KVM: Add HYPER-V apic access MSRs
[deliverable/linux.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Amit Shah <amit.shah@qumranet.com>
14 * Ben-Ami Yassour <benami@il.ibm.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
28
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40 #include <linux/user-return-notifier.h>
41 #include <linux/srcu.h>
42 #include <trace/events/kvm.h>
43 #undef TRACE_INCLUDE_FILE
44 #define CREATE_TRACE_POINTS
45 #include "trace.h"
46
47 #include <asm/debugreg.h>
48 #include <asm/uaccess.h>
49 #include <asm/msr.h>
50 #include <asm/desc.h>
51 #include <asm/mtrr.h>
52 #include <asm/mce.h>
53
54 #define MAX_IO_MSRS 256
55 #define CR0_RESERVED_BITS \
56 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
57 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
58 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
59 #define CR4_RESERVED_BITS \
60 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
61 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
62 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
63 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
64
65 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
66
67 #define KVM_MAX_MCE_BANKS 32
68 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
69
70 /* EFER defaults:
71 * - enable syscall per default because its emulated by KVM
72 * - enable LME and LMA per default on 64 bit KVM
73 */
74 #ifdef CONFIG_X86_64
75 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
76 #else
77 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
78 #endif
79
80 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
81 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
82
83 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
84 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
85 struct kvm_cpuid_entry2 __user *entries);
86
87 struct kvm_x86_ops *kvm_x86_ops;
88 EXPORT_SYMBOL_GPL(kvm_x86_ops);
89
90 int ignore_msrs = 0;
91 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
92
93 #define KVM_NR_SHARED_MSRS 16
94
95 struct kvm_shared_msrs_global {
96 int nr;
97 u32 msrs[KVM_NR_SHARED_MSRS];
98 };
99
100 struct kvm_shared_msrs {
101 struct user_return_notifier urn;
102 bool registered;
103 struct kvm_shared_msr_values {
104 u64 host;
105 u64 curr;
106 } values[KVM_NR_SHARED_MSRS];
107 };
108
109 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
110 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
111
112 struct kvm_stats_debugfs_item debugfs_entries[] = {
113 { "pf_fixed", VCPU_STAT(pf_fixed) },
114 { "pf_guest", VCPU_STAT(pf_guest) },
115 { "tlb_flush", VCPU_STAT(tlb_flush) },
116 { "invlpg", VCPU_STAT(invlpg) },
117 { "exits", VCPU_STAT(exits) },
118 { "io_exits", VCPU_STAT(io_exits) },
119 { "mmio_exits", VCPU_STAT(mmio_exits) },
120 { "signal_exits", VCPU_STAT(signal_exits) },
121 { "irq_window", VCPU_STAT(irq_window_exits) },
122 { "nmi_window", VCPU_STAT(nmi_window_exits) },
123 { "halt_exits", VCPU_STAT(halt_exits) },
124 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
125 { "hypercalls", VCPU_STAT(hypercalls) },
126 { "request_irq", VCPU_STAT(request_irq_exits) },
127 { "irq_exits", VCPU_STAT(irq_exits) },
128 { "host_state_reload", VCPU_STAT(host_state_reload) },
129 { "efer_reload", VCPU_STAT(efer_reload) },
130 { "fpu_reload", VCPU_STAT(fpu_reload) },
131 { "insn_emulation", VCPU_STAT(insn_emulation) },
132 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
133 { "irq_injections", VCPU_STAT(irq_injections) },
134 { "nmi_injections", VCPU_STAT(nmi_injections) },
135 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
136 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
137 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
138 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
139 { "mmu_flooded", VM_STAT(mmu_flooded) },
140 { "mmu_recycled", VM_STAT(mmu_recycled) },
141 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
142 { "mmu_unsync", VM_STAT(mmu_unsync) },
143 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
144 { "largepages", VM_STAT(lpages) },
145 { NULL }
146 };
147
148 static void kvm_on_user_return(struct user_return_notifier *urn)
149 {
150 unsigned slot;
151 struct kvm_shared_msrs *locals
152 = container_of(urn, struct kvm_shared_msrs, urn);
153 struct kvm_shared_msr_values *values;
154
155 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
156 values = &locals->values[slot];
157 if (values->host != values->curr) {
158 wrmsrl(shared_msrs_global.msrs[slot], values->host);
159 values->curr = values->host;
160 }
161 }
162 locals->registered = false;
163 user_return_notifier_unregister(urn);
164 }
165
166 static void shared_msr_update(unsigned slot, u32 msr)
167 {
168 struct kvm_shared_msrs *smsr;
169 u64 value;
170
171 smsr = &__get_cpu_var(shared_msrs);
172 /* only read, and nobody should modify it at this time,
173 * so don't need lock */
174 if (slot >= shared_msrs_global.nr) {
175 printk(KERN_ERR "kvm: invalid MSR slot!");
176 return;
177 }
178 rdmsrl_safe(msr, &value);
179 smsr->values[slot].host = value;
180 smsr->values[slot].curr = value;
181 }
182
183 void kvm_define_shared_msr(unsigned slot, u32 msr)
184 {
185 if (slot >= shared_msrs_global.nr)
186 shared_msrs_global.nr = slot + 1;
187 shared_msrs_global.msrs[slot] = msr;
188 /* we need ensured the shared_msr_global have been updated */
189 smp_wmb();
190 }
191 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
192
193 static void kvm_shared_msr_cpu_online(void)
194 {
195 unsigned i;
196
197 for (i = 0; i < shared_msrs_global.nr; ++i)
198 shared_msr_update(i, shared_msrs_global.msrs[i]);
199 }
200
201 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
202 {
203 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
204
205 if (((value ^ smsr->values[slot].curr) & mask) == 0)
206 return;
207 smsr->values[slot].curr = value;
208 wrmsrl(shared_msrs_global.msrs[slot], value);
209 if (!smsr->registered) {
210 smsr->urn.on_user_return = kvm_on_user_return;
211 user_return_notifier_register(&smsr->urn);
212 smsr->registered = true;
213 }
214 }
215 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
216
217 static void drop_user_return_notifiers(void *ignore)
218 {
219 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
220
221 if (smsr->registered)
222 kvm_on_user_return(&smsr->urn);
223 }
224
225 unsigned long segment_base(u16 selector)
226 {
227 struct descriptor_table gdt;
228 struct desc_struct *d;
229 unsigned long table_base;
230 unsigned long v;
231
232 if (selector == 0)
233 return 0;
234
235 kvm_get_gdt(&gdt);
236 table_base = gdt.base;
237
238 if (selector & 4) { /* from ldt */
239 u16 ldt_selector = kvm_read_ldt();
240
241 table_base = segment_base(ldt_selector);
242 }
243 d = (struct desc_struct *)(table_base + (selector & ~7));
244 v = get_desc_base(d);
245 #ifdef CONFIG_X86_64
246 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
247 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
248 #endif
249 return v;
250 }
251 EXPORT_SYMBOL_GPL(segment_base);
252
253 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
254 {
255 if (irqchip_in_kernel(vcpu->kvm))
256 return vcpu->arch.apic_base;
257 else
258 return vcpu->arch.apic_base;
259 }
260 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
261
262 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
263 {
264 /* TODO: reserve bits check */
265 if (irqchip_in_kernel(vcpu->kvm))
266 kvm_lapic_set_base(vcpu, data);
267 else
268 vcpu->arch.apic_base = data;
269 }
270 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
271
272 #define EXCPT_BENIGN 0
273 #define EXCPT_CONTRIBUTORY 1
274 #define EXCPT_PF 2
275
276 static int exception_class(int vector)
277 {
278 switch (vector) {
279 case PF_VECTOR:
280 return EXCPT_PF;
281 case DE_VECTOR:
282 case TS_VECTOR:
283 case NP_VECTOR:
284 case SS_VECTOR:
285 case GP_VECTOR:
286 return EXCPT_CONTRIBUTORY;
287 default:
288 break;
289 }
290 return EXCPT_BENIGN;
291 }
292
293 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
294 unsigned nr, bool has_error, u32 error_code)
295 {
296 u32 prev_nr;
297 int class1, class2;
298
299 if (!vcpu->arch.exception.pending) {
300 queue:
301 vcpu->arch.exception.pending = true;
302 vcpu->arch.exception.has_error_code = has_error;
303 vcpu->arch.exception.nr = nr;
304 vcpu->arch.exception.error_code = error_code;
305 return;
306 }
307
308 /* to check exception */
309 prev_nr = vcpu->arch.exception.nr;
310 if (prev_nr == DF_VECTOR) {
311 /* triple fault -> shutdown */
312 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
313 return;
314 }
315 class1 = exception_class(prev_nr);
316 class2 = exception_class(nr);
317 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
318 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
319 /* generate double fault per SDM Table 5-5 */
320 vcpu->arch.exception.pending = true;
321 vcpu->arch.exception.has_error_code = true;
322 vcpu->arch.exception.nr = DF_VECTOR;
323 vcpu->arch.exception.error_code = 0;
324 } else
325 /* replace previous exception with a new one in a hope
326 that instruction re-execution will regenerate lost
327 exception */
328 goto queue;
329 }
330
331 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
332 {
333 kvm_multiple_exception(vcpu, nr, false, 0);
334 }
335 EXPORT_SYMBOL_GPL(kvm_queue_exception);
336
337 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
338 u32 error_code)
339 {
340 ++vcpu->stat.pf_guest;
341 vcpu->arch.cr2 = addr;
342 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
343 }
344
345 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
346 {
347 vcpu->arch.nmi_pending = 1;
348 }
349 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
350
351 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
352 {
353 kvm_multiple_exception(vcpu, nr, true, error_code);
354 }
355 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
356
357 /*
358 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
359 * a #GP and return false.
360 */
361 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
362 {
363 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
364 return true;
365 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
366 return false;
367 }
368 EXPORT_SYMBOL_GPL(kvm_require_cpl);
369
370 /*
371 * Load the pae pdptrs. Return true is they are all valid.
372 */
373 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
374 {
375 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
376 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
377 int i;
378 int ret;
379 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
380
381 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
382 offset * sizeof(u64), sizeof(pdpte));
383 if (ret < 0) {
384 ret = 0;
385 goto out;
386 }
387 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
388 if (is_present_gpte(pdpte[i]) &&
389 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
390 ret = 0;
391 goto out;
392 }
393 }
394 ret = 1;
395
396 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
397 __set_bit(VCPU_EXREG_PDPTR,
398 (unsigned long *)&vcpu->arch.regs_avail);
399 __set_bit(VCPU_EXREG_PDPTR,
400 (unsigned long *)&vcpu->arch.regs_dirty);
401 out:
402
403 return ret;
404 }
405 EXPORT_SYMBOL_GPL(load_pdptrs);
406
407 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
408 {
409 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
410 bool changed = true;
411 int r;
412
413 if (is_long_mode(vcpu) || !is_pae(vcpu))
414 return false;
415
416 if (!test_bit(VCPU_EXREG_PDPTR,
417 (unsigned long *)&vcpu->arch.regs_avail))
418 return true;
419
420 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
421 if (r < 0)
422 goto out;
423 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
424 out:
425
426 return changed;
427 }
428
429 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
430 {
431 cr0 |= X86_CR0_ET;
432
433 if (cr0 & CR0_RESERVED_BITS) {
434 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
435 cr0, kvm_read_cr0(vcpu));
436 kvm_inject_gp(vcpu, 0);
437 return;
438 }
439
440 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
441 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
442 kvm_inject_gp(vcpu, 0);
443 return;
444 }
445
446 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
447 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
448 "and a clear PE flag\n");
449 kvm_inject_gp(vcpu, 0);
450 return;
451 }
452
453 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
454 #ifdef CONFIG_X86_64
455 if ((vcpu->arch.shadow_efer & EFER_LME)) {
456 int cs_db, cs_l;
457
458 if (!is_pae(vcpu)) {
459 printk(KERN_DEBUG "set_cr0: #GP, start paging "
460 "in long mode while PAE is disabled\n");
461 kvm_inject_gp(vcpu, 0);
462 return;
463 }
464 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
465 if (cs_l) {
466 printk(KERN_DEBUG "set_cr0: #GP, start paging "
467 "in long mode while CS.L == 1\n");
468 kvm_inject_gp(vcpu, 0);
469 return;
470
471 }
472 } else
473 #endif
474 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
475 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
476 "reserved bits\n");
477 kvm_inject_gp(vcpu, 0);
478 return;
479 }
480
481 }
482
483 kvm_x86_ops->set_cr0(vcpu, cr0);
484 vcpu->arch.cr0 = cr0;
485
486 kvm_mmu_reset_context(vcpu);
487 return;
488 }
489 EXPORT_SYMBOL_GPL(kvm_set_cr0);
490
491 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
492 {
493 kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0ful) | (msw & 0x0f));
494 }
495 EXPORT_SYMBOL_GPL(kvm_lmsw);
496
497 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
498 {
499 unsigned long old_cr4 = kvm_read_cr4(vcpu);
500 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
501
502 if (cr4 & CR4_RESERVED_BITS) {
503 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
504 kvm_inject_gp(vcpu, 0);
505 return;
506 }
507
508 if (is_long_mode(vcpu)) {
509 if (!(cr4 & X86_CR4_PAE)) {
510 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
511 "in long mode\n");
512 kvm_inject_gp(vcpu, 0);
513 return;
514 }
515 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
516 && ((cr4 ^ old_cr4) & pdptr_bits)
517 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
518 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
519 kvm_inject_gp(vcpu, 0);
520 return;
521 }
522
523 if (cr4 & X86_CR4_VMXE) {
524 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
525 kvm_inject_gp(vcpu, 0);
526 return;
527 }
528 kvm_x86_ops->set_cr4(vcpu, cr4);
529 vcpu->arch.cr4 = cr4;
530 vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
531 kvm_mmu_reset_context(vcpu);
532 }
533 EXPORT_SYMBOL_GPL(kvm_set_cr4);
534
535 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
536 {
537 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
538 kvm_mmu_sync_roots(vcpu);
539 kvm_mmu_flush_tlb(vcpu);
540 return;
541 }
542
543 if (is_long_mode(vcpu)) {
544 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
545 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
546 kvm_inject_gp(vcpu, 0);
547 return;
548 }
549 } else {
550 if (is_pae(vcpu)) {
551 if (cr3 & CR3_PAE_RESERVED_BITS) {
552 printk(KERN_DEBUG
553 "set_cr3: #GP, reserved bits\n");
554 kvm_inject_gp(vcpu, 0);
555 return;
556 }
557 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
558 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
559 "reserved bits\n");
560 kvm_inject_gp(vcpu, 0);
561 return;
562 }
563 }
564 /*
565 * We don't check reserved bits in nonpae mode, because
566 * this isn't enforced, and VMware depends on this.
567 */
568 }
569
570 /*
571 * Does the new cr3 value map to physical memory? (Note, we
572 * catch an invalid cr3 even in real-mode, because it would
573 * cause trouble later on when we turn on paging anyway.)
574 *
575 * A real CPU would silently accept an invalid cr3 and would
576 * attempt to use it - with largely undefined (and often hard
577 * to debug) behavior on the guest side.
578 */
579 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
580 kvm_inject_gp(vcpu, 0);
581 else {
582 vcpu->arch.cr3 = cr3;
583 vcpu->arch.mmu.new_cr3(vcpu);
584 }
585 }
586 EXPORT_SYMBOL_GPL(kvm_set_cr3);
587
588 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
589 {
590 if (cr8 & CR8_RESERVED_BITS) {
591 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
592 kvm_inject_gp(vcpu, 0);
593 return;
594 }
595 if (irqchip_in_kernel(vcpu->kvm))
596 kvm_lapic_set_tpr(vcpu, cr8);
597 else
598 vcpu->arch.cr8 = cr8;
599 }
600 EXPORT_SYMBOL_GPL(kvm_set_cr8);
601
602 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
603 {
604 if (irqchip_in_kernel(vcpu->kvm))
605 return kvm_lapic_get_cr8(vcpu);
606 else
607 return vcpu->arch.cr8;
608 }
609 EXPORT_SYMBOL_GPL(kvm_get_cr8);
610
611 static inline u32 bit(int bitno)
612 {
613 return 1 << (bitno & 31);
614 }
615
616 /*
617 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
618 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
619 *
620 * This list is modified at module load time to reflect the
621 * capabilities of the host cpu. This capabilities test skips MSRs that are
622 * kvm-specific. Those are put in the beginning of the list.
623 */
624
625 #define KVM_SAVE_MSRS_BEGIN 5
626 static u32 msrs_to_save[] = {
627 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
628 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
629 HV_X64_MSR_APIC_ASSIST_PAGE,
630 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
631 MSR_K6_STAR,
632 #ifdef CONFIG_X86_64
633 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
634 #endif
635 MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
636 };
637
638 static unsigned num_msrs_to_save;
639
640 static u32 emulated_msrs[] = {
641 MSR_IA32_MISC_ENABLE,
642 };
643
644 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
645 {
646 if (efer & efer_reserved_bits) {
647 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
648 efer);
649 kvm_inject_gp(vcpu, 0);
650 return;
651 }
652
653 if (is_paging(vcpu)
654 && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
655 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
656 kvm_inject_gp(vcpu, 0);
657 return;
658 }
659
660 if (efer & EFER_FFXSR) {
661 struct kvm_cpuid_entry2 *feat;
662
663 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
664 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
665 printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
666 kvm_inject_gp(vcpu, 0);
667 return;
668 }
669 }
670
671 if (efer & EFER_SVME) {
672 struct kvm_cpuid_entry2 *feat;
673
674 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
675 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
676 printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
677 kvm_inject_gp(vcpu, 0);
678 return;
679 }
680 }
681
682 kvm_x86_ops->set_efer(vcpu, efer);
683
684 efer &= ~EFER_LMA;
685 efer |= vcpu->arch.shadow_efer & EFER_LMA;
686
687 vcpu->arch.shadow_efer = efer;
688
689 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
690 kvm_mmu_reset_context(vcpu);
691 }
692
693 void kvm_enable_efer_bits(u64 mask)
694 {
695 efer_reserved_bits &= ~mask;
696 }
697 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
698
699
700 /*
701 * Writes msr value into into the appropriate "register".
702 * Returns 0 on success, non-0 otherwise.
703 * Assumes vcpu_load() was already called.
704 */
705 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
706 {
707 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
708 }
709
710 /*
711 * Adapt set_msr() to msr_io()'s calling convention
712 */
713 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
714 {
715 return kvm_set_msr(vcpu, index, *data);
716 }
717
718 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
719 {
720 static int version;
721 struct pvclock_wall_clock wc;
722 struct timespec boot;
723
724 if (!wall_clock)
725 return;
726
727 version++;
728
729 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
730
731 /*
732 * The guest calculates current wall clock time by adding
733 * system time (updated by kvm_write_guest_time below) to the
734 * wall clock specified here. guest system time equals host
735 * system time for us, thus we must fill in host boot time here.
