Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[deliverable/linux.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31
32 #include <linux/clocksource.h>
33 #include <linux/interrupt.h>
34 #include <linux/kvm.h>
35 #include <linux/fs.h>
36 #include <linux/vmalloc.h>
37 #include <linux/module.h>
38 #include <linux/mman.h>
39 #include <linux/highmem.h>
40 #include <linux/iommu.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/cpufreq.h>
43 #include <linux/user-return-notifier.h>
44 #include <linux/srcu.h>
45 #include <linux/slab.h>
46 #include <linux/perf_event.h>
47 #include <linux/uaccess.h>
48 #include <linux/hash.h>
49 #include <linux/pci.h>
50 #include <linux/timekeeper_internal.h>
51 #include <linux/pvclock_gtod.h>
52 #include <trace/events/kvm.h>
53
54 #define CREATE_TRACE_POINTS
55 #include "trace.h"
56
57 #include <asm/debugreg.h>
58 #include <asm/msr.h>
59 #include <asm/desc.h>
60 #include <asm/mtrr.h>
61 #include <asm/mce.h>
62 #include <asm/i387.h>
63 #include <asm/fpu-internal.h> /* Ugh! */
64 #include <asm/xcr.h>
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67
68 #define MAX_IO_MSRS 256
69 #define KVM_MAX_MCE_BANKS 32
70 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
71
72 #define emul_to_vcpu(ctxt) \
73 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
74
75 /* EFER defaults:
76 * - enable syscall per default because its emulated by KVM
77 * - enable LME and LMA per default on 64 bit KVM
78 */
79 #ifdef CONFIG_X86_64
80 static
81 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
82 #else
83 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
84 #endif
85
86 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
87 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
88
89 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
90 static void process_nmi(struct kvm_vcpu *vcpu);
91 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
92
93 struct kvm_x86_ops *kvm_x86_ops;
94 EXPORT_SYMBOL_GPL(kvm_x86_ops);
95
96 static bool ignore_msrs = 0;
97 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
98
99 unsigned int min_timer_period_us = 500;
100 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
101
102 bool kvm_has_tsc_control;
103 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
104 u32 kvm_max_guest_tsc_khz;
105 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
106
107 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
108 static u32 tsc_tolerance_ppm = 250;
109 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
110
111 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
112 unsigned int lapic_timer_advance_ns = 0;
113 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
114
115 static bool backwards_tsc_observed = false;
116
117 #define KVM_NR_SHARED_MSRS 16
118
119 struct kvm_shared_msrs_global {
120 int nr;
121 u32 msrs[KVM_NR_SHARED_MSRS];
122 };
123
124 struct kvm_shared_msrs {
125 struct user_return_notifier urn;
126 bool registered;
127 struct kvm_shared_msr_values {
128 u64 host;
129 u64 curr;
130 } values[KVM_NR_SHARED_MSRS];
131 };
132
133 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
134 static struct kvm_shared_msrs __percpu *shared_msrs;
135
136 struct kvm_stats_debugfs_item debugfs_entries[] = {
137 { "pf_fixed", VCPU_STAT(pf_fixed) },
138 { "pf_guest", VCPU_STAT(pf_guest) },
139 { "tlb_flush", VCPU_STAT(tlb_flush) },
140 { "invlpg", VCPU_STAT(invlpg) },
141 { "exits", VCPU_STAT(exits) },
142 { "io_exits", VCPU_STAT(io_exits) },
143 { "mmio_exits", VCPU_STAT(mmio_exits) },
144 { "signal_exits", VCPU_STAT(signal_exits) },
145 { "irq_window", VCPU_STAT(irq_window_exits) },
146 { "nmi_window", VCPU_STAT(nmi_window_exits) },
147 { "halt_exits", VCPU_STAT(halt_exits) },
148 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
149 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
150 { "hypercalls", VCPU_STAT(hypercalls) },
151 { "request_irq", VCPU_STAT(request_irq_exits) },
152 { "irq_exits", VCPU_STAT(irq_exits) },
153 { "host_state_reload", VCPU_STAT(host_state_reload) },
154 { "efer_reload", VCPU_STAT(efer_reload) },
155 { "fpu_reload", VCPU_STAT(fpu_reload) },
156 { "insn_emulation", VCPU_STAT(insn_emulation) },
157 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
158 { "irq_injections", VCPU_STAT(irq_injections) },
159 { "nmi_injections", VCPU_STAT(nmi_injections) },
160 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
161 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
162 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
163 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
164 { "mmu_flooded", VM_STAT(mmu_flooded) },
165 { "mmu_recycled", VM_STAT(mmu_recycled) },
166 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
167 { "mmu_unsync", VM_STAT(mmu_unsync) },
168 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
169 { "largepages", VM_STAT(lpages) },
170 { NULL }
171 };
172
173 u64 __read_mostly host_xcr0;
174
175 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
176
177 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
178 {
179 int i;
180 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
181 vcpu->arch.apf.gfns[i] = ~0;
182 }
183
184 static void kvm_on_user_return(struct user_return_notifier *urn)
185 {
186 unsigned slot;
187 struct kvm_shared_msrs *locals
188 = container_of(urn, struct kvm_shared_msrs, urn);
189 struct kvm_shared_msr_values *values;
190
191 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
192 values = &locals->values[slot];
193 if (values->host != values->curr) {
194 wrmsrl(shared_msrs_global.msrs[slot], values->host);
195 values->curr = values->host;
196 }
197 }
198 locals->registered = false;
199 user_return_notifier_unregister(urn);
200 }
201
202 static void shared_msr_update(unsigned slot, u32 msr)
203 {
204 u64 value;
205 unsigned int cpu = smp_processor_id();
206 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
207
208 /* only read, and nobody should modify it at this time,
209 * so don't need lock */
210 if (slot >= shared_msrs_global.nr) {
211 printk(KERN_ERR "kvm: invalid MSR slot!");
212 return;
213 }
214 rdmsrl_safe(msr, &value);
215 smsr->values[slot].host = value;
216 smsr->values[slot].curr = value;
217 }
218
219 void kvm_define_shared_msr(unsigned slot, u32 msr)
220 {
221 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
222 if (slot >= shared_msrs_global.nr)
223 shared_msrs_global.nr = slot + 1;
224 shared_msrs_global.msrs[slot] = msr;
225 /* we need ensured the shared_msr_global have been updated */
226 smp_wmb();
227 }
228 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
229
230 static void kvm_shared_msr_cpu_online(void)
231 {
232 unsigned i;
233
234 for (i = 0; i < shared_msrs_global.nr; ++i)
235 shared_msr_update(i, shared_msrs_global.msrs[i]);
236 }
237
238 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
239 {
240 unsigned int cpu = smp_processor_id();
241 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
242 int err;
243
244 if (((value ^ smsr->values[slot].curr) & mask) == 0)
245 return 0;
246 smsr->values[slot].curr = value;
247 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
248 if (err)
249 return 1;
250
251 if (!smsr->registered) {
252 smsr->urn.on_user_return = kvm_on_user_return;
253 user_return_notifier_register(&smsr->urn);
254 smsr->registered = true;
255 }
256 return 0;
257 }
258 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
259
260 static void drop_user_return_notifiers(void)
261 {
262 unsigned int cpu = smp_processor_id();
263 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
264
265 if (smsr->registered)
266 kvm_on_user_return(&smsr->urn);
267 }
268
269 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
270 {
271 return vcpu->arch.apic_base;
272 }
273 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
274
275 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
276 {
277 u64 old_state = vcpu->arch.apic_base &
278 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
279 u64 new_state = msr_info->data &
280 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
281 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
282 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
283
284 if (!msr_info->host_initiated &&
285 ((msr_info->data & reserved_bits) != 0 ||
286 new_state == X2APIC_ENABLE ||
287 (new_state == MSR_IA32_APICBASE_ENABLE &&
288 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
289 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
290 old_state == 0)))
291 return 1;
292
293 kvm_lapic_set_base(vcpu, msr_info->data);
294 return 0;
295 }
296 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
297
298 asmlinkage __visible void kvm_spurious_fault(void)
299 {
300 /* Fault while not rebooting. We want the trace. */
301 BUG();
302 }
303 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
304
305 #define EXCPT_BENIGN 0
306 #define EXCPT_CONTRIBUTORY 1
307 #define EXCPT_PF 2
308
309 static int exception_class(int vector)
310 {
311 switch (vector) {
312 case PF_VECTOR:
313 return EXCPT_PF;
314 case DE_VECTOR:
315 case TS_VECTOR:
316 case NP_VECTOR:
317 case SS_VECTOR:
318 case GP_VECTOR:
319 return EXCPT_CONTRIBUTORY;
320 default:
321 break;
322 }
323 return EXCPT_BENIGN;
324 }
325
326 #define EXCPT_FAULT 0
327 #define EXCPT_TRAP 1
328 #define EXCPT_ABORT 2
329 #define EXCPT_INTERRUPT 3
330
331 static int exception_type(int vector)
332 {
333 unsigned int mask;
334
335 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
336 return EXCPT_INTERRUPT;
337
338 mask = 1 << vector;
339
340 /* #DB is trap, as instruction watchpoints are handled elsewhere */
341 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
342 return EXCPT_TRAP;
343
344 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
345 return EXCPT_ABORT;
346
347 /* Reserved exceptions will result in fault */
348 return EXCPT_FAULT;
349 }
350
351 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
352 unsigned nr, bool has_error, u32 error_code,
353 bool reinject)
354 {
355 u32 prev_nr;
356 int class1, class2;
357
358 kvm_make_request(KVM_REQ_EVENT, vcpu);
359
360 if (!vcpu->arch.exception.pending) {
361 queue:
362 if (has_error && !is_protmode(vcpu))
363 has_error = false;
364 vcpu->arch.exception.pending = true;
365 vcpu->arch.exception.has_error_code = has_error;
366 vcpu->arch.exception.nr = nr;
367 vcpu->arch.exception.error_code = error_code;
368 vcpu->arch.exception.reinject = reinject;
369 return;
370 }
371
372 /* to check exception */
373 prev_nr = vcpu->arch.exception.nr;
374 if (prev_nr == DF_VECTOR) {
375 /* triple fault -> shutdown */
376 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
377 return;
378 }
379 class1 = exception_class(prev_nr);
380 class2 = exception_class(nr);
381 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
382 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
383 /* generate double fault per SDM Table 5-5 */
384 vcpu->arch.exception.pending = true;
385 vcpu->arch.exception.has_error_code = true;
386 vcpu->arch.exception.nr = DF_VECTOR;
387 vcpu->arch.exception.error_code = 0;
388 } else
389 /* replace previous exception with a new one in a hope
390 that instruction re-execution will regenerate lost
391 exception */
392 goto queue;
393 }
394
395 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
396 {
397 kvm_multiple_exception(vcpu, nr, false, 0, false);
398 }
399 EXPORT_SYMBOL_GPL(kvm_queue_exception);
400
401 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
402 {
403 kvm_multiple_exception(vcpu, nr, false, 0, true);
404 }
405 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
406
407 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
408 {
409 if (err)
410 kvm_inject_gp(vcpu, 0);
411 else
412 kvm_x86_ops->skip_emulated_instruction(vcpu);
413 }
414 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
415
416 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
417 {
418 ++vcpu->stat.pf_guest;
419 vcpu->arch.cr2 = fault->address;
420 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
421 }
422 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
423
424 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
425 {
426 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
427 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
428 else
429 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
430
431 return fault->nested_page_fault;
432 }
433
434 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
435 {
436 atomic_inc(&vcpu->arch.nmi_queued);
437 kvm_make_request(KVM_REQ_NMI, vcpu);
438 }
439 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
440
441 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
442 {
443 kvm_multiple_exception(vcpu, nr, true, error_code, false);
444 }
445 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
446
447 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
448 {
449 kvm_multiple_exception(vcpu, nr, true, error_code, true);
450 }
451 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
452
453 /*
454 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
455 * a #GP and return false.
456 */
457 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
458 {
459 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
460 return true;
461 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
462 return false;
463 }
464 EXPORT_SYMBOL_GPL(kvm_require_cpl);
465
466 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
467 {
468 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
469 return true;
470
471 kvm_queue_exception(vcpu, UD_VECTOR);
472 return false;
473 }
474 EXPORT_SYMBOL_GPL(kvm_require_dr);
475
476 /*
477 * This function will be used to read from the physical memory of the currently
478 * running guest. The difference to kvm_read_guest_page is that this function
479 * can read from guest physical or from the guest's guest physical memory.
480 */
481 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
482 gfn_t ngfn, void *data, int offset, int len,
483 u32 access)
484 {
485 struct x86_exception exception;
486 gfn_t real_gfn;
487 gpa_t ngpa;
488
489 ngpa = gfn_to_gpa(ngfn);
490 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
491 if (real_gfn == UNMAPPED_GVA)
492 return -EFAULT;
493
494 real_gfn = gpa_to_gfn(real_gfn);
495
496 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
497 }
498 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
499
500 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
501 void *data, int offset, int len, u32 access)
502 {
503 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
504 data, offset, len, access);
505 }
506
507 /*
508 * Load the pae pdptrs. Return true is they are all valid.
509 */
510 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
511 {
512 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
513 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
514 int i;
515 int ret;
516 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
517
518 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
519 offset * sizeof(u64), sizeof(pdpte),
520 PFERR_USER_MASK|PFERR_WRITE_MASK);
521 if (ret < 0) {
522 ret = 0;
523 goto out;
524 }
525 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
526 if (is_present_gpte(pdpte[i]) &&
527 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
528 ret = 0;
529 goto out;
530 }
531 }
532 ret = 1;
533
534 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
535 __set_bit(VCPU_EXREG_PDPTR,
536 (unsigned long *)&vcpu->arch.regs_avail);
537 __set_bit(VCPU_EXREG_PDPTR,
538 (unsigned long *)&vcpu->arch.regs_dirty);
539 out:
540
541 return ret;
542 }
543 EXPORT_SYMBOL_GPL(load_pdptrs);
544
545 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
546 {
547 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
548 bool changed = true;
549 int offset;
550 gfn_t gfn;
551 int r;
552
553 if (is_long_mode(vcpu) || !is_pae(vcpu))
554 return false;
555
556 if (!test_bit(VCPU_EXREG_PDPTR,
557 (unsigned long *)&vcpu->arch.regs_avail))
558 return true;
559
560 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
561 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
562 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
563 PFERR_USER_MASK | PFERR_WRITE_MASK);
564 if (r < 0)
565 goto out;
566 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
567 out:
568
569 return changed;
570 }
571
572 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
573 {
574 unsigned long old_cr0 = kvm_read_cr0(vcpu);
575 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
576 X86_CR0_CD | X86_CR0_NW;
577
578 cr0 |= X86_CR0_ET;
579
580 #ifdef CONFIG_X86_64
581 if (cr0 & 0xffffffff00000000UL)
582 return 1;
583 #endif
584
585 cr0 &= ~CR0_RESERVED_BITS;
586
587 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
588 return 1;
589
590 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
591 return 1;
592
593 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
594 #ifdef CONFIG_X86_64
595 if ((vcpu->arch.efer & EFER_LME)) {
596 int cs_db, cs_l;
597
598 if (!is_pae(vcpu))
599 return 1;
600 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
601 if (cs_l)
602 return 1;
603 } else
604 #endif
605 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
606 kvm_read_cr3(vcpu)))
607 return 1;
608 }
609
610 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
611 return 1;
612
613 kvm_x86_ops->set_cr0(vcpu, cr0);
614
615 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
616 kvm_clear_async_pf_completion_queue(vcpu);
617 kvm_async_pf_hash_reset(vcpu);
618 }
619
620 if ((cr0 ^ old_cr0) & update_bits)
621 kvm_mmu_reset_context(vcpu);
622 return 0;
623 }
624 EXPORT_SYMBOL_GPL(kvm_set_cr0);
625
626 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
627 {
628 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
629 }
630 EXPORT_SYMBOL_GPL(kvm_lmsw);
631
632 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
633 {
634 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
635 !vcpu->guest_xcr0_loaded) {
636 /* kvm_set_xcr() also depends on this */
637 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
638 vcpu->guest_xcr0_loaded = 1;
639 }
640 }
641
642 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
643 {
644 if (vcpu->guest_xcr0_loaded) {
645 if (vcpu->arch.xcr0 != host_xcr0)
646 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
647 vcpu->guest_xcr0_loaded = 0;
648 }
649 }
650
651 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
652 {
653 u64 xcr0 = xcr;
654 u64 old_xcr0 = vcpu->arch.xcr0;
655 u64 valid_bits;
656
657 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
658 if (index != XCR_XFEATURE_ENABLED_MASK)
659 return 1;
660 if (!(xcr0 & XSTATE_FP))
661 return 1;
662 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
663 return 1;
664
665 /*
666 * Do not allow the guest to set bits that we do not support
667 * saving. However, xcr0 bit 0 is always set, even if the
668 * emulated CPU does not support XSAVE (see fx_init).
669 */
670 valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
671 if (xcr0 & ~valid_bits)
672 return 1;
673
674 if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR)))
675 return 1;
676
677 if (xcr0 & XSTATE_AVX512) {
678 if (!(xcr0 & XSTATE_YMM))
679 return 1;
680 if ((xcr0 & XSTATE_AVX512) != XSTATE_AVX512)
681 return 1;
682 }
683 kvm_put_guest_xcr0(vcpu);
684 vcpu->arch.xcr0 = xcr0;
685
686 if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK)
687 kvm_update_cpuid(vcpu);
688 return 0;
689 }
690
691 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
692 {
693 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
694 __kvm_set_xcr(vcpu, index, xcr)) {
695 kvm_inject_gp(vcpu, 0);
696 return 1;
697 }
698 return 0;
699 }
700 EXPORT_SYMBOL_GPL(kvm_set_xcr);
701
702 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
703 {
704 unsigned long old_cr4 = kvm_read_cr4(vcpu);
705 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
706 X86_CR4_SMEP | X86_CR4_SMAP;
707
708 if (cr4 & CR4_RESERVED_BITS)
709 return 1;
710
711 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
712 return 1;
713
714 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
715 return 1;
716
717 if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
718 return 1;
719
720 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
721 return 1;
722
723 if (is_long_mode(vcpu)) {
724 if (!(cr4 & X86_CR4_PAE))
725 return 1;
726 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
727 && ((cr4 ^ old_cr4) & pdptr_bits)
728 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
729 kvm_read_cr3(vcpu)))
730 return 1;
731
732 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
733 if (!guest_cpuid_has_pcid(vcpu))
734 return 1;
735
736 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
737 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
738 return 1;
739 }
740
741 if (kvm_x86_ops->set_cr4(vcpu, cr4))
742 return 1;
743
744 if (((cr4 ^ old_cr4) & pdptr_bits) ||
745 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
746 kvm_mmu_reset_context(vcpu);
747
748 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
749 kvm_update_cpuid(vcpu);
750
751 return 0;
752 }
753 EXPORT_SYMBOL_GPL(kvm_set_cr4);
754
755 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
756 {
757 #ifdef CONFIG_X86_64
758 cr3 &= ~CR3_PCID_INVD;
759 #endif
760
761 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
762 kvm_mmu_sync_roots(vcpu);
763 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
764 return 0;
765 }
766
767 if (is_long_mode(vcpu)) {
768 if (cr3 & CR3_L_MODE_RESERVED_BITS)
769 return 1;
770 } else if (is_pae(vcpu) && is_paging(vcpu) &&
771 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
772 return 1;
773
774 vcpu->arch.cr3 = cr3;
775 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
776 kvm_mmu_new_cr3(vcpu);
777 return 0;
778 }
779 EXPORT_SYMBOL_GPL(kvm_set_cr3);
780
781 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
782 {
783 if (cr8 & CR8_RESERVED_BITS)
784 return 1;
785 if (irqchip_in_kernel(vcpu->kvm))
786 kvm_lapic_set_tpr(vcpu, cr8);
787 else
788 vcpu->arch.cr8 = cr8;
789 return 0;
790 }
791 EXPORT_SYMBOL_GPL(kvm_set_cr8);
792
793 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
794 {
795 if (irqchip_in_kernel(vcpu->kvm))
796 return kvm_lapic_get_cr8(vcpu);
797 else
798 return vcpu->arch.cr8;
799 }
800 EXPORT_SYMBOL_GPL(kvm_get_cr8);
801
802 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
803 {
804 int i;
805
806 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
807 for (i = 0; i < KVM_NR_DB_REGS; i++)
808 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
809 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
810 }
811 }
812
813 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
814 {
815 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
816 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
817 }
818
819 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
820 {
821 unsigned long dr7;
822
823 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
824 dr7 = vcpu->arch.guest_debug_dr7;
825 else
826 dr7 = vcpu->arch.dr7;
827 kvm_x86_ops->set_dr7(vcpu, dr7);
828 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
829 if (dr7 & DR7_BP_EN_MASK)
830 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
831 }
832
833 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
834 {
835 u64 fixed = DR6_FIXED_1;
836
837 if (!guest_cpuid_has_rtm(vcpu))
838 fixed |= DR6_RTM;
839 return fixed;
840 }
841
842 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
843 {
844 switch (dr) {
845 case 0 ... 3:
846 vcpu->arch.db[dr] = val;
847 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
848 vcpu->arch.eff_db[dr] = val;
849 break;
850 case 4:
851 /* fall through */
852 case 6:
853 if (val & 0xffffffff00000000ULL)
854 return -1; /* #GP */
855 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
856 kvm_update_dr6(vcpu);
857 break;
858 case 5:
859 /* fall through */
860 default: /* 7 */
861 if (val & 0xffffffff00000000ULL)
862 return -1; /* #GP */
863 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
864 kvm_update_dr7(vcpu);
865 break;
866 }
867
868 return 0;
869 }
870
871 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
872 {
873 if (__kvm_set_dr(vcpu, dr, val)) {
874 kvm_inject_gp(vcpu, 0);
875 return 1;
876 }
877 return 0;
878 }
879 EXPORT_SYMBOL_GPL(kvm_set_dr);
880
881 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
882 {
883 switch (dr) {
884 case 0 ... 3:
885 *val = vcpu->arch.db[dr];
886 break;
887 case 4:
888 /* fall through */
889 case 6:
890 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
891 *val = vcpu->arch.dr6;
892 else
893 *val = kvm_x86_ops->get_dr6(vcpu);
894 break;
895 case 5:
896 /* fall through */
897 default: /* 7 */
898 *val = vcpu->arch.dr7;
899 break;
900 }
901 return 0;
902 }
903 EXPORT_SYMBOL_GPL(kvm_get_dr);
904
905 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
906 {
907 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
908 u64 data;
909 int err;
910
911 err = kvm_pmu_read_pmc(vcpu, ecx, &data);
912 if (err)
913 return err;
914 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
915 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
916 return err;
917 }
918 EXPORT_SYMBOL_GPL(kvm_rdpmc);
919
920 /*
921 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
922 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
923 *
924 * This list is modified at module load time to reflect the
925 * capabilities of the host cpu. This capabilities test skips MSRs that are
926 * kvm-specific. Those are put in the beginning of the list.
927 */
928
929 #define KVM_SAVE_MSRS_BEGIN 12
930 static u32 msrs_to_save[] = {
931 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
932 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
933 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
934 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
935 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
936 MSR_KVM_PV_EOI_EN,
937 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
938 MSR_STAR,
939 #ifdef CONFIG_X86_64
940 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
941 #endif
942 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
943 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
944 };
945
946 static unsigned num_msrs_to_save;
947
948 static const u32 emulated_msrs[] = {
949 MSR_IA32_TSC_ADJUST,
950 MSR_IA32_TSCDEADLINE,
951 MSR_IA32_MISC_ENABLE,
952 MSR_IA32_MCG_STATUS,
953 MSR_IA32_MCG_CTL,
954 };
955
956 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
957 {
958 if (efer & efer_reserved_bits)
959 return false;
960
961 if (efer & EFER_FFXSR) {
962 struct kvm_cpuid_entry2 *feat;
963
964 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
965 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
966 return false;
967 }
968
969 if (efer & EFER_SVME) {
970 struct kvm_cpuid_entry2 *feat;
971
972 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
973 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
974 return false;
975 }
976
977 return true;
978 }
979 EXPORT_SYMBOL_GPL(kvm_valid_efer);
980
981 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
982 {
983 u64 old_efer = vcpu->arch.efer;
984
985 if (!kvm_valid_efer(vcpu, efer))
986 return 1;
987
988 if (is_paging(vcpu)
989 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
990 return 1;
991
992 efer &= ~EFER_LMA;
993 efer |= vcpu->arch.efer & EFER_LMA;
994
995 kvm_x86_ops->set_efer(vcpu, efer);
996
997 /* Update reserved bits */
998 if ((efer ^ old_efer) & EFER_NX)
999 kvm_mmu_reset_context(vcpu);
1000
1001 return 0;
1002 }
1003
1004 void kvm_enable_efer_bits(u64 mask)
1005 {
1006 efer_reserved_bits &= ~mask;
1007 }
1008 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1009
1010 /*
1011 * Writes msr value into into the appropriate "register".
1012 * Returns 0 on success, non-0 otherwise.
1013 * Assumes vcpu_load() was already called.
1014 */
1015 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1016 {
1017 switch (msr->index) {
1018 case MSR_FS_BASE:
1019 case MSR_GS_BASE:
1020 case MSR_KERNEL_GS_BASE:
1021 case MSR_CSTAR:
1022 case MSR_LSTAR:
1023 if (is_noncanonical_address(msr->data))
1024 return 1;
1025 break;
1026 case MSR_IA32_SYSENTER_EIP:
1027 case MSR_IA32_SYSENTER_ESP:
1028 /*
1029 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1030 * non-canonical address is written on Intel but not on
1031 * AMD (which ignores the top 32-bits, because it does
1032 * not implement 64-bit SYSENTER).
1033 *
1034 * 64-bit code should hence be able to write a non-canonical
1035 * value on AMD. Making the address canonical ensures that
1036 * vmentry does not fail on Intel after writing a non-canonical
1037 * value, and that something deterministic happens if the guest
1038 * invokes 64-bit SYSENTER.
1039 */
1040 msr->data = get_canonical(msr->data);
1041 }
1042 return kvm_x86_ops->set_msr(vcpu, msr);
1043 }
1044 EXPORT_SYMBOL_GPL(kvm_set_msr);
1045
1046 /*
1047 * Adapt set_msr() to msr_io()'s calling convention
1048 */
1049 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1050 {
1051 struct msr_data msr;
1052
1053 msr.data = *data;
1054 msr.index = index;
1055 msr.host_initiated = true;
1056 return kvm_set_msr(vcpu, &msr);
1057 }
1058
1059 #ifdef CONFIG_X86_64
1060 struct pvclock_gtod_data {
1061 seqcount_t seq;
1062
1063 struct { /* extract of a clocksource struct */
1064 int vclock_mode;
1065 cycle_t cycle_last;
1066 cycle_t mask;
1067 u32 mult;
1068 u32 shift;
1069 } clock;
1070
1071 u64 boot_ns;
1072 u64 nsec_base;
1073 };
1074
1075 static struct pvclock_gtod_data pvclock_gtod_data;
1076
1077 static void update_pvclock_gtod(struct timekeeper *tk)
1078 {
1079 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1080 u64 boot_ns;
1081
1082 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1083
1084 write_seqcount_begin(&vdata->seq);
1085
1086 /* copy pvclock gtod data */
1087 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
1088 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1089 vdata->clock.mask = tk->tkr_mono.mask;
1090 vdata->clock.mult = tk->tkr_mono.mult;
1091 vdata->clock.shift = tk->tkr_mono.shift;
1092
1093 vdata->boot_ns = boot_ns;
1094 vdata->nsec_base = tk->tkr_mono.xtime_nsec;
1095
1096 write_seqcount_end(&vdata->seq);
1097 }
1098 #endif
1099
1100 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1101 {
1102 /*
1103 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1104 * vcpu_enter_guest. This function is only called from
1105 * the physical CPU that is running vcpu.
