1916 goto get_irqchip_out;
1917 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
1918 if (r)
1919 goto get_irqchip_out;
1920 r = -EFAULT;
1921 if (copy_to_user(argp, chip, sizeof *chip))
1922 goto get_irqchip_out;
1923 r = 0;
1924 get_irqchip_out:
1925 kfree(chip);
1926 if (r)
1927 goto out;
1928 break;
1929 }
1930 case KVM_SET_IRQCHIP: {
1931 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1932 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1933
1934 r = -ENOMEM;
1935 if (!chip)
1936 goto out;
1937 r = -EFAULT;
1938 if (copy_from_user(chip, argp, sizeof *chip))
1939 goto set_irqchip_out;
1940 r = -ENXIO;
1941 if (!irqchip_in_kernel(kvm))
1942 goto set_irqchip_out;
1943 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
1944 if (r)
1945 goto set_irqchip_out;
1946 r = 0;
1947 set_irqchip_out:
1948 kfree(chip);
1949 if (r)
1950 goto out;
1951 break;
1952 }
1953 case KVM_GET_PIT: {
1954 r = -EFAULT;
1955 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
1956 goto out;
1957 r = -ENXIO;
1958 if (!kvm->arch.vpit)
1959 goto out;
1960 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
1961 if (r)
1962 goto out;
1963 r = -EFAULT;
1964 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
1965 goto out;
1966 r = 0;
1967 break;
1968 }
1969 case KVM_SET_PIT: {
1970 r = -EFAULT;
1971 if (copy_from_user(&u.ps, argp, sizeof u.ps))
1972 goto out;
1973 r = -ENXIO;
1974 if (!kvm->arch.vpit)
1975 goto out;
1976 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
1977 if (r)
1978 goto out;
1979 r = 0;
1980 break;
1981 }
1982 case KVM_REINJECT_CONTROL: {
1983 struct kvm_reinject_control control;
1984 r = -EFAULT;
1985 if (copy_from_user(&control, argp, sizeof(control)))
1986 goto out;
1987 r = kvm_vm_ioctl_reinject(kvm, &control);
1988 if (r)
1989 goto out;
1990 r = 0;
1991 break;
1992 }
1993 default:
1994 ;
1995 }
1996 out:
1997 return r;
1998 }
1999
2000 static void kvm_init_msr_list(void)
2001 {
2002 u32 dummy[2];
2003 unsigned i, j;
2004
2005 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2006 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2007 continue;
2008 if (j < i)
2009 msrs_to_save[j] = msrs_to_save[i];
2010 j++;
2011 }
2012 num_msrs_to_save = j;
2013 }
2014
2015 /*
2016 * Only apic need an MMIO device hook, so shortcut now..
2017 */
2018 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
2019 gpa_t addr, int len,
2020 int is_write)
2021 {
2022 struct kvm_io_device *dev;
2023
2024 if (vcpu->arch.apic) {
2025 dev = &vcpu->arch.apic->dev;
2026 if (dev->in_range(dev, addr, len, is_write))
2027 return dev;
2028 }
2029 return NULL;
2030 }
2031
2032
2033 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
2034 gpa_t addr, int len,
2035 int is_write)
2036 {
2037 struct kvm_io_device *dev;
2038
2039 dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
2040 if (dev == NULL)
2041 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
2042 is_write);
2043 return dev;
2044 }
2045
2046 int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
2047 struct kvm_vcpu *vcpu)
2048 {
2049 void *data = val;
2050 int r = X86EMUL_CONTINUE;
2051
2052 while (bytes) {
2053 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2054 unsigned offset = addr & (PAGE_SIZE-1);
2055 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
2056 int ret;
2057
2058 if (gpa == UNMAPPED_GVA) {
2059 r = X86EMUL_PROPAGATE_FAULT;
2060 goto out;
2061 }
2062 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
2063 if (ret < 0) {
2064 r = X86EMUL_UNHANDLEABLE;
2065 goto out;
2066 }
2067
2068 bytes -= toread;
2069 data += toread;
2070 addr += toread;
2071 }
2072 out:
2073 return r;
2074 }
2075
2076 int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
2077 struct kvm_vcpu *vcpu)
2078 {
2079 void *data = val;
2080 int r = X86EMUL_CONTINUE;
2081
2082 while (bytes) {
2083 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2084 unsigned offset = addr & (PAGE_SIZE-1);
2085 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
2086 int ret;
2087
2088 if (gpa == UNMAPPED_GVA) {
2089 r = X86EMUL_PROPAGATE_FAULT;
2090 goto out;
2091 }
2092 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
2093 if (ret < 0) {
2094 r = X86EMUL_UNHANDLEABLE;
2095 goto out;
2096 }
2097
2098 bytes -= towrite;
2099 data += towrite;
2100 addr += towrite;
2101 }
2102 out:
2103 return r;
2104 }
2105
2106
2107 static int emulator_read_emulated(unsigned long addr,
2108 void *val,
2109 unsigned int bytes,
2110 struct kvm_vcpu *vcpu)
2111 {
2112 struct kvm_io_device *mmio_dev;
2113 gpa_t gpa;
2114
2115 if (vcpu->mmio_read_completed) {
2116 memcpy(val, vcpu->mmio_data, bytes);
2117 vcpu->mmio_read_completed = 0;
2118 return X86EMUL_CONTINUE;
2119 }
2120
2121 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2122
2123 /* For APIC access vmexit */
2124 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2125 goto mmio;
2126
2127 if (kvm_read_guest_virt(addr, val, bytes, vcpu)
2128 == X86EMUL_CONTINUE)
2129 return X86EMUL_CONTINUE;
2130 if (gpa == UNMAPPED_GVA)
2131 return X86EMUL_PROPAGATE_FAULT;
2132
2133 mmio:
2134 /*
2135 * Is this MMIO handled locally?
2136 */
2137 mutex_lock(&vcpu->kvm->lock);
2138 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
2139 if (mmio_dev) {
2140 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
2141 mutex_unlock(&vcpu->kvm->lock);
2142 return X86EMUL_CONTINUE;
2143 }
2144 mutex_unlock(&vcpu->kvm->lock);
2145
2146 vcpu->mmio_needed = 1;
2147 vcpu->mmio_phys_addr = gpa;
2148 vcpu->mmio_size = bytes;
2149 vcpu->mmio_is_write = 0;
2150
2151 return X86EMUL_UNHANDLEABLE;
2152 }
2153
2154 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2155 const void *val, int bytes)
2156 {
2157 int ret;
2158
2159 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
2160 if (ret < 0)
2161 return 0;
2162 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
2163 return 1;
2164 }
2165
2166 static int emulator_write_emulated_onepage(unsigned long addr,
2167 const void *val,
2168 unsigned int bytes,
2169 struct kvm_vcpu *vcpu)
2170 {
2171 struct kvm_io_device *mmio_dev;
2172 gpa_t gpa;
2173
2174 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2175
2176 if (gpa == UNMAPPED_GVA) {
2177 kvm_inject_page_fault(vcpu, addr, 2);
2178 return X86EMUL_PROPAGATE_FAULT;
2179 }
2180
2181 /* For APIC access vmexit */
2182 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2183 goto mmio;
2184
2185 if (emulator_write_phys(vcpu, gpa, val, bytes))
2186 return X86EMUL_CONTINUE;
2187
2188 mmio:
2189 /*
2190 * Is this MMIO handled locally?
