KVM: set debug registers after "schedulable" section
[deliverable/linux.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Amit Shah <amit.shah@qumranet.com>
14 * Ben-Ami Yassour <benami@il.ibm.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
28
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/pci.h>
34 #include <linux/vmalloc.h>
35 #include <linux/module.h>
36 #include <linux/mman.h>
37 #include <linux/highmem.h>
38
39 #include <asm/uaccess.h>
40 #include <asm/msr.h>
41 #include <asm/desc.h>
42
43 #define MAX_IO_MSRS 256
44 #define CR0_RESERVED_BITS \
45 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
46 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
47 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
48 #define CR4_RESERVED_BITS \
49 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
50 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
51 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
52 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
53
54 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
55 /* EFER defaults:
56 * - enable syscall per default because its emulated by KVM
57 * - enable LME and LMA per default on 64 bit KVM
58 */
59 #ifdef CONFIG_X86_64
60 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
61 #else
62 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
63 #endif
64
65 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
66 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
67
68 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
69 struct kvm_cpuid_entry2 __user *entries);
70
71 struct kvm_x86_ops *kvm_x86_ops;
72 EXPORT_SYMBOL_GPL(kvm_x86_ops);
73
74 struct kvm_stats_debugfs_item debugfs_entries[] = {
75 { "pf_fixed", VCPU_STAT(pf_fixed) },
76 { "pf_guest", VCPU_STAT(pf_guest) },
77 { "tlb_flush", VCPU_STAT(tlb_flush) },
78 { "invlpg", VCPU_STAT(invlpg) },
79 { "exits", VCPU_STAT(exits) },
80 { "io_exits", VCPU_STAT(io_exits) },
81 { "mmio_exits", VCPU_STAT(mmio_exits) },
82 { "signal_exits", VCPU_STAT(signal_exits) },
83 { "irq_window", VCPU_STAT(irq_window_exits) },
84 { "nmi_window", VCPU_STAT(nmi_window_exits) },
85 { "halt_exits", VCPU_STAT(halt_exits) },
86 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
87 { "hypercalls", VCPU_STAT(hypercalls) },
88 { "request_irq", VCPU_STAT(request_irq_exits) },
89 { "irq_exits", VCPU_STAT(irq_exits) },
90 { "host_state_reload", VCPU_STAT(host_state_reload) },
91 { "efer_reload", VCPU_STAT(efer_reload) },
92 { "fpu_reload", VCPU_STAT(fpu_reload) },
93 { "insn_emulation", VCPU_STAT(insn_emulation) },
94 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
95 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
96 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
97 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
98 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
99 { "mmu_flooded", VM_STAT(mmu_flooded) },
100 { "mmu_recycled", VM_STAT(mmu_recycled) },
101 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
102 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
103 { "largepages", VM_STAT(lpages) },
104 { NULL }
105 };
106
107 struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
108 int assigned_dev_id)
109 {
110 struct list_head *ptr;
111 struct kvm_assigned_dev_kernel *match;
112
113 list_for_each(ptr, head) {
114 match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
115 if (match->assigned_dev_id == assigned_dev_id)
116 return match;
117 }
118 return NULL;
119 }
120
121 static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
122 {
123 struct kvm_assigned_dev_kernel *assigned_dev;
124
125 assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
126 interrupt_work);
127
128 /* This is taken to safely inject irq inside the guest. When
129 * the interrupt injection (or the ioapic code) uses a
130 * finer-grained lock, update this
131 */
132 mutex_lock(&assigned_dev->kvm->lock);
133 kvm_set_irq(assigned_dev->kvm,
134 assigned_dev->guest_irq, 1);
135 mutex_unlock(&assigned_dev->kvm->lock);
136 kvm_put_kvm(assigned_dev->kvm);
137 }
138
139 /* FIXME: Implement the OR logic needed to make shared interrupts on
140 * this line behave properly
141 */
142 static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
143 {
144 struct kvm_assigned_dev_kernel *assigned_dev =
145 (struct kvm_assigned_dev_kernel *) dev_id;
146
147 kvm_get_kvm(assigned_dev->kvm);
148 schedule_work(&assigned_dev->interrupt_work);
149 disable_irq_nosync(irq);
150 return IRQ_HANDLED;
151 }
152
153 /* Ack the irq line for an assigned device */
154 static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
155 {
156 struct kvm_assigned_dev_kernel *dev;
157
158 if (kian->gsi == -1)
159 return;
160
161 dev = container_of(kian, struct kvm_assigned_dev_kernel,
162 ack_notifier);
163 kvm_set_irq(dev->kvm, dev->guest_irq, 0);
164 enable_irq(dev->host_irq);
165 }
166
167 static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
168 struct kvm_assigned_irq
169 *assigned_irq)
170 {
171 int r = 0;
172 struct kvm_assigned_dev_kernel *match;
173
174 mutex_lock(&kvm->lock);
175
176 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
177 assigned_irq->assigned_dev_id);
178 if (!match) {
179 mutex_unlock(&kvm->lock);
180 return -EINVAL;
181 }
182
183 if (match->irq_requested) {
184 match->guest_irq = assigned_irq->guest_irq;
185 match->ack_notifier.gsi = assigned_irq->guest_irq;
186 mutex_unlock(&kvm->lock);
187 return 0;
188 }
189
190 INIT_WORK(&match->interrupt_work,
191 kvm_assigned_dev_interrupt_work_handler);
192
193 if (irqchip_in_kernel(kvm)) {
194 if (assigned_irq->host_irq)
195 match->host_irq = assigned_irq->host_irq;
196 else
197 match->host_irq = match->dev->irq;
198 match->guest_irq = assigned_irq->guest_irq;
199 match->ack_notifier.gsi = assigned_irq->guest_irq;
200 match->ack_notifier.irq_acked = kvm_assigned_dev_ack_irq;
201 kvm_register_irq_ack_notifier(kvm, &match->ack_notifier);
202
203 /* Even though this is PCI, we don't want to use shared
204 * interrupts. Sharing host devices with guest-assigned devices
205 * on the same interrupt line is not a happy situation: there
206 * are going to be long delays in accepting, acking, etc.
207 */
208 if (request_irq(match->host_irq, kvm_assigned_dev_intr, 0,
209 "kvm_assigned_device", (void *)match)) {
210 printk(KERN_INFO "%s: couldn't allocate irq for pv "
211 "device\n", __func__);
212 r = -EIO;
213 goto out;
214 }
215 }
216
217 match->irq_requested = true;
218 out:
219 mutex_unlock(&kvm->lock);
220 return r;
221 }
222
223 static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
224 struct kvm_assigned_pci_dev *assigned_dev)
225 {
226 int r = 0;
227 struct kvm_assigned_dev_kernel *match;
228 struct pci_dev *dev;
229
230 mutex_lock(&kvm->lock);
231
232 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
233 assigned_dev->assigned_dev_id);
234 if (match) {
235 /* device already assigned */
236 r = -EINVAL;
237 goto out;
238 }
239
240 match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
241 if (match == NULL) {
242 printk(KERN_INFO "%s: Couldn't allocate memory\n",
243 __func__);
244 r = -ENOMEM;
245 goto out;
246 }
247 dev = pci_get_bus_and_slot(assigned_dev->busnr,
248 assigned_dev->devfn);
249 if (!dev) {
250 printk(KERN_INFO "%s: host device not found\n", __func__);
251 r = -EINVAL;
252 goto out_free;
253 }
254 if (pci_enable_device(dev)) {
255 printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
256 r = -EBUSY;
257 goto out_put;
258 }
259 r = pci_request_regions(dev, "kvm_assigned_device");
260 if (r) {
261 printk(KERN_INFO "%s: Could not get access to device regions\n",
262 __func__);
263 goto out_disable;
264 }
265 match->assigned_dev_id = assigned_dev->assigned_dev_id;
266 match->host_busnr = assigned_dev->busnr;
267 match->host_devfn = assigned_dev->devfn;
268 match->dev = dev;
269
270 match->kvm = kvm;
271
272 list_add(&match->list, &kvm->arch.assigned_dev_head);
273
274 out:
275 mutex_unlock(&kvm->lock);
276 return r;
277 out_disable:
278 pci_disable_device(dev);
279 out_put:
280 pci_dev_put(dev);
281 out_free:
282 kfree(match);
283 mutex_unlock(&kvm->lock);
284 return r;
285 }
286
287 static void kvm_free_assigned_devices(struct kvm *kvm)
288 {
289 struct list_head *ptr, *ptr2;
290 struct kvm_assigned_dev_kernel *assigned_dev;
291
292 list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
293 assigned_dev = list_entry(ptr,
294 struct kvm_assigned_dev_kernel,
295 list);
296
297 if (irqchip_in_kernel(kvm) && assigned_dev->irq_requested) {
298 free_irq(assigned_dev->host_irq,
299 (void *)assigned_dev);
300
301 kvm_unregister_irq_ack_notifier(kvm,
302 &assigned_dev->
303 ack_notifier);
304 }
305
306 if (cancel_work_sync(&assigned_dev->interrupt_work))
307 /* We had pending work. That means we will have to take
308 * care of kvm_put_kvm.
309 */
310 kvm_put_kvm(kvm);
311
312 pci_release_regions(assigned_dev->dev);
313 pci_disable_device(assigned_dev->dev);
314 pci_dev_put(assigned_dev->dev);
315
316 list_del(&assigned_dev->list);
317 kfree(assigned_dev);
318 }
319 }
320
321 unsigned long segment_base(u16 selector)
322 {
323 struct descriptor_table gdt;
324 struct desc_struct *d;
325 unsigned long table_base;
326 unsigned long v;
327
328 if (selector == 0)
329 return 0;
330
331 asm("sgdt %0" : "=m"(gdt));
332 table_base = gdt.base;
333
334 if (selector & 4) { /* from ldt */
335 u16 ldt_selector;
336
337 asm("sldt %0" : "=g"(ldt_selector));
338 table_base = segment_base(ldt_selector);
339 }
340 d = (struct desc_struct *)(table_base + (selector & ~7));
341 v = d->base0 | ((unsigned long)d->base1 << 16) |
342 ((unsigned long)d->base2 << 24);
343 #ifdef CONFIG_X86_64
344 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
345 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
346 #endif
347 return v;
348 }
349 EXPORT_SYMBOL_GPL(segment_base);
350
351 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
352 {
353 if (irqchip_in_kernel(vcpu->kvm))
354 return vcpu->arch.apic_base;
355 else
356 return vcpu->arch.apic_base;
357 }
358 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
359
360 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
361 {
362 /* TODO: reserve bits check */
363 if (irqchip_in_kernel(vcpu->kvm))
364 kvm_lapic_set_base(vcpu, data);
365 else
366 vcpu->arch.apic_base = data;
367 }
368 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
369
370 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
371 {
372 WARN_ON(vcpu->arch.exception.pending);
373 vcpu->arch.exception.pending = true;
374 vcpu->arch.exception.has_error_code = false;
375 vcpu->arch.exception.nr = nr;
376 }
377 EXPORT_SYMBOL_GPL(kvm_queue_exception);
378
379 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
380 u32 error_code)
381 {
382 ++vcpu->stat.pf_guest;
383 if (vcpu->arch.exception.pending) {
384 if (vcpu->arch.exception.nr == PF_VECTOR) {
385 printk(KERN_DEBUG "kvm: inject_page_fault:"
386 " double fault 0x%lx\n", addr);
387 vcpu->arch.exception.nr = DF_VECTOR;
388 vcpu->arch.exception.error_code = 0;
389 } else if (vcpu->arch.exception.nr == DF_VECTOR) {
390 /* triple fault -> shutdown */
391 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
392 }
393 return;
394 }
395 vcpu->arch.cr2 = addr;
396 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
397 }
398
399 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
400 {
401 vcpu->arch.nmi_pending = 1;
402 }
403 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
404
405 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
406 {
407 WARN_ON(vcpu->arch.exception.pending);
408 vcpu->arch.exception.pending = true;
409 vcpu->arch.exception.has_error_code = true;
410 vcpu->arch.exception.nr = nr;
411 vcpu->arch.exception.error_code = error_code;
412 }
413 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
414
415 static void __queue_exception(struct kvm_vcpu *vcpu)
416 {
417 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
418 vcpu->arch.exception.has_error_code,
419 vcpu->arch.exception.error_code);
420 }
421
422 /*
423 * Load the pae pdptrs. Return true is they are all valid.
424 */
425 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
426 {
427 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
428 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
429 int i;
430 int ret;
431 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
432
433 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
434 offset * sizeof(u64), sizeof(pdpte));
435 if (ret < 0) {
436 ret = 0;
437 goto out;
438 }
439 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
440 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
441 ret = 0;
442 goto out;
443 }
444 }
445 ret = 1;
446
447 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
448 out:
449
450 return ret;
451 }
452 EXPORT_SYMBOL_GPL(load_pdptrs);
453
454 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
455 {
456 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
457 bool changed = true;
458 int r;
459
460 if (is_long_mode(vcpu) || !is_pae(vcpu))
461 return false;
462
463 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
464 if (r < 0)
465 goto out;
466 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
467 out:
468
469 return changed;
470 }
471
472 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
473 {
474 if (cr0 & CR0_RESERVED_BITS) {
475 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
476 cr0, vcpu->arch.cr0);
477 kvm_inject_gp(vcpu, 0);
478 return;
479 }
480
481 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
482 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
483 kvm_inject_gp(vcpu, 0);
484 return;
485 }
486
487 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
488 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
489 "and a clear PE flag\n");
490 kvm_inject_gp(vcpu, 0);
491 return;
492 }
493
494 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
495 #ifdef CONFIG_X86_64
496 if ((vcpu->arch.shadow_efer & EFER_LME)) {
497 int cs_db, cs_l;
498
499 if (!is_pae(vcpu)) {
500 printk(KERN_DEBUG "set_cr0: #GP, start paging "
501 "in long mode while PAE is disabled\n");
502 kvm_inject_gp(vcpu, 0);
503 return;
504 }
505 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
506 if (cs_l) {
507 printk(KERN_DEBUG "set_cr0: #GP, start paging "
508 "in long mode while CS.L == 1\n");
509 kvm_inject_gp(vcpu, 0);
510 return;
511
512 }
513 } else
514 #endif
515 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
516 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
517 "reserved bits\n");
518 kvm_inject_gp(vcpu, 0);
519 return;
520 }
521
522 }
523
524 kvm_x86_ops->set_cr0(vcpu, cr0);
525 vcpu->arch.cr0 = cr0;
526
527 kvm_mmu_reset_context(vcpu);
528 return;
529 }
530 EXPORT_SYMBOL_GPL(kvm_set_cr0);
531
532 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
533 {
534 kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
535 KVMTRACE_1D(LMSW, vcpu,
536 (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
537 handler);
538 }
539 EXPORT_SYMBOL_GPL(kvm_lmsw);
540
541 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
542 {
543 if (cr4 & CR4_RESERVED_BITS) {
544 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
545 kvm_inject_gp(vcpu, 0);
546 return;
547 }
548
549 if (is_long_mode(vcpu)) {
550 if (!(cr4 & X86_CR4_PAE)) {
551 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
552 "in long mode\n");
553 kvm_inject_gp(vcpu, 0);
554 return;
555 }
556 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
557 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
558 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
559 kvm_inject_gp(vcpu, 0);
560 return;
561 }
562
563 if (cr4 & X86_CR4_VMXE) {
564 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
565 kvm_inject_gp(vcpu, 0);
566 return;
567 }
568 kvm_x86_ops->set_cr4(vcpu, cr4);
569 vcpu->arch.cr4 = cr4;
570 kvm_mmu_reset_context(vcpu);
571 }
572 EXPORT_SYMBOL_GPL(kvm_set_cr4);
573
574 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
575 {
576 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
577 kvm_mmu_flush_tlb(vcpu);
578 return;
579 }
580
581 if (is_long_mode(vcpu)) {
582 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
583 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
584 kvm_inject_gp(vcpu, 0);
585 return;
586 }
587 } else {
588 if (is_pae(vcpu)) {
589 if (cr3 & CR3_PAE_RESERVED_BITS) {
590 printk(KERN_DEBUG
591 "set_cr3: #GP, reserved bits\n");
592 kvm_inject_gp(vcpu, 0);
593 return;
594 }
595 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
596 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
597 "reserved bits\n");
598 kvm_inject_gp(vcpu, 0);
599 return;
600 }
601 }
602 /*
603 * We don't check reserved bits in nonpae mode, because
604 * this isn't enforced, and VMware depends on this.
