KVM: x86 emulator: make (get|set)_dr() callback return error if it fails
[deliverable/linux.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Amit Shah <amit.shah@qumranet.com>
14 * Ben-Ami Yassour <benami@il.ibm.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
28
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40 #include <linux/user-return-notifier.h>
41 #include <linux/srcu.h>
42 #include <linux/slab.h>
43 #include <linux/perf_event.h>
44 #include <trace/events/kvm.h>
45
46 #define CREATE_TRACE_POINTS
47 #include "trace.h"
48
49 #include <asm/debugreg.h>
50 #include <asm/uaccess.h>
51 #include <asm/msr.h>
52 #include <asm/desc.h>
53 #include <asm/mtrr.h>
54 #include <asm/mce.h>
55
56 #define MAX_IO_MSRS 256
57 #define CR0_RESERVED_BITS \
58 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
59 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
60 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
61 #define CR4_RESERVED_BITS \
62 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
63 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
64 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
65 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
66
67 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
68
69 #define KVM_MAX_MCE_BANKS 32
70 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
71
72 /* EFER defaults:
73 * - enable syscall per default because its emulated by KVM
74 * - enable LME and LMA per default on 64 bit KVM
75 */
76 #ifdef CONFIG_X86_64
77 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
78 #else
79 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
80 #endif
81
82 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
83 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
84
85 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
86 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
87 struct kvm_cpuid_entry2 __user *entries);
88
89 struct kvm_x86_ops *kvm_x86_ops;
90 EXPORT_SYMBOL_GPL(kvm_x86_ops);
91
92 int ignore_msrs = 0;
93 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
94
95 #define KVM_NR_SHARED_MSRS 16
96
97 struct kvm_shared_msrs_global {
98 int nr;
99 u32 msrs[KVM_NR_SHARED_MSRS];
100 };
101
102 struct kvm_shared_msrs {
103 struct user_return_notifier urn;
104 bool registered;
105 struct kvm_shared_msr_values {
106 u64 host;
107 u64 curr;
108 } values[KVM_NR_SHARED_MSRS];
109 };
110
111 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
112 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
113
114 struct kvm_stats_debugfs_item debugfs_entries[] = {
115 { "pf_fixed", VCPU_STAT(pf_fixed) },
116 { "pf_guest", VCPU_STAT(pf_guest) },
117 { "tlb_flush", VCPU_STAT(tlb_flush) },
118 { "invlpg", VCPU_STAT(invlpg) },
119 { "exits", VCPU_STAT(exits) },
120 { "io_exits", VCPU_STAT(io_exits) },
121 { "mmio_exits", VCPU_STAT(mmio_exits) },
122 { "signal_exits", VCPU_STAT(signal_exits) },
123 { "irq_window", VCPU_STAT(irq_window_exits) },
124 { "nmi_window", VCPU_STAT(nmi_window_exits) },
125 { "halt_exits", VCPU_STAT(halt_exits) },
126 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
127 { "hypercalls", VCPU_STAT(hypercalls) },
128 { "request_irq", VCPU_STAT(request_irq_exits) },
129 { "irq_exits", VCPU_STAT(irq_exits) },
130 { "host_state_reload", VCPU_STAT(host_state_reload) },
131 { "efer_reload", VCPU_STAT(efer_reload) },
132 { "fpu_reload", VCPU_STAT(fpu_reload) },
133 { "insn_emulation", VCPU_STAT(insn_emulation) },
134 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
135 { "irq_injections", VCPU_STAT(irq_injections) },
136 { "nmi_injections", VCPU_STAT(nmi_injections) },
137 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
138 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
139 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
140 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
141 { "mmu_flooded", VM_STAT(mmu_flooded) },
142 { "mmu_recycled", VM_STAT(mmu_recycled) },
143 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
144 { "mmu_unsync", VM_STAT(mmu_unsync) },
145 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
146 { "largepages", VM_STAT(lpages) },
147 { NULL }
148 };
149
150 static void kvm_on_user_return(struct user_return_notifier *urn)
151 {
152 unsigned slot;
153 struct kvm_shared_msrs *locals
154 = container_of(urn, struct kvm_shared_msrs, urn);
155 struct kvm_shared_msr_values *values;
156
157 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
158 values = &locals->values[slot];
159 if (values->host != values->curr) {
160 wrmsrl(shared_msrs_global.msrs[slot], values->host);
161 values->curr = values->host;
162 }
163 }
164 locals->registered = false;
165 user_return_notifier_unregister(urn);
166 }
167
168 static void shared_msr_update(unsigned slot, u32 msr)
169 {
170 struct kvm_shared_msrs *smsr;
171 u64 value;
172
173 smsr = &__get_cpu_var(shared_msrs);
174 /* only read, and nobody should modify it at this time,
175 * so don't need lock */
176 if (slot >= shared_msrs_global.nr) {
177 printk(KERN_ERR "kvm: invalid MSR slot!");
178 return;
179 }
180 rdmsrl_safe(msr, &value);
181 smsr->values[slot].host = value;
182 smsr->values[slot].curr = value;
183 }
184
185 void kvm_define_shared_msr(unsigned slot, u32 msr)
186 {
187 if (slot >= shared_msrs_global.nr)
188 shared_msrs_global.nr = slot + 1;
189 shared_msrs_global.msrs[slot] = msr;
190 /* we need ensured the shared_msr_global have been updated */
191 smp_wmb();
192 }
193 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
194
195 static void kvm_shared_msr_cpu_online(void)
196 {
197 unsigned i;
198
199 for (i = 0; i < shared_msrs_global.nr; ++i)
200 shared_msr_update(i, shared_msrs_global.msrs[i]);
201 }
202
203 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
204 {
205 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
206
207 if (((value ^ smsr->values[slot].curr) & mask) == 0)
208 return;
209 smsr->values[slot].curr = value;
210 wrmsrl(shared_msrs_global.msrs[slot], value);
211 if (!smsr->registered) {
212 smsr->urn.on_user_return = kvm_on_user_return;
213 user_return_notifier_register(&smsr->urn);
214 smsr->registered = true;
215 }
216 }
217 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
218
219 static void drop_user_return_notifiers(void *ignore)
220 {
221 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
222
223 if (smsr->registered)
224 kvm_on_user_return(&smsr->urn);
225 }
226
227 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
228 {
229 if (irqchip_in_kernel(vcpu->kvm))
230 return vcpu->arch.apic_base;
231 else
232 return vcpu->arch.apic_base;
233 }
234 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
235
236 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
237 {
238 /* TODO: reserve bits check */
239 if (irqchip_in_kernel(vcpu->kvm))
240 kvm_lapic_set_base(vcpu, data);
241 else
242 vcpu->arch.apic_base = data;
243 }
244 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
245
246 #define EXCPT_BENIGN 0
247 #define EXCPT_CONTRIBUTORY 1
248 #define EXCPT_PF 2
249
250 static int exception_class(int vector)
251 {
252 switch (vector) {
253 case PF_VECTOR:
254 return EXCPT_PF;
255 case DE_VECTOR:
256 case TS_VECTOR:
257 case NP_VECTOR:
258 case SS_VECTOR:
259 case GP_VECTOR:
260 return EXCPT_CONTRIBUTORY;
261 default:
262 break;
263 }
264 return EXCPT_BENIGN;
265 }
266
267 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
268 unsigned nr, bool has_error, u32 error_code,
269 bool reinject)
270 {
271 u32 prev_nr;
272 int class1, class2;
273
274 if (!vcpu->arch.exception.pending) {
275 queue:
276 vcpu->arch.exception.pending = true;
277 vcpu->arch.exception.has_error_code = has_error;
278 vcpu->arch.exception.nr = nr;
279 vcpu->arch.exception.error_code = error_code;
280 vcpu->arch.exception.reinject = reinject;
281 return;
282 }
283
284 /* to check exception */
285 prev_nr = vcpu->arch.exception.nr;
286 if (prev_nr == DF_VECTOR) {
287 /* triple fault -> shutdown */
288 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
289 return;
290 }
291 class1 = exception_class(prev_nr);
292 class2 = exception_class(nr);
293 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
294 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
295 /* generate double fault per SDM Table 5-5 */
296 vcpu->arch.exception.pending = true;
297 vcpu->arch.exception.has_error_code = true;
298 vcpu->arch.exception.nr = DF_VECTOR;
299 vcpu->arch.exception.error_code = 0;
300 } else
301 /* replace previous exception with a new one in a hope
302 that instruction re-execution will regenerate lost
303 exception */
304 goto queue;
305 }
306
307 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
308 {
309 kvm_multiple_exception(vcpu, nr, false, 0, false);
310 }
311 EXPORT_SYMBOL_GPL(kvm_queue_exception);
312
313 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
314 {
315 kvm_multiple_exception(vcpu, nr, false, 0, true);
316 }
317 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
318
319 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
320 u32 error_code)
321 {
322 ++vcpu->stat.pf_guest;
323 vcpu->arch.cr2 = addr;
324 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
325 }
326
327 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
328 {
329 vcpu->arch.nmi_pending = 1;
330 }
331 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
332
333 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
334 {
335 kvm_multiple_exception(vcpu, nr, true, error_code, false);
336 }
337 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
338
339 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
340 {
341 kvm_multiple_exception(vcpu, nr, true, error_code, true);
342 }
343 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
344
345 /*
346 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
347 * a #GP and return false.