736 */
737 getboottime(&boot);
738
739 wc.sec = boot.tv_sec;
740 wc.nsec = boot.tv_nsec;
741 wc.version = version;
742
743 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
744
745 version++;
746 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
747 }
748
749 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
750 {
751 uint32_t quotient, remainder;
752
753 /* Don't try to replace with do_div(), this one calculates
754 * "(dividend << 32) / divisor" */
755 __asm__ ( "divl %4"
756 : "=a" (quotient), "=d" (remainder)
757 : "0" (0), "1" (dividend), "r" (divisor) );
758 return quotient;
759 }
760
761 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
762 {
763 uint64_t nsecs = 1000000000LL;
764 int32_t shift = 0;
765 uint64_t tps64;
766 uint32_t tps32;
767
768 tps64 = tsc_khz * 1000LL;
769 while (tps64 > nsecs*2) {
770 tps64 >>= 1;
771 shift--;
772 }
773
774 tps32 = (uint32_t)tps64;
775 while (tps32 <= (uint32_t)nsecs) {
776 tps32 <<= 1;
777 shift++;
778 }
779
780 hv_clock->tsc_shift = shift;
781 hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
782
783 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
784 __func__, tsc_khz, hv_clock->tsc_shift,
785 hv_clock->tsc_to_system_mul);
786 }
787
788 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
789
790 static void kvm_write_guest_time(struct kvm_vcpu *v)
791 {
792 struct timespec ts;
793 unsigned long flags;
794 struct kvm_vcpu_arch *vcpu = &v->arch;
795 void *shared_kaddr;
796 unsigned long this_tsc_khz;
797
798 if ((!vcpu->time_page))
799 return;
800
801 this_tsc_khz = get_cpu_var(cpu_tsc_khz);
802 if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
803 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
804 vcpu->hv_clock_tsc_khz = this_tsc_khz;
805 }
806 put_cpu_var(cpu_tsc_khz);
807
808 /* Keep irq disabled to prevent changes to the clock */
809 local_irq_save(flags);
810 kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
811 ktime_get_ts(&ts);
812 monotonic_to_bootbased(&ts);
813 local_irq_restore(flags);
814
815 /* With all the info we got, fill in the values */
816
817 vcpu->hv_clock.system_time = ts.tv_nsec +
818 (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
819
820 /*
821 * The interface expects us to write an even number signaling that the
822 * update is finished. Since the guest won't see the intermediate
823 * state, we just increase by 2 at the end.
824 */
825 vcpu->hv_clock.version += 2;
826
827 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
828
829 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
830 sizeof(vcpu->hv_clock));
831
832 kunmap_atomic(shared_kaddr, KM_USER0);
833
834 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
835 }
836
837 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
838 {
839 struct kvm_vcpu_arch *vcpu = &v->arch;
840
841 if (!vcpu->time_page)
842 return 0;
843 set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
844 return 1;
845 }
846
847 static bool msr_mtrr_valid(unsigned msr)
848 {
849 switch (msr) {
850 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
851 case MSR_MTRRfix64K_00000:
852 case MSR_MTRRfix16K_80000:
853 case MSR_MTRRfix16K_A0000:
854 case MSR_MTRRfix4K_C0000:
855 case MSR_MTRRfix4K_C8000:
856 case MSR_MTRRfix4K_D0000:
857 case MSR_MTRRfix4K_D8000:
858 case MSR_MTRRfix4K_E0000:
859 case MSR_MTRRfix4K_E8000:
860 case MSR_MTRRfix4K_F0000:
861 case MSR_MTRRfix4K_F8000:
862 case MSR_MTRRdefType:
863 case MSR_IA32_CR_PAT:
864 return true;
865 case 0x2f8:
866 return true;
867 }
868 return false;
869 }
870
871 static bool valid_pat_type(unsigned t)
872 {
873 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
874 }
875
876 static bool valid_mtrr_type(unsigned t)
877 {
878 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
879 }
880
881 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
882 {
883 int i;
884
885 if (!msr_mtrr_valid(msr))
886 return false;
887
888 if (msr == MSR_IA32_CR_PAT) {
889 for (i = 0; i < 8; i++)
890 if (!valid_pat_type((data >> (i * 8)) & 0xff))
891 return false;
892 return true;
893 } else if (msr == MSR_MTRRdefType) {
894 if (data & ~0xcff)
895 return false;
896 return valid_mtrr_type(data & 0xff);
897 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
898 for (i = 0; i < 8 ; i++)
899 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
900 return false;
901 return true;
902 }
903
904 /* variable MTRRs */
905 return valid_mtrr_type(data & 0xff);
906 }
907
908 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
909 {
910 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
911
912 if (!mtrr_valid(vcpu, msr, data))
913 return 1;
914
915 if (msr == MSR_MTRRdefType) {
916 vcpu->arch.mtrr_state.def_type = data;
917 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
918 } else if (msr == MSR_MTRRfix64K_00000)
919 p[0] = data;
920 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
921 p[1 + msr - MSR_MTRRfix16K_80000] = data;
922 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
923 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
924 else if (msr == MSR_IA32_CR_PAT)
925 vcpu->arch.pat = data;
926 else { /* Variable MTRRs */
927 int idx, is_mtrr_mask;
928 u64 *pt;
929
930 idx = (msr - 0x200) / 2;
931 is_mtrr_mask = msr - 0x200 - 2 * idx;
932 if (!is_mtrr_mask)
933 pt =
934 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
935 else
936 pt =
937 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
938 *pt = data;
939 }
940
941 kvm_mmu_reset_context(vcpu);
942 return 0;
943 }
944
945 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
946 {
947 u64 mcg_cap = vcpu->arch.mcg_cap;
948 unsigned bank_num = mcg_cap & 0xff;
949
950 switch (msr) {
951 case MSR_IA32_MCG_STATUS:
952 vcpu->arch.mcg_status = data;
953 break;
954 case MSR_IA32_MCG_CTL:
955 if (!(mcg_cap & MCG_CTL_P))
956 return 1;
957 if (data != 0 && data != ~(u64)0)
958 return -1;
959 vcpu->arch.mcg_ctl = data;
960 break;
961 default:
962 if (msr >= MSR_IA32_MC0_CTL &&
963 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
964 u32 offset = msr - MSR_IA32_MC0_CTL;
965 /* only 0 or all 1s can be written to IA32_MCi_CTL */
966 if ((offset & 0x3) == 0 &&
967 data != 0 && data != ~(u64)0)
968 return -1;
969 vcpu->arch.mce_banks[offset] = data;
970 break;
971 }
972 return 1;
973 }
974 return 0;
975 }
976
977 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
978 {
979 struct kvm *kvm = vcpu->kvm;
980 int lm = is_long_mode(vcpu);
981 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
982 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
983 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
984 : kvm->arch.xen_hvm_config.blob_size_32;
985 u32 page_num = data & ~PAGE_MASK;
986 u64 page_addr = data & PAGE_MASK;
987 u8 *page;
988 int r;
989
990 r = -E2BIG;
991 if (page_num >= blob_size)
992 goto out;
993 r = -ENOMEM;
994 page = kzalloc(PAGE_SIZE, GFP_KERNEL);
995 if (!page)
996 goto out;
997 r = -EFAULT;
998 if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
999 goto out_free;
1000 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1001 goto out_free;
1002 r = 0;
1003 out_free:
1004 kfree(page);
1005 out:
1006 return r;
1007 }
1008
1009 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1010 {
1011 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1012 }
1013
1014 static bool kvm_hv_msr_partition_wide(u32 msr)
1015 {
1016 bool r = false;
1017 switch (msr) {
1018 case HV_X64_MSR_GUEST_OS_ID:
1019 case HV_X64_MSR_HYPERCALL:
1020 r = true;
1021 break;
1022 }
1023
1024 return r;
1025 }
1026
1027 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1028 {
1029 struct kvm *kvm = vcpu->kvm;
1030
1031 switch (msr) {
1032 case HV_X64_MSR_GUEST_OS_ID:
1033 kvm->arch.hv_guest_os_id = data;
1034 /* setting guest os id to zero disables hypercall page */
1035 if (!kvm->arch.hv_guest_os_id)
1036 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1037 break;
1038 case HV_X64_MSR_HYPERCALL: {
1039 u64 gfn;
1040 unsigned long addr;
1041 u8 instructions[4];
1042
1043 /* if guest os id is not set hypercall should remain disabled */
1044 if (!kvm->arch.hv_guest_os_id)
1045 break;
1046 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1047 kvm->arch.hv_hypercall = data;
1048 break;
1049 }
1050 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1051 addr = gfn_to_hva(kvm, gfn);
1052 if (kvm_is_error_hva(addr))
1053 return 1;
1054 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1055 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1056 if (copy_to_user((void __user *)addr, instructions, 4))
1057 return 1;
1058 kvm->arch.hv_hypercall = data;
1059 break;
1060 }
1061 default:
1062 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1063 "data 0x%llx\n", msr, data);
1064 return 1;
1065 }
1066 return 0;
1067 }
1068
1069 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1070 {
1071 switch (msr) {
1072 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1073 unsigned long addr;
1074
1075 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1076 vcpu->arch.hv_vapic = data;
1077 break;
1078 }
1079 addr = gfn_to_hva(vcpu->kvm, data >>
1080 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1081 if (kvm_is_error_hva(addr))
1082 return 1;
1083 if (clear_user((void __user *)addr, PAGE_SIZE))
1084 return 1;
1085 vcpu->arch.hv_vapic = data;
1086 break;
1087 }
1088 case HV_X64_MSR_EOI:
1089 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1090 case HV_X64_MSR_ICR:
1091 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1092 case HV_X64_MSR_TPR:
1093 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1094 default:
1095 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1096 "data 0x%llx\n", msr, data);
1097 return 1;
1098 }
1099
1100 return 0;
1101 }
1102
1103 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1104 {
1105 switch (msr) {
1106 case MSR_EFER:
1107 set_efer(vcpu, data);
1108 break;
1109 case MSR_K7_HWCR:
1110 data &= ~(u64)0x40; /* ignore flush filter disable */
1111 if (data != 0) {
1112 pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1113 data);
1114 return 1;
1115 }
1116 break;
1117 case MSR_FAM10H_MMIO_CONF_BASE:
1118 if (data != 0) {
1119 pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1120 "0x%llx\n", data);
1121 return 1;
1122 }
1123 break;
1124 case MSR_AMD64_NB_CFG:
1125 break;
1126 case MSR_IA32_DEBUGCTLMSR:
1127 if (!data) {
1128 /* We support the non-activated case already */
1129 break;
1130 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1131 /* Values other than LBR and BTF are vendor-specific,
1132 thus reserved and should throw a #GP */
1133 return 1;
1134 }
1135 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1136 __func__, data);
1137 break;
1138 case MSR_IA32_UCODE_REV:
1139 case MSR_IA32_UCODE_WRITE:
1140 case MSR_VM_HSAVE_PA:
1141 case MSR_AMD64_PATCH_LOADER:
1142 break;
1143 case 0x200 ... 0x2ff:
1144 return set_msr_mtrr(vcpu, msr, data);
1145 case MSR_IA32_APICBASE:
1146 kvm_set_apic_base(vcpu, data);
1147 break;
1148 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1149 return kvm_x2apic_msr_write(vcpu, msr, data);
1150 case MSR_IA32_MISC_ENABLE:
1151 vcpu->arch.ia32_misc_enable_msr = data;
1152 break;
1153 case MSR_KVM_WALL_CLOCK:
1154 vcpu->kvm->arch.wall_clock = data;
1155 kvm_write_wall_clock(vcpu->kvm, data);
1156 break;
1157 case MSR_KVM_SYSTEM_TIME: {
1158 if (vcpu->arch.time_page) {
1159 kvm_release_page_dirty(vcpu->arch.time_page);
1160 vcpu->arch.time_page = NULL;
1161 }
1162
1163 vcpu->arch.time = data;
1164
1165 /* we verify if the enable bit is set... */
1166 if (!(data & 1))
1167 break;
1168
1169 /* ...but clean it before doing the actual write */
1170 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1171
1172 vcpu->arch.time_page =
1173 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1174
1175 if (is_error_page(vcpu->arch.time_page)) {
1176 kvm_release_page_clean(vcpu->arch.time_page);
1177 vcpu->arch.time_page = NULL;
1178 }
1179
1180 kvm_request_guest_time_update(vcpu);
1181 break;
1182 }
1183 case MSR_IA32_MCG_CTL:
1184 case MSR_IA32_MCG_STATUS:
1185 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1186 return set_msr_mce(vcpu, msr, data);
1187
1188 /* Performance counters are not protected by a CPUID bit,
1189 * so we should check all of them in the generic path for the sake of
1190 * cross vendor migration.
1191 * Writing a zero into the event select MSRs disables them,
1192 * which we perfectly emulate ;-). Any other value should be at least
1193 * reported, some guests depend on them.
1194 */
1195 case MSR_P6_EVNTSEL0:
1196 case MSR_P6_EVNTSEL1:
1197 case MSR_K7_EVNTSEL0:
1198 case MSR_K7_EVNTSEL1:
1199 case MSR_K7_EVNTSEL2:
1200 case MSR_K7_EVNTSEL3:
1201 if (data != 0)
1202 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1203 "0x%x data 0x%llx\n", msr, data);
1204 break;
1205 /* at least RHEL 4 unconditionally writes to the perfctr registers,
1206 * so we ignore writes to make it happy.
1207 */
1208 case MSR_P6_PERFCTR0:
1209 case MSR_P6_PERFCTR1:
1210 case MSR_K7_PERFCTR0:
1211 case MSR_K7_PERFCTR1:
1212 case MSR_K7_PERFCTR2:
1213 case MSR_K7_PERFCTR3:
1214 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1215 "0x%x data 0x%llx\n", msr, data);
1216 break;
1217 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1218 if (kvm_hv_msr_partition_wide(msr)) {
1219 int r;
1220 mutex_lock(&vcpu->kvm->lock);
1221 r = set_msr_hyperv_pw(vcpu, msr, data);
1222 mutex_unlock(&vcpu->kvm->lock);
1223 return r;
1224 } else
1225 return set_msr_hyperv(vcpu, msr, data);
1226 break;
1227 default:
1228 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1229 return xen_hvm_config(vcpu, data);
1230 if (!ignore_msrs) {
1231 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1232 msr, data);
1233 return 1;
1234 } else {
1235 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1236 msr, data);
1237 break;
1238 }
1239 }
1240 return 0;
1241 }
1242 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1243
1244
1245 /*
1246 * Reads an msr value (of 'msr_index') into 'pdata'.
1247 * Returns 0 on success, non-0 otherwise.
1248 * Assumes vcpu_load() was already called.
1249 */
1250 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1251 {
1252 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1253 }
1254
1255 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1256 {
1257 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1258
1259 if (!msr_mtrr_valid(msr))
1260 return 1;
1261
1262 if (msr == MSR_MTRRdefType)
1263 *pdata = vcpu->arch.mtrr_state.def_type +
1264 (vcpu->arch.mtrr_state.enabled << 10);
1265 else if (msr == MSR_MTRRfix64K_00000)
1266 *pdata = p[0];
1267 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1268 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1269 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1270 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1271 else if (msr == MSR_IA32_CR_PAT)
1272 *pdata = vcpu->arch.pat;
1273 else { /* Variable MTRRs */
1274 int idx, is_mtrr_mask;
1275 u64 *pt;
1276
1277 idx = (msr - 0x200) / 2;
1278 is_mtrr_mask = msr - 0x200 - 2 * idx;
1279 if (!is_mtrr_mask)
1280 pt =
1281 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1282 else
1283 pt =
1284 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1285 *pdata = *pt;
1286 }
1287
1288 return 0;
1289 }
1290
1291 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1292 {
1293 u64 data;
1294 u64 mcg_cap = vcpu->arch.mcg_cap;
1295 unsigned bank_num = mcg_cap & 0xff;
1296
1297 switch (msr) {
1298 case MSR_IA32_P5_MC_ADDR:
1299 case MSR_IA32_P5_MC_TYPE:
1300 data = 0;
1301 break;
1302 case MSR_IA32_MCG_CAP:
1303 data = vcpu->arch.mcg_cap;
1304 break;
1305 case MSR_IA32_MCG_CTL:
1306 if (!(mcg_cap & MCG_CTL_P))
1307 return 1;
1308 data = vcpu->arch.mcg_ctl;
1309 break;
1310 case MSR_IA32_MCG_STATUS:
1311 data = vcpu->arch.mcg_status;
1312 break;
1313 default:
1314 if (msr >= MSR_IA32_MC0_CTL &&
1315 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1316 u32 offset = msr - MSR_IA32_MC0_CTL;
1317 data = vcpu->arch.mce_banks[offset];
1318 break;
1319 }
1320 return 1;
1321 }
1322 *pdata = data;
1323 return 0;
1324 }
1325
1326 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1327 {
1328 u64 data = 0;
1329 struct kvm *kvm = vcpu->kvm;
1330
1331 switch (msr) {
1332 case HV_X64_MSR_GUEST_OS_ID:
1333 data = kvm->arch.hv_guest_os_id;
1334 break;
1335 case HV_X64_MSR_HYPERCALL:
1336 data = kvm->arch.hv_hypercall;
1337 break;
1338 default:
1339 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1340 return 1;
1341 }
1342
1343 *pdata = data;
1344 return 0;
1345 }
1346
1347 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1348 {
1349 u64 data = 0;
1350
1351 switch (msr) {
1352 case HV_X64_MSR_VP_INDEX: {
1353 int r;
1354 struct kvm_vcpu *v;
1355 kvm_for_each_vcpu(r, v, vcpu->kvm)
1356 if (v == vcpu)
1357 data = r;
1358 break;
1359 }
1360 case HV_X64_MSR_EOI:
1361 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1362 case HV_X64_MSR_ICR:
1363 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1364 case HV_X64_MSR_TPR:
1365 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1366 default:
1367 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1368 return 1;
1369 }
1370 *pdata = data;
1371 return 0;
1372 }
1373
1374 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1375 {
1376 u64 data;
1377
1378 switch (msr) {
1379 case MSR_IA32_PLATFORM_ID:
1380 case MSR_IA32_UCODE_REV:
1381 case MSR_IA32_EBL_CR_POWERON:
1382 case MSR_IA32_DEBUGCTLMSR:
1383 case MSR_IA32_LASTBRANCHFROMIP:
1384 case MSR_IA32_LASTBRANCHTOIP:
1385 case MSR_IA32_LASTINTFROMIP:
1386 case MSR_IA32_LASTINTTOIP:
1387 case MSR_K8_SYSCFG:
1388 case MSR_K7_HWCR:
1389 case MSR_VM_HSAVE_PA:
1390 case MSR_P6_PERFCTR0:
1391 case MSR_P6_PERFCTR1:
1392 case MSR_P6_EVNTSEL0:
1393 case MSR_P6_EVNTSEL1:
1394 case MSR_K7_EVNTSEL0:
1395 case MSR_K7_PERFCTR0:
1396 case MSR_K8_INT_PENDING_MSG:
1397 case MSR_AMD64_NB_CFG:
1398 case MSR_FAM10H_MMIO_CONF_BASE:
1399 data = 0;
1400 break;
1401 case MSR_MTRRcap:
1402 data = 0x500 | KVM_NR_VAR_MTRR;
1403 break;
1404 case 0x200 ... 0x2ff:
1405 return get_msr_mtrr(vcpu, msr, pdata);
1406 case 0xcd: /* fsb frequency */
1407 data = 3;
1408 break;
1409 case MSR_IA32_APICBASE:
1410 data = kvm_get_apic_base(vcpu);
1411 break;
1412 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1413 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1414 break;
1415 case MSR_IA32_MISC_ENABLE:
1416 data = vcpu->arch.ia32_misc_enable_msr;
1417 break;
1418 case MSR_IA32_PERF_STATUS:
1419 /* TSC increment by tick */
1420 data = 1000ULL;
1421 /* CPU multiplier */
1422 data |= (((uint64_t)4ULL) << 40);
1423 break;
1424 case MSR_EFER:
1425 data = vcpu->arch.shadow_efer;
1426 break;
1427 case MSR_KVM_WALL_CLOCK:
1428 data = vcpu->kvm->arch.wall_clock;
1429 break;
1430 case MSR_KVM_SYSTEM_TIME:
1431 data = vcpu->arch.time;
1432 break;
1433 case MSR_IA32_P5_MC_ADDR:
1434 case MSR_IA32_P5_MC_TYPE:
1435 case MSR_IA32_MCG_CAP:
1436 case MSR_IA32_MCG_CTL:
1437 case MSR_IA32_MCG_STATUS:
1438 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1439 return get_msr_mce(vcpu, msr, pdata);
1440 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1441 if (kvm_hv_msr_partition_wide(msr)) {
1442 int r;
1443 mutex_lock(&vcpu->kvm->lock);
1444 r = get_msr_hyperv_pw(vcpu, msr, pdata);
1445 mutex_unlock(&vcpu->kvm->lock);
1446 return r;
1447 } else
1448 return get_msr_hyperv(vcpu, msr, pdata);
1449 break;
1450 default:
1451 if (!ignore_msrs) {
1452 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1453 return 1;
1454 } else {
1455 pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1456 data = 0;
1457 }
1458 break;
1459 }
1460 *pdata = data;
1461 return 0;
1462 }
1463 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1464
1465 /*
1466 * Read or write a bunch of msrs. All parameters are kernel addresses.