2191 */
2192 mutex_lock(&vcpu->kvm->lock);
2193 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
2194 if (mmio_dev) {
2195 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
2196 mutex_unlock(&vcpu->kvm->lock);
2197 return X86EMUL_CONTINUE;
2198 }
2199 mutex_unlock(&vcpu->kvm->lock);
2200
2201 vcpu->mmio_needed = 1;
2202 vcpu->mmio_phys_addr = gpa;
2203 vcpu->mmio_size = bytes;
2204 vcpu->mmio_is_write = 1;
2205 memcpy(vcpu->mmio_data, val, bytes);
2206
2207 return X86EMUL_CONTINUE;
2208 }
2209
2210 int emulator_write_emulated(unsigned long addr,
2211 const void *val,
2212 unsigned int bytes,
2213 struct kvm_vcpu *vcpu)
2214 {
2215 /* Crossing a page boundary? */
2216 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
2217 int rc, now;
2218
2219 now = -addr & ~PAGE_MASK;
2220 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
2221 if (rc != X86EMUL_CONTINUE)
2222 return rc;
2223 addr += now;
2224 val += now;
2225 bytes -= now;
2226 }
2227 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
2228 }
2229 EXPORT_SYMBOL_GPL(emulator_write_emulated);
2230
2231 static int emulator_cmpxchg_emulated(unsigned long addr,
2232 const void *old,
2233 const void *new,
2234 unsigned int bytes,
2235 struct kvm_vcpu *vcpu)
2236 {
2237 static int reported;
2238
2239 if (!reported) {
2240 reported = 1;
2241 printk(KERN_WARNING "kvm: emulating exchange as write\n");
2242 }
2243 #ifndef CONFIG_X86_64
2244 /* guests cmpxchg8b have to be emulated atomically */
2245 if (bytes == 8) {
2246 gpa_t gpa;
2247 struct page *page;
2248 char *kaddr;
2249 u64 val;
2250
2251 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2252
2253 if (gpa == UNMAPPED_GVA ||
2254 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2255 goto emul_write;
2256
2257 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2258 goto emul_write;
2259
2260 val = *(u64 *)new;
2261
2262 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2263
2264 kaddr = kmap_atomic(page, KM_USER0);
2265 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2266 kunmap_atomic(kaddr, KM_USER0);
2267 kvm_release_page_dirty(page);
2268 }
2269 emul_write:
2270 #endif
2271
2272 return emulator_write_emulated(addr, new, bytes, vcpu);
2273 }
2274
2275 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2276 {
2277 return kvm_x86_ops->get_segment_base(vcpu, seg);
2278 }
2279
2280 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2281 {
2282 kvm_mmu_invlpg(vcpu, address);
2283 return X86EMUL_CONTINUE;
2284 }
2285
2286 int emulate_clts(struct kvm_vcpu *vcpu)
2287 {
2288 KVMTRACE_0D(CLTS, vcpu, handler);
2289 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2290 return X86EMUL_CONTINUE;
2291 }
2292
2293 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2294 {
2295 struct kvm_vcpu *vcpu = ctxt->vcpu;
2296
2297 switch (dr) {
2298 case 0 ... 3:
2299 *dest = kvm_x86_ops->get_dr(vcpu, dr);
2300 return X86EMUL_CONTINUE;
2301 default:
2302 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2303 return X86EMUL_UNHANDLEABLE;
2304 }
2305 }
2306
2307 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2308 {
2309 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2310 int exception;
2311
2312 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2313 if (exception) {
2314 /* FIXME: better handling */
2315 return X86EMUL_UNHANDLEABLE;
2316 }
2317 return X86EMUL_CONTINUE;
2318 }
2319
2320 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2321 {
2322 u8 opcodes[4];
2323 unsigned long rip = kvm_rip_read(vcpu);
2324 unsigned long rip_linear;
2325
2326 if (!printk_ratelimit())
2327 return;
2328
2329 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2330
2331 kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
2332
2333 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2334 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2335 }
2336 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2337
2338 static struct x86_emulate_ops emulate_ops = {
2339 .read_std = kvm_read_guest_virt,
2340 .read_emulated = emulator_read_emulated,
2341 .write_emulated = emulator_write_emulated,
2342 .cmpxchg_emulated = emulator_cmpxchg_emulated,
2343 };
2344
2345 static void cache_all_regs(struct kvm_vcpu *vcpu)
2346 {
2347 kvm_register_read(vcpu, VCPU_REGS_RAX);
2348 kvm_register_read(vcpu, VCPU_REGS_RSP);
2349 kvm_register_read(vcpu, VCPU_REGS_RIP);
2350 vcpu->arch.regs_dirty = ~0;
2351 }
2352
2353 int emulate_instruction(struct kvm_vcpu *vcpu,
2354 struct kvm_run *run,
2355 unsigned long cr2,
2356 u16 error_code,
2357 int emulation_type)
2358 {
2359 int r;
2360 struct decode_cache *c;
2361
2362 kvm_clear_exception_queue(vcpu);
2363 vcpu->arch.mmio_fault_cr2 = cr2;
2364 /*
2365 * TODO: fix x86_emulate.c to use guest_read/write_register
2366 * instead of direct ->regs accesses, can save hundred cycles
2367 * on Intel for instructions that don't read/change RSP, for
2368 * for example.
2369 */
2370 cache_all_regs(vcpu);
2371
2372 vcpu->mmio_is_write = 0;
2373 vcpu->arch.pio.string = 0;
2374
2375 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2376 int cs_db, cs_l;
2377 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2378
2379 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2380 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2381 vcpu->arch.emulate_ctxt.mode =
2382 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2383 ? X86EMUL_MODE_REAL : cs_l
2384 ? X86EMUL_MODE_PROT64 : cs_db
2385 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2386
2387 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2388
2389 /* Reject the instructions other than VMCALL/VMMCALL when
2390 * try to emulate invalid opcode */
2391 c = &vcpu->arch.emulate_ctxt.decode;
2392 if ((emulation_type & EMULTYPE_TRAP_UD) &&
2393 (!(c->twobyte && c->b == 0x01 &&
2394 (c->modrm_reg == 0 || c->modrm_reg == 3) &&
2395 c->modrm_mod == 3 && c->modrm_rm == 1)))
2396 return EMULATE_FAIL;
2397
2398 ++vcpu->stat.insn_emulation;
2399 if (r) {
2400 ++vcpu->stat.insn_emulation_fail;
2401 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2402 return EMULATE_DONE;
2403 return EMULATE_FAIL;
2404 }
2405 }
2406
2407 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2408
2409 if (vcpu->arch.pio.string)
2410 return EMULATE_DO_MMIO;
2411
2412 if ((r || vcpu->mmio_is_write) && run) {
2413 run->exit_reason = KVM_EXIT_MMIO;
2414 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2415 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2416 run->mmio.len = vcpu->mmio_size;
2417 run->mmio.is_write = vcpu->mmio_is_write;
2418 }
2419
2420 if (r) {
2421 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2422 return EMULATE_DONE;
2423 if (!vcpu->mmio_needed) {
2424 kvm_report_emulation_failure(vcpu, "mmio");
2425 return EMULATE_FAIL;
2426 }
2427 return EMULATE_DO_MMIO;
2428 }
2429
2430 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2431
2432 if (vcpu->mmio_is_write) {
2433 vcpu->mmio_needed = 0;
2434 return EMULATE_DO_MMIO;
2435 }
2436
2437 return EMULATE_DONE;
2438 }
2439 EXPORT_SYMBOL_GPL(emulate_instruction);
2440
2441 static int pio_copy_data(struct kvm_vcpu *vcpu)
2442 {
2443 void *p = vcpu->arch.pio_data;
2444 gva_t q = vcpu->arch.pio.guest_gva;
2445 unsigned bytes;
2446 int ret;
2447
2448 bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2449 if (vcpu->arch.pio.in)
2450 ret = kvm_write_guest_virt(q, p, bytes, vcpu);
2451 else
2452 ret = kvm_read_guest_virt(q, p, bytes, vcpu);
2453 return ret;
2454 }
2455
2456 int complete_pio(struct kvm_vcpu *vcpu)
2457 {
2458 struct kvm_pio_request *io = &vcpu->arch.pio;
2459 long delta;
2460 int r;
2461 unsigned long val;
2462
2463 if (!io->string) {
2464 if (io->in) {
2465 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2466 memcpy(&val, vcpu->arch.pio_data, io->size);
2467 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
2468 }
2469 } else {
2470 if (io->in) {
2471 r = pio_copy_data(vcpu);
2472 if (r)
2473 return r;
2474 }
2475
2476 delta = 1;
2477 if (io->rep) {
2478 delta *= io->cur_count;
2479 /*
2480 * The size of the register should really depend on
2481 * current address size.