605 */
606 }
607
608 /*
609 * Does the new cr3 value map to physical memory? (Note, we
610 * catch an invalid cr3 even in real-mode, because it would
611 * cause trouble later on when we turn on paging anyway.)
612 *
613 * A real CPU would silently accept an invalid cr3 and would
614 * attempt to use it - with largely undefined (and often hard
615 * to debug) behavior on the guest side.
616 */
617 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
618 kvm_inject_gp(vcpu, 0);
619 else {
620 vcpu->arch.cr3 = cr3;
621 vcpu->arch.mmu.new_cr3(vcpu);
622 }
623 }
624 EXPORT_SYMBOL_GPL(kvm_set_cr3);
625
626 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
627 {
628 if (cr8 & CR8_RESERVED_BITS) {
629 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
630 kvm_inject_gp(vcpu, 0);
631 return;
632 }
633 if (irqchip_in_kernel(vcpu->kvm))
634 kvm_lapic_set_tpr(vcpu, cr8);
635 else
636 vcpu->arch.cr8 = cr8;
637 }
638 EXPORT_SYMBOL_GPL(kvm_set_cr8);
639
640 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
641 {
642 if (irqchip_in_kernel(vcpu->kvm))
643 return kvm_lapic_get_cr8(vcpu);
644 else
645 return vcpu->arch.cr8;
646 }
647 EXPORT_SYMBOL_GPL(kvm_get_cr8);
648
649 /*
650 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
651 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
652 *
653 * This list is modified at module load time to reflect the
654 * capabilities of the host cpu.
655 */
656 static u32 msrs_to_save[] = {
657 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
658 MSR_K6_STAR,
659 #ifdef CONFIG_X86_64
660 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
661 #endif
662 MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
663 MSR_IA32_PERF_STATUS,
664 };
665
666 static unsigned num_msrs_to_save;
667
668 static u32 emulated_msrs[] = {
669 MSR_IA32_MISC_ENABLE,
670 };
671
672 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
673 {
674 if (efer & efer_reserved_bits) {
675 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
676 efer);
677 kvm_inject_gp(vcpu, 0);
678 return;
679 }
680
681 if (is_paging(vcpu)
682 && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
683 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
684 kvm_inject_gp(vcpu, 0);
685 return;
686 }
687
688 kvm_x86_ops->set_efer(vcpu, efer);
689
690 efer &= ~EFER_LMA;
691 efer |= vcpu->arch.shadow_efer & EFER_LMA;
692
693 vcpu->arch.shadow_efer = efer;
694 }
695
696 void kvm_enable_efer_bits(u64 mask)
697 {
698 efer_reserved_bits &= ~mask;
699 }
700 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
701
702
703 /*
704 * Writes msr value into into the appropriate "register".
705 * Returns 0 on success, non-0 otherwise.
706 * Assumes vcpu_load() was already called.
707 */
708 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
709 {
710 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
711 }
712
713 /*
714 * Adapt set_msr() to msr_io()'s calling convention
715 */
716 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
717 {
718 return kvm_set_msr(vcpu, index, *data);
719 }
720
721 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
722 {
723 static int version;
724 struct pvclock_wall_clock wc;
725 struct timespec now, sys, boot;
726
727 if (!wall_clock)
728 return;
729
730 version++;
731
732 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
733
734 /*
735 * The guest calculates current wall clock time by adding
736 * system time (updated by kvm_write_guest_time below) to the
737 * wall clock specified here. guest system time equals host
738 * system time for us, thus we must fill in host boot time here.
739 */
740 now = current_kernel_time();
741 ktime_get_ts(&sys);
742 boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
743
744 wc.sec = boot.tv_sec;
745 wc.nsec = boot.tv_nsec;
746 wc.version = version;
747
748 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
749
750 version++;
751 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
752 }
753
754 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
755 {
756 uint32_t quotient, remainder;
757
758 /* Don't try to replace with do_div(), this one calculates
759 * "(dividend << 32) / divisor" */
760 __asm__ ( "divl %4"
761 : "=a" (quotient), "=d" (remainder)
762 : "0" (0), "1" (dividend), "r" (divisor) );
763 return quotient;
764 }
765
766 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
767 {
768 uint64_t nsecs = 1000000000LL;
769 int32_t shift = 0;
770 uint64_t tps64;
771 uint32_t tps32;
772
773 tps64 = tsc_khz * 1000LL;
774 while (tps64 > nsecs*2) {
775 tps64 >>= 1;
776 shift--;
777 }
778
779 tps32 = (uint32_t)tps64;
780 while (tps32 <= (uint32_t)nsecs) {
781 tps32 <<= 1;
782 shift++;
783 }
784
785 hv_clock->tsc_shift = shift;
786 hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
787
788 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
789 __FUNCTION__, tsc_khz, hv_clock->tsc_shift,
790 hv_clock->tsc_to_system_mul);
791 }
792
793 static void kvm_write_guest_time(struct kvm_vcpu *v)
794 {
795 struct timespec ts;
796 unsigned long flags;
797 struct kvm_vcpu_arch *vcpu = &v->arch;
798 void *shared_kaddr;
799
800 if ((!vcpu->time_page))
801 return;
802
803 if (unlikely(vcpu->hv_clock_tsc_khz != tsc_khz)) {
804 kvm_set_time_scale(tsc_khz, &vcpu->hv_clock);
805 vcpu->hv_clock_tsc_khz = tsc_khz;
806 }
807
808 /* Keep irq disabled to prevent changes to the clock */
809 local_irq_save(flags);
810 kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
811 &vcpu->hv_clock.tsc_timestamp);
812 ktime_get_ts(&ts);
813 local_irq_restore(flags);
814
815 /* With all the info we got, fill in the values */
816
817 vcpu->hv_clock.system_time = ts.tv_nsec +
818 (NSEC_PER_SEC * (u64)ts.tv_sec);
819 /*
820 * The interface expects us to write an even number signaling that the
821 * update is finished. Since the guest won't see the intermediate
822 * state, we just increase by 2 at the end.
823 */
824 vcpu->hv_clock.version += 2;
825
826 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
827
828 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
829 sizeof(vcpu->hv_clock));
830
831 kunmap_atomic(shared_kaddr, KM_USER0);
832
833 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
834 }
835
836 static bool msr_mtrr_valid(unsigned msr)
837 {
838 switch (msr) {
839 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
840 case MSR_MTRRfix64K_00000:
841 case MSR_MTRRfix16K_80000:
842 case MSR_MTRRfix16K_A0000:
843 case MSR_MTRRfix4K_C0000:
844 case MSR_MTRRfix4K_C8000:
845 case MSR_MTRRfix4K_D0000:
846 case MSR_MTRRfix4K_D8000:
847 case MSR_MTRRfix4K_E0000:
848 case MSR_MTRRfix4K_E8000:
849 case MSR_MTRRfix4K_F0000:
850 case MSR_MTRRfix4K_F8000:
851 case MSR_MTRRdefType:
852 case MSR_IA32_CR_PAT:
853 return true;
854 case 0x2f8:
855 return true;
856 }
857 return false;
858 }
859
860 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
861 {
862 if (!msr_mtrr_valid(msr))
863 return 1;
864
865 vcpu->arch.mtrr[msr - 0x200] = data;
866 return 0;
867 }
868
869 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
870 {
871 switch (msr) {
872 case MSR_EFER:
873 set_efer(vcpu, data);
874 break;
875 case MSR_IA32_MC0_STATUS:
876 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
877 __func__, data);
878 break;
879 case MSR_IA32_MCG_STATUS:
880 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
881 __func__, data);
882 break;
883 case MSR_IA32_MCG_CTL:
884 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
885 __func__, data);
886 break;
887 case MSR_IA32_DEBUGCTLMSR:
888 if (!data) {
889 /* We support the non-activated case already */
890 break;
891 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
892 /* Values other than LBR and BTF are vendor-specific,
893 thus reserved and should throw a #GP */
894 return 1;
895 }
896 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
897 __func__, data);
898 break;
899 case MSR_IA32_UCODE_REV:
900 case MSR_IA32_UCODE_WRITE:
901 break;
902 case 0x200 ... 0x2ff:
903 return set_msr_mtrr(vcpu, msr, data);
904 case MSR_IA32_APICBASE:
905 kvm_set_apic_base(vcpu, data);
906 break;
907 case MSR_IA32_MISC_ENABLE:
908 vcpu->arch.ia32_misc_enable_msr = data;
909 break;
910 case MSR_KVM_WALL_CLOCK:
911 vcpu->kvm->arch.wall_clock = data;
912 kvm_write_wall_clock(vcpu->kvm, data);
913 break;
914 case MSR_KVM_SYSTEM_TIME: {
915 if (vcpu->arch.time_page) {
916 kvm_release_page_dirty(vcpu->arch.time_page);
917 vcpu->arch.time_page = NULL;
918 }
919
920 vcpu->arch.time = data;
921
922 /* we verify if the enable bit is set... */
923 if (!(data & 1))
924 break;
925
926 /* ...but clean it before doing the actual write */
927 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
928
929 down_read(&current->mm->mmap_sem);
930 vcpu->arch.time_page =
931 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
932 up_read(&current->mm->mmap_sem);
933
934 if (is_error_page(vcpu->arch.time_page)) {
935 kvm_release_page_clean(vcpu->arch.time_page);
936 vcpu->arch.time_page = NULL;
937 }
938
939 kvm_write_guest_time(vcpu);
940 break;
941 }
942 default:
943 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
944 return 1;
945 }
946 return 0;
947 }
948 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
949
950
951 /*
952 * Reads an msr value (of 'msr_index') into 'pdata'.
953 * Returns 0 on success, non-0 otherwise.
954 * Assumes vcpu_load() was already called.
955 */
956 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
957 {
958 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
959 }
960
961 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
962 {
963 if (!msr_mtrr_valid(msr))
964 return 1;
965
966 *pdata = vcpu->arch.mtrr[msr - 0x200];
967 return 0;
968 }
969
970 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
971 {
972 u64 data;
973
974 switch (msr) {
975 case 0xc0010010: /* SYSCFG */
976 case 0xc0010015: /* HWCR */
977 case MSR_IA32_PLATFORM_ID:
978 case MSR_IA32_P5_MC_ADDR:
979 case MSR_IA32_P5_MC_TYPE:
980 case MSR_IA32_MC0_CTL:
981 case MSR_IA32_MCG_STATUS:
982 case MSR_IA32_MCG_CAP:
983 case MSR_IA32_MCG_CTL:
984 case MSR_IA32_MC0_MISC:
985 case MSR_IA32_MC0_MISC+4:
986 case MSR_IA32_MC0_MISC+8:
987 case MSR_IA32_MC0_MISC+12:
988 case MSR_IA32_MC0_MISC+16:
989 case MSR_IA32_UCODE_REV:
990 case MSR_IA32_EBL_CR_POWERON:
991 case MSR_IA32_DEBUGCTLMSR:
992 case MSR_IA32_LASTBRANCHFROMIP:
993 case MSR_IA32_LASTBRANCHTOIP:
994 case MSR_IA32_LASTINTFROMIP:
995 case MSR_IA32_LASTINTTOIP:
996 data = 0;
997 break;
998 case MSR_MTRRcap:
999 data = 0x500 | KVM_NR_VAR_MTRR;
1000 break;
1001 case 0x200 ... 0x2ff:
1002 return get_msr_mtrr(vcpu, msr, pdata);
1003 case 0xcd: /* fsb frequency */
1004 data = 3;
1005 break;
1006 case MSR_IA32_APICBASE:
1007 data = kvm_get_apic_base(vcpu);
1008 break;
1009 case MSR_IA32_MISC_ENABLE:
1010 data = vcpu->arch.ia32_misc_enable_msr;
1011 break;
1012 case MSR_IA32_PERF_STATUS:
1013 /* TSC increment by tick */
1014 data = 1000ULL;
1015 /* CPU multiplier */
1016 data |= (((uint64_t)4ULL) << 40);
1017 break;
1018 case MSR_EFER:
1019 data = vcpu->arch.shadow_efer;
1020 break;
1021 case MSR_KVM_WALL_CLOCK:
1022 data = vcpu->kvm->arch.wall_clock;
1023 break;
1024 case MSR_KVM_SYSTEM_TIME:
1025 data = vcpu->arch.time;
1026 break;
1027 default:
1028 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1029 return 1;
1030 }
1031 *pdata = data;
1032 return 0;
1033 }
1034 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1035
1036 /*
1037 * Read or write a bunch of msrs. All parameters are kernel addresses.
1038 *
1039 * @return number of msrs set successfully.
1040 */
1041 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1042 struct kvm_msr_entry *entries,
1043 int (*do_msr)(struct kvm_vcpu *vcpu,
1044 unsigned index, u64 *data))
1045 {
1046 int i;
1047
1048 vcpu_load(vcpu);
1049
1050 down_read(&vcpu->kvm->slots_lock);
1051 for (i = 0; i < msrs->nmsrs; ++i)
1052 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1053 break;
1054 up_read(&vcpu->kvm->slots_lock);
1055
1056 vcpu_put(vcpu);
1057
1058 return i;
1059 }
1060
1061 /*
1062 * Read or write a bunch of msrs. Parameters are user addresses.
1063 *
1064 * @return number of msrs set successfully.