1467 *
1468 * @return number of msrs set successfully.
1469 */
1470 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1471 struct kvm_msr_entry *entries,
1472 int (*do_msr)(struct kvm_vcpu *vcpu,
1473 unsigned index, u64 *data))
1474 {
1475 int i, idx;
1476
1477 vcpu_load(vcpu);
1478
1479 idx = srcu_read_lock(&vcpu->kvm->srcu);
1480 for (i = 0; i < msrs->nmsrs; ++i)
1481 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1482 break;
1483 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1484
1485 vcpu_put(vcpu);
1486
1487 return i;
1488 }
1489
1490 /*
1491 * Read or write a bunch of msrs. Parameters are user addresses.
1492 *
1493 * @return number of msrs set successfully.
1494 */
1495 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1496 int (*do_msr)(struct kvm_vcpu *vcpu,
1497 unsigned index, u64 *data),
1498 int writeback)
1499 {
1500 struct kvm_msrs msrs;
1501 struct kvm_msr_entry *entries;
1502 int r, n;
1503 unsigned size;
1504
1505 r = -EFAULT;
1506 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1507 goto out;
1508
1509 r = -E2BIG;
1510 if (msrs.nmsrs >= MAX_IO_MSRS)
1511 goto out;
1512
1513 r = -ENOMEM;
1514 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1515 entries = vmalloc(size);
1516 if (!entries)
1517 goto out;
1518
1519 r = -EFAULT;
1520 if (copy_from_user(entries, user_msrs->entries, size))
1521 goto out_free;
1522
1523 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1524 if (r < 0)
1525 goto out_free;
1526
1527 r = -EFAULT;
1528 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1529 goto out_free;
1530
1531 r = n;
1532
1533 out_free:
1534 vfree(entries);
1535 out:
1536 return r;
1537 }
1538
1539 int kvm_dev_ioctl_check_extension(long ext)
1540 {
1541 int r;
1542
1543 switch (ext) {
1544 case KVM_CAP_IRQCHIP:
1545 case KVM_CAP_HLT:
1546 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1547 case KVM_CAP_SET_TSS_ADDR:
1548 case KVM_CAP_EXT_CPUID:
1549 case KVM_CAP_CLOCKSOURCE:
1550 case KVM_CAP_PIT:
1551 case KVM_CAP_NOP_IO_DELAY:
1552 case KVM_CAP_MP_STATE:
1553 case KVM_CAP_SYNC_MMU:
1554 case KVM_CAP_REINJECT_CONTROL:
1555 case KVM_CAP_IRQ_INJECT_STATUS:
1556 case KVM_CAP_ASSIGN_DEV_IRQ:
1557 case KVM_CAP_IRQFD:
1558 case KVM_CAP_IOEVENTFD:
1559 case KVM_CAP_PIT2:
1560 case KVM_CAP_PIT_STATE2:
1561 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1562 case KVM_CAP_XEN_HVM:
1563 case KVM_CAP_ADJUST_CLOCK:
1564 case KVM_CAP_VCPU_EVENTS:
1565 case KVM_CAP_HYPERV:
1566 case KVM_CAP_HYPERV_VAPIC:
1567 r = 1;
1568 break;
1569 case KVM_CAP_COALESCED_MMIO:
1570 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1571 break;
1572 case KVM_CAP_VAPIC:
1573 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1574 break;
1575 case KVM_CAP_NR_VCPUS:
1576 r = KVM_MAX_VCPUS;
1577 break;
1578 case KVM_CAP_NR_MEMSLOTS:
1579 r = KVM_MEMORY_SLOTS;
1580 break;
1581 case KVM_CAP_PV_MMU: /* obsolete */
1582 r = 0;
1583 break;
1584 case KVM_CAP_IOMMU:
1585 r = iommu_found();
1586 break;
1587 case KVM_CAP_MCE:
1588 r = KVM_MAX_MCE_BANKS;
1589 break;
1590 default:
1591 r = 0;
1592 break;
1593 }
1594 return r;
1595
1596 }
1597
1598 long kvm_arch_dev_ioctl(struct file *filp,
1599 unsigned int ioctl, unsigned long arg)
1600 {
1601 void __user *argp = (void __user *)arg;
1602 long r;
1603
1604 switch (ioctl) {
1605 case KVM_GET_MSR_INDEX_LIST: {
1606 struct kvm_msr_list __user *user_msr_list = argp;
1607 struct kvm_msr_list msr_list;
1608 unsigned n;
1609
1610 r = -EFAULT;
1611 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1612 goto out;
1613 n = msr_list.nmsrs;
1614 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1615 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1616 goto out;
1617 r = -E2BIG;
1618 if (n < msr_list.nmsrs)
1619 goto out;
1620 r = -EFAULT;
1621 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1622 num_msrs_to_save * sizeof(u32)))
1623 goto out;
1624 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1625 &emulated_msrs,
1626 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1627 goto out;
1628 r = 0;
1629 break;
1630 }
1631 case KVM_GET_SUPPORTED_CPUID: {
1632 struct kvm_cpuid2 __user *cpuid_arg = argp;
1633 struct kvm_cpuid2 cpuid;
1634
1635 r = -EFAULT;
1636 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1637 goto out;
1638 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1639 cpuid_arg->entries);
1640 if (r)
1641 goto out;
1642
1643 r = -EFAULT;
1644 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1645 goto out;
1646 r = 0;
1647 break;
1648 }
1649 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1650 u64 mce_cap;
1651
1652 mce_cap = KVM_MCE_CAP_SUPPORTED;
1653 r = -EFAULT;
1654 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1655 goto out;
1656 r = 0;
1657 break;
1658 }
1659 default:
1660 r = -EINVAL;
1661 }
1662 out:
1663 return r;
1664 }
1665
1666 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1667 {
1668 kvm_x86_ops->vcpu_load(vcpu, cpu);
1669 if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) {
1670 unsigned long khz = cpufreq_quick_get(cpu);
1671 if (!khz)
1672 khz = tsc_khz;
1673 per_cpu(cpu_tsc_khz, cpu) = khz;
1674 }
1675 kvm_request_guest_time_update(vcpu);
1676 }
1677
1678 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1679 {
1680 kvm_put_guest_fpu(vcpu);
1681 kvm_x86_ops->vcpu_put(vcpu);
1682 }
1683
1684 static int is_efer_nx(void)
1685 {
1686 unsigned long long efer = 0;
1687
1688 rdmsrl_safe(MSR_EFER, &efer);
1689 return efer & EFER_NX;
1690 }
1691
1692 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1693 {
1694 int i;
1695 struct kvm_cpuid_entry2 *e, *entry;
1696
1697 entry = NULL;
1698 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1699 e = &vcpu->arch.cpuid_entries[i];
1700 if (e->function == 0x80000001) {
1701 entry = e;
1702 break;
1703 }
1704 }
1705 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1706 entry->edx &= ~(1 << 20);
1707 printk(KERN_INFO "kvm: guest NX capability removed\n");
1708 }
1709 }
1710
1711 /* when an old userspace process fills a new kernel module */
1712 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1713 struct kvm_cpuid *cpuid,
1714 struct kvm_cpuid_entry __user *entries)
1715 {
1716 int r, i;
1717 struct kvm_cpuid_entry *cpuid_entries;
1718
1719 r = -E2BIG;
1720 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1721 goto out;
1722 r = -ENOMEM;
1723 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1724 if (!cpuid_entries)
1725 goto out;
1726 r = -EFAULT;
1727 if (copy_from_user(cpuid_entries, entries,
1728 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1729 goto out_free;
1730 for (i = 0; i < cpuid->nent; i++) {
1731 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1732 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1733 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1734 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1735 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1736 vcpu->arch.cpuid_entries[i].index = 0;
1737 vcpu->arch.cpuid_entries[i].flags = 0;
1738 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1739 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1740 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1741 }
1742 vcpu->arch.cpuid_nent = cpuid->nent;
1743 cpuid_fix_nx_cap(vcpu);
1744 r = 0;
1745 kvm_apic_set_version(vcpu);
1746 kvm_x86_ops->cpuid_update(vcpu);
1747
1748 out_free:
1749 vfree(cpuid_entries);
1750 out:
1751 return r;
1752 }
1753
1754 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1755 struct kvm_cpuid2 *cpuid,
1756 struct kvm_cpuid_entry2 __user *entries)
1757 {
1758 int r;
1759
1760 r = -E2BIG;
1761 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1762 goto out;
1763 r = -EFAULT;
1764 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1765 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1766 goto out;
1767 vcpu->arch.cpuid_nent = cpuid->nent;
1768 kvm_apic_set_version(vcpu);
1769 kvm_x86_ops->cpuid_update(vcpu);
1770 return 0;
1771
1772 out:
1773 return r;
1774 }
1775
1776 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1777 struct kvm_cpuid2 *cpuid,
1778 struct kvm_cpuid_entry2 __user *entries)
1779 {
1780 int r;
1781
1782 r = -E2BIG;
1783 if (cpuid->nent < vcpu->arch.cpuid_nent)
1784 goto out;
1785 r = -EFAULT;
1786 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1787 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1788 goto out;
1789 return 0;
1790
1791 out:
1792 cpuid->nent = vcpu->arch.cpuid_nent;
1793 return r;
1794 }
1795
1796 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1797 u32 index)
1798 {
1799 entry->function = function;
1800 entry->index = index;
1801 cpuid_count(entry->function, entry->index,
1802 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1803 entry->flags = 0;
1804 }
1805
1806 #define F(x) bit(X86_FEATURE_##x)
1807
1808 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1809 u32 index, int *nent, int maxnent)
1810 {
1811 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
1812 #ifdef CONFIG_X86_64
1813 unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
1814 ? F(GBPAGES) : 0;
1815 unsigned f_lm = F(LM);
1816 #else
1817 unsigned f_gbpages = 0;
1818 unsigned f_lm = 0;
1819 #endif
1820 unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
1821
1822 /* cpuid 1.edx */
1823 const u32 kvm_supported_word0_x86_features =
1824 F(FPU) | F(VME) | F(DE) | F(PSE) |
1825 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1826 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
1827 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1828 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
1829 0 /* Reserved, DS, ACPI */ | F(MMX) |
1830 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
1831 0 /* HTT, TM, Reserved, PBE */;
1832 /* cpuid 0x80000001.edx */
1833 const u32 kvm_supported_word1_x86_features =
1834 F(FPU) | F(VME) | F(DE) | F(PSE) |
1835 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1836 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
1837 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1838 F(PAT) | F(PSE36) | 0 /* Reserved */ |
1839 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
1840 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
1841 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
1842 /* cpuid 1.ecx */
1843 const u32 kvm_supported_word4_x86_features =
1844 F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
1845 0 /* DS-CPL, VMX, SMX, EST */ |
1846 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1847 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
1848 0 /* Reserved, DCA */ | F(XMM4_1) |
1849 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
1850 0 /* Reserved, XSAVE, OSXSAVE */;
1851 /* cpuid 0x80000001.ecx */
1852 const u32 kvm_supported_word6_x86_features =
1853 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
1854 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
1855 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
1856 0 /* SKINIT */ | 0 /* WDT */;
1857
1858 /* all calls to cpuid_count() should be made on the same cpu */
1859 get_cpu();
1860 do_cpuid_1_ent(entry, function, index);
1861 ++*nent;
1862
1863 switch (function) {
1864 case 0:
1865 entry->eax = min(entry->eax, (u32)0xb);
1866 break;
1867 case 1:
1868 entry->edx &= kvm_supported_word0_x86_features;
1869 entry->ecx &= kvm_supported_word4_x86_features;
1870 /* we support x2apic emulation even if host does not support
1871 * it since we emulate x2apic in software */
1872 entry->ecx |= F(X2APIC);
1873 break;
1874 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1875 * may return different values. This forces us to get_cpu() before
1876 * issuing the first command, and also to emulate this annoying behavior
1877 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1878 case 2: {
1879 int t, times = entry->eax & 0xff;
1880
1881 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1882 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1883 for (t = 1; t < times && *nent < maxnent; ++t) {
1884 do_cpuid_1_ent(&entry[t], function, 0);
1885 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1886 ++*nent;
1887 }
1888 break;
1889 }
1890 /* function 4 and 0xb have additional index. */
1891 case 4: {
1892 int i, cache_type;
1893
1894 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1895 /* read more entries until cache_type is zero */
1896 for (i = 1; *nent < maxnent; ++i) {
1897 cache_type = entry[i - 1].eax & 0x1f;
1898 if (!cache_type)
1899 break;
1900 do_cpuid_1_ent(&entry[i], function, i);
1901 entry[i].flags |=
1902 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1903 ++*nent;
1904 }
1905 break;
1906 }
1907 case 0xb: {
1908 int i, level_type;
1909
1910 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1911 /* read more entries until level_type is zero */
1912 for (i = 1; *nent < maxnent; ++i) {
1913 level_type = entry[i - 1].ecx & 0xff00;
1914 if (!level_type)
1915 break;
1916 do_cpuid_1_ent(&entry[i], function, i);
1917 entry[i].flags |=
1918 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1919 ++*nent;
1920 }
1921 break;
1922 }
1923 case 0x80000000:
1924 entry->eax = min(entry->eax, 0x8000001a);
1925 break;
1926 case 0x80000001:
1927 entry->edx &= kvm_supported_word1_x86_features;
1928 entry->ecx &= kvm_supported_word6_x86_features;
1929 break;
1930 }
1931 put_cpu();
1932 }
1933
1934 #undef F
1935
1936 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1937 struct kvm_cpuid_entry2 __user *entries)
1938 {
1939 struct kvm_cpuid_entry2 *cpuid_entries;
1940 int limit, nent = 0, r = -E2BIG;
1941 u32 func;
1942
1943 if (cpuid->nent < 1)
1944 goto out;
1945 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1946 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1947 r = -ENOMEM;
1948 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1949 if (!cpuid_entries)
1950 goto out;
1951
1952 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1953 limit = cpuid_entries[0].eax;
1954 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1955 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1956 &nent, cpuid->nent);
1957 r = -E2BIG;
1958 if (nent >= cpuid->nent)
1959 goto out_free;
1960
1961 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1962 limit = cpuid_entries[nent - 1].eax;
1963 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1964 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1965 &nent, cpuid->nent);
1966 r = -E2BIG;
1967 if (nent >= cpuid->nent)
1968 goto out_free;
1969
1970 r = -EFAULT;
1971 if (copy_to_user(entries, cpuid_entries,
1972 nent * sizeof(struct kvm_cpuid_entry2)))
1973 goto out_free;
1974 cpuid->nent = nent;
1975 r = 0;
1976
1977 out_free:
1978 vfree(cpuid_entries);
1979 out:
1980 return r;
1981 }
1982
1983 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1984 struct kvm_lapic_state *s)
1985 {
1986 vcpu_load(vcpu);
1987 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1988 vcpu_put(vcpu);
1989
1990 return 0;
1991 }
1992
1993 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1994 struct kvm_lapic_state *s)
1995 {
1996 vcpu_load(vcpu);
1997 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1998 kvm_apic_post_state_restore(vcpu);
1999 update_cr8_intercept(vcpu);
2000 vcpu_put(vcpu);
2001
2002 return 0;
2003 }
2004
2005 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2006 struct kvm_interrupt *irq)
2007 {
2008 if (irq->irq < 0 || irq->irq >= 256)
2009 return -EINVAL;
2010 if (irqchip_in_kernel(vcpu->kvm))
2011 return -ENXIO;
2012 vcpu_load(vcpu);
2013
2014 kvm_queue_interrupt(vcpu, irq->irq, false);
2015
2016 vcpu_put(vcpu);
2017
2018 return 0;
2019 }
2020
2021 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2022 {
2023 vcpu_load(vcpu);
2024 kvm_inject_nmi(vcpu);
2025 vcpu_put(vcpu);
2026
2027 return 0;
2028 }
2029
2030 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2031 struct kvm_tpr_access_ctl *tac)
2032 {
2033 if (tac->flags)
2034 return -EINVAL;
2035 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2036 return 0;
2037 }
2038
2039 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2040 u64 mcg_cap)
2041 {
2042 int r;
2043 unsigned bank_num = mcg_cap & 0xff, bank;
2044
2045 r = -EINVAL;
2046 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2047 goto out;
2048 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2049 goto out;
2050 r = 0;
2051 vcpu->arch.mcg_cap = mcg_cap;
2052 /* Init IA32_MCG_CTL to all 1s */
2053 if (mcg_cap & MCG_CTL_P)
2054 vcpu->arch.mcg_ctl = ~(u64)0;
2055 /* Init IA32_MCi_CTL to all 1s */
2056 for (bank = 0; bank < bank_num; bank++)
2057 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2058 out:
2059 return r;
2060 }
2061
2062 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2063 struct kvm_x86_mce *mce)
2064 {
2065 u64 mcg_cap = vcpu->arch.mcg_cap;
2066 unsigned bank_num = mcg_cap & 0xff;
2067 u64 *banks = vcpu->arch.mce_banks;
2068
2069 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2070 return -EINVAL;
2071 /*
2072 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2073 * reporting is disabled
2074 */
2075 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2076 vcpu->arch.mcg_ctl != ~(u64)0)
2077 return 0;
2078 banks += 4 * mce->bank;
2079 /*
2080 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2081 * reporting is disabled for the bank