1106 */
1107 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1108 }
1109
1110 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1111 {
1112 int version;
1113 int r;
1114 struct pvclock_wall_clock wc;
1115 struct timespec boot;
1116
1117 if (!wall_clock)
1118 return;
1119
1120 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1121 if (r)
1122 return;
1123
1124 if (version & 1)
1125 ++version; /* first time write, random junk */
1126
1127 ++version;
1128
1129 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1130
1131 /*
1132 * The guest calculates current wall clock time by adding
1133 * system time (updated by kvm_guest_time_update below) to the
1134 * wall clock specified here. guest system time equals host
1135 * system time for us, thus we must fill in host boot time here.
1136 */
1137 getboottime(&boot);
1138
1139 if (kvm->arch.kvmclock_offset) {
1140 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1141 boot = timespec_sub(boot, ts);
1142 }
1143 wc.sec = boot.tv_sec;
1144 wc.nsec = boot.tv_nsec;
1145 wc.version = version;
1146
1147 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1148
1149 version++;
1150 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1151 }
1152
1153 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1154 {
1155 uint32_t quotient, remainder;
1156
1157 /* Don't try to replace with do_div(), this one calculates
1158 * "(dividend << 32) / divisor" */
1159 __asm__ ( "divl %4"
1160 : "=a" (quotient), "=d" (remainder)
1161 : "0" (0), "1" (dividend), "r" (divisor) );
1162 return quotient;
1163 }
1164
1165 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1166 s8 *pshift, u32 *pmultiplier)
1167 {
1168 uint64_t scaled64;
1169 int32_t shift = 0;
1170 uint64_t tps64;
1171 uint32_t tps32;
1172
1173 tps64 = base_khz * 1000LL;
1174 scaled64 = scaled_khz * 1000LL;
1175 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1176 tps64 >>= 1;
1177 shift--;
1178 }
1179
1180 tps32 = (uint32_t)tps64;
1181 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1182 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1183 scaled64 >>= 1;
1184 else
1185 tps32 <<= 1;
1186 shift++;
1187 }
1188
1189 *pshift = shift;
1190 *pmultiplier = div_frac(scaled64, tps32);
1191
1192 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1193 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1194 }
1195
1196 static inline u64 get_kernel_ns(void)
1197 {
1198 return ktime_get_boot_ns();
1199 }
1200
1201 #ifdef CONFIG_X86_64
1202 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1203 #endif
1204
1205 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1206 static unsigned long max_tsc_khz;
1207
1208 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1209 {
1210 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1211 vcpu->arch.virtual_tsc_shift);
1212 }
1213
1214 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1215 {
1216 u64 v = (u64)khz * (1000000 + ppm);
1217 do_div(v, 1000000);
1218 return v;
1219 }
1220
1221 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1222 {
1223 u32 thresh_lo, thresh_hi;
1224 int use_scaling = 0;
1225
1226 /* tsc_khz can be zero if TSC calibration fails */
1227 if (this_tsc_khz == 0)
1228 return;
1229
1230 /* Compute a scale to convert nanoseconds in TSC cycles */
1231 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1232 &vcpu->arch.virtual_tsc_shift,
1233 &vcpu->arch.virtual_tsc_mult);
1234 vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1235
1236 /*
1237 * Compute the variation in TSC rate which is acceptable
1238 * within the range of tolerance and decide if the
1239 * rate being applied is within that bounds of the hardware
1240 * rate. If so, no scaling or compensation need be done.
1241 */
1242 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1243 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1244 if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1245 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1246 use_scaling = 1;
1247 }
1248 kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1249 }
1250
1251 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1252 {
1253 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1254 vcpu->arch.virtual_tsc_mult,
1255 vcpu->arch.virtual_tsc_shift);
1256 tsc += vcpu->arch.this_tsc_write;
1257 return tsc;
1258 }
1259
1260 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1261 {
1262 #ifdef CONFIG_X86_64
1263 bool vcpus_matched;
1264 struct kvm_arch *ka = &vcpu->kvm->arch;
1265 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1266
1267 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1268 atomic_read(&vcpu->kvm->online_vcpus));
1269
1270 /*
1271 * Once the masterclock is enabled, always perform request in
1272 * order to update it.
1273 *
1274 * In order to enable masterclock, the host clocksource must be TSC
1275 * and the vcpus need to have matched TSCs. When that happens,
1276 * perform request to enable masterclock.
1277 */
1278 if (ka->use_master_clock ||
1279 (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1280 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1281
1282 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1283 atomic_read(&vcpu->kvm->online_vcpus),
1284 ka->use_master_clock, gtod->clock.vclock_mode);
1285 #endif
1286 }
1287
1288 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1289 {
1290 u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1291 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1292 }
1293
1294 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1295 {
1296 struct kvm *kvm = vcpu->kvm;
1297 u64 offset, ns, elapsed;
1298 unsigned long flags;
1299 s64 usdiff;
1300 bool matched;
1301 bool already_matched;
1302 u64 data = msr->data;
1303
1304 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1305 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1306 ns = get_kernel_ns();
1307 elapsed = ns - kvm->arch.last_tsc_nsec;
1308
1309 if (vcpu->arch.virtual_tsc_khz) {
1310 int faulted = 0;
1311
1312 /* n.b - signed multiplication and division required */
1313 usdiff = data - kvm->arch.last_tsc_write;
1314 #ifdef CONFIG_X86_64
1315 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1316 #else
1317 /* do_div() only does unsigned */
1318 asm("1: idivl %[divisor]\n"
1319 "2: xor %%edx, %%edx\n"
1320 " movl $0, %[faulted]\n"
1321 "3:\n"
1322 ".section .fixup,\"ax\"\n"
1323 "4: movl $1, %[faulted]\n"
1324 " jmp 3b\n"
1325 ".previous\n"
1326
1327 _ASM_EXTABLE(1b, 4b)
1328
1329 : "=A"(usdiff), [faulted] "=r" (faulted)
1330 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1331
1332 #endif
1333 do_div(elapsed, 1000);
1334 usdiff -= elapsed;
1335 if (usdiff < 0)
1336 usdiff = -usdiff;
1337
1338 /* idivl overflow => difference is larger than USEC_PER_SEC */
1339 if (faulted)
1340 usdiff = USEC_PER_SEC;
1341 } else
1342 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1343
1344 /*
1345 * Special case: TSC write with a small delta (1 second) of virtual
1346 * cycle time against real time is interpreted as an attempt to
1347 * synchronize the CPU.
1348 *
1349 * For a reliable TSC, we can match TSC offsets, and for an unstable
1350 * TSC, we add elapsed time in this computation. We could let the
1351 * compensation code attempt to catch up if we fall behind, but
1352 * it's better to try to match offsets from the beginning.
1353 */
1354 if (usdiff < USEC_PER_SEC &&
1355 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1356 if (!check_tsc_unstable()) {
1357 offset = kvm->arch.cur_tsc_offset;
1358 pr_debug("kvm: matched tsc offset for %llu\n", data);
1359 } else {
1360 u64 delta = nsec_to_cycles(vcpu, elapsed);
1361 data += delta;
1362 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1363 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1364 }
1365 matched = true;
1366 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1367 } else {
1368 /*
1369 * We split periods of matched TSC writes into generations.
1370 * For each generation, we track the original measured
1371 * nanosecond time, offset, and write, so if TSCs are in
1372 * sync, we can match exact offset, and if not, we can match
1373 * exact software computation in compute_guest_tsc()
1374 *
1375 * These values are tracked in kvm->arch.cur_xxx variables.
1376 */
1377 kvm->arch.cur_tsc_generation++;
1378 kvm->arch.cur_tsc_nsec = ns;
1379 kvm->arch.cur_tsc_write = data;
1380 kvm->arch.cur_tsc_offset = offset;
1381 matched = false;
1382 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1383 kvm->arch.cur_tsc_generation, data);
1384 }
1385
1386 /*
1387 * We also track th most recent recorded KHZ, write and time to
1388 * allow the matching interval to be extended at each write.
1389 */
1390 kvm->arch.last_tsc_nsec = ns;
1391 kvm->arch.last_tsc_write = data;
1392 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1393
1394 vcpu->arch.last_guest_tsc = data;
1395
1396 /* Keep track of which generation this VCPU has synchronized to */
1397 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1398 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1399 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1400
1401 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1402 update_ia32_tsc_adjust_msr(vcpu, offset);
1403 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1404 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1405
1406 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1407 if (!matched) {
1408 kvm->arch.nr_vcpus_matched_tsc = 0;
1409 } else if (!already_matched) {
1410 kvm->arch.nr_vcpus_matched_tsc++;
1411 }
1412
1413 kvm_track_tsc_matching(vcpu);
1414 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1415 }
1416
1417 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1418
1419 #ifdef CONFIG_X86_64
1420
1421 static cycle_t read_tsc(void)
1422 {
1423 cycle_t ret;
1424 u64 last;
1425
1426 /*
1427 * Empirically, a fence (of type that depends on the CPU)
1428 * before rdtsc is enough to ensure that rdtsc is ordered
1429 * with respect to loads. The various CPU manuals are unclear
1430 * as to whether rdtsc can be reordered with later loads,
1431 * but no one has ever seen it happen.
1432 */
1433 rdtsc_barrier();
1434 ret = (cycle_t)vget_cycles();
1435
1436 last = pvclock_gtod_data.clock.cycle_last;
1437
1438 if (likely(ret >= last))
1439 return ret;
1440
1441 /*
1442 * GCC likes to generate cmov here, but this branch is extremely
1443 * predictable (it's just a funciton of time and the likely is
1444 * very likely) and there's a data dependence, so force GCC
1445 * to generate a branch instead. I don't barrier() because
1446 * we don't actually need a barrier, and if this function
1447 * ever gets inlined it will generate worse code.
1448 */
1449 asm volatile ("");
1450 return last;
1451 }
1452
1453 static inline u64 vgettsc(cycle_t *cycle_now)
1454 {
1455 long v;
1456 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1457
1458 *cycle_now = read_tsc();
1459
1460 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1461 return v * gtod->clock.mult;
1462 }
1463
1464 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1465 {
1466 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1467 unsigned long seq;
1468 int mode;
1469 u64 ns;
1470
1471 do {
1472 seq = read_seqcount_begin(&gtod->seq);
1473 mode = gtod->clock.vclock_mode;
1474 ns = gtod->nsec_base;
1475 ns += vgettsc(cycle_now);
1476 ns >>= gtod->clock.shift;
1477 ns += gtod->boot_ns;
1478 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1479 *t = ns;
1480
1481 return mode;
1482 }
1483
1484 /* returns true if host is using tsc clocksource */
1485 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1486 {
1487 /* checked again under seqlock below */
1488 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1489 return false;
1490
1491 return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1492 }
1493 #endif
1494
1495 /*
1496 *
1497 * Assuming a stable TSC across physical CPUS, and a stable TSC
1498 * across virtual CPUs, the following condition is possible.
1499 * Each numbered line represents an event visible to both
1500 * CPUs at the next numbered event.
1501 *
1502 * "timespecX" represents host monotonic time. "tscX" represents
1503 * RDTSC value.
1504 *
1505 * VCPU0 on CPU0 | VCPU1 on CPU1
1506 *
1507 * 1. read timespec0,tsc0
1508 * 2. | timespec1 = timespec0 + N
1509 * | tsc1 = tsc0 + M
1510 * 3. transition to guest | transition to guest
1511 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1512 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1513 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1514 *
1515 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1516 *
1517 * - ret0 < ret1
1518 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1519 * ...
1520 * - 0 < N - M => M < N
1521 *
1522 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1523 * always the case (the difference between two distinct xtime instances
1524 * might be smaller then the difference between corresponding TSC reads,
1525 * when updating guest vcpus pvclock areas).
1526 *
1527 * To avoid that problem, do not allow visibility of distinct
1528 * system_timestamp/tsc_timestamp values simultaneously: use a master
1529 * copy of host monotonic time values. Update that master copy
1530 * in lockstep.
1531 *
1532 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1533 *
1534 */
1535
1536 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1537 {
1538 #ifdef CONFIG_X86_64
1539 struct kvm_arch *ka = &kvm->arch;
1540 int vclock_mode;
1541 bool host_tsc_clocksource, vcpus_matched;
1542
1543 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1544 atomic_read(&kvm->online_vcpus));
1545
1546 /*
1547 * If the host uses TSC clock, then passthrough TSC as stable
1548 * to the guest.
1549 */
1550 host_tsc_clocksource = kvm_get_time_and_clockread(
1551 &ka->master_kernel_ns,
1552 &ka->master_cycle_now);
1553
1554 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1555 && !backwards_tsc_observed
1556 && !ka->boot_vcpu_runs_old_kvmclock;
1557
1558 if (ka->use_master_clock)
1559 atomic_set(&kvm_guest_has_master_clock, 1);
1560
1561 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1562 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1563 vcpus_matched);
1564 #endif
1565 }
1566
1567 static void kvm_gen_update_masterclock(struct kvm *kvm)
1568 {
1569 #ifdef CONFIG_X86_64
1570 int i;
1571 struct kvm_vcpu *vcpu;
1572 struct kvm_arch *ka = &kvm->arch;
1573
1574 spin_lock(&ka->pvclock_gtod_sync_lock);
1575 kvm_make_mclock_inprogress_request(kvm);
1576 /* no guest entries from this point */
1577 pvclock_update_vm_gtod_copy(kvm);
1578
1579 kvm_for_each_vcpu(i, vcpu, kvm)
1580 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1581
1582 /* guest entries allowed */
1583 kvm_for_each_vcpu(i, vcpu, kvm)
1584 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1585
1586 spin_unlock(&ka->pvclock_gtod_sync_lock);
1587 #endif
1588 }
1589
1590 static int kvm_guest_time_update(struct kvm_vcpu *v)
1591 {
1592 unsigned long flags, this_tsc_khz;
1593 struct kvm_vcpu_arch *vcpu = &v->arch;
1594 struct kvm_arch *ka = &v->kvm->arch;
1595 s64 kernel_ns;
1596 u64 tsc_timestamp, host_tsc;
1597 struct pvclock_vcpu_time_info guest_hv_clock;
1598 u8 pvclock_flags;
1599 bool use_master_clock;
1600
1601 kernel_ns = 0;
1602 host_tsc = 0;
1603
1604 /*
1605 * If the host uses TSC clock, then passthrough TSC as stable
1606 * to the guest.
1607 */
1608 spin_lock(&ka->pvclock_gtod_sync_lock);
1609 use_master_clock = ka->use_master_clock;
1610 if (use_master_clock) {
1611 host_tsc = ka->master_cycle_now;
1612 kernel_ns = ka->master_kernel_ns;
1613 }
1614 spin_unlock(&ka->pvclock_gtod_sync_lock);
1615
1616 /* Keep irq disabled to prevent changes to the clock */
1617 local_irq_save(flags);
1618 this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1619 if (unlikely(this_tsc_khz == 0)) {
1620 local_irq_restore(flags);
1621 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1622 return 1;
1623 }
1624 if (!use_master_clock) {
1625 host_tsc = native_read_tsc();
1626 kernel_ns = get_kernel_ns();
1627 }
1628
1629 tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1630
1631 /*
1632 * We may have to catch up the TSC to match elapsed wall clock
1633 * time for two reasons, even if kvmclock is used.
1634 * 1) CPU could have been running below the maximum TSC rate
1635 * 2) Broken TSC compensation resets the base at each VCPU
1636 * entry to avoid unknown leaps of TSC even when running
1637 * again on the same CPU. This may cause apparent elapsed
1638 * time to disappear, and the guest to stand still or run
1639 * very slowly.
1640 */
1641 if (vcpu->tsc_catchup) {
1642 u64 tsc = compute_guest_tsc(v, kernel_ns);
1643 if (tsc > tsc_timestamp) {
1644 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1645 tsc_timestamp = tsc;
1646 }
1647 }
1648
1649 local_irq_restore(flags);
1650
1651 if (!vcpu->pv_time_enabled)
1652 return 0;
1653
1654 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1655 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1656 &vcpu->hv_clock.tsc_shift,
1657 &vcpu->hv_clock.tsc_to_system_mul);
1658 vcpu->hw_tsc_khz = this_tsc_khz;
1659 }
1660
1661 /* With all the info we got, fill in the values */
1662 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1663 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1664 vcpu->last_guest_tsc = tsc_timestamp;
1665
1666 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1667 &guest_hv_clock, sizeof(guest_hv_clock))))
1668 return 0;
1669
1670 /* This VCPU is paused, but it's legal for a guest to read another
1671 * VCPU's kvmclock, so we really have to follow the specification where
1672 * it says that version is odd if data is being modified, and even after
1673 * it is consistent.
1674 *
1675 * Version field updates must be kept separate. This is because
1676 * kvm_write_guest_cached might use a "rep movs" instruction, and
1677 * writes within a string instruction are weakly ordered. So there
1678 * are three writes overall.
1679 *
1680 * As a small optimization, only write the version field in the first
1681 * and third write. The vcpu->pv_time cache is still valid, because the
1682 * version field is the first in the struct.
1683 */
1684 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1685
1686 vcpu->hv_clock.version = guest_hv_clock.version + 1;
1687 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1688 &vcpu->hv_clock,
1689 sizeof(vcpu->hv_clock.version));
1690
1691 smp_wmb();
1692
1693 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1694 pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1695
1696 if (vcpu->pvclock_set_guest_stopped_request) {
1697 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1698 vcpu->pvclock_set_guest_stopped_request = false;
1699 }
1700
1701 /* If the host uses TSC clocksource, then it is stable */
1702 if (use_master_clock)
1703 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1704
1705 vcpu->hv_clock.flags = pvclock_flags;
1706
1707 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1708
1709 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1710 &vcpu->hv_clock,
1711 sizeof(vcpu->hv_clock));
1712
1713 smp_wmb();
1714
1715 vcpu->hv_clock.version++;
1716 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1717 &vcpu->hv_clock,
1718 sizeof(vcpu->hv_clock.version));
1719 return 0;
1720 }
1721
1722 /*
1723 * kvmclock updates which are isolated to a given vcpu, such as
1724 * vcpu->cpu migration, should not allow system_timestamp from
1725 * the rest of the vcpus to remain static. Otherwise ntp frequency
1726 * correction applies to one vcpu's system_timestamp but not
1727 * the others.
1728 *
1729 * So in those cases, request a kvmclock update for all vcpus.
1730 * We need to rate-limit these requests though, as they can
1731 * considerably slow guests that have a large number of vcpus.
1732 * The time for a remote vcpu to update its kvmclock is bound
1733 * by the delay we use to rate-limit the updates.
1734 */
1735
1736 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1737
1738 static void kvmclock_update_fn(struct work_struct *work)
1739 {
1740 int i;
1741 struct delayed_work *dwork = to_delayed_work(work);
1742 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1743 kvmclock_update_work);
1744 struct kvm *kvm = container_of(ka, struct kvm, arch);
1745 struct kvm_vcpu *vcpu;
1746
1747 kvm_for_each_vcpu(i, vcpu, kvm) {
1748 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1749 kvm_vcpu_kick(vcpu);
1750 }
1751 }
1752
1753 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1754 {
1755 struct kvm *kvm = v->kvm;
1756
1757 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1758 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1759 KVMCLOCK_UPDATE_DELAY);
1760 }
1761
1762 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1763
1764 static void kvmclock_sync_fn(struct work_struct *work)
1765 {
1766 struct delayed_work *dwork = to_delayed_work(work);
1767 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1768 kvmclock_sync_work);
1769 struct kvm *kvm = container_of(ka, struct kvm, arch);
1770
1771 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1772 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1773 KVMCLOCK_SYNC_PERIOD);
1774 }
1775
1776 static bool msr_mtrr_valid(unsigned msr)
1777 {
1778 switch (msr) {
1779 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1780 case MSR_MTRRfix64K_00000:
1781 case MSR_MTRRfix16K_80000:
1782 case MSR_MTRRfix16K_A0000:
1783 case MSR_MTRRfix4K_C0000:
1784 case MSR_MTRRfix4K_C8000:
1785 case MSR_MTRRfix4K_D0000:
1786 case MSR_MTRRfix4K_D8000:
1787 case MSR_MTRRfix4K_E0000:
1788 case MSR_MTRRfix4K_E8000:
1789 case MSR_MTRRfix4K_F0000:
1790 case MSR_MTRRfix4K_F8000:
1791 case MSR_MTRRdefType:
1792 case MSR_IA32_CR_PAT:
1793 return true;
1794 case 0x2f8:
1795 return true;
1796 }
1797 return false;
1798 }
1799
1800 static bool valid_pat_type(unsigned t)
1801 {
1802 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1803 }
1804
1805 static bool valid_mtrr_type(unsigned t)
1806 {
1807 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1808 }
1809
1810 bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1811 {
1812 int i;
1813 u64 mask;
1814
1815 if (!msr_mtrr_valid(msr))
1816 return false;
1817
1818 if (msr == MSR_IA32_CR_PAT) {
1819 for (i = 0; i < 8; i++)
1820 if (!valid_pat_type((data >> (i * 8)) & 0xff))
1821 return false;
1822 return true;
1823 } else if (msr == MSR_MTRRdefType) {
1824 if (data & ~0xcff)
1825 return false;
1826 return valid_mtrr_type(data & 0xff);
1827 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1828 for (i = 0; i < 8 ; i++)
1829 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1830 return false;
1831 return true;
1832 }
1833
1834 /* variable MTRRs */
1835 WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
1836
1837 mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
1838 if ((msr & 1) == 0) {
1839 /* MTRR base */
1840 if (!valid_mtrr_type(data & 0xff))
1841 return false;
1842 mask |= 0xf00;
1843 } else
1844 /* MTRR mask */
1845 mask |= 0x7ff;
1846 if (data & mask) {
1847 kvm_inject_gp(vcpu, 0);
1848 return false;
1849 }
1850
1851 return true;
1852 }
1853 EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
1854
1855 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1856 {
1857 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1858
1859 if (!kvm_mtrr_valid(vcpu, msr, data))
1860 return 1;
1861
1862 if (msr == MSR_MTRRdefType) {
1863 vcpu->arch.mtrr_state.def_type = data;
1864 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1865 } else if (msr == MSR_MTRRfix64K_00000)
1866 p[0] = data;
1867 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1868 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1869 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1870 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1871 else if (msr == MSR_IA32_CR_PAT)
1872 vcpu->arch.pat = data;
1873 else { /* Variable MTRRs */
1874 int idx, is_mtrr_mask;
1875 u64 *pt;
1876
1877 idx = (msr - 0x200) / 2;
1878 is_mtrr_mask = msr - 0x200 - 2 * idx;
1879 if (!is_mtrr_mask)
1880 pt =
1881 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1882 else
1883 pt =
1884 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1885 *pt = data;
1886 }
1887
1888 kvm_mmu_reset_context(vcpu);
1889 return 0;
1890 }
1891
1892 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1893 {
1894 u64 mcg_cap = vcpu->arch.mcg_cap;
1895 unsigned bank_num = mcg_cap & 0xff;
1896
1897 switch (msr) {
1898 case MSR_IA32_MCG_STATUS:
1899 vcpu->arch.mcg_status = data;
1900 break;
1901 case MSR_IA32_MCG_CTL:
1902 if (!(mcg_cap & MCG_CTL_P))
1903 return 1;
1904 if (data != 0 && data != ~(u64)0)
1905 return -1;
1906 vcpu->arch.mcg_ctl = data;
1907 break;
1908 default:
1909 if (msr >= MSR_IA32_MC0_CTL &&
1910 msr < MSR_IA32_MCx_CTL(bank_num)) {
1911 u32 offset = msr - MSR_IA32_MC0_CTL;
1912 /* only 0 or all 1s can be written to IA32_MCi_CTL
1913 * some Linux kernels though clear bit 10 in bank 4 to
1914 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1915 * this to avoid an uncatched #GP in the guest
1916 */
1917 if ((offset & 0x3) == 0 &&
1918 data != 0 && (data | (1 << 10)) != ~(u64)0)
1919 return -1;
1920 vcpu->arch.mce_banks[offset] = data;
1921 break;
1922 }
1923 return 1;
1924 }
1925 return 0;
1926 }
1927
1928 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1929 {
1930 struct kvm *kvm = vcpu->kvm;
1931 int lm = is_long_mode(vcpu);
1932 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1933 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1934 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1935 : kvm->arch.xen_hvm_config.blob_size_32;
1936 u32 page_num = data & ~PAGE_MASK;
1937 u64 page_addr = data & PAGE_MASK;
1938 u8 *page;
1939 int r;
1940
1941 r = -E2BIG;
1942 if (page_num >= blob_size)
1943 goto out;
1944 r = -ENOMEM;
1945 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1946 if (IS_ERR(page)) {
1947 r = PTR_ERR(page);
1948 goto out;
1949 }
1950 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1951 goto out_free;
1952 r = 0;
1953 out_free:
1954 kfree(page);
1955 out:
1956 return r;
1957 }
1958
1959 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1960 {
1961 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1962 }
1963
1964 static bool kvm_hv_msr_partition_wide(u32 msr)
1965 {
1966 bool r = false;
1967 switch (msr) {
1968 case HV_X64_MSR_GUEST_OS_ID:
1969 case HV_X64_MSR_HYPERCALL:
1970 case HV_X64_MSR_REFERENCE_TSC:
1971 case HV_X64_MSR_TIME_REF_COUNT:
1972 r = true;
1973 break;
1974 }
1975
1976 return r;
1977 }
1978
1979 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1980 {
1981 struct kvm *kvm = vcpu->kvm;
1982
1983 switch (msr) {
1984 case HV_X64_MSR_GUEST_OS_ID:
1985 kvm->arch.hv_guest_os_id = data;
1986 /* setting guest os id to zero disables hypercall page */
1987 if (!kvm->arch.hv_guest_os_id)
1988 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1989 break;
1990 case HV_X64_MSR_HYPERCALL: {
1991 u64 gfn;
1992 unsigned long addr;
1993 u8 instructions[4];
1994
1995 /* if guest os id is not set hypercall should remain disabled */
1996 if (!kvm->arch.hv_guest_os_id)
1997 break;
1998 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1999 kvm->arch.hv_hypercall = data;
2000 break;
2001 }
2002 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
2003 addr = gfn_to_hva(kvm, gfn);
2004 if (kvm_is_error_hva(addr))
2005 return 1;
2006 kvm_x86_ops->patch_hypercall(vcpu, instructions);
2007 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
2008 if (__copy_to_user((void __user *)addr, instructions, 4))
2009 return 1;
2010 kvm->arch.hv_hypercall = data;
2011 mark_page_dirty(kvm, gfn);
2012 break;
2013 }
2014 case HV_X64_MSR_REFERENCE_TSC: {
2015 u64 gfn;
2016 HV_REFERENCE_TSC_PAGE tsc_ref;
2017 memset(&tsc_ref, 0, sizeof(tsc_ref));
2018 kvm->arch.hv_tsc_page = data;
2019 if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE))
2020 break;
2021 gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
2022 if (kvm_write_guest(kvm, gfn << HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT,
2023 &tsc_ref, sizeof(tsc_ref)))
2024 return 1;
2025 mark_page_dirty(kvm, gfn);
2026 break;
2027 }
2028 default:
2029 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
2030 "data 0x%llx\n", msr, data);
2031 return 1;
2032 }
2033 return 0;
2034 }
2035
2036 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2037 {
2038 switch (msr) {
2039 case HV_X64_MSR_APIC_ASSIST_PAGE: {
2040 u64 gfn;
2041 unsigned long addr;
2042
2043 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
2044 vcpu->arch.hv_vapic = data;
2045 if (kvm_lapic_enable_pv_eoi(vcpu, 0))
2046 return 1;
2047 break;
2048 }
2049 gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT;
2050 addr = gfn_to_hva(vcpu->kvm, gfn);
2051 if (kvm_is_error_hva(addr))
2052 return 1;
2053 if (__clear_user((void __user *)addr, PAGE_SIZE))
2054 return 1;
2055 vcpu->arch.hv_vapic = data;
2056 mark_page_dirty(vcpu->kvm, gfn);
2057 if (kvm_lapic_enable_pv_eoi(vcpu, gfn_to_gpa(gfn) | KVM_MSR_ENABLED))
2058 return 1;
2059 break;
2060 }
2061 case HV_X64_MSR_EOI:
2062 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
2063 case HV_X64_MSR_ICR:
2064 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
2065 case HV_X64_MSR_TPR:
2066 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
2067 default:
2068 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
2069 "data 0x%llx\n", msr, data);
2070 return 1;
2071 }
2072
2073 return 0;
2074 }
2075
2076 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2077 {
2078 gpa_t gpa = data & ~0x3f;
2079
2080 /* Bits 2:5 are reserved, Should be zero */
2081 if (data & 0x3c)
2082 return 1;
2083
2084 vcpu->arch.apf.msr_val = data;
2085
2086 if (!(data & KVM_ASYNC_PF_ENABLED)) {
2087 kvm_clear_async_pf_completion_queue(vcpu);
2088 kvm_async_pf_hash_reset(vcpu);
2089 return 0;
2090 }
2091
2092 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2093 sizeof(u32)))
2094 return 1;
2095
2096 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2097 kvm_async_pf_wakeup_all(vcpu);
2098 return 0;
2099 }
2100
2101 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2102 {
2103 vcpu->arch.pv_time_enabled = false;
2104 }
2105
2106 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
2107 {
2108 u64 delta;
2109
2110 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2111 return;
2112
2113 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2114 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2115 vcpu->arch.st.accum_steal = delta;
2116 }
2117
2118 static void record_steal_time(struct kvm_vcpu *vcpu)
2119 {
2120 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2121 return;
2122
2123 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2124 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2125 return;
2126
2127 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2128 vcpu->arch.st.steal.version += 2;
2129 vcpu->arch.st.accum_steal = 0;
2130
2131 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2132 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2133 }
2134
2135 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2136 {
2137 bool pr = false;
2138 u32 msr = msr_info->index;
2139 u64 data = msr_info->data;
2140
2141 switch (msr) {
2142 case MSR_AMD64_NB_CFG:
2143 case MSR_IA32_UCODE_REV:
2144 case MSR_IA32_UCODE_WRITE:
2145 case MSR_VM_HSAVE_PA:
2146 case MSR_AMD64_PATCH_LOADER:
2147 case MSR_AMD64_BU_CFG2:
2148 break;
2149
2150 case MSR_EFER:
2151 return set_efer(vcpu, data);
2152 case MSR_K7_HWCR:
2153 data &= ~(u64)0x40; /* ignore flush filter disable */
2154 data &= ~(u64)0x100; /* ignore ignne emulation enable */
2155 data &= ~(u64)0x8; /* ignore TLB cache disable */
2156 data &= ~(u64)0x40000; /* ignore Mc status write enable */
2157 if (data != 0) {
2158 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2159 data);
2160 return 1;
2161 }
2162 break;
2163 case MSR_FAM10H_MMIO_CONF_BASE:
2164 if (data != 0) {
2165 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2166 "0x%llx\n", data);
2167 return 1;
2168 }
2169 break;
2170 case MSR_IA32_DEBUGCTLMSR:
2171 if (!data) {
2172 /* We support the non-activated case already */
2173 break;
2174 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2175 /* Values other than LBR and BTF are vendor-specific,
2176 thus reserved and should throw a #GP */
2177 return 1;
2178 }
2179 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2180 __func__, data);
2181 break;
2182 case 0x200 ... 0x2ff:
2183 return set_msr_mtrr(vcpu, msr, data);
2184 case MSR_IA32_APICBASE:
2185 return kvm_set_apic_base(vcpu, msr_info);
2186 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2187 return kvm_x2apic_msr_write(vcpu, msr, data);
2188 case MSR_IA32_TSCDEADLINE:
2189 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2190 break;
2191 case MSR_IA32_TSC_ADJUST:
2192 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2193 if (!msr_info->host_initiated) {
2194 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2195 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2196 }
2197 vcpu->arch.ia32_tsc_adjust_msr = data;
2198 }
2199 break;
2200 case MSR_IA32_MISC_ENABLE:
2201 vcpu->arch.ia32_misc_enable_msr = data;
2202 break;
2203 case MSR_KVM_WALL_CLOCK_NEW:
2204 case MSR_KVM_WALL_CLOCK:
2205 vcpu->kvm->arch.wall_clock = data;
2206 kvm_write_wall_clock(vcpu->kvm, data);
2207 break;
2208 case MSR_KVM_SYSTEM_TIME_NEW:
2209 case MSR_KVM_SYSTEM_TIME: {
2210 u64 gpa_offset;
2211 struct kvm_arch *ka = &vcpu->kvm->arch;
2212
2213 kvmclock_reset(vcpu);
2214
2215 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2216 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2217
2218 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2219 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2220 &vcpu->requests);
2221
2222 ka->boot_vcpu_runs_old_kvmclock = tmp;
2223 }
2224
2225 vcpu->arch.time = data;
2226 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2227
2228 /* we verify if the enable bit is set... */
2229 if (!(data & 1))
2230 break;
2231
2232 gpa_offset = data & ~(PAGE_MASK | 1);
2233
2234 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2235 &vcpu->arch.pv_time, data & ~1ULL,
2236 sizeof(struct pvclock_vcpu_time_info)))
2237 vcpu->arch.pv_time_enabled = false;
2238 else
2239 vcpu->arch.pv_time_enabled = true;
2240
2241 break;
2242 }
2243 case MSR_KVM_ASYNC_PF_EN:
2244 if (kvm_pv_enable_async_pf(vcpu, data))
2245 return 1;
2246 break;
2247 case MSR_KVM_STEAL_TIME:
2248
2249 if (unlikely(!sched_info_on()))
2250 return 1;
2251
2252 if (data & KVM_STEAL_RESERVED_MASK)
2253 return 1;
2254
2255 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2256 data & KVM_STEAL_VALID_BITS,
2257 sizeof(struct kvm_steal_time)))
2258 return 1;
2259
2260 vcpu->arch.st.msr_val = data;
2261
2262 if (!(data & KVM_MSR_ENABLED))
2263 break;
2264
2265 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2266
2267 preempt_disable();
2268 accumulate_steal_time(vcpu);
2269 preempt_enable();
2270
2271 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2272
2273 break;
2274 case MSR_KVM_PV_EOI_EN:
2275 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2276 return 1;
2277 break;
2278
2279 case MSR_IA32_MCG_CTL:
2280 case MSR_IA32_MCG_STATUS:
2281 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2282 return set_msr_mce(vcpu, msr, data);
2283
2284 /* Performance counters are not protected by a CPUID bit,
2285 * so we should check all of them in the generic path for the sake of
2286 * cross vendor migration.