1065 */
1066 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1067 int (*do_msr)(struct kvm_vcpu *vcpu,
1068 unsigned index, u64 *data),
1069 int writeback)
1070 {
1071 struct kvm_msrs msrs;
1072 struct kvm_msr_entry *entries;
1073 int r, n;
1074 unsigned size;
1075
1076 r = -EFAULT;
1077 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1078 goto out;
1079
1080 r = -E2BIG;
1081 if (msrs.nmsrs >= MAX_IO_MSRS)
1082 goto out;
1083
1084 r = -ENOMEM;
1085 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1086 entries = vmalloc(size);
1087 if (!entries)
1088 goto out;
1089
1090 r = -EFAULT;
1091 if (copy_from_user(entries, user_msrs->entries, size))
1092 goto out_free;
1093
1094 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1095 if (r < 0)
1096 goto out_free;
1097
1098 r = -EFAULT;
1099 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1100 goto out_free;
1101
1102 r = n;
1103
1104 out_free:
1105 vfree(entries);
1106 out:
1107 return r;
1108 }
1109
1110 int kvm_dev_ioctl_check_extension(long ext)
1111 {
1112 int r;
1113
1114 switch (ext) {
1115 case KVM_CAP_IRQCHIP:
1116 case KVM_CAP_HLT:
1117 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1118 case KVM_CAP_USER_MEMORY:
1119 case KVM_CAP_SET_TSS_ADDR:
1120 case KVM_CAP_EXT_CPUID:
1121 case KVM_CAP_CLOCKSOURCE:
1122 case KVM_CAP_PIT:
1123 case KVM_CAP_NOP_IO_DELAY:
1124 case KVM_CAP_MP_STATE:
1125 case KVM_CAP_SYNC_MMU:
1126 r = 1;
1127 break;
1128 case KVM_CAP_COALESCED_MMIO:
1129 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1130 break;
1131 case KVM_CAP_VAPIC:
1132 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1133 break;
1134 case KVM_CAP_NR_VCPUS:
1135 r = KVM_MAX_VCPUS;
1136 break;
1137 case KVM_CAP_NR_MEMSLOTS:
1138 r = KVM_MEMORY_SLOTS;
1139 break;
1140 case KVM_CAP_PV_MMU:
1141 r = !tdp_enabled;
1142 break;
1143 default:
1144 r = 0;
1145 break;
1146 }
1147 return r;
1148
1149 }
1150
1151 long kvm_arch_dev_ioctl(struct file *filp,
1152 unsigned int ioctl, unsigned long arg)
1153 {
1154 void __user *argp = (void __user *)arg;
1155 long r;
1156
1157 switch (ioctl) {
1158 case KVM_GET_MSR_INDEX_LIST: {
1159 struct kvm_msr_list __user *user_msr_list = argp;
1160 struct kvm_msr_list msr_list;
1161 unsigned n;
1162
1163 r = -EFAULT;
1164 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1165 goto out;
1166 n = msr_list.nmsrs;
1167 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1168 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1169 goto out;
1170 r = -E2BIG;
1171 if (n < num_msrs_to_save)
1172 goto out;
1173 r = -EFAULT;
1174 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1175 num_msrs_to_save * sizeof(u32)))
1176 goto out;
1177 if (copy_to_user(user_msr_list->indices
1178 + num_msrs_to_save * sizeof(u32),
1179 &emulated_msrs,
1180 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1181 goto out;
1182 r = 0;
1183 break;
1184 }
1185 case KVM_GET_SUPPORTED_CPUID: {
1186 struct kvm_cpuid2 __user *cpuid_arg = argp;
1187 struct kvm_cpuid2 cpuid;
1188
1189 r = -EFAULT;
1190 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1191 goto out;
1192 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1193 cpuid_arg->entries);
1194 if (r)
1195 goto out;
1196
1197 r = -EFAULT;
1198 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1199 goto out;
1200 r = 0;
1201 break;
1202 }
1203 default:
1204 r = -EINVAL;
1205 }
1206 out:
1207 return r;
1208 }
1209
1210 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1211 {
1212 kvm_x86_ops->vcpu_load(vcpu, cpu);
1213 kvm_write_guest_time(vcpu);
1214 }
1215
1216 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1217 {
1218 kvm_x86_ops->vcpu_put(vcpu);
1219 kvm_put_guest_fpu(vcpu);
1220 }
1221
1222 static int is_efer_nx(void)
1223 {
1224 u64 efer;
1225
1226 rdmsrl(MSR_EFER, efer);
1227 return efer & EFER_NX;
1228 }
1229
1230 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1231 {
1232 int i;
1233 struct kvm_cpuid_entry2 *e, *entry;
1234
1235 entry = NULL;
1236 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1237 e = &vcpu->arch.cpuid_entries[i];
1238 if (e->function == 0x80000001) {
1239 entry = e;
1240 break;
1241 }
1242 }
1243 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1244 entry->edx &= ~(1 << 20);
1245 printk(KERN_INFO "kvm: guest NX capability removed\n");
1246 }
1247 }
1248
1249 /* when an old userspace process fills a new kernel module */
1250 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1251 struct kvm_cpuid *cpuid,
1252 struct kvm_cpuid_entry __user *entries)
1253 {
1254 int r, i;
1255 struct kvm_cpuid_entry *cpuid_entries;
1256
1257 r = -E2BIG;
1258 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1259 goto out;
1260 r = -ENOMEM;
1261 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1262 if (!cpuid_entries)
1263 goto out;
1264 r = -EFAULT;
1265 if (copy_from_user(cpuid_entries, entries,
1266 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1267 goto out_free;
1268 for (i = 0; i < cpuid->nent; i++) {
1269 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1270 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1271 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1272 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1273 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1274 vcpu->arch.cpuid_entries[i].index = 0;
1275 vcpu->arch.cpuid_entries[i].flags = 0;
1276 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1277 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1278 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1279 }
1280 vcpu->arch.cpuid_nent = cpuid->nent;
1281 cpuid_fix_nx_cap(vcpu);
1282 r = 0;
1283
1284 out_free:
1285 vfree(cpuid_entries);
1286 out:
1287 return r;
1288 }
1289
1290 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1291 struct kvm_cpuid2 *cpuid,
1292 struct kvm_cpuid_entry2 __user *entries)
1293 {
1294 int r;
1295
1296 r = -E2BIG;
1297 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1298 goto out;
1299 r = -EFAULT;
1300 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1301 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1302 goto out;
1303 vcpu->arch.cpuid_nent = cpuid->nent;
1304 return 0;
1305
1306 out:
1307 return r;
1308 }
1309
1310 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1311 struct kvm_cpuid2 *cpuid,
1312 struct kvm_cpuid_entry2 __user *entries)
1313 {
1314 int r;
1315
1316 r = -E2BIG;
1317 if (cpuid->nent < vcpu->arch.cpuid_nent)
1318 goto out;
1319 r = -EFAULT;
1320 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1321 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1322 goto out;
1323 return 0;
1324
1325 out:
1326 cpuid->nent = vcpu->arch.cpuid_nent;
1327 return r;
1328 }
1329
1330 static inline u32 bit(int bitno)
1331 {
1332 return 1 << (bitno & 31);
1333 }
1334
1335 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1336 u32 index)
1337 {
1338 entry->function = function;
1339 entry->index = index;
1340 cpuid_count(entry->function, entry->index,
1341 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1342 entry->flags = 0;
1343 }
1344
1345 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1346 u32 index, int *nent, int maxnent)
1347 {
1348 const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
1349 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1350 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1351 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1352 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1353 bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
1354 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1355 bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
1356 bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
1357 bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
1358 const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
1359 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1360 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1361 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1362 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1363 bit(X86_FEATURE_PGE) |
1364 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1365 bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
1366 bit(X86_FEATURE_SYSCALL) |
1367 (bit(X86_FEATURE_NX) && is_efer_nx()) |
1368 #ifdef CONFIG_X86_64
1369 bit(X86_FEATURE_LM) |
1370 #endif
1371 bit(X86_FEATURE_MMXEXT) |
1372 bit(X86_FEATURE_3DNOWEXT) |
1373 bit(X86_FEATURE_3DNOW);
1374 const u32 kvm_supported_word3_x86_features =
1375 bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
1376 const u32 kvm_supported_word6_x86_features =
1377 bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);
1378
1379 /* all func 2 cpuid_count() should be called on the same cpu */
1380 get_cpu();
1381 do_cpuid_1_ent(entry, function, index);
1382 ++*nent;
1383
1384 switch (function) {
1385 case 0:
1386 entry->eax = min(entry->eax, (u32)0xb);
1387 break;
1388 case 1:
1389 entry->edx &= kvm_supported_word0_x86_features;
1390 entry->ecx &= kvm_supported_word3_x86_features;
1391 break;
1392 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1393 * may return different values. This forces us to get_cpu() before
1394 * issuing the first command, and also to emulate this annoying behavior
1395 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1396 case 2: {
1397 int t, times = entry->eax & 0xff;
1398
1399 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1400 for (t = 1; t < times && *nent < maxnent; ++t) {
1401 do_cpuid_1_ent(&entry[t], function, 0);
1402 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1403 ++*nent;
1404 }
1405 break;
1406 }
1407 /* function 4 and 0xb have additional index. */
1408 case 4: {
1409 int i, cache_type;
1410
1411 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1412 /* read more entries until cache_type is zero */
1413 for (i = 1; *nent < maxnent; ++i) {
1414 cache_type = entry[i - 1].eax & 0x1f;
1415 if (!cache_type)
1416 break;
1417 do_cpuid_1_ent(&entry[i], function, i);
1418 entry[i].flags |=
1419 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1420 ++*nent;
1421 }
1422 break;
1423 }
1424 case 0xb: {
1425 int i, level_type;
1426
1427 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1428 /* read more entries until level_type is zero */
1429 for (i = 1; *nent < maxnent; ++i) {
1430 level_type = entry[i - 1].ecx & 0xff;
1431 if (!level_type)
1432 break;
1433 do_cpuid_1_ent(&entry[i], function, i);
1434 entry[i].flags |=
1435 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1436 ++*nent;
1437 }
1438 break;
1439 }
1440 case 0x80000000:
1441 entry->eax = min(entry->eax, 0x8000001a);
1442 break;
1443 case 0x80000001:
1444 entry->edx &= kvm_supported_word1_x86_features;
1445 entry->ecx &= kvm_supported_word6_x86_features;
1446 break;
1447 }
1448 put_cpu();
1449 }
1450
1451 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1452 struct kvm_cpuid_entry2 __user *entries)
1453 {
1454 struct kvm_cpuid_entry2 *cpuid_entries;
1455 int limit, nent = 0, r = -E2BIG;
1456 u32 func;
1457
1458 if (cpuid->nent < 1)
1459 goto out;
1460 r = -ENOMEM;
1461 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1462 if (!cpuid_entries)
1463 goto out;
1464
1465 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1466 limit = cpuid_entries[0].eax;
1467 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1468 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1469 &nent, cpuid->nent);
1470 r = -E2BIG;
1471 if (nent >= cpuid->nent)
1472 goto out_free;
1473
1474 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1475 limit = cpuid_entries[nent - 1].eax;
1476 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1477 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1478 &nent, cpuid->nent);
1479 r = -EFAULT;
1480 if (copy_to_user(entries, cpuid_entries,
1481 nent * sizeof(struct kvm_cpuid_entry2)))
1482 goto out_free;
1483 cpuid->nent = nent;
1484 r = 0;
1485
1486 out_free:
1487 vfree(cpuid_entries);
1488 out:
1489 return r;
1490 }
1491
1492 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1493 struct kvm_lapic_state *s)
1494 {
1495 vcpu_load(vcpu);
1496 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1497 vcpu_put(vcpu);
1498
1499 return 0;
1500 }
1501
1502 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1503 struct kvm_lapic_state *s)
1504 {
1505 vcpu_load(vcpu);
1506 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1507 kvm_apic_post_state_restore(vcpu);
1508 vcpu_put(vcpu);
1509
1510 return 0;
1511 }
1512
1513 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1514 struct kvm_interrupt *irq)
1515 {
1516 if (irq->irq < 0 || irq->irq >= 256)
1517 return -EINVAL;
1518 if (irqchip_in_kernel(vcpu->kvm))
1519 return -ENXIO;
1520 vcpu_load(vcpu);
1521
1522 set_bit(irq->irq, vcpu->arch.irq_pending);
1523 set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1524
1525 vcpu_put(vcpu);
1526
1527 return 0;
1528 }
1529
1530 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1531 struct kvm_tpr_access_ctl *tac)
1532 {
1533 if (tac->flags)
1534 return -EINVAL;
1535 vcpu->arch.tpr_access_reporting = !!tac->enabled;
1536 return 0;
1537 }
1538
1539 long kvm_arch_vcpu_ioctl(struct file *filp,
1540 unsigned int ioctl, unsigned long arg)
1541 {
1542 struct kvm_vcpu *vcpu = filp->private_data;
1543 void __user *argp = (void __user *)arg;
1544 int r;
1545 struct kvm_lapic_state *lapic = NULL;
1546
1547 switch (ioctl) {
1548 case KVM_GET_LAPIC: {
1549 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1550
1551 r = -ENOMEM;
1552 if (!lapic)
1553 goto out;
1554 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
1555 if (r)
1556 goto out;
1557 r = -EFAULT;
1558 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
1559 goto out;
1560 r = 0;
1561 break;
1562 }
1563 case KVM_SET_LAPIC: {
1564 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1565 r = -ENOMEM;
1566 if (!lapic)
1567 goto out;
1568 r = -EFAULT;
1569 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
1570 goto out;
1571 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
1572 if (r)
1573 goto out;
1574 r = 0;
1575 break;
1576 }
1577 case KVM_INTERRUPT: {
1578 struct kvm_interrupt irq;
1579
1580 r = -EFAULT;
1581 if (copy_from_user(&irq, argp, sizeof irq))
1582 goto out;
1583 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1584 if (r)
1585 goto out;
1586 r = 0;
1587 break;
1588 }
1589 case KVM_SET_CPUID: {
1590 struct kvm_cpuid __user *cpuid_arg = argp;
1591 struct kvm_cpuid cpuid;
1592
1593 r = -EFAULT;
1594 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1595 goto out;
1596 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1597 if (r)
1598 goto out;
1599 break;
1600 }
1601 case KVM_SET_CPUID2: {
1602 struct kvm_cpuid2 __user *cpuid_arg = argp;
1603 struct kvm_cpuid2 cpuid;
1604
1605 r = -EFAULT;
1606 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1607 goto out;
1608 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1609 cpuid_arg->entries);
1610 if (r)
1611 goto out;
1612 break;
1613 }
1614 case KVM_GET_CPUID2: {
1615 struct kvm_cpuid2 __user *cpuid_arg = argp;
1616 struct kvm_cpuid2 cpuid;
1617
1618 r = -EFAULT;
1619 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1620 goto out;
1621 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1622 cpuid_arg->entries);
1623 if (r)
1624 goto out;
1625 r = -EFAULT;
1626 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1627 goto out;
1628 r = 0;
1629 break;
1630 }
1631 case KVM_GET_MSRS:
1632 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1633 break;
1634 case KVM_SET_MSRS:
1635 r = msr_io(vcpu, argp, do_set_msr, 0);
1636 break;
1637 case KVM_TPR_ACCESS_REPORTING: {
1638 struct kvm_tpr_access_ctl tac;
1639
1640 r = -EFAULT;
1641 if (copy_from_user(&tac, argp, sizeof tac))
1642 goto out;
1643 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1644 if (r)
1645 goto out;
1646 r = -EFAULT;
1647 if (copy_to_user(argp, &tac, sizeof tac))
1648 goto out;
1649 r = 0;
1650 break;
1651 };
1652 case KVM_SET_VAPIC_ADDR: {
1653 struct kvm_vapic_addr va;
1654
1655 r = -EINVAL;
1656 if (!irqchip_in_kernel(vcpu->kvm))
1657 goto out;
1658 r = -EFAULT;
1659 if (copy_from_user(&va, argp, sizeof va))
1660 goto out;
1661 r = 0;
1662 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1663 break;
1664 }
1665 default:
1666 r = -EINVAL;
1667 }
1668 out:
1669 if (lapic)
1670 kfree(lapic);
1671 return r;
1672 }
1673
1674 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1675 {
1676 int ret;
1677
1678 if (addr > (unsigned int)(-3 * PAGE_SIZE))
1679 return -1;
1680 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1681 return ret;
1682 }
1683
1684 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1685 u32 kvm_nr_mmu_pages)
1686 {
1687 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1688 return -EINVAL;
1689
1690 down_write(&kvm->slots_lock);
1691
1692 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1693 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1694
1695 up_write(&kvm->slots_lock);
1696 return 0;
1697 }
1698
1699 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1700 {
1701 return kvm->arch.n_alloc_mmu_pages;
1702 }
1703
1704 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1705 {
1706 int i;
1707 struct kvm_mem_alias *alias;
1708
1709 for (i = 0; i < kvm->arch.naliases; ++i) {
1710 alias = &kvm->arch.aliases[i];
1711 if (gfn >= alias->base_gfn
1712 && gfn < alias->base_gfn + alias->npages)
1713 return alias->target_gfn + gfn - alias->base_gfn;
1714 }
1715 return gfn;
1716 }
1717
1718 /*
1719 * Set a new alias region. Aliases map a portion of physical memory into
1720 * another portion. This is useful for memory windows, for example the PC
1721 * VGA region.