2482 */
2483 val = kvm_register_read(vcpu, VCPU_REGS_RCX);
2484 val -= delta;
2485 kvm_register_write(vcpu, VCPU_REGS_RCX, val);
2486 }
2487 if (io->down)
2488 delta = -delta;
2489 delta *= io->size;
2490 if (io->in) {
2491 val = kvm_register_read(vcpu, VCPU_REGS_RDI);
2492 val += delta;
2493 kvm_register_write(vcpu, VCPU_REGS_RDI, val);
2494 } else {
2495 val = kvm_register_read(vcpu, VCPU_REGS_RSI);
2496 val += delta;
2497 kvm_register_write(vcpu, VCPU_REGS_RSI, val);
2498 }
2499 }
2500
2501 io->count -= io->cur_count;
2502 io->cur_count = 0;
2503
2504 return 0;
2505 }
2506
2507 static void kernel_pio(struct kvm_io_device *pio_dev,
2508 struct kvm_vcpu *vcpu,
2509 void *pd)
2510 {
2511 /* TODO: String I/O for in kernel device */
2512
2513 mutex_lock(&vcpu->kvm->lock);
2514 if (vcpu->arch.pio.in)
2515 kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
2516 vcpu->arch.pio.size,
2517 pd);
2518 else
2519 kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
2520 vcpu->arch.pio.size,
2521 pd);
2522 mutex_unlock(&vcpu->kvm->lock);
2523 }
2524
2525 static void pio_string_write(struct kvm_io_device *pio_dev,
2526 struct kvm_vcpu *vcpu)
2527 {
2528 struct kvm_pio_request *io = &vcpu->arch.pio;
2529 void *pd = vcpu->arch.pio_data;
2530 int i;
2531
2532 mutex_lock(&vcpu->kvm->lock);
2533 for (i = 0; i < io->cur_count; i++) {
2534 kvm_iodevice_write(pio_dev, io->port,
2535 io->size,
2536 pd);
2537 pd += io->size;
2538 }
2539 mutex_unlock(&vcpu->kvm->lock);
2540 }
2541
2542 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2543 gpa_t addr, int len,
2544 int is_write)
2545 {
2546 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
2547 }
2548
2549 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2550 int size, unsigned port)
2551 {
2552 struct kvm_io_device *pio_dev;
2553 unsigned long val;
2554
2555 vcpu->run->exit_reason = KVM_EXIT_IO;
2556 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2557 vcpu->run->io.size = vcpu->arch.pio.size = size;
2558 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2559 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2560 vcpu->run->io.port = vcpu->arch.pio.port = port;
2561 vcpu->arch.pio.in = in;
2562 vcpu->arch.pio.string = 0;
2563 vcpu->arch.pio.down = 0;
2564 vcpu->arch.pio.rep = 0;
2565
2566 if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2567 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2568 handler);
2569 else
2570 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2571 handler);
2572
2573 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2574 memcpy(vcpu->arch.pio_data, &val, 4);
2575
2576 pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
2577 if (pio_dev) {
2578 kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2579 complete_pio(vcpu);
2580 return 1;
2581 }
2582 return 0;
2583 }
2584 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2585
2586 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2587 int size, unsigned long count, int down,
2588 gva_t address, int rep, unsigned port)
2589 {
2590 unsigned now, in_page;
2591 int ret = 0;
2592 struct kvm_io_device *pio_dev;
2593
2594 vcpu->run->exit_reason = KVM_EXIT_IO;
2595 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2596 vcpu->run->io.size = vcpu->arch.pio.size = size;
2597 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2598 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2599 vcpu->run->io.port = vcpu->arch.pio.port = port;
2600 vcpu->arch.pio.in = in;
2601 vcpu->arch.pio.string = 1;
2602 vcpu->arch.pio.down = down;
2603 vcpu->arch.pio.rep = rep;
2604
2605 if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2606 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2607 handler);
2608 else
2609 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2610 handler);
2611
2612 if (!count) {
2613 kvm_x86_ops->skip_emulated_instruction(vcpu);
2614 return 1;
2615 }
2616
2617 if (!down)
2618 in_page = PAGE_SIZE - offset_in_page(address);
2619 else
2620 in_page = offset_in_page(address) + size;
2621 now = min(count, (unsigned long)in_page / size);
2622 if (!now)
2623 now = 1;
2624 if (down) {
2625 /*
2626 * String I/O in reverse. Yuck. Kill the guest, fix later.
2627 */
2628 pr_unimpl(vcpu, "guest string pio down\n");
2629 kvm_inject_gp(vcpu, 0);
2630 return 1;
2631 }
2632 vcpu->run->io.count = now;
2633 vcpu->arch.pio.cur_count = now;
2634
2635 if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2636 kvm_x86_ops->skip_emulated_instruction(vcpu);
2637
2638 vcpu->arch.pio.guest_gva = address;
2639
2640 pio_dev = vcpu_find_pio_dev(vcpu, port,
2641 vcpu->arch.pio.cur_count,
2642 !vcpu->arch.pio.in);
2643 if (!vcpu->arch.pio.in) {
2644 /* string PIO write */
2645 ret = pio_copy_data(vcpu);
2646 if (ret == X86EMUL_PROPAGATE_FAULT) {
2647 kvm_inject_gp(vcpu, 0);
2648 return 1;
2649 }
2650 if (ret == 0 && pio_dev) {
2651 pio_string_write(pio_dev, vcpu);
2652 complete_pio(vcpu);
2653 if (vcpu->arch.pio.count == 0)
2654 ret = 1;
2655 }
2656 } else if (pio_dev)
2657 pr_unimpl(vcpu, "no string pio read support yet, "
2658 "port %x size %d count %ld\n",
2659 port, size, count);
2660
2661 return ret;
2662 }
2663 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2664
2665 static void bounce_off(void *info)
2666 {
2667 /* nothing */
2668 }
2669
2670 static unsigned int ref_freq;
2671 static unsigned long tsc_khz_ref;
2672
2673 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
2674 void *data)
2675 {
2676 struct cpufreq_freqs *freq = data;
2677 struct kvm *kvm;
2678 struct kvm_vcpu *vcpu;
2679 int i, send_ipi = 0;
2680
2681 if (!ref_freq)
2682 ref_freq = freq->old;
2683
2684 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
2685 return 0;
2686 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
2687 return 0;
2688 per_cpu(cpu_tsc_khz, freq->cpu) = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
2689
2690 spin_lock(&kvm_lock);
2691 list_for_each_entry(kvm, &vm_list, vm_list) {
2692 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2693 vcpu = kvm->vcpus[i];
2694 if (!vcpu)
2695 continue;
2696 if (vcpu->cpu != freq->cpu)
2697 continue;
2698 if (!kvm_request_guest_time_update(vcpu))
2699 continue;
2700 if (vcpu->cpu != smp_processor_id())
2701 send_ipi++;
2702 }
2703 }
2704 spin_unlock(&kvm_lock);
2705
2706 if (freq->old < freq->new && send_ipi) {
2707 /*
2708 * We upscale the frequency. Must make the guest
2709 * doesn't see old kvmclock values while running with
2710 * the new frequency, otherwise we risk the guest sees
2711 * time go backwards.
2712 *
2713 * In case we update the frequency for another cpu
2714 * (which might be in guest context) send an interrupt
2715 * to kick the cpu out of guest context. Next time
2716 * guest context is entered kvmclock will be updated,
2717 * so the guest will not see stale values.
2718 */
2719 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
2720 }
2721 return 0;
2722 }
2723
2724 static struct notifier_block kvmclock_cpufreq_notifier_block = {
2725 .notifier_call = kvmclock_cpufreq_notifier
2726 };
2727
2728 int kvm_arch_init(void *opaque)
2729 {
2730 int r, cpu;
2731 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
2732
2733 if (kvm_x86_ops) {
2734 printk(KERN_ERR "kvm: already loaded the other module\n");
2735 r = -EEXIST;
2736 goto out;
2737 }
2738
2739 if (!ops->cpu_has_kvm_support()) {
2740 printk(KERN_ERR "kvm: no hardware support\n");
2741 r = -EOPNOTSUPP;
2742 goto out;
2743 }
2744 if (ops->disabled_by_bios()) {
2745 printk(KERN_ERR "kvm: disabled by bios\n");
2746 r = -EOPNOTSUPP;
2747 goto out;
2748 }
2749
2750 r = kvm_mmu_module_init();
2751 if (r)
2752 goto out;
2753
2754 kvm_init_msr_list();
2755
2756 kvm_x86_ops = ops;
2757 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2758 kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
2759 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
2760 PT_DIRTY_MASK, PT64_NX_MASK, 0, 0);
2761
2762 for_each_possible_cpu(cpu)
2763 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
2764 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
2765 tsc_khz_ref = tsc_khz;
2766 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
2767 CPUFREQ_TRANSITION_NOTIFIER);
2768 }
2769
2770 return 0;
2771
2772 out:
2773 return r;
2774 }
2775
2776 void kvm_arch_exit(void)
2777 {
2778 kvm_x86_ops = NULL;
2779 kvm_mmu_module_exit();
2780 }
2781
2782 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
2783 {
2784 ++vcpu->stat.halt_exits;
2785 KVMTRACE_0D(HLT, vcpu, handler);
2786 if (irqchip_in_kernel(vcpu->kvm)) {
2787 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
2788 return 1;
2789 } else {
2790 vcpu->run->exit_reason = KVM_EXIT_HLT;
2791 return 0;
2792 }
2793 }
2794 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
2795
2796 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
2797 unsigned long a1)
2798 {
2799 if (is_long_mode(vcpu))
2800 return a0;
2801 else
2802 return a0 | ((gpa_t)a1 << 32);
2803 }
2804
2805 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
2806 {
2807 unsigned long nr, a0, a1, a2, a3, ret;
2808 int r = 1;
2809
2810 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
2811 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
2812 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
2813 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
2814 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
2815
2816 KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
2817
2818 if (!is_long_mode(vcpu)) {
2819 nr &= 0xFFFFFFFF;
2820 a0 &= 0xFFFFFFFF;
2821 a1 &= 0xFFFFFFFF;
2822 a2 &= 0xFFFFFFFF;
2823 a3 &= 0xFFFFFFFF;
2824 }
2825
2826 switch (nr) {
2827 case KVM_HC_VAPIC_POLL_IRQ:
2828 ret = 0;
2829 break;
2830 case KVM_HC_MMU_OP:
2831 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
2832 break;
2833 default:
2834 ret = -KVM_ENOSYS;
2835 break;
2836 }
2837 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
2838 ++vcpu->stat.hypercalls;
2839 return r;
2840 }
2841 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
2842
2843 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
2844 {
2845 char instruction[3];
2846 int ret = 0;
2847 unsigned long rip = kvm_rip_read(vcpu);
2848
2849
2850 /*
2851 * Blow out the MMU to ensure that no other VCPU has an active mapping
2852 * to ensure that the updated hypercall appears atomically across all
2853 * VCPUs.