2082 */
2083 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2084 return 0;
2085 if (mce->status & MCI_STATUS_UC) {
2086 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2087 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2088 printk(KERN_DEBUG "kvm: set_mce: "
2089 "injects mce exception while "
2090 "previous one is in progress!\n");
2091 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
2092 return 0;
2093 }
2094 if (banks[1] & MCI_STATUS_VAL)
2095 mce->status |= MCI_STATUS_OVER;
2096 banks[2] = mce->addr;
2097 banks[3] = mce->misc;
2098 vcpu->arch.mcg_status = mce->mcg_status;
2099 banks[1] = mce->status;
2100 kvm_queue_exception(vcpu, MC_VECTOR);
2101 } else if (!(banks[1] & MCI_STATUS_VAL)
2102 || !(banks[1] & MCI_STATUS_UC)) {
2103 if (banks[1] & MCI_STATUS_VAL)
2104 mce->status |= MCI_STATUS_OVER;
2105 banks[2] = mce->addr;
2106 banks[3] = mce->misc;
2107 banks[1] = mce->status;
2108 } else
2109 banks[1] |= MCI_STATUS_OVER;
2110 return 0;
2111 }
2112
2113 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2114 struct kvm_vcpu_events *events)
2115 {
2116 vcpu_load(vcpu);
2117
2118 events->exception.injected = vcpu->arch.exception.pending;
2119 events->exception.nr = vcpu->arch.exception.nr;
2120 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2121 events->exception.error_code = vcpu->arch.exception.error_code;
2122
2123 events->interrupt.injected = vcpu->arch.interrupt.pending;
2124 events->interrupt.nr = vcpu->arch.interrupt.nr;
2125 events->interrupt.soft = vcpu->arch.interrupt.soft;
2126
2127 events->nmi.injected = vcpu->arch.nmi_injected;
2128 events->nmi.pending = vcpu->arch.nmi_pending;
2129 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2130
2131 events->sipi_vector = vcpu->arch.sipi_vector;
2132
2133 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2134 | KVM_VCPUEVENT_VALID_SIPI_VECTOR);
2135
2136 vcpu_put(vcpu);
2137 }
2138
2139 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2140 struct kvm_vcpu_events *events)
2141 {
2142 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2143 | KVM_VCPUEVENT_VALID_SIPI_VECTOR))
2144 return -EINVAL;
2145
2146 vcpu_load(vcpu);
2147
2148 vcpu->arch.exception.pending = events->exception.injected;
2149 vcpu->arch.exception.nr = events->exception.nr;
2150 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2151 vcpu->arch.exception.error_code = events->exception.error_code;
2152
2153 vcpu->arch.interrupt.pending = events->interrupt.injected;
2154 vcpu->arch.interrupt.nr = events->interrupt.nr;
2155 vcpu->arch.interrupt.soft = events->interrupt.soft;
2156 if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
2157 kvm_pic_clear_isr_ack(vcpu->kvm);
2158
2159 vcpu->arch.nmi_injected = events->nmi.injected;
2160 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2161 vcpu->arch.nmi_pending = events->nmi.pending;
2162 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2163
2164 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2165 vcpu->arch.sipi_vector = events->sipi_vector;
2166
2167 vcpu_put(vcpu);
2168
2169 return 0;
2170 }
2171
2172 long kvm_arch_vcpu_ioctl(struct file *filp,
2173 unsigned int ioctl, unsigned long arg)
2174 {
2175 struct kvm_vcpu *vcpu = filp->private_data;
2176 void __user *argp = (void __user *)arg;
2177 int r;
2178 struct kvm_lapic_state *lapic = NULL;
2179
2180 switch (ioctl) {
2181 case KVM_GET_LAPIC: {
2182 r = -EINVAL;
2183 if (!vcpu->arch.apic)
2184 goto out;
2185 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2186
2187 r = -ENOMEM;
2188 if (!lapic)
2189 goto out;
2190 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
2191 if (r)
2192 goto out;
2193 r = -EFAULT;
2194 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
2195 goto out;
2196 r = 0;
2197 break;
2198 }
2199 case KVM_SET_LAPIC: {
2200 r = -EINVAL;
2201 if (!vcpu->arch.apic)
2202 goto out;
2203 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2204 r = -ENOMEM;
2205 if (!lapic)
2206 goto out;
2207 r = -EFAULT;
2208 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
2209 goto out;
2210 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
2211 if (r)
2212 goto out;
2213 r = 0;
2214 break;
2215 }
2216 case KVM_INTERRUPT: {
2217 struct kvm_interrupt irq;
2218
2219 r = -EFAULT;
2220 if (copy_from_user(&irq, argp, sizeof irq))
2221 goto out;
2222 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2223 if (r)
2224 goto out;
2225 r = 0;
2226 break;
2227 }
2228 case KVM_NMI: {
2229 r = kvm_vcpu_ioctl_nmi(vcpu);
2230 if (r)
2231 goto out;
2232 r = 0;
2233 break;
2234 }
2235 case KVM_SET_CPUID: {
2236 struct kvm_cpuid __user *cpuid_arg = argp;
2237 struct kvm_cpuid cpuid;
2238
2239 r = -EFAULT;
2240 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2241 goto out;
2242 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2243 if (r)
2244 goto out;
2245 break;
2246 }
2247 case KVM_SET_CPUID2: {
2248 struct kvm_cpuid2 __user *cpuid_arg = argp;
2249 struct kvm_cpuid2 cpuid;
2250
2251 r = -EFAULT;
2252 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2253 goto out;
2254 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2255 cpuid_arg->entries);
2256 if (r)
2257 goto out;
2258 break;
2259 }
2260 case KVM_GET_CPUID2: {
2261 struct kvm_cpuid2 __user *cpuid_arg = argp;
2262 struct kvm_cpuid2 cpuid;
2263
2264 r = -EFAULT;
2265 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2266 goto out;
2267 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2268 cpuid_arg->entries);
2269 if (r)
2270 goto out;
2271 r = -EFAULT;
2272 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2273 goto out;
2274 r = 0;
2275 break;
2276 }
2277 case KVM_GET_MSRS:
2278 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2279 break;
2280 case KVM_SET_MSRS:
2281 r = msr_io(vcpu, argp, do_set_msr, 0);
2282 break;
2283 case KVM_TPR_ACCESS_REPORTING: {
2284 struct kvm_tpr_access_ctl tac;
2285
2286 r = -EFAULT;
2287 if (copy_from_user(&tac, argp, sizeof tac))
2288 goto out;
2289 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2290 if (r)
2291 goto out;
2292 r = -EFAULT;
2293 if (copy_to_user(argp, &tac, sizeof tac))
2294 goto out;
2295 r = 0;
2296 break;
2297 };
2298 case KVM_SET_VAPIC_ADDR: {
2299 struct kvm_vapic_addr va;
2300
2301 r = -EINVAL;
2302 if (!irqchip_in_kernel(vcpu->kvm))
2303 goto out;
2304 r = -EFAULT;
2305 if (copy_from_user(&va, argp, sizeof va))
2306 goto out;
2307 r = 0;
2308 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2309 break;
2310 }
2311 case KVM_X86_SETUP_MCE: {
2312 u64 mcg_cap;
2313
2314 r = -EFAULT;
2315 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2316 goto out;
2317 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2318 break;
2319 }
2320 case KVM_X86_SET_MCE: {
2321 struct kvm_x86_mce mce;
2322
2323 r = -EFAULT;
2324 if (copy_from_user(&mce, argp, sizeof mce))
2325 goto out;
2326 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2327 break;
2328 }
2329 case KVM_GET_VCPU_EVENTS: {
2330 struct kvm_vcpu_events events;
2331
2332 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2333
2334 r = -EFAULT;
2335 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2336 break;
2337 r = 0;
2338 break;
2339 }
2340 case KVM_SET_VCPU_EVENTS: {
2341 struct kvm_vcpu_events events;
2342
2343 r = -EFAULT;
2344 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2345 break;
2346
2347 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2348 break;
2349 }
2350 default:
2351 r = -EINVAL;
2352 }
2353 out:
2354 kfree(lapic);
2355 return r;
2356 }
2357
2358 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2359 {
2360 int ret;
2361
2362 if (addr > (unsigned int)(-3 * PAGE_SIZE))
2363 return -1;
2364 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2365 return ret;
2366 }
2367
2368 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2369 u64 ident_addr)
2370 {
2371 kvm->arch.ept_identity_map_addr = ident_addr;
2372 return 0;
2373 }
2374
2375 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2376 u32 kvm_nr_mmu_pages)
2377 {
2378 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2379 return -EINVAL;
2380
2381 mutex_lock(&kvm->slots_lock);
2382 spin_lock(&kvm->mmu_lock);
2383
2384 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2385 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2386
2387 spin_unlock(&kvm->mmu_lock);
2388 mutex_unlock(&kvm->slots_lock);
2389 return 0;
2390 }
2391
2392 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2393 {
2394 return kvm->arch.n_alloc_mmu_pages;
2395 }
2396
2397 gfn_t unalias_gfn_instantiation(struct kvm *kvm, gfn_t gfn)
2398 {
2399 int i;
2400 struct kvm_mem_alias *alias;
2401 struct kvm_mem_aliases *aliases;
2402
2403 aliases = rcu_dereference(kvm->arch.aliases);
2404
2405 for (i = 0; i < aliases->naliases; ++i) {
2406 alias = &aliases->aliases[i];
2407 if (alias->flags & KVM_ALIAS_INVALID)
2408 continue;
2409 if (gfn >= alias->base_gfn
2410 && gfn < alias->base_gfn + alias->npages)
2411 return alias->target_gfn + gfn - alias->base_gfn;
2412 }
2413 return gfn;
2414 }
2415
2416 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
2417 {
2418 int i;
2419 struct kvm_mem_alias *alias;
2420 struct kvm_mem_aliases *aliases;
2421
2422 aliases = rcu_dereference(kvm->arch.aliases);
2423
2424 for (i = 0; i < aliases->naliases; ++i) {
2425 alias = &aliases->aliases[i];
2426 if (gfn >= alias->base_gfn
2427 && gfn < alias->base_gfn + alias->npages)
2428 return alias->target_gfn + gfn - alias->base_gfn;
2429 }
2430 return gfn;
2431 }
2432
2433 /*
2434 * Set a new alias region. Aliases map a portion of physical memory into
2435 * another portion. This is useful for memory windows, for example the PC
2436 * VGA region.
2437 */
2438 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
2439 struct kvm_memory_alias *alias)
2440 {
2441 int r, n;
2442 struct kvm_mem_alias *p;
2443 struct kvm_mem_aliases *aliases, *old_aliases;
2444
2445 r = -EINVAL;
2446 /* General sanity checks */
2447 if (alias->memory_size & (PAGE_SIZE - 1))
2448 goto out;
2449 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
2450 goto out;
2451 if (alias->slot >= KVM_ALIAS_SLOTS)
2452 goto out;
2453 if (alias->guest_phys_addr + alias->memory_size
2454 < alias->guest_phys_addr)
2455 goto out;
2456 if (alias->target_phys_addr + alias->memory_size
2457 < alias->target_phys_addr)
2458 goto out;
2459
2460 r = -ENOMEM;
2461 aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
2462 if (!aliases)
2463 goto out;
2464
2465 mutex_lock(&kvm->slots_lock);
2466
2467 /* invalidate any gfn reference in case of deletion/shrinking */
2468 memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
2469 aliases->aliases[alias->slot].flags |= KVM_ALIAS_INVALID;
2470 old_aliases = kvm->arch.aliases;
2471 rcu_assign_pointer(kvm->arch.aliases, aliases);
2472 synchronize_srcu_expedited(&kvm->srcu);
2473 kvm_mmu_zap_all(kvm);
2474 kfree(old_aliases);
2475
2476 r = -ENOMEM;
2477 aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
2478 if (!aliases)
2479 goto out_unlock;
2480
2481 memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
2482
2483 p = &aliases->aliases[alias->slot];
2484 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
2485 p->npages = alias->memory_size >> PAGE_SHIFT;
2486 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
2487 p->flags &= ~(KVM_ALIAS_INVALID);
2488
2489 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
2490 if (aliases->aliases[n - 1].npages)
2491 break;
2492 aliases->naliases = n;
2493
2494 old_aliases = kvm->arch.aliases;
2495 rcu_assign_pointer(kvm->arch.aliases, aliases);
2496 synchronize_srcu_expedited(&kvm->srcu);
2497 kfree(old_aliases);
2498 r = 0;
2499
2500 out_unlock:
2501 mutex_unlock(&kvm->slots_lock);
2502 out:
2503 return r;
2504 }
2505
2506 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2507 {
2508 int r;
2509
2510 r = 0;
2511 switch (chip->chip_id) {
2512 case KVM_IRQCHIP_PIC_MASTER:
2513 memcpy(&chip->chip.pic,
2514 &pic_irqchip(kvm)->pics[0],
2515 sizeof(struct kvm_pic_state));
2516 break;
2517 case KVM_IRQCHIP_PIC_SLAVE:
2518 memcpy(&chip->chip.pic,
2519 &pic_irqchip(kvm)->pics[1],
2520 sizeof(struct kvm_pic_state));
2521 break;
2522 case KVM_IRQCHIP_IOAPIC:
2523 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2524 break;
2525 default:
2526 r = -EINVAL;
2527 break;
2528 }
2529 return r;
2530 }
2531
2532 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2533 {
2534 int r;
2535
2536 r = 0;
2537 switch (chip->chip_id) {
2538 case KVM_IRQCHIP_PIC_MASTER:
2539 spin_lock(&pic_irqchip(kvm)->lock);
2540 memcpy(&pic_irqchip(kvm)->pics[0],
2541 &chip->chip.pic,
2542 sizeof(struct kvm_pic_state));
2543 spin_unlock(&pic_irqchip(kvm)->lock);
2544 break;
2545 case KVM_IRQCHIP_PIC_SLAVE:
2546 spin_lock(&pic_irqchip(kvm)->lock);
2547 memcpy(&pic_irqchip(kvm)->pics[1],
2548 &chip->chip.pic,
2549 sizeof(struct kvm_pic_state));
2550 spin_unlock(&pic_irqchip(kvm)->lock);
2551 break;
2552 case KVM_IRQCHIP_IOAPIC:
2553 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
2554 break;
2555 default:
2556 r = -EINVAL;
2557 break;
2558 }
2559 kvm_pic_update_irq(pic_irqchip(kvm));
2560 return r;
2561 }
2562
2563 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2564 {
2565 int r = 0;
2566
2567 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2568 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2569 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2570 return r;
2571 }
2572
2573 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2574 {
2575 int r = 0;
2576
2577 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2578 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2579 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2580 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2581 return r;
2582 }
2583
2584 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2585 {
2586 int r = 0;
2587
2588 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2589 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2590 sizeof(ps->channels));
2591 ps->flags = kvm->arch.vpit->pit_state.flags;
2592 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2593 return r;
2594 }
2595
2596 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2597 {
2598 int r = 0, start = 0;
2599 u32 prev_legacy, cur_legacy;
2600 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2601 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2602 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2603 if (!prev_legacy && cur_legacy)
2604 start = 1;
2605 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2606 sizeof(kvm->arch.vpit->pit_state.channels));
2607 kvm->arch.vpit->pit_state.flags = ps->flags;
2608 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2609 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2610 return r;
2611 }
2612
2613 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2614 struct kvm_reinject_control *control)
2615 {
2616 if (!kvm->arch.vpit)
2617 return -ENXIO;
2618 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2619 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2620 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2621 return 0;
2622 }
2623
2624 /*
2625 * Get (and clear) the dirty memory log for a memory slot.
2626 */
2627 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2628 struct kvm_dirty_log *log)
2629 {
2630 int r, n, i;
2631 struct kvm_memory_slot *memslot;
2632 unsigned long is_dirty = 0;
2633 unsigned long *dirty_bitmap = NULL;
2634
2635 mutex_lock(&kvm->slots_lock);
2636
2637 r = -EINVAL;
2638 if (log->slot >= KVM_MEMORY_SLOTS)
2639 goto out;
2640
2641 memslot = &kvm->memslots->memslots[log->slot];
2642 r = -ENOENT;
2643 if (!memslot->dirty_bitmap)
2644 goto out;
2645
2646 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
2647
2648 r = -ENOMEM;
2649 dirty_bitmap = vmalloc(n);
2650 if (!dirty_bitmap)
2651 goto out;
2652 memset(dirty_bitmap, 0, n);
2653
2654 for (i = 0; !is_dirty && i < n/sizeof(long); i++)
2655 is_dirty = memslot->dirty_bitmap[i];
2656
2657 /* If nothing is dirty, don't bother messing with page tables. */
2658 if (is_dirty) {
2659 struct kvm_memslots *slots, *old_slots;
2660
2661 spin_lock(&kvm->mmu_lock);
2662 kvm_mmu_slot_remove_write_access(kvm, log->slot);
2663 spin_unlock(&kvm->mmu_lock);
2664
2665 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
2666 if (!slots)
2667 goto out_free;
2668
2669 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
2670 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
2671
2672 old_slots = kvm->memslots;
2673 rcu_assign_pointer(kvm->memslots, slots);
2674 synchronize_srcu_expedited(&kvm->srcu);
2675 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
2676 kfree(old_slots);
2677 }
2678
2679 r = 0;
2680 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
2681 r = -EFAULT;
2682 out_free:
2683 vfree(dirty_bitmap);
2684 out:
2685 mutex_unlock(&kvm->slots_lock);
2686 return r;
2687 }
2688
2689 long kvm_arch_vm_ioctl(struct file *filp,
2690 unsigned int ioctl, unsigned long arg)
2691 {
2692 struct kvm *kvm = filp->private_data;
2693 void __user *argp = (void __user *)arg;
2694 int r = -ENOTTY;
2695 /*
2696 * This union makes it completely explicit to gcc-3.x
2697 * that these two variables' stack usage should be
2698 * combined, not added together.