2287 * Writing a zero into the event select MSRs disables them,
2288 * which we perfectly emulate ;-). Any other value should be at least
2289 * reported, some guests depend on them.
2290 */
2291 case MSR_K7_EVNTSEL0:
2292 case MSR_K7_EVNTSEL1:
2293 case MSR_K7_EVNTSEL2:
2294 case MSR_K7_EVNTSEL3:
2295 if (data != 0)
2296 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2297 "0x%x data 0x%llx\n", msr, data);
2298 break;
2299 /* at least RHEL 4 unconditionally writes to the perfctr registers,
2300 * so we ignore writes to make it happy.
2301 */
2302 case MSR_K7_PERFCTR0:
2303 case MSR_K7_PERFCTR1:
2304 case MSR_K7_PERFCTR2:
2305 case MSR_K7_PERFCTR3:
2306 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2307 "0x%x data 0x%llx\n", msr, data);
2308 break;
2309 case MSR_P6_PERFCTR0:
2310 case MSR_P6_PERFCTR1:
2311 pr = true;
2312 case MSR_P6_EVNTSEL0:
2313 case MSR_P6_EVNTSEL1:
2314 if (kvm_pmu_msr(vcpu, msr))
2315 return kvm_pmu_set_msr(vcpu, msr_info);
2316
2317 if (pr || data != 0)
2318 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2319 "0x%x data 0x%llx\n", msr, data);
2320 break;
2321 case MSR_K7_CLK_CTL:
2322 /*
2323 * Ignore all writes to this no longer documented MSR.
2324 * Writes are only relevant for old K7 processors,
2325 * all pre-dating SVM, but a recommended workaround from
2326 * AMD for these chips. It is possible to specify the
2327 * affected processor models on the command line, hence
2328 * the need to ignore the workaround.
2329 */
2330 break;
2331 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2332 if (kvm_hv_msr_partition_wide(msr)) {
2333 int r;
2334 mutex_lock(&vcpu->kvm->lock);
2335 r = set_msr_hyperv_pw(vcpu, msr, data);
2336 mutex_unlock(&vcpu->kvm->lock);
2337 return r;
2338 } else
2339 return set_msr_hyperv(vcpu, msr, data);
2340 break;
2341 case MSR_IA32_BBL_CR_CTL3:
2342 /* Drop writes to this legacy MSR -- see rdmsr
2343 * counterpart for further detail.
2344 */
2345 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2346 break;
2347 case MSR_AMD64_OSVW_ID_LENGTH:
2348 if (!guest_cpuid_has_osvw(vcpu))
2349 return 1;
2350 vcpu->arch.osvw.length = data;
2351 break;
2352 case MSR_AMD64_OSVW_STATUS:
2353 if (!guest_cpuid_has_osvw(vcpu))
2354 return 1;
2355 vcpu->arch.osvw.status = data;
2356 break;
2357 default:
2358 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2359 return xen_hvm_config(vcpu, data);
2360 if (kvm_pmu_msr(vcpu, msr))
2361 return kvm_pmu_set_msr(vcpu, msr_info);
2362 if (!ignore_msrs) {
2363 vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2364 msr, data);
2365 return 1;
2366 } else {
2367 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2368 msr, data);
2369 break;
2370 }
2371 }
2372 return 0;
2373 }
2374 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2375
2376
2377 /*
2378 * Reads an msr value (of 'msr_index') into 'pdata'.
2379 * Returns 0 on success, non-0 otherwise.
2380 * Assumes vcpu_load() was already called.
2381 */
2382 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2383 {
2384 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2385 }
2386 EXPORT_SYMBOL_GPL(kvm_get_msr);
2387
2388 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2389 {
2390 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2391
2392 if (!msr_mtrr_valid(msr))
2393 return 1;
2394
2395 if (msr == MSR_MTRRdefType)
2396 *pdata = vcpu->arch.mtrr_state.def_type +
2397 (vcpu->arch.mtrr_state.enabled << 10);
2398 else if (msr == MSR_MTRRfix64K_00000)
2399 *pdata = p[0];
2400 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2401 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2402 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2403 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2404 else if (msr == MSR_IA32_CR_PAT)
2405 *pdata = vcpu->arch.pat;
2406 else { /* Variable MTRRs */
2407 int idx, is_mtrr_mask;
2408 u64 *pt;
2409
2410 idx = (msr - 0x200) / 2;
2411 is_mtrr_mask = msr - 0x200 - 2 * idx;
2412 if (!is_mtrr_mask)
2413 pt =
2414 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2415 else
2416 pt =
2417 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2418 *pdata = *pt;
2419 }
2420
2421 return 0;
2422 }
2423
2424 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2425 {
2426 u64 data;
2427 u64 mcg_cap = vcpu->arch.mcg_cap;
2428 unsigned bank_num = mcg_cap & 0xff;
2429
2430 switch (msr) {
2431 case MSR_IA32_P5_MC_ADDR:
2432 case MSR_IA32_P5_MC_TYPE:
2433 data = 0;
2434 break;
2435 case MSR_IA32_MCG_CAP:
2436 data = vcpu->arch.mcg_cap;
2437 break;
2438 case MSR_IA32_MCG_CTL:
2439 if (!(mcg_cap & MCG_CTL_P))
2440 return 1;
2441 data = vcpu->arch.mcg_ctl;
2442 break;
2443 case MSR_IA32_MCG_STATUS:
2444 data = vcpu->arch.mcg_status;
2445 break;
2446 default:
2447 if (msr >= MSR_IA32_MC0_CTL &&
2448 msr < MSR_IA32_MCx_CTL(bank_num)) {
2449 u32 offset = msr - MSR_IA32_MC0_CTL;
2450 data = vcpu->arch.mce_banks[offset];
2451 break;
2452 }
2453 return 1;
2454 }
2455 *pdata = data;
2456 return 0;
2457 }
2458
2459 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2460 {
2461 u64 data = 0;
2462 struct kvm *kvm = vcpu->kvm;
2463
2464 switch (msr) {
2465 case HV_X64_MSR_GUEST_OS_ID:
2466 data = kvm->arch.hv_guest_os_id;
2467 break;
2468 case HV_X64_MSR_HYPERCALL:
2469 data = kvm->arch.hv_hypercall;
2470 break;
2471 case HV_X64_MSR_TIME_REF_COUNT: {
2472 data =
2473 div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100);
2474 break;
2475 }
2476 case HV_X64_MSR_REFERENCE_TSC:
2477 data = kvm->arch.hv_tsc_page;
2478 break;
2479 default:
2480 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2481 return 1;
2482 }
2483
2484 *pdata = data;
2485 return 0;
2486 }
2487
2488 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2489 {
2490 u64 data = 0;
2491
2492 switch (msr) {
2493 case HV_X64_MSR_VP_INDEX: {
2494 int r;
2495 struct kvm_vcpu *v;
2496 kvm_for_each_vcpu(r, v, vcpu->kvm) {
2497 if (v == vcpu) {
2498 data = r;
2499 break;
2500 }
2501 }
2502 break;
2503 }
2504 case HV_X64_MSR_EOI:
2505 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2506 case HV_X64_MSR_ICR:
2507 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2508 case HV_X64_MSR_TPR:
2509 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2510 case HV_X64_MSR_APIC_ASSIST_PAGE:
2511 data = vcpu->arch.hv_vapic;
2512 break;
2513 default:
2514 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2515 return 1;
2516 }
2517 *pdata = data;
2518 return 0;
2519 }
2520
2521 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2522 {
2523 u64 data;
2524
2525 switch (msr) {
2526 case MSR_IA32_PLATFORM_ID:
2527 case MSR_IA32_EBL_CR_POWERON:
2528 case MSR_IA32_DEBUGCTLMSR:
2529 case MSR_IA32_LASTBRANCHFROMIP:
2530 case MSR_IA32_LASTBRANCHTOIP:
2531 case MSR_IA32_LASTINTFROMIP:
2532 case MSR_IA32_LASTINTTOIP:
2533 case MSR_K8_SYSCFG:
2534 case MSR_K7_HWCR:
2535 case MSR_VM_HSAVE_PA:
2536 case MSR_K7_EVNTSEL0:
2537 case MSR_K7_EVNTSEL1:
2538 case MSR_K7_EVNTSEL2:
2539 case MSR_K7_EVNTSEL3:
2540 case MSR_K7_PERFCTR0:
2541 case MSR_K7_PERFCTR1:
2542 case MSR_K7_PERFCTR2:
2543 case MSR_K7_PERFCTR3:
2544 case MSR_K8_INT_PENDING_MSG:
2545 case MSR_AMD64_NB_CFG:
2546 case MSR_FAM10H_MMIO_CONF_BASE:
2547 case MSR_AMD64_BU_CFG2:
2548 data = 0;
2549 break;
2550 case MSR_P6_PERFCTR0:
2551 case MSR_P6_PERFCTR1:
2552 case MSR_P6_EVNTSEL0:
2553 case MSR_P6_EVNTSEL1:
2554 if (kvm_pmu_msr(vcpu, msr))
2555 return kvm_pmu_get_msr(vcpu, msr, pdata);
2556 data = 0;
2557 break;
2558 case MSR_IA32_UCODE_REV:
2559 data = 0x100000000ULL;
2560 break;
2561 case MSR_MTRRcap:
2562 data = 0x500 | KVM_NR_VAR_MTRR;
2563 break;
2564 case 0x200 ... 0x2ff:
2565 return get_msr_mtrr(vcpu, msr, pdata);
2566 case 0xcd: /* fsb frequency */
2567 data = 3;
2568 break;
2569 /*
2570 * MSR_EBC_FREQUENCY_ID
2571 * Conservative value valid for even the basic CPU models.
2572 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2573 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2574 * and 266MHz for model 3, or 4. Set Core Clock
2575 * Frequency to System Bus Frequency Ratio to 1 (bits
2576 * 31:24) even though these are only valid for CPU
2577 * models > 2, however guests may end up dividing or
2578 * multiplying by zero otherwise.
2579 */
2580 case MSR_EBC_FREQUENCY_ID:
2581 data = 1 << 24;
2582 break;
2583 case MSR_IA32_APICBASE:
2584 data = kvm_get_apic_base(vcpu);
2585 break;
2586 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2587 return kvm_x2apic_msr_read(vcpu, msr, pdata);
2588 break;
2589 case MSR_IA32_TSCDEADLINE:
2590 data = kvm_get_lapic_tscdeadline_msr(vcpu);
2591 break;
2592 case MSR_IA32_TSC_ADJUST:
2593 data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2594 break;
2595 case MSR_IA32_MISC_ENABLE:
2596 data = vcpu->arch.ia32_misc_enable_msr;
2597 break;
2598 case MSR_IA32_PERF_STATUS:
2599 /* TSC increment by tick */
2600 data = 1000ULL;
2601 /* CPU multiplier */
2602 data |= (((uint64_t)4ULL) << 40);
2603 break;
2604 case MSR_EFER:
2605 data = vcpu->arch.efer;
2606 break;
2607 case MSR_KVM_WALL_CLOCK:
2608 case MSR_KVM_WALL_CLOCK_NEW:
2609 data = vcpu->kvm->arch.wall_clock;
2610 break;
2611 case MSR_KVM_SYSTEM_TIME:
2612 case MSR_KVM_SYSTEM_TIME_NEW:
2613 data = vcpu->arch.time;
2614 break;
2615 case MSR_KVM_ASYNC_PF_EN:
2616 data = vcpu->arch.apf.msr_val;
2617 break;
2618 case MSR_KVM_STEAL_TIME:
2619 data = vcpu->arch.st.msr_val;
2620 break;
2621 case MSR_KVM_PV_EOI_EN:
2622 data = vcpu->arch.pv_eoi.msr_val;
2623 break;
2624 case MSR_IA32_P5_MC_ADDR:
2625 case MSR_IA32_P5_MC_TYPE:
2626 case MSR_IA32_MCG_CAP:
2627 case MSR_IA32_MCG_CTL:
2628 case MSR_IA32_MCG_STATUS:
2629 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2630 return get_msr_mce(vcpu, msr, pdata);
2631 case MSR_K7_CLK_CTL:
2632 /*
2633 * Provide expected ramp-up count for K7. All other
2634 * are set to zero, indicating minimum divisors for
2635 * every field.
2636 *
2637 * This prevents guest kernels on AMD host with CPU
2638 * type 6, model 8 and higher from exploding due to
2639 * the rdmsr failing.
2640 */
2641 data = 0x20000000;
2642 break;
2643 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2644 if (kvm_hv_msr_partition_wide(msr)) {
2645 int r;
2646 mutex_lock(&vcpu->kvm->lock);
2647 r = get_msr_hyperv_pw(vcpu, msr, pdata);
2648 mutex_unlock(&vcpu->kvm->lock);
2649 return r;
2650 } else
2651 return get_msr_hyperv(vcpu, msr, pdata);
2652 break;
2653 case MSR_IA32_BBL_CR_CTL3:
2654 /* This legacy MSR exists but isn't fully documented in current
2655 * silicon. It is however accessed by winxp in very narrow
2656 * scenarios where it sets bit #19, itself documented as
2657 * a "reserved" bit. Best effort attempt to source coherent
2658 * read data here should the balance of the register be
2659 * interpreted by the guest:
2660 *
2661 * L2 cache control register 3: 64GB range, 256KB size,
2662 * enabled, latency 0x1, configured
2663 */
2664 data = 0xbe702111;
2665 break;
2666 case MSR_AMD64_OSVW_ID_LENGTH:
2667 if (!guest_cpuid_has_osvw(vcpu))
2668 return 1;
2669 data = vcpu->arch.osvw.length;
2670 break;
2671 case MSR_AMD64_OSVW_STATUS:
2672 if (!guest_cpuid_has_osvw(vcpu))
2673 return 1;
2674 data = vcpu->arch.osvw.status;
2675 break;
2676 default:
2677 if (kvm_pmu_msr(vcpu, msr))
2678 return kvm_pmu_get_msr(vcpu, msr, pdata);
2679 if (!ignore_msrs) {
2680 vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2681 return 1;
2682 } else {
2683 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2684 data = 0;
2685 }
2686 break;
2687 }
2688 *pdata = data;
2689 return 0;
2690 }
2691 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2692
2693 /*
2694 * Read or write a bunch of msrs. All parameters are kernel addresses.
2695 *
2696 * @return number of msrs set successfully.
2697 */
2698 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2699 struct kvm_msr_entry *entries,
2700 int (*do_msr)(struct kvm_vcpu *vcpu,
2701 unsigned index, u64 *data))
2702 {
2703 int i, idx;
2704
2705 idx = srcu_read_lock(&vcpu->kvm->srcu);
2706 for (i = 0; i < msrs->nmsrs; ++i)
2707 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2708 break;
2709 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2710
2711 return i;
2712 }
2713
2714 /*
2715 * Read or write a bunch of msrs. Parameters are user addresses.
2716 *
2717 * @return number of msrs set successfully.