348 */
349 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
350 {
351 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
352 return true;
353 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
354 return false;
355 }
356 EXPORT_SYMBOL_GPL(kvm_require_cpl);
357
358 /*
359 * Load the pae pdptrs. Return true is they are all valid.
360 */
361 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
362 {
363 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
364 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
365 int i;
366 int ret;
367 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
368
369 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
370 offset * sizeof(u64), sizeof(pdpte));
371 if (ret < 0) {
372 ret = 0;
373 goto out;
374 }
375 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
376 if (is_present_gpte(pdpte[i]) &&
377 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
378 ret = 0;
379 goto out;
380 }
381 }
382 ret = 1;
383
384 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
385 __set_bit(VCPU_EXREG_PDPTR,
386 (unsigned long *)&vcpu->arch.regs_avail);
387 __set_bit(VCPU_EXREG_PDPTR,
388 (unsigned long *)&vcpu->arch.regs_dirty);
389 out:
390
391 return ret;
392 }
393 EXPORT_SYMBOL_GPL(load_pdptrs);
394
395 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
396 {
397 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
398 bool changed = true;
399 int r;
400
401 if (is_long_mode(vcpu) || !is_pae(vcpu))
402 return false;
403
404 if (!test_bit(VCPU_EXREG_PDPTR,
405 (unsigned long *)&vcpu->arch.regs_avail))
406 return true;
407
408 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
409 if (r < 0)
410 goto out;
411 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
412 out:
413
414 return changed;
415 }
416
417 static int __kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
418 {
419 cr0 |= X86_CR0_ET;
420
421 #ifdef CONFIG_X86_64
422 if (cr0 & 0xffffffff00000000UL)
423 return 1;
424 #endif
425
426 cr0 &= ~CR0_RESERVED_BITS;
427
428 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
429 return 1;
430
431 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
432 return 1;
433
434 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
435 #ifdef CONFIG_X86_64
436 if ((vcpu->arch.efer & EFER_LME)) {
437 int cs_db, cs_l;
438
439 if (!is_pae(vcpu))
440 return 1;
441 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
442 if (cs_l)
443 return 1;
444 } else
445 #endif
446 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3))
447 return 1;
448 }
449
450 kvm_x86_ops->set_cr0(vcpu, cr0);
451
452 kvm_mmu_reset_context(vcpu);
453 return 0;
454 }
455
456 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
457 {
458 if (__kvm_set_cr0(vcpu, cr0))
459 kvm_inject_gp(vcpu, 0);
460 }
461 EXPORT_SYMBOL_GPL(kvm_set_cr0);
462
463 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
464 {
465 kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
466 }
467 EXPORT_SYMBOL_GPL(kvm_lmsw);
468
469 int __kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
470 {
471 unsigned long old_cr4 = kvm_read_cr4(vcpu);
472 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
473
474 if (cr4 & CR4_RESERVED_BITS)
475 return 1;
476
477 if (is_long_mode(vcpu)) {
478 if (!(cr4 & X86_CR4_PAE))
479 return 1;
480 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
481 && ((cr4 ^ old_cr4) & pdptr_bits)
482 && !load_pdptrs(vcpu, vcpu->arch.cr3))
483 return 1;
484
485 if (cr4 & X86_CR4_VMXE)
486 return 1;
487
488 kvm_x86_ops->set_cr4(vcpu, cr4);
489 vcpu->arch.cr4 = cr4;
490 kvm_mmu_reset_context(vcpu);
491
492 return 0;
493 }
494
495 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
496 {
497 if (__kvm_set_cr4(vcpu, cr4))
498 kvm_inject_gp(vcpu, 0);
499 }
500 EXPORT_SYMBOL_GPL(kvm_set_cr4);
501
502 static int __kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
503 {
504 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
505 kvm_mmu_sync_roots(vcpu);
506 kvm_mmu_flush_tlb(vcpu);
507 return 0;
508 }
509
510 if (is_long_mode(vcpu)) {
511 if (cr3 & CR3_L_MODE_RESERVED_BITS)
512 return 1;
513 } else {
514 if (is_pae(vcpu)) {
515 if (cr3 & CR3_PAE_RESERVED_BITS)
516 return 1;
517 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3))
518 return 1;
519 }
520 /*
521 * We don't check reserved bits in nonpae mode, because
522 * this isn't enforced, and VMware depends on this.
523 */
524 }
525
526 /*
527 * Does the new cr3 value map to physical memory? (Note, we
528 * catch an invalid cr3 even in real-mode, because it would
529 * cause trouble later on when we turn on paging anyway.)
530 *
531 * A real CPU would silently accept an invalid cr3 and would
532 * attempt to use it - with largely undefined (and often hard
533 * to debug) behavior on the guest side.
534 */
535 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
536 return 1;
537 vcpu->arch.cr3 = cr3;
538 vcpu->arch.mmu.new_cr3(vcpu);
539 return 0;
540 }
541
542 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
543 {
544 if (__kvm_set_cr3(vcpu, cr3))
545 kvm_inject_gp(vcpu, 0);
546 }
547 EXPORT_SYMBOL_GPL(kvm_set_cr3);
548
549 int __kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
550 {
551 if (cr8 & CR8_RESERVED_BITS)
552 return 1;
553 if (irqchip_in_kernel(vcpu->kvm))
554 kvm_lapic_set_tpr(vcpu, cr8);
555 else
556 vcpu->arch.cr8 = cr8;
557 return 0;
558 }
559
560 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
561 {
562 if (__kvm_set_cr8(vcpu, cr8))
563 kvm_inject_gp(vcpu, 0);
564 }
565 EXPORT_SYMBOL_GPL(kvm_set_cr8);
566
567 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
568 {
569 if (irqchip_in_kernel(vcpu->kvm))
570 return kvm_lapic_get_cr8(vcpu);
571 else
572 return vcpu->arch.cr8;
573 }
574 EXPORT_SYMBOL_GPL(kvm_get_cr8);
575
576 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
577 {
578 switch (dr) {
579 case 0 ... 3:
580 vcpu->arch.db[dr] = val;
581 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
582 vcpu->arch.eff_db[dr] = val;
583 break;
584 case 4:
585 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
586 return 1; /* #UD */
587 /* fall through */
588 case 6:
589 if (val & 0xffffffff00000000ULL)
590 return -1; /* #GP */
591 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
592 break;
593 case 5:
594 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
595 return 1; /* #UD */
596 /* fall through */
597 default: /* 7 */
598 if (val & 0xffffffff00000000ULL)
599 return -1; /* #GP */
600 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
601 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
602 kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
603 vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
604 }
605 break;
606 }
607
608 return 0;
609 }
610
611 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
612 {
613 int res;
614
615 res = __kvm_set_dr(vcpu, dr, val);
616 if (res > 0)
617 kvm_queue_exception(vcpu, UD_VECTOR);
618 else if (res < 0)
619 kvm_inject_gp(vcpu, 0);
620
621 return res;
622 }
623 EXPORT_SYMBOL_GPL(kvm_set_dr);
624
625 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
626 {
627 switch (dr) {
628 case 0 ... 3:
629 *val = vcpu->arch.db[dr];
630 break;
631 case 4:
632 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
633 return 1;
634 /* fall through */
635 case 6:
636 *val = vcpu->arch.dr6;
637 break;
638 case 5:
639 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
640 return 1;
641 /* fall through */
642 default: /* 7 */
643 *val = vcpu->arch.dr7;
644 break;
645 }
646
647 return 0;
648 }
649
650 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
651 {
652 if (_kvm_get_dr(vcpu, dr, val)) {
653 kvm_queue_exception(vcpu, UD_VECTOR);
654 return 1;
655 }
656 return 0;
657 }
658 EXPORT_SYMBOL_GPL(kvm_get_dr);
659
660 static inline u32 bit(int bitno)
661 {
662 return 1 << (bitno & 31);
663 }
664
665 /*
666 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
667 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
668 *
669 * This list is modified at module load time to reflect the
670 * capabilities of the host cpu. This capabilities test skips MSRs that are
671 * kvm-specific. Those are put in the beginning of the list.