2699 */
2700 union {
2701 struct kvm_pit_state ps;
2702 struct kvm_pit_state2 ps2;
2703 struct kvm_memory_alias alias;
2704 struct kvm_pit_config pit_config;
2705 } u;
2706
2707 switch (ioctl) {
2708 case KVM_SET_TSS_ADDR:
2709 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
2710 if (r < 0)
2711 goto out;
2712 break;
2713 case KVM_SET_IDENTITY_MAP_ADDR: {
2714 u64 ident_addr;
2715
2716 r = -EFAULT;
2717 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
2718 goto out;
2719 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
2720 if (r < 0)
2721 goto out;
2722 break;
2723 }
2724 case KVM_SET_MEMORY_REGION: {
2725 struct kvm_memory_region kvm_mem;
2726 struct kvm_userspace_memory_region kvm_userspace_mem;
2727
2728 r = -EFAULT;
2729 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2730 goto out;
2731 kvm_userspace_mem.slot = kvm_mem.slot;
2732 kvm_userspace_mem.flags = kvm_mem.flags;
2733 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
2734 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
2735 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
2736 if (r)
2737 goto out;
2738 break;
2739 }
2740 case KVM_SET_NR_MMU_PAGES:
2741 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
2742 if (r)
2743 goto out;
2744 break;
2745 case KVM_GET_NR_MMU_PAGES:
2746 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
2747 break;
2748 case KVM_SET_MEMORY_ALIAS:
2749 r = -EFAULT;
2750 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
2751 goto out;
2752 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
2753 if (r)
2754 goto out;
2755 break;
2756 case KVM_CREATE_IRQCHIP: {
2757 struct kvm_pic *vpic;
2758
2759 mutex_lock(&kvm->lock);
2760 r = -EEXIST;
2761 if (kvm->arch.vpic)
2762 goto create_irqchip_unlock;
2763 r = -ENOMEM;
2764 vpic = kvm_create_pic(kvm);
2765 if (vpic) {
2766 r = kvm_ioapic_init(kvm);
2767 if (r) {
2768 kfree(vpic);
2769 goto create_irqchip_unlock;
2770 }
2771 } else
2772 goto create_irqchip_unlock;
2773 smp_wmb();
2774 kvm->arch.vpic = vpic;
2775 smp_wmb();
2776 r = kvm_setup_default_irq_routing(kvm);
2777 if (r) {
2778 mutex_lock(&kvm->irq_lock);
2779 kfree(kvm->arch.vpic);
2780 kfree(kvm->arch.vioapic);
2781 kvm->arch.vpic = NULL;
2782 kvm->arch.vioapic = NULL;
2783 mutex_unlock(&kvm->irq_lock);
2784 }
2785 create_irqchip_unlock:
2786 mutex_unlock(&kvm->lock);
2787 break;
2788 }
2789 case KVM_CREATE_PIT:
2790 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
2791 goto create_pit;
2792 case KVM_CREATE_PIT2:
2793 r = -EFAULT;
2794 if (copy_from_user(&u.pit_config, argp,
2795 sizeof(struct kvm_pit_config)))
2796 goto out;
2797 create_pit:
2798 mutex_lock(&kvm->slots_lock);
2799 r = -EEXIST;
2800 if (kvm->arch.vpit)
2801 goto create_pit_unlock;
2802 r = -ENOMEM;
2803 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
2804 if (kvm->arch.vpit)
2805 r = 0;
2806 create_pit_unlock:
2807 mutex_unlock(&kvm->slots_lock);
2808 break;
2809 case KVM_IRQ_LINE_STATUS:
2810 case KVM_IRQ_LINE: {
2811 struct kvm_irq_level irq_event;
2812
2813 r = -EFAULT;
2814 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2815 goto out;
2816 if (irqchip_in_kernel(kvm)) {
2817 __s32 status;
2818 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2819 irq_event.irq, irq_event.level);
2820 if (ioctl == KVM_IRQ_LINE_STATUS) {
2821 irq_event.status = status;
2822 if (copy_to_user(argp, &irq_event,
2823 sizeof irq_event))
2824 goto out;
2825 }
2826 r = 0;
2827 }
2828 break;
2829 }
2830 case KVM_GET_IRQCHIP: {
2831 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2832 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2833
2834 r = -ENOMEM;
2835 if (!chip)
2836 goto out;
2837 r = -EFAULT;
2838 if (copy_from_user(chip, argp, sizeof *chip))
2839 goto get_irqchip_out;
2840 r = -ENXIO;
2841 if (!irqchip_in_kernel(kvm))
2842 goto get_irqchip_out;
2843 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
2844 if (r)
2845 goto get_irqchip_out;
2846 r = -EFAULT;
2847 if (copy_to_user(argp, chip, sizeof *chip))
2848 goto get_irqchip_out;
2849 r = 0;
2850 get_irqchip_out:
2851 kfree(chip);
2852 if (r)
2853 goto out;
2854 break;
2855 }
2856 case KVM_SET_IRQCHIP: {
2857 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2858 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2859
2860 r = -ENOMEM;
2861 if (!chip)
2862 goto out;
2863 r = -EFAULT;
2864 if (copy_from_user(chip, argp, sizeof *chip))
2865 goto set_irqchip_out;
2866 r = -ENXIO;
2867 if (!irqchip_in_kernel(kvm))
2868 goto set_irqchip_out;
2869 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
2870 if (r)
2871 goto set_irqchip_out;
2872 r = 0;
2873 set_irqchip_out:
2874 kfree(chip);
2875 if (r)
2876 goto out;
2877 break;
2878 }
2879 case KVM_GET_PIT: {
2880 r = -EFAULT;
2881 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
2882 goto out;
2883 r = -ENXIO;
2884 if (!kvm->arch.vpit)
2885 goto out;
2886 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
2887 if (r)
2888 goto out;
2889 r = -EFAULT;
2890 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
2891 goto out;
2892 r = 0;
2893 break;
2894 }
2895 case KVM_SET_PIT: {
2896 r = -EFAULT;
2897 if (copy_from_user(&u.ps, argp, sizeof u.ps))
2898 goto out;
2899 r = -ENXIO;
2900 if (!kvm->arch.vpit)
2901 goto out;
2902 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
2903 if (r)
2904 goto out;
2905 r = 0;
2906 break;
2907 }
2908 case KVM_GET_PIT2: {
2909 r = -ENXIO;
2910 if (!kvm->arch.vpit)
2911 goto out;
2912 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
2913 if (r)
2914 goto out;
2915 r = -EFAULT;
2916 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
2917 goto out;
2918 r = 0;
2919 break;
2920 }
2921 case KVM_SET_PIT2: {
2922 r = -EFAULT;
2923 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
2924 goto out;
2925 r = -ENXIO;
2926 if (!kvm->arch.vpit)
2927 goto out;
2928 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
2929 if (r)
2930 goto out;
2931 r = 0;
2932 break;
2933 }
2934 case KVM_REINJECT_CONTROL: {
2935 struct kvm_reinject_control control;
2936 r = -EFAULT;
2937 if (copy_from_user(&control, argp, sizeof(control)))
2938 goto out;
2939 r = kvm_vm_ioctl_reinject(kvm, &control);
2940 if (r)
2941 goto out;
2942 r = 0;
2943 break;
2944 }
2945 case KVM_XEN_HVM_CONFIG: {
2946 r = -EFAULT;
2947 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
2948 sizeof(struct kvm_xen_hvm_config)))
2949 goto out;
2950 r = -EINVAL;
2951 if (kvm->arch.xen_hvm_config.flags)
2952 goto out;
2953 r = 0;
2954 break;
2955 }
2956 case KVM_SET_CLOCK: {
2957 struct timespec now;
2958 struct kvm_clock_data user_ns;
2959 u64 now_ns;
2960 s64 delta;
2961
2962 r = -EFAULT;
2963 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
2964 goto out;
2965
2966 r = -EINVAL;
2967 if (user_ns.flags)
2968 goto out;
2969
2970 r = 0;
2971 ktime_get_ts(&now);
2972 now_ns = timespec_to_ns(&now);
2973 delta = user_ns.clock - now_ns;
2974 kvm->arch.kvmclock_offset = delta;
2975 break;
2976 }
2977 case KVM_GET_CLOCK: {
2978 struct timespec now;
2979 struct kvm_clock_data user_ns;
2980 u64 now_ns;
2981
2982 ktime_get_ts(&now);
2983 now_ns = timespec_to_ns(&now);
2984 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
2985 user_ns.flags = 0;
2986
2987 r = -EFAULT;
2988 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
2989 goto out;
2990 r = 0;
2991 break;
2992 }
2993
2994 default:
2995 ;
2996 }
2997 out:
2998 return r;
2999 }
3000
3001 static void kvm_init_msr_list(void)
3002 {
3003 u32 dummy[2];
3004 unsigned i, j;
3005
3006 /* skip the first msrs in the list. KVM-specific */
3007 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3008 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3009 continue;
3010 if (j < i)
3011 msrs_to_save[j] = msrs_to_save[i];
3012 j++;
3013 }
3014 num_msrs_to_save = j;
3015 }
3016
3017 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3018 const void *v)
3019 {
3020 if (vcpu->arch.apic &&
3021 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
3022 return 0;
3023
3024 return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3025 }
3026
3027 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3028 {
3029 if (vcpu->arch.apic &&
3030 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
3031 return 0;
3032
3033 return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3034 }
3035
3036 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
3037 struct kvm_vcpu *vcpu)
3038 {
3039 void *data = val;
3040 int r = X86EMUL_CONTINUE;
3041
3042 while (bytes) {
3043 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
3044 unsigned offset = addr & (PAGE_SIZE-1);
3045 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3046 int ret;
3047
3048 if (gpa == UNMAPPED_GVA) {
3049 r = X86EMUL_PROPAGATE_FAULT;
3050 goto out;
3051 }
3052 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3053 if (ret < 0) {
3054 r = X86EMUL_UNHANDLEABLE;
3055 goto out;
3056 }
3057
3058 bytes -= toread;
3059 data += toread;
3060 addr += toread;
3061 }
3062 out:
3063 return r;
3064 }
3065
3066 static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
3067 struct kvm_vcpu *vcpu)
3068 {
3069 void *data = val;
3070 int r = X86EMUL_CONTINUE;
3071
3072 while (bytes) {
3073 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
3074 unsigned offset = addr & (PAGE_SIZE-1);
3075 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3076 int ret;
3077
3078 if (gpa == UNMAPPED_GVA) {
3079 r = X86EMUL_PROPAGATE_FAULT;
3080 goto out;
3081 }
3082 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3083 if (ret < 0) {
3084 r = X86EMUL_UNHANDLEABLE;
3085 goto out;
3086 }
3087
3088 bytes -= towrite;
3089 data += towrite;
3090 addr += towrite;
3091 }
3092 out:
3093 return r;
3094 }
3095
3096
3097 static int emulator_read_emulated(unsigned long addr,
3098 void *val,
3099 unsigned int bytes,
3100 struct kvm_vcpu *vcpu)
3101 {
3102 gpa_t gpa;
3103
3104 if (vcpu->mmio_read_completed) {
3105 memcpy(val, vcpu->mmio_data, bytes);
3106 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3107 vcpu->mmio_phys_addr, *(u64 *)val);
3108 vcpu->mmio_read_completed = 0;
3109 return X86EMUL_CONTINUE;
3110 }
3111
3112 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
3113
3114 /* For APIC access vmexit */
3115 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3116 goto mmio;
3117
3118 if (kvm_read_guest_virt(addr, val, bytes, vcpu)
3119 == X86EMUL_CONTINUE)
3120 return X86EMUL_CONTINUE;
3121 if (gpa == UNMAPPED_GVA)
3122 return X86EMUL_PROPAGATE_FAULT;
3123
3124 mmio:
3125 /*
3126 * Is this MMIO handled locally?
3127 */
3128 if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
3129 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
3130 return X86EMUL_CONTINUE;
3131 }
3132
3133 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3134
3135 vcpu->mmio_needed = 1;
3136 vcpu->mmio_phys_addr = gpa;
3137 vcpu->mmio_size = bytes;
3138 vcpu->mmio_is_write = 0;
3139
3140 return X86EMUL_UNHANDLEABLE;
3141 }
3142
3143 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3144 const void *val, int bytes)
3145 {
3146 int ret;
3147
3148 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3149 if (ret < 0)
3150 return 0;
3151 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3152 return 1;
3153 }
3154
3155 static int emulator_write_emulated_onepage(unsigned long addr,
3156 const void *val,
3157 unsigned int bytes,
3158 struct kvm_vcpu *vcpu)
3159 {
3160 gpa_t gpa;
3161
3162 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
3163
3164 if (gpa == UNMAPPED_GVA) {
3165 kvm_inject_page_fault(vcpu, addr, 2);
3166 return X86EMUL_PROPAGATE_FAULT;
3167 }
3168
3169 /* For APIC access vmexit */
3170 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3171 goto mmio;
3172
3173 if (emulator_write_phys(vcpu, gpa, val, bytes))
3174 return X86EMUL_CONTINUE;
3175
3176 mmio:
3177 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3178 /*
3179 * Is this MMIO handled locally?
3180 */
3181 if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
3182 return X86EMUL_CONTINUE;
3183
3184 vcpu->mmio_needed = 1;
3185 vcpu->mmio_phys_addr = gpa;
3186 vcpu->mmio_size = bytes;
3187 vcpu->mmio_is_write = 1;
3188 memcpy(vcpu->mmio_data, val, bytes);
3189
3190 return X86EMUL_CONTINUE;
3191 }
3192
3193 int emulator_write_emulated(unsigned long addr,
3194 const void *val,
3195 unsigned int bytes,
3196 struct kvm_vcpu *vcpu)
3197 {
3198 /* Crossing a page boundary? */
3199 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3200 int rc, now;
3201
3202 now = -addr & ~PAGE_MASK;
3203 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
3204 if (rc != X86EMUL_CONTINUE)
3205 return rc;
3206 addr += now;
3207 val += now;
3208 bytes -= now;
3209 }
3210 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
3211 }
3212 EXPORT_SYMBOL_GPL(emulator_write_emulated);
3213
3214 static int emulator_cmpxchg_emulated(unsigned long addr,
3215 const void *old,
3216 const void *new,
3217 unsigned int bytes,
3218 struct kvm_vcpu *vcpu)
3219 {
3220 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3221 #ifndef CONFIG_X86_64
3222 /* guests cmpxchg8b have to be emulated atomically */
3223 if (bytes == 8) {
3224 gpa_t gpa;
3225 struct page *page;
3226 char *kaddr;
3227 u64 val;
3228
3229 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
3230
3231 if (gpa == UNMAPPED_GVA ||
3232 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3233 goto emul_write;
3234
3235 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3236 goto emul_write;
3237
3238 val = *(u64 *)new;
3239
3240 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3241
3242 kaddr = kmap_atomic(page, KM_USER0);
3243 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
3244 kunmap_atomic(kaddr, KM_USER0);
3245 kvm_release_page_dirty(page);
3246 }
3247 emul_write:
3248 #endif
3249
3250 return emulator_write_emulated(addr, new, bytes, vcpu);
3251 }
3252
3253 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
3254 {
3255 return kvm_x86_ops->get_segment_base(vcpu, seg);
3256 }
3257
3258 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
3259 {
3260 kvm_mmu_invlpg(vcpu, address);
3261 return X86EMUL_CONTINUE;
3262 }
3263
3264 int emulate_clts(struct kvm_vcpu *vcpu)
3265 {
3266 kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3267 return X86EMUL_CONTINUE;
3268 }
3269
3270 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
3271 {
3272 struct kvm_vcpu *vcpu = ctxt->vcpu;
3273
3274 switch (dr) {
3275 case 0 ... 3:
3276 *dest = kvm_x86_ops->get_dr(vcpu, dr);
3277 return X86EMUL_CONTINUE;
3278 default:
3279 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
3280 return X86EMUL_UNHANDLEABLE;
3281 }
3282 }
3283
3284 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
3285 {
3286 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
3287 int exception;
3288
3289 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
3290 if (exception) {
3291 /* FIXME: better handling */
3292 return X86EMUL_UNHANDLEABLE;
3293 }
3294 return X86EMUL_CONTINUE;
3295 }
3296
3297 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
3298 {
3299 u8 opcodes[4];
3300 unsigned long rip = kvm_rip_read(vcpu);
3301 unsigned long rip_linear;
3302
3303 if (!printk_ratelimit())
3304 return;
3305
3306 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
3307
3308 kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
3309
3310 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
3311 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
3312 }
3313 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
3314
3315 static struct x86_emulate_ops emulate_ops = {
3316 .read_std = kvm_read_guest_virt,
3317 .read_emulated = emulator_read_emulated,
3318 .write_emulated = emulator_write_emulated,
3319 .cmpxchg_emulated = emulator_cmpxchg_emulated,
3320 };
3321
3322 static void cache_all_regs(struct kvm_vcpu *vcpu)
3323 {
3324 kvm_register_read(vcpu, VCPU_REGS_RAX);
3325 kvm_register_read(vcpu, VCPU_REGS_RSP);
3326 kvm_register_read(vcpu, VCPU_REGS_RIP);
3327 vcpu->arch.regs_dirty = ~0;
3328 }
3329
3330 int emulate_instruction(struct kvm_vcpu *vcpu,
3331 unsigned long cr2,
3332 u16 error_code,
3333 int emulation_type)
3334 {
3335 int r, shadow_mask;
3336 struct decode_cache *c;
3337 struct kvm_run *run = vcpu->run;
3338
3339 kvm_clear_exception_queue(vcpu);
3340 vcpu->arch.mmio_fault_cr2 = cr2;
3341 /*
3342 * TODO: fix emulate.c to use guest_read/write_register
3343 * instead of direct ->regs accesses, can save hundred cycles
3344 * on Intel for instructions that don't read/change RSP, for
3345 * for example.
3346 */
3347 cache_all_regs(vcpu);
3348
3349 vcpu->mmio_is_write = 0;
3350 vcpu->arch.pio.string = 0;
3351
3352 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
3353 int cs_db, cs_l;
3354 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
3355
3356 vcpu->arch.emulate_ctxt.vcpu = vcpu;
3357 vcpu->arch.emulate_ctxt.eflags = kvm_get_rflags(vcpu);
3358 vcpu->arch.emulate_ctxt.mode =
3359 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
3360 ? X86EMUL_MODE_REAL : cs_l
3361 ? X86EMUL_MODE_PROT64 : cs_db
3362 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
3363
3364 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
3365
3366 /* Only allow emulation of specific instructions on #UD
3367 * (namely VMMCALL, sysenter, sysexit, syscall)*/
3368 c = &vcpu->arch.emulate_ctxt.decode;
3369 if (emulation_type & EMULTYPE_TRAP_UD) {
3370 if (!c->twobyte)
3371 return EMULATE_FAIL;
3372 switch (c->b) {
3373 case 0x01: /* VMMCALL */
3374 if (c->modrm_mod != 3 || c->modrm_rm != 1)
3375 return EMULATE_FAIL;
3376 break;
3377 case 0x34: /* sysenter */
3378 case 0x35: /* sysexit */
3379 if (c->modrm_mod != 0 || c->modrm_rm != 0)
3380 return EMULATE_FAIL;
3381 break;
3382 case 0x05: /* syscall */
3383 if (c->modrm_mod != 0 || c->modrm_rm != 0)
3384 return EMULATE_FAIL;
3385 break;
3386 default:
3387 return EMULATE_FAIL;
3388 }
3389
3390 if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
3391 return EMULATE_FAIL;
3392 }
3393
3394 ++vcpu->stat.insn_emulation;
3395 if (r) {
3396 ++vcpu->stat.insn_emulation_fail;
3397 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
3398 return EMULATE_DONE;
3399 return EMULATE_FAIL;
3400 }
3401 }
3402
3403 if (emulation_type & EMULTYPE_SKIP) {
3404 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
3405 return EMULATE_DONE;
3406 }
3407
3408 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
3409 shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
3410
3411 if (r == 0)
3412 kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
3413
3414 if (vcpu->arch.pio.string)
3415 return EMULATE_DO_MMIO;
3416
3417 if ((r || vcpu->mmio_is_write) && run) {
3418 run->exit_reason = KVM_EXIT_MMIO;
3419 run->mmio.phys_addr = vcpu->mmio_phys_addr;
3420 memcpy(run->mmio.data, vcpu->mmio_data, 8);
3421 run->mmio.len = vcpu->mmio_size;
3422 run->mmio.is_write = vcpu->mmio_is_write;
3423 }
3424
3425 if (r) {
3426 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
3427 return EMULATE_DONE;
3428 if (!vcpu->mmio_needed) {
3429 kvm_report_emulation_failure(vcpu, "mmio");
3430 return EMULATE_FAIL;
3431 }
3432 return EMULATE_DO_MMIO;
3433 }
3434
3435 kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
3436
3437 if (vcpu->mmio_is_write) {
3438 vcpu->mmio_needed = 0;
3439 return EMULATE_DO_MMIO;
3440 }
3441
3442 return EMULATE_DONE;
3443 }
3444 EXPORT_SYMBOL_GPL(emulate_instruction);
3445
3446 static int pio_copy_data(struct kvm_vcpu *vcpu)
3447 {
3448 void *p = vcpu->arch.pio_data;
3449 gva_t q = vcpu->arch.pio.guest_gva;
3450 unsigned bytes;
3451 int ret;
3452
3453 bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
3454 if (vcpu->arch.pio.in)
3455 ret = kvm_write_guest_virt(q, p, bytes, vcpu);
3456 else
3457 ret = kvm_read_guest_virt(q, p, bytes, vcpu);
3458 return ret;
3459 }
3460
3461 int complete_pio(struct kvm_vcpu *vcpu)
3462 {
3463 struct kvm_pio_request *io = &vcpu->arch.pio;
3464 long delta;
3465 int r;
3466 unsigned long val;
3467
3468 if (!io->string) {
3469 if (io->in) {
3470 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
3471 memcpy(&val, vcpu->arch.pio_data, io->size);
3472 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
3473 }
3474 } else {
3475 if (io->in) {
3476 r = pio_copy_data(vcpu);
3477 if (r)
3478 return r;
3479 }
3480
3481 delta = 1;
3482 if (io->rep) {
3483 delta *= io->cur_count;
3484 /*
3485 * The size of the register should really depend on
3486 * current address size.