2718 */
2719 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2720 int (*do_msr)(struct kvm_vcpu *vcpu,
2721 unsigned index, u64 *data),
2722 int writeback)
2723 {
2724 struct kvm_msrs msrs;
2725 struct kvm_msr_entry *entries;
2726 int r, n;
2727 unsigned size;
2728
2729 r = -EFAULT;
2730 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2731 goto out;
2732
2733 r = -E2BIG;
2734 if (msrs.nmsrs >= MAX_IO_MSRS)
2735 goto out;
2736
2737 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2738 entries = memdup_user(user_msrs->entries, size);
2739 if (IS_ERR(entries)) {
2740 r = PTR_ERR(entries);
2741 goto out;
2742 }
2743
2744 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2745 if (r < 0)
2746 goto out_free;
2747
2748 r = -EFAULT;
2749 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2750 goto out_free;
2751
2752 r = n;
2753
2754 out_free:
2755 kfree(entries);
2756 out:
2757 return r;
2758 }
2759
2760 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2761 {
2762 int r;
2763
2764 switch (ext) {
2765 case KVM_CAP_IRQCHIP:
2766 case KVM_CAP_HLT:
2767 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2768 case KVM_CAP_SET_TSS_ADDR:
2769 case KVM_CAP_EXT_CPUID:
2770 case KVM_CAP_EXT_EMUL_CPUID:
2771 case KVM_CAP_CLOCKSOURCE:
2772 case KVM_CAP_PIT:
2773 case KVM_CAP_NOP_IO_DELAY:
2774 case KVM_CAP_MP_STATE:
2775 case KVM_CAP_SYNC_MMU:
2776 case KVM_CAP_USER_NMI:
2777 case KVM_CAP_REINJECT_CONTROL:
2778 case KVM_CAP_IRQ_INJECT_STATUS:
2779 case KVM_CAP_IOEVENTFD:
2780 case KVM_CAP_IOEVENTFD_NO_LENGTH:
2781 case KVM_CAP_PIT2:
2782 case KVM_CAP_PIT_STATE2:
2783 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2784 case KVM_CAP_XEN_HVM:
2785 case KVM_CAP_ADJUST_CLOCK:
2786 case KVM_CAP_VCPU_EVENTS:
2787 case KVM_CAP_HYPERV:
2788 case KVM_CAP_HYPERV_VAPIC:
2789 case KVM_CAP_HYPERV_SPIN:
2790 case KVM_CAP_PCI_SEGMENT:
2791 case KVM_CAP_DEBUGREGS:
2792 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2793 case KVM_CAP_XSAVE:
2794 case KVM_CAP_ASYNC_PF:
2795 case KVM_CAP_GET_TSC_KHZ:
2796 case KVM_CAP_KVMCLOCK_CTRL:
2797 case KVM_CAP_READONLY_MEM:
2798 case KVM_CAP_HYPERV_TIME:
2799 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2800 case KVM_CAP_TSC_DEADLINE_TIMER:
2801 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2802 case KVM_CAP_ASSIGN_DEV_IRQ:
2803 case KVM_CAP_PCI_2_3:
2804 #endif
2805 r = 1;
2806 break;
2807 case KVM_CAP_COALESCED_MMIO:
2808 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2809 break;
2810 case KVM_CAP_VAPIC:
2811 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2812 break;
2813 case KVM_CAP_NR_VCPUS:
2814 r = KVM_SOFT_MAX_VCPUS;
2815 break;
2816 case KVM_CAP_MAX_VCPUS:
2817 r = KVM_MAX_VCPUS;
2818 break;
2819 case KVM_CAP_NR_MEMSLOTS:
2820 r = KVM_USER_MEM_SLOTS;
2821 break;
2822 case KVM_CAP_PV_MMU: /* obsolete */
2823 r = 0;
2824 break;
2825 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2826 case KVM_CAP_IOMMU:
2827 r = iommu_present(&pci_bus_type);
2828 break;
2829 #endif
2830 case KVM_CAP_MCE:
2831 r = KVM_MAX_MCE_BANKS;
2832 break;
2833 case KVM_CAP_XCRS:
2834 r = cpu_has_xsave;
2835 break;
2836 case KVM_CAP_TSC_CONTROL:
2837 r = kvm_has_tsc_control;
2838 break;
2839 default:
2840 r = 0;
2841 break;
2842 }
2843 return r;
2844
2845 }
2846
2847 long kvm_arch_dev_ioctl(struct file *filp,
2848 unsigned int ioctl, unsigned long arg)
2849 {
2850 void __user *argp = (void __user *)arg;
2851 long r;
2852
2853 switch (ioctl) {
2854 case KVM_GET_MSR_INDEX_LIST: {
2855 struct kvm_msr_list __user *user_msr_list = argp;
2856 struct kvm_msr_list msr_list;
2857 unsigned n;
2858
2859 r = -EFAULT;
2860 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2861 goto out;
2862 n = msr_list.nmsrs;
2863 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2864 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2865 goto out;
2866 r = -E2BIG;
2867 if (n < msr_list.nmsrs)
2868 goto out;
2869 r = -EFAULT;
2870 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2871 num_msrs_to_save * sizeof(u32)))
2872 goto out;
2873 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2874 &emulated_msrs,
2875 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2876 goto out;
2877 r = 0;
2878 break;
2879 }
2880 case KVM_GET_SUPPORTED_CPUID:
2881 case KVM_GET_EMULATED_CPUID: {
2882 struct kvm_cpuid2 __user *cpuid_arg = argp;
2883 struct kvm_cpuid2 cpuid;
2884
2885 r = -EFAULT;
2886 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2887 goto out;
2888
2889 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2890 ioctl);
2891 if (r)
2892 goto out;
2893
2894 r = -EFAULT;
2895 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2896 goto out;
2897 r = 0;
2898 break;
2899 }
2900 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2901 u64 mce_cap;
2902
2903 mce_cap = KVM_MCE_CAP_SUPPORTED;
2904 r = -EFAULT;
2905 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2906 goto out;
2907 r = 0;
2908 break;
2909 }
2910 default:
2911 r = -EINVAL;
2912 }
2913 out:
2914 return r;
2915 }
2916
2917 static void wbinvd_ipi(void *garbage)
2918 {
2919 wbinvd();
2920 }
2921
2922 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2923 {
2924 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2925 }
2926
2927 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2928 {
2929 /* Address WBINVD may be executed by guest */
2930 if (need_emulate_wbinvd(vcpu)) {
2931 if (kvm_x86_ops->has_wbinvd_exit())
2932 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2933 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2934 smp_call_function_single(vcpu->cpu,
2935 wbinvd_ipi, NULL, 1);
2936 }
2937
2938 kvm_x86_ops->vcpu_load(vcpu, cpu);
2939
2940 /* Apply any externally detected TSC adjustments (due to suspend) */
2941 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2942 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2943 vcpu->arch.tsc_offset_adjustment = 0;
2944 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2945 }
2946
2947 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2948 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2949 native_read_tsc() - vcpu->arch.last_host_tsc;
2950 if (tsc_delta < 0)
2951 mark_tsc_unstable("KVM discovered backwards TSC");
2952 if (check_tsc_unstable()) {
2953 u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2954 vcpu->arch.last_guest_tsc);
2955 kvm_x86_ops->write_tsc_offset(vcpu, offset);
2956 vcpu->arch.tsc_catchup = 1;
2957 }
2958 /*
2959 * On a host with synchronized TSC, there is no need to update
2960 * kvmclock on vcpu->cpu migration
2961 */
2962 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2963 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2964 if (vcpu->cpu != cpu)
2965 kvm_migrate_timers(vcpu);
2966 vcpu->cpu = cpu;
2967 }
2968
2969 accumulate_steal_time(vcpu);
2970 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2971 }
2972
2973 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2974 {
2975 kvm_x86_ops->vcpu_put(vcpu);
2976 kvm_put_guest_fpu(vcpu);
2977 vcpu->arch.last_host_tsc = native_read_tsc();
2978 }
2979
2980 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2981 struct kvm_lapic_state *s)
2982 {
2983 kvm_x86_ops->sync_pir_to_irr(vcpu);
2984 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2985
2986 return 0;
2987 }
2988
2989 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2990 struct kvm_lapic_state *s)
2991 {
2992 kvm_apic_post_state_restore(vcpu, s);
2993 update_cr8_intercept(vcpu);
2994
2995 return 0;
2996 }
2997
2998 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2999 struct kvm_interrupt *irq)
3000 {
3001 if (irq->irq >= KVM_NR_INTERRUPTS)
3002 return -EINVAL;
3003 if (irqchip_in_kernel(vcpu->kvm))
3004 return -ENXIO;
3005
3006 kvm_queue_interrupt(vcpu, irq->irq, false);
3007 kvm_make_request(KVM_REQ_EVENT, vcpu);
3008
3009 return 0;
3010 }
3011
3012 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3013 {
3014 kvm_inject_nmi(vcpu);
3015
3016 return 0;
3017 }
3018
3019 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3020 struct kvm_tpr_access_ctl *tac)
3021 {
3022 if (tac->flags)
3023 return -EINVAL;
3024 vcpu->arch.tpr_access_reporting = !!tac->enabled;
3025 return 0;
3026 }
3027
3028 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3029 u64 mcg_cap)
3030 {
3031 int r;
3032 unsigned bank_num = mcg_cap & 0xff, bank;
3033
3034 r = -EINVAL;
3035 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3036 goto out;
3037 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
3038 goto out;
3039 r = 0;
3040 vcpu->arch.mcg_cap = mcg_cap;
3041 /* Init IA32_MCG_CTL to all 1s */
3042 if (mcg_cap & MCG_CTL_P)
3043 vcpu->arch.mcg_ctl = ~(u64)0;
3044 /* Init IA32_MCi_CTL to all 1s */
3045 for (bank = 0; bank < bank_num; bank++)
3046 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3047 out:
3048 return r;
3049 }
3050
3051 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3052 struct kvm_x86_mce *mce)
3053 {
3054 u64 mcg_cap = vcpu->arch.mcg_cap;
3055 unsigned bank_num = mcg_cap & 0xff;
3056 u64 *banks = vcpu->arch.mce_banks;
3057
3058 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3059 return -EINVAL;
3060 /*
3061 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3062 * reporting is disabled
3063 */
3064 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3065 vcpu->arch.mcg_ctl != ~(u64)0)
3066 return 0;
3067 banks += 4 * mce->bank;
3068 /*
3069 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3070 * reporting is disabled for the bank
3071 */
3072 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3073 return 0;
3074 if (mce->status & MCI_STATUS_UC) {
3075 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3076 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3077 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3078 return 0;
3079 }
3080 if (banks[1] & MCI_STATUS_VAL)
3081 mce->status |= MCI_STATUS_OVER;
3082 banks[2] = mce->addr;
3083 banks[3] = mce->misc;
3084 vcpu->arch.mcg_status = mce->mcg_status;
3085 banks[1] = mce->status;
3086 kvm_queue_exception(vcpu, MC_VECTOR);
3087 } else if (!(banks[1] & MCI_STATUS_VAL)
3088 || !(banks[1] & MCI_STATUS_UC)) {
3089 if (banks[1] & MCI_STATUS_VAL)
3090 mce->status |= MCI_STATUS_OVER;
3091 banks[2] = mce->addr;
3092 banks[3] = mce->misc;
3093 banks[1] = mce->status;
3094 } else
3095 banks[1] |= MCI_STATUS_OVER;
3096 return 0;
3097 }
3098
3099 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3100 struct kvm_vcpu_events *events)
3101 {
3102 process_nmi(vcpu);
3103 events->exception.injected =
3104 vcpu->arch.exception.pending &&
3105 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3106 events->exception.nr = vcpu->arch.exception.nr;
3107 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3108 events->exception.pad = 0;
3109 events->exception.error_code = vcpu->arch.exception.error_code;
3110
3111 events->interrupt.injected =
3112 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3113 events->interrupt.nr = vcpu->arch.interrupt.nr;
3114 events->interrupt.soft = 0;
3115 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3116
3117 events->nmi.injected = vcpu->arch.nmi_injected;
3118 events->nmi.pending = vcpu->arch.nmi_pending != 0;
3119 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3120 events->nmi.pad = 0;
3121
3122 events->sipi_vector = 0; /* never valid when reporting to user space */
3123
3124 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3125 | KVM_VCPUEVENT_VALID_SHADOW);
3126 memset(&events->reserved, 0, sizeof(events->reserved));
3127 }
3128
3129 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3130 struct kvm_vcpu_events *events)
3131 {
3132 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3133 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3134 | KVM_VCPUEVENT_VALID_SHADOW))
3135 return -EINVAL;
3136
3137 process_nmi(vcpu);
3138 vcpu->arch.exception.pending = events->exception.injected;
3139 vcpu->arch.exception.nr = events->exception.nr;
3140 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3141 vcpu->arch.exception.error_code = events->exception.error_code;
3142
3143 vcpu->arch.interrupt.pending = events->interrupt.injected;
3144 vcpu->arch.interrupt.nr = events->interrupt.nr;
3145 vcpu->arch.interrupt.soft = events->interrupt.soft;
3146 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3147 kvm_x86_ops->set_interrupt_shadow(vcpu,
3148 events->interrupt.shadow);
3149
3150 vcpu->arch.nmi_injected = events->nmi.injected;
3151 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3152 vcpu->arch.nmi_pending = events->nmi.pending;
3153 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3154
3155 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3156 kvm_vcpu_has_lapic(vcpu))
3157 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3158
3159 kvm_make_request(KVM_REQ_EVENT, vcpu);
3160
3161 return 0;
3162 }
3163
3164 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3165 struct kvm_debugregs *dbgregs)
3166 {
3167 unsigned long val;
3168
3169 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3170 kvm_get_dr(vcpu, 6, &val);
3171 dbgregs->dr6 = val;
3172 dbgregs->dr7 = vcpu->arch.dr7;
3173 dbgregs->flags = 0;
3174 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3175 }
3176
3177 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3178 struct kvm_debugregs *dbgregs)
3179 {
3180 if (dbgregs->flags)
3181 return -EINVAL;
3182
3183 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3184 kvm_update_dr0123(vcpu);
3185 vcpu->arch.dr6 = dbgregs->dr6;
3186 kvm_update_dr6(vcpu);
3187 vcpu->arch.dr7 = dbgregs->dr7;
3188 kvm_update_dr7(vcpu);
3189
3190 return 0;
3191 }
3192
3193 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3194
3195 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3196 {
3197 struct xsave_struct *xsave = &vcpu->arch.guest_fpu.state->xsave;
3198 u64 xstate_bv = xsave->xsave_hdr.xstate_bv;
3199 u64 valid;
3200
3201 /*
3202 * Copy legacy XSAVE area, to avoid complications with CPUID
3203 * leaves 0 and 1 in the loop below.
3204 */
3205 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3206
3207 /* Set XSTATE_BV */
3208 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3209
3210 /*
3211 * Copy each region from the possibly compacted offset to the
3212 * non-compacted offset.
3213 */
3214 valid = xstate_bv & ~XSTATE_FPSSE;
3215 while (valid) {
3216 u64 feature = valid & -valid;
3217 int index = fls64(feature) - 1;
3218 void *src = get_xsave_addr(xsave, feature);
3219
3220 if (src) {
3221 u32 size, offset, ecx, edx;
3222 cpuid_count(XSTATE_CPUID, index,
3223 &size, &offset, &ecx, &edx);
3224 memcpy(dest + offset, src, size);
3225 }
3226
3227 valid -= feature;
3228 }
3229 }
3230
3231 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3232 {
3233 struct xsave_struct *xsave = &vcpu->arch.guest_fpu.state->xsave;
3234 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3235 u64 valid;
3236
3237 /*
3238 * Copy legacy XSAVE area, to avoid complications with CPUID
3239 * leaves 0 and 1 in the loop below.
3240 */
3241 memcpy(xsave, src, XSAVE_HDR_OFFSET);
3242
3243 /* Set XSTATE_BV and possibly XCOMP_BV. */
3244 xsave->xsave_hdr.xstate_bv = xstate_bv;
3245 if (cpu_has_xsaves)
3246 xsave->xsave_hdr.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3247
3248 /*
3249 * Copy each region from the non-compacted offset to the
3250 * possibly compacted offset.
3251 */
3252 valid = xstate_bv & ~XSTATE_FPSSE;
3253 while (valid) {
3254 u64 feature = valid & -valid;
3255 int index = fls64(feature) - 1;
3256 void *dest = get_xsave_addr(xsave, feature);
3257
3258 if (dest) {
3259 u32 size, offset, ecx, edx;
3260 cpuid_count(XSTATE_CPUID, index,
3261 &size, &offset, &ecx, &edx);
3262 memcpy(dest, src + offset, size);
3263 } else
3264 WARN_ON_ONCE(1);
3265
3266 valid -= feature;
3267 }
3268 }
3269
3270 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3271 struct kvm_xsave *guest_xsave)
3272 {
3273 if (cpu_has_xsave) {
3274 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3275 fill_xsave((u8 *) guest_xsave->region, vcpu);
3276 } else {
3277 memcpy(guest_xsave->region,
3278 &vcpu->arch.guest_fpu.state->fxsave,
3279 sizeof(struct i387_fxsave_struct));
3280 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3281 XSTATE_FPSSE;
3282 }
3283 }
3284
3285 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3286 struct kvm_xsave *guest_xsave)
3287 {
3288 u64 xstate_bv =
3289 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3290
3291 if (cpu_has_xsave) {
3292 /*
3293 * Here we allow setting states that are not present in
3294 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3295 * with old userspace.
3296 */
3297 if (xstate_bv & ~kvm_supported_xcr0())
3298 return -EINVAL;
3299 load_xsave(vcpu, (u8 *)guest_xsave->region);
3300 } else {
3301 if (xstate_bv & ~XSTATE_FPSSE)
3302 return -EINVAL;
3303 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
3304 guest_xsave->region, sizeof(struct i387_fxsave_struct));
3305 }
3306 return 0;
3307 }
3308
3309 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3310 struct kvm_xcrs *guest_xcrs)
3311 {
3312 if (!cpu_has_xsave) {
3313 guest_xcrs->nr_xcrs = 0;
3314 return;
3315 }
3316
3317 guest_xcrs->nr_xcrs = 1;
3318 guest_xcrs->flags = 0;
3319 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3320 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3321 }
3322
3323 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3324 struct kvm_xcrs *guest_xcrs)
3325 {
3326 int i, r = 0;
3327
3328 if (!cpu_has_xsave)
3329 return -EINVAL;
3330
3331 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3332 return -EINVAL;
3333
3334 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3335 /* Only support XCR0 currently */
3336 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3337 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3338 guest_xcrs->xcrs[i].value);
3339 break;
3340 }
3341 if (r)
3342 r = -EINVAL;
3343 return r;
3344 }
3345
3346 /*
3347 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3348 * stopped by the hypervisor. This function will be called from the host only.
3349 * EINVAL is returned when the host attempts to set the flag for a guest that
3350 * does not support pv clocks.
3351 */
3352 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3353 {
3354 if (!vcpu->arch.pv_time_enabled)
3355 return -EINVAL;
3356 vcpu->arch.pvclock_set_guest_stopped_request = true;
3357 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3358 return 0;
3359 }
3360
3361 long kvm_arch_vcpu_ioctl(struct file *filp,
3362 unsigned int ioctl, unsigned long arg)
3363 {
3364 struct kvm_vcpu *vcpu = filp->private_data;
3365 void __user *argp = (void __user *)arg;
3366 int r;
3367 union {
3368 struct kvm_lapic_state *lapic;
3369 struct kvm_xsave *xsave;
3370 struct kvm_xcrs *xcrs;
3371 void *buffer;
3372 } u;
3373
3374 u.buffer = NULL;
3375 switch (ioctl) {
3376 case KVM_GET_LAPIC: {
3377 r = -EINVAL;
3378 if (!vcpu->arch.apic)
3379 goto out;
3380 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3381
3382 r = -ENOMEM;
3383 if (!u.lapic)
3384 goto out;
3385 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3386 if (r)
3387 goto out;
3388 r = -EFAULT;
3389 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3390 goto out;
3391 r = 0;
3392 break;
3393 }
3394 case KVM_SET_LAPIC: {
3395 r = -EINVAL;
3396 if (!vcpu->arch.apic)
3397 goto out;
3398 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3399 if (IS_ERR(u.lapic))
3400 return PTR_ERR(u.lapic);
3401
3402 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3403 break;
3404 }
3405 case KVM_INTERRUPT: {
3406 struct kvm_interrupt irq;
3407
3408 r = -EFAULT;
3409 if (copy_from_user(&irq, argp, sizeof irq))
3410 goto out;
3411 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3412 break;
3413 }
3414 case KVM_NMI: {
3415 r = kvm_vcpu_ioctl_nmi(vcpu);
3416 break;
3417 }
3418 case KVM_SET_CPUID: {
3419 struct kvm_cpuid __user *cpuid_arg = argp;
3420 struct kvm_cpuid cpuid;
3421
3422 r = -EFAULT;
3423 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3424 goto out;
3425 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3426 break;
3427 }
3428 case KVM_SET_CPUID2: {
3429 struct kvm_cpuid2 __user *cpuid_arg = argp;
3430 struct kvm_cpuid2 cpuid;
3431
3432 r = -EFAULT;
3433 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3434 goto out;
3435 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3436 cpuid_arg->entries);
3437 break;
3438 }
3439 case KVM_GET_CPUID2: {
3440 struct kvm_cpuid2 __user *cpuid_arg = argp;
3441 struct kvm_cpuid2 cpuid;
3442
3443 r = -EFAULT;
3444 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3445 goto out;
3446 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3447 cpuid_arg->entries);
3448 if (r)
3449 goto out;
3450 r = -EFAULT;
3451 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3452 goto out;
3453 r = 0;
3454 break;
3455 }
3456 case KVM_GET_MSRS:
3457 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3458 break;
3459 case KVM_SET_MSRS:
3460 r = msr_io(vcpu, argp, do_set_msr, 0);
3461 break;
3462 case KVM_TPR_ACCESS_REPORTING: {
3463 struct kvm_tpr_access_ctl tac;
3464
3465 r = -EFAULT;
3466 if (copy_from_user(&tac, argp, sizeof tac))
3467 goto out;
3468 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3469 if (r)
3470 goto out;
3471 r = -EFAULT;
3472 if (copy_to_user(argp, &tac, sizeof tac))
3473 goto out;
3474 r = 0;
3475 break;
3476 };
3477 case KVM_SET_VAPIC_ADDR: {
3478 struct kvm_vapic_addr va;
3479
3480 r = -EINVAL;
3481 if (!irqchip_in_kernel(vcpu->kvm))
3482 goto out;
3483 r = -EFAULT;
3484 if (copy_from_user(&va, argp, sizeof va))
3485 goto out;
3486 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3487 break;
3488 }
3489 case KVM_X86_SETUP_MCE: {
3490 u64 mcg_cap;
3491
3492 r = -EFAULT;
3493 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3494 goto out;
3495 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3496 break;
3497 }
3498 case KVM_X86_SET_MCE: {
3499 struct kvm_x86_mce mce;
3500
3501 r = -EFAULT;
3502 if (copy_from_user(&mce, argp, sizeof mce))
3503 goto out;
3504 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3505 break;
3506 }
3507 case KVM_GET_VCPU_EVENTS: {
3508 struct kvm_vcpu_events events;
3509
3510 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3511
3512 r = -EFAULT;
3513 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3514 break;
3515 r = 0;
3516 break;
3517 }
3518 case KVM_SET_VCPU_EVENTS: {
3519 struct kvm_vcpu_events events;
3520
3521 r = -EFAULT;
3522 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3523 break;
3524
3525 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3526 break;
3527 }
3528 case KVM_GET_DEBUGREGS: {
3529 struct kvm_debugregs dbgregs;
3530
3531 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3532
3533 r = -EFAULT;
3534 if (copy_to_user(argp, &dbgregs,
3535 sizeof(struct kvm_debugregs)))
3536 break;
3537 r = 0;
3538 break;
3539 }
3540 case KVM_SET_DEBUGREGS: {
3541 struct kvm_debugregs dbgregs;
3542
3543 r = -EFAULT;
3544 if (copy_from_user(&dbgregs, argp,
3545 sizeof(struct kvm_debugregs)))
3546 break;
3547
3548 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3549 break;
3550 }
3551 case KVM_GET_XSAVE: {
3552 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3553 r = -ENOMEM;
3554 if (!u.xsave)
3555 break;
3556
3557 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3558
3559 r = -EFAULT;
3560 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3561 break;
3562 r = 0;
3563 break;
3564 }
3565 case KVM_SET_XSAVE: {
3566 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3567 if (IS_ERR(u.xsave))
3568 return PTR_ERR(u.xsave);
3569
3570 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3571 break;
3572 }
3573 case KVM_GET_XCRS: {
3574 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3575 r = -ENOMEM;
3576 if (!u.xcrs)
3577 break;
3578
3579 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3580
3581 r = -EFAULT;
3582 if (copy_to_user(argp, u.xcrs,
3583 sizeof(struct kvm_xcrs)))
3584 break;
3585 r = 0;
3586 break;
3587 }
3588 case KVM_SET_XCRS: {
3589 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3590 if (IS_ERR(u.xcrs))
3591 return PTR_ERR(u.xcrs);
3592
3593 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3594 break;
3595 }
3596 case KVM_SET_TSC_KHZ: {
3597 u32 user_tsc_khz;
3598
3599 r = -EINVAL;
3600 user_tsc_khz = (u32)arg;
3601
3602 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3603 goto out;
3604
3605 if (user_tsc_khz == 0)
3606 user_tsc_khz = tsc_khz;
3607
3608 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3609
3610 r = 0;
3611 goto out;
3612 }
3613 case KVM_GET_TSC_KHZ: {
3614 r = vcpu->arch.virtual_tsc_khz;
3615 goto out;
3616 }
3617 case KVM_KVMCLOCK_CTRL: {
3618 r = kvm_set_guest_paused(vcpu);
3619 goto out;
3620 }
3621 default:
3622 r = -EINVAL;
3623 }
3624 out:
3625 kfree(u.buffer);
3626 return r;
3627 }
3628
3629 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3630 {
3631 return VM_FAULT_SIGBUS;
3632 }
3633
3634 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3635 {
3636 int ret;
3637
3638 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3639 return -EINVAL;
3640 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3641 return ret;
3642 }
3643
3644 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3645 u64 ident_addr)
3646 {
3647 kvm->arch.ept_identity_map_addr = ident_addr;
3648 return 0;
3649 }
3650
3651 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3652 u32 kvm_nr_mmu_pages)
3653 {
3654 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3655 return -EINVAL;
3656
3657 mutex_lock(&kvm->slots_lock);
3658
3659 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3660 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3661
3662 mutex_unlock(&kvm->slots_lock);
3663 return 0;
3664 }
3665
3666 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3667 {
3668 return kvm->arch.n_max_mmu_pages;
3669 }
3670
3671 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3672 {
3673 int r;
3674
3675 r = 0;
3676 switch (chip->chip_id) {
3677 case KVM_IRQCHIP_PIC_MASTER:
3678 memcpy(&chip->chip.pic,
3679 &pic_irqchip(kvm)->pics[0],
3680 sizeof(struct kvm_pic_state));
3681 break;
3682 case KVM_IRQCHIP_PIC_SLAVE:
3683 memcpy(&chip->chip.pic,
3684 &pic_irqchip(kvm)->pics[1],
3685 sizeof(struct kvm_pic_state));
3686 break;
3687 case KVM_IRQCHIP_IOAPIC:
3688 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3689 break;
3690 default:
3691 r = -EINVAL;
3692 break;
3693 }
3694 return r;
3695 }
3696
3697 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3698 {
3699 int r;
3700
3701 r = 0;
3702 switch (chip->chip_id) {
3703 case KVM_IRQCHIP_PIC_MASTER:
3704 spin_lock(&pic_irqchip(kvm)->lock);
3705 memcpy(&pic_irqchip(kvm)->pics[0],
3706 &chip->chip.pic,
3707 sizeof(struct kvm_pic_state));
3708 spin_unlock(&pic_irqchip(kvm)->lock);
3709 break;
3710 case KVM_IRQCHIP_PIC_SLAVE:
3711 spin_lock(&pic_irqchip(kvm)->lock);
3712 memcpy(&pic_irqchip(kvm)->pics[1],
3713 &chip->chip.pic,
3714 sizeof(struct kvm_pic_state));
3715 spin_unlock(&pic_irqchip(kvm)->lock);
3716 break;
3717 case KVM_IRQCHIP_IOAPIC:
3718 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3719 break;
3720 default:
3721 r = -EINVAL;
3722 break;
3723 }
3724 kvm_pic_update_irq(pic_irqchip(kvm));
3725 return r;
3726 }
3727
3728 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3729 {
3730 int r = 0;
3731
3732 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3733 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3734 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3735 return r;
3736 }
3737
3738 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3739 {
3740 int r = 0;
3741
3742 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3743 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3744 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3745 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3746 return r;
3747 }
3748
3749 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3750 {
3751 int r = 0;
3752
3753 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3754 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3755 sizeof(ps->channels));
3756 ps->flags = kvm->arch.vpit->pit_state.flags;
3757 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3758 memset(&ps->reserved, 0, sizeof(ps->reserved));
3759 return r;
3760 }
3761
3762 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3763 {
3764 int r = 0, start = 0;
3765 u32 prev_legacy, cur_legacy;
3766 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3767 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3768 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3769 if (!prev_legacy && cur_legacy)
3770 start = 1;
3771 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3772 sizeof(kvm->arch.vpit->pit_state.channels));
3773 kvm->arch.vpit->pit_state.flags = ps->flags;
3774 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3775 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3776 return r;
3777 }
3778
3779 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3780 struct kvm_reinject_control *control)
3781 {
3782 if (!kvm->arch.vpit)
3783 return -ENXIO;
3784 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3785 kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3786 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3787 return 0;
3788 }
3789
3790 /**
3791 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3792 * @kvm: kvm instance
3793 * @log: slot id and address to which we copy the log
3794 *
3795 * Steps 1-4 below provide general overview of dirty page logging. See
3796 * kvm_get_dirty_log_protect() function description for additional details.
3797 *
3798 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3799 * always flush the TLB (step 4) even if previous step failed and the dirty
3800 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3801 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3802 * writes will be marked dirty for next log read.
3803 *
3804 * 1. Take a snapshot of the bit and clear it if needed.
3805 * 2. Write protect the corresponding page.
3806 * 3. Copy the snapshot to the userspace.
3807 * 4. Flush TLB's if needed.
3808 */
3809 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3810 {
3811 bool is_dirty = false;
3812 int r;
3813
3814 mutex_lock(&kvm->slots_lock);
3815
3816 /*
3817 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3818 */
3819 if (kvm_x86_ops->flush_log_dirty)
3820 kvm_x86_ops->flush_log_dirty(kvm);
3821
3822 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3823
3824 /*
3825 * All the TLBs can be flushed out of mmu lock, see the comments in
3826 * kvm_mmu_slot_remove_write_access().
3827 */
3828 lockdep_assert_held(&kvm->slots_lock);
3829 if (is_dirty)
3830 kvm_flush_remote_tlbs(kvm);
3831
3832 mutex_unlock(&kvm->slots_lock);
3833 return r;
3834 }
3835
3836 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3837 bool line_status)
3838 {
3839 if (!irqchip_in_kernel(kvm))
3840 return -ENXIO;
3841
3842 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3843 irq_event->irq, irq_event->level,
3844 line_status);
3845 return 0;
3846 }
3847
3848 long kvm_arch_vm_ioctl(struct file *filp,
3849 unsigned int ioctl, unsigned long arg)
3850 {
3851 struct kvm *kvm = filp->private_data;
3852 void __user *argp = (void __user *)arg;
3853 int r = -ENOTTY;
3854 /*
3855 * This union makes it completely explicit to gcc-3.x
3856 * that these two variables' stack usage should be
3857 * combined, not added together.