672 */
673
674 #define KVM_SAVE_MSRS_BEGIN 7
675 static u32 msrs_to_save[] = {
676 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
677 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
678 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
679 HV_X64_MSR_APIC_ASSIST_PAGE,
680 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
681 MSR_K6_STAR,
682 #ifdef CONFIG_X86_64
683 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
684 #endif
685 MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
686 };
687
688 static unsigned num_msrs_to_save;
689
690 static u32 emulated_msrs[] = {
691 MSR_IA32_MISC_ENABLE,
692 };
693
694 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
695 {
696 if (efer & efer_reserved_bits)
697 return 1;
698
699 if (is_paging(vcpu)
700 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
701 return 1;
702
703 if (efer & EFER_FFXSR) {
704 struct kvm_cpuid_entry2 *feat;
705
706 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
707 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
708 return 1;
709 }
710
711 if (efer & EFER_SVME) {
712 struct kvm_cpuid_entry2 *feat;
713
714 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
715 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
716 return 1;
717 }
718
719 efer &= ~EFER_LMA;
720 efer |= vcpu->arch.efer & EFER_LMA;
721
722 kvm_x86_ops->set_efer(vcpu, efer);
723
724 vcpu->arch.efer = efer;
725
726 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
727 kvm_mmu_reset_context(vcpu);
728
729 return 0;
730 }
731
732 void kvm_enable_efer_bits(u64 mask)
733 {
734 efer_reserved_bits &= ~mask;
735 }
736 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
737
738
739 /*
740 * Writes msr value into into the appropriate "register".
741 * Returns 0 on success, non-0 otherwise.
742 * Assumes vcpu_load() was already called.
743 */
744 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
745 {
746 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
747 }
748
749 /*
750 * Adapt set_msr() to msr_io()'s calling convention
751 */
752 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
753 {
754 return kvm_set_msr(vcpu, index, *data);
755 }
756
757 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
758 {
759 int version;
760 int r;
761 struct pvclock_wall_clock wc;
762 struct timespec boot;
763
764 if (!wall_clock)
765 return;
766
767 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
768 if (r)
769 return;
770
771 if (version & 1)
772 ++version; /* first time write, random junk */
773
774 ++version;
775
776 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
777
778 /*
779 * The guest calculates current wall clock time by adding
780 * system time (updated by kvm_write_guest_time below) to the
781 * wall clock specified here. guest system time equals host
782 * system time for us, thus we must fill in host boot time here.
783 */
784 getboottime(&boot);
785
786 wc.sec = boot.tv_sec;
787 wc.nsec = boot.tv_nsec;
788 wc.version = version;
789
790 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
791
792 version++;
793 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
794 }
795
796 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
797 {
798 uint32_t quotient, remainder;
799
800 /* Don't try to replace with do_div(), this one calculates
801 * "(dividend << 32) / divisor" */
802 __asm__ ( "divl %4"
803 : "=a" (quotient), "=d" (remainder)
804 : "0" (0), "1" (dividend), "r" (divisor) );
805 return quotient;
806 }
807
808 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
809 {
810 uint64_t nsecs = 1000000000LL;
811 int32_t shift = 0;
812 uint64_t tps64;
813 uint32_t tps32;
814
815 tps64 = tsc_khz * 1000LL;
816 while (tps64 > nsecs*2) {
817 tps64 >>= 1;
818 shift--;
819 }
820
821 tps32 = (uint32_t)tps64;
822 while (tps32 <= (uint32_t)nsecs) {
823 tps32 <<= 1;
824 shift++;
825 }
826
827 hv_clock->tsc_shift = shift;
828 hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
829
830 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
831 __func__, tsc_khz, hv_clock->tsc_shift,
832 hv_clock->tsc_to_system_mul);
833 }
834
835 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
836
837 static void kvm_write_guest_time(struct kvm_vcpu *v)
838 {
839 struct timespec ts;
840 unsigned long flags;
841 struct kvm_vcpu_arch *vcpu = &v->arch;
842 void *shared_kaddr;
843 unsigned long this_tsc_khz;
844
845 if ((!vcpu->time_page))
846 return;
847
848 this_tsc_khz = get_cpu_var(cpu_tsc_khz);
849 if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
850 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
851 vcpu->hv_clock_tsc_khz = this_tsc_khz;
852 }
853 put_cpu_var(cpu_tsc_khz);
854
855 /* Keep irq disabled to prevent changes to the clock */
856 local_irq_save(flags);
857 kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
858 ktime_get_ts(&ts);
859 monotonic_to_bootbased(&ts);
860 local_irq_restore(flags);
861
862 /* With all the info we got, fill in the values */
863
864 vcpu->hv_clock.system_time = ts.tv_nsec +
865 (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
866
867 vcpu->hv_clock.flags = 0;
868
869 /*
870 * The interface expects us to write an even number signaling that the
871 * update is finished. Since the guest won't see the intermediate
872 * state, we just increase by 2 at the end.
873 */
874 vcpu->hv_clock.version += 2;
875
876 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
877
878 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
879 sizeof(vcpu->hv_clock));
880
881 kunmap_atomic(shared_kaddr, KM_USER0);
882
883 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
884 }
885
886 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
887 {
888 struct kvm_vcpu_arch *vcpu = &v->arch;
889
890 if (!vcpu->time_page)
891 return 0;
892 set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
893 return 1;
894 }
895
896 static bool msr_mtrr_valid(unsigned msr)
897 {
898 switch (msr) {
899 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
900 case MSR_MTRRfix64K_00000:
901 case MSR_MTRRfix16K_80000:
902 case MSR_MTRRfix16K_A0000:
903 case MSR_MTRRfix4K_C0000:
904 case MSR_MTRRfix4K_C8000:
905 case MSR_MTRRfix4K_D0000:
906 case MSR_MTRRfix4K_D8000:
907 case MSR_MTRRfix4K_E0000:
908 case MSR_MTRRfix4K_E8000:
909 case MSR_MTRRfix4K_F0000:
910 case MSR_MTRRfix4K_F8000:
911 case MSR_MTRRdefType:
912 case MSR_IA32_CR_PAT:
913 return true;
914 case 0x2f8:
915 return true;
916 }
917 return false;
918 }
919
920 static bool valid_pat_type(unsigned t)
921 {
922 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
923 }
924
925 static bool valid_mtrr_type(unsigned t)
926 {
927 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
928 }
929
930 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
931 {
932 int i;
933
934 if (!msr_mtrr_valid(msr))
935 return false;
936
937 if (msr == MSR_IA32_CR_PAT) {
938 for (i = 0; i < 8; i++)
939 if (!valid_pat_type((data >> (i * 8)) & 0xff))
940 return false;
941 return true;
942 } else if (msr == MSR_MTRRdefType) {
943 if (data & ~0xcff)
944 return false;
945 return valid_mtrr_type(data & 0xff);
946 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
947 for (i = 0; i < 8 ; i++)
948 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
949 return false;
950 return true;
951 }
952
953 /* variable MTRRs */
954 return valid_mtrr_type(data & 0xff);
955 }
956
957 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
958 {
959 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
960
961 if (!mtrr_valid(vcpu, msr, data))
962 return 1;
963
964 if (msr == MSR_MTRRdefType) {
965 vcpu->arch.mtrr_state.def_type = data;
966 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
967 } else if (msr == MSR_MTRRfix64K_00000)
968 p[0] = data;
969 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
970 p[1 + msr - MSR_MTRRfix16K_80000] = data;
971 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
972 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
973 else if (msr == MSR_IA32_CR_PAT)
974 vcpu->arch.pat = data;
975 else { /* Variable MTRRs */
976 int idx, is_mtrr_mask;
977 u64 *pt;
978
979 idx = (msr - 0x200) / 2;