3487 */
3488 val = kvm_register_read(vcpu, VCPU_REGS_RCX);
3489 val -= delta;
3490 kvm_register_write(vcpu, VCPU_REGS_RCX, val);
3491 }
3492 if (io->down)
3493 delta = -delta;
3494 delta *= io->size;
3495 if (io->in) {
3496 val = kvm_register_read(vcpu, VCPU_REGS_RDI);
3497 val += delta;
3498 kvm_register_write(vcpu, VCPU_REGS_RDI, val);
3499 } else {
3500 val = kvm_register_read(vcpu, VCPU_REGS_RSI);
3501 val += delta;
3502 kvm_register_write(vcpu, VCPU_REGS_RSI, val);
3503 }
3504 }
3505
3506 io->count -= io->cur_count;
3507 io->cur_count = 0;
3508
3509 return 0;
3510 }
3511
3512 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3513 {
3514 /* TODO: String I/O for in kernel device */
3515 int r;
3516
3517 if (vcpu->arch.pio.in)
3518 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3519 vcpu->arch.pio.size, pd);
3520 else
3521 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3522 vcpu->arch.pio.port, vcpu->arch.pio.size,
3523 pd);
3524 return r;
3525 }
3526
3527 static int pio_string_write(struct kvm_vcpu *vcpu)
3528 {
3529 struct kvm_pio_request *io = &vcpu->arch.pio;
3530 void *pd = vcpu->arch.pio_data;
3531 int i, r = 0;
3532
3533 for (i = 0; i < io->cur_count; i++) {
3534 if (kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3535 io->port, io->size, pd)) {
3536 r = -EOPNOTSUPP;
3537 break;
3538 }
3539 pd += io->size;
3540 }
3541 return r;
3542 }
3543
3544 int kvm_emulate_pio(struct kvm_vcpu *vcpu, int in, int size, unsigned port)
3545 {
3546 unsigned long val;
3547
3548 vcpu->run->exit_reason = KVM_EXIT_IO;
3549 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3550 vcpu->run->io.size = vcpu->arch.pio.size = size;
3551 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3552 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
3553 vcpu->run->io.port = vcpu->arch.pio.port = port;
3554 vcpu->arch.pio.in = in;
3555 vcpu->arch.pio.string = 0;
3556 vcpu->arch.pio.down = 0;
3557 vcpu->arch.pio.rep = 0;
3558
3559 trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
3560 size, 1);
3561
3562 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
3563 memcpy(vcpu->arch.pio_data, &val, 4);
3564
3565 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3566 complete_pio(vcpu);
3567 return 1;
3568 }
3569 return 0;
3570 }
3571 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
3572
3573 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, int in,
3574 int size, unsigned long count, int down,
3575 gva_t address, int rep, unsigned port)
3576 {
3577 unsigned now, in_page;
3578 int ret = 0;
3579
3580 vcpu->run->exit_reason = KVM_EXIT_IO;
3581 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3582 vcpu->run->io.size = vcpu->arch.pio.size = size;
3583 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3584 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
3585 vcpu->run->io.port = vcpu->arch.pio.port = port;
3586 vcpu->arch.pio.in = in;
3587 vcpu->arch.pio.string = 1;
3588 vcpu->arch.pio.down = down;
3589 vcpu->arch.pio.rep = rep;
3590
3591 trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
3592 size, count);
3593
3594 if (!count) {
3595 kvm_x86_ops->skip_emulated_instruction(vcpu);
3596 return 1;
3597 }
3598
3599 if (!down)
3600 in_page = PAGE_SIZE - offset_in_page(address);
3601 else
3602 in_page = offset_in_page(address) + size;
3603 now = min(count, (unsigned long)in_page / size);
3604 if (!now)
3605 now = 1;
3606 if (down) {
3607 /*
3608 * String I/O in reverse. Yuck. Kill the guest, fix later.
3609 */
3610 pr_unimpl(vcpu, "guest string pio down\n");
3611 kvm_inject_gp(vcpu, 0);
3612 return 1;
3613 }
3614 vcpu->run->io.count = now;
3615 vcpu->arch.pio.cur_count = now;
3616
3617 if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
3618 kvm_x86_ops->skip_emulated_instruction(vcpu);
3619
3620 vcpu->arch.pio.guest_gva = address;
3621
3622 if (!vcpu->arch.pio.in) {
3623 /* string PIO write */
3624 ret = pio_copy_data(vcpu);
3625 if (ret == X86EMUL_PROPAGATE_FAULT) {
3626 kvm_inject_gp(vcpu, 0);
3627 return 1;
3628 }
3629 if (ret == 0 && !pio_string_write(vcpu)) {
3630 complete_pio(vcpu);
3631 if (vcpu->arch.pio.count == 0)
3632 ret = 1;
3633 }
3634 }
3635 /* no string PIO read support yet */
3636
3637 return ret;
3638 }
3639 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
3640
3641 static void bounce_off(void *info)
3642 {
3643 /* nothing */
3644 }
3645
3646 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
3647 void *data)
3648 {
3649 struct cpufreq_freqs *freq = data;
3650 struct kvm *kvm;
3651 struct kvm_vcpu *vcpu;
3652 int i, send_ipi = 0;
3653
3654 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
3655 return 0;
3656 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
3657 return 0;
3658 per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
3659
3660 spin_lock(&kvm_lock);
3661 list_for_each_entry(kvm, &vm_list, vm_list) {
3662 kvm_for_each_vcpu(i, vcpu, kvm) {
3663 if (vcpu->cpu != freq->cpu)
3664 continue;
3665 if (!kvm_request_guest_time_update(vcpu))
3666 continue;
3667 if (vcpu->cpu != smp_processor_id())
3668 send_ipi++;
3669 }
3670 }
3671 spin_unlock(&kvm_lock);
3672
3673 if (freq->old < freq->new && send_ipi) {
3674 /*
3675 * We upscale the frequency. Must make the guest
3676 * doesn't see old kvmclock values while running with
3677 * the new frequency, otherwise we risk the guest sees
3678 * time go backwards.
3679 *
3680 * In case we update the frequency for another cpu
3681 * (which might be in guest context) send an interrupt
3682 * to kick the cpu out of guest context. Next time
3683 * guest context is entered kvmclock will be updated,
3684 * so the guest will not see stale values.
3685 */
3686 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
3687 }
3688 return 0;
3689 }
3690
3691 static struct notifier_block kvmclock_cpufreq_notifier_block = {
3692 .notifier_call = kvmclock_cpufreq_notifier
3693 };
3694
3695 static void kvm_timer_init(void)
3696 {
3697 int cpu;
3698
3699 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
3700 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
3701 CPUFREQ_TRANSITION_NOTIFIER);
3702 for_each_online_cpu(cpu) {
3703 unsigned long khz = cpufreq_get(cpu);
3704 if (!khz)
3705 khz = tsc_khz;
3706 per_cpu(cpu_tsc_khz, cpu) = khz;
3707 }
3708 } else {
3709 for_each_possible_cpu(cpu)
3710 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
3711 }
3712 }
3713
3714 int kvm_arch_init(void *opaque)
3715 {
3716 int r;
3717 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
3718
3719 if (kvm_x86_ops) {
3720 printk(KERN_ERR "kvm: already loaded the other module\n");
3721 r = -EEXIST;
3722 goto out;
3723 }
3724
3725 if (!ops->cpu_has_kvm_support()) {
3726 printk(KERN_ERR "kvm: no hardware support\n");
3727 r = -EOPNOTSUPP;
3728 goto out;
3729 }
3730 if (ops->disabled_by_bios()) {
3731 printk(KERN_ERR "kvm: disabled by bios\n");
3732 r = -EOPNOTSUPP;
3733 goto out;
3734 }
3735
3736 r = kvm_mmu_module_init();
3737 if (r)
3738 goto out;
3739
3740 kvm_init_msr_list();
3741
3742 kvm_x86_ops = ops;
3743 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
3744 kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
3745 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
3746 PT_DIRTY_MASK, PT64_NX_MASK, 0);
3747
3748 kvm_timer_init();
3749
3750 return 0;
3751
3752 out:
3753 return r;
3754 }
3755
3756 void kvm_arch_exit(void)
3757 {
3758 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
3759 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
3760 CPUFREQ_TRANSITION_NOTIFIER);
3761 kvm_x86_ops = NULL;
3762 kvm_mmu_module_exit();
3763 }
3764
3765 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
3766 {
3767 ++vcpu->stat.halt_exits;
3768 if (irqchip_in_kernel(vcpu->kvm)) {
3769 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
3770 return 1;
3771 } else {
3772 vcpu->run->exit_reason = KVM_EXIT_HLT;
3773 return 0;
3774 }
3775 }
3776 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
3777
3778 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
3779 unsigned long a1)
3780 {
3781 if (is_long_mode(vcpu))
3782 return a0;
3783 else
3784 return a0 | ((gpa_t)a1 << 32);
3785 }
3786
3787 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
3788 {
3789 u64 param, ingpa, outgpa, ret;
3790 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
3791 bool fast, longmode;
3792 int cs_db, cs_l;
3793
3794 /*
3795 * hypercall generates UD from non zero cpl and real mode
3796 * per HYPER-V spec
3797 */
3798 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
3799 !kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
3800 kvm_queue_exception(vcpu, UD_VECTOR);
3801 return 0;
3802 }
3803
3804 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
3805 longmode = is_long_mode(vcpu) && cs_l == 1;
3806
3807 if (!longmode) {
3808 param = (kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
3809 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffff);
3810 ingpa = (kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
3811 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffff);
3812 outgpa = (kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
3813 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffff);
3814 }
3815 #ifdef CONFIG_X86_64
3816 else {
3817 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
3818 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
3819 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
3820 }
3821 #endif
3822
3823 code = param & 0xffff;
3824 fast = (param >> 16) & 0x1;
3825 rep_cnt = (param >> 32) & 0xfff;
3826 rep_idx = (param >> 48) & 0xfff;
3827
3828 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
3829
3830 res = HV_STATUS_INVALID_HYPERCALL_CODE;
3831
3832 ret = res | (((u64)rep_done & 0xfff) << 32);
3833 if (longmode) {
3834 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
3835 } else {
3836 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
3837 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
3838 }
3839
3840 return 1;
3841 }
3842
3843 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
3844 {
3845 unsigned long nr, a0, a1, a2, a3, ret;
3846 int r = 1;
3847
3848 if (kvm_hv_hypercall_enabled(vcpu->kvm))
3849 return kvm_hv_hypercall(vcpu);
3850
3851 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
3852 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
3853 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
3854 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
3855 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
3856
3857 trace_kvm_hypercall(nr, a0, a1, a2, a3);
3858
3859 if (!is_long_mode(vcpu)) {
3860 nr &= 0xFFFFFFFF;
3861 a0 &= 0xFFFFFFFF;
3862 a1 &= 0xFFFFFFFF;
3863 a2 &= 0xFFFFFFFF;
3864 a3 &= 0xFFFFFFFF;
3865 }
3866
3867 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
3868 ret = -KVM_EPERM;
3869 goto out;
3870 }
3871
3872 switch (nr) {
3873 case KVM_HC_VAPIC_POLL_IRQ:
3874 ret = 0;
3875 break;
3876 case KVM_HC_MMU_OP:
3877 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
3878 break;
3879 default:
3880 ret = -KVM_ENOSYS;
3881 break;
3882 }
3883 out:
3884 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
3885 ++vcpu->stat.hypercalls;
3886 return r;
3887 }
3888 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
3889
3890 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
3891 {
3892 char instruction[3];
3893 int ret = 0;
3894 unsigned long rip = kvm_rip_read(vcpu);
3895
3896
3897 /*
3898 * Blow out the MMU to ensure that no other VCPU has an active mapping
3899 * to ensure that the updated hypercall appears atomically across all
3900 * VCPUs.
3901 */
3902 kvm_mmu_zap_all(vcpu->kvm);
3903
3904 kvm_x86_ops->patch_hypercall(vcpu, instruction);
3905 if (emulator_write_emulated(rip, instruction, 3, vcpu)
3906 != X86EMUL_CONTINUE)
3907 ret = -EFAULT;
3908
3909 return ret;
3910 }
3911
3912 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3913 {
3914 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3915 }
3916
3917 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3918 {
3919 struct descriptor_table dt = { limit, base };
3920
3921 kvm_x86_ops->set_gdt(vcpu, &dt);
3922 }
3923
3924 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3925 {
3926 struct descriptor_table dt = { limit, base };
3927
3928 kvm_x86_ops->set_idt(vcpu, &dt);
3929 }
3930
3931 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
3932 unsigned long *rflags)
3933 {
3934 kvm_lmsw(vcpu, msw);
3935 *rflags = kvm_get_rflags(vcpu);
3936 }
3937
3938 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
3939 {
3940 unsigned long value;
3941
3942 switch (cr) {
3943 case 0:
3944 value = kvm_read_cr0(vcpu);
3945 break;
3946 case 2:
3947 value = vcpu->arch.cr2;
3948 break;
3949 case 3:
3950 value = vcpu->arch.cr3;
3951 break;
3952 case 4:
3953 value = kvm_read_cr4(vcpu);
3954 break;
3955 case 8:
3956 value = kvm_get_cr8(vcpu);
3957 break;
3958 default:
3959 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3960 return 0;
3961 }
3962
3963 return value;
3964 }
3965
3966 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
3967 unsigned long *rflags)
3968 {
3969 switch (cr) {
3970 case 0:
3971 kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
3972 *rflags = kvm_get_rflags(vcpu);
3973 break;
3974 case 2:
3975 vcpu->arch.cr2 = val;
3976 break;
3977 case 3:
3978 kvm_set_cr3(vcpu, val);
3979 break;
3980 case 4:
3981 kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
3982 break;
3983 case 8:
3984 kvm_set_cr8(vcpu, val & 0xfUL);
3985 break;
3986 default:
3987 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3988 }
3989 }
3990
3991 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
3992 {
3993 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
3994 int j, nent = vcpu->arch.cpuid_nent;
3995
3996 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
3997 /* when no next entry is found, the current entry[i] is reselected */
3998 for (j = i + 1; ; j = (j + 1) % nent) {
3999 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
4000 if (ej->function == e->function) {
4001 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
4002 return j;
4003 }
4004 }
4005 return 0; /* silence gcc, even though control never reaches here */
4006 }
4007
4008 /* find an entry with matching function, matching index (if needed), and that
4009 * should be read next (if it's stateful) */
4010 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
4011 u32 function, u32 index)
4012 {
4013 if (e->function != function)
4014 return 0;
4015 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
4016 return 0;
4017 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
4018 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
4019 return 0;
4020 return 1;
4021 }
4022
4023 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
4024 u32 function, u32 index)
4025 {
4026 int i;
4027 struct kvm_cpuid_entry2 *best = NULL;
4028
4029 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
4030 struct kvm_cpuid_entry2 *e;
4031
4032 e = &vcpu->arch.cpuid_entries[i];
4033 if (is_matching_cpuid_entry(e, function, index)) {
4034 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
4035 move_to_next_stateful_cpuid_entry(vcpu, i);
4036 best = e;
4037 break;
4038 }
4039 /*
4040 * Both basic or both extended?
4041 */
4042 if (((e->function ^ function) & 0x80000000) == 0)
4043 if (!best || e->function > best->function)
4044 best = e;
4045 }
4046 return best;
4047 }
4048 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
4049
4050 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
4051 {
4052 struct kvm_cpuid_entry2 *best;
4053
4054 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
4055 if (best)
4056 return best->eax & 0xff;
4057 return 36;
4058 }
4059
4060 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
4061 {
4062 u32 function, index;
4063 struct kvm_cpuid_entry2 *best;
4064
4065 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
4066 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4067 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
4068 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
4069 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
4070 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
4071 best = kvm_find_cpuid_entry(vcpu, function, index);
4072 if (best) {
4073 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
4074 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
4075 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
4076 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
4077 }
4078 kvm_x86_ops->skip_emulated_instruction(vcpu);
4079 trace_kvm_cpuid(function,
4080 kvm_register_read(vcpu, VCPU_REGS_RAX),
4081 kvm_register_read(vcpu, VCPU_REGS_RBX),
4082 kvm_register_read(vcpu, VCPU_REGS_RCX),
4083 kvm_register_read(vcpu, VCPU_REGS_RDX));
4084 }
4085 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
4086
4087 /*
4088 * Check if userspace requested an interrupt window, and that the
4089 * interrupt window is open.
4090 *
4091 * No need to exit to userspace if we already have an interrupt queued.
4092 */
4093 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
4094 {
4095 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
4096 vcpu->run->request_interrupt_window &&
4097 kvm_arch_interrupt_allowed(vcpu));
4098 }
4099
4100 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
4101 {
4102 struct kvm_run *kvm_run = vcpu->run;
4103
4104 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
4105 kvm_run->cr8 = kvm_get_cr8(vcpu);
4106 kvm_run->apic_base = kvm_get_apic_base(vcpu);
4107 if (irqchip_in_kernel(vcpu->kvm))
4108 kvm_run->ready_for_interrupt_injection = 1;
4109 else
4110 kvm_run->ready_for_interrupt_injection =
4111 kvm_arch_interrupt_allowed(vcpu) &&
4112 !kvm_cpu_has_interrupt(vcpu) &&
4113 !kvm_event_needs_reinjection(vcpu);
4114 }
4115
4116 static void vapic_enter(struct kvm_vcpu *vcpu)
4117 {
4118 struct kvm_lapic *apic = vcpu->arch.apic;
4119 struct page *page;
4120
4121 if (!apic || !apic->vapic_addr)
4122 return;
4123
4124 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4125
4126 vcpu->arch.apic->vapic_page = page;
4127 }
4128
4129 static void vapic_exit(struct kvm_vcpu *vcpu)
4130 {
4131 struct kvm_lapic *apic = vcpu->arch.apic;
4132 int idx;
4133
4134 if (!apic || !apic->vapic_addr)
4135 return;
4136
4137 idx = srcu_read_lock(&vcpu->kvm->srcu);
4138 kvm_release_page_dirty(apic->vapic_page);
4139 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4140 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4141 }
4142
4143 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
4144 {
4145 int max_irr, tpr;
4146
4147 if (!kvm_x86_ops->update_cr8_intercept)
4148 return;
4149
4150 if (!vcpu->arch.apic)
4151 return;
4152
4153 if (!vcpu->arch.apic->vapic_addr)
4154 max_irr = kvm_lapic_find_highest_irr(vcpu);
4155 else
4156 max_irr = -1;
4157
4158 if (max_irr != -1)
4159 max_irr >>= 4;
4160
4161 tpr = kvm_lapic_get_cr8(vcpu);
4162
4163 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
4164 }
4165
4166 static void inject_pending_event(struct kvm_vcpu *vcpu)
4167 {
4168 /* try to reinject previous events if any */
4169 if (vcpu->arch.exception.pending) {
4170 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
4171 vcpu->arch.exception.has_error_code,
4172 vcpu->arch.exception.error_code);
4173 return;
4174 }
4175
4176 if (vcpu->arch.nmi_injected) {
4177 kvm_x86_ops->set_nmi(vcpu);
4178 return;
4179 }
4180
4181 if (vcpu->arch.interrupt.pending) {
4182 kvm_x86_ops->set_irq(vcpu);
4183 return;
4184 }
4185
4186 /* try to inject new event if pending */
4187 if (vcpu->arch.nmi_pending) {
4188 if (kvm_x86_ops->nmi_allowed(vcpu)) {
4189 vcpu->arch.nmi_pending = false;
4190 vcpu->arch.nmi_injected = true;
4191 kvm_x86_ops->set_nmi(vcpu);
4192 }
4193 } else if (kvm_cpu_has_interrupt(vcpu)) {
4194 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
4195 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
4196 false);
4197 kvm_x86_ops->set_irq(vcpu);
4198 }
4199 }
4200 }
4201
4202 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
4203 {
4204 int r;
4205 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
4206 vcpu->run->request_interrupt_window;
4207
4208 if (vcpu->requests)
4209 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
4210 kvm_mmu_unload(vcpu);
4211
4212 r = kvm_mmu_reload(vcpu);
4213 if (unlikely(r))
4214 goto out;
4215
4216 if (vcpu->requests) {
4217 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
4218 __kvm_migrate_timers(vcpu);
4219 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
4220 kvm_write_guest_time(vcpu);
4221 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
4222 kvm_mmu_sync_roots(vcpu);
4223 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
4224 kvm_x86_ops->tlb_flush(vcpu);
4225 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
4226 &vcpu->requests)) {
4227 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
4228 r = 0;
4229 goto out;
4230 }
4231 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
4232 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4233 r = 0;
4234 goto out;
4235 }
4236 if (test_and_clear_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests)) {
4237 vcpu->fpu_active = 0;
4238 kvm_x86_ops->fpu_deactivate(vcpu);
4239 }
4240 }
4241
4242 preempt_disable();
4243
4244 kvm_x86_ops->prepare_guest_switch(vcpu);
4245 kvm_load_guest_fpu(vcpu);
4246
4247 local_irq_disable();
4248
4249 clear_bit(KVM_REQ_KICK, &vcpu->requests);
4250 smp_mb__after_clear_bit();
4251
4252 if (vcpu->requests || need_resched() || signal_pending(current)) {
4253 set_bit(KVM_REQ_KICK, &vcpu->requests);
4254 local_irq_enable();
4255 preempt_enable();
4256 r = 1;
4257 goto out;
4258 }
4259
4260 inject_pending_event(vcpu);
4261
4262 /* enable NMI/IRQ window open exits if needed */
4263 if (vcpu->arch.nmi_pending)
4264 kvm_x86_ops->enable_nmi_window(vcpu);
4265 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
4266 kvm_x86_ops->enable_irq_window(vcpu);
4267
4268 if (kvm_lapic_enabled(vcpu)) {
4269 update_cr8_intercept(vcpu);
4270 kvm_lapic_sync_to_vapic(vcpu);
4271 }
4272
4273 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4274
4275 kvm_guest_enter();
4276
4277 if (unlikely(vcpu->arch.switch_db_regs)) {
4278 set_debugreg(0, 7);
4279 set_debugreg(vcpu->arch.eff_db[0], 0);
4280 set_debugreg(vcpu->arch.eff_db[1], 1);
4281 set_debugreg(vcpu->arch.eff_db[2], 2);
4282 set_debugreg(vcpu->arch.eff_db[3], 3);
4283 }
4284
4285 trace_kvm_entry(vcpu->vcpu_id);
4286 kvm_x86_ops->run(vcpu);
4287
4288 /*
4289 * If the guest has used debug registers, at least dr7
4290 * will be disabled while returning to the host.