3858 */
3859 union {
3860 struct kvm_pit_state ps;
3861 struct kvm_pit_state2 ps2;
3862 struct kvm_pit_config pit_config;
3863 } u;
3864
3865 switch (ioctl) {
3866 case KVM_SET_TSS_ADDR:
3867 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3868 break;
3869 case KVM_SET_IDENTITY_MAP_ADDR: {
3870 u64 ident_addr;
3871
3872 r = -EFAULT;
3873 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3874 goto out;
3875 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3876 break;
3877 }
3878 case KVM_SET_NR_MMU_PAGES:
3879 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3880 break;
3881 case KVM_GET_NR_MMU_PAGES:
3882 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3883 break;
3884 case KVM_CREATE_IRQCHIP: {
3885 struct kvm_pic *vpic;
3886
3887 mutex_lock(&kvm->lock);
3888 r = -EEXIST;
3889 if (kvm->arch.vpic)
3890 goto create_irqchip_unlock;
3891 r = -EINVAL;
3892 if (atomic_read(&kvm->online_vcpus))
3893 goto create_irqchip_unlock;
3894 r = -ENOMEM;
3895 vpic = kvm_create_pic(kvm);
3896 if (vpic) {
3897 r = kvm_ioapic_init(kvm);
3898 if (r) {
3899 mutex_lock(&kvm->slots_lock);
3900 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3901 &vpic->dev_master);
3902 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3903 &vpic->dev_slave);
3904 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3905 &vpic->dev_eclr);
3906 mutex_unlock(&kvm->slots_lock);
3907 kfree(vpic);
3908 goto create_irqchip_unlock;
3909 }
3910 } else
3911 goto create_irqchip_unlock;
3912 smp_wmb();
3913 kvm->arch.vpic = vpic;
3914 smp_wmb();
3915 r = kvm_setup_default_irq_routing(kvm);
3916 if (r) {
3917 mutex_lock(&kvm->slots_lock);
3918 mutex_lock(&kvm->irq_lock);
3919 kvm_ioapic_destroy(kvm);
3920 kvm_destroy_pic(kvm);
3921 mutex_unlock(&kvm->irq_lock);
3922 mutex_unlock(&kvm->slots_lock);
3923 }
3924 create_irqchip_unlock:
3925 mutex_unlock(&kvm->lock);
3926 break;
3927 }
3928 case KVM_CREATE_PIT:
3929 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3930 goto create_pit;
3931 case KVM_CREATE_PIT2:
3932 r = -EFAULT;
3933 if (copy_from_user(&u.pit_config, argp,
3934 sizeof(struct kvm_pit_config)))
3935 goto out;
3936 create_pit:
3937 mutex_lock(&kvm->slots_lock);
3938 r = -EEXIST;
3939 if (kvm->arch.vpit)
3940 goto create_pit_unlock;
3941 r = -ENOMEM;
3942 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3943 if (kvm->arch.vpit)
3944 r = 0;
3945 create_pit_unlock:
3946 mutex_unlock(&kvm->slots_lock);
3947 break;
3948 case KVM_GET_IRQCHIP: {
3949 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3950 struct kvm_irqchip *chip;
3951
3952 chip = memdup_user(argp, sizeof(*chip));
3953 if (IS_ERR(chip)) {
3954 r = PTR_ERR(chip);
3955 goto out;
3956 }
3957
3958 r = -ENXIO;
3959 if (!irqchip_in_kernel(kvm))
3960 goto get_irqchip_out;
3961 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3962 if (r)
3963 goto get_irqchip_out;
3964 r = -EFAULT;
3965 if (copy_to_user(argp, chip, sizeof *chip))
3966 goto get_irqchip_out;
3967 r = 0;
3968 get_irqchip_out:
3969 kfree(chip);
3970 break;
3971 }
3972 case KVM_SET_IRQCHIP: {
3973 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3974 struct kvm_irqchip *chip;
3975
3976 chip = memdup_user(argp, sizeof(*chip));
3977 if (IS_ERR(chip)) {
3978 r = PTR_ERR(chip);
3979 goto out;
3980 }
3981
3982 r = -ENXIO;
3983 if (!irqchip_in_kernel(kvm))
3984 goto set_irqchip_out;
3985 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3986 if (r)
3987 goto set_irqchip_out;
3988 r = 0;
3989 set_irqchip_out:
3990 kfree(chip);
3991 break;
3992 }
3993 case KVM_GET_PIT: {
3994 r = -EFAULT;
3995 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3996 goto out;
3997 r = -ENXIO;
3998 if (!kvm->arch.vpit)
3999 goto out;
4000 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4001 if (r)
4002 goto out;
4003 r = -EFAULT;
4004 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4005 goto out;
4006 r = 0;
4007 break;
4008 }
4009 case KVM_SET_PIT: {
4010 r = -EFAULT;
4011 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4012 goto out;
4013 r = -ENXIO;
4014 if (!kvm->arch.vpit)
4015 goto out;
4016 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4017 break;
4018 }
4019 case KVM_GET_PIT2: {
4020 r = -ENXIO;
4021 if (!kvm->arch.vpit)
4022 goto out;
4023 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4024 if (r)
4025 goto out;
4026 r = -EFAULT;
4027 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4028 goto out;
4029 r = 0;
4030 break;
4031 }
4032 case KVM_SET_PIT2: {
4033 r = -EFAULT;
4034 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4035 goto out;
4036 r = -ENXIO;
4037 if (!kvm->arch.vpit)
4038 goto out;
4039 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4040 break;
4041 }
4042 case KVM_REINJECT_CONTROL: {
4043 struct kvm_reinject_control control;
4044 r = -EFAULT;
4045 if (copy_from_user(&control, argp, sizeof(control)))
4046 goto out;
4047 r = kvm_vm_ioctl_reinject(kvm, &control);
4048 break;
4049 }
4050 case KVM_XEN_HVM_CONFIG: {
4051 r = -EFAULT;
4052 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4053 sizeof(struct kvm_xen_hvm_config)))
4054 goto out;
4055 r = -EINVAL;
4056 if (kvm->arch.xen_hvm_config.flags)
4057 goto out;
4058 r = 0;
4059 break;
4060 }
4061 case KVM_SET_CLOCK: {
4062 struct kvm_clock_data user_ns;
4063 u64 now_ns;
4064 s64 delta;
4065
4066 r = -EFAULT;
4067 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4068 goto out;
4069
4070 r = -EINVAL;
4071 if (user_ns.flags)
4072 goto out;
4073
4074 r = 0;
4075 local_irq_disable();
4076 now_ns = get_kernel_ns();
4077 delta = user_ns.clock - now_ns;
4078 local_irq_enable();
4079 kvm->arch.kvmclock_offset = delta;
4080 kvm_gen_update_masterclock(kvm);
4081 break;
4082 }
4083 case KVM_GET_CLOCK: {
4084 struct kvm_clock_data user_ns;
4085 u64 now_ns;
4086
4087 local_irq_disable();
4088 now_ns = get_kernel_ns();
4089 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
4090 local_irq_enable();
4091 user_ns.flags = 0;
4092 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4093
4094 r = -EFAULT;
4095 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4096 goto out;
4097 r = 0;
4098 break;
4099 }
4100
4101 default:
4102 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4103 }
4104 out:
4105 return r;
4106 }
4107
4108 static void kvm_init_msr_list(void)
4109 {
4110 u32 dummy[2];
4111 unsigned i, j;
4112
4113 /* skip the first msrs in the list. KVM-specific */
4114 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
4115 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4116 continue;
4117
4118 /*
4119 * Even MSRs that are valid in the host may not be exposed
4120 * to the guests in some cases. We could work around this
4121 * in VMX with the generic MSR save/load machinery, but it
4122 * is not really worthwhile since it will really only
4123 * happen with nested virtualization.
4124 */
4125 switch (msrs_to_save[i]) {
4126 case MSR_IA32_BNDCFGS:
4127 if (!kvm_x86_ops->mpx_supported())
4128 continue;
4129 break;
4130 default:
4131 break;
4132 }
4133
4134 if (j < i)
4135 msrs_to_save[j] = msrs_to_save[i];
4136 j++;
4137 }
4138 num_msrs_to_save = j;
4139 }
4140
4141 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4142 const void *v)
4143 {
4144 int handled = 0;
4145 int n;
4146
4147 do {
4148 n = min(len, 8);
4149 if (!(vcpu->arch.apic &&
4150 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4151 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4152 break;
4153 handled += n;
4154 addr += n;
4155 len -= n;
4156 v += n;
4157 } while (len);
4158
4159 return handled;
4160 }
4161
4162 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4163 {
4164 int handled = 0;
4165 int n;
4166
4167 do {
4168 n = min(len, 8);
4169 if (!(vcpu->arch.apic &&
4170 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4171 addr, n, v))
4172 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4173 break;
4174 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4175 handled += n;
4176 addr += n;
4177 len -= n;
4178 v += n;
4179 } while (len);
4180
4181 return handled;
4182 }
4183
4184 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4185 struct kvm_segment *var, int seg)
4186 {
4187 kvm_x86_ops->set_segment(vcpu, var, seg);
4188 }
4189
4190 void kvm_get_segment(struct kvm_vcpu *vcpu,
4191 struct kvm_segment *var, int seg)
4192 {
4193 kvm_x86_ops->get_segment(vcpu, var, seg);
4194 }
4195
4196 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4197 struct x86_exception *exception)
4198 {
4199 gpa_t t_gpa;
4200
4201 BUG_ON(!mmu_is_nested(vcpu));
4202
4203 /* NPT walks are always user-walks */
4204 access |= PFERR_USER_MASK;
4205 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4206
4207 return t_gpa;
4208 }
4209
4210 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4211 struct x86_exception *exception)
4212 {
4213 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4214 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4215 }
4216
4217 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4218 struct x86_exception *exception)
4219 {
4220 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4221 access |= PFERR_FETCH_MASK;
4222 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4223 }
4224
4225 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4226 struct x86_exception *exception)
4227 {
4228 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4229 access |= PFERR_WRITE_MASK;
4230 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4231 }
4232
4233 /* uses this to access any guest's mapped memory without checking CPL */
4234 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4235 struct x86_exception *exception)
4236 {
4237 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4238 }
4239
4240 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4241 struct kvm_vcpu *vcpu, u32 access,
4242 struct x86_exception *exception)
4243 {
4244 void *data = val;
4245 int r = X86EMUL_CONTINUE;
4246
4247 while (bytes) {
4248 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4249 exception);
4250 unsigned offset = addr & (PAGE_SIZE-1);
4251 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4252 int ret;
4253
4254 if (gpa == UNMAPPED_GVA)
4255 return X86EMUL_PROPAGATE_FAULT;
4256 ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, data,
4257 offset, toread);
4258 if (ret < 0) {
4259 r = X86EMUL_IO_NEEDED;
4260 goto out;
4261 }
4262
4263 bytes -= toread;
4264 data += toread;
4265 addr += toread;
4266 }
4267 out:
4268 return r;
4269 }
4270
4271 /* used for instruction fetching */
4272 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4273 gva_t addr, void *val, unsigned int bytes,
4274 struct x86_exception *exception)
4275 {
4276 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4277 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4278 unsigned offset;
4279 int ret;
4280
4281 /* Inline kvm_read_guest_virt_helper for speed. */
4282 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4283 exception);
4284 if (unlikely(gpa == UNMAPPED_GVA))
4285 return X86EMUL_PROPAGATE_FAULT;
4286
4287 offset = addr & (PAGE_SIZE-1);
4288 if (WARN_ON(offset + bytes > PAGE_SIZE))
4289 bytes = (unsigned)PAGE_SIZE - offset;
4290 ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, val,
4291 offset, bytes);
4292 if (unlikely(ret < 0))
4293 return X86EMUL_IO_NEEDED;
4294
4295 return X86EMUL_CONTINUE;
4296 }
4297
4298 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4299 gva_t addr, void *val, unsigned int bytes,
4300 struct x86_exception *exception)
4301 {
4302 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4303 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4304
4305 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4306 exception);
4307 }
4308 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4309
4310 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4311 gva_t addr, void *val, unsigned int bytes,
4312 struct x86_exception *exception)
4313 {
4314 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4315 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4316 }
4317
4318 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4319 gva_t addr, void *val,
4320 unsigned int bytes,
4321 struct x86_exception *exception)
4322 {
4323 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4324 void *data = val;
4325 int r = X86EMUL_CONTINUE;
4326
4327 while (bytes) {
4328 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4329 PFERR_WRITE_MASK,
4330 exception);
4331 unsigned offset = addr & (PAGE_SIZE-1);
4332 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4333 int ret;
4334
4335 if (gpa == UNMAPPED_GVA)
4336 return X86EMUL_PROPAGATE_FAULT;
4337 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
4338 if (ret < 0) {
4339 r = X86EMUL_IO_NEEDED;
4340 goto out;
4341 }
4342
4343 bytes -= towrite;
4344 data += towrite;
4345 addr += towrite;
4346 }
4347 out:
4348 return r;
4349 }
4350 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4351
4352 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4353 gpa_t *gpa, struct x86_exception *exception,
4354 bool write)
4355 {
4356 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4357 | (write ? PFERR_WRITE_MASK : 0);
4358
4359 if (vcpu_match_mmio_gva(vcpu, gva)
4360 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4361 vcpu->arch.access, access)) {
4362 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4363 (gva & (PAGE_SIZE - 1));
4364 trace_vcpu_match_mmio(gva, *gpa, write, false);
4365 return 1;
4366 }
4367
4368 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4369
4370 if (*gpa == UNMAPPED_GVA)
4371 return -1;
4372
4373 /* For APIC access vmexit */
4374 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4375 return 1;
4376
4377 if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4378 trace_vcpu_match_mmio(gva, *gpa, write, true);
4379 return 1;
4380 }
4381
4382 return 0;
4383 }
4384
4385 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4386 const void *val, int bytes)
4387 {
4388 int ret;
4389
4390 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4391 if (ret < 0)
4392 return 0;
4393 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4394 return 1;
4395 }
4396
4397 struct read_write_emulator_ops {
4398 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4399 int bytes);
4400 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4401 void *val, int bytes);
4402 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4403 int bytes, void *val);
4404 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4405 void *val, int bytes);
4406 bool write;
4407 };
4408
4409 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4410 {
4411 if (vcpu->mmio_read_completed) {
4412 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4413 vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4414 vcpu->mmio_read_completed = 0;
4415 return 1;
4416 }
4417
4418 return 0;
4419 }
4420
4421 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4422 void *val, int bytes)
4423 {
4424 return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4425 }
4426
4427 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4428 void *val, int bytes)
4429 {
4430 return emulator_write_phys(vcpu, gpa, val, bytes);
4431 }
4432
4433 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4434 {
4435 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4436 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4437 }
4438
4439 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4440 void *val, int bytes)
4441 {
4442 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4443 return X86EMUL_IO_NEEDED;
4444 }
4445
4446 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4447 void *val, int bytes)
4448 {
4449 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4450
4451 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4452 return X86EMUL_CONTINUE;
4453 }
4454
4455 static const struct read_write_emulator_ops read_emultor = {
4456 .read_write_prepare = read_prepare,
4457 .read_write_emulate = read_emulate,
4458 .read_write_mmio = vcpu_mmio_read,
4459 .read_write_exit_mmio = read_exit_mmio,
4460 };
4461
4462 static const struct read_write_emulator_ops write_emultor = {
4463 .read_write_emulate = write_emulate,
4464 .read_write_mmio = write_mmio,
4465 .read_write_exit_mmio = write_exit_mmio,
4466 .write = true,
4467 };
4468
4469 static int emulator_read_write_onepage(unsigned long addr, void *val,
4470 unsigned int bytes,
4471 struct x86_exception *exception,
4472 struct kvm_vcpu *vcpu,
4473 const struct read_write_emulator_ops *ops)
4474 {
4475 gpa_t gpa;
4476 int handled, ret;
4477 bool write = ops->write;
4478 struct kvm_mmio_fragment *frag;
4479
4480 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4481
4482 if (ret < 0)
4483 return X86EMUL_PROPAGATE_FAULT;
4484
4485 /* For APIC access vmexit */
4486 if (ret)
4487 goto mmio;
4488
4489 if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4490 return X86EMUL_CONTINUE;
4491
4492 mmio:
4493 /*
4494 * Is this MMIO handled locally?
4495 */
4496 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4497 if (handled == bytes)
4498 return X86EMUL_CONTINUE;
4499
4500 gpa += handled;
4501 bytes -= handled;
4502 val += handled;
4503
4504 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4505 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4506 frag->gpa = gpa;
4507 frag->data = val;
4508 frag->len = bytes;
4509 return X86EMUL_CONTINUE;
4510 }
4511
4512 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4513 unsigned long addr,
4514 void *val, unsigned int bytes,
4515 struct x86_exception *exception,
4516 const struct read_write_emulator_ops *ops)
4517 {
4518 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4519 gpa_t gpa;
4520 int rc;
4521
4522 if (ops->read_write_prepare &&
4523 ops->read_write_prepare(vcpu, val, bytes))
4524 return X86EMUL_CONTINUE;
4525
4526 vcpu->mmio_nr_fragments = 0;
4527
4528 /* Crossing a page boundary? */
4529 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4530 int now;
4531
4532 now = -addr & ~PAGE_MASK;
4533 rc = emulator_read_write_onepage(addr, val, now, exception,
4534 vcpu, ops);
4535
4536 if (rc != X86EMUL_CONTINUE)
4537 return rc;
4538 addr += now;
4539 if (ctxt->mode != X86EMUL_MODE_PROT64)
4540 addr = (u32)addr;
4541 val += now;
4542 bytes -= now;
4543 }
4544
4545 rc = emulator_read_write_onepage(addr, val, bytes, exception,
4546 vcpu, ops);
4547 if (rc != X86EMUL_CONTINUE)
4548 return rc;
4549
4550 if (!vcpu->mmio_nr_fragments)
4551 return rc;
4552
4553 gpa = vcpu->mmio_fragments[0].gpa;
4554
4555 vcpu->mmio_needed = 1;
4556 vcpu->mmio_cur_fragment = 0;
4557
4558 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4559 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4560 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4561 vcpu->run->mmio.phys_addr = gpa;
4562
4563 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4564 }
4565
4566 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4567 unsigned long addr,
4568 void *val,
4569 unsigned int bytes,
4570 struct x86_exception *exception)
4571 {
4572 return emulator_read_write(ctxt, addr, val, bytes,
4573 exception, &read_emultor);
4574 }
4575
4576 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4577 unsigned long addr,
4578 const void *val,
4579 unsigned int bytes,
4580 struct x86_exception *exception)
4581 {
4582 return emulator_read_write(ctxt, addr, (void *)val, bytes,
4583 exception, &write_emultor);
4584 }
4585
4586 #define CMPXCHG_TYPE(t, ptr, old, new) \
4587 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4588
4589 #ifdef CONFIG_X86_64
4590 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4591 #else
4592 # define CMPXCHG64(ptr, old, new) \
4593 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4594 #endif
4595
4596 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4597 unsigned long addr,
4598 const void *old,
4599 const void *new,
4600 unsigned int bytes,
4601 struct x86_exception *exception)
4602 {
4603 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4604 gpa_t gpa;
4605 struct page *page;
4606 char *kaddr;
4607 bool exchanged;
4608
4609 /* guests cmpxchg8b have to be emulated atomically */
4610 if (bytes > 8 || (bytes & (bytes - 1)))
4611 goto emul_write;
4612
4613 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4614
4615 if (gpa == UNMAPPED_GVA ||
4616 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4617 goto emul_write;
4618
4619 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4620 goto emul_write;
4621
4622 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4623 if (is_error_page(page))
4624 goto emul_write;
4625
4626 kaddr = kmap_atomic(page);
4627 kaddr += offset_in_page(gpa);
4628 switch (bytes) {
4629 case 1:
4630 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4631 break;
4632 case 2:
4633 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4634 break;
4635 case 4:
4636 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4637 break;
4638 case 8:
4639 exchanged = CMPXCHG64(kaddr, old, new);
4640 break;
4641 default:
4642 BUG();
4643 }
4644 kunmap_atomic(kaddr);
4645 kvm_release_page_dirty(page);
4646
4647 if (!exchanged)
4648 return X86EMUL_CMPXCHG_FAILED;
4649
4650 mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
4651 kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4652
4653 return X86EMUL_CONTINUE;
4654
4655 emul_write:
4656 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4657
4658 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4659 }
4660
4661 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4662 {
4663 /* TODO: String I/O for in kernel device */
4664 int r;
4665
4666 if (vcpu->arch.pio.in)
4667 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4668 vcpu->arch.pio.size, pd);
4669 else
4670 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4671 vcpu->arch.pio.port, vcpu->arch.pio.size,
4672 pd);
4673 return r;
4674 }
4675
4676 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4677 unsigned short port, void *val,
4678 unsigned int count, bool in)
4679 {
4680 vcpu->arch.pio.port = port;
4681 vcpu->arch.pio.in = in;
4682 vcpu->arch.pio.count = count;
4683 vcpu->arch.pio.size = size;
4684
4685 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4686 vcpu->arch.pio.count = 0;
4687 return 1;
4688 }
4689
4690 vcpu->run->exit_reason = KVM_EXIT_IO;
4691 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4692 vcpu->run->io.size = size;
4693 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4694 vcpu->run->io.count = count;
4695 vcpu->run->io.port = port;
4696
4697 return 0;
4698 }
4699
4700 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4701 int size, unsigned short port, void *val,
4702 unsigned int count)
4703 {
4704 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4705 int ret;
4706
4707 if (vcpu->arch.pio.count)
4708 goto data_avail;
4709
4710 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4711 if (ret) {
4712 data_avail:
4713 memcpy(val, vcpu->arch.pio_data, size * count);
4714 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4715 vcpu->arch.pio.count = 0;
4716 return 1;
4717 }
4718
4719 return 0;
4720 }
4721
4722 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4723 int size, unsigned short port,
4724 const void *val, unsigned int count)
4725 {
4726 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4727
4728 memcpy(vcpu->arch.pio_data, val, size * count);
4729 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4730 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4731 }
4732
4733 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4734 {
4735 return kvm_x86_ops->get_segment_base(vcpu, seg);
4736 }
4737
4738 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4739 {
4740 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4741 }
4742
4743 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4744 {
4745 if (!need_emulate_wbinvd(vcpu))
4746 return X86EMUL_CONTINUE;
4747
4748 if (kvm_x86_ops->has_wbinvd_exit()) {
4749 int cpu = get_cpu();
4750
4751 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4752 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4753 wbinvd_ipi, NULL, 1);
4754 put_cpu();
4755 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4756 } else
4757 wbinvd();
4758 return X86EMUL_CONTINUE;
4759 }
4760
4761 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4762 {
4763 kvm_x86_ops->skip_emulated_instruction(vcpu);
4764 return kvm_emulate_wbinvd_noskip(vcpu);
4765 }
4766 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4767
4768
4769
4770 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4771 {
4772 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4773 }
4774
4775 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4776 unsigned long *dest)
4777 {
4778 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4779 }
4780
4781 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4782 unsigned long value)
4783 {
4784
4785 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4786 }
4787
4788 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4789 {
4790 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4791 }
4792
4793 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4794 {
4795 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4796 unsigned long value;
4797
4798 switch (cr) {
4799 case 0:
4800 value = kvm_read_cr0(vcpu);
4801 break;
4802 case 2:
4803 value = vcpu->arch.cr2;
4804 break;
4805 case 3:
4806 value = kvm_read_cr3(vcpu);
4807 break;
4808 case 4:
4809 value = kvm_read_cr4(vcpu);
4810 break;
4811 case 8:
4812 value = kvm_get_cr8(vcpu);
4813 break;
4814 default:
4815 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4816 return 0;
4817 }
4818
4819 return value;
4820 }
4821
4822 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4823 {
4824 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4825 int res = 0;
4826
4827 switch (cr) {
4828 case 0:
4829 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4830 break;
4831 case 2:
4832 vcpu->arch.cr2 = val;
4833 break;
4834 case 3:
4835 res = kvm_set_cr3(vcpu, val);
4836 break;
4837 case 4:
4838 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4839 break;
4840 case 8:
4841 res = kvm_set_cr8(vcpu, val);
4842 break;
4843 default:
4844 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4845 res = -1;
4846 }
4847
4848 return res;
4849 }
4850
4851 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4852 {
4853 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4854 }
4855
4856 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4857 {
4858 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4859 }
4860
4861 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4862 {
4863 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4864 }
4865
4866 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4867 {
4868 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4869 }
4870
4871 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4872 {
4873 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4874 }
4875
4876 static unsigned long emulator_get_cached_segment_base(
4877 struct x86_emulate_ctxt *ctxt, int seg)
4878 {
4879 return get_segment_base(emul_to_vcpu(ctxt), seg);
4880 }
4881
4882 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4883 struct desc_struct *desc, u32 *base3,
4884 int seg)
4885 {
4886 struct kvm_segment var;
4887
4888 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4889 *selector = var.selector;
4890
4891 if (var.unusable) {
4892 memset(desc, 0, sizeof(*desc));
4893 return false;
4894 }
4895
4896 if (var.g)
4897 var.limit >>= 12;
4898 set_desc_limit(desc, var.limit);
4899 set_desc_base(desc, (unsigned long)var.base);
4900 #ifdef CONFIG_X86_64
4901 if (base3)
4902 *base3 = var.base >> 32;
4903 #endif
4904 desc->type = var.type;
4905 desc->s = var.s;
4906 desc->dpl = var.dpl;
4907 desc->p = var.present;
4908 desc->avl = var.avl;
4909 desc->l = var.l;
4910 desc->d = var.db;
4911 desc->g = var.g;
4912
4913 return true;
4914 }
4915
4916 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4917 struct desc_struct *desc, u32 base3,
4918 int seg)
4919 {
4920 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4921 struct kvm_segment var;
4922
4923 var.selector = selector;
4924 var.base = get_desc_base(desc);
4925 #ifdef CONFIG_X86_64
4926 var.base |= ((u64)base3) << 32;
4927 #endif
4928 var.limit = get_desc_limit(desc);
4929 if (desc->g)
4930 var.limit = (var.limit << 12) | 0xfff;
4931 var.type = desc->type;
4932 var.dpl = desc->dpl;
4933 var.db = desc->d;
4934 var.s = desc->s;
4935 var.l = desc->l;
4936 var.g = desc->g;
4937 var.avl = desc->avl;
4938 var.present = desc->p;
4939 var.unusable = !var.present;
4940 var.padding = 0;
4941
4942 kvm_set_segment(vcpu, &var, seg);
4943 return;
4944 }
4945
4946 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4947 u32 msr_index, u64 *pdata)
4948 {
4949 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4950 }
4951
4952 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4953 u32 msr_index, u64 data)
4954 {
4955 struct msr_data msr;
4956
4957 msr.data = data;
4958 msr.index = msr_index;
4959 msr.host_initiated = false;
4960 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4961 }
4962
4963 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4964 u32 pmc)
4965 {
4966 return kvm_pmu_check_pmc(emul_to_vcpu(ctxt), pmc);
4967 }
4968
4969 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4970 u32 pmc, u64 *pdata)
4971 {
4972 return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4973 }
4974
4975 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4976 {
4977 emul_to_vcpu(ctxt)->arch.halt_request = 1;
4978 }
4979
4980 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4981 {
4982 preempt_disable();
4983 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4984 /*
4985 * CR0.TS may reference the host fpu state, not the guest fpu state,
4986 * so it may be clear at this point.