980 is_mtrr_mask = msr - 0x200 - 2 * idx;
981 if (!is_mtrr_mask)
982 pt =
983 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
984 else
985 pt =
986 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
987 *pt = data;
988 }
989
990 kvm_mmu_reset_context(vcpu);
991 return 0;
992 }
993
994 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
995 {
996 u64 mcg_cap = vcpu->arch.mcg_cap;
997 unsigned bank_num = mcg_cap & 0xff;
998
999 switch (msr) {
1000 case MSR_IA32_MCG_STATUS:
1001 vcpu->arch.mcg_status = data;
1002 break;
1003 case MSR_IA32_MCG_CTL:
1004 if (!(mcg_cap & MCG_CTL_P))
1005 return 1;
1006 if (data != 0 && data != ~(u64)0)
1007 return -1;
1008 vcpu->arch.mcg_ctl = data;
1009 break;
1010 default:
1011 if (msr >= MSR_IA32_MC0_CTL &&
1012 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1013 u32 offset = msr - MSR_IA32_MC0_CTL;
1014 /* only 0 or all 1s can be written to IA32_MCi_CTL
1015 * some Linux kernels though clear bit 10 in bank 4 to
1016 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1017 * this to avoid an uncatched #GP in the guest
1018 */
1019 if ((offset & 0x3) == 0 &&
1020 data != 0 && (data | (1 << 10)) != ~(u64)0)
1021 return -1;
1022 vcpu->arch.mce_banks[offset] = data;
1023 break;
1024 }
1025 return 1;
1026 }
1027 return 0;
1028 }
1029
1030 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1031 {
1032 struct kvm *kvm = vcpu->kvm;
1033 int lm = is_long_mode(vcpu);
1034 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1035 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1036 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1037 : kvm->arch.xen_hvm_config.blob_size_32;
1038 u32 page_num = data & ~PAGE_MASK;
1039 u64 page_addr = data & PAGE_MASK;
1040 u8 *page;
1041 int r;
1042
1043 r = -E2BIG;
1044 if (page_num >= blob_size)
1045 goto out;
1046 r = -ENOMEM;
1047 page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1048 if (!page)
1049 goto out;
1050 r = -EFAULT;
1051 if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1052 goto out_free;
1053 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1054 goto out_free;
1055 r = 0;
1056 out_free:
1057 kfree(page);
1058 out:
1059 return r;
1060 }
1061
1062 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1063 {
1064 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1065 }
1066
1067 static bool kvm_hv_msr_partition_wide(u32 msr)
1068 {
1069 bool r = false;
1070 switch (msr) {
1071 case HV_X64_MSR_GUEST_OS_ID:
1072 case HV_X64_MSR_HYPERCALL:
1073 r = true;
1074 break;
1075 }
1076
1077 return r;
1078 }
1079
1080 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1081 {
1082 struct kvm *kvm = vcpu->kvm;
1083
1084 switch (msr) {
1085 case HV_X64_MSR_GUEST_OS_ID:
1086 kvm->arch.hv_guest_os_id = data;
1087 /* setting guest os id to zero disables hypercall page */
1088 if (!kvm->arch.hv_guest_os_id)
1089 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1090 break;
1091 case HV_X64_MSR_HYPERCALL: {
1092 u64 gfn;
1093 unsigned long addr;
1094 u8 instructions[4];
1095
1096 /* if guest os id is not set hypercall should remain disabled */
1097 if (!kvm->arch.hv_guest_os_id)
1098 break;
1099 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1100 kvm->arch.hv_hypercall = data;
1101 break;
1102 }
1103 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1104 addr = gfn_to_hva(kvm, gfn);
1105 if (kvm_is_error_hva(addr))
1106 return 1;
1107 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1108 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1109 if (copy_to_user((void __user *)addr, instructions, 4))
1110 return 1;
1111 kvm->arch.hv_hypercall = data;
1112 break;
1113 }
1114 default:
1115 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1116 "data 0x%llx\n", msr, data);
1117 return 1;
1118 }
1119 return 0;
1120 }
1121
1122 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1123 {
1124 switch (msr) {
1125 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1126 unsigned long addr;
1127
1128 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1129 vcpu->arch.hv_vapic = data;
1130 break;
1131 }
1132 addr = gfn_to_hva(vcpu->kvm, data >>
1133 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1134 if (kvm_is_error_hva(addr))
1135 return 1;
1136 if (clear_user((void __user *)addr, PAGE_SIZE))
1137 return 1;
1138 vcpu->arch.hv_vapic = data;
1139 break;
1140 }
1141 case HV_X64_MSR_EOI:
1142 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1143 case HV_X64_MSR_ICR:
1144 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1145 case HV_X64_MSR_TPR:
1146 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1147 default:
1148 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1149 "data 0x%llx\n", msr, data);
1150 return 1;
1151 }
1152
1153 return 0;
1154 }
1155
1156 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1157 {
1158 switch (msr) {
1159 case MSR_EFER:
1160 return set_efer(vcpu, data);
1161 case MSR_K7_HWCR:
1162 data &= ~(u64)0x40; /* ignore flush filter disable */
1163 data &= ~(u64)0x100; /* ignore ignne emulation enable */
1164 if (data != 0) {
1165 pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1166 data);
1167 return 1;
1168 }
1169 break;
1170 case MSR_FAM10H_MMIO_CONF_BASE:
1171 if (data != 0) {
1172 pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1173 "0x%llx\n", data);
1174 return 1;
1175 }
1176 break;
1177 case MSR_AMD64_NB_CFG:
1178 break;
1179 case MSR_IA32_DEBUGCTLMSR:
1180 if (!data) {
1181 /* We support the non-activated case already */
1182 break;
1183 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1184 /* Values other than LBR and BTF are vendor-specific,
1185 thus reserved and should throw a #GP */
1186 return 1;
1187 }
1188 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1189 __func__, data);
1190 break;
1191 case MSR_IA32_UCODE_REV:
1192 case MSR_IA32_UCODE_WRITE:
1193 case MSR_VM_HSAVE_PA:
1194 case MSR_AMD64_PATCH_LOADER:
1195 break;
1196 case 0x200 ... 0x2ff:
1197 return set_msr_mtrr(vcpu, msr, data);
1198 case MSR_IA32_APICBASE:
1199 kvm_set_apic_base(vcpu, data);
1200 break;
1201 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1202 return kvm_x2apic_msr_write(vcpu, msr, data);
1203 case MSR_IA32_MISC_ENABLE:
1204 vcpu->arch.ia32_misc_enable_msr = data;
1205 break;
1206 case MSR_KVM_WALL_CLOCK_NEW:
1207 case MSR_KVM_WALL_CLOCK:
1208 vcpu->kvm->arch.wall_clock = data;
1209 kvm_write_wall_clock(vcpu->kvm, data);
1210 break;
1211 case MSR_KVM_SYSTEM_TIME_NEW:
1212 case MSR_KVM_SYSTEM_TIME: {
1213 if (vcpu->arch.time_page) {
1214 kvm_release_page_dirty(vcpu->arch.time_page);
1215 vcpu->arch.time_page = NULL;
1216 }
1217
1218 vcpu->arch.time = data;
1219
1220 /* we verify if the enable bit is set... */
1221 if (!(data & 1))
1222 break;
1223
1224 /* ...but clean it before doing the actual write */
1225 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1226
1227 vcpu->arch.time_page =
1228 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1229
1230 if (is_error_page(vcpu->arch.time_page)) {
1231 kvm_release_page_clean(vcpu->arch.time_page);
1232 vcpu->arch.time_page = NULL;
1233 }
1234
1235 kvm_request_guest_time_update(vcpu);
1236 break;
1237 }
1238 case MSR_IA32_MCG_CTL:
1239 case MSR_IA32_MCG_STATUS:
1240 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1241 return set_msr_mce(vcpu, msr, data);
1242
1243 /* Performance counters are not protected by a CPUID bit,
1244 * so we should check all of them in the generic path for the sake of
1245 * cross vendor migration.
1246 * Writing a zero into the event select MSRs disables them,
1247 * which we perfectly emulate ;-). Any other value should be at least
1248 * reported, some guests depend on them.
1249 */
1250 case MSR_P6_EVNTSEL0:
1251 case MSR_P6_EVNTSEL1:
1252 case MSR_K7_EVNTSEL0:
1253 case MSR_K7_EVNTSEL1:
1254 case MSR_K7_EVNTSEL2:
1255 case MSR_K7_EVNTSEL3:
1256 if (data != 0)
1257 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1258 "0x%x data 0x%llx\n", msr, data);
1259 break;
1260 /* at least RHEL 4 unconditionally writes to the perfctr registers,
1261 * so we ignore writes to make it happy.