4291 * If we don't have active breakpoints in the host, we don't
4292 * care about the messed up debug address registers. But if
4293 * we have some of them active, restore the old state.
4294 */
4295 if (hw_breakpoint_active())
4296 hw_breakpoint_restore();
4297
4298 set_bit(KVM_REQ_KICK, &vcpu->requests);
4299 local_irq_enable();
4300
4301 ++vcpu->stat.exits;
4302
4303 /*
4304 * We must have an instruction between local_irq_enable() and
4305 * kvm_guest_exit(), so the timer interrupt isn't delayed by
4306 * the interrupt shadow. The stat.exits increment will do nicely.
4307 * But we need to prevent reordering, hence this barrier():
4308 */
4309 barrier();
4310
4311 kvm_guest_exit();
4312
4313 preempt_enable();
4314
4315 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4316
4317 /*
4318 * Profile KVM exit RIPs:
4319 */
4320 if (unlikely(prof_on == KVM_PROFILING)) {
4321 unsigned long rip = kvm_rip_read(vcpu);
4322 profile_hit(KVM_PROFILING, (void *)rip);
4323 }
4324
4325
4326 kvm_lapic_sync_from_vapic(vcpu);
4327
4328 r = kvm_x86_ops->handle_exit(vcpu);
4329 out:
4330 return r;
4331 }
4332
4333
4334 static int __vcpu_run(struct kvm_vcpu *vcpu)
4335 {
4336 int r;
4337 struct kvm *kvm = vcpu->kvm;
4338
4339 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
4340 pr_debug("vcpu %d received sipi with vector # %x\n",
4341 vcpu->vcpu_id, vcpu->arch.sipi_vector);
4342 kvm_lapic_reset(vcpu);
4343 r = kvm_arch_vcpu_reset(vcpu);
4344 if (r)
4345 return r;
4346 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4347 }
4348
4349 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4350 vapic_enter(vcpu);
4351
4352 r = 1;
4353 while (r > 0) {
4354 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
4355 r = vcpu_enter_guest(vcpu);
4356 else {
4357 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4358 kvm_vcpu_block(vcpu);
4359 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4360 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
4361 {
4362 switch(vcpu->arch.mp_state) {
4363 case KVM_MP_STATE_HALTED:
4364 vcpu->arch.mp_state =
4365 KVM_MP_STATE_RUNNABLE;
4366 case KVM_MP_STATE_RUNNABLE:
4367 break;
4368 case KVM_MP_STATE_SIPI_RECEIVED:
4369 default:
4370 r = -EINTR;
4371 break;
4372 }
4373 }
4374 }
4375
4376 if (r <= 0)
4377 break;
4378
4379 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
4380 if (kvm_cpu_has_pending_timer(vcpu))
4381 kvm_inject_pending_timer_irqs(vcpu);
4382
4383 if (dm_request_for_irq_injection(vcpu)) {
4384 r = -EINTR;
4385 vcpu->run->exit_reason = KVM_EXIT_INTR;
4386 ++vcpu->stat.request_irq_exits;
4387 }
4388 if (signal_pending(current)) {
4389 r = -EINTR;
4390 vcpu->run->exit_reason = KVM_EXIT_INTR;
4391 ++vcpu->stat.signal_exits;
4392 }
4393 if (need_resched()) {
4394 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4395 kvm_resched(vcpu);
4396 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4397 }
4398 }
4399
4400 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4401 post_kvm_run_save(vcpu);
4402
4403 vapic_exit(vcpu);
4404
4405 return r;
4406 }
4407
4408 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
4409 {
4410 int r;
4411 sigset_t sigsaved;
4412
4413 vcpu_load(vcpu);
4414
4415 if (vcpu->sigset_active)
4416 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
4417
4418 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
4419 kvm_vcpu_block(vcpu);
4420 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
4421 r = -EAGAIN;
4422 goto out;
4423 }
4424
4425 /* re-sync apic's tpr */
4426 if (!irqchip_in_kernel(vcpu->kvm))
4427 kvm_set_cr8(vcpu, kvm_run->cr8);
4428
4429 if (vcpu->arch.pio.cur_count) {
4430 r = complete_pio(vcpu);
4431 if (r)
4432 goto out;
4433 }
4434 if (vcpu->mmio_needed) {
4435 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
4436 vcpu->mmio_read_completed = 1;
4437 vcpu->mmio_needed = 0;
4438
4439 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4440 r = emulate_instruction(vcpu, vcpu->arch.mmio_fault_cr2, 0,
4441 EMULTYPE_NO_DECODE);
4442 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4443 if (r == EMULATE_DO_MMIO) {
4444 /*
4445 * Read-modify-write. Back to userspace.
4446 */
4447 r = 0;
4448 goto out;
4449 }
4450 }
4451 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
4452 kvm_register_write(vcpu, VCPU_REGS_RAX,
4453 kvm_run->hypercall.ret);
4454
4455 r = __vcpu_run(vcpu);
4456
4457 out:
4458 if (vcpu->sigset_active)
4459 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
4460
4461 vcpu_put(vcpu);
4462 return r;
4463 }
4464
4465 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4466 {
4467 vcpu_load(vcpu);
4468
4469 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4470 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4471 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4472 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4473 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4474 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4475 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4476 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4477 #ifdef CONFIG_X86_64
4478 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
4479 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
4480 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
4481 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
4482 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
4483 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
4484 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
4485 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
4486 #endif
4487
4488 regs->rip = kvm_rip_read(vcpu);
4489 regs->rflags = kvm_get_rflags(vcpu);
4490
4491 vcpu_put(vcpu);
4492
4493 return 0;
4494 }
4495
4496 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4497 {
4498 vcpu_load(vcpu);
4499
4500 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
4501 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
4502 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
4503 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
4504 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
4505 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
4506 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
4507 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
4508 #ifdef CONFIG_X86_64
4509 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
4510 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
4511 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
4512 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
4513 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
4514 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
4515 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
4516 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
4517 #endif
4518
4519 kvm_rip_write(vcpu, regs->rip);
4520 kvm_set_rflags(vcpu, regs->rflags);
4521
4522 vcpu->arch.exception.pending = false;
4523
4524 vcpu_put(vcpu);
4525
4526 return 0;
4527 }
4528
4529 void kvm_get_segment(struct kvm_vcpu *vcpu,
4530 struct kvm_segment *var, int seg)
4531 {
4532 kvm_x86_ops->get_segment(vcpu, var, seg);
4533 }
4534
4535 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4536 {
4537 struct kvm_segment cs;
4538
4539 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
4540 *db = cs.db;
4541 *l = cs.l;
4542 }
4543 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
4544
4545 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
4546 struct kvm_sregs *sregs)
4547 {
4548 struct descriptor_table dt;
4549
4550 vcpu_load(vcpu);
4551
4552 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4553 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4554 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4555 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4556 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4557 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4558
4559 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4560 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4561
4562 kvm_x86_ops->get_idt(vcpu, &dt);
4563 sregs->idt.limit = dt.limit;
4564 sregs->idt.base = dt.base;
4565 kvm_x86_ops->get_gdt(vcpu, &dt);
4566 sregs->gdt.limit = dt.limit;
4567 sregs->gdt.base = dt.base;
4568
4569 sregs->cr0 = kvm_read_cr0(vcpu);
4570 sregs->cr2 = vcpu->arch.cr2;
4571 sregs->cr3 = vcpu->arch.cr3;
4572 sregs->cr4 = kvm_read_cr4(vcpu);
4573 sregs->cr8 = kvm_get_cr8(vcpu);
4574 sregs->efer = vcpu->arch.shadow_efer;
4575 sregs->apic_base = kvm_get_apic_base(vcpu);
4576
4577 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
4578
4579 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
4580 set_bit(vcpu->arch.interrupt.nr,
4581 (unsigned long *)sregs->interrupt_bitmap);
4582
4583 vcpu_put(vcpu);
4584
4585 return 0;
4586 }
4587
4588 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
4589 struct kvm_mp_state *mp_state)
4590 {
4591 vcpu_load(vcpu);
4592 mp_state->mp_state = vcpu->arch.mp_state;
4593 vcpu_put(vcpu);
4594 return 0;
4595 }
4596
4597 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
4598 struct kvm_mp_state *mp_state)
4599 {
4600 vcpu_load(vcpu);
4601 vcpu->arch.mp_state = mp_state->mp_state;
4602 vcpu_put(vcpu);
4603 return 0;
4604 }
4605
4606 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4607 struct kvm_segment *var, int seg)
4608 {
4609 kvm_x86_ops->set_segment(vcpu, var, seg);
4610 }
4611
4612 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
4613 struct kvm_segment *kvm_desct)
4614 {
4615 kvm_desct->base = get_desc_base(seg_desc);
4616 kvm_desct->limit = get_desc_limit(seg_desc);
4617 if (seg_desc->g) {
4618 kvm_desct->limit <<= 12;
4619 kvm_desct->limit |= 0xfff;
4620 }
4621 kvm_desct->selector = selector;
4622 kvm_desct->type = seg_desc->type;
4623 kvm_desct->present = seg_desc->p;
4624 kvm_desct->dpl = seg_desc->dpl;
4625 kvm_desct->db = seg_desc->d;
4626 kvm_desct->s = seg_desc->s;
4627 kvm_desct->l = seg_desc->l;
4628 kvm_desct->g = seg_desc->g;
4629 kvm_desct->avl = seg_desc->avl;
4630 if (!selector)
4631 kvm_desct->unusable = 1;
4632 else
4633 kvm_desct->unusable = 0;
4634 kvm_desct->padding = 0;
4635 }
4636
4637 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
4638 u16 selector,
4639 struct descriptor_table *dtable)
4640 {
4641 if (selector & 1 << 2) {
4642 struct kvm_segment kvm_seg;
4643
4644 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
4645
4646 if (kvm_seg.unusable)
4647 dtable->limit = 0;
4648 else
4649 dtable->limit = kvm_seg.limit;
4650 dtable->base = kvm_seg.base;
4651 }
4652 else
4653 kvm_x86_ops->get_gdt(vcpu, dtable);
4654 }
4655
4656 /* allowed just for 8 bytes segments */
4657 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4658 struct desc_struct *seg_desc)
4659 {
4660 struct descriptor_table dtable;
4661 u16 index = selector >> 3;
4662
4663 get_segment_descriptor_dtable(vcpu, selector, &dtable);
4664
4665 if (dtable.limit < index * 8 + 7) {
4666 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
4667 return 1;
4668 }
4669 return kvm_read_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
4670 }
4671
4672 /* allowed just for 8 bytes segments */
4673 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4674 struct desc_struct *seg_desc)
4675 {
4676 struct descriptor_table dtable;
4677 u16 index = selector >> 3;
4678
4679 get_segment_descriptor_dtable(vcpu, selector, &dtable);
4680
4681 if (dtable.limit < index * 8 + 7)
4682 return 1;
4683 return kvm_write_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
4684 }
4685
4686 static gpa_t get_tss_base_addr(struct kvm_vcpu *vcpu,
4687 struct desc_struct *seg_desc)
4688 {
4689 u32 base_addr = get_desc_base(seg_desc);
4690
4691 return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
4692 }
4693
4694 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
4695 {
4696 struct kvm_segment kvm_seg;
4697
4698 kvm_get_segment(vcpu, &kvm_seg, seg);
4699 return kvm_seg.selector;
4700 }
4701
4702 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
4703 u16 selector,
4704 struct kvm_segment *kvm_seg)
4705 {
4706 struct desc_struct seg_desc;
4707
4708 if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
4709 return 1;
4710 seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
4711 return 0;
4712 }
4713
4714 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
4715 {
4716 struct kvm_segment segvar = {
4717 .base = selector << 4,
4718 .limit = 0xffff,
4719 .selector = selector,
4720 .type = 3,
4721 .present = 1,
4722 .dpl = 3,
4723 .db = 0,
4724 .s = 1,
4725 .l = 0,
4726 .g = 0,
4727 .avl = 0,
4728 .unusable = 0,
4729 };
4730 kvm_x86_ops->set_segment(vcpu, &segvar, seg);
4731 return 0;
4732 }
4733
4734 static int is_vm86_segment(struct kvm_vcpu *vcpu, int seg)
4735 {
4736 return (seg != VCPU_SREG_LDTR) &&
4737 (seg != VCPU_SREG_TR) &&
4738 (kvm_get_rflags(vcpu) & X86_EFLAGS_VM);
4739 }
4740
4741 static void kvm_check_segment_descriptor(struct kvm_vcpu *vcpu, int seg,
4742 u16 selector)
4743 {
4744 /* NULL selector is not valid for CS and SS */
4745 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
4746 if (!selector)
4747 kvm_queue_exception_e(vcpu, TS_VECTOR, selector >> 3);
4748 }
4749
4750 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4751 int type_bits, int seg)
4752 {
4753 struct kvm_segment kvm_seg;
4754
4755 if (is_vm86_segment(vcpu, seg) || !(kvm_read_cr0_bits(vcpu, X86_CR0_PE)))
4756 return kvm_load_realmode_segment(vcpu, selector, seg);
4757 if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
4758 return 1;
4759
4760 kvm_check_segment_descriptor(vcpu, seg, selector);
4761 kvm_seg.type |= type_bits;
4762
4763 if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
4764 seg != VCPU_SREG_LDTR)
4765 if (!kvm_seg.s)
4766 kvm_seg.unusable = 1;
4767
4768 kvm_set_segment(vcpu, &kvm_seg, seg);
4769 return 0;
4770 }
4771
4772 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
4773 struct tss_segment_32 *tss)
4774 {
4775 tss->cr3 = vcpu->arch.cr3;
4776 tss->eip = kvm_rip_read(vcpu);
4777 tss->eflags = kvm_get_rflags(vcpu);
4778 tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4779 tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4780 tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4781 tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4782 tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4783 tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4784 tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4785 tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4786 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4787 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4788 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4789 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4790 tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
4791 tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
4792 tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4793 }
4794
4795 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
4796 struct tss_segment_32 *tss)
4797 {
4798 kvm_set_cr3(vcpu, tss->cr3);
4799
4800 kvm_rip_write(vcpu, tss->eip);
4801 kvm_set_rflags(vcpu, tss->eflags | 2);
4802
4803 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
4804 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
4805 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
4806 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
4807 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
4808 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
4809 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
4810 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
4811
4812 if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
4813 return 1;
4814
4815 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4816 return 1;
4817
4818 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4819 return 1;
4820
4821 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4822 return 1;
4823
4824 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4825 return 1;
4826
4827 if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
4828 return 1;
4829
4830 if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
4831 return 1;
4832 return 0;
4833 }
4834
4835 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
4836 struct tss_segment_16 *tss)
4837 {
4838 tss->ip = kvm_rip_read(vcpu);
4839 tss->flag = kvm_get_rflags(vcpu);
4840 tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4841 tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4842 tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4843 tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4844 tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4845 tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4846 tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
4847 tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
4848
4849 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4850 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4851 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4852 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4853 tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4854 }
4855
4856 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
4857 struct tss_segment_16 *tss)
4858 {
4859 kvm_rip_write(vcpu, tss->ip);
4860 kvm_set_rflags(vcpu, tss->flag | 2);
4861 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
4862 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
4863 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
4864 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
4865 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
4866 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
4867 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
4868 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
4869
4870 if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
4871 return 1;
4872
4873 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4874 return 1;
4875
4876 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4877 return 1;
4878
4879 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4880 return 1;
4881
4882 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4883 return 1;
4884 return 0;
4885 }
4886
4887 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
4888 u16 old_tss_sel, u32 old_tss_base,
4889 struct desc_struct *nseg_desc)
4890 {
4891 struct tss_segment_16 tss_segment_16;
4892 int ret = 0;
4893
4894 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4895 sizeof tss_segment_16))
4896 goto out;
4897
4898 save_state_to_tss16(vcpu, &tss_segment_16);
4899
4900 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4901 sizeof tss_segment_16))
4902 goto out;
4903
4904 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4905 &tss_segment_16, sizeof tss_segment_16))
4906 goto out;
4907
4908 if (old_tss_sel != 0xffff) {
4909 tss_segment_16.prev_task_link = old_tss_sel;
4910
4911 if (kvm_write_guest(vcpu->kvm,
4912 get_tss_base_addr(vcpu, nseg_desc),
4913 &tss_segment_16.prev_task_link,
4914 sizeof tss_segment_16.prev_task_link))
4915 goto out;
4916 }
4917
4918 if (load_state_from_tss16(vcpu, &tss_segment_16))
4919 goto out;
4920
4921 ret = 1;
4922 out:
4923 return ret;
4924 }
4925
4926 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
4927 u16 old_tss_sel, u32 old_tss_base,
4928 struct desc_struct *nseg_desc)
4929 {
4930 struct tss_segment_32 tss_segment_32;
4931 int ret = 0;
4932
4933 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4934 sizeof tss_segment_32))
4935 goto out;
4936
4937 save_state_to_tss32(vcpu, &tss_segment_32);
4938
4939 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4940 sizeof tss_segment_32))
4941 goto out;
4942
4943 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4944 &tss_segment_32, sizeof tss_segment_32))
4945 goto out;
4946
4947 if (old_tss_sel != 0xffff) {
4948 tss_segment_32.prev_task_link = old_tss_sel;
4949
4950 if (kvm_write_guest(vcpu->kvm,
4951 get_tss_base_addr(vcpu, nseg_desc),
4952 &tss_segment_32.prev_task_link,
4953 sizeof tss_segment_32.prev_task_link))
4954 goto out;
4955 }
4956
4957 if (load_state_from_tss32(vcpu, &tss_segment_32))
4958 goto out;
4959
4960 ret = 1;
4961 out:
4962 return ret;
4963 }
4964
4965 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
4966 {
4967 struct kvm_segment tr_seg;
4968 struct desc_struct cseg_desc;
4969 struct desc_struct nseg_desc;
4970 int ret = 0;
4971 u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
4972 u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
4973
4974 old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
4975
4976 /* FIXME: Handle errors. Failure to read either TSS or their
4977 * descriptors should generate a pagefault.