2854 */
2855 kvm_mmu_zap_all(vcpu->kvm);
2856
2857 kvm_x86_ops->patch_hypercall(vcpu, instruction);
2858 if (emulator_write_emulated(rip, instruction, 3, vcpu)
2859 != X86EMUL_CONTINUE)
2860 ret = -EFAULT;
2861
2862 return ret;
2863 }
2864
2865 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
2866 {
2867 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
2868 }
2869
2870 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2871 {
2872 struct descriptor_table dt = { limit, base };
2873
2874 kvm_x86_ops->set_gdt(vcpu, &dt);
2875 }
2876
2877 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2878 {
2879 struct descriptor_table dt = { limit, base };
2880
2881 kvm_x86_ops->set_idt(vcpu, &dt);
2882 }
2883
2884 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
2885 unsigned long *rflags)
2886 {
2887 kvm_lmsw(vcpu, msw);
2888 *rflags = kvm_x86_ops->get_rflags(vcpu);
2889 }
2890
2891 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
2892 {
2893 unsigned long value;
2894
2895 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2896 switch (cr) {
2897 case 0:
2898 value = vcpu->arch.cr0;
2899 break;
2900 case 2:
2901 value = vcpu->arch.cr2;
2902 break;
2903 case 3:
2904 value = vcpu->arch.cr3;
2905 break;
2906 case 4:
2907 value = vcpu->arch.cr4;
2908 break;
2909 case 8:
2910 value = kvm_get_cr8(vcpu);
2911 break;
2912 default:
2913 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2914 return 0;
2915 }
2916 KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
2917 (u32)((u64)value >> 32), handler);
2918
2919 return value;
2920 }
2921
2922 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
2923 unsigned long *rflags)
2924 {
2925 KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
2926 (u32)((u64)val >> 32), handler);
2927
2928 switch (cr) {
2929 case 0:
2930 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2931 *rflags = kvm_x86_ops->get_rflags(vcpu);
2932 break;
2933 case 2:
2934 vcpu->arch.cr2 = val;
2935 break;
2936 case 3:
2937 kvm_set_cr3(vcpu, val);
2938 break;
2939 case 4:
2940 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2941 break;
2942 case 8:
2943 kvm_set_cr8(vcpu, val & 0xfUL);
2944 break;
2945 default:
2946 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2947 }
2948 }
2949
2950 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
2951 {
2952 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
2953 int j, nent = vcpu->arch.cpuid_nent;
2954
2955 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
2956 /* when no next entry is found, the current entry[i] is reselected */
2957 for (j = i + 1; ; j = (j + 1) % nent) {
2958 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2959 if (ej->function == e->function) {
2960 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2961 return j;
2962 }
2963 }
2964 return 0; /* silence gcc, even though control never reaches here */
2965 }
2966
2967 /* find an entry with matching function, matching index (if needed), and that
2968 * should be read next (if it's stateful) */
2969 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
2970 u32 function, u32 index)
2971 {
2972 if (e->function != function)
2973 return 0;
2974 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
2975 return 0;
2976 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
2977 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
2978 return 0;
2979 return 1;
2980 }
2981
2982 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
2983 u32 function, u32 index)
2984 {
2985 int i;
2986 struct kvm_cpuid_entry2 *best = NULL;
2987
2988 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2989 struct kvm_cpuid_entry2 *e;
2990
2991 e = &vcpu->arch.cpuid_entries[i];
2992 if (is_matching_cpuid_entry(e, function, index)) {
2993 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
2994 move_to_next_stateful_cpuid_entry(vcpu, i);
2995 best = e;
2996 break;
2997 }
2998 /*
2999 * Both basic or both extended?
3000 */
3001 if (((e->function ^ function) & 0x80000000) == 0)
3002 if (!best || e->function > best->function)
3003 best = e;
3004 }
3005 return best;
3006 }
3007
3008 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
3009 {
3010 u32 function, index;
3011 struct kvm_cpuid_entry2 *best;
3012
3013 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
3014 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3015 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
3016 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
3017 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
3018 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
3019 best = kvm_find_cpuid_entry(vcpu, function, index);
3020 if (best) {
3021 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
3022 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
3023 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
3024 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
3025 }
3026 kvm_x86_ops->skip_emulated_instruction(vcpu);
3027 KVMTRACE_5D(CPUID, vcpu, function,
3028 (u32)kvm_register_read(vcpu, VCPU_REGS_RAX),
3029 (u32)kvm_register_read(vcpu, VCPU_REGS_RBX),
3030 (u32)kvm_register_read(vcpu, VCPU_REGS_RCX),
3031 (u32)kvm_register_read(vcpu, VCPU_REGS_RDX), handler);
3032 }
3033 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
3034
3035 /*
3036 * Check if userspace requested an interrupt window, and that the
3037 * interrupt window is open.
3038 *
3039 * No need to exit to userspace if we already have an interrupt queued.
3040 */
3041 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
3042 struct kvm_run *kvm_run)
3043 {
3044 return (!vcpu->arch.irq_summary &&
3045 kvm_run->request_interrupt_window &&
3046 vcpu->arch.interrupt_window_open &&
3047 (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
3048 }
3049
3050 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
3051 struct kvm_run *kvm_run)
3052 {
3053 kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
3054 kvm_run->cr8 = kvm_get_cr8(vcpu);
3055 kvm_run->apic_base = kvm_get_apic_base(vcpu);
3056 if (irqchip_in_kernel(vcpu->kvm))
3057 kvm_run->ready_for_interrupt_injection = 1;
3058 else
3059 kvm_run->ready_for_interrupt_injection =
3060 (vcpu->arch.interrupt_window_open &&
3061 vcpu->arch.irq_summary == 0);
3062 }
3063
3064 static void vapic_enter(struct kvm_vcpu *vcpu)
3065 {
3066 struct kvm_lapic *apic = vcpu->arch.apic;
3067 struct page *page;
3068
3069 if (!apic || !apic->vapic_addr)
3070 return;
3071
3072 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3073
3074 vcpu->arch.apic->vapic_page = page;
3075 }
3076
3077 static void vapic_exit(struct kvm_vcpu *vcpu)
3078 {
3079 struct kvm_lapic *apic = vcpu->arch.apic;
3080
3081 if (!apic || !apic->vapic_addr)
3082 return;
3083
3084 down_read(&vcpu->kvm->slots_lock);
3085 kvm_release_page_dirty(apic->vapic_page);
3086 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3087 up_read(&vcpu->kvm->slots_lock);
3088 }
3089
3090 static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3091 {
3092 int r;
3093
3094 if (vcpu->requests)
3095 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
3096 kvm_mmu_unload(vcpu);
3097
3098 r = kvm_mmu_reload(vcpu);
3099 if (unlikely(r))
3100 goto out;
3101
3102 if (vcpu->requests) {
3103 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
3104 __kvm_migrate_timers(vcpu);
3105 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
3106 kvm_write_guest_time(vcpu);
3107 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
3108 kvm_mmu_sync_roots(vcpu);
3109 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
3110 kvm_x86_ops->tlb_flush(vcpu);
3111 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
3112 &vcpu->requests)) {
3113 kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
3114 r = 0;
3115 goto out;
3116 }
3117 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
3118 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
3119 r = 0;
3120 goto out;
3121 }
3122 }
3123
3124 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
3125 kvm_inject_pending_timer_irqs(vcpu);
3126
3127 preempt_disable();
3128
3129 kvm_x86_ops->prepare_guest_switch(vcpu);
3130 kvm_load_guest_fpu(vcpu);
3131
3132 local_irq_disable();
3133
3134 if (vcpu->requests || need_resched() || signal_pending(current)) {
3135 local_irq_enable();
3136 preempt_enable();
3137 r = 1;
3138 goto out;
3139 }
3140
3141 vcpu->guest_mode = 1;
3142 /*
3143 * Make sure that guest_mode assignment won't happen after
3144 * testing the pending IRQ vector bitmap.