4987 */
4988 clts();
4989 }
4990
4991 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4992 {
4993 preempt_enable();
4994 }
4995
4996 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4997 struct x86_instruction_info *info,
4998 enum x86_intercept_stage stage)
4999 {
5000 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5001 }
5002
5003 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5004 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5005 {
5006 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5007 }
5008
5009 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5010 {
5011 return kvm_register_read(emul_to_vcpu(ctxt), reg);
5012 }
5013
5014 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5015 {
5016 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5017 }
5018
5019 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5020 {
5021 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5022 }
5023
5024 static const struct x86_emulate_ops emulate_ops = {
5025 .read_gpr = emulator_read_gpr,
5026 .write_gpr = emulator_write_gpr,
5027 .read_std = kvm_read_guest_virt_system,
5028 .write_std = kvm_write_guest_virt_system,
5029 .fetch = kvm_fetch_guest_virt,
5030 .read_emulated = emulator_read_emulated,
5031 .write_emulated = emulator_write_emulated,
5032 .cmpxchg_emulated = emulator_cmpxchg_emulated,
5033 .invlpg = emulator_invlpg,
5034 .pio_in_emulated = emulator_pio_in_emulated,
5035 .pio_out_emulated = emulator_pio_out_emulated,
5036 .get_segment = emulator_get_segment,
5037 .set_segment = emulator_set_segment,
5038 .get_cached_segment_base = emulator_get_cached_segment_base,
5039 .get_gdt = emulator_get_gdt,
5040 .get_idt = emulator_get_idt,
5041 .set_gdt = emulator_set_gdt,
5042 .set_idt = emulator_set_idt,
5043 .get_cr = emulator_get_cr,
5044 .set_cr = emulator_set_cr,
5045 .cpl = emulator_get_cpl,
5046 .get_dr = emulator_get_dr,
5047 .set_dr = emulator_set_dr,
5048 .set_msr = emulator_set_msr,
5049 .get_msr = emulator_get_msr,
5050 .check_pmc = emulator_check_pmc,
5051 .read_pmc = emulator_read_pmc,
5052 .halt = emulator_halt,
5053 .wbinvd = emulator_wbinvd,
5054 .fix_hypercall = emulator_fix_hypercall,
5055 .get_fpu = emulator_get_fpu,
5056 .put_fpu = emulator_put_fpu,
5057 .intercept = emulator_intercept,
5058 .get_cpuid = emulator_get_cpuid,
5059 .set_nmi_mask = emulator_set_nmi_mask,
5060 };
5061
5062 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5063 {
5064 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5065 /*
5066 * an sti; sti; sequence only disable interrupts for the first
5067 * instruction. So, if the last instruction, be it emulated or
5068 * not, left the system with the INT_STI flag enabled, it
5069 * means that the last instruction is an sti. We should not
5070 * leave the flag on in this case. The same goes for mov ss
5071 */
5072 if (int_shadow & mask)
5073 mask = 0;
5074 if (unlikely(int_shadow || mask)) {
5075 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5076 if (!mask)
5077 kvm_make_request(KVM_REQ_EVENT, vcpu);
5078 }
5079 }
5080
5081 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5082 {
5083 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5084 if (ctxt->exception.vector == PF_VECTOR)
5085 return kvm_propagate_fault(vcpu, &ctxt->exception);
5086
5087 if (ctxt->exception.error_code_valid)
5088 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5089 ctxt->exception.error_code);
5090 else
5091 kvm_queue_exception(vcpu, ctxt->exception.vector);
5092 return false;
5093 }
5094
5095 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5096 {
5097 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5098 int cs_db, cs_l;
5099
5100 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5101
5102 ctxt->eflags = kvm_get_rflags(vcpu);
5103 ctxt->eip = kvm_rip_read(vcpu);
5104 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
5105 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
5106 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
5107 cs_db ? X86EMUL_MODE_PROT32 :
5108 X86EMUL_MODE_PROT16;
5109 ctxt->guest_mode = is_guest_mode(vcpu);
5110
5111 init_decode_cache(ctxt);
5112 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5113 }
5114
5115 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5116 {
5117 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5118 int ret;
5119
5120 init_emulate_ctxt(vcpu);
5121
5122 ctxt->op_bytes = 2;
5123 ctxt->ad_bytes = 2;
5124 ctxt->_eip = ctxt->eip + inc_eip;
5125 ret = emulate_int_real(ctxt, irq);
5126
5127 if (ret != X86EMUL_CONTINUE)
5128 return EMULATE_FAIL;
5129
5130 ctxt->eip = ctxt->_eip;
5131 kvm_rip_write(vcpu, ctxt->eip);
5132 kvm_set_rflags(vcpu, ctxt->eflags);
5133
5134 if (irq == NMI_VECTOR)
5135 vcpu->arch.nmi_pending = 0;
5136 else
5137 vcpu->arch.interrupt.pending = false;
5138
5139 return EMULATE_DONE;
5140 }
5141 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5142
5143 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5144 {
5145 int r = EMULATE_DONE;
5146
5147 ++vcpu->stat.insn_emulation_fail;
5148 trace_kvm_emulate_insn_failed(vcpu);
5149 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5150 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5151 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5152 vcpu->run->internal.ndata = 0;
5153 r = EMULATE_FAIL;
5154 }
5155 kvm_queue_exception(vcpu, UD_VECTOR);
5156
5157 return r;
5158 }
5159
5160 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5161 bool write_fault_to_shadow_pgtable,
5162 int emulation_type)
5163 {
5164 gpa_t gpa = cr2;
5165 pfn_t pfn;
5166
5167 if (emulation_type & EMULTYPE_NO_REEXECUTE)
5168 return false;
5169
5170 if (!vcpu->arch.mmu.direct_map) {
5171 /*
5172 * Write permission should be allowed since only
5173 * write access need to be emulated.
5174 */
5175 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5176
5177 /*
5178 * If the mapping is invalid in guest, let cpu retry
5179 * it to generate fault.
5180 */
5181 if (gpa == UNMAPPED_GVA)
5182 return true;
5183 }
5184
5185 /*
5186 * Do not retry the unhandleable instruction if it faults on the
5187 * readonly host memory, otherwise it will goto a infinite loop:
5188 * retry instruction -> write #PF -> emulation fail -> retry
5189 * instruction -> ...
5190 */
5191 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5192
5193 /*
5194 * If the instruction failed on the error pfn, it can not be fixed,
5195 * report the error to userspace.
5196 */
5197 if (is_error_noslot_pfn(pfn))
5198 return false;
5199
5200 kvm_release_pfn_clean(pfn);
5201
5202 /* The instructions are well-emulated on direct mmu. */
5203 if (vcpu->arch.mmu.direct_map) {
5204 unsigned int indirect_shadow_pages;
5205
5206 spin_lock(&vcpu->kvm->mmu_lock);
5207 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5208 spin_unlock(&vcpu->kvm->mmu_lock);
5209
5210 if (indirect_shadow_pages)
5211 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5212
5213 return true;
5214 }
5215
5216 /*
5217 * if emulation was due to access to shadowed page table
5218 * and it failed try to unshadow page and re-enter the
5219 * guest to let CPU execute the instruction.
5220 */
5221 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5222
5223 /*
5224 * If the access faults on its page table, it can not
5225 * be fixed by unprotecting shadow page and it should
5226 * be reported to userspace.
5227 */
5228 return !write_fault_to_shadow_pgtable;
5229 }
5230
5231 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5232 unsigned long cr2, int emulation_type)
5233 {
5234 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5235 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5236
5237 last_retry_eip = vcpu->arch.last_retry_eip;
5238 last_retry_addr = vcpu->arch.last_retry_addr;
5239
5240 /*
5241 * If the emulation is caused by #PF and it is non-page_table
5242 * writing instruction, it means the VM-EXIT is caused by shadow
5243 * page protected, we can zap the shadow page and retry this
5244 * instruction directly.
5245 *
5246 * Note: if the guest uses a non-page-table modifying instruction
5247 * on the PDE that points to the instruction, then we will unmap
5248 * the instruction and go to an infinite loop. So, we cache the
5249 * last retried eip and the last fault address, if we meet the eip
5250 * and the address again, we can break out of the potential infinite
5251 * loop.
5252 */
5253 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5254
5255 if (!(emulation_type & EMULTYPE_RETRY))
5256 return false;
5257
5258 if (x86_page_table_writing_insn(ctxt))
5259 return false;
5260
5261 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5262 return false;
5263
5264 vcpu->arch.last_retry_eip = ctxt->eip;
5265 vcpu->arch.last_retry_addr = cr2;
5266
5267 if (!vcpu->arch.mmu.direct_map)
5268 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5269
5270 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5271
5272 return true;
5273 }
5274
5275 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5276 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5277
5278 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5279 unsigned long *db)
5280 {
5281 u32 dr6 = 0;
5282 int i;
5283 u32 enable, rwlen;
5284
5285 enable = dr7;
5286 rwlen = dr7 >> 16;
5287 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5288 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5289 dr6 |= (1 << i);
5290 return dr6;
5291 }
5292
5293 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5294 {
5295 struct kvm_run *kvm_run = vcpu->run;
5296
5297 /*
5298 * rflags is the old, "raw" value of the flags. The new value has
5299 * not been saved yet.
5300 *
5301 * This is correct even for TF set by the guest, because "the
5302 * processor will not generate this exception after the instruction
5303 * that sets the TF flag".
5304 */
5305 if (unlikely(rflags & X86_EFLAGS_TF)) {
5306 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5307 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5308 DR6_RTM;
5309 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5310 kvm_run->debug.arch.exception = DB_VECTOR;
5311 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5312 *r = EMULATE_USER_EXIT;
5313 } else {
5314 vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5315 /*
5316 * "Certain debug exceptions may clear bit 0-3. The
5317 * remaining contents of the DR6 register are never
5318 * cleared by the processor".
5319 */
5320 vcpu->arch.dr6 &= ~15;
5321 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5322 kvm_queue_exception(vcpu, DB_VECTOR);
5323 }
5324 }
5325 }
5326
5327 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5328 {
5329 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5330 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5331 struct kvm_run *kvm_run = vcpu->run;
5332 unsigned long eip = kvm_get_linear_rip(vcpu);
5333 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5334 vcpu->arch.guest_debug_dr7,
5335 vcpu->arch.eff_db);
5336
5337 if (dr6 != 0) {
5338 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5339 kvm_run->debug.arch.pc = eip;
5340 kvm_run->debug.arch.exception = DB_VECTOR;
5341 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5342 *r = EMULATE_USER_EXIT;
5343 return true;
5344 }
5345 }
5346
5347 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5348 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5349 unsigned long eip = kvm_get_linear_rip(vcpu);
5350 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5351 vcpu->arch.dr7,
5352 vcpu->arch.db);
5353
5354 if (dr6 != 0) {
5355 vcpu->arch.dr6 &= ~15;
5356 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5357 kvm_queue_exception(vcpu, DB_VECTOR);
5358 *r = EMULATE_DONE;
5359 return true;
5360 }
5361 }
5362
5363 return false;
5364 }
5365
5366 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5367 unsigned long cr2,
5368 int emulation_type,
5369 void *insn,
5370 int insn_len)
5371 {
5372 int r;
5373 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5374 bool writeback = true;
5375 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5376
5377 /*
5378 * Clear write_fault_to_shadow_pgtable here to ensure it is
5379 * never reused.
5380 */
5381 vcpu->arch.write_fault_to_shadow_pgtable = false;
5382 kvm_clear_exception_queue(vcpu);
5383
5384 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5385 init_emulate_ctxt(vcpu);
5386
5387 /*
5388 * We will reenter on the same instruction since
5389 * we do not set complete_userspace_io. This does not
5390 * handle watchpoints yet, those would be handled in
5391 * the emulate_ops.
5392 */
5393 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5394 return r;
5395
5396 ctxt->interruptibility = 0;
5397 ctxt->have_exception = false;
5398 ctxt->exception.vector = -1;
5399 ctxt->perm_ok = false;
5400
5401 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5402
5403 r = x86_decode_insn(ctxt, insn, insn_len);
5404
5405 trace_kvm_emulate_insn_start(vcpu);
5406 ++vcpu->stat.insn_emulation;
5407 if (r != EMULATION_OK) {
5408 if (emulation_type & EMULTYPE_TRAP_UD)
5409 return EMULATE_FAIL;
5410 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5411 emulation_type))
5412 return EMULATE_DONE;
5413 if (emulation_type & EMULTYPE_SKIP)
5414 return EMULATE_FAIL;
5415 return handle_emulation_failure(vcpu);
5416 }
5417 }
5418
5419 if (emulation_type & EMULTYPE_SKIP) {
5420 kvm_rip_write(vcpu, ctxt->_eip);
5421 if (ctxt->eflags & X86_EFLAGS_RF)
5422 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5423 return EMULATE_DONE;
5424 }
5425
5426 if (retry_instruction(ctxt, cr2, emulation_type))
5427 return EMULATE_DONE;
5428
5429 /* this is needed for vmware backdoor interface to work since it
5430 changes registers values during IO operation */
5431 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5432 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5433 emulator_invalidate_register_cache(ctxt);
5434 }
5435
5436 restart:
5437 r = x86_emulate_insn(ctxt);
5438
5439 if (r == EMULATION_INTERCEPTED)
5440 return EMULATE_DONE;
5441
5442 if (r == EMULATION_FAILED) {
5443 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5444 emulation_type))
5445 return EMULATE_DONE;
5446
5447 return handle_emulation_failure(vcpu);
5448 }
5449
5450 if (ctxt->have_exception) {
5451 r = EMULATE_DONE;
5452 if (inject_emulated_exception(vcpu))
5453 return r;
5454 } else if (vcpu->arch.pio.count) {
5455 if (!vcpu->arch.pio.in) {
5456 /* FIXME: return into emulator if single-stepping. */
5457 vcpu->arch.pio.count = 0;
5458 } else {
5459 writeback = false;
5460 vcpu->arch.complete_userspace_io = complete_emulated_pio;
5461 }
5462 r = EMULATE_USER_EXIT;
5463 } else if (vcpu->mmio_needed) {
5464 if (!vcpu->mmio_is_write)
5465 writeback = false;
5466 r = EMULATE_USER_EXIT;
5467 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5468 } else if (r == EMULATION_RESTART)
5469 goto restart;
5470 else
5471 r = EMULATE_DONE;
5472
5473 if (writeback) {
5474 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5475 toggle_interruptibility(vcpu, ctxt->interruptibility);
5476 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5477 kvm_rip_write(vcpu, ctxt->eip);
5478 if (r == EMULATE_DONE)
5479 kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5480 if (!ctxt->have_exception ||
5481 exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5482 __kvm_set_rflags(vcpu, ctxt->eflags);
5483
5484 /*
5485 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5486 * do nothing, and it will be requested again as soon as
5487 * the shadow expires. But we still need to check here,
5488 * because POPF has no interrupt shadow.
5489 */
5490 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5491 kvm_make_request(KVM_REQ_EVENT, vcpu);
5492 } else
5493 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5494
5495 return r;
5496 }
5497 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5498
5499 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5500 {
5501 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5502 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5503 size, port, &val, 1);
5504 /* do not return to emulator after return from userspace */
5505 vcpu->arch.pio.count = 0;
5506 return ret;
5507 }
5508 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5509
5510 static void tsc_bad(void *info)
5511 {
5512 __this_cpu_write(cpu_tsc_khz, 0);
5513 }
5514
5515 static void tsc_khz_changed(void *data)
5516 {
5517 struct cpufreq_freqs *freq = data;
5518 unsigned long khz = 0;
5519
5520 if (data)
5521 khz = freq->new;
5522 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5523 khz = cpufreq_quick_get(raw_smp_processor_id());
5524 if (!khz)
5525 khz = tsc_khz;
5526 __this_cpu_write(cpu_tsc_khz, khz);
5527 }
5528
5529 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5530 void *data)
5531 {
5532 struct cpufreq_freqs *freq = data;
5533 struct kvm *kvm;
5534 struct kvm_vcpu *vcpu;
5535 int i, send_ipi = 0;
5536
5537 /*
5538 * We allow guests to temporarily run on slowing clocks,
5539 * provided we notify them after, or to run on accelerating
5540 * clocks, provided we notify them before. Thus time never
5541 * goes backwards.
5542 *
5543 * However, we have a problem. We can't atomically update
5544 * the frequency of a given CPU from this function; it is
5545 * merely a notifier, which can be called from any CPU.
5546 * Changing the TSC frequency at arbitrary points in time
5547 * requires a recomputation of local variables related to
5548 * the TSC for each VCPU. We must flag these local variables
5549 * to be updated and be sure the update takes place with the
5550 * new frequency before any guests proceed.
5551 *
5552 * Unfortunately, the combination of hotplug CPU and frequency
5553 * change creates an intractable locking scenario; the order
5554 * of when these callouts happen is undefined with respect to
5555 * CPU hotplug, and they can race with each other. As such,
5556 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5557 * undefined; you can actually have a CPU frequency change take
5558 * place in between the computation of X and the setting of the
5559 * variable. To protect against this problem, all updates of
5560 * the per_cpu tsc_khz variable are done in an interrupt
5561 * protected IPI, and all callers wishing to update the value
5562 * must wait for a synchronous IPI to complete (which is trivial
5563 * if the caller is on the CPU already). This establishes the
5564 * necessary total order on variable updates.
5565 *
5566 * Note that because a guest time update may take place
5567 * anytime after the setting of the VCPU's request bit, the
5568 * correct TSC value must be set before the request. However,
5569 * to ensure the update actually makes it to any guest which
5570 * starts running in hardware virtualization between the set
5571 * and the acquisition of the spinlock, we must also ping the
5572 * CPU after setting the request bit.
5573 *
5574 */
5575
5576 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5577 return 0;
5578 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5579 return 0;
5580
5581 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5582
5583 spin_lock(&kvm_lock);
5584 list_for_each_entry(kvm, &vm_list, vm_list) {
5585 kvm_for_each_vcpu(i, vcpu, kvm) {
5586 if (vcpu->cpu != freq->cpu)
5587 continue;
5588 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5589 if (vcpu->cpu != smp_processor_id())
5590 send_ipi = 1;
5591 }
5592 }
5593 spin_unlock(&kvm_lock);
5594
5595 if (freq->old < freq->new && send_ipi) {
5596 /*
5597 * We upscale the frequency. Must make the guest
5598 * doesn't see old kvmclock values while running with
5599 * the new frequency, otherwise we risk the guest sees
5600 * time go backwards.
5601 *
5602 * In case we update the frequency for another cpu
5603 * (which might be in guest context) send an interrupt
5604 * to kick the cpu out of guest context. Next time
5605 * guest context is entered kvmclock will be updated,
5606 * so the guest will not see stale values.
5607 */
5608 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5609 }
5610 return 0;
5611 }
5612
5613 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5614 .notifier_call = kvmclock_cpufreq_notifier
5615 };
5616
5617 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5618 unsigned long action, void *hcpu)
5619 {
5620 unsigned int cpu = (unsigned long)hcpu;
5621
5622 switch (action) {
5623 case CPU_ONLINE:
5624 case CPU_DOWN_FAILED:
5625 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5626 break;
5627 case CPU_DOWN_PREPARE:
5628 smp_call_function_single(cpu, tsc_bad, NULL, 1);
5629 break;
5630 }
5631 return NOTIFY_OK;
5632 }
5633
5634 static struct notifier_block kvmclock_cpu_notifier_block = {
5635 .notifier_call = kvmclock_cpu_notifier,
5636 .priority = -INT_MAX
5637 };
5638
5639 static void kvm_timer_init(void)
5640 {
5641 int cpu;
5642
5643 max_tsc_khz = tsc_khz;
5644
5645 cpu_notifier_register_begin();
5646 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5647 #ifdef CONFIG_CPU_FREQ
5648 struct cpufreq_policy policy;
5649 memset(&policy, 0, sizeof(policy));
5650 cpu = get_cpu();
5651 cpufreq_get_policy(&policy, cpu);
5652 if (policy.cpuinfo.max_freq)
5653 max_tsc_khz = policy.cpuinfo.max_freq;
5654 put_cpu();
5655 #endif
5656 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5657 CPUFREQ_TRANSITION_NOTIFIER);
5658 }
5659 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5660 for_each_online_cpu(cpu)
5661 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5662
5663 __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5664 cpu_notifier_register_done();
5665
5666 }
5667
5668 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5669
5670 int kvm_is_in_guest(void)
5671 {
5672 return __this_cpu_read(current_vcpu) != NULL;
5673 }
5674
5675 static int kvm_is_user_mode(void)
5676 {
5677 int user_mode = 3;
5678
5679 if (__this_cpu_read(current_vcpu))
5680 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5681
5682 return user_mode != 0;
5683 }
5684
5685 static unsigned long kvm_get_guest_ip(void)
5686 {
5687 unsigned long ip = 0;
5688
5689 if (__this_cpu_read(current_vcpu))
5690 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5691
5692 return ip;
5693 }
5694
5695 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5696 .is_in_guest = kvm_is_in_guest,
5697 .is_user_mode = kvm_is_user_mode,
5698 .get_guest_ip = kvm_get_guest_ip,
5699 };
5700
5701 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5702 {
5703 __this_cpu_write(current_vcpu, vcpu);
5704 }
5705 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5706
5707 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5708 {
5709 __this_cpu_write(current_vcpu, NULL);
5710 }
5711 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5712
5713 static void kvm_set_mmio_spte_mask(void)
5714 {
5715 u64 mask;
5716 int maxphyaddr = boot_cpu_data.x86_phys_bits;
5717
5718 /*
5719 * Set the reserved bits and the present bit of an paging-structure
5720 * entry to generate page fault with PFER.RSV = 1.
5721 */
5722 /* Mask the reserved physical address bits. */
5723 mask = rsvd_bits(maxphyaddr, 51);
5724
5725 /* Bit 62 is always reserved for 32bit host. */
5726 mask |= 0x3ull << 62;
5727
5728 /* Set the present bit. */
5729 mask |= 1ull;
5730
5731 #ifdef CONFIG_X86_64
5732 /*
5733 * If reserved bit is not supported, clear the present bit to disable
5734 * mmio page fault.
5735 */
5736 if (maxphyaddr == 52)
5737 mask &= ~1ull;
5738 #endif
5739
5740 kvm_mmu_set_mmio_spte_mask(mask);
5741 }
5742
5743 #ifdef CONFIG_X86_64
5744 static void pvclock_gtod_update_fn(struct work_struct *work)
5745 {
5746 struct kvm *kvm;
5747
5748 struct kvm_vcpu *vcpu;
5749 int i;
5750
5751 spin_lock(&kvm_lock);
5752 list_for_each_entry(kvm, &vm_list, vm_list)
5753 kvm_for_each_vcpu(i, vcpu, kvm)
5754 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5755 atomic_set(&kvm_guest_has_master_clock, 0);
5756 spin_unlock(&kvm_lock);
5757 }
5758
5759 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5760
5761 /*
5762 * Notification about pvclock gtod data update.
5763 */
5764 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5765 void *priv)
5766 {
5767 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5768 struct timekeeper *tk = priv;
5769
5770 update_pvclock_gtod(tk);
5771
5772 /* disable master clock if host does not trust, or does not
5773 * use, TSC clocksource
5774 */
5775 if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5776 atomic_read(&kvm_guest_has_master_clock) != 0)
5777 queue_work(system_long_wq, &pvclock_gtod_work);
5778
5779 return 0;
5780 }
5781
5782 static struct notifier_block pvclock_gtod_notifier = {
5783 .notifier_call = pvclock_gtod_notify,
5784 };
5785 #endif
5786
5787 int kvm_arch_init(void *opaque)
5788 {
5789 int r;
5790 struct kvm_x86_ops *ops = opaque;
5791
5792 if (kvm_x86_ops) {
5793 printk(KERN_ERR "kvm: already loaded the other module\n");
5794 r = -EEXIST;
5795 goto out;
5796 }
5797
5798 if (!ops->cpu_has_kvm_support()) {
5799 printk(KERN_ERR "kvm: no hardware support\n");
5800 r = -EOPNOTSUPP;
5801 goto out;
5802 }
5803 if (ops->disabled_by_bios()) {
5804 printk(KERN_ERR "kvm: disabled by bios\n");
5805 r = -EOPNOTSUPP;
5806 goto out;
5807 }
5808
5809 r = -ENOMEM;
5810 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5811 if (!shared_msrs) {
5812 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5813 goto out;
5814 }
5815
5816 r = kvm_mmu_module_init();
5817 if (r)
5818 goto out_free_percpu;
5819
5820 kvm_set_mmio_spte_mask();
5821
5822 kvm_x86_ops = ops;
5823
5824 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5825 PT_DIRTY_MASK, PT64_NX_MASK, 0);
5826
5827 kvm_timer_init();
5828
5829 perf_register_guest_info_callbacks(&kvm_guest_cbs);
5830
5831 if (cpu_has_xsave)
5832 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5833
5834 kvm_lapic_init();
5835 #ifdef CONFIG_X86_64
5836 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5837 #endif
5838
5839 return 0;
5840
5841 out_free_percpu:
5842 free_percpu(shared_msrs);
5843 out:
5844 return r;
5845 }
5846
5847 void kvm_arch_exit(void)
5848 {
5849 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5850
5851 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5852 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5853 CPUFREQ_TRANSITION_NOTIFIER);
5854 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5855 #ifdef CONFIG_X86_64
5856 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5857 #endif
5858 kvm_x86_ops = NULL;
5859 kvm_mmu_module_exit();
5860 free_percpu(shared_msrs);
5861 }
5862
5863 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5864 {
5865 ++vcpu->stat.halt_exits;
5866 if (irqchip_in_kernel(vcpu->kvm)) {
5867 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5868 return 1;
5869 } else {
5870 vcpu->run->exit_reason = KVM_EXIT_HLT;
5871 return 0;
5872 }
5873 }
5874 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5875
5876 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5877 {
5878 kvm_x86_ops->skip_emulated_instruction(vcpu);
5879 return kvm_vcpu_halt(vcpu);
5880 }
5881 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5882
5883 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5884 {
5885 u64 param, ingpa, outgpa, ret;
5886 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5887 bool fast, longmode;
5888
5889 /*
5890 * hypercall generates UD from non zero cpl and real mode
5891 * per HYPER-V spec
5892 */
5893 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5894 kvm_queue_exception(vcpu, UD_VECTOR);
5895 return 0;
5896 }
5897
5898 longmode = is_64_bit_mode(vcpu);
5899
5900 if (!longmode) {
5901 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5902 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5903 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5904 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5905 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5906 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5907 }
5908 #ifdef CONFIG_X86_64
5909 else {
5910 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5911 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5912 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5913 }
5914 #endif
5915
5916 code = param & 0xffff;
5917 fast = (param >> 16) & 0x1;
5918 rep_cnt = (param >> 32) & 0xfff;
5919 rep_idx = (param >> 48) & 0xfff;
5920
5921 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5922
5923 switch (code) {
5924 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5925 kvm_vcpu_on_spin(vcpu);
5926 break;
5927 default:
5928 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5929 break;
5930 }
5931
5932 ret = res | (((u64)rep_done & 0xfff) << 32);
5933 if (longmode) {
5934 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5935 } else {
5936 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5937 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5938 }
5939
5940 return 1;
5941 }
5942
5943 /*
5944 * kvm_pv_kick_cpu_op: Kick a vcpu.
5945 *
5946 * @apicid - apicid of vcpu to be kicked.
5947 */
5948 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5949 {
5950 struct kvm_lapic_irq lapic_irq;
5951
5952 lapic_irq.shorthand = 0;
5953 lapic_irq.dest_mode = 0;
5954 lapic_irq.dest_id = apicid;
5955
5956 lapic_irq.delivery_mode = APIC_DM_REMRD;
5957 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5958 }
5959
5960 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5961 {
5962 unsigned long nr, a0, a1, a2, a3, ret;
5963 int op_64_bit, r = 1;
5964
5965 kvm_x86_ops->skip_emulated_instruction(vcpu);
5966
5967 if (kvm_hv_hypercall_enabled(vcpu->kvm))
5968 return kvm_hv_hypercall(vcpu);
5969
5970 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5971 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5972 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5973 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5974 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5975
5976 trace_kvm_hypercall(nr, a0, a1, a2, a3);
5977
5978 op_64_bit = is_64_bit_mode(vcpu);
5979 if (!op_64_bit) {
5980 nr &= 0xFFFFFFFF;
5981 a0 &= 0xFFFFFFFF;
5982 a1 &= 0xFFFFFFFF;
5983 a2 &= 0xFFFFFFFF;
5984 a3 &= 0xFFFFFFFF;
5985 }
5986
5987 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5988 ret = -KVM_EPERM;
5989 goto out;
5990 }
5991
5992 switch (nr) {
5993 case KVM_HC_VAPIC_POLL_IRQ:
5994 ret = 0;
5995 break;
5996 case KVM_HC_KICK_CPU:
5997 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5998 ret = 0;
5999 break;
6000 default:
6001 ret = -KVM_ENOSYS;
6002 break;
6003 }
6004 out:
6005 if (!op_64_bit)
6006 ret = (u32)ret;
6007 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6008 ++vcpu->stat.hypercalls;
6009 return r;
6010 }
6011 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6012
6013 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6014 {
6015 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6016 char instruction[3];
6017 unsigned long rip = kvm_rip_read(vcpu);
6018
6019 kvm_x86_ops->patch_hypercall(vcpu, instruction);
6020
6021 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
6022 }
6023
6024 /*
6025 * Check if userspace requested an interrupt window, and that the
6026 * interrupt window is open.