1722 */
1723 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1724 struct kvm_memory_alias *alias)
1725 {
1726 int r, n;
1727 struct kvm_mem_alias *p;
1728
1729 r = -EINVAL;
1730 /* General sanity checks */
1731 if (alias->memory_size & (PAGE_SIZE - 1))
1732 goto out;
1733 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1734 goto out;
1735 if (alias->slot >= KVM_ALIAS_SLOTS)
1736 goto out;
1737 if (alias->guest_phys_addr + alias->memory_size
1738 < alias->guest_phys_addr)
1739 goto out;
1740 if (alias->target_phys_addr + alias->memory_size
1741 < alias->target_phys_addr)
1742 goto out;
1743
1744 down_write(&kvm->slots_lock);
1745 spin_lock(&kvm->mmu_lock);
1746
1747 p = &kvm->arch.aliases[alias->slot];
1748 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1749 p->npages = alias->memory_size >> PAGE_SHIFT;
1750 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1751
1752 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1753 if (kvm->arch.aliases[n - 1].npages)
1754 break;
1755 kvm->arch.naliases = n;
1756
1757 spin_unlock(&kvm->mmu_lock);
1758 kvm_mmu_zap_all(kvm);
1759
1760 up_write(&kvm->slots_lock);
1761
1762 return 0;
1763
1764 out:
1765 return r;
1766 }
1767
1768 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1769 {
1770 int r;
1771
1772 r = 0;
1773 switch (chip->chip_id) {
1774 case KVM_IRQCHIP_PIC_MASTER:
1775 memcpy(&chip->chip.pic,
1776 &pic_irqchip(kvm)->pics[0],
1777 sizeof(struct kvm_pic_state));
1778 break;
1779 case KVM_IRQCHIP_PIC_SLAVE:
1780 memcpy(&chip->chip.pic,
1781 &pic_irqchip(kvm)->pics[1],
1782 sizeof(struct kvm_pic_state));
1783 break;
1784 case KVM_IRQCHIP_IOAPIC:
1785 memcpy(&chip->chip.ioapic,
1786 ioapic_irqchip(kvm),
1787 sizeof(struct kvm_ioapic_state));
1788 break;
1789 default:
1790 r = -EINVAL;
1791 break;
1792 }
1793 return r;
1794 }
1795
1796 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1797 {
1798 int r;
1799
1800 r = 0;
1801 switch (chip->chip_id) {
1802 case KVM_IRQCHIP_PIC_MASTER:
1803 memcpy(&pic_irqchip(kvm)->pics[0],
1804 &chip->chip.pic,
1805 sizeof(struct kvm_pic_state));
1806 break;
1807 case KVM_IRQCHIP_PIC_SLAVE:
1808 memcpy(&pic_irqchip(kvm)->pics[1],
1809 &chip->chip.pic,
1810 sizeof(struct kvm_pic_state));
1811 break;
1812 case KVM_IRQCHIP_IOAPIC:
1813 memcpy(ioapic_irqchip(kvm),
1814 &chip->chip.ioapic,
1815 sizeof(struct kvm_ioapic_state));
1816 break;
1817 default:
1818 r = -EINVAL;
1819 break;
1820 }
1821 kvm_pic_update_irq(pic_irqchip(kvm));
1822 return r;
1823 }
1824
1825 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1826 {
1827 int r = 0;
1828
1829 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
1830 return r;
1831 }
1832
1833 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1834 {
1835 int r = 0;
1836
1837 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
1838 kvm_pit_load_count(kvm, 0, ps->channels[0].count);
1839 return r;
1840 }
1841
1842 /*
1843 * Get (and clear) the dirty memory log for a memory slot.
1844 */
1845 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1846 struct kvm_dirty_log *log)
1847 {
1848 int r;
1849 int n;
1850 struct kvm_memory_slot *memslot;
1851 int is_dirty = 0;
1852
1853 down_write(&kvm->slots_lock);
1854
1855 r = kvm_get_dirty_log(kvm, log, &is_dirty);
1856 if (r)
1857 goto out;
1858
1859 /* If nothing is dirty, don't bother messing with page tables. */
1860 if (is_dirty) {
1861 kvm_mmu_slot_remove_write_access(kvm, log->slot);
1862 kvm_flush_remote_tlbs(kvm);
1863 memslot = &kvm->memslots[log->slot];
1864 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1865 memset(memslot->dirty_bitmap, 0, n);
1866 }
1867 r = 0;
1868 out:
1869 up_write(&kvm->slots_lock);
1870 return r;
1871 }
1872
1873 long kvm_arch_vm_ioctl(struct file *filp,
1874 unsigned int ioctl, unsigned long arg)
1875 {
1876 struct kvm *kvm = filp->private_data;
1877 void __user *argp = (void __user *)arg;
1878 int r = -EINVAL;
1879 /*
1880 * This union makes it completely explicit to gcc-3.x
1881 * that these two variables' stack usage should be
1882 * combined, not added together.
1883 */
1884 union {
1885 struct kvm_pit_state ps;
1886 struct kvm_memory_alias alias;
1887 } u;
1888
1889 switch (ioctl) {
1890 case KVM_SET_TSS_ADDR:
1891 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
1892 if (r < 0)
1893 goto out;
1894 break;
1895 case KVM_SET_MEMORY_REGION: {
1896 struct kvm_memory_region kvm_mem;
1897 struct kvm_userspace_memory_region kvm_userspace_mem;
1898
1899 r = -EFAULT;
1900 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
1901 goto out;
1902 kvm_userspace_mem.slot = kvm_mem.slot;
1903 kvm_userspace_mem.flags = kvm_mem.flags;
1904 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
1905 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
1906 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
1907 if (r)
1908 goto out;
1909 break;
1910 }
1911 case KVM_SET_NR_MMU_PAGES:
1912 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
1913 if (r)
1914 goto out;
1915 break;
1916 case KVM_GET_NR_MMU_PAGES:
1917 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
1918 break;
1919 case KVM_SET_MEMORY_ALIAS:
1920 r = -EFAULT;
1921 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
1922 goto out;
1923 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
1924 if (r)
1925 goto out;
1926 break;
1927 case KVM_CREATE_IRQCHIP:
1928 r = -ENOMEM;
1929 kvm->arch.vpic = kvm_create_pic(kvm);
1930 if (kvm->arch.vpic) {
1931 r = kvm_ioapic_init(kvm);
1932 if (r) {
1933 kfree(kvm->arch.vpic);
1934 kvm->arch.vpic = NULL;
1935 goto out;
1936 }
1937 } else
1938 goto out;
1939 break;
1940 case KVM_CREATE_PIT:
1941 r = -ENOMEM;
1942 kvm->arch.vpit = kvm_create_pit(kvm);
1943 if (kvm->arch.vpit)
1944 r = 0;
1945 break;
1946 case KVM_IRQ_LINE: {
1947 struct kvm_irq_level irq_event;
1948
1949 r = -EFAULT;
1950 if (copy_from_user(&irq_event, argp, sizeof irq_event))
1951 goto out;
1952 if (irqchip_in_kernel(kvm)) {
1953 mutex_lock(&kvm->lock);
1954 if (irq_event.irq < 16)
1955 kvm_pic_set_irq(pic_irqchip(kvm),
1956 irq_event.irq,
1957 irq_event.level);
1958 kvm_ioapic_set_irq(kvm->arch.vioapic,
1959 irq_event.irq,
1960 irq_event.level);
1961 mutex_unlock(&kvm->lock);
1962 r = 0;
1963 }
1964 break;
1965 }
1966 case KVM_GET_IRQCHIP: {
1967 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1968 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1969
1970 r = -ENOMEM;
1971 if (!chip)
1972 goto out;
1973 r = -EFAULT;
1974 if (copy_from_user(chip, argp, sizeof *chip))
1975 goto get_irqchip_out;
1976 r = -ENXIO;
1977 if (!irqchip_in_kernel(kvm))
1978 goto get_irqchip_out;
1979 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
1980 if (r)
1981 goto get_irqchip_out;
1982 r = -EFAULT;
1983 if (copy_to_user(argp, chip, sizeof *chip))
1984 goto get_irqchip_out;
1985 r = 0;
1986 get_irqchip_out:
1987 kfree(chip);
1988 if (r)
1989 goto out;
1990 break;
1991 }
1992 case KVM_SET_IRQCHIP: {
1993 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1994 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1995
1996 r = -ENOMEM;
1997 if (!chip)
1998 goto out;
1999 r = -EFAULT;
2000 if (copy_from_user(chip, argp, sizeof *chip))
2001 goto set_irqchip_out;
2002 r = -ENXIO;
2003 if (!irqchip_in_kernel(kvm))
2004 goto set_irqchip_out;
2005 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
2006 if (r)
2007 goto set_irqchip_out;
2008 r = 0;
2009 set_irqchip_out:
2010 kfree(chip);
2011 if (r)
2012 goto out;
2013 break;
2014 }
2015 case KVM_ASSIGN_PCI_DEVICE: {
2016 struct kvm_assigned_pci_dev assigned_dev;
2017
2018 r = -EFAULT;
2019 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
2020 goto out;
2021 r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
2022 if (r)
2023 goto out;
2024 break;
2025 }
2026 case KVM_ASSIGN_IRQ: {
2027 struct kvm_assigned_irq assigned_irq;
2028
2029 r = -EFAULT;
2030 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
2031 goto out;
2032 r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
2033 if (r)
2034 goto out;
2035 break;
2036 }
2037 case KVM_GET_PIT: {
2038 r = -EFAULT;
2039 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
2040 goto out;
2041 r = -ENXIO;
2042 if (!kvm->arch.vpit)
2043 goto out;
2044 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
2045 if (r)
2046 goto out;
2047 r = -EFAULT;
2048 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
2049 goto out;
2050 r = 0;
2051 break;
2052 }
2053 case KVM_SET_PIT: {
2054 r = -EFAULT;
2055 if (copy_from_user(&u.ps, argp, sizeof u.ps))
2056 goto out;
2057 r = -ENXIO;
2058 if (!kvm->arch.vpit)
2059 goto out;
2060 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
2061 if (r)
2062 goto out;
2063 r = 0;
2064 break;
2065 }
2066 default:
2067 ;
2068 }
2069 out:
2070 return r;
2071 }
2072
2073 static void kvm_init_msr_list(void)
2074 {
2075 u32 dummy[2];
2076 unsigned i, j;
2077
2078 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2079 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2080 continue;
2081 if (j < i)
2082 msrs_to_save[j] = msrs_to_save[i];
2083 j++;
2084 }
2085 num_msrs_to_save = j;
2086 }
2087
2088 /*
2089 * Only apic need an MMIO device hook, so shortcut now..
2090 */
2091 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
2092 gpa_t addr, int len,
2093 int is_write)
2094 {
2095 struct kvm_io_device *dev;
2096
2097 if (vcpu->arch.apic) {
2098 dev = &vcpu->arch.apic->dev;
2099 if (dev->in_range(dev, addr, len, is_write))
2100 return dev;
2101 }
2102 return NULL;
2103 }
2104
2105
2106 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
2107 gpa_t addr, int len,
2108 int is_write)
2109 {
2110 struct kvm_io_device *dev;
2111
2112 dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
2113 if (dev == NULL)
2114 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
2115 is_write);
2116 return dev;
2117 }
2118
2119 int emulator_read_std(unsigned long addr,
2120 void *val,
2121 unsigned int bytes,
2122 struct kvm_vcpu *vcpu)
2123 {
2124 void *data = val;
2125 int r = X86EMUL_CONTINUE;
2126
2127 while (bytes) {
2128 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2129 unsigned offset = addr & (PAGE_SIZE-1);
2130 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
2131 int ret;
2132
2133 if (gpa == UNMAPPED_GVA) {
2134 r = X86EMUL_PROPAGATE_FAULT;
2135 goto out;
2136 }
2137 ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
2138 if (ret < 0) {
2139 r = X86EMUL_UNHANDLEABLE;
2140 goto out;
2141 }
2142
2143 bytes -= tocopy;
2144 data += tocopy;
2145 addr += tocopy;
2146 }
2147 out:
2148 return r;
2149 }
2150 EXPORT_SYMBOL_GPL(emulator_read_std);
2151
2152 static int emulator_read_emulated(unsigned long addr,
2153 void *val,
2154 unsigned int bytes,
2155 struct kvm_vcpu *vcpu)
2156 {
2157 struct kvm_io_device *mmio_dev;
2158 gpa_t gpa;
2159
2160 if (vcpu->mmio_read_completed) {
2161 memcpy(val, vcpu->mmio_data, bytes);
2162 vcpu->mmio_read_completed = 0;
2163 return X86EMUL_CONTINUE;
2164 }
2165
2166 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2167
2168 /* For APIC access vmexit */
2169 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2170 goto mmio;
2171
2172 if (emulator_read_std(addr, val, bytes, vcpu)
2173 == X86EMUL_CONTINUE)
2174 return X86EMUL_CONTINUE;
2175 if (gpa == UNMAPPED_GVA)
2176 return X86EMUL_PROPAGATE_FAULT;
2177
2178 mmio:
2179 /*
2180 * Is this MMIO handled locally?