3145 */
3146 smp_wmb();
3147
3148 if (vcpu->arch.exception.pending)
3149 __queue_exception(vcpu);
3150 else if (irqchip_in_kernel(vcpu->kvm))
3151 kvm_x86_ops->inject_pending_irq(vcpu);
3152 else
3153 kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
3154
3155 kvm_lapic_sync_to_vapic(vcpu);
3156
3157 up_read(&vcpu->kvm->slots_lock);
3158
3159 kvm_guest_enter();
3160
3161 get_debugreg(vcpu->arch.host_dr6, 6);
3162 get_debugreg(vcpu->arch.host_dr7, 7);
3163 if (unlikely(vcpu->arch.switch_db_regs)) {
3164 get_debugreg(vcpu->arch.host_db[0], 0);
3165 get_debugreg(vcpu->arch.host_db[1], 1);
3166 get_debugreg(vcpu->arch.host_db[2], 2);
3167 get_debugreg(vcpu->arch.host_db[3], 3);
3168
3169 set_debugreg(0, 7);
3170 set_debugreg(vcpu->arch.eff_db[0], 0);
3171 set_debugreg(vcpu->arch.eff_db[1], 1);
3172 set_debugreg(vcpu->arch.eff_db[2], 2);
3173 set_debugreg(vcpu->arch.eff_db[3], 3);
3174 }
3175
3176 KVMTRACE_0D(VMENTRY, vcpu, entryexit);
3177 kvm_x86_ops->run(vcpu, kvm_run);
3178
3179 if (unlikely(vcpu->arch.switch_db_regs)) {
3180 set_debugreg(0, 7);
3181 set_debugreg(vcpu->arch.host_db[0], 0);
3182 set_debugreg(vcpu->arch.host_db[1], 1);
3183 set_debugreg(vcpu->arch.host_db[2], 2);
3184 set_debugreg(vcpu->arch.host_db[3], 3);
3185 }
3186 set_debugreg(vcpu->arch.host_dr6, 6);
3187 set_debugreg(vcpu->arch.host_dr7, 7);
3188
3189 vcpu->guest_mode = 0;
3190 local_irq_enable();
3191
3192 ++vcpu->stat.exits;
3193
3194 /*
3195 * We must have an instruction between local_irq_enable() and
3196 * kvm_guest_exit(), so the timer interrupt isn't delayed by
3197 * the interrupt shadow. The stat.exits increment will do nicely.
3198 * But we need to prevent reordering, hence this barrier():
3199 */
3200 barrier();
3201
3202 kvm_guest_exit();
3203
3204 preempt_enable();
3205
3206 down_read(&vcpu->kvm->slots_lock);
3207
3208 /*
3209 * Profile KVM exit RIPs:
3210 */
3211 if (unlikely(prof_on == KVM_PROFILING)) {
3212 unsigned long rip = kvm_rip_read(vcpu);
3213 profile_hit(KVM_PROFILING, (void *)rip);
3214 }
3215
3216 if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
3217 vcpu->arch.exception.pending = false;
3218
3219 kvm_lapic_sync_from_vapic(vcpu);
3220
3221 r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
3222 out:
3223 return r;
3224 }
3225
3226 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3227 {
3228 int r;
3229
3230 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
3231 pr_debug("vcpu %d received sipi with vector # %x\n",
3232 vcpu->vcpu_id, vcpu->arch.sipi_vector);
3233 kvm_lapic_reset(vcpu);
3234 r = kvm_arch_vcpu_reset(vcpu);
3235 if (r)
3236 return r;
3237 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3238 }
3239
3240 down_read(&vcpu->kvm->slots_lock);
3241 vapic_enter(vcpu);
3242
3243 r = 1;
3244 while (r > 0) {
3245 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
3246 r = vcpu_enter_guest(vcpu, kvm_run);
3247 else {
3248 up_read(&vcpu->kvm->slots_lock);
3249 kvm_vcpu_block(vcpu);
3250 down_read(&vcpu->kvm->slots_lock);
3251 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
3252 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
3253 vcpu->arch.mp_state =
3254 KVM_MP_STATE_RUNNABLE;
3255 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
3256 r = -EINTR;
3257 }
3258
3259 if (r > 0) {
3260 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
3261 r = -EINTR;
3262 kvm_run->exit_reason = KVM_EXIT_INTR;
3263 ++vcpu->stat.request_irq_exits;
3264 }
3265 if (signal_pending(current)) {
3266 r = -EINTR;
3267 kvm_run->exit_reason = KVM_EXIT_INTR;
3268 ++vcpu->stat.signal_exits;
3269 }
3270 if (need_resched()) {
3271 up_read(&vcpu->kvm->slots_lock);
3272 kvm_resched(vcpu);
3273 down_read(&vcpu->kvm->slots_lock);
3274 }
3275 }
3276 }
3277
3278 up_read(&vcpu->kvm->slots_lock);
3279 post_kvm_run_save(vcpu, kvm_run);
3280
3281 vapic_exit(vcpu);
3282
3283 return r;
3284 }
3285
3286 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3287 {
3288 int r;
3289 sigset_t sigsaved;
3290
3291 vcpu_load(vcpu);
3292
3293 if (vcpu->sigset_active)
3294 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
3295
3296 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
3297 kvm_vcpu_block(vcpu);
3298 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
3299 r = -EAGAIN;
3300 goto out;
3301 }
3302
3303 /* re-sync apic's tpr */
3304 if (!irqchip_in_kernel(vcpu->kvm))
3305 kvm_set_cr8(vcpu, kvm_run->cr8);
3306
3307 if (vcpu->arch.pio.cur_count) {
3308 r = complete_pio(vcpu);
3309 if (r)
3310 goto out;
3311 }
3312 #if CONFIG_HAS_IOMEM
3313 if (vcpu->mmio_needed) {
3314 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
3315 vcpu->mmio_read_completed = 1;
3316 vcpu->mmio_needed = 0;
3317
3318 down_read(&vcpu->kvm->slots_lock);
3319 r = emulate_instruction(vcpu, kvm_run,
3320 vcpu->arch.mmio_fault_cr2, 0,
3321 EMULTYPE_NO_DECODE);
3322 up_read(&vcpu->kvm->slots_lock);
3323 if (r == EMULATE_DO_MMIO) {
3324 /*
3325 * Read-modify-write. Back to userspace.
3326 */
3327 r = 0;
3328 goto out;
3329 }
3330 }
3331 #endif
3332 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
3333 kvm_register_write(vcpu, VCPU_REGS_RAX,
3334 kvm_run->hypercall.ret);
3335
3336 r = __vcpu_run(vcpu, kvm_run);
3337
3338 out:
3339 if (vcpu->sigset_active)
3340 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
3341
3342 vcpu_put(vcpu);
3343 return r;
3344 }
3345
3346 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3347 {
3348 vcpu_load(vcpu);
3349
3350 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3351 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3352 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3353 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3354 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3355 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3356 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3357 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3358 #ifdef CONFIG_X86_64
3359 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
3360 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
3361 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
3362 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
3363 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
3364 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
3365 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
3366 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
3367 #endif
3368
3369 regs->rip = kvm_rip_read(vcpu);
3370 regs->rflags = kvm_x86_ops->get_rflags(vcpu);
3371
3372 /*
3373 * Don't leak debug flags in case they were set for guest debugging
3374 */
3375 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3376 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
3377
3378 vcpu_put(vcpu);
3379
3380 return 0;
3381 }
3382
3383 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3384 {
3385 vcpu_load(vcpu);
3386
3387 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
3388 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
3389 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
3390 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
3391 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
3392 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
3393 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
3394 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
3395 #ifdef CONFIG_X86_64
3396 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
3397 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
3398 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
3399 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
3400 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
3401 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
3402 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
3403 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
3404
3405 #endif
3406
3407 kvm_rip_write(vcpu, regs->rip);
3408 kvm_x86_ops->set_rflags(vcpu, regs->rflags);
3409
3410
3411 vcpu->arch.exception.pending = false;
3412
3413 vcpu_put(vcpu);
3414
3415 return 0;
3416 }
3417
3418 void kvm_get_segment(struct kvm_vcpu *vcpu,
3419 struct kvm_segment *var, int seg)
3420 {
3421 kvm_x86_ops->get_segment(vcpu, var, seg);
3422 }
3423
3424 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3425 {
3426 struct kvm_segment cs;
3427
3428 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3429 *db = cs.db;
3430 *l = cs.l;
3431 }
3432 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3433
3434 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3435 struct kvm_sregs *sregs)
3436 {
3437 struct descriptor_table dt;
3438 int pending_vec;
3439
3440 vcpu_load(vcpu);
3441
3442 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3443 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3444 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3445 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3446 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3447 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3448
3449 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3450 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3451
3452 kvm_x86_ops->get_idt(vcpu, &dt);
3453 sregs->idt.limit = dt.limit;
3454 sregs->idt.base = dt.base;
3455 kvm_x86_ops->get_gdt(vcpu, &dt);
3456 sregs->gdt.limit = dt.limit;
3457 sregs->gdt.base = dt.base;
3458
3459 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3460 sregs->cr0 = vcpu->arch.cr0;
3461 sregs->cr2 = vcpu->arch.cr2;
3462 sregs->cr3 = vcpu->arch.cr3;
3463 sregs->cr4 = vcpu->arch.cr4;
3464 sregs->cr8 = kvm_get_cr8(vcpu);
3465 sregs->efer = vcpu->arch.shadow_efer;
3466 sregs->apic_base = kvm_get_apic_base(vcpu);
3467
3468 if (irqchip_in_kernel(vcpu->kvm)) {
3469 memset(sregs->interrupt_bitmap, 0,
3470 sizeof sregs->interrupt_bitmap);
3471 pending_vec = kvm_x86_ops->get_irq(vcpu);
3472 if (pending_vec >= 0)
3473 set_bit(pending_vec,
3474 (unsigned long *)sregs->interrupt_bitmap);
3475 } else
3476 memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
3477 sizeof sregs->interrupt_bitmap);
3478
3479 vcpu_put(vcpu);
3480
3481 return 0;
3482 }
3483
3484 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3485 struct kvm_mp_state *mp_state)
3486 {
3487 vcpu_load(vcpu);
3488 mp_state->mp_state = vcpu->arch.mp_state;
3489 vcpu_put(vcpu);
3490 return 0;
3491 }
3492
3493 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3494 struct kvm_mp_state *mp_state)
3495 {
3496 vcpu_load(vcpu);
3497 vcpu->arch.mp_state = mp_state->mp_state;
3498 vcpu_put(vcpu);
3499 return 0;
3500 }
3501
3502 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3503 struct kvm_segment *var, int seg)
3504 {
3505 kvm_x86_ops->set_segment(vcpu, var, seg);
3506 }
3507