1262 */
1263 case MSR_P6_PERFCTR0:
1264 case MSR_P6_PERFCTR1:
1265 case MSR_K7_PERFCTR0:
1266 case MSR_K7_PERFCTR1:
1267 case MSR_K7_PERFCTR2:
1268 case MSR_K7_PERFCTR3:
1269 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1270 "0x%x data 0x%llx\n", msr, data);
1271 break;
1272 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1273 if (kvm_hv_msr_partition_wide(msr)) {
1274 int r;
1275 mutex_lock(&vcpu->kvm->lock);
1276 r = set_msr_hyperv_pw(vcpu, msr, data);
1277 mutex_unlock(&vcpu->kvm->lock);
1278 return r;
1279 } else
1280 return set_msr_hyperv(vcpu, msr, data);
1281 break;
1282 default:
1283 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1284 return xen_hvm_config(vcpu, data);
1285 if (!ignore_msrs) {
1286 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1287 msr, data);
1288 return 1;
1289 } else {
1290 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1291 msr, data);
1292 break;
1293 }
1294 }
1295 return 0;
1296 }
1297 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1298
1299
1300 /*
1301 * Reads an msr value (of 'msr_index') into 'pdata'.
1302 * Returns 0 on success, non-0 otherwise.
1303 * Assumes vcpu_load() was already called.
1304 */
1305 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1306 {
1307 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1308 }
1309
1310 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1311 {
1312 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1313
1314 if (!msr_mtrr_valid(msr))
1315 return 1;
1316
1317 if (msr == MSR_MTRRdefType)
1318 *pdata = vcpu->arch.mtrr_state.def_type +
1319 (vcpu->arch.mtrr_state.enabled << 10);
1320 else if (msr == MSR_MTRRfix64K_00000)
1321 *pdata = p[0];
1322 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1323 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1324 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1325 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1326 else if (msr == MSR_IA32_CR_PAT)
1327 *pdata = vcpu->arch.pat;
1328 else { /* Variable MTRRs */
1329 int idx, is_mtrr_mask;
1330 u64 *pt;
1331
1332 idx = (msr - 0x200) / 2;
1333 is_mtrr_mask = msr - 0x200 - 2 * idx;
1334 if (!is_mtrr_mask)
1335 pt =
1336 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1337 else
1338 pt =
1339 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1340 *pdata = *pt;
1341 }
1342
1343 return 0;
1344 }
1345
1346 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1347 {
1348 u64 data;
1349 u64 mcg_cap = vcpu->arch.mcg_cap;
1350 unsigned bank_num = mcg_cap & 0xff;
1351
1352 switch (msr) {
1353 case MSR_IA32_P5_MC_ADDR:
1354 case MSR_IA32_P5_MC_TYPE:
1355 data = 0;
1356 break;
1357 case MSR_IA32_MCG_CAP:
1358 data = vcpu->arch.mcg_cap;
1359 break;
1360 case MSR_IA32_MCG_CTL:
1361 if (!(mcg_cap & MCG_CTL_P))
1362 return 1;
1363 data = vcpu->arch.mcg_ctl;
1364 break;
1365 case MSR_IA32_MCG_STATUS:
1366 data = vcpu->arch.mcg_status;
1367 break;
1368 default:
1369 if (msr >= MSR_IA32_MC0_CTL &&
1370 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1371 u32 offset = msr - MSR_IA32_MC0_CTL;
1372 data = vcpu->arch.mce_banks[offset];
1373 break;
1374 }
1375 return 1;
1376 }
1377 *pdata = data;
1378 return 0;
1379 }
1380
1381 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1382 {
1383 u64 data = 0;
1384 struct kvm *kvm = vcpu->kvm;
1385
1386 switch (msr) {
1387 case HV_X64_MSR_GUEST_OS_ID:
1388 data = kvm->arch.hv_guest_os_id;
1389 break;
1390 case HV_X64_MSR_HYPERCALL:
1391 data = kvm->arch.hv_hypercall;
1392 break;
1393 default:
1394 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1395 return 1;
1396 }
1397
1398 *pdata = data;
1399 return 0;
1400 }
1401
1402 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1403 {
1404 u64 data = 0;
1405
1406 switch (msr) {
1407 case HV_X64_MSR_VP_INDEX: {
1408 int r;
1409 struct kvm_vcpu *v;
1410 kvm_for_each_vcpu(r, v, vcpu->kvm)
1411 if (v == vcpu)
1412 data = r;
1413 break;
1414 }
1415 case HV_X64_MSR_EOI:
1416 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1417 case HV_X64_MSR_ICR:
1418 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1419 case HV_X64_MSR_TPR:
1420 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1421 default:
1422 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1423 return 1;
1424 }
1425 *pdata = data;
1426 return 0;
1427 }
1428
1429 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1430 {
1431 u64 data;
1432
1433 switch (msr) {
1434 case MSR_IA32_PLATFORM_ID:
1435 case MSR_IA32_UCODE_REV:
1436 case MSR_IA32_EBL_CR_POWERON:
1437 case MSR_IA32_DEBUGCTLMSR:
1438 case MSR_IA32_LASTBRANCHFROMIP:
1439 case MSR_IA32_LASTBRANCHTOIP:
1440 case MSR_IA32_LASTINTFROMIP:
1441 case MSR_IA32_LASTINTTOIP:
1442 case MSR_K8_SYSCFG:
1443 case MSR_K7_HWCR:
1444 case MSR_VM_HSAVE_PA:
1445 case MSR_P6_PERFCTR0:
1446 case MSR_P6_PERFCTR1:
1447 case MSR_P6_EVNTSEL0:
1448 case MSR_P6_EVNTSEL1:
1449 case MSR_K7_EVNTSEL0:
1450 case MSR_K7_PERFCTR0:
1451 case MSR_K8_INT_PENDING_MSG:
1452 case MSR_AMD64_NB_CFG:
1453 case MSR_FAM10H_MMIO_CONF_BASE:
1454 data = 0;
1455 break;
1456 case MSR_MTRRcap:
1457 data = 0x500 | KVM_NR_VAR_MTRR;
1458 break;
1459 case 0x200 ... 0x2ff:
1460 return get_msr_mtrr(vcpu, msr, pdata);
1461 case 0xcd: /* fsb frequency */
1462 data = 3;
1463 break;
1464 case MSR_IA32_APICBASE:
1465 data = kvm_get_apic_base(vcpu);
1466 break;
1467 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1468 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1469 break;
1470 case MSR_IA32_MISC_ENABLE:
1471 data = vcpu->arch.ia32_misc_enable_msr;
1472 break;
1473 case MSR_IA32_PERF_STATUS:
1474 /* TSC increment by tick */
1475 data = 1000ULL;
1476 /* CPU multiplier */
1477 data |= (((uint64_t)4ULL) << 40);
1478 break;
1479 case MSR_EFER:
1480 data = vcpu->arch.efer;
1481 break;
1482 case MSR_KVM_WALL_CLOCK:
1483 case MSR_KVM_WALL_CLOCK_NEW:
1484 data = vcpu->kvm->arch.wall_clock;
1485 break;
1486 case MSR_KVM_SYSTEM_TIME:
1487 case MSR_KVM_SYSTEM_TIME_NEW:
1488 data = vcpu->arch.time;
1489 break;
1490 case MSR_IA32_P5_MC_ADDR:
1491 case MSR_IA32_P5_MC_TYPE:
1492 case MSR_IA32_MCG_CAP:
1493 case MSR_IA32_MCG_CTL:
1494 case MSR_IA32_MCG_STATUS:
1495 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1496 return get_msr_mce(vcpu, msr, pdata);
1497 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1498 if (kvm_hv_msr_partition_wide(msr)) {
1499 int r;
1500 mutex_lock(&vcpu->kvm->lock);
1501 r = get_msr_hyperv_pw(vcpu, msr, pdata);
1502 mutex_unlock(&vcpu->kvm->lock);
1503 return r;
1504 } else
1505 return get_msr_hyperv(vcpu, msr, pdata);
1506 break;
1507 default:
1508 if (!ignore_msrs) {
1509 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1510 return 1;
1511 } else {
1512 pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1513 data = 0;
1514 }
1515 break;
1516 }
1517 *pdata = data;
1518 return 0;
1519 }
1520 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1521
1522 /*
1523 * Read or write a bunch of msrs. All parameters are kernel addresses.
1524 *
1525 * @return number of msrs set successfully.