2181 */
2182 mutex_lock(&vcpu->kvm->lock);
2183 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
2184 if (mmio_dev) {
2185 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
2186 mutex_unlock(&vcpu->kvm->lock);
2187 return X86EMUL_CONTINUE;
2188 }
2189 mutex_unlock(&vcpu->kvm->lock);
2190
2191 vcpu->mmio_needed = 1;
2192 vcpu->mmio_phys_addr = gpa;
2193 vcpu->mmio_size = bytes;
2194 vcpu->mmio_is_write = 0;
2195
2196 return X86EMUL_UNHANDLEABLE;
2197 }
2198
2199 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2200 const void *val, int bytes)
2201 {
2202 int ret;
2203
2204 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
2205 if (ret < 0)
2206 return 0;
2207 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
2208 return 1;
2209 }
2210
2211 static int emulator_write_emulated_onepage(unsigned long addr,
2212 const void *val,
2213 unsigned int bytes,
2214 struct kvm_vcpu *vcpu)
2215 {
2216 struct kvm_io_device *mmio_dev;
2217 gpa_t gpa;
2218
2219 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2220
2221 if (gpa == UNMAPPED_GVA) {
2222 kvm_inject_page_fault(vcpu, addr, 2);
2223 return X86EMUL_PROPAGATE_FAULT;
2224 }
2225
2226 /* For APIC access vmexit */
2227 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2228 goto mmio;
2229
2230 if (emulator_write_phys(vcpu, gpa, val, bytes))
2231 return X86EMUL_CONTINUE;
2232
2233 mmio:
2234 /*
2235 * Is this MMIO handled locally?
2236 */
2237 mutex_lock(&vcpu->kvm->lock);
2238 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
2239 if (mmio_dev) {
2240 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
2241 mutex_unlock(&vcpu->kvm->lock);
2242 return X86EMUL_CONTINUE;
2243 }
2244 mutex_unlock(&vcpu->kvm->lock);
2245
2246 vcpu->mmio_needed = 1;
2247 vcpu->mmio_phys_addr = gpa;
2248 vcpu->mmio_size = bytes;
2249 vcpu->mmio_is_write = 1;
2250 memcpy(vcpu->mmio_data, val, bytes);
2251
2252 return X86EMUL_CONTINUE;
2253 }
2254
2255 int emulator_write_emulated(unsigned long addr,
2256 const void *val,
2257 unsigned int bytes,
2258 struct kvm_vcpu *vcpu)
2259 {
2260 /* Crossing a page boundary? */
2261 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
2262 int rc, now;
2263
2264 now = -addr & ~PAGE_MASK;
2265 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
2266 if (rc != X86EMUL_CONTINUE)
2267 return rc;
2268 addr += now;
2269 val += now;
2270 bytes -= now;
2271 }
2272 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
2273 }
2274 EXPORT_SYMBOL_GPL(emulator_write_emulated);
2275
2276 static int emulator_cmpxchg_emulated(unsigned long addr,
2277 const void *old,
2278 const void *new,
2279 unsigned int bytes,
2280 struct kvm_vcpu *vcpu)
2281 {
2282 static int reported;
2283
2284 if (!reported) {
2285 reported = 1;
2286 printk(KERN_WARNING "kvm: emulating exchange as write\n");
2287 }
2288 #ifndef CONFIG_X86_64
2289 /* guests cmpxchg8b have to be emulated atomically */
2290 if (bytes == 8) {
2291 gpa_t gpa;
2292 struct page *page;
2293 char *kaddr;
2294 u64 val;
2295
2296 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2297
2298 if (gpa == UNMAPPED_GVA ||
2299 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2300 goto emul_write;
2301
2302 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2303 goto emul_write;
2304
2305 val = *(u64 *)new;
2306
2307 down_read(&current->mm->mmap_sem);
2308 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2309 up_read(&current->mm->mmap_sem);
2310
2311 kaddr = kmap_atomic(page, KM_USER0);
2312 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2313 kunmap_atomic(kaddr, KM_USER0);
2314 kvm_release_page_dirty(page);
2315 }
2316 emul_write:
2317 #endif
2318
2319 return emulator_write_emulated(addr, new, bytes, vcpu);
2320 }
2321
2322 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2323 {
2324 return kvm_x86_ops->get_segment_base(vcpu, seg);
2325 }
2326
2327 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2328 {
2329 return X86EMUL_CONTINUE;
2330 }
2331
2332 int emulate_clts(struct kvm_vcpu *vcpu)
2333 {
2334 KVMTRACE_0D(CLTS, vcpu, handler);
2335 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2336 return X86EMUL_CONTINUE;
2337 }
2338
2339 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2340 {
2341 struct kvm_vcpu *vcpu = ctxt->vcpu;
2342
2343 switch (dr) {
2344 case 0 ... 3:
2345 *dest = kvm_x86_ops->get_dr(vcpu, dr);
2346 return X86EMUL_CONTINUE;
2347 default:
2348 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2349 return X86EMUL_UNHANDLEABLE;
2350 }
2351 }
2352
2353 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2354 {
2355 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2356 int exception;
2357
2358 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2359 if (exception) {
2360 /* FIXME: better handling */
2361 return X86EMUL_UNHANDLEABLE;
2362 }
2363 return X86EMUL_CONTINUE;
2364 }
2365
2366 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2367 {
2368 u8 opcodes[4];
2369 unsigned long rip = kvm_rip_read(vcpu);
2370 unsigned long rip_linear;
2371
2372 if (!printk_ratelimit())
2373 return;
2374
2375 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2376
2377 emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
2378
2379 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2380 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2381 }
2382 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2383
2384 static struct x86_emulate_ops emulate_ops = {
2385 .read_std = emulator_read_std,
2386 .read_emulated = emulator_read_emulated,
2387 .write_emulated = emulator_write_emulated,
2388 .cmpxchg_emulated = emulator_cmpxchg_emulated,
2389 };
2390
2391 static void cache_all_regs(struct kvm_vcpu *vcpu)
2392 {
2393 kvm_register_read(vcpu, VCPU_REGS_RAX);
2394 kvm_register_read(vcpu, VCPU_REGS_RSP);
2395 kvm_register_read(vcpu, VCPU_REGS_RIP);
2396 vcpu->arch.regs_dirty = ~0;
2397 }
2398
2399 int emulate_instruction(struct kvm_vcpu *vcpu,
2400 struct kvm_run *run,
2401 unsigned long cr2,
2402 u16 error_code,
2403 int emulation_type)
2404 {
2405 int r;
2406 struct decode_cache *c;
2407
2408 kvm_clear_exception_queue(vcpu);
2409 vcpu->arch.mmio_fault_cr2 = cr2;
2410 /*
2411 * TODO: fix x86_emulate.c to use guest_read/write_register
2412 * instead of direct ->regs accesses, can save hundred cycles
2413 * on Intel for instructions that don't read/change RSP, for
2414 * for example.
2415 */
2416 cache_all_regs(vcpu);
2417
2418 vcpu->mmio_is_write = 0;
2419 vcpu->arch.pio.string = 0;
2420
2421 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2422 int cs_db, cs_l;
2423 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2424
2425 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2426 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2427 vcpu->arch.emulate_ctxt.mode =
2428 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2429 ? X86EMUL_MODE_REAL : cs_l
2430 ? X86EMUL_MODE_PROT64 : cs_db
2431 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2432
2433 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2434
2435 /* Reject the instructions other than VMCALL/VMMCALL when
2436 * try to emulate invalid opcode */
2437 c = &vcpu->arch.emulate_ctxt.decode;
2438 if ((emulation_type & EMULTYPE_TRAP_UD) &&
2439 (!(c->twobyte && c->b == 0x01 &&
2440 (c->modrm_reg == 0 || c->modrm_reg == 3) &&
2441 c->modrm_mod == 3 && c->modrm_rm == 1)))
2442 return EMULATE_FAIL;
2443
2444 ++vcpu->stat.insn_emulation;
2445 if (r) {
2446 ++vcpu->stat.insn_emulation_fail;
2447 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2448 return EMULATE_DONE;
2449 return EMULATE_FAIL;
2450 }
2451 }
2452
2453 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2454
2455 if (vcpu->arch.pio.string)
2456 return EMULATE_DO_MMIO;
2457
2458 if ((r || vcpu->mmio_is_write) && run) {
2459 run->exit_reason = KVM_EXIT_MMIO;
2460 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2461 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2462 run->mmio.len = vcpu->mmio_size;
2463 run->mmio.is_write = vcpu->mmio_is_write;
2464 }
2465
2466 if (r) {
2467 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2468 return EMULATE_DONE;
2469 if (!vcpu->mmio_needed) {
2470 kvm_report_emulation_failure(vcpu, "mmio");
2471 return EMULATE_FAIL;
2472 }
2473 return EMULATE_DO_MMIO;
2474 }
2475
2476 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2477
2478 if (vcpu->mmio_is_write) {
2479 vcpu->mmio_needed = 0;
2480 return EMULATE_DO_MMIO;
2481 }
2482
2483 return EMULATE_DONE;
2484 }
2485 EXPORT_SYMBOL_GPL(emulate_instruction);
2486
2487 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
2488 {
2489 int i;
2490
2491 for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
2492 if (vcpu->arch.pio.guest_pages[i]) {
2493 kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
2494 vcpu->arch.pio.guest_pages[i] = NULL;
2495 }
2496 }
2497
2498 static int pio_copy_data(struct kvm_vcpu *vcpu)
2499 {
2500 void *p = vcpu->arch.pio_data;
2501 void *q;
2502 unsigned bytes;
2503 int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
2504
2505 q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
2506 PAGE_KERNEL);
2507 if (!q) {
2508 free_pio_guest_pages(vcpu);
2509 return -ENOMEM;
2510 }
2511 q += vcpu->arch.pio.guest_page_offset;
2512 bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2513 if (vcpu->arch.pio.in)
2514 memcpy(q, p, bytes);
2515 else
2516 memcpy(p, q, bytes);
2517 q -= vcpu->arch.pio.guest_page_offset;
2518 vunmap(q);
2519 free_pio_guest_pages(vcpu);
2520 return 0;
2521 }
2522
2523 int complete_pio(struct kvm_vcpu *vcpu)
2524 {
2525 struct kvm_pio_request *io = &vcpu->arch.pio;
2526 long delta;
2527 int r;
2528 unsigned long val;
2529
2530 if (!io->string) {
2531 if (io->in) {
2532 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2533 memcpy(&val, vcpu->arch.pio_data, io->size);
2534 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
2535 }
2536 } else {
2537 if (io->in) {
2538 r = pio_copy_data(vcpu);
2539 if (r)
2540 return r;
2541 }
2542
2543 delta = 1;
2544 if (io->rep) {
2545 delta *= io->cur_count;
2546 /*
2547 * The size of the register should really depend on
2548 * current address size.
2549 */
2550 val = kvm_register_read(vcpu, VCPU_REGS_RCX);
2551 val -= delta;
2552 kvm_register_write(vcpu, VCPU_REGS_RCX, val);
2553 }
2554 if (io->down)
2555 delta = -delta;
2556 delta *= io->size;
2557 if (io->in) {
2558 val = kvm_register_read(vcpu, VCPU_REGS_RDI);
2559 val += delta;
2560 kvm_register_write(vcpu, VCPU_REGS_RDI, val);
2561 } else {
2562 val = kvm_register_read(vcpu, VCPU_REGS_RSI);
2563 val += delta;
2564 kvm_register_write(vcpu, VCPU_REGS_RSI, val);
2565 }
2566 }
2567
2568 io->count -= io->cur_count;
2569 io->cur_count = 0;
2570
2571 return 0;
2572 }
2573
2574 static void kernel_pio(struct kvm_io_device *pio_dev,
2575 struct kvm_vcpu *vcpu,
2576 void *pd)
2577 {
2578 /* TODO: String I/O for in kernel device */
2579
2580 mutex_lock(&vcpu->kvm->lock);
2581 if (vcpu->arch.pio.in)
2582 kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
2583 vcpu->arch.pio.size,
2584 pd);
2585 else
2586 kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
2587 vcpu->arch.pio.size,
2588 pd);
2589 mutex_unlock(&vcpu->kvm->lock);
2590 }
2591
2592 static void pio_string_write(struct kvm_io_device *pio_dev,
2593 struct kvm_vcpu *vcpu)
2594 {
2595 struct kvm_pio_request *io = &vcpu->arch.pio;
2596 void *pd = vcpu->arch.pio_data;
2597 int i;
2598
2599 mutex_lock(&vcpu->kvm->lock);
2600 for (i = 0; i < io->cur_count; i++) {
2601 kvm_iodevice_write(pio_dev, io->port,
2602 io->size,
2603 pd);
2604 pd += io->size;
2605 }
2606 mutex_unlock(&vcpu->kvm->lock);
2607 }
2608
2609 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2610 gpa_t addr, int len,
2611 int is_write)
2612 {
2613 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
2614 }
2615
2616 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2617 int size, unsigned port)
2618 {
2619 struct kvm_io_device *pio_dev;
2620 unsigned long val;
2621
2622 vcpu->run->exit_reason = KVM_EXIT_IO;
2623 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2624 vcpu->run->io.size = vcpu->arch.pio.size = size;
2625 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2626 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2627 vcpu->run->io.port = vcpu->arch.pio.port = port;
2628 vcpu->arch.pio.in = in;
2629 vcpu->arch.pio.string = 0;
2630 vcpu->arch.pio.down = 0;
2631 vcpu->arch.pio.guest_page_offset = 0;
2632 vcpu->arch.pio.rep = 0;
2633
2634 if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2635 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2636 handler);
2637 else
2638 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2639 handler);
2640
2641 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2642 memcpy(vcpu->arch.pio_data, &val, 4);
2643
2644 kvm_x86_ops->skip_emulated_instruction(vcpu);
2645
2646 pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
2647 if (pio_dev) {
2648 kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2649 complete_pio(vcpu);
2650 return 1;
2651 }
2652 return 0;
2653 }
2654 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2655
2656 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2657 int size, unsigned long count, int down,
2658 gva_t address, int rep, unsigned port)
2659 {
2660 unsigned now, in_page;
2661 int i, ret = 0;
2662 int nr_pages = 1;
2663 struct page *page;
2664 struct kvm_io_device *pio_dev;
2665
2666 vcpu->run->exit_reason = KVM_EXIT_IO;
2667 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2668 vcpu->run->io.size = vcpu->arch.pio.size = size;
2669 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2670 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2671 vcpu->run->io.port = vcpu->arch.pio.port = port;
2672 vcpu->arch.pio.in = in;
2673 vcpu->arch.pio.string = 1;
2674 vcpu->arch.pio.down = down;
2675 vcpu->arch.pio.guest_page_offset = offset_in_page(address);
2676 vcpu->arch.pio.rep = rep;
2677
2678 if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2679 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2680 handler);
2681 else
2682 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2683 handler);
2684
2685 if (!count) {
2686 kvm_x86_ops->skip_emulated_instruction(vcpu);
2687 return 1;
2688 }
2689
2690 if (!down)
2691 in_page = PAGE_SIZE - offset_in_page(address);
2692 else
2693 in_page = offset_in_page(address) + size;
2694 now = min(count, (unsigned long)in_page / size);
2695 if (!now) {
2696 /*
2697 * String I/O straddles page boundary. Pin two guest pages
2698 * so that we satisfy atomicity constraints. Do just one
2699 * transaction to avoid complexity.