3508 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
3509 struct kvm_segment *kvm_desct)
3510 {
3511 kvm_desct->base = seg_desc->base0;
3512 kvm_desct->base |= seg_desc->base1 << 16;
3513 kvm_desct->base |= seg_desc->base2 << 24;
3514 kvm_desct->limit = seg_desc->limit0;
3515 kvm_desct->limit |= seg_desc->limit << 16;
3516 if (seg_desc->g) {
3517 kvm_desct->limit <<= 12;
3518 kvm_desct->limit |= 0xfff;
3519 }
3520 kvm_desct->selector = selector;
3521 kvm_desct->type = seg_desc->type;
3522 kvm_desct->present = seg_desc->p;
3523 kvm_desct->dpl = seg_desc->dpl;
3524 kvm_desct->db = seg_desc->d;
3525 kvm_desct->s = seg_desc->s;
3526 kvm_desct->l = seg_desc->l;
3527 kvm_desct->g = seg_desc->g;
3528 kvm_desct->avl = seg_desc->avl;
3529 if (!selector)
3530 kvm_desct->unusable = 1;
3531 else
3532 kvm_desct->unusable = 0;
3533 kvm_desct->padding = 0;
3534 }
3535
3536 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
3537 u16 selector,
3538 struct descriptor_table *dtable)
3539 {
3540 if (selector & 1 << 2) {
3541 struct kvm_segment kvm_seg;
3542
3543 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
3544
3545 if (kvm_seg.unusable)
3546 dtable->limit = 0;
3547 else
3548 dtable->limit = kvm_seg.limit;
3549 dtable->base = kvm_seg.base;
3550 }
3551 else
3552 kvm_x86_ops->get_gdt(vcpu, dtable);
3553 }
3554
3555 /* allowed just for 8 bytes segments */
3556 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3557 struct desc_struct *seg_desc)
3558 {
3559 gpa_t gpa;
3560 struct descriptor_table dtable;
3561 u16 index = selector >> 3;
3562
3563 get_segment_descriptor_dtable(vcpu, selector, &dtable);
3564
3565 if (dtable.limit < index * 8 + 7) {
3566 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
3567 return 1;
3568 }
3569 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3570 gpa += index * 8;
3571 return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
3572 }
3573
3574 /* allowed just for 8 bytes segments */
3575 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3576 struct desc_struct *seg_desc)
3577 {
3578 gpa_t gpa;
3579 struct descriptor_table dtable;
3580 u16 index = selector >> 3;
3581
3582 get_segment_descriptor_dtable(vcpu, selector, &dtable);
3583
3584 if (dtable.limit < index * 8 + 7)
3585 return 1;
3586 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3587 gpa += index * 8;
3588 return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
3589 }
3590
3591 static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
3592 struct desc_struct *seg_desc)
3593 {
3594 u32 base_addr;
3595
3596 base_addr = seg_desc->base0;
3597 base_addr |= (seg_desc->base1 << 16);
3598 base_addr |= (seg_desc->base2 << 24);
3599
3600 return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
3601 }
3602
3603 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
3604 {
3605 struct kvm_segment kvm_seg;
3606
3607 kvm_get_segment(vcpu, &kvm_seg, seg);
3608 return kvm_seg.selector;
3609 }
3610
3611 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
3612 u16 selector,
3613 struct kvm_segment *kvm_seg)
3614 {
3615 struct desc_struct seg_desc;
3616
3617 if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
3618 return 1;
3619 seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
3620 return 0;
3621 }
3622
3623 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
3624 {
3625 struct kvm_segment segvar = {
3626 .base = selector << 4,
3627 .limit = 0xffff,
3628 .selector = selector,
3629 .type = 3,
3630 .present = 1,
3631 .dpl = 3,
3632 .db = 0,
3633 .s = 1,
3634 .l = 0,
3635 .g = 0,
3636 .avl = 0,
3637 .unusable = 0,
3638 };
3639 kvm_x86_ops->set_segment(vcpu, &segvar, seg);
3640 return 0;
3641 }
3642
3643 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3644 int type_bits, int seg)
3645 {
3646 struct kvm_segment kvm_seg;
3647
3648 if (!(vcpu->arch.cr0 & X86_CR0_PE))
3649 return kvm_load_realmode_segment(vcpu, selector, seg);
3650 if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
3651 return 1;
3652 kvm_seg.type |= type_bits;
3653
3654 if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
3655 seg != VCPU_SREG_LDTR)
3656 if (!kvm_seg.s)
3657 kvm_seg.unusable = 1;
3658
3659 kvm_set_segment(vcpu, &kvm_seg, seg);
3660 return 0;
3661 }
3662
3663 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
3664 struct tss_segment_32 *tss)
3665 {
3666 tss->cr3 = vcpu->arch.cr3;
3667 tss->eip = kvm_rip_read(vcpu);
3668 tss->eflags = kvm_x86_ops->get_rflags(vcpu);
3669 tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3670 tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3671 tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3672 tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3673 tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3674 tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3675 tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3676 tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3677 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3678 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3679 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3680 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3681 tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
3682 tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
3683 tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3684 tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3685 }
3686
3687 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
3688 struct tss_segment_32 *tss)
3689 {
3690 kvm_set_cr3(vcpu, tss->cr3);
3691
3692 kvm_rip_write(vcpu, tss->eip);
3693 kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
3694
3695 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
3696 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
3697 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
3698 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
3699 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
3700 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
3701 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
3702 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
3703
3704 if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
3705 return 1;
3706
3707 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3708 return 1;
3709
3710 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3711 return 1;
3712
3713 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3714 return 1;
3715
3716 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3717 return 1;
3718
3719 if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
3720 return 1;
3721
3722 if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
3723 return 1;
3724 return 0;
3725 }
3726
3727 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
3728 struct tss_segment_16 *tss)
3729 {
3730 tss->ip = kvm_rip_read(vcpu);
3731 tss->flag = kvm_x86_ops->get_rflags(vcpu);
3732 tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3733 tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3734 tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3735 tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3736 tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3737 tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3738 tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
3739 tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
3740
3741 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3742 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3743 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3744 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3745 tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3746 tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3747 }
3748
3749 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
3750 struct tss_segment_16 *tss)
3751 {
3752 kvm_rip_write(vcpu, tss->ip);
3753 kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
3754 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
3755 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
3756 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
3757 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
3758 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
3759 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
3760 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
3761 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
3762
3763 if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
3764 return 1;
3765
3766 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3767 return 1;
3768
3769 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3770 return 1;
3771
3772 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3773 return 1;
3774
3775 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3776 return 1;
3777 return 0;
3778 }
3779
3780 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
3781 u32 old_tss_base,
3782 struct desc_struct *nseg_desc)
3783 {
3784 struct tss_segment_16 tss_segment_16;
3785 int ret = 0;
3786
3787 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3788 sizeof tss_segment_16))
3789 goto out;
3790
3791 save_state_to_tss16(vcpu, &tss_segment_16);
3792
3793 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3794 sizeof tss_segment_16))
3795 goto out;
3796
3797 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3798 &tss_segment_16, sizeof tss_segment_16))
3799 goto out;
3800
3801 if (load_state_from_tss16(vcpu, &tss_segment_16))
3802 goto out;
3803
3804 ret = 1;
3805 out:
3806 return ret;
3807 }
3808
3809 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
3810 u32 old_tss_base,
3811 struct desc_struct *nseg_desc)
3812 {
3813 struct tss_segment_32 tss_segment_32;
3814 int ret = 0;
3815
3816 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3817 sizeof tss_segment_32))
3818 goto out;
3819
3820 save_state_to_tss32(vcpu, &tss_segment_32);
3821
3822 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3823 sizeof tss_segment_32))
3824 goto out;
3825
3826 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3827 &tss_segment_32, sizeof tss_segment_32))
3828 goto out;
3829
3830 if (load_state_from_tss32(vcpu, &tss_segment_32))
3831 goto out;
3832
3833 ret = 1;
3834 out:
3835 return ret;
3836 }
3837
3838 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
3839 {
3840 struct kvm_segment tr_seg;
3841 struct desc_struct cseg_desc;
3842 struct desc_struct nseg_desc;
3843 int ret = 0;
3844 u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
3845 u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
3846
3847 old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
3848
3849 /* FIXME: Handle errors. Failure to read either TSS or their
3850 * descriptors should generate a pagefault.