6027 *
6028 * No need to exit to userspace if we already have an interrupt queued.
6029 */
6030 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6031 {
6032 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
6033 vcpu->run->request_interrupt_window &&
6034 kvm_arch_interrupt_allowed(vcpu));
6035 }
6036
6037 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6038 {
6039 struct kvm_run *kvm_run = vcpu->run;
6040
6041 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6042 kvm_run->cr8 = kvm_get_cr8(vcpu);
6043 kvm_run->apic_base = kvm_get_apic_base(vcpu);
6044 if (irqchip_in_kernel(vcpu->kvm))
6045 kvm_run->ready_for_interrupt_injection = 1;
6046 else
6047 kvm_run->ready_for_interrupt_injection =
6048 kvm_arch_interrupt_allowed(vcpu) &&
6049 !kvm_cpu_has_interrupt(vcpu) &&
6050 !kvm_event_needs_reinjection(vcpu);
6051 }
6052
6053 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6054 {
6055 int max_irr, tpr;
6056
6057 if (!kvm_x86_ops->update_cr8_intercept)
6058 return;
6059
6060 if (!vcpu->arch.apic)
6061 return;
6062
6063 if (!vcpu->arch.apic->vapic_addr)
6064 max_irr = kvm_lapic_find_highest_irr(vcpu);
6065 else
6066 max_irr = -1;
6067
6068 if (max_irr != -1)
6069 max_irr >>= 4;
6070
6071 tpr = kvm_lapic_get_cr8(vcpu);
6072
6073 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6074 }
6075
6076 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6077 {
6078 int r;
6079
6080 /* try to reinject previous events if any */
6081 if (vcpu->arch.exception.pending) {
6082 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6083 vcpu->arch.exception.has_error_code,
6084 vcpu->arch.exception.error_code);
6085
6086 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6087 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6088 X86_EFLAGS_RF);
6089
6090 if (vcpu->arch.exception.nr == DB_VECTOR &&
6091 (vcpu->arch.dr7 & DR7_GD)) {
6092 vcpu->arch.dr7 &= ~DR7_GD;
6093 kvm_update_dr7(vcpu);
6094 }
6095
6096 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6097 vcpu->arch.exception.has_error_code,
6098 vcpu->arch.exception.error_code,
6099 vcpu->arch.exception.reinject);
6100 return 0;
6101 }
6102
6103 if (vcpu->arch.nmi_injected) {
6104 kvm_x86_ops->set_nmi(vcpu);
6105 return 0;
6106 }
6107
6108 if (vcpu->arch.interrupt.pending) {
6109 kvm_x86_ops->set_irq(vcpu);
6110 return 0;
6111 }
6112
6113 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6114 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6115 if (r != 0)
6116 return r;
6117 }
6118
6119 /* try to inject new event if pending */
6120 if (vcpu->arch.nmi_pending) {
6121 if (kvm_x86_ops->nmi_allowed(vcpu)) {
6122 --vcpu->arch.nmi_pending;
6123 vcpu->arch.nmi_injected = true;
6124 kvm_x86_ops->set_nmi(vcpu);
6125 }
6126 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6127 /*
6128 * Because interrupts can be injected asynchronously, we are
6129 * calling check_nested_events again here to avoid a race condition.
6130 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6131 * proposal and current concerns. Perhaps we should be setting
6132 * KVM_REQ_EVENT only on certain events and not unconditionally?
6133 */
6134 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6135 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6136 if (r != 0)
6137 return r;
6138 }
6139 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6140 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6141 false);
6142 kvm_x86_ops->set_irq(vcpu);
6143 }
6144 }
6145 return 0;
6146 }
6147
6148 static void process_nmi(struct kvm_vcpu *vcpu)
6149 {
6150 unsigned limit = 2;
6151
6152 /*
6153 * x86 is limited to one NMI running, and one NMI pending after it.
6154 * If an NMI is already in progress, limit further NMIs to just one.
6155 * Otherwise, allow two (and we'll inject the first one immediately).
6156 */
6157 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6158 limit = 1;
6159
6160 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6161 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6162 kvm_make_request(KVM_REQ_EVENT, vcpu);
6163 }
6164
6165 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6166 {
6167 u64 eoi_exit_bitmap[4];
6168 u32 tmr[8];
6169
6170 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6171 return;
6172
6173 memset(eoi_exit_bitmap, 0, 32);
6174 memset(tmr, 0, 32);
6175
6176 kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
6177 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6178 kvm_apic_update_tmr(vcpu, tmr);
6179 }
6180
6181 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6182 {
6183 ++vcpu->stat.tlb_flush;
6184 kvm_x86_ops->tlb_flush(vcpu);
6185 }
6186
6187 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6188 {
6189 struct page *page = NULL;
6190
6191 if (!irqchip_in_kernel(vcpu->kvm))
6192 return;
6193
6194 if (!kvm_x86_ops->set_apic_access_page_addr)
6195 return;
6196
6197 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6198 if (is_error_page(page))
6199 return;
6200 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6201
6202 /*
6203 * Do not pin apic access page in memory, the MMU notifier
6204 * will call us again if it is migrated or swapped out.
6205 */
6206 put_page(page);
6207 }
6208 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6209
6210 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6211 unsigned long address)
6212 {
6213 /*
6214 * The physical address of apic access page is stored in the VMCS.
6215 * Update it when it becomes invalid.
6216 */
6217 if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6218 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6219 }
6220
6221 /*
6222 * Returns 1 to let vcpu_run() continue the guest execution loop without
6223 * exiting to the userspace. Otherwise, the value will be returned to the
6224 * userspace.
6225 */
6226 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6227 {
6228 int r;
6229 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
6230 vcpu->run->request_interrupt_window;
6231 bool req_immediate_exit = false;
6232
6233 if (vcpu->requests) {
6234 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6235 kvm_mmu_unload(vcpu);
6236 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6237 __kvm_migrate_timers(vcpu);
6238 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6239 kvm_gen_update_masterclock(vcpu->kvm);
6240 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6241 kvm_gen_kvmclock_update(vcpu);
6242 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6243 r = kvm_guest_time_update(vcpu);
6244 if (unlikely(r))
6245 goto out;
6246 }
6247 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6248 kvm_mmu_sync_roots(vcpu);
6249 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6250 kvm_vcpu_flush_tlb(vcpu);
6251 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6252 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6253 r = 0;
6254 goto out;
6255 }
6256 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6257 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6258 r = 0;
6259 goto out;
6260 }
6261 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6262 vcpu->fpu_active = 0;
6263 kvm_x86_ops->fpu_deactivate(vcpu);
6264 }
6265 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6266 /* Page is swapped out. Do synthetic halt */
6267 vcpu->arch.apf.halted = true;
6268 r = 1;
6269 goto out;
6270 }
6271 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6272 record_steal_time(vcpu);
6273 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6274 process_nmi(vcpu);
6275 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6276 kvm_handle_pmu_event(vcpu);
6277 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6278 kvm_deliver_pmi(vcpu);
6279 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6280 vcpu_scan_ioapic(vcpu);
6281 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6282 kvm_vcpu_reload_apic_access_page(vcpu);
6283 }
6284
6285 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6286 kvm_apic_accept_events(vcpu);
6287 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6288 r = 1;
6289 goto out;
6290 }
6291
6292 if (inject_pending_event(vcpu, req_int_win) != 0)
6293 req_immediate_exit = true;
6294 /* enable NMI/IRQ window open exits if needed */
6295 else if (vcpu->arch.nmi_pending)
6296 kvm_x86_ops->enable_nmi_window(vcpu);
6297 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6298 kvm_x86_ops->enable_irq_window(vcpu);
6299
6300 if (kvm_lapic_enabled(vcpu)) {
6301 /*
6302 * Update architecture specific hints for APIC
6303 * virtual interrupt delivery.
6304 */
6305 if (kvm_x86_ops->hwapic_irr_update)
6306 kvm_x86_ops->hwapic_irr_update(vcpu,
6307 kvm_lapic_find_highest_irr(vcpu));
6308 update_cr8_intercept(vcpu);
6309 kvm_lapic_sync_to_vapic(vcpu);
6310 }
6311 }
6312
6313 r = kvm_mmu_reload(vcpu);
6314 if (unlikely(r)) {
6315 goto cancel_injection;
6316 }
6317
6318 preempt_disable();
6319
6320 kvm_x86_ops->prepare_guest_switch(vcpu);
6321 if (vcpu->fpu_active)
6322 kvm_load_guest_fpu(vcpu);
6323 kvm_load_guest_xcr0(vcpu);
6324
6325 vcpu->mode = IN_GUEST_MODE;
6326
6327 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6328
6329 /* We should set ->mode before check ->requests,
6330 * see the comment in make_all_cpus_request.
6331 */
6332 smp_mb__after_srcu_read_unlock();
6333
6334 local_irq_disable();
6335
6336 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6337 || need_resched() || signal_pending(current)) {
6338 vcpu->mode = OUTSIDE_GUEST_MODE;
6339 smp_wmb();
6340 local_irq_enable();
6341 preempt_enable();
6342 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6343 r = 1;
6344 goto cancel_injection;
6345 }
6346
6347 if (req_immediate_exit)
6348 smp_send_reschedule(vcpu->cpu);
6349
6350 kvm_guest_enter();
6351
6352 if (unlikely(vcpu->arch.switch_db_regs)) {
6353 set_debugreg(0, 7);
6354 set_debugreg(vcpu->arch.eff_db[0], 0);
6355 set_debugreg(vcpu->arch.eff_db[1], 1);
6356 set_debugreg(vcpu->arch.eff_db[2], 2);
6357 set_debugreg(vcpu->arch.eff_db[3], 3);
6358 set_debugreg(vcpu->arch.dr6, 6);
6359 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6360 }
6361
6362 trace_kvm_entry(vcpu->vcpu_id);
6363 wait_lapic_expire(vcpu);
6364 kvm_x86_ops->run(vcpu);
6365
6366 /*
6367 * Do this here before restoring debug registers on the host. And
6368 * since we do this before handling the vmexit, a DR access vmexit
6369 * can (a) read the correct value of the debug registers, (b) set
6370 * KVM_DEBUGREG_WONT_EXIT again.
6371 */
6372 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6373 int i;
6374
6375 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6376 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6377 for (i = 0; i < KVM_NR_DB_REGS; i++)
6378 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6379 }
6380
6381 /*
6382 * If the guest has used debug registers, at least dr7
6383 * will be disabled while returning to the host.
6384 * If we don't have active breakpoints in the host, we don't
6385 * care about the messed up debug address registers. But if
6386 * we have some of them active, restore the old state.
6387 */
6388 if (hw_breakpoint_active())
6389 hw_breakpoint_restore();
6390
6391 vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
6392 native_read_tsc());
6393
6394 vcpu->mode = OUTSIDE_GUEST_MODE;
6395 smp_wmb();
6396
6397 /* Interrupt is enabled by handle_external_intr() */
6398 kvm_x86_ops->handle_external_intr(vcpu);
6399
6400 ++vcpu->stat.exits;
6401
6402 /*
6403 * We must have an instruction between local_irq_enable() and
6404 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6405 * the interrupt shadow. The stat.exits increment will do nicely.
6406 * But we need to prevent reordering, hence this barrier():
6407 */
6408 barrier();
6409
6410 kvm_guest_exit();
6411
6412 preempt_enable();
6413
6414 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6415
6416 /*
6417 * Profile KVM exit RIPs:
6418 */
6419 if (unlikely(prof_on == KVM_PROFILING)) {
6420 unsigned long rip = kvm_rip_read(vcpu);
6421 profile_hit(KVM_PROFILING, (void *)rip);
6422 }
6423
6424 if (unlikely(vcpu->arch.tsc_always_catchup))
6425 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6426
6427 if (vcpu->arch.apic_attention)
6428 kvm_lapic_sync_from_vapic(vcpu);
6429
6430 r = kvm_x86_ops->handle_exit(vcpu);
6431 return r;
6432
6433 cancel_injection:
6434 kvm_x86_ops->cancel_injection(vcpu);
6435 if (unlikely(vcpu->arch.apic_attention))
6436 kvm_lapic_sync_from_vapic(vcpu);
6437 out:
6438 return r;
6439 }
6440
6441 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6442 {
6443 if (!kvm_arch_vcpu_runnable(vcpu)) {
6444 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6445 kvm_vcpu_block(vcpu);
6446 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6447 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6448 return 1;
6449 }
6450
6451 kvm_apic_accept_events(vcpu);
6452 switch(vcpu->arch.mp_state) {
6453 case KVM_MP_STATE_HALTED:
6454 vcpu->arch.pv.pv_unhalted = false;
6455 vcpu->arch.mp_state =
6456 KVM_MP_STATE_RUNNABLE;
6457 case KVM_MP_STATE_RUNNABLE:
6458 vcpu->arch.apf.halted = false;
6459 break;
6460 case KVM_MP_STATE_INIT_RECEIVED:
6461 break;
6462 default:
6463 return -EINTR;
6464 break;
6465 }
6466 return 1;
6467 }
6468
6469 static int vcpu_run(struct kvm_vcpu *vcpu)
6470 {
6471 int r;
6472 struct kvm *kvm = vcpu->kvm;
6473
6474 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6475
6476 for (;;) {
6477 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6478 !vcpu->arch.apf.halted)
6479 r = vcpu_enter_guest(vcpu);
6480 else
6481 r = vcpu_block(kvm, vcpu);
6482 if (r <= 0)
6483 break;
6484
6485 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6486 if (kvm_cpu_has_pending_timer(vcpu))
6487 kvm_inject_pending_timer_irqs(vcpu);
6488
6489 if (dm_request_for_irq_injection(vcpu)) {
6490 r = -EINTR;
6491 vcpu->run->exit_reason = KVM_EXIT_INTR;
6492 ++vcpu->stat.request_irq_exits;
6493 break;
6494 }
6495
6496 kvm_check_async_pf_completion(vcpu);
6497
6498 if (signal_pending(current)) {
6499 r = -EINTR;
6500 vcpu->run->exit_reason = KVM_EXIT_INTR;
6501 ++vcpu->stat.signal_exits;
6502 break;
6503 }
6504 if (need_resched()) {
6505 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6506 cond_resched();
6507 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6508 }
6509 }
6510
6511 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6512
6513 return r;
6514 }
6515
6516 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6517 {
6518 int r;
6519 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6520 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6521 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6522 if (r != EMULATE_DONE)
6523 return 0;
6524 return 1;
6525 }
6526
6527 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6528 {
6529 BUG_ON(!vcpu->arch.pio.count);
6530
6531 return complete_emulated_io(vcpu);
6532 }
6533
6534 /*
6535 * Implements the following, as a state machine:
6536 *
6537 * read:
6538 * for each fragment
6539 * for each mmio piece in the fragment
6540 * write gpa, len
6541 * exit
6542 * copy data
6543 * execute insn
6544 *
6545 * write:
6546 * for each fragment
6547 * for each mmio piece in the fragment
6548 * write gpa, len
6549 * copy data
6550 * exit
6551 */
6552 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6553 {
6554 struct kvm_run *run = vcpu->run;
6555 struct kvm_mmio_fragment *frag;
6556 unsigned len;
6557
6558 BUG_ON(!vcpu->mmio_needed);
6559
6560 /* Complete previous fragment */
6561 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6562 len = min(8u, frag->len);
6563 if (!vcpu->mmio_is_write)
6564 memcpy(frag->data, run->mmio.data, len);
6565
6566 if (frag->len <= 8) {
6567 /* Switch to the next fragment. */
6568 frag++;
6569 vcpu->mmio_cur_fragment++;
6570 } else {
6571 /* Go forward to the next mmio piece. */
6572 frag->data += len;
6573 frag->gpa += len;
6574 frag->len -= len;
6575 }
6576
6577 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6578 vcpu->mmio_needed = 0;
6579
6580 /* FIXME: return into emulator if single-stepping. */
6581 if (vcpu->mmio_is_write)
6582 return 1;
6583 vcpu->mmio_read_completed = 1;
6584 return complete_emulated_io(vcpu);
6585 }
6586
6587 run->exit_reason = KVM_EXIT_MMIO;
6588 run->mmio.phys_addr = frag->gpa;
6589 if (vcpu->mmio_is_write)
6590 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6591 run->mmio.len = min(8u, frag->len);
6592 run->mmio.is_write = vcpu->mmio_is_write;
6593 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6594 return 0;
6595 }
6596
6597
6598 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6599 {
6600 int r;
6601 sigset_t sigsaved;
6602
6603 if (!tsk_used_math(current) && init_fpu(current))
6604 return -ENOMEM;
6605
6606 if (vcpu->sigset_active)
6607 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6608
6609 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6610 kvm_vcpu_block(vcpu);
6611 kvm_apic_accept_events(vcpu);
6612 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6613 r = -EAGAIN;
6614 goto out;
6615 }
6616
6617 /* re-sync apic's tpr */
6618 if (!irqchip_in_kernel(vcpu->kvm)) {
6619 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6620 r = -EINVAL;
6621 goto out;
6622 }
6623 }
6624
6625 if (unlikely(vcpu->arch.complete_userspace_io)) {
6626 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6627 vcpu->arch.complete_userspace_io = NULL;
6628 r = cui(vcpu);
6629 if (r <= 0)
6630 goto out;
6631 } else
6632 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6633
6634 r = vcpu_run(vcpu);
6635
6636 out:
6637 post_kvm_run_save(vcpu);
6638 if (vcpu->sigset_active)
6639 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6640
6641 return r;
6642 }
6643
6644 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6645 {
6646 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6647 /*
6648 * We are here if userspace calls get_regs() in the middle of
6649 * instruction emulation. Registers state needs to be copied
6650 * back from emulation context to vcpu. Userspace shouldn't do
6651 * that usually, but some bad designed PV devices (vmware
6652 * backdoor interface) need this to work
6653 */
6654 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6655 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6656 }
6657 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6658 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6659 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6660 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6661 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6662 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6663 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6664 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6665 #ifdef CONFIG_X86_64
6666 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6667 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6668 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6669 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6670 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6671 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6672 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6673 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6674 #endif
6675
6676 regs->rip = kvm_rip_read(vcpu);
6677 regs->rflags = kvm_get_rflags(vcpu);
6678
6679 return 0;
6680 }
6681
6682 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6683 {
6684 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6685 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6686
6687 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6688 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6689 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6690 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6691 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6692 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6693 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6694 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6695 #ifdef CONFIG_X86_64
6696 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6697 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6698 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6699 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6700 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6701 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6702 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6703 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6704 #endif
6705
6706 kvm_rip_write(vcpu, regs->rip);
6707 kvm_set_rflags(vcpu, regs->rflags);
6708
6709 vcpu->arch.exception.pending = false;
6710
6711 kvm_make_request(KVM_REQ_EVENT, vcpu);
6712
6713 return 0;
6714 }
6715
6716 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6717 {
6718 struct kvm_segment cs;
6719
6720 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6721 *db = cs.db;
6722 *l = cs.l;
6723 }
6724 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6725
6726 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6727 struct kvm_sregs *sregs)
6728 {
6729 struct desc_ptr dt;
6730
6731 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6732 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6733 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6734 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6735 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6736 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6737
6738 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6739 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6740
6741 kvm_x86_ops->get_idt(vcpu, &dt);
6742 sregs->idt.limit = dt.size;
6743 sregs->idt.base = dt.address;
6744 kvm_x86_ops->get_gdt(vcpu, &dt);
6745 sregs->gdt.limit = dt.size;
6746 sregs->gdt.base = dt.address;
6747
6748 sregs->cr0 = kvm_read_cr0(vcpu);
6749 sregs->cr2 = vcpu->arch.cr2;
6750 sregs->cr3 = kvm_read_cr3(vcpu);
6751 sregs->cr4 = kvm_read_cr4(vcpu);
6752 sregs->cr8 = kvm_get_cr8(vcpu);
6753 sregs->efer = vcpu->arch.efer;
6754 sregs->apic_base = kvm_get_apic_base(vcpu);
6755
6756 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6757
6758 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6759 set_bit(vcpu->arch.interrupt.nr,
6760 (unsigned long *)sregs->interrupt_bitmap);
6761
6762 return 0;
6763 }
6764
6765 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6766 struct kvm_mp_state *mp_state)
6767 {
6768 kvm_apic_accept_events(vcpu);
6769 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6770 vcpu->arch.pv.pv_unhalted)
6771 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6772 else
6773 mp_state->mp_state = vcpu->arch.mp_state;
6774
6775 return 0;
6776 }
6777
6778 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6779 struct kvm_mp_state *mp_state)
6780 {
6781 if (!kvm_vcpu_has_lapic(vcpu) &&
6782 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6783 return -EINVAL;
6784
6785 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6786 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6787 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6788 } else
6789 vcpu->arch.mp_state = mp_state->mp_state;
6790 kvm_make_request(KVM_REQ_EVENT, vcpu);
6791 return 0;
6792 }
6793
6794 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6795 int reason, bool has_error_code, u32 error_code)
6796 {
6797 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6798 int ret;
6799
6800 init_emulate_ctxt(vcpu);
6801
6802 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6803 has_error_code, error_code);
6804
6805 if (ret)
6806 return EMULATE_FAIL;
6807
6808 kvm_rip_write(vcpu, ctxt->eip);
6809 kvm_set_rflags(vcpu, ctxt->eflags);
6810 kvm_make_request(KVM_REQ_EVENT, vcpu);
6811 return EMULATE_DONE;
6812 }
6813 EXPORT_SYMBOL_GPL(kvm_task_switch);
6814
6815 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6816 struct kvm_sregs *sregs)
6817 {
6818 struct msr_data apic_base_msr;
6819 int mmu_reset_needed = 0;
6820 int pending_vec, max_bits, idx;
6821 struct desc_ptr dt;
6822
6823 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6824 return -EINVAL;
6825
6826 dt.size = sregs->idt.limit;
6827 dt.address = sregs->idt.base;
6828 kvm_x86_ops->set_idt(vcpu, &dt);
6829 dt.size = sregs->gdt.limit;
6830 dt.address = sregs->gdt.base;
6831 kvm_x86_ops->set_gdt(vcpu, &dt);
6832
6833 vcpu->arch.cr2 = sregs->cr2;
6834 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6835 vcpu->arch.cr3 = sregs->cr3;
6836 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6837
6838 kvm_set_cr8(vcpu, sregs->cr8);
6839
6840 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6841 kvm_x86_ops->set_efer(vcpu, sregs->efer);
6842 apic_base_msr.data = sregs->apic_base;
6843 apic_base_msr.host_initiated = true;
6844 kvm_set_apic_base(vcpu, &apic_base_msr);
6845
6846 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6847 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6848 vcpu->arch.cr0 = sregs->cr0;
6849
6850 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6851 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6852 if (sregs->cr4 & X86_CR4_OSXSAVE)
6853 kvm_update_cpuid(vcpu);
6854
6855 idx = srcu_read_lock(&vcpu->kvm->srcu);
6856 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6857 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6858 mmu_reset_needed = 1;
6859 }
6860 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6861
6862 if (mmu_reset_needed)
6863 kvm_mmu_reset_context(vcpu);
6864
6865 max_bits = KVM_NR_INTERRUPTS;
6866 pending_vec = find_first_bit(
6867 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6868 if (pending_vec < max_bits) {
6869 kvm_queue_interrupt(vcpu, pending_vec, false);
6870 pr_debug("Set back pending irq %d\n", pending_vec);
6871 }
6872
6873 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6874 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6875 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6876 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6877 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6878 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6879
6880 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6881 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6882
6883 update_cr8_intercept(vcpu);
6884
6885 /* Older userspace won't unhalt the vcpu on reset. */
6886 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6887 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6888 !is_protmode(vcpu))
6889 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6890
6891 kvm_make_request(KVM_REQ_EVENT, vcpu);
6892
6893 return 0;
6894 }
6895
6896 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6897 struct kvm_guest_debug *dbg)
6898 {
6899 unsigned long rflags;
6900 int i, r;
6901
6902 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6903 r = -EBUSY;
6904 if (vcpu->arch.exception.pending)
6905 goto out;
6906 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6907 kvm_queue_exception(vcpu, DB_VECTOR);
6908 else
6909 kvm_queue_exception(vcpu, BP_VECTOR);
6910 }
6911
6912 /*
6913 * Read rflags as long as potentially injected trace flags are still
6914 * filtered out.
6915 */
6916 rflags = kvm_get_rflags(vcpu);
6917
6918 vcpu->guest_debug = dbg->control;
6919 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6920 vcpu->guest_debug = 0;
6921
6922 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6923 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6924 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6925 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6926 } else {
6927 for (i = 0; i < KVM_NR_DB_REGS; i++)
6928 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6929 }
6930 kvm_update_dr7(vcpu);
6931
6932 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6933 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6934 get_segment_base(vcpu, VCPU_SREG_CS);
6935
6936 /*
6937 * Trigger an rflags update that will inject or remove the trace
6938 * flags.
6939 */
6940 kvm_set_rflags(vcpu, rflags);
6941
6942 kvm_x86_ops->update_db_bp_intercept(vcpu);
6943
6944 r = 0;
6945
6946 out:
6947
6948 return r;
6949 }
6950
6951 /*
6952 * Translate a guest virtual address to a guest physical address.
6953 */
6954 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6955 struct kvm_translation *tr)
6956 {
6957 unsigned long vaddr = tr->linear_address;
6958 gpa_t gpa;
6959 int idx;
6960
6961 idx = srcu_read_lock(&vcpu->kvm->srcu);
6962 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6963 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6964 tr->physical_address = gpa;
6965 tr->valid = gpa != UNMAPPED_GVA;
6966 tr->writeable = 1;
6967 tr->usermode = 0;
6968
6969 return 0;
6970 }
6971
6972 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6973 {
6974 struct i387_fxsave_struct *fxsave =
6975 &vcpu->arch.guest_fpu.state->fxsave;
6976
6977 memcpy(fpu->fpr, fxsave->st_space, 128);
6978 fpu->fcw = fxsave->cwd;
6979 fpu->fsw = fxsave->swd;
6980 fpu->ftwx = fxsave->twd;
6981 fpu->last_opcode = fxsave->fop;
6982 fpu->last_ip = fxsave->rip;
6983 fpu->last_dp = fxsave->rdp;
6984 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6985
6986 return 0;
6987 }
6988
6989 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6990 {
6991 struct i387_fxsave_struct *fxsave =
6992 &vcpu->arch.guest_fpu.state->fxsave;
6993
6994 memcpy(fxsave->st_space, fpu->fpr, 128);
6995 fxsave->cwd = fpu->fcw;
6996 fxsave->swd = fpu->fsw;
6997 fxsave->twd = fpu->ftwx;
6998 fxsave->fop = fpu->last_opcode;
6999 fxsave->rip = fpu->last_ip;
7000 fxsave->rdp = fpu->last_dp;
7001 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7002
7003 return 0;
7004 }
7005
7006 int fx_init(struct kvm_vcpu *vcpu)
7007 {
7008 int err;
7009
7010 err = fpu_alloc(&vcpu->arch.guest_fpu);
7011 if (err)
7012 return err;
7013
7014 fpu_finit(&vcpu->arch.guest_fpu);
7015 if (cpu_has_xsaves)
7016 vcpu->arch.guest_fpu.state->xsave.xsave_hdr.xcomp_bv =
7017 host_xcr0 | XSTATE_COMPACTION_ENABLED;
7018
7019 /*
7020 * Ensure guest xcr0 is valid for loading
7021 */
7022 vcpu->arch.xcr0 = XSTATE_FP;
7023
7024 vcpu->arch.cr0 |= X86_CR0_ET;
7025
7026 return 0;
7027 }
7028 EXPORT_SYMBOL_GPL(fx_init);
7029
7030 static void fx_free(struct kvm_vcpu *vcpu)
7031 {
7032 fpu_free(&vcpu->arch.guest_fpu);
7033 }
7034
7035 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7036 {
7037 if (vcpu->guest_fpu_loaded)
7038 return;
7039
7040 /*
7041 * Restore all possible states in the guest,
7042 * and assume host would use all available bits.