1526 */
1527 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1528 struct kvm_msr_entry *entries,
1529 int (*do_msr)(struct kvm_vcpu *vcpu,
1530 unsigned index, u64 *data))
1531 {
1532 int i, idx;
1533
1534 vcpu_load(vcpu);
1535
1536 idx = srcu_read_lock(&vcpu->kvm->srcu);
1537 for (i = 0; i < msrs->nmsrs; ++i)
1538 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1539 break;
1540 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1541
1542 vcpu_put(vcpu);
1543
1544 return i;
1545 }
1546
1547 /*
1548 * Read or write a bunch of msrs. Parameters are user addresses.
1549 *
1550 * @return number of msrs set successfully.
1551 */
1552 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1553 int (*do_msr)(struct kvm_vcpu *vcpu,
1554 unsigned index, u64 *data),
1555 int writeback)
1556 {
1557 struct kvm_msrs msrs;
1558 struct kvm_msr_entry *entries;
1559 int r, n;
1560 unsigned size;
1561
1562 r = -EFAULT;
1563 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1564 goto out;
1565
1566 r = -E2BIG;
1567 if (msrs.nmsrs >= MAX_IO_MSRS)
1568 goto out;
1569
1570 r = -ENOMEM;
1571 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1572 entries = kmalloc(size, GFP_KERNEL);
1573 if (!entries)
1574 goto out;
1575
1576 r = -EFAULT;
1577 if (copy_from_user(entries, user_msrs->entries, size))
1578 goto out_free;
1579
1580 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1581 if (r < 0)
1582 goto out_free;
1583
1584 r = -EFAULT;
1585 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1586 goto out_free;
1587
1588 r = n;
1589
1590 out_free:
1591 kfree(entries);
1592 out:
1593 return r;
1594 }
1595
1596 int kvm_dev_ioctl_check_extension(long ext)
1597 {
1598 int r;
1599
1600 switch (ext) {
1601 case KVM_CAP_IRQCHIP:
1602 case KVM_CAP_HLT:
1603 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1604 case KVM_CAP_SET_TSS_ADDR:
1605 case KVM_CAP_EXT_CPUID:
1606 case KVM_CAP_CLOCKSOURCE:
1607 case KVM_CAP_PIT:
1608 case KVM_CAP_NOP_IO_DELAY:
1609 case KVM_CAP_MP_STATE:
1610 case KVM_CAP_SYNC_MMU:
1611 case KVM_CAP_REINJECT_CONTROL:
1612 case KVM_CAP_IRQ_INJECT_STATUS:
1613 case KVM_CAP_ASSIGN_DEV_IRQ:
1614 case KVM_CAP_IRQFD:
1615 case KVM_CAP_IOEVENTFD:
1616 case KVM_CAP_PIT2:
1617 case KVM_CAP_PIT_STATE2:
1618 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1619 case KVM_CAP_XEN_HVM:
1620 case KVM_CAP_ADJUST_CLOCK:
1621 case KVM_CAP_VCPU_EVENTS:
1622 case KVM_CAP_HYPERV:
1623 case KVM_CAP_HYPERV_VAPIC:
1624 case KVM_CAP_HYPERV_SPIN:
1625 case KVM_CAP_PCI_SEGMENT:
1626 case KVM_CAP_DEBUGREGS:
1627 case KVM_CAP_X86_ROBUST_SINGLESTEP:
1628 r = 1;
1629 break;
1630 case KVM_CAP_COALESCED_MMIO:
1631 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1632 break;
1633 case KVM_CAP_VAPIC:
1634 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1635 break;
1636 case KVM_CAP_NR_VCPUS:
1637 r = KVM_MAX_VCPUS;
1638 break;
1639 case KVM_CAP_NR_MEMSLOTS:
1640 r = KVM_MEMORY_SLOTS;
1641 break;
1642 case KVM_CAP_PV_MMU: /* obsolete */
1643 r = 0;
1644 break;
1645 case KVM_CAP_IOMMU:
1646 r = iommu_found();
1647 break;
1648 case KVM_CAP_MCE:
1649 r = KVM_MAX_MCE_BANKS;
1650 break;
1651 default:
1652 r = 0;
1653 break;
1654 }
1655 return r;
1656
1657 }
1658
1659 long kvm_arch_dev_ioctl(struct file *filp,
1660 unsigned int ioctl, unsigned long arg)
1661 {
1662 void __user *argp = (void __user *)arg;
1663 long r;
1664
1665 switch (ioctl) {
1666 case KVM_GET_MSR_INDEX_LIST: {
1667 struct kvm_msr_list __user *user_msr_list = argp;
1668 struct kvm_msr_list msr_list;
1669 unsigned n;
1670
1671 r = -EFAULT;
1672 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1673 goto out;
1674 n = msr_list.nmsrs;
1675 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1676 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1677 goto out;
1678 r = -E2BIG;
1679 if (n < msr_list.nmsrs)
1680 goto out;
1681 r = -EFAULT;
1682 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1683 num_msrs_to_save * sizeof(u32)))
1684 goto out;
1685 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1686 &emulated_msrs,
1687 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1688 goto out;
1689 r = 0;
1690 break;
1691 }
1692 case KVM_GET_SUPPORTED_CPUID: {
1693 struct kvm_cpuid2 __user *cpuid_arg = argp;
1694 struct kvm_cpuid2 cpuid;
1695
1696 r = -EFAULT;
1697 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1698 goto out;
1699 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1700 cpuid_arg->entries);
1701 if (r)
1702 goto out;
1703
1704 r = -EFAULT;
1705 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1706 goto out;
1707 r = 0;
1708 break;
1709 }
1710 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1711 u64 mce_cap;
1712
1713 mce_cap = KVM_MCE_CAP_SUPPORTED;
1714 r = -EFAULT;
1715 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1716 goto out;
1717 r = 0;
1718 break;
1719 }
1720 default:
1721 r = -EINVAL;
1722 }
1723 out:
1724 return r;
1725 }
1726
1727 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1728 {
1729 kvm_x86_ops->vcpu_load(vcpu, cpu);
1730 if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) {
1731 unsigned long khz = cpufreq_quick_get(cpu);
1732 if (!khz)
1733 khz = tsc_khz;
1734 per_cpu(cpu_tsc_khz, cpu) = khz;
1735 }
1736 kvm_request_guest_time_update(vcpu);
1737 }
1738
1739 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1740 {
1741 kvm_x86_ops->vcpu_put(vcpu);
1742 kvm_put_guest_fpu(vcpu);
1743 }
1744
1745 static int is_efer_nx(void)
1746 {
1747 unsigned long long efer = 0;
1748
1749 rdmsrl_safe(MSR_EFER, &efer);
1750 return efer & EFER_NX;
1751 }
1752
1753 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1754 {
1755 int i;
1756 struct kvm_cpuid_entry2 *e, *entry;
1757
1758 entry = NULL;
1759 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1760 e = &vcpu->arch.cpuid_entries[i];
1761 if (e->function == 0x80000001) {
1762 entry = e;
1763 break;
1764 }
1765 }
1766 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1767 entry->edx &= ~(1 << 20);
1768 printk(KERN_INFO "kvm: guest NX capability removed\n");
1769 }
1770 }
1771
1772 /* when an old userspace process fills a new kernel module */
1773 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1774 struct kvm_cpuid *cpuid,
1775 struct kvm_cpuid_entry __user *entries)
1776 {
1777 int r, i;
1778 struct kvm_cpuid_entry *cpuid_entries;
1779
1780 r = -E2BIG;
1781 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1782 goto out;
1783 r = -ENOMEM;
1784 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1785 if (!cpuid_entries)
1786 goto out;
1787 r = -EFAULT;
1788 if (copy_from_user(cpuid_entries, entries,
1789 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1790 goto out_free;
1791 vcpu_load(vcpu);
1792 for (i = 0; i < cpuid->nent; i++) {
1793 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1794 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1795 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1796 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1797 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1798 vcpu->arch.cpuid_entries[i].index = 0;
1799 vcpu->arch.cpuid_entries[i].flags = 0;
1800 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1801 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1802 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1803 }
1804 vcpu->arch.cpuid_nent = cpuid->nent;
1805 cpuid_fix_nx_cap(vcpu);
1806 r = 0;
1807 kvm_apic_set_version(vcpu);
1808 kvm_x86_ops->cpuid_update(vcpu);
1809 vcpu_put(vcpu);
1810
1811 out_free:
1812 vfree(cpuid_entries);
1813 out:
1814 return r;
1815 }
1816
1817 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1818 struct kvm_cpuid2 *cpuid,
1819 struct kvm_cpuid_entry2 __user *entries)
1820 {
1821 int r;
1822
1823 r = -E2BIG;
1824 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1825 goto out;
1826 r = -EFAULT;
1827 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1828 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1829 goto out;
1830 vcpu_load(vcpu);
1831 vcpu->arch.cpuid_nent = cpuid->nent;
1832 kvm_apic_set_version(vcpu);
1833 kvm_x86_ops->cpuid_update(vcpu);
1834 vcpu_put(vcpu);
1835 return 0;
1836
1837 out:
1838 return r;
1839 }
1840