3851 */
3852 if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
3853 goto out;
3854
3855 if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
3856 goto out;
3857
3858 if (reason != TASK_SWITCH_IRET) {
3859 int cpl;
3860
3861 cpl = kvm_x86_ops->get_cpl(vcpu);
3862 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
3863 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
3864 return 1;
3865 }
3866 }
3867
3868 if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
3869 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
3870 return 1;
3871 }
3872
3873 if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
3874 cseg_desc.type &= ~(1 << 1); //clear the B flag
3875 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
3876 }
3877
3878 if (reason == TASK_SWITCH_IRET) {
3879 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3880 kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
3881 }
3882
3883 kvm_x86_ops->skip_emulated_instruction(vcpu);
3884
3885 if (nseg_desc.type & 8)
3886 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_base,
3887 &nseg_desc);
3888 else
3889 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_base,
3890 &nseg_desc);
3891
3892 if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
3893 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3894 kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
3895 }
3896
3897 if (reason != TASK_SWITCH_IRET) {
3898 nseg_desc.type |= (1 << 1);
3899 save_guest_segment_descriptor(vcpu, tss_selector,
3900 &nseg_desc);
3901 }
3902
3903 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
3904 seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
3905 tr_seg.type = 11;
3906 kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
3907 out:
3908 return ret;
3909 }
3910 EXPORT_SYMBOL_GPL(kvm_task_switch);
3911
3912 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
3913 struct kvm_sregs *sregs)
3914 {
3915 int mmu_reset_needed = 0;
3916 int i, pending_vec, max_bits;
3917 struct descriptor_table dt;
3918
3919 vcpu_load(vcpu);
3920
3921 dt.limit = sregs->idt.limit;
3922 dt.base = sregs->idt.base;
3923 kvm_x86_ops->set_idt(vcpu, &dt);
3924 dt.limit = sregs->gdt.limit;
3925 dt.base = sregs->gdt.base;
3926 kvm_x86_ops->set_gdt(vcpu, &dt);
3927
3928 vcpu->arch.cr2 = sregs->cr2;
3929 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
3930 vcpu->arch.cr3 = sregs->cr3;
3931
3932 kvm_set_cr8(vcpu, sregs->cr8);
3933
3934 mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
3935 kvm_x86_ops->set_efer(vcpu, sregs->efer);
3936 kvm_set_apic_base(vcpu, sregs->apic_base);
3937
3938 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3939
3940 mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
3941 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
3942 vcpu->arch.cr0 = sregs->cr0;
3943
3944 mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
3945 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
3946 if (!is_long_mode(vcpu) && is_pae(vcpu))
3947 load_pdptrs(vcpu, vcpu->arch.cr3);
3948
3949 if (mmu_reset_needed)
3950 kvm_mmu_reset_context(vcpu);
3951
3952 if (!irqchip_in_kernel(vcpu->kvm)) {
3953 memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
3954 sizeof vcpu->arch.irq_pending);
3955 vcpu->arch.irq_summary = 0;
3956 for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
3957 if (vcpu->arch.irq_pending[i])
3958 __set_bit(i, &vcpu->arch.irq_summary);
3959 } else {
3960 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
3961 pending_vec = find_first_bit(
3962 (const unsigned long *)sregs->interrupt_bitmap,
3963 max_bits);
3964 /* Only pending external irq is handled here */
3965 if (pending_vec < max_bits) {
3966 kvm_x86_ops->set_irq(vcpu, pending_vec);
3967 pr_debug("Set back pending irq %d\n",
3968 pending_vec);
3969 }
3970 kvm_pic_clear_isr_ack(vcpu->kvm);
3971 }
3972
3973 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3974 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3975 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3976 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3977 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3978 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3979
3980 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3981 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3982
3983 /* Older userspace won't unhalt the vcpu on reset. */
3984 if (vcpu->vcpu_id == 0 && kvm_rip_read(vcpu) == 0xfff0 &&
3985 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
3986 !(vcpu->arch.cr0 & X86_CR0_PE))
3987 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3988
3989 vcpu_put(vcpu);
3990
3991 return 0;
3992 }
3993
3994 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
3995 struct kvm_guest_debug *dbg)
3996 {
3997 int i, r;
3998
3999 vcpu_load(vcpu);
4000
4001 if ((dbg->control & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) ==
4002 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) {
4003 for (i = 0; i < KVM_NR_DB_REGS; ++i)
4004 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
4005 vcpu->arch.switch_db_regs =
4006 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
4007 } else {
4008 for (i = 0; i < KVM_NR_DB_REGS; i++)
4009 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
4010 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
4011 }
4012
4013 r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
4014
4015 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
4016 kvm_queue_exception(vcpu, DB_VECTOR);
4017 else if (dbg->control & KVM_GUESTDBG_INJECT_BP)
4018 kvm_queue_exception(vcpu, BP_VECTOR);
4019
4020 vcpu_put(vcpu);
4021
4022 return r;
4023 }
4024
4025 /*
4026 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
4027 * we have asm/x86/processor.h
4028 */
4029 struct fxsave {
4030 u16 cwd;
4031 u16 swd;
4032 u16 twd;
4033 u16 fop;
4034 u64 rip;
4035 u64 rdp;
4036 u32 mxcsr;
4037 u32 mxcsr_mask;
4038 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
4039 #ifdef CONFIG_X86_64
4040 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
4041 #else
4042 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
4043 #endif
4044 };
4045
4046 /*
4047 * Translate a guest virtual address to a guest physical address.
4048 */
4049 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
4050 struct kvm_translation *tr)
4051 {
4052 unsigned long vaddr = tr->linear_address;
4053 gpa_t gpa;
4054
4055 vcpu_load(vcpu);
4056 down_read(&vcpu->kvm->slots_lock);
4057 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
4058 up_read(&vcpu->kvm->slots_lock);
4059 tr->physical_address = gpa;
4060 tr->valid = gpa != UNMAPPED_GVA;
4061 tr->writeable = 1;
4062 tr->usermode = 0;
4063 vcpu_put(vcpu);
4064
4065 return 0;
4066 }
4067
4068 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4069 {
4070 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4071
4072 vcpu_load(vcpu);
4073
4074 memcpy(fpu->fpr, fxsave->st_space, 128);
4075 fpu->fcw = fxsave->cwd;
4076 fpu->fsw = fxsave->swd;
4077 fpu->ftwx = fxsave->twd;
4078 fpu->last_opcode = fxsave->fop;
4079 fpu->last_ip = fxsave->rip;
4080 fpu->last_dp = fxsave->rdp;
4081 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
4082
4083 vcpu_put(vcpu);
4084
4085 return 0;
4086 }
4087
4088 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4089 {
4090 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4091
4092 vcpu_load(vcpu);
4093
4094 memcpy(fxsave->st_space, fpu->fpr, 128);
4095 fxsave->cwd = fpu->fcw;
4096 fxsave->swd = fpu->fsw;
4097 fxsave->twd = fpu->ftwx;
4098 fxsave->fop = fpu->last_opcode;
4099 fxsave->rip = fpu->last_ip;
4100 fxsave->rdp = fpu->last_dp;
4101 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
4102
4103 vcpu_put(vcpu);
4104
4105 return 0;
4106 }
4107
4108 void fx_init(struct kvm_vcpu *vcpu)
4109 {
4110 unsigned after_mxcsr_mask;
4111
4112 /*
4113 * Touch the fpu the first time in non atomic context as if
4114 * this is the first fpu instruction the exception handler
4115 * will fire before the instruction returns and it'll have to
4116 * allocate ram with GFP_KERNEL.