7043 * Guest xcr0 would be loaded later.
7044 */
7045 kvm_put_guest_xcr0(vcpu);
7046 vcpu->guest_fpu_loaded = 1;
7047 __kernel_fpu_begin();
7048 fpu_restore_checking(&vcpu->arch.guest_fpu);
7049 trace_kvm_fpu(1);
7050 }
7051
7052 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7053 {
7054 kvm_put_guest_xcr0(vcpu);
7055
7056 if (!vcpu->guest_fpu_loaded)
7057 return;
7058
7059 vcpu->guest_fpu_loaded = 0;
7060 fpu_save_init(&vcpu->arch.guest_fpu);
7061 __kernel_fpu_end();
7062 ++vcpu->stat.fpu_reload;
7063 if (!vcpu->arch.eager_fpu)
7064 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7065
7066 trace_kvm_fpu(0);
7067 }
7068
7069 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7070 {
7071 kvmclock_reset(vcpu);
7072
7073 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7074 fx_free(vcpu);
7075 kvm_x86_ops->vcpu_free(vcpu);
7076 }
7077
7078 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7079 unsigned int id)
7080 {
7081 struct kvm_vcpu *vcpu;
7082
7083 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7084 printk_once(KERN_WARNING
7085 "kvm: SMP vm created on host with unstable TSC; "
7086 "guest TSC will not be reliable\n");
7087
7088 vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7089
7090 /*
7091 * Activate fpu unconditionally in case the guest needs eager FPU. It will be
7092 * deactivated soon if it doesn't.
7093 */
7094 kvm_x86_ops->fpu_activate(vcpu);
7095 return vcpu;
7096 }
7097
7098 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7099 {
7100 int r;
7101
7102 vcpu->arch.mtrr_state.have_fixed = 1;
7103 r = vcpu_load(vcpu);
7104 if (r)
7105 return r;
7106 kvm_vcpu_reset(vcpu);
7107 kvm_mmu_setup(vcpu);
7108 vcpu_put(vcpu);
7109
7110 return r;
7111 }
7112
7113 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7114 {
7115 struct msr_data msr;
7116 struct kvm *kvm = vcpu->kvm;
7117
7118 if (vcpu_load(vcpu))
7119 return;
7120 msr.data = 0x0;
7121 msr.index = MSR_IA32_TSC;
7122 msr.host_initiated = true;
7123 kvm_write_tsc(vcpu, &msr);
7124 vcpu_put(vcpu);
7125
7126 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7127 KVMCLOCK_SYNC_PERIOD);
7128 }
7129
7130 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7131 {
7132 int r;
7133 vcpu->arch.apf.msr_val = 0;
7134
7135 r = vcpu_load(vcpu);
7136 BUG_ON(r);
7137 kvm_mmu_unload(vcpu);
7138 vcpu_put(vcpu);
7139
7140 fx_free(vcpu);
7141 kvm_x86_ops->vcpu_free(vcpu);
7142 }
7143
7144 void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
7145 {
7146 atomic_set(&vcpu->arch.nmi_queued, 0);
7147 vcpu->arch.nmi_pending = 0;
7148 vcpu->arch.nmi_injected = false;
7149 kvm_clear_interrupt_queue(vcpu);
7150 kvm_clear_exception_queue(vcpu);
7151
7152 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7153 kvm_update_dr0123(vcpu);
7154 vcpu->arch.dr6 = DR6_INIT;
7155 kvm_update_dr6(vcpu);
7156 vcpu->arch.dr7 = DR7_FIXED_1;
7157 kvm_update_dr7(vcpu);
7158
7159 vcpu->arch.cr2 = 0;
7160
7161 kvm_make_request(KVM_REQ_EVENT, vcpu);
7162 vcpu->arch.apf.msr_val = 0;
7163 vcpu->arch.st.msr_val = 0;
7164
7165 kvmclock_reset(vcpu);
7166
7167 kvm_clear_async_pf_completion_queue(vcpu);
7168 kvm_async_pf_hash_reset(vcpu);
7169 vcpu->arch.apf.halted = false;
7170
7171 kvm_pmu_reset(vcpu);
7172
7173 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7174 vcpu->arch.regs_avail = ~0;
7175 vcpu->arch.regs_dirty = ~0;
7176
7177 kvm_x86_ops->vcpu_reset(vcpu);
7178 }
7179
7180 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7181 {
7182 struct kvm_segment cs;
7183
7184 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7185 cs.selector = vector << 8;
7186 cs.base = vector << 12;
7187 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7188 kvm_rip_write(vcpu, 0);
7189 }
7190
7191 int kvm_arch_hardware_enable(void)
7192 {
7193 struct kvm *kvm;
7194 struct kvm_vcpu *vcpu;
7195 int i;
7196 int ret;
7197 u64 local_tsc;
7198 u64 max_tsc = 0;
7199 bool stable, backwards_tsc = false;
7200
7201 kvm_shared_msr_cpu_online();
7202 ret = kvm_x86_ops->hardware_enable();
7203 if (ret != 0)
7204 return ret;
7205
7206 local_tsc = native_read_tsc();
7207 stable = !check_tsc_unstable();
7208 list_for_each_entry(kvm, &vm_list, vm_list) {
7209 kvm_for_each_vcpu(i, vcpu, kvm) {
7210 if (!stable && vcpu->cpu == smp_processor_id())
7211 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7212 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7213 backwards_tsc = true;
7214 if (vcpu->arch.last_host_tsc > max_tsc)
7215 max_tsc = vcpu->arch.last_host_tsc;
7216 }
7217 }
7218 }
7219
7220 /*
7221 * Sometimes, even reliable TSCs go backwards. This happens on
7222 * platforms that reset TSC during suspend or hibernate actions, but
7223 * maintain synchronization. We must compensate. Fortunately, we can
7224 * detect that condition here, which happens early in CPU bringup,
7225 * before any KVM threads can be running. Unfortunately, we can't
7226 * bring the TSCs fully up to date with real time, as we aren't yet far
7227 * enough into CPU bringup that we know how much real time has actually
7228 * elapsed; our helper function, get_kernel_ns() will be using boot
7229 * variables that haven't been updated yet.
7230 *
7231 * So we simply find the maximum observed TSC above, then record the
7232 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
7233 * the adjustment will be applied. Note that we accumulate
7234 * adjustments, in case multiple suspend cycles happen before some VCPU
7235 * gets a chance to run again. In the event that no KVM threads get a
7236 * chance to run, we will miss the entire elapsed period, as we'll have
7237 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7238 * loose cycle time. This isn't too big a deal, since the loss will be
7239 * uniform across all VCPUs (not to mention the scenario is extremely
7240 * unlikely). It is possible that a second hibernate recovery happens
7241 * much faster than a first, causing the observed TSC here to be
7242 * smaller; this would require additional padding adjustment, which is
7243 * why we set last_host_tsc to the local tsc observed here.
7244 *
7245 * N.B. - this code below runs only on platforms with reliable TSC,
7246 * as that is the only way backwards_tsc is set above. Also note
7247 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7248 * have the same delta_cyc adjustment applied if backwards_tsc
7249 * is detected. Note further, this adjustment is only done once,
7250 * as we reset last_host_tsc on all VCPUs to stop this from being
7251 * called multiple times (one for each physical CPU bringup).
7252 *
7253 * Platforms with unreliable TSCs don't have to deal with this, they
7254 * will be compensated by the logic in vcpu_load, which sets the TSC to
7255 * catchup mode. This will catchup all VCPUs to real time, but cannot
7256 * guarantee that they stay in perfect synchronization.
7257 */
7258 if (backwards_tsc) {
7259 u64 delta_cyc = max_tsc - local_tsc;
7260 backwards_tsc_observed = true;
7261 list_for_each_entry(kvm, &vm_list, vm_list) {
7262 kvm_for_each_vcpu(i, vcpu, kvm) {
7263 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7264 vcpu->arch.last_host_tsc = local_tsc;
7265 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7266 }
7267
7268 /*
7269 * We have to disable TSC offset matching.. if you were
7270 * booting a VM while issuing an S4 host suspend....
7271 * you may have some problem. Solving this issue is
7272 * left as an exercise to the reader.
7273 */
7274 kvm->arch.last_tsc_nsec = 0;
7275 kvm->arch.last_tsc_write = 0;
7276 }
7277
7278 }
7279 return 0;
7280 }
7281
7282 void kvm_arch_hardware_disable(void)
7283 {
7284 kvm_x86_ops->hardware_disable();
7285 drop_user_return_notifiers();
7286 }
7287
7288 int kvm_arch_hardware_setup(void)
7289 {
7290 int r;
7291
7292 r = kvm_x86_ops->hardware_setup();
7293 if (r != 0)
7294 return r;
7295
7296 kvm_init_msr_list();
7297 return 0;
7298 }
7299
7300 void kvm_arch_hardware_unsetup(void)
7301 {
7302 kvm_x86_ops->hardware_unsetup();
7303 }
7304
7305 void kvm_arch_check_processor_compat(void *rtn)
7306 {
7307 kvm_x86_ops->check_processor_compatibility(rtn);
7308 }
7309
7310 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7311 {
7312 return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
7313 }
7314
7315 struct static_key kvm_no_apic_vcpu __read_mostly;
7316
7317 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7318 {
7319 struct page *page;
7320 struct kvm *kvm;
7321 int r;
7322
7323 BUG_ON(vcpu->kvm == NULL);
7324 kvm = vcpu->kvm;
7325
7326 vcpu->arch.pv.pv_unhalted = false;
7327 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7328 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7329 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7330 else
7331 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7332
7333 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7334 if (!page) {
7335 r = -ENOMEM;
7336 goto fail;
7337 }
7338 vcpu->arch.pio_data = page_address(page);
7339
7340 kvm_set_tsc_khz(vcpu, max_tsc_khz);
7341
7342 r = kvm_mmu_create(vcpu);
7343 if (r < 0)
7344 goto fail_free_pio_data;
7345
7346 if (irqchip_in_kernel(kvm)) {
7347 r = kvm_create_lapic(vcpu);
7348 if (r < 0)
7349 goto fail_mmu_destroy;
7350 } else
7351 static_key_slow_inc(&kvm_no_apic_vcpu);
7352
7353 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7354 GFP_KERNEL);
7355 if (!vcpu->arch.mce_banks) {
7356 r = -ENOMEM;
7357 goto fail_free_lapic;
7358 }
7359 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7360
7361 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7362 r = -ENOMEM;
7363 goto fail_free_mce_banks;
7364 }
7365
7366 r = fx_init(vcpu);
7367 if (r)
7368 goto fail_free_wbinvd_dirty_mask;
7369
7370 vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7371 vcpu->arch.pv_time_enabled = false;
7372
7373 vcpu->arch.guest_supported_xcr0 = 0;
7374 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7375
7376 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7377
7378 kvm_async_pf_hash_reset(vcpu);
7379 kvm_pmu_init(vcpu);
7380
7381 return 0;
7382 fail_free_wbinvd_dirty_mask:
7383 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7384 fail_free_mce_banks:
7385 kfree(vcpu->arch.mce_banks);
7386 fail_free_lapic:
7387 kvm_free_lapic(vcpu);
7388 fail_mmu_destroy:
7389 kvm_mmu_destroy(vcpu);
7390 fail_free_pio_data:
7391 free_page((unsigned long)vcpu->arch.pio_data);
7392 fail:
7393 return r;
7394 }
7395
7396 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7397 {
7398 int idx;
7399
7400 kvm_pmu_destroy(vcpu);
7401 kfree(vcpu->arch.mce_banks);
7402 kvm_free_lapic(vcpu);
7403 idx = srcu_read_lock(&vcpu->kvm->srcu);
7404 kvm_mmu_destroy(vcpu);
7405 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7406 free_page((unsigned long)vcpu->arch.pio_data);
7407 if (!irqchip_in_kernel(vcpu->kvm))
7408 static_key_slow_dec(&kvm_no_apic_vcpu);
7409 }
7410
7411 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7412 {
7413 kvm_x86_ops->sched_in(vcpu, cpu);
7414 }
7415
7416 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7417 {
7418 if (type)
7419 return -EINVAL;
7420
7421 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7422 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7423 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7424 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7425 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7426
7427 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7428 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7429 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7430 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7431 &kvm->arch.irq_sources_bitmap);
7432
7433 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7434 mutex_init(&kvm->arch.apic_map_lock);
7435 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7436
7437 pvclock_update_vm_gtod_copy(kvm);
7438
7439 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7440 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7441
7442 return 0;
7443 }
7444
7445 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7446 {
7447 int r;
7448 r = vcpu_load(vcpu);
7449 BUG_ON(r);
7450 kvm_mmu_unload(vcpu);
7451 vcpu_put(vcpu);
7452 }
7453
7454 static void kvm_free_vcpus(struct kvm *kvm)
7455 {
7456 unsigned int i;
7457 struct kvm_vcpu *vcpu;
7458
7459 /*
7460 * Unpin any mmu pages first.
7461 */
7462 kvm_for_each_vcpu(i, vcpu, kvm) {
7463 kvm_clear_async_pf_completion_queue(vcpu);
7464 kvm_unload_vcpu_mmu(vcpu);
7465 }
7466 kvm_for_each_vcpu(i, vcpu, kvm)
7467 kvm_arch_vcpu_free(vcpu);
7468
7469 mutex_lock(&kvm->lock);
7470 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7471 kvm->vcpus[i] = NULL;
7472
7473 atomic_set(&kvm->online_vcpus, 0);
7474 mutex_unlock(&kvm->lock);
7475 }
7476
7477 void kvm_arch_sync_events(struct kvm *kvm)
7478 {
7479 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7480 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7481 kvm_free_all_assigned_devices(kvm);
7482 kvm_free_pit(kvm);
7483 }
7484
7485 void kvm_arch_destroy_vm(struct kvm *kvm)
7486 {
7487 if (current->mm == kvm->mm) {
7488 /*
7489 * Free memory regions allocated on behalf of userspace,
7490 * unless the the memory map has changed due to process exit
7491 * or fd copying.
7492 */
7493 struct kvm_userspace_memory_region mem;
7494 memset(&mem, 0, sizeof(mem));
7495 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7496 kvm_set_memory_region(kvm, &mem);
7497
7498 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7499 kvm_set_memory_region(kvm, &mem);
7500
7501 mem.slot = TSS_PRIVATE_MEMSLOT;
7502 kvm_set_memory_region(kvm, &mem);
7503 }
7504 kvm_iommu_unmap_guest(kvm);
7505 kfree(kvm->arch.vpic);
7506 kfree(kvm->arch.vioapic);
7507 kvm_free_vcpus(kvm);
7508 kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7509 }
7510
7511 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7512 struct kvm_memory_slot *dont)
7513 {
7514 int i;
7515
7516 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7517 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7518 kvfree(free->arch.rmap[i]);
7519 free->arch.rmap[i] = NULL;
7520 }
7521 if (i == 0)
7522 continue;
7523
7524 if (!dont || free->arch.lpage_info[i - 1] !=
7525 dont->arch.lpage_info[i - 1]) {
7526 kvfree(free->arch.lpage_info[i - 1]);
7527 free->arch.lpage_info[i - 1] = NULL;
7528 }
7529 }
7530 }
7531
7532 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7533 unsigned long npages)
7534 {
7535 int i;
7536
7537 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7538 unsigned long ugfn;
7539 int lpages;
7540 int level = i + 1;
7541
7542 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7543 slot->base_gfn, level) + 1;
7544
7545 slot->arch.rmap[i] =
7546 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7547 if (!slot->arch.rmap[i])
7548 goto out_free;
7549 if (i == 0)
7550 continue;
7551
7552 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7553 sizeof(*slot->arch.lpage_info[i - 1]));
7554 if (!slot->arch.lpage_info[i - 1])
7555 goto out_free;
7556
7557 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7558 slot->arch.lpage_info[i - 1][0].write_count = 1;
7559 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7560 slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7561 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7562 /*
7563 * If the gfn and userspace address are not aligned wrt each
7564 * other, or if explicitly asked to, disable large page
7565 * support for this slot
7566 */
7567 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7568 !kvm_largepages_enabled()) {
7569 unsigned long j;
7570
7571 for (j = 0; j < lpages; ++j)
7572 slot->arch.lpage_info[i - 1][j].write_count = 1;
7573 }
7574 }
7575
7576 return 0;
7577
7578 out_free:
7579 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7580 kvfree(slot->arch.rmap[i]);
7581 slot->arch.rmap[i] = NULL;
7582 if (i == 0)
7583 continue;
7584
7585 kvfree(slot->arch.lpage_info[i - 1]);
7586 slot->arch.lpage_info[i - 1] = NULL;
7587 }
7588 return -ENOMEM;
7589 }
7590
7591 void kvm_arch_memslots_updated(struct kvm *kvm)
7592 {
7593 /*
7594 * memslots->generation has been incremented.
7595 * mmio generation may have reached its maximum value.
7596 */
7597 kvm_mmu_invalidate_mmio_sptes(kvm);
7598 }
7599
7600 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7601 struct kvm_memory_slot *memslot,
7602 struct kvm_userspace_memory_region *mem,
7603 enum kvm_mr_change change)
7604 {
7605 /*
7606 * Only private memory slots need to be mapped here since
7607 * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7608 */
7609 if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7610 unsigned long userspace_addr;
7611
7612 /*
7613 * MAP_SHARED to prevent internal slot pages from being moved
7614 * by fork()/COW.
7615 */
7616 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7617 PROT_READ | PROT_WRITE,
7618 MAP_SHARED | MAP_ANONYMOUS, 0);
7619
7620 if (IS_ERR((void *)userspace_addr))
7621 return PTR_ERR((void *)userspace_addr);
7622
7623 memslot->userspace_addr = userspace_addr;
7624 }
7625
7626 return 0;
7627 }
7628
7629 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
7630 struct kvm_memory_slot *new)
7631 {
7632 /* Still write protect RO slot */
7633 if (new->flags & KVM_MEM_READONLY) {
7634 kvm_mmu_slot_remove_write_access(kvm, new);
7635 return;
7636 }
7637
7638 /*
7639 * Call kvm_x86_ops dirty logging hooks when they are valid.
7640 *
7641 * kvm_x86_ops->slot_disable_log_dirty is called when:
7642 *
7643 * - KVM_MR_CREATE with dirty logging is disabled
7644 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
7645 *
7646 * The reason is, in case of PML, we need to set D-bit for any slots
7647 * with dirty logging disabled in order to eliminate unnecessary GPA
7648 * logging in PML buffer (and potential PML buffer full VMEXT). This
7649 * guarantees leaving PML enabled during guest's lifetime won't have
7650 * any additonal overhead from PML when guest is running with dirty
7651 * logging disabled for memory slots.
7652 *
7653 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
7654 * to dirty logging mode.
7655 *
7656 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
7657 *
7658 * In case of write protect:
7659 *
7660 * Write protect all pages for dirty logging.
7661 *
7662 * All the sptes including the large sptes which point to this
7663 * slot are set to readonly. We can not create any new large
7664 * spte on this slot until the end of the logging.
7665 *
7666 * See the comments in fast_page_fault().
7667 */
7668 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
7669 if (kvm_x86_ops->slot_enable_log_dirty)
7670 kvm_x86_ops->slot_enable_log_dirty(kvm, new);
7671 else
7672 kvm_mmu_slot_remove_write_access(kvm, new);
7673 } else {
7674 if (kvm_x86_ops->slot_disable_log_dirty)
7675 kvm_x86_ops->slot_disable_log_dirty(kvm, new);
7676 }
7677 }
7678
7679 void kvm_arch_commit_memory_region(struct kvm *kvm,
7680 struct kvm_userspace_memory_region *mem,
7681 const struct kvm_memory_slot *old,
7682 enum kvm_mr_change change)
7683 {
7684 struct kvm_memory_slot *new;
7685 int nr_mmu_pages = 0;
7686
7687 if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7688 int ret;
7689
7690 ret = vm_munmap(old->userspace_addr,
7691 old->npages * PAGE_SIZE);
7692 if (ret < 0)
7693 printk(KERN_WARNING
7694 "kvm_vm_ioctl_set_memory_region: "
7695 "failed to munmap memory\n");
7696 }
7697
7698 if (!kvm->arch.n_requested_mmu_pages)
7699 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7700
7701 if (nr_mmu_pages)
7702 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7703
7704 /* It's OK to get 'new' slot here as it has already been installed */
7705 new = id_to_memslot(kvm->memslots, mem->slot);
7706
7707 /*
7708 * Dirty logging tracks sptes in 4k granularity, meaning that large
7709 * sptes have to be split. If live migration is successful, the guest
7710 * in the source machine will be destroyed and large sptes will be
7711 * created in the destination. However, if the guest continues to run
7712 * in the source machine (for example if live migration fails), small
7713 * sptes will remain around and cause bad performance.
7714 *
7715 * Scan sptes if dirty logging has been stopped, dropping those
7716 * which can be collapsed into a single large-page spte. Later
7717 * page faults will create the large-page sptes.
7718 */
7719 if ((change != KVM_MR_DELETE) &&
7720 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
7721 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
7722 kvm_mmu_zap_collapsible_sptes(kvm, new);
7723
7724 /*
7725 * Set up write protection and/or dirty logging for the new slot.
7726 *
7727 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
7728 * been zapped so no dirty logging staff is needed for old slot. For
7729 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
7730 * new and it's also covered when dealing with the new slot.
7731 */
7732 if (change != KVM_MR_DELETE)
7733 kvm_mmu_slot_apply_flags(kvm, new);
7734 }
7735
7736 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7737 {
7738 kvm_mmu_invalidate_zap_all_pages(kvm);
7739 }
7740
7741 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7742 struct kvm_memory_slot *slot)
7743 {
7744 kvm_mmu_invalidate_zap_all_pages(kvm);
7745 }
7746
7747 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7748 {
7749 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7750 kvm_x86_ops->check_nested_events(vcpu, false);
7751
7752 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7753 !vcpu->arch.apf.halted)
7754 || !list_empty_careful(&vcpu->async_pf.done)
7755 || kvm_apic_has_events(vcpu)
7756 || vcpu->arch.pv.pv_unhalted
7757 || atomic_read(&vcpu->arch.nmi_queued) ||
7758 (kvm_arch_interrupt_allowed(vcpu) &&
7759 kvm_cpu_has_interrupt(vcpu));
7760 }
7761
7762 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7763 {
7764 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7765 }
7766
7767 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7768 {
7769 return kvm_x86_ops->interrupt_allowed(vcpu);
7770 }
7771
7772 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
7773 {
7774 if (is_64_bit_mode(vcpu))
7775 return kvm_rip_read(vcpu);
7776 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
7777 kvm_rip_read(vcpu));
7778 }
7779 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
7780
7781 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7782 {
7783 return kvm_get_linear_rip(vcpu) == linear_rip;
7784 }
7785 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7786
7787 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7788 {
7789 unsigned long rflags;
7790
7791 rflags = kvm_x86_ops->get_rflags(vcpu);
7792 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7793 rflags &= ~X86_EFLAGS_TF;
7794 return rflags;
7795 }
7796 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7797
7798 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7799 {
7800 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7801 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7802 rflags |= X86_EFLAGS_TF;
7803 kvm_x86_ops->set_rflags(vcpu, rflags);
7804 }
7805
7806 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7807 {
7808 __kvm_set_rflags(vcpu, rflags);
7809 kvm_make_request(KVM_REQ_EVENT, vcpu);
7810 }
7811 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7812
7813 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7814 {
7815 int r;
7816
7817 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7818 work->wakeup_all)
7819 return;
7820
7821 r = kvm_mmu_reload(vcpu);
7822 if (unlikely(r))
7823 return;
7824
7825 if (!vcpu->arch.mmu.direct_map &&
7826 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7827 return;
7828
7829 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7830 }
7831
7832 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7833 {
7834 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7835 }
7836
7837 static inline u32 kvm_async_pf_next_probe(u32 key)
7838 {
7839 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7840 }
7841
7842 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7843 {
7844 u32 key = kvm_async_pf_hash_fn(gfn);
7845
7846 while (vcpu->arch.apf.gfns[key] != ~0)
7847 key = kvm_async_pf_next_probe(key);
7848
7849 vcpu->arch.apf.gfns[key] = gfn;
7850 }
7851
7852 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7853 {
7854 int i;
7855 u32 key = kvm_async_pf_hash_fn(gfn);
7856
7857 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7858 (vcpu->arch.apf.gfns[key] != gfn &&
7859 vcpu->arch.apf.gfns[key] != ~0); i++)
7860 key = kvm_async_pf_next_probe(key);
7861
7862 return key;
7863 }
7864
7865 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7866 {
7867 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7868 }
7869
7870 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7871 {
7872 u32 i, j, k;
7873
7874 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7875 while (true) {
7876 vcpu->arch.apf.gfns[i] = ~0;
7877 do {
7878 j = kvm_async_pf_next_probe(j);
7879 if (vcpu->arch.apf.gfns[j] == ~0)
7880 return;
7881 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7882 /*
7883 * k lies cyclically in ]i,j]
7884 * | i.k.j |
7885 * |....j i.k.| or |.k..j i...|
7886 */
7887 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7888 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7889 i = j;
7890 }
7891 }
7892
7893 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7894 {
7895
7896 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7897 sizeof(val));
7898 }
7899
7900 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7901 struct kvm_async_pf *work)
7902 {
7903 struct x86_exception fault;
7904
7905 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7906 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7907
7908 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7909 (vcpu->arch.apf.send_user_only &&
7910 kvm_x86_ops->get_cpl(vcpu) == 0))
7911 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7912 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7913 fault.vector = PF_VECTOR;
7914 fault.error_code_valid = true;
7915 fault.error_code = 0;
7916 fault.nested_page_fault = false;
7917 fault.address = work->arch.token;
7918 kvm_inject_page_fault(vcpu, &fault);
7919 }
7920 }
7921
7922 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7923 struct kvm_async_pf *work)
7924 {
7925 struct x86_exception fault;
7926
7927 trace_kvm_async_pf_ready(work->arch.token, work->gva);
7928 if (work->wakeup_all)
7929 work->arch.token = ~0; /* broadcast wakeup */
7930 else
7931 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7932
7933 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7934 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7935 fault.vector = PF_VECTOR;
7936 fault.error_code_valid = true;
7937 fault.error_code = 0;
7938 fault.nested_page_fault = false;
7939 fault.address = work->arch.token;
7940 kvm_inject_page_fault(vcpu, &fault);
7941 }
7942 vcpu->arch.apf.halted = false;
7943 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7944 }
7945
7946 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7947 {
7948 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7949 return true;
7950 else
7951 return !kvm_event_needs_reinjection(vcpu) &&
7952 kvm_x86_ops->interrupt_allowed(vcpu);
7953 }
7954
7955 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
7956 {
7957 atomic_inc(&kvm->arch.noncoherent_dma_count);
7958 }
7959 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
7960
7961 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
7962 {
7963 atomic_dec(&kvm->arch.noncoherent_dma_count);
7964 }
7965 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
7966
7967 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
7968 {
7969 return atomic_read(&kvm->arch.noncoherent_dma_count);
7970 }
7971 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
7972
7973 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7974 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7975 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7976 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7977 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7978 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7979 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7980 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7981 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7982 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7983 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7984 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
7985 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
7986 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
7987 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
This page took 0.270398 seconds and 5 git commands to generate.