1841 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1842 struct kvm_cpuid2 *cpuid,
1843 struct kvm_cpuid_entry2 __user *entries)
1844 {
1845 int r;
1846
1847 vcpu_load(vcpu);
1848 r = -E2BIG;
1849 if (cpuid->nent < vcpu->arch.cpuid_nent)
1850 goto out;
1851 r = -EFAULT;
1852 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1853 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1854 goto out;
1855 return 0;
1856
1857 out:
1858 cpuid->nent = vcpu->arch.cpuid_nent;
1859 vcpu_put(vcpu);
1860 return r;
1861 }
1862
1863 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1864 u32 index)
1865 {
1866 entry->function = function;
1867 entry->index = index;
1868 cpuid_count(entry->function, entry->index,
1869 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1870 entry->flags = 0;
1871 }
1872
1873 #define F(x) bit(X86_FEATURE_##x)
1874
1875 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1876 u32 index, int *nent, int maxnent)
1877 {
1878 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
1879 #ifdef CONFIG_X86_64
1880 unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
1881 ? F(GBPAGES) : 0;
1882 unsigned f_lm = F(LM);
1883 #else
1884 unsigned f_gbpages = 0;
1885 unsigned f_lm = 0;
1886 #endif
1887 unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
1888
1889 /* cpuid 1.edx */
1890 const u32 kvm_supported_word0_x86_features =
1891 F(FPU) | F(VME) | F(DE) | F(PSE) |
1892 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1893 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
1894 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1895 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
1896 0 /* Reserved, DS, ACPI */ | F(MMX) |
1897 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
1898 0 /* HTT, TM, Reserved, PBE */;
1899 /* cpuid 0x80000001.edx */
1900 const u32 kvm_supported_word1_x86_features =
1901 F(FPU) | F(VME) | F(DE) | F(PSE) |
1902 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1903 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
1904 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1905 F(PAT) | F(PSE36) | 0 /* Reserved */ |
1906 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
1907 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
1908 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
1909 /* cpuid 1.ecx */
1910 const u32 kvm_supported_word4_x86_features =
1911 F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
1912 0 /* DS-CPL, VMX, SMX, EST */ |
1913 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1914 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
1915 0 /* Reserved, DCA */ | F(XMM4_1) |
1916 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
1917 0 /* Reserved, XSAVE, OSXSAVE */;
1918 /* cpuid 0x80000001.ecx */
1919 const u32 kvm_supported_word6_x86_features =
1920 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
1921 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
1922 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
1923 0 /* SKINIT */ | 0 /* WDT */;
1924
1925 /* all calls to cpuid_count() should be made on the same cpu */
1926 get_cpu();
1927 do_cpuid_1_ent(entry, function, index);
1928 ++*nent;
1929
1930 switch (function) {
1931 case 0:
1932 entry->eax = min(entry->eax, (u32)0xb);
1933 break;
1934 case 1:
1935 entry->edx &= kvm_supported_word0_x86_features;
1936 entry->ecx &= kvm_supported_word4_x86_features;
1937 /* we support x2apic emulation even if host does not support
1938 * it since we emulate x2apic in software */
1939 entry->ecx |= F(X2APIC);
1940 break;
1941 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1942 * may return different values. This forces us to get_cpu() before
1943 * issuing the first command, and also to emulate this annoying behavior
1944 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1945 case 2: {
1946 int t, times = entry->eax & 0xff;
1947
1948 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1949 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1950 for (t = 1; t < times && *nent < maxnent; ++t) {
1951 do_cpuid_1_ent(&entry[t], function, 0);
1952 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1953 ++*nent;
1954 }
1955 break;
1956 }
1957 /* function 4 and 0xb have additional index. */
1958 case 4: {
1959 int i, cache_type;
1960
1961 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1962 /* read more entries until cache_type is zero */
1963 for (i = 1; *nent < maxnent; ++i) {
1964 cache_type = entry[i - 1].eax & 0x1f;
1965 if (!cache_type)
1966 break;
1967 do_cpuid_1_ent(&entry[i], function, i);
1968 entry[i].flags |=
1969 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1970 ++*nent;
1971 }
1972 break;
1973 }
1974 case 0xb: {
1975 int i, level_type;
1976
1977 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1978 /* read more entries until level_type is zero */
1979 for (i = 1; *nent < maxnent; ++i) {
1980 level_type = entry[i - 1].ecx & 0xff00;
1981 if (!level_type)
1982 break;
1983 do_cpuid_1_ent(&entry[i], function, i);
1984 entry[i].flags |=
1985 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1986 ++*nent;
1987 }
1988 break;
1989 }
1990 case KVM_CPUID_SIGNATURE: {
1991 char signature[12] = "KVMKVMKVM\0\0";
1992 u32 *sigptr = (u32 *)signature;
1993 entry->eax = 0;
1994 entry->ebx = sigptr[0];
1995 entry->ecx = sigptr[1];
1996 entry->edx = sigptr[2];
1997 break;
1998 }
1999 case KVM_CPUID_FEATURES:
2000 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
2001 (1 << KVM_FEATURE_NOP_IO_DELAY) |
2002 (1 << KVM_FEATURE_CLOCKSOURCE2) |
2003 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
2004 entry->ebx = 0;
2005 entry->ecx = 0;
2006 entry->edx = 0;
2007 break;
2008 case 0x80000000:
2009 entry->eax = min(entry->eax, 0x8000001a);
2010 break;
2011 case 0x80000001:
2012 entry->edx &= kvm_supported_word1_x86_features;
2013 entry->ecx &= kvm_supported_word6_x86_features;
2014 break;
2015 }
2016
2017 kvm_x86_ops->set_supported_cpuid(function, entry);
2018
2019 put_cpu();
2020 }
2021
2022 #undef F
2023
2024 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
2025 struct kvm_cpuid_entry2 __user *entries)
2026 {
2027 struct kvm_cpuid_entry2 *cpuid_entries;
2028 int limit, nent = 0, r = -E2BIG;
2029 u32 func;
2030
2031 if (cpuid->nent < 1)
2032 goto out;
2033 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2034 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
2035 r = -ENOMEM;
2036 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
2037 if (!cpuid_entries)
2038 goto out;
2039
2040 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
2041 limit = cpuid_entries[0].eax;
2042 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
2043 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2044 &nent, cpuid->nent);
2045 r = -E2BIG;
2046 if (nent >= cpuid->nent)
2047 goto out_free;
2048
2049 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
2050 limit = cpuid_entries[nent - 1].eax;
2051 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
2052 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2053 &nent, cpuid->nent);
2054
2055
2056
2057 r = -E2BIG;
2058 if (nent >= cpuid->nent)
2059 goto out_free;
2060
2061 do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
2062 cpuid->nent);
2063
2064 r = -E2BIG;
2065 if (nent >= cpuid->nent)
2066 goto out_free;
2067
2068 do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
2069 cpuid->nent);
2070
2071 r = -E2BIG;
2072 if (nent >= cpuid->nent)
2073 goto out_free;
2074
2075 r = -EFAULT;
2076 if (copy_to_user(entries, cpuid_entries,
2077 nent * sizeof(struct kvm_cpuid_entry2)))
2078 goto out_free;
2079 cpuid->nent = nent;
2080 r = 0;
2081
2082 out_free:
2083 vfree(cpuid_entries);
2084 out:
2085 return r;
2086 }
2087
2088 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2089 struct kvm_lapic_state *s)
2090 {
2091 vcpu_load(vcpu);
2092 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2093 vcpu_put(vcpu);
2094
2095 return 0;
2096 }
2097
2098 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2099 struct kvm_lapic_state *s)
2100 {
2101 vcpu_load(vcpu);
2102 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2103 kvm_apic_post_state_restore(vcpu);
2104 update_cr8_intercept(vcpu);
2105 vcpu_put(vcpu);
2106
2107 return 0;