4117 */
4118 if (!used_math())
4119 kvm_fx_save(&vcpu->arch.host_fx_image);
4120
4121 /* Initialize guest FPU by resetting ours and saving into guest's */
4122 preempt_disable();
4123 kvm_fx_save(&vcpu->arch.host_fx_image);
4124 kvm_fx_finit();
4125 kvm_fx_save(&vcpu->arch.guest_fx_image);
4126 kvm_fx_restore(&vcpu->arch.host_fx_image);
4127 preempt_enable();
4128
4129 vcpu->arch.cr0 |= X86_CR0_ET;
4130 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
4131 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
4132 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
4133 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
4134 }
4135 EXPORT_SYMBOL_GPL(fx_init);
4136
4137 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
4138 {
4139 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
4140 return;
4141
4142 vcpu->guest_fpu_loaded = 1;
4143 kvm_fx_save(&vcpu->arch.host_fx_image);
4144 kvm_fx_restore(&vcpu->arch.guest_fx_image);
4145 }
4146 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
4147
4148 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
4149 {
4150 if (!vcpu->guest_fpu_loaded)
4151 return;
4152
4153 vcpu->guest_fpu_loaded = 0;
4154 kvm_fx_save(&vcpu->arch.guest_fx_image);
4155 kvm_fx_restore(&vcpu->arch.host_fx_image);
4156 ++vcpu->stat.fpu_reload;
4157 }
4158 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
4159
4160 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
4161 {
4162 kvm_x86_ops->vcpu_free(vcpu);
4163 }
4164
4165 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
4166 unsigned int id)
4167 {
4168 return kvm_x86_ops->vcpu_create(kvm, id);
4169 }
4170
4171 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
4172 {
4173 int r;
4174
4175 /* We do fxsave: this must be aligned. */
4176 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
4177
4178 vcpu->arch.mtrr_state.have_fixed = 1;
4179 vcpu_load(vcpu);
4180 r = kvm_arch_vcpu_reset(vcpu);
4181 if (r == 0)
4182 r = kvm_mmu_setup(vcpu);
4183 vcpu_put(vcpu);
4184 if (r < 0)
4185 goto free_vcpu;
4186
4187 return 0;
4188 free_vcpu:
4189 kvm_x86_ops->vcpu_free(vcpu);
4190 return r;
4191 }
4192
4193 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
4194 {
4195 vcpu_load(vcpu);
4196 kvm_mmu_unload(vcpu);
4197 vcpu_put(vcpu);
4198
4199 kvm_x86_ops->vcpu_free(vcpu);
4200 }
4201
4202 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
4203 {
4204 vcpu->arch.nmi_pending = false;
4205 vcpu->arch.nmi_injected = false;
4206
4207 vcpu->arch.switch_db_regs = 0;
4208 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
4209 vcpu->arch.dr6 = DR6_FIXED_1;
4210 vcpu->arch.dr7 = DR7_FIXED_1;
4211
4212 return kvm_x86_ops->vcpu_reset(vcpu);
4213 }
4214
4215 void kvm_arch_hardware_enable(void *garbage)
4216 {
4217 kvm_x86_ops->hardware_enable(garbage);
4218 }
4219
4220 void kvm_arch_hardware_disable(void *garbage)
4221 {
4222 kvm_x86_ops->hardware_disable(garbage);
4223 }
4224
4225 int kvm_arch_hardware_setup(void)
4226 {
4227 return kvm_x86_ops->hardware_setup();
4228 }
4229
4230 void kvm_arch_hardware_unsetup(void)
4231 {
4232 kvm_x86_ops->hardware_unsetup();
4233 }
4234
4235 void kvm_arch_check_processor_compat(void *rtn)
4236 {
4237 kvm_x86_ops->check_processor_compatibility(rtn);
4238 }
4239
4240 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
4241 {
4242 struct page *page;
4243 struct kvm *kvm;
4244 int r;
4245
4246 BUG_ON(vcpu->kvm == NULL);
4247 kvm = vcpu->kvm;
4248
4249 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4250 if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
4251 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4252 else
4253 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
4254
4255 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
4256 if (!page) {
4257 r = -ENOMEM;
4258 goto fail;
4259 }
4260 vcpu->arch.pio_data = page_address(page);
4261
4262 r = kvm_mmu_create(vcpu);
4263 if (r < 0)
4264 goto fail_free_pio_data;
4265
4266 if (irqchip_in_kernel(kvm)) {
4267 r = kvm_create_lapic(vcpu);
4268 if (r < 0)
4269 goto fail_mmu_destroy;
4270 }
4271
4272 return 0;
4273
4274 fail_mmu_destroy:
4275 kvm_mmu_destroy(vcpu);
4276 fail_free_pio_data:
4277 free_page((unsigned long)vcpu->arch.pio_data);
4278 fail:
4279 return r;
4280 }
4281
4282 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
4283 {
4284 kvm_free_lapic(vcpu);
4285 down_read(&vcpu->kvm->slots_lock);
4286 kvm_mmu_destroy(vcpu);
4287 up_read(&vcpu->kvm->slots_lock);
4288 free_page((unsigned long)vcpu->arch.pio_data);
4289 }
4290
4291 struct kvm *kvm_arch_create_vm(void)
4292 {
4293 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
4294
4295 if (!kvm)
4296 return ERR_PTR(-ENOMEM);
4297
4298 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
4299 INIT_LIST_HEAD(&kvm->arch.oos_global_pages);
4300 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
4301
4302 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
4303 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
4304
4305 rdtscll(kvm->arch.vm_init_tsc);
4306
4307 return kvm;
4308 }
4309
4310 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
4311 {
4312 vcpu_load(vcpu);
4313 kvm_mmu_unload(vcpu);
4314 vcpu_put(vcpu);
4315 }
4316
4317 static void kvm_free_vcpus(struct kvm *kvm)
4318 {
4319 unsigned int i;
4320
4321 /*
4322 * Unpin any mmu pages first.
4323 */
4324 for (i = 0; i < KVM_MAX_VCPUS; ++i)
4325 if (kvm->vcpus[i])
4326 kvm_unload_vcpu_mmu(kvm->vcpus[i]);
4327 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
4328 if (kvm->vcpus[i]) {
4329 kvm_arch_vcpu_free(kvm->vcpus[i]);
4330 kvm->vcpus[i] = NULL;
4331 }
4332 }
4333
4334 }
4335
4336 void kvm_arch_sync_events(struct kvm *kvm)
4337 {
4338 kvm_free_all_assigned_devices(kvm);
4339 }
4340
4341 void kvm_arch_destroy_vm(struct kvm *kvm)
4342 {
4343 kvm_iommu_unmap_guest(kvm);
4344 kvm_free_pit(kvm);
4345 kfree(kvm->arch.vpic);
4346 kfree(kvm->arch.vioapic);
4347 kvm_free_vcpus(kvm);
4348 kvm_free_physmem(kvm);
4349 if (kvm->arch.apic_access_page)
4350 put_page(kvm->arch.apic_access_page);
4351 if (kvm->arch.ept_identity_pagetable)
4352 put_page(kvm->arch.ept_identity_pagetable);
4353 kfree(kvm);
4354 }
4355
4356 int kvm_arch_set_memory_region(struct kvm *kvm,
4357 struct kvm_userspace_memory_region *mem,
4358 struct kvm_memory_slot old,
4359 int user_alloc)
4360 {
4361 int npages = mem->memory_size >> PAGE_SHIFT;
4362 struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
4363
4364 /*To keep backward compatibility with older userspace,
4365 *x86 needs to hanlde !user_alloc case.
4366 */
4367 if (!user_alloc) {
4368 if (npages && !old.rmap) {
4369 unsigned long userspace_addr;
4370
4371 down_write(&current->mm->mmap_sem);
4372 userspace_addr = do_mmap(NULL, 0,
4373 npages * PAGE_SIZE,
4374 PROT_READ | PROT_WRITE,
4375 MAP_PRIVATE | MAP_ANONYMOUS,
4376 0);
4377 up_write(&current->mm->mmap_sem);
4378
4379 if (IS_ERR((void *)userspace_addr))
4380 return PTR_ERR((void *)userspace_addr);
4381
4382 /* set userspace_addr atomically for kvm_hva_to_rmapp */
4383 spin_lock(&kvm->mmu_lock);
4384 memslot->userspace_addr = userspace_addr;
4385 spin_unlock(&kvm->mmu_lock);
4386 } else {
4387 if (!old.user_alloc && old.rmap) {
4388 int ret;
4389
4390 down_write(&current->mm->mmap_sem);
4391 ret = do_munmap(current->mm, old.userspace_addr,
4392 old.npages * PAGE_SIZE);
4393 up_write(&current->mm->mmap_sem);
4394 if (ret < 0)
4395 printk(KERN_WARNING
4396 "kvm_vm_ioctl_set_memory_region: "
4397 "failed to munmap memory\n");
4398 }
4399 }
4400 }
4401
4402 if (!kvm->arch.n_requested_mmu_pages) {
4403 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
4404 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
4405 }
4406
4407 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
4408 kvm_flush_remote_tlbs(kvm);
4409
4410 return 0;
4411 }
4412
4413 void kvm_arch_flush_shadow(struct kvm *kvm)
4414 {
4415 kvm_mmu_zap_all(kvm);
4416 }
4417
4418 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
4419 {
4420 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
4421 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
4422 || vcpu->arch.nmi_pending;
4423 }
4424
4425 static void vcpu_kick_intr(void *info)
4426 {
4427 #ifdef DEBUG
4428 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
4429 printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
4430 #endif
4431 }
4432
4433 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
4434 {
4435 int ipi_pcpu = vcpu->cpu;
4436 int cpu = get_cpu();
4437
4438 if (waitqueue_active(&vcpu->wq)) {
4439 wake_up_interruptible(&vcpu->wq);
4440 ++vcpu->stat.halt_wakeup;
4441 }
4442 /*
4443 * We may be called synchronously with irqs disabled in guest mode,
4444 * So need not to call smp_call_function_single() in that case.
4445 */
4446 if (vcpu->guest_mode && vcpu->cpu != cpu)
4447 smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
4448 put_cpu();
4449 }
This page took 0.263423 seconds and 5 git commands to generate.