2700 */
2701 nr_pages = 2;
2702 now = 1;
2703 }
2704 if (down) {
2705 /*
2706 * String I/O in reverse. Yuck. Kill the guest, fix later.
2707 */
2708 pr_unimpl(vcpu, "guest string pio down\n");
2709 kvm_inject_gp(vcpu, 0);
2710 return 1;
2711 }
2712 vcpu->run->io.count = now;
2713 vcpu->arch.pio.cur_count = now;
2714
2715 if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2716 kvm_x86_ops->skip_emulated_instruction(vcpu);
2717
2718 for (i = 0; i < nr_pages; ++i) {
2719 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
2720 vcpu->arch.pio.guest_pages[i] = page;
2721 if (!page) {
2722 kvm_inject_gp(vcpu, 0);
2723 free_pio_guest_pages(vcpu);
2724 return 1;
2725 }
2726 }
2727
2728 pio_dev = vcpu_find_pio_dev(vcpu, port,
2729 vcpu->arch.pio.cur_count,
2730 !vcpu->arch.pio.in);
2731 if (!vcpu->arch.pio.in) {
2732 /* string PIO write */
2733 ret = pio_copy_data(vcpu);
2734 if (ret >= 0 && pio_dev) {
2735 pio_string_write(pio_dev, vcpu);
2736 complete_pio(vcpu);
2737 if (vcpu->arch.pio.count == 0)
2738 ret = 1;
2739 }
2740 } else if (pio_dev)
2741 pr_unimpl(vcpu, "no string pio read support yet, "
2742 "port %x size %d count %ld\n",
2743 port, size, count);
2744
2745 return ret;
2746 }
2747 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2748
2749 int kvm_arch_init(void *opaque)
2750 {
2751 int r;
2752 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
2753
2754 if (kvm_x86_ops) {
2755 printk(KERN_ERR "kvm: already loaded the other module\n");
2756 r = -EEXIST;
2757 goto out;
2758 }
2759
2760 if (!ops->cpu_has_kvm_support()) {
2761 printk(KERN_ERR "kvm: no hardware support\n");
2762 r = -EOPNOTSUPP;
2763 goto out;
2764 }
2765 if (ops->disabled_by_bios()) {
2766 printk(KERN_ERR "kvm: disabled by bios\n");
2767 r = -EOPNOTSUPP;
2768 goto out;
2769 }
2770
2771 r = kvm_mmu_module_init();
2772 if (r)
2773 goto out;
2774
2775 kvm_init_msr_list();
2776
2777 kvm_x86_ops = ops;
2778 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2779 kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
2780 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
2781 PT_DIRTY_MASK, PT64_NX_MASK, 0);
2782 return 0;
2783
2784 out:
2785 return r;
2786 }
2787
2788 void kvm_arch_exit(void)
2789 {
2790 kvm_x86_ops = NULL;
2791 kvm_mmu_module_exit();
2792 }
2793
2794 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
2795 {
2796 ++vcpu->stat.halt_exits;
2797 KVMTRACE_0D(HLT, vcpu, handler);
2798 if (irqchip_in_kernel(vcpu->kvm)) {
2799 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
2800 up_read(&vcpu->kvm->slots_lock);
2801 kvm_vcpu_block(vcpu);
2802 down_read(&vcpu->kvm->slots_lock);
2803 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
2804 return -EINTR;
2805 return 1;
2806 } else {
2807 vcpu->run->exit_reason = KVM_EXIT_HLT;
2808 return 0;
2809 }
2810 }
2811 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
2812
2813 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
2814 unsigned long a1)
2815 {
2816 if (is_long_mode(vcpu))
2817 return a0;
2818 else
2819 return a0 | ((gpa_t)a1 << 32);
2820 }
2821
2822 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
2823 {
2824 unsigned long nr, a0, a1, a2, a3, ret;
2825 int r = 1;
2826
2827 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
2828 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
2829 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
2830 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
2831 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
2832
2833 KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
2834
2835 if (!is_long_mode(vcpu)) {
2836 nr &= 0xFFFFFFFF;
2837 a0 &= 0xFFFFFFFF;
2838 a1 &= 0xFFFFFFFF;
2839 a2 &= 0xFFFFFFFF;
2840 a3 &= 0xFFFFFFFF;
2841 }
2842
2843 switch (nr) {
2844 case KVM_HC_VAPIC_POLL_IRQ:
2845 ret = 0;
2846 break;
2847 case KVM_HC_MMU_OP:
2848 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
2849 break;
2850 default:
2851 ret = -KVM_ENOSYS;
2852 break;
2853 }
2854 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
2855 ++vcpu->stat.hypercalls;
2856 return r;
2857 }
2858 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
2859
2860 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
2861 {
2862 char instruction[3];
2863 int ret = 0;
2864 unsigned long rip = kvm_rip_read(vcpu);
2865
2866
2867 /*
2868 * Blow out the MMU to ensure that no other VCPU has an active mapping
2869 * to ensure that the updated hypercall appears atomically across all
2870 * VCPUs.
2871 */
2872 kvm_mmu_zap_all(vcpu->kvm);
2873
2874 kvm_x86_ops->patch_hypercall(vcpu, instruction);
2875 if (emulator_write_emulated(rip, instruction, 3, vcpu)
2876 != X86EMUL_CONTINUE)
2877 ret = -EFAULT;
2878
2879 return ret;
2880 }
2881
2882 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
2883 {
2884 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
2885 }
2886
2887 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2888 {
2889 struct descriptor_table dt = { limit, base };
2890
2891 kvm_x86_ops->set_gdt(vcpu, &dt);
2892 }
2893
2894 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2895 {
2896 struct descriptor_table dt = { limit, base };
2897
2898 kvm_x86_ops->set_idt(vcpu, &dt);
2899 }
2900
2901 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
2902 unsigned long *rflags)
2903 {
2904 kvm_lmsw(vcpu, msw);
2905 *rflags = kvm_x86_ops->get_rflags(vcpu);
2906 }
2907
2908 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
2909 {
2910 unsigned long value;
2911
2912 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2913 switch (cr) {
2914 case 0:
2915 value = vcpu->arch.cr0;
2916 break;
2917 case 2:
2918 value = vcpu->arch.cr2;
2919 break;
2920 case 3:
2921 value = vcpu->arch.cr3;
2922 break;
2923 case 4:
2924 value = vcpu->arch.cr4;
2925 break;
2926 case 8:
2927 value = kvm_get_cr8(vcpu);
2928 break;
2929 default:
2930 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2931 return 0;
2932 }
2933 KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
2934 (u32)((u64)value >> 32), handler);
2935
2936 return value;
2937 }
2938
2939 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
2940 unsigned long *rflags)
2941 {
2942 KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
2943 (u32)((u64)val >> 32), handler);
2944
2945 switch (cr) {
2946 case 0:
2947 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2948 *rflags = kvm_x86_ops->get_rflags(vcpu);
2949 break;
2950 case 2:
2951 vcpu->arch.cr2 = val;
2952 break;
2953 case 3:
2954 kvm_set_cr3(vcpu, val);
2955 break;
2956 case 4:
2957 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2958 break;
2959 case 8:
2960 kvm_set_cr8(vcpu, val & 0xfUL);
2961 break;
2962 default:
2963 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2964 }
2965 }
2966
2967 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
2968 {
2969 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
2970 int j, nent = vcpu->arch.cpuid_nent;
2971
2972 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
2973 /* when no next entry is found, the current entry[i] is reselected */
2974 for (j = i + 1; j == i; j = (j + 1) % nent) {
2975 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2976 if (ej->function == e->function) {
2977 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2978 return j;
2979 }
2980 }
2981 return 0; /* silence gcc, even though control never reaches here */
2982 }
2983
2984 /* find an entry with matching function, matching index (if needed), and that
2985 * should be read next (if it's stateful) */
2986 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
2987 u32 function, u32 index)
2988 {
2989 if (e->function != function)
2990 return 0;
2991 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
2992 return 0;
2993 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
2994 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
2995 return 0;
2996 return 1;
2997 }
2998
2999 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
3000 {
3001 int i;
3002 u32 function, index;
3003 struct kvm_cpuid_entry2 *e, *best;
3004
3005 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
3006 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3007 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
3008 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
3009 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
3010 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
3011 best = NULL;
3012 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
3013 e = &vcpu->arch.cpuid_entries[i];
3014 if (is_matching_cpuid_entry(e, function, index)) {
3015 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
3016 move_to_next_stateful_cpuid_entry(vcpu, i);
3017 best = e;
3018 break;
3019 }
3020 /*
3021 * Both basic or both extended?
3022 */
3023 if (((e->function ^ function) & 0x80000000) == 0)
3024 if (!best || e->function > best->function)
3025 best = e;
3026 }
3027 if (best) {
3028 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
3029 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
3030 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
3031 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
3032 }
3033 kvm_x86_ops->skip_emulated_instruction(vcpu);
3034 KVMTRACE_5D(CPUID, vcpu, function,
3035 (u32)kvm_register_read(vcpu, VCPU_REGS_RAX),
3036 (u32)kvm_register_read(vcpu, VCPU_REGS_RBX),
3037 (u32)kvm_register_read(vcpu, VCPU_REGS_RCX),
3038 (u32)kvm_register_read(vcpu, VCPU_REGS_RDX), handler);
3039 }
3040 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
3041
3042 /*
3043 * Check if userspace requested an interrupt window, and that the
3044 * interrupt window is open.
3045 *
3046 * No need to exit to userspace if we already have an interrupt queued.
3047 */
3048 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
3049 struct kvm_run *kvm_run)
3050 {
3051 return (!vcpu->arch.irq_summary &&
3052 kvm_run->request_interrupt_window &&
3053 vcpu->arch.interrupt_window_open &&
3054 (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
3055 }
3056
3057 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
3058 struct kvm_run *kvm_run)
3059 {
3060 kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
3061 kvm_run->cr8 = kvm_get_cr8(vcpu);
3062 kvm_run->apic_base = kvm_get_apic_base(vcpu);
3063 if (irqchip_in_kernel(vcpu->kvm))
3064 kvm_run->ready_for_interrupt_injection = 1;
3065 else
3066 kvm_run->ready_for_interrupt_injection =
3067 (vcpu->arch.interrupt_window_open &&
3068 vcpu->arch.irq_summary == 0);
3069 }
3070
3071 static void vapic_enter(struct kvm_vcpu *vcpu)
3072 {
3073 struct kvm_lapic *apic = vcpu->arch.apic;
3074 struct page *page;
3075
3076 if (!apic || !apic->vapic_addr)
3077 return;
3078
3079 down_read(&current->mm->mmap_sem);
3080 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3081 up_read(&current->mm->mmap_sem);
3082
3083 vcpu->arch.apic->vapic_page = page;
3084 }
3085
3086 static void vapic_exit(struct kvm_vcpu *vcpu)
3087 {
3088 struct kvm_lapic *apic = vcpu->arch.apic;
3089
3090 if (!apic || !apic->vapic_addr)
3091 return;
3092
3093 down_read(&vcpu->kvm->slots_lock);
3094 kvm_release_page_dirty(apic->vapic_page);
3095 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3096 up_read(&vcpu->kvm->slots_lock);
3097 }
3098
3099 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3100 {
3101 int r;
3102
3103 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
3104 pr_debug("vcpu %d received sipi with vector # %x\n",
3105 vcpu->vcpu_id, vcpu->arch.sipi_vector);
3106 kvm_lapic_reset(vcpu);
3107 r = kvm_x86_ops->vcpu_reset(vcpu);
3108 if (r)
3109 return r;
3110 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3111 }
3112
3113 down_read(&vcpu->kvm->slots_lock);
3114 vapic_enter(vcpu);
3115
3116 again:
3117 if (vcpu->requests)
3118 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
3119 kvm_mmu_unload(vcpu);
3120
3121 r = kvm_mmu_reload(vcpu);
3122 if (unlikely(r))
3123 goto out;
3124
3125 if (vcpu->requests) {
3126 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
3127 __kvm_migrate_timers(vcpu);
3128 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
3129 kvm_x86_ops->tlb_flush(vcpu);
3130 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
3131 &vcpu->requests)) {
3132 kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
3133 r = 0;
3134 goto out;
3135 }
3136 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
3137 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
3138 r = 0;
3139 goto out;
3140 }
3141 }
3142
3143 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
3144 kvm_inject_pending_timer_irqs(vcpu);
3145
3146 preempt_disable();
3147
3148 kvm_x86_ops->prepare_guest_switch(vcpu);
3149 kvm_load_guest_fpu(vcpu);
3150
3151 local_irq_disable();
3152
3153 if (vcpu->requests || need_resched()) {
3154 local_irq_enable();
3155 preempt_enable();
3156 r = 1;
3157 goto out;
3158 }
3159
3160 if (signal_pending(current)) {
3161 local_irq_enable();
3162 preempt_enable();
3163 r = -EINTR;
3164 kvm_run->exit_reason = KVM_EXIT_INTR;
3165 ++vcpu->stat.signal_exits;
3166 goto out;
3167 }
3168
3169 if (vcpu->guest_debug.enabled)
3170 kvm_x86_ops->guest_debug_pre(vcpu);
3171
3172 vcpu->guest_mode = 1;
3173 /*
3174 * Make sure that guest_mode assignment won't happen after
3175 * testing the pending IRQ vector bitmap.
3176 */
3177 smp_wmb();
3178
3179 if (vcpu->arch.exception.pending)
3180 __queue_exception(vcpu);
3181 else if (irqchip_in_kernel(vcpu->kvm))
3182 kvm_x86_ops->inject_pending_irq(vcpu);
3183 else
3184 kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
3185
3186 kvm_lapic_sync_to_vapic(vcpu);
3187
3188 up_read(&vcpu->kvm->slots_lock);
3189
3190 kvm_guest_enter();
3191
3192
3193 KVMTRACE_0D(VMENTRY, vcpu, entryexit);
3194 kvm_x86_ops->run(vcpu, kvm_run);
3195
3196 vcpu->guest_mode = 0;
3197 local_irq_enable();
3198
3199 ++vcpu->stat.exits;
3200
3201 /*
3202 * We must have an instruction between local_irq_enable() and
3203 * kvm_guest_exit(), so the timer interrupt isn't delayed by
3204 * the interrupt shadow. The stat.exits increment will do nicely.