4978 */
4979 if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
4980 goto out;
4981
4982 if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
4983 goto out;
4984
4985 if (reason != TASK_SWITCH_IRET) {
4986 int cpl;
4987
4988 cpl = kvm_x86_ops->get_cpl(vcpu);
4989 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
4990 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4991 return 1;
4992 }
4993 }
4994
4995 if (!nseg_desc.p || get_desc_limit(&nseg_desc) < 0x67) {
4996 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
4997 return 1;
4998 }
4999
5000 if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
5001 cseg_desc.type &= ~(1 << 1); //clear the B flag
5002 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
5003 }
5004
5005 if (reason == TASK_SWITCH_IRET) {
5006 u32 eflags = kvm_get_rflags(vcpu);
5007 kvm_set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
5008 }
5009
5010 /* set back link to prev task only if NT bit is set in eflags
5011 note that old_tss_sel is not used afetr this point */
5012 if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
5013 old_tss_sel = 0xffff;
5014
5015 if (nseg_desc.type & 8)
5016 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
5017 old_tss_base, &nseg_desc);
5018 else
5019 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
5020 old_tss_base, &nseg_desc);
5021
5022 if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
5023 u32 eflags = kvm_get_rflags(vcpu);
5024 kvm_set_rflags(vcpu, eflags | X86_EFLAGS_NT);
5025 }
5026
5027 if (reason != TASK_SWITCH_IRET) {
5028 nseg_desc.type |= (1 << 1);
5029 save_guest_segment_descriptor(vcpu, tss_selector,
5030 &nseg_desc);
5031 }
5032
5033 kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0(vcpu) | X86_CR0_TS);
5034 seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
5035 tr_seg.type = 11;
5036 kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
5037 out:
5038 return ret;
5039 }
5040 EXPORT_SYMBOL_GPL(kvm_task_switch);
5041
5042 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5043 struct kvm_sregs *sregs)
5044 {
5045 int mmu_reset_needed = 0;
5046 int pending_vec, max_bits;
5047 struct descriptor_table dt;
5048
5049 vcpu_load(vcpu);
5050
5051 dt.limit = sregs->idt.limit;
5052 dt.base = sregs->idt.base;
5053 kvm_x86_ops->set_idt(vcpu, &dt);
5054 dt.limit = sregs->gdt.limit;
5055 dt.base = sregs->gdt.base;
5056 kvm_x86_ops->set_gdt(vcpu, &dt);
5057
5058 vcpu->arch.cr2 = sregs->cr2;
5059 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
5060 vcpu->arch.cr3 = sregs->cr3;
5061
5062 kvm_set_cr8(vcpu, sregs->cr8);
5063
5064 mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
5065 kvm_x86_ops->set_efer(vcpu, sregs->efer);
5066 kvm_set_apic_base(vcpu, sregs->apic_base);
5067
5068 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5069 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5070 vcpu->arch.cr0 = sregs->cr0;
5071
5072 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5073 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5074 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5075 load_pdptrs(vcpu, vcpu->arch.cr3);
5076 mmu_reset_needed = 1;
5077 }
5078
5079 if (mmu_reset_needed)
5080 kvm_mmu_reset_context(vcpu);
5081
5082 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5083 pending_vec = find_first_bit(
5084 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5085 if (pending_vec < max_bits) {
5086 kvm_queue_interrupt(vcpu, pending_vec, false);
5087 pr_debug("Set back pending irq %d\n", pending_vec);
5088 if (irqchip_in_kernel(vcpu->kvm))
5089 kvm_pic_clear_isr_ack(vcpu->kvm);
5090 }
5091
5092 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5093 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5094 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5095 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5096 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5097 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5098
5099 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5100 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5101
5102 update_cr8_intercept(vcpu);
5103
5104 /* Older userspace won't unhalt the vcpu on reset. */
5105 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5106 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5107 !(kvm_read_cr0_bits(vcpu, X86_CR0_PE)))
5108 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5109
5110 vcpu_put(vcpu);
5111
5112 return 0;
5113 }
5114
5115 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5116 struct kvm_guest_debug *dbg)
5117 {
5118 unsigned long rflags;
5119 int i, r;
5120
5121 vcpu_load(vcpu);
5122
5123 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5124 r = -EBUSY;
5125 if (vcpu->arch.exception.pending)
5126 goto unlock_out;
5127 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5128 kvm_queue_exception(vcpu, DB_VECTOR);
5129 else
5130 kvm_queue_exception(vcpu, BP_VECTOR);
5131 }
5132
5133 /*
5134 * Read rflags as long as potentially injected trace flags are still
5135 * filtered out.
5136 */
5137 rflags = kvm_get_rflags(vcpu);
5138
5139 vcpu->guest_debug = dbg->control;
5140 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5141 vcpu->guest_debug = 0;
5142
5143 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5144 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5145 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5146 vcpu->arch.switch_db_regs =
5147 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5148 } else {
5149 for (i = 0; i < KVM_NR_DB_REGS; i++)
5150 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5151 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5152 }
5153
5154 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5155 vcpu->arch.singlestep_cs =
5156 get_segment_selector(vcpu, VCPU_SREG_CS);
5157 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu);
5158 }
5159
5160 /*
5161 * Trigger an rflags update that will inject or remove the trace
5162 * flags.
5163 */
5164 kvm_set_rflags(vcpu, rflags);
5165
5166 kvm_x86_ops->set_guest_debug(vcpu, dbg);
5167
5168 r = 0;
5169
5170 unlock_out:
5171 vcpu_put(vcpu);
5172
5173 return r;
5174 }
5175
5176 /*
5177 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
5178 * we have asm/x86/processor.h
5179 */
5180 struct fxsave {
5181 u16 cwd;
5182 u16 swd;
5183 u16 twd;
5184 u16 fop;
5185 u64 rip;
5186 u64 rdp;
5187 u32 mxcsr;
5188 u32 mxcsr_mask;
5189 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
5190 #ifdef CONFIG_X86_64
5191 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
5192 #else
5193 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
5194 #endif
5195 };
5196
5197 /*
5198 * Translate a guest virtual address to a guest physical address.
5199 */
5200 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5201 struct kvm_translation *tr)
5202 {
5203 unsigned long vaddr = tr->linear_address;
5204 gpa_t gpa;
5205 int idx;
5206
5207 vcpu_load(vcpu);
5208 idx = srcu_read_lock(&vcpu->kvm->srcu);
5209 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
5210 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5211 tr->physical_address = gpa;
5212 tr->valid = gpa != UNMAPPED_GVA;
5213 tr->writeable = 1;
5214 tr->usermode = 0;
5215 vcpu_put(vcpu);
5216
5217 return 0;
5218 }
5219
5220 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5221 {
5222 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
5223
5224 vcpu_load(vcpu);
5225
5226 memcpy(fpu->fpr, fxsave->st_space, 128);
5227 fpu->fcw = fxsave->cwd;
5228 fpu->fsw = fxsave->swd;
5229 fpu->ftwx = fxsave->twd;
5230 fpu->last_opcode = fxsave->fop;
5231 fpu->last_ip = fxsave->rip;
5232 fpu->last_dp = fxsave->rdp;
5233 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5234
5235 vcpu_put(vcpu);
5236
5237 return 0;
5238 }
5239
5240 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5241 {
5242 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
5243
5244 vcpu_load(vcpu);
5245
5246 memcpy(fxsave->st_space, fpu->fpr, 128);
5247 fxsave->cwd = fpu->fcw;
5248 fxsave->swd = fpu->fsw;
5249 fxsave->twd = fpu->ftwx;
5250 fxsave->fop = fpu->last_opcode;
5251 fxsave->rip = fpu->last_ip;
5252 fxsave->rdp = fpu->last_dp;
5253 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5254
5255 vcpu_put(vcpu);
5256
5257 return 0;
5258 }
5259
5260 void fx_init(struct kvm_vcpu *vcpu)
5261 {
5262 unsigned after_mxcsr_mask;
5263
5264 /*
5265 * Touch the fpu the first time in non atomic context as if
5266 * this is the first fpu instruction the exception handler
5267 * will fire before the instruction returns and it'll have to
5268 * allocate ram with GFP_KERNEL.
5269 */
5270 if (!used_math())
5271 kvm_fx_save(&vcpu->arch.host_fx_image);
5272
5273 /* Initialize guest FPU by resetting ours and saving into guest's */
5274 preempt_disable();
5275 kvm_fx_save(&vcpu->arch.host_fx_image);
5276 kvm_fx_finit();
5277 kvm_fx_save(&vcpu->arch.guest_fx_image);
5278 kvm_fx_restore(&vcpu->arch.host_fx_image);
5279 preempt_enable();
5280
5281 vcpu->arch.cr0 |= X86_CR0_ET;
5282 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
5283 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
5284 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
5285 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
5286 }
5287 EXPORT_SYMBOL_GPL(fx_init);
5288
5289 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5290 {
5291 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
5292 return;
5293
5294 vcpu->guest_fpu_loaded = 1;
5295 kvm_fx_save(&vcpu->arch.host_fx_image);
5296 kvm_fx_restore(&vcpu->arch.guest_fx_image);
5297 }
5298 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
5299
5300 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5301 {
5302 if (!vcpu->guest_fpu_loaded)
5303 return;
5304
5305 vcpu->guest_fpu_loaded = 0;
5306 kvm_fx_save(&vcpu->arch.guest_fx_image);
5307 kvm_fx_restore(&vcpu->arch.host_fx_image);
5308 ++vcpu->stat.fpu_reload;
5309 set_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests);
5310 }
5311 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
5312
5313 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5314 {
5315 if (vcpu->arch.time_page) {
5316 kvm_release_page_dirty(vcpu->arch.time_page);
5317 vcpu->arch.time_page = NULL;
5318 }
5319
5320 kvm_x86_ops->vcpu_free(vcpu);
5321 }
5322
5323 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5324 unsigned int id)
5325 {
5326 return kvm_x86_ops->vcpu_create(kvm, id);
5327 }
5328
5329 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5330 {
5331 int r;
5332
5333 /* We do fxsave: this must be aligned. */
5334 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
5335
5336 vcpu->arch.mtrr_state.have_fixed = 1;
5337 vcpu_load(vcpu);
5338 r = kvm_arch_vcpu_reset(vcpu);
5339 if (r == 0)
5340 r = kvm_mmu_setup(vcpu);
5341 vcpu_put(vcpu);
5342 if (r < 0)
5343 goto free_vcpu;
5344
5345 return 0;
5346 free_vcpu:
5347 kvm_x86_ops->vcpu_free(vcpu);
5348 return r;
5349 }
5350
5351 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5352 {
5353 vcpu_load(vcpu);
5354 kvm_mmu_unload(vcpu);
5355 vcpu_put(vcpu);
5356
5357 kvm_x86_ops->vcpu_free(vcpu);
5358 }
5359
5360 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5361 {
5362 vcpu->arch.nmi_pending = false;
5363 vcpu->arch.nmi_injected = false;
5364
5365 vcpu->arch.switch_db_regs = 0;
5366 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5367 vcpu->arch.dr6 = DR6_FIXED_1;
5368 vcpu->arch.dr7 = DR7_FIXED_1;
5369
5370 return kvm_x86_ops->vcpu_reset(vcpu);
5371 }
5372
5373 int kvm_arch_hardware_enable(void *garbage)
5374 {
5375 /*
5376 * Since this may be called from a hotplug notifcation,
5377 * we can't get the CPU frequency directly.
5378 */
5379 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5380 int cpu = raw_smp_processor_id();
5381 per_cpu(cpu_tsc_khz, cpu) = 0;
5382 }
5383
5384 kvm_shared_msr_cpu_online();
5385
5386 return kvm_x86_ops->hardware_enable(garbage);
5387 }
5388
5389 void kvm_arch_hardware_disable(void *garbage)
5390 {
5391 kvm_x86_ops->hardware_disable(garbage);
5392 drop_user_return_notifiers(garbage);
5393 }
5394
5395 int kvm_arch_hardware_setup(void)
5396 {
5397 return kvm_x86_ops->hardware_setup();
5398 }
5399
5400 void kvm_arch_hardware_unsetup(void)
5401 {
5402 kvm_x86_ops->hardware_unsetup();
5403 }
5404
5405 void kvm_arch_check_processor_compat(void *rtn)
5406 {
5407 kvm_x86_ops->check_processor_compatibility(rtn);
5408 }
5409
5410 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5411 {
5412 struct page *page;
5413 struct kvm *kvm;
5414 int r;
5415
5416 BUG_ON(vcpu->kvm == NULL);
5417 kvm = vcpu->kvm;
5418
5419 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5420 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5421 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5422 else
5423 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5424
5425 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5426 if (!page) {
5427 r = -ENOMEM;
5428 goto fail;
5429 }
5430 vcpu->arch.pio_data = page_address(page);
5431
5432 r = kvm_mmu_create(vcpu);
5433 if (r < 0)
5434 goto fail_free_pio_data;
5435
5436 if (irqchip_in_kernel(kvm)) {
5437 r = kvm_create_lapic(vcpu);
5438 if (r < 0)
5439 goto fail_mmu_destroy;
5440 }
5441
5442 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5443 GFP_KERNEL);
5444 if (!vcpu->arch.mce_banks) {
5445 r = -ENOMEM;
5446 goto fail_free_lapic;
5447 }
5448 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5449
5450 return 0;
5451 fail_free_lapic:
5452 kvm_free_lapic(vcpu);
5453 fail_mmu_destroy:
5454 kvm_mmu_destroy(vcpu);
5455 fail_free_pio_data:
5456 free_page((unsigned long)vcpu->arch.pio_data);
5457 fail:
5458 return r;
5459 }
5460
5461 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
5462 {
5463 int idx;
5464
5465 kfree(vcpu->arch.mce_banks);
5466 kvm_free_lapic(vcpu);
5467 idx = srcu_read_lock(&vcpu->kvm->srcu);
5468 kvm_mmu_destroy(vcpu);
5469 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5470 free_page((unsigned long)vcpu->arch.pio_data);
5471 }
5472
5473 struct kvm *kvm_arch_create_vm(void)
5474 {
5475 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
5476
5477 if (!kvm)
5478 return ERR_PTR(-ENOMEM);
5479
5480 kvm->arch.aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
5481 if (!kvm->arch.aliases) {
5482 kfree(kvm);
5483 return ERR_PTR(-ENOMEM);
5484 }
5485
5486 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5487 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
5488
5489 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5490 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
5491
5492 rdtscll(kvm->arch.vm_init_tsc);
5493
5494 return kvm;
5495 }
5496
5497 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
5498 {
5499 vcpu_load(vcpu);
5500 kvm_mmu_unload(vcpu);
5501 vcpu_put(vcpu);
5502 }
5503
5504 static void kvm_free_vcpus(struct kvm *kvm)
5505 {
5506 unsigned int i;
5507 struct kvm_vcpu *vcpu;
5508
5509 /*
5510 * Unpin any mmu pages first.
5511 */
5512 kvm_for_each_vcpu(i, vcpu, kvm)
5513 kvm_unload_vcpu_mmu(vcpu);
5514 kvm_for_each_vcpu(i, vcpu, kvm)
5515 kvm_arch_vcpu_free(vcpu);
5516
5517 mutex_lock(&kvm->lock);
5518 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
5519 kvm->vcpus[i] = NULL;
5520
5521 atomic_set(&kvm->online_vcpus, 0);
5522 mutex_unlock(&kvm->lock);
5523 }
5524
5525 void kvm_arch_sync_events(struct kvm *kvm)
5526 {
5527 kvm_free_all_assigned_devices(kvm);
5528 }
5529
5530 void kvm_arch_destroy_vm(struct kvm *kvm)
5531 {
5532 kvm_iommu_unmap_guest(kvm);
5533 kvm_free_pit(kvm);
5534 kfree(kvm->arch.vpic);
5535 kfree(kvm->arch.vioapic);
5536 kvm_free_vcpus(kvm);
5537 kvm_free_physmem(kvm);
5538 if (kvm->arch.apic_access_page)
5539 put_page(kvm->arch.apic_access_page);
5540 if (kvm->arch.ept_identity_pagetable)
5541 put_page(kvm->arch.ept_identity_pagetable);
5542 kfree(kvm->arch.aliases);
5543 kfree(kvm);
5544 }
5545
5546 int kvm_arch_prepare_memory_region(struct kvm *kvm,
5547 struct kvm_memory_slot *memslot,
5548 struct kvm_memory_slot old,
5549 struct kvm_userspace_memory_region *mem,
5550 int user_alloc)
5551 {
5552 int npages = memslot->npages;
5553
5554 /*To keep backward compatibility with older userspace,
5555 *x86 needs to hanlde !user_alloc case.
5556 */
5557 if (!user_alloc) {
5558 if (npages && !old.rmap) {
5559 unsigned long userspace_addr;
5560
5561 down_write(&current->mm->mmap_sem);
5562 userspace_addr = do_mmap(NULL, 0,
5563 npages * PAGE_SIZE,
5564 PROT_READ | PROT_WRITE,
5565 MAP_PRIVATE | MAP_ANONYMOUS,
5566 0);
5567 up_write(&current->mm->mmap_sem);
5568
5569 if (IS_ERR((void *)userspace_addr))
5570 return PTR_ERR((void *)userspace_addr);
5571
5572 memslot->userspace_addr = userspace_addr;
5573 }
5574 }
5575
5576
5577 return 0;
5578 }
5579
5580 void kvm_arch_commit_memory_region(struct kvm *kvm,
5581 struct kvm_userspace_memory_region *mem,
5582 struct kvm_memory_slot old,
5583 int user_alloc)
5584 {
5585
5586 int npages = mem->memory_size >> PAGE_SHIFT;
5587
5588 if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
5589 int ret;
5590
5591 down_write(&current->mm->mmap_sem);
5592 ret = do_munmap(current->mm, old.userspace_addr,
5593 old.npages * PAGE_SIZE);
5594 up_write(&current->mm->mmap_sem);
5595 if (ret < 0)
5596 printk(KERN_WARNING
5597 "kvm_vm_ioctl_set_memory_region: "
5598 "failed to munmap memory\n");
5599 }
5600
5601 spin_lock(&kvm->mmu_lock);
5602 if (!kvm->arch.n_requested_mmu_pages) {
5603 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
5604 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
5605 }
5606
5607 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
5608 spin_unlock(&kvm->mmu_lock);
5609 }
5610
5611 void kvm_arch_flush_shadow(struct kvm *kvm)
5612 {
5613 kvm_mmu_zap_all(kvm);
5614 kvm_reload_remote_mmus(kvm);
5615 }
5616
5617 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
5618 {
5619 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
5620 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
5621 || vcpu->arch.nmi_pending ||
5622 (kvm_arch_interrupt_allowed(vcpu) &&
5623 kvm_cpu_has_interrupt(vcpu));
5624 }
5625
5626 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
5627 {
5628 int me;
5629 int cpu = vcpu->cpu;
5630
5631 if (waitqueue_active(&vcpu->wq)) {
5632 wake_up_interruptible(&vcpu->wq);
5633 ++vcpu->stat.halt_wakeup;
5634 }
5635
5636 me = get_cpu();
5637 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
5638 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
5639 smp_send_reschedule(cpu);
5640 put_cpu();
5641 }
5642
5643 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
5644 {
5645 return kvm_x86_ops->interrupt_allowed(vcpu);
5646 }
5647
5648 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
5649 {
5650 unsigned long rflags;
5651
5652 rflags = kvm_x86_ops->get_rflags(vcpu);
5653 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5654 rflags &= ~(unsigned long)(X86_EFLAGS_TF | X86_EFLAGS_RF);
5655 return rflags;
5656 }
5657 EXPORT_SYMBOL_GPL(kvm_get_rflags);
5658
5659 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
5660 {
5661 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
5662 vcpu->arch.singlestep_cs ==
5663 get_segment_selector(vcpu, VCPU_SREG_CS) &&
5664 vcpu->arch.singlestep_rip == kvm_rip_read(vcpu))
5665 rflags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
5666 kvm_x86_ops->set_rflags(vcpu, rflags);
5667 }
5668 EXPORT_SYMBOL_GPL(kvm_set_rflags);
5669
5670 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
5671 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
5672 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
5673 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
5674 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
5675 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
5676 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
5677 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
5678 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
5679 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
5680 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
This page took 0.151928 seconds and 6 git commands to generate.