3205 * But we need to prevent reordering, hence this barrier():
3206 */
3207 barrier();
3208
3209 kvm_guest_exit();
3210
3211 preempt_enable();
3212
3213 down_read(&vcpu->kvm->slots_lock);
3214
3215 /*
3216 * Profile KVM exit RIPs:
3217 */
3218 if (unlikely(prof_on == KVM_PROFILING)) {
3219 unsigned long rip = kvm_rip_read(vcpu);
3220 profile_hit(KVM_PROFILING, (void *)rip);
3221 }
3222
3223 if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
3224 vcpu->arch.exception.pending = false;
3225
3226 kvm_lapic_sync_from_vapic(vcpu);
3227
3228 r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
3229
3230 if (r > 0) {
3231 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
3232 r = -EINTR;
3233 kvm_run->exit_reason = KVM_EXIT_INTR;
3234 ++vcpu->stat.request_irq_exits;
3235 goto out;
3236 }
3237 if (!need_resched())
3238 goto again;
3239 }
3240
3241 out:
3242 up_read(&vcpu->kvm->slots_lock);
3243 if (r > 0) {
3244 kvm_resched(vcpu);
3245 down_read(&vcpu->kvm->slots_lock);
3246 goto again;
3247 }
3248
3249 post_kvm_run_save(vcpu, kvm_run);
3250
3251 vapic_exit(vcpu);
3252
3253 return r;
3254 }
3255
3256 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3257 {
3258 int r;
3259 sigset_t sigsaved;
3260
3261 vcpu_load(vcpu);
3262
3263 if (vcpu->sigset_active)
3264 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
3265
3266 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
3267 kvm_vcpu_block(vcpu);
3268 r = -EAGAIN;
3269 goto out;
3270 }
3271
3272 /* re-sync apic's tpr */
3273 if (!irqchip_in_kernel(vcpu->kvm))
3274 kvm_set_cr8(vcpu, kvm_run->cr8);
3275
3276 if (vcpu->arch.pio.cur_count) {
3277 r = complete_pio(vcpu);
3278 if (r)
3279 goto out;
3280 }
3281 #if CONFIG_HAS_IOMEM
3282 if (vcpu->mmio_needed) {
3283 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
3284 vcpu->mmio_read_completed = 1;
3285 vcpu->mmio_needed = 0;
3286
3287 down_read(&vcpu->kvm->slots_lock);
3288 r = emulate_instruction(vcpu, kvm_run,
3289 vcpu->arch.mmio_fault_cr2, 0,
3290 EMULTYPE_NO_DECODE);
3291 up_read(&vcpu->kvm->slots_lock);
3292 if (r == EMULATE_DO_MMIO) {
3293 /*
3294 * Read-modify-write. Back to userspace.
3295 */
3296 r = 0;
3297 goto out;
3298 }
3299 }
3300 #endif
3301 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
3302 kvm_register_write(vcpu, VCPU_REGS_RAX,
3303 kvm_run->hypercall.ret);
3304
3305 r = __vcpu_run(vcpu, kvm_run);
3306
3307 out:
3308 if (vcpu->sigset_active)
3309 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
3310
3311 vcpu_put(vcpu);
3312 return r;
3313 }
3314
3315 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3316 {
3317 vcpu_load(vcpu);
3318
3319 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3320 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3321 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3322 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3323 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3324 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3325 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3326 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3327 #ifdef CONFIG_X86_64
3328 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
3329 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
3330 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
3331 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
3332 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
3333 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
3334 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
3335 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
3336 #endif
3337
3338 regs->rip = kvm_rip_read(vcpu);
3339 regs->rflags = kvm_x86_ops->get_rflags(vcpu);
3340
3341 /*
3342 * Don't leak debug flags in case they were set for guest debugging
3343 */
3344 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
3345 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
3346
3347 vcpu_put(vcpu);
3348
3349 return 0;
3350 }
3351
3352 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3353 {
3354 vcpu_load(vcpu);
3355
3356 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
3357 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
3358 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
3359 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
3360 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
3361 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
3362 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
3363 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
3364 #ifdef CONFIG_X86_64
3365 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
3366 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
3367 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
3368 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
3369 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
3370 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
3371 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
3372 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
3373
3374 #endif
3375
3376 kvm_rip_write(vcpu, regs->rip);
3377 kvm_x86_ops->set_rflags(vcpu, regs->rflags);
3378
3379
3380 vcpu->arch.exception.pending = false;
3381
3382 vcpu_put(vcpu);
3383
3384 return 0;
3385 }
3386
3387 void kvm_get_segment(struct kvm_vcpu *vcpu,
3388 struct kvm_segment *var, int seg)
3389 {
3390 kvm_x86_ops->get_segment(vcpu, var, seg);
3391 }
3392
3393 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3394 {
3395 struct kvm_segment cs;
3396
3397 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3398 *db = cs.db;
3399 *l = cs.l;
3400 }
3401 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3402
3403 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3404 struct kvm_sregs *sregs)
3405 {
3406 struct descriptor_table dt;
3407 int pending_vec;
3408
3409 vcpu_load(vcpu);
3410
3411 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3412 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3413 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3414 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3415 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3416 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3417
3418 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3419 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3420
3421 kvm_x86_ops->get_idt(vcpu, &dt);
3422 sregs->idt.limit = dt.limit;
3423 sregs->idt.base = dt.base;
3424 kvm_x86_ops->get_gdt(vcpu, &dt);
3425 sregs->gdt.limit = dt.limit;
3426 sregs->gdt.base = dt.base;
3427
3428 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3429 sregs->cr0 = vcpu->arch.cr0;
3430 sregs->cr2 = vcpu->arch.cr2;
3431 sregs->cr3 = vcpu->arch.cr3;
3432 sregs->cr4 = vcpu->arch.cr4;
3433 sregs->cr8 = kvm_get_cr8(vcpu);
3434 sregs->efer = vcpu->arch.shadow_efer;
3435 sregs->apic_base = kvm_get_apic_base(vcpu);
3436
3437 if (irqchip_in_kernel(vcpu->kvm)) {
3438 memset(sregs->interrupt_bitmap, 0,
3439 sizeof sregs->interrupt_bitmap);
3440 pending_vec = kvm_x86_ops->get_irq(vcpu);
3441 if (pending_vec >= 0)
3442 set_bit(pending_vec,
3443 (unsigned long *)sregs->interrupt_bitmap);
3444 } else
3445 memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
3446 sizeof sregs->interrupt_bitmap);
3447
3448 vcpu_put(vcpu);
3449
3450 return 0;
3451 }
3452
3453 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3454 struct kvm_mp_state *mp_state)
3455 {
3456 vcpu_load(vcpu);
3457 mp_state->mp_state = vcpu->arch.mp_state;
3458 vcpu_put(vcpu);
3459 return 0;
3460 }
3461
3462 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3463 struct kvm_mp_state *mp_state)
3464 {
3465 vcpu_load(vcpu);
3466 vcpu->arch.mp_state = mp_state->mp_state;
3467 vcpu_put(vcpu);
3468 return 0;
3469 }
3470
3471 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3472 struct kvm_segment *var, int seg)
3473 {
3474 kvm_x86_ops->set_segment(vcpu, var, seg);
3475 }
3476
3477 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
3478 struct kvm_segment *kvm_desct)
3479 {
3480 kvm_desct->base = seg_desc->base0;
3481 kvm_desct->base |= seg_desc->base1 << 16;
3482 kvm_desct->base |= seg_desc->base2 << 24;
3483 kvm_desct->limit = seg_desc->limit0;
3484 kvm_desct->limit |= seg_desc->limit << 16;
3485 if (seg_desc->g) {
3486 kvm_desct->limit <<= 12;
3487 kvm_desct->limit |= 0xfff;
3488 }
3489 kvm_desct->selector = selector;
3490 kvm_desct->type = seg_desc->type;
3491 kvm_desct->present = seg_desc->p;
3492 kvm_desct->dpl = seg_desc->dpl;
3493 kvm_desct->db = seg_desc->d;
3494 kvm_desct->s = seg_desc->s;
3495 kvm_desct->l = seg_desc->l;
3496 kvm_desct->g = seg_desc->g;
3497 kvm_desct->avl = seg_desc->avl;
3498 if (!selector)
3499 kvm_desct->unusable = 1;
3500 else
3501 kvm_desct->unusable = 0;
3502 kvm_desct->padding = 0;
3503 }
3504
3505 static void get_segment_descritptor_dtable(struct kvm_vcpu *vcpu,
3506 u16 selector,
3507 struct descriptor_table *dtable)
3508 {
3509 if (selector & 1 << 2) {
3510 struct kvm_segment kvm_seg;
3511
3512 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
3513
3514 if (kvm_seg.unusable)
3515 dtable->limit = 0;
3516 else
3517 dtable->limit = kvm_seg.limit;
3518 dtable->base = kvm_seg.base;
3519 }
3520 else
3521 kvm_x86_ops->get_gdt(vcpu, dtable);
3522 }
3523
3524 /* allowed just for 8 bytes segments */
3525 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3526 struct desc_struct *seg_desc)
3527 {
3528 gpa_t gpa;
3529 struct descriptor_table dtable;
3530 u16 index = selector >> 3;
3531
3532 get_segment_descritptor_dtable(vcpu, selector, &dtable);
3533
3534 if (dtable.limit < index * 8 + 7) {
3535 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
3536 return 1;
3537 }
3538 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3539 gpa += index * 8;
3540 return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
3541 }
3542
3543 /* allowed just for 8 bytes segments */
3544 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3545 struct desc_struct *seg_desc)
3546 {
3547 gpa_t gpa;
3548 struct descriptor_table dtable;
3549 u16 index = selector >> 3;
3550
3551 get_segment_descritptor_dtable(vcpu, selector, &dtable);
3552
3553 if (dtable.limit < index * 8 + 7)
3554 return 1;
3555 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3556 gpa += index * 8;
3557 return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
3558 }
3559
3560 static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
3561 struct desc_struct *seg_desc)
3562 {
3563 u32 base_addr;
3564
3565 base_addr = seg_desc->base0;
3566 base_addr |= (seg_desc->base1 << 16);
3567 base_addr |= (seg_desc->base2 << 24);
3568
3569 return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
3570 }
3571
3572 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
3573 {
3574 struct kvm_segment kvm_seg;
3575
3576 kvm_get_segment(vcpu, &kvm_seg, seg);
3577 return kvm_seg.selector;
3578 }
3579
3580 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
3581 u16 selector,
3582 struct kvm_segment *kvm_seg)
3583 {
3584 struct desc_struct seg_desc;
3585
3586 if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
3587 return 1;
3588 seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
3589 return 0;
3590 }
3591
3592 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3593 int type_bits, int seg)
3594 {
3595 struct kvm_segment kvm_seg;
3596
3597 if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
3598 return 1;
3599 kvm_seg.type |= type_bits;
3600
3601 if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
3602 seg != VCPU_SREG_LDTR)
3603 if (!kvm_seg.s)
3604 kvm_seg.unusable = 1;
3605
3606 kvm_set_segment(vcpu, &kvm_seg, seg);
3607 return 0;
3608 }
3609
3610 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
3611 struct tss_segment_32 *tss)
3612 {
3613 tss->cr3 = vcpu->arch.cr3;
3614 tss->eip = kvm_rip_read(vcpu);
3615 tss->eflags = kvm_x86_ops->get_rflags(vcpu);
3616 tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3617 tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3618 tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3619 tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3620 tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3621 tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3622 tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3623 tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3624 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3625 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3626 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3627 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3628 tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
3629 tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
3630 tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3631 tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3632 }
3633
3634 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
3635 struct tss_segment_32 *tss)
3636 {
3637 kvm_set_cr3(vcpu, tss->cr3);
3638
3639 kvm_rip_write(vcpu, tss->eip);
3640 kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
3641
3642 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
3643 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
3644 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
3645 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
3646 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
3647 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
3648 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
3649 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
3650
3651 if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
3652 return 1;
3653
3654 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3655 return 1;
3656
3657 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3658 return 1;
3659
3660 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3661 return 1;
3662
3663 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3664 return 1;
3665
3666 if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
3667 return 1;
3668
3669 if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
3670 return 1;
3671 return 0;
3672 }
3673
3674 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
3675 struct tss_segment_16 *tss)
3676 {
3677 tss->ip = kvm_rip_read(vcpu);
3678 tss->flag = kvm_x86_ops->get_rflags(vcpu);
3679 tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3680 tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3681 tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3682 tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3683 tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3684 tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3685 tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
3686 tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
3687
3688 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3689 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3690 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3691 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3692 tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3693 tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3694 }
3695
3696 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
3697 struct tss_segment_16 *tss)
3698 {
3699 kvm_rip_write(vcpu, tss->ip);
3700 kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
3701 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
3702 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
3703 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
3704 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
3705 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
3706 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
3707 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
3708 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
3709
3710 if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
3711 return 1;
3712
3713 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3714 return 1;
3715
3716 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3717 return 1;
3718
3719 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3720 return 1;
3721
3722 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3723 return 1;
3724 return 0;
3725 }
3726
3727 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
3728 u32 old_tss_base,
3729 struct desc_struct *nseg_desc)
3730 {
3731 struct tss_segment_16 tss_segment_16;
3732 int ret = 0;
3733
3734 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3735 sizeof tss_segment_16))
3736 goto out;
3737
3738 save_state_to_tss16(vcpu, &tss_segment_16);
3739
3740 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3741 sizeof tss_segment_16))
3742 goto out;
3743
3744 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3745 &tss_segment_16, sizeof tss_segment_16))
3746 goto out;
3747
3748 if (load_state_from_tss16(vcpu, &tss_segment_16))
3749 goto out;
3750
3751 ret = 1;
3752 out:
3753 return ret;
3754 }
3755
3756 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
3757 u32 old_tss_base,
3758 struct desc_struct *nseg_desc)
3759 {
3760 struct tss_segment_32 tss_segment_32;
3761 int ret = 0;
3762
3763 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3764 sizeof tss_segment_32))
3765 goto out;
3766
3767 save_state_to_tss32(vcpu, &tss_segment_32);
3768
3769 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3770 sizeof tss_segment_32))
3771 goto out;
3772
3773 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3774 &tss_segment_32, sizeof tss_segment_32))
3775 goto out;
3776
3777 if (load_state_from_tss32(vcpu, &tss_segment_32))
3778 goto out;
3779
3780 ret = 1;
3781 out:
3782 return ret;
3783 }
3784
3785 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
3786 {
3787 struct kvm_segment tr_seg;
3788 struct desc_struct cseg_desc;
3789 struct desc_struct nseg_desc;
3790 int ret = 0;
3791 u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
3792 u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
3793
3794 old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
3795
3796 /* FIXME: Handle errors. Failure to read either TSS or their
3797 * descriptors should generate a pagefault.
3798 */
3799 if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
3800 goto out;
3801
3802 if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
3803 goto out;
3804
3805 if (reason != TASK_SWITCH_IRET) {
3806 int cpl;
3807
3808 cpl = kvm_x86_ops->get_cpl(vcpu);
3809 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
3810 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
3811 return 1;
3812 }
3813 }
3814
3815 if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
3816 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
3817 return 1;
3818 }
3819
3820 if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
3821 cseg_desc.type &= ~(1 << 1); //clear the B flag
3822 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
3823 }
3824
3825 if (reason == TASK_SWITCH_IRET) {
3826 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3827 kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
3828 }
3829
3830 kvm_x86_ops->skip_emulated_instruction(vcpu);
3831
3832 if (nseg_desc.type & 8)
3833 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_base,
3834 &nseg_desc);
3835 else
3836 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_base,
3837 &nseg_desc);
3838
3839 if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
3840 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3841 kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
3842 }
3843
3844 if (reason != TASK_SWITCH_IRET) {
3845 nseg_desc.type |= (1 << 1);
3846 save_guest_segment_descriptor(vcpu, tss_selector,
3847 &nseg_desc);
3848 }
3849
3850 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
3851 seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
3852 tr_seg.type = 11;
3853 kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
3854 out:
3855 return ret;
3856 }
3857 EXPORT_SYMBOL_GPL(kvm_task_switch);
3858
3859 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
3860 struct kvm_sregs *sregs)
3861 {
3862 int mmu_reset_needed = 0;
3863 int i, pending_vec, max_bits;
3864 struct descriptor_table dt;
3865
3866 vcpu_load(vcpu);
3867
3868 dt.limit = sregs->idt.limit;
3869 dt.base = sregs->idt.base;
3870 kvm_x86_ops->set_idt(vcpu, &dt);
3871 dt.limit = sregs->gdt.limit;
3872 dt.base = sregs->gdt.base;
3873 kvm_x86_ops->set_gdt(vcpu, &dt);
3874
3875 vcpu->arch.cr2 = sregs->cr2;
3876 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
3877 vcpu->arch.cr3 = sregs->cr3;
3878
3879 kvm_set_cr8(vcpu, sregs->cr8);
3880
3881 mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
3882 kvm_x86_ops->set_efer(vcpu, sregs->efer);
3883 kvm_set_apic_base(vcpu, sregs->apic_base);
3884
3885 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3886
3887 mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
3888 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
3889 vcpu->arch.cr0 = sregs->cr0;
3890
3891 mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
3892 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
3893 if (!is_long_mode(vcpu) && is_pae(vcpu))
3894 load_pdptrs(vcpu, vcpu->arch.cr3);
3895
3896 if (mmu_reset_needed)
3897 kvm_mmu_reset_context(vcpu);
3898
3899 if (!irqchip_in_kernel(vcpu->kvm)) {
3900 memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
3901 sizeof vcpu->arch.irq_pending);
3902 vcpu->arch.irq_summary = 0;
3903 for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
3904 if (vcpu->arch.irq_pending[i])
3905 __set_bit(i, &vcpu->arch.irq_summary);
3906 } else {
3907 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
3908 pending_vec = find_first_bit(
3909 (const unsigned long *)sregs->interrupt_bitmap,
3910 max_bits);
3911 /* Only pending external irq is handled here */
3912 if (pending_vec < max_bits) {
3913 kvm_x86_ops->set_irq(vcpu, pending_vec);
3914 pr_debug("Set back pending irq %d\n",
3915 pending_vec);
3916 }
3917 }
3918
3919 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3920 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3921 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3922 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3923 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3924 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3925
3926 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3927 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3928
3929 vcpu_put(vcpu);
3930
3931 return 0;
3932 }
3933
3934 int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
3935 struct kvm_debug_guest *dbg)
3936 {
3937 int r;
3938
3939 vcpu_load(vcpu);
3940
3941 r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
3942
3943 vcpu_put(vcpu);
3944
3945 return r;
3946 }
3947
3948 /*
3949 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
3950 * we have asm/x86/processor.h
3951 */
3952 struct fxsave {
3953 u16 cwd;
3954 u16 swd;
3955 u16 twd;
3956 u16 fop;
3957 u64 rip;
3958 u64 rdp;
3959 u32 mxcsr;
3960 u32 mxcsr_mask;
3961 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
3962 #ifdef CONFIG_X86_64
3963 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
3964 #else
3965 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
3966 #endif
3967 };
3968
3969 /*
3970 * Translate a guest virtual address to a guest physical address.
3971 */
3972 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
3973 struct kvm_translation *tr)
3974 {
3975 unsigned long vaddr = tr->linear_address;
3976 gpa_t gpa;
3977
3978 vcpu_load(vcpu);
3979 down_read(&vcpu->kvm->slots_lock);
3980 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
3981 up_read(&vcpu->kvm->slots_lock);
3982 tr->physical_address = gpa;
3983 tr->valid = gpa != UNMAPPED_GVA;
3984 tr->writeable = 1;
3985 tr->usermode = 0;
3986 vcpu_put(vcpu);
3987
3988 return 0;
3989 }
3990
3991 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
3992 {
3993 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3994
3995 vcpu_load(vcpu);
3996
3997 memcpy(fpu->fpr, fxsave->st_space, 128);
3998 fpu->fcw = fxsave->cwd;
3999 fpu->fsw = fxsave->swd;
4000 fpu->ftwx = fxsave->twd;
4001 fpu->last_opcode = fxsave->fop;
4002 fpu->last_ip = fxsave->rip;
4003 fpu->last_dp = fxsave->rdp;
4004 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
4005
4006 vcpu_put(vcpu);
4007
4008 return 0;
4009 }
4010
4011 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4012 {
4013 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4014
4015 vcpu_load(vcpu);
4016
4017 memcpy(fxsave->st_space, fpu->fpr, 128);
4018 fxsave->cwd = fpu->fcw;
4019 fxsave->swd = fpu->fsw;
4020 fxsave->twd = fpu->ftwx;
4021 fxsave->fop = fpu->last_opcode;
4022 fxsave->rip = fpu->last_ip;
4023 fxsave->rdp = fpu->last_dp;
4024 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
4025
4026 vcpu_put(vcpu);
4027
4028 return 0;
4029 }
4030
4031 void fx_init(struct kvm_vcpu *vcpu)
4032 {
4033 unsigned after_mxcsr_mask;
4034
4035 /*
4036 * Touch the fpu the first time in non atomic context as if
4037 * this is the first fpu instruction the exception handler
4038 * will fire before the instruction returns and it'll have to
4039 * allocate ram with GFP_KERNEL.
4040 */
4041 if (!used_math())
4042 kvm_fx_save(&vcpu->arch.host_fx_image);
4043
4044 /* Initialize guest FPU by resetting ours and saving into guest's */
4045 preempt_disable();
4046 kvm_fx_save(&vcpu->arch.host_fx_image);
4047 kvm_fx_finit();
4048 kvm_fx_save(&vcpu->arch.guest_fx_image);
4049 kvm_fx_restore(&vcpu->arch.host_fx_image);
4050 preempt_enable();
4051
4052 vcpu->arch.cr0 |= X86_CR0_ET;
4053 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
4054 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
4055 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
4056 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
4057 }
4058 EXPORT_SYMBOL_GPL(fx_init);
4059
4060 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
4061 {
4062 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
4063 return;
4064
4065 vcpu->guest_fpu_loaded = 1;
4066 kvm_fx_save(&vcpu->arch.host_fx_image);
4067 kvm_fx_restore(&vcpu->arch.guest_fx_image);
4068 }
4069 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
4070
4071 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
4072 {
4073 if (!vcpu->guest_fpu_loaded)
4074 return;
4075
4076 vcpu->guest_fpu_loaded = 0;
4077 kvm_fx_save(&vcpu->arch.guest_fx_image);
4078 kvm_fx_restore(&vcpu->arch.host_fx_image);
4079 ++vcpu->stat.fpu_reload;
4080 }
4081 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
4082
4083 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
4084 {
4085 kvm_x86_ops->vcpu_free(vcpu);
4086 }
4087
4088 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
4089 unsigned int id)
4090 {
4091 return kvm_x86_ops->vcpu_create(kvm, id);
4092 }
4093
4094 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
4095 {
4096 int r;
4097
4098 /* We do fxsave: this must be aligned. */
4099 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
4100
4101 vcpu_load(vcpu);
4102 r = kvm_arch_vcpu_reset(vcpu);
4103 if (r == 0)
4104 r = kvm_mmu_setup(vcpu);
4105 vcpu_put(vcpu);
4106 if (r < 0)
4107 goto free_vcpu;
4108
4109 return 0;
4110 free_vcpu:
4111 kvm_x86_ops->vcpu_free(vcpu);
4112 return r;
4113 }
4114
4115 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
4116 {
4117 vcpu_load(vcpu);
4118 kvm_mmu_unload(vcpu);
4119 vcpu_put(vcpu);
4120
4121 kvm_x86_ops->vcpu_free(vcpu);
4122 }
4123
4124 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
4125 {
4126 return kvm_x86_ops->vcpu_reset(vcpu);
4127 }
4128
4129 void kvm_arch_hardware_enable(void *garbage)
4130 {
4131 kvm_x86_ops->hardware_enable(garbage);
4132 }
4133
4134 void kvm_arch_hardware_disable(void *garbage)
4135 {
4136 kvm_x86_ops->hardware_disable(garbage);
4137 }
4138
4139 int kvm_arch_hardware_setup(void)
4140 {
4141 return kvm_x86_ops->hardware_setup();
4142 }
4143
4144 void kvm_arch_hardware_unsetup(void)
4145 {
4146 kvm_x86_ops->hardware_unsetup();
4147 }
4148
4149 void kvm_arch_check_processor_compat(void *rtn)
4150 {
4151 kvm_x86_ops->check_processor_compatibility(rtn);
4152 }
4153
4154 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
4155 {
4156 struct page *page;
4157 struct kvm *kvm;
4158 int r;
4159
4160 BUG_ON(vcpu->kvm == NULL);
4161 kvm = vcpu->kvm;
4162
4163 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4164 if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
4165 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4166 else
4167 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
4168
4169 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
4170 if (!page) {
4171 r = -ENOMEM;
4172 goto fail;
4173 }
4174 vcpu->arch.pio_data = page_address(page);
4175
4176 r = kvm_mmu_create(vcpu);
4177 if (r < 0)
4178 goto fail_free_pio_data;
4179
4180 if (irqchip_in_kernel(kvm)) {
4181 r = kvm_create_lapic(vcpu);
4182 if (r < 0)
4183 goto fail_mmu_destroy;
4184 }
4185
4186 return 0;
4187
4188 fail_mmu_destroy:
4189 kvm_mmu_destroy(vcpu);
4190 fail_free_pio_data:
4191 free_page((unsigned long)vcpu->arch.pio_data);
4192 fail:
4193 return r;
4194 }
4195
4196 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
4197 {
4198 kvm_free_lapic(vcpu);
4199 down_read(&vcpu->kvm->slots_lock);
4200 kvm_mmu_destroy(vcpu);
4201 up_read(&vcpu->kvm->slots_lock);
4202 free_page((unsigned long)vcpu->arch.pio_data);
4203 }
4204
4205 struct kvm *kvm_arch_create_vm(void)
4206 {
4207 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
4208
4209 if (!kvm)
4210 return ERR_PTR(-ENOMEM);
4211
4212 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
4213 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
4214
4215 return kvm;
4216 }
4217
4218 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
4219 {
4220 vcpu_load(vcpu);
4221 kvm_mmu_unload(vcpu);
4222 vcpu_put(vcpu);
4223 }
4224
4225 static void kvm_free_vcpus(struct kvm *kvm)
4226 {
4227 unsigned int i;
4228
4229 /*
4230 * Unpin any mmu pages first.
4231 */
4232 for (i = 0; i < KVM_MAX_VCPUS; ++i)
4233 if (kvm->vcpus[i])
4234 kvm_unload_vcpu_mmu(kvm->vcpus[i]);
4235 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
4236 if (kvm->vcpus[i]) {
4237 kvm_arch_vcpu_free(kvm->vcpus[i]);
4238 kvm->vcpus[i] = NULL;
4239 }
4240 }
4241
4242 }
4243
4244 void kvm_arch_destroy_vm(struct kvm *kvm)
4245 {
4246 kvm_free_assigned_devices(kvm);
4247 kvm_free_pit(kvm);
4248 kfree(kvm->arch.vpic);
4249 kfree(kvm->arch.vioapic);
4250 kvm_free_vcpus(kvm);
4251 kvm_free_physmem(kvm);
4252 if (kvm->arch.apic_access_page)
4253 put_page(kvm->arch.apic_access_page);
4254 if (kvm->arch.ept_identity_pagetable)
4255 put_page(kvm->arch.ept_identity_pagetable);
4256 kfree(kvm);
4257 }
4258
4259 int kvm_arch_set_memory_region(struct kvm *kvm,
4260 struct kvm_userspace_memory_region *mem,
4261 struct kvm_memory_slot old,
4262 int user_alloc)
4263 {
4264 int npages = mem->memory_size >> PAGE_SHIFT;
4265 struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
4266
4267 /*To keep backward compatibility with older userspace,
4268 *x86 needs to hanlde !user_alloc case.
4269 */
4270 if (!user_alloc) {
4271 if (npages && !old.rmap) {
4272 unsigned long userspace_addr;
4273
4274 down_write(&current->mm->mmap_sem);
4275 userspace_addr = do_mmap(NULL, 0,
4276 npages * PAGE_SIZE,
4277 PROT_READ | PROT_WRITE,
4278 MAP_SHARED | MAP_ANONYMOUS,
4279 0);
4280 up_write(&current->mm->mmap_sem);
4281
4282 if (IS_ERR((void *)userspace_addr))
4283 return PTR_ERR((void *)userspace_addr);
4284
4285 /* set userspace_addr atomically for kvm_hva_to_rmapp */
4286 spin_lock(&kvm->mmu_lock);
4287 memslot->userspace_addr = userspace_addr;
4288 spin_unlock(&kvm->mmu_lock);
4289 } else {
4290 if (!old.user_alloc && old.rmap) {
4291 int ret;
4292
4293 down_write(&current->mm->mmap_sem);
4294 ret = do_munmap(current->mm, old.userspace_addr,
4295 old.npages * PAGE_SIZE);
4296 up_write(&current->mm->mmap_sem);
4297 if (ret < 0)
4298 printk(KERN_WARNING
4299 "kvm_vm_ioctl_set_memory_region: "
4300 "failed to munmap memory\n");
4301 }
4302 }
4303 }
4304
4305 if (!kvm->arch.n_requested_mmu_pages) {
4306 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
4307 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
4308 }
4309
4310 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
4311 kvm_flush_remote_tlbs(kvm);
4312
4313 return 0;
4314 }
4315
4316 void kvm_arch_flush_shadow(struct kvm *kvm)
4317 {
4318 kvm_mmu_zap_all(kvm);
4319 }
4320
4321 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
4322 {
4323 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
4324 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED;
4325 }
4326
4327 static void vcpu_kick_intr(void *info)
4328 {
4329 #ifdef DEBUG
4330 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
4331 printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
4332 #endif
4333 }
4334
4335 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
4336 {
4337 int ipi_pcpu = vcpu->cpu;
4338 int cpu = get_cpu();
4339
4340 if (waitqueue_active(&vcpu->wq)) {
4341 wake_up_interruptible(&vcpu->wq);
4342 ++vcpu->stat.halt_wakeup;
4343 }
4344 /*
4345 * We may be called synchronously with irqs disabled in guest mode,
4346 * So need not to call smp_call_function_single() in that case.
4347 */
4348 if (vcpu->guest_mode && vcpu->cpu != cpu)
4349 smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
4350 put_cpu();
4351 }
This page took 0.189692 seconds and 6 git commands to generate.