2108 }
2109
2110 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2111 struct kvm_interrupt *irq)
2112 {
2113 if (irq->irq < 0 || irq->irq >= 256)
2114 return -EINVAL;
2115 if (irqchip_in_kernel(vcpu->kvm))
2116 return -ENXIO;
2117 vcpu_load(vcpu);
2118
2119 kvm_queue_interrupt(vcpu, irq->irq, false);
2120
2121 vcpu_put(vcpu);
2122
2123 return 0;
2124 }
2125
2126 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2127 {
2128 vcpu_load(vcpu);
2129 kvm_inject_nmi(vcpu);
2130 vcpu_put(vcpu);
2131
2132 return 0;
2133 }
2134
2135 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2136 struct kvm_tpr_access_ctl *tac)
2137 {
2138 if (tac->flags)
2139 return -EINVAL;
2140 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2141 return 0;
2142 }
2143
2144 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2145 u64 mcg_cap)
2146 {
2147 int r;
2148 unsigned bank_num = mcg_cap & 0xff, bank;
2149
2150 vcpu_load(vcpu);
2151 r = -EINVAL;
2152 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2153 goto out;
2154 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2155 goto out;
2156 r = 0;
2157 vcpu->arch.mcg_cap = mcg_cap;
2158 /* Init IA32_MCG_CTL to all 1s */
2159 if (mcg_cap & MCG_CTL_P)
2160 vcpu->arch.mcg_ctl = ~(u64)0;
2161 /* Init IA32_MCi_CTL to all 1s */
2162 for (bank = 0; bank < bank_num; bank++)
2163 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2164 out:
2165 vcpu_put(vcpu);
2166 return r;
2167 }
2168
2169 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2170 struct kvm_x86_mce *mce)
2171 {
2172 u64 mcg_cap = vcpu->arch.mcg_cap;
2173 unsigned bank_num = mcg_cap & 0xff;
2174 u64 *banks = vcpu->arch.mce_banks;
2175
2176 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2177 return -EINVAL;
2178 /*
2179 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2180 * reporting is disabled
2181 */
2182 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2183 vcpu->arch.mcg_ctl != ~(u64)0)
2184 return 0;
2185 banks += 4 * mce->bank;
2186 /*
2187 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2188 * reporting is disabled for the bank
2189 */
2190 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2191 return 0;
2192 if (mce->status & MCI_STATUS_UC) {
2193 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2194 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2195 printk(KERN_DEBUG "kvm: set_mce: "
2196 "injects mce exception while "
2197 "previous one is in progress!\n");
2198 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
2199 return 0;
2200 }
2201 if (banks[1] & MCI_STATUS_VAL)
2202 mce->status |= MCI_STATUS_OVER;
2203 banks[2] = mce->addr;
2204 banks[3] = mce->misc;
2205 vcpu->arch.mcg_status = mce->mcg_status;
2206 banks[1] = mce->status;
2207 kvm_queue_exception(vcpu, MC_VECTOR);
2208 } else if (!(banks[1] & MCI_STATUS_VAL)
2209 || !(banks[1] & MCI_STATUS_UC)) {
2210 if (banks[1] & MCI_STATUS_VAL)
2211 mce->status |= MCI_STATUS_OVER;
2212 banks[2] = mce->addr;
2213 banks[3] = mce->misc;
2214 banks[1] = mce->status;
2215 } else
2216 banks[1] |= MCI_STATUS_OVER;
2217 return 0;
2218 }
2219
2220 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2221 struct kvm_vcpu_events *events)
2222 {
2223 vcpu_load(vcpu);
2224
2225 events->exception.injected =
2226 vcpu->arch.exception.pending &&
2227 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2228 events->exception.nr = vcpu->arch.exception.nr;
2229 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2230 events->exception.error_code = vcpu->arch.exception.error_code;
2231
2232 events->interrupt.injected =
2233 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2234 events->interrupt.nr = vcpu->arch.interrupt.nr;
2235 events->interrupt.soft = 0;
2236 events->interrupt.shadow =
2237 kvm_x86_ops->get_interrupt_shadow(vcpu,
2238 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2239
2240 events->nmi.injected = vcpu->arch.nmi_injected;
2241 events->nmi.pending = vcpu->arch.nmi_pending;
2242 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2243
2244 events->sipi_vector = vcpu->arch.sipi_vector;
2245
2246 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2247 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2248 | KVM_VCPUEVENT_VALID_SHADOW);
2249
2250 vcpu_put(vcpu);
2251 }
2252
2253 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2254 struct kvm_vcpu_events *events)
2255 {
2256 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2257 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2258 | KVM_VCPUEVENT_VALID_SHADOW))
2259 return -EINVAL;
2260
2261 vcpu_load(vcpu);
2262
2263 vcpu->arch.exception.pending = events->exception.injected;
2264 vcpu->arch.exception.nr = events->exception.nr;
2265 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2266 vcpu->arch.exception.error_code = events->exception.error_code;
2267
2268 vcpu->arch.interrupt.pending = events->interrupt.injected;
2269 vcpu->arch.interrupt.nr = events->interrupt.nr;
2270 vcpu->arch.interrupt.soft = events->interrupt.soft;
2271 if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
2272 kvm_pic_clear_isr_ack(vcpu->kvm);
2273 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2274 kvm_x86_ops->set_interrupt_shadow(vcpu,
2275 events->interrupt.shadow);
2276
2277 vcpu->arch.nmi_injected = events->nmi.injected;
2278 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2279 vcpu->arch.nmi_pending = events->nmi.pending;
2280 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2281
2282 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2283 vcpu->arch.sipi_vector = events->sipi_vector;
2284
2285 vcpu_put(vcpu);
2286
2287 return 0;
2288 }
2289
2290 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2291 struct kvm_debugregs *dbgregs)
2292 {
2293 vcpu_load(vcpu);
2294
2295 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2296 dbgregs->dr6 = vcpu->arch.dr6;
2297 dbgregs->dr7 = vcpu->arch.dr7;
2298 dbgregs->flags = 0;
2299
2300 vcpu_put(vcpu);
2301 }
2302
2303 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2304 struct kvm_debugregs *dbgregs)
2305 {
2306 if (dbgregs->flags)
2307 return -EINVAL;
2308
2309 vcpu_load(vcpu);
2310
2311 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2312 vcpu->arch.dr6 = dbgregs->dr6;
2313 vcpu->arch.dr7 = dbgregs->dr7;
2314
2315 vcpu_put(vcpu);
2316
2317 return 0;
2318 }
2319
2320 long kvm_arch_vcpu_ioctl(struct file *filp,
2321 unsigned int ioctl, unsigned long arg)
2322 {
2323 struct kvm_vcpu *vcpu = filp->private_data;
2324 void __user *argp = (void __user *)arg;
2325 int r;
2326 struct kvm_lapic_state *lapic = NULL;
2327
2328 switch (ioctl) {
2329 case KVM_GET_LAPIC: {
2330 r = -EINVAL;
2331 if (!vcpu->arch.apic)
2332 goto out;
2333 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2334
2335 r = -ENOMEM;
2336 if (!lapic)
2337 goto out;
2338 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
2339 if (r)
2340 goto out;
2341 r = -EFAULT;
2342 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
2343 goto out;
2344 r = 0;
2345 break;
2346 }
2347 case KVM_SET_LAPIC: {
2348 r = -EINVAL;
2349 if (!vcpu->arch.apic)
2350 goto out;
2351 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2352 r = -ENOMEM;
2353 if (!lapic)
2354 goto out;
2355 r = -EFAULT;
2356 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
2357 goto out;
2358 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
2359 if (r)
2360 goto out;
2361 r = 0;
2362 break;
2363 }
2364 case KVM_INTERRUPT: {
2365 struct kvm_interrupt irq;
2366
2367 r = -EFAULT;
2368 if (copy_from_user(&irq, argp, sizeof irq))
2369 goto out;
2370 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2371 if (r)
2372 goto out;
2373 r = 0;
2374 break;
2375 }
2376 case KVM_NMI: {
2377 r = kvm_vcpu_ioctl_nmi(vcpu);
2378 if (r)
2379 goto out;
2380 r = 0;
2381 break;
2382 }
2383 case KVM_SET_CPUID: {
2384 struct kvm_cpuid __user *cpuid_arg = argp;
2385 struct kvm_cpuid cpuid;
2386
2387 r = -EFAULT;
2388 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2389 goto out;
2390 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2391 if (r)
2392 goto out;
2393 break;
2394 }
2395 case KVM_SET_CPUID2: {
2396 struct kvm_cpuid2 __user *cpuid_arg = argp;
2397 struct kvm_cpuid2 cpuid;
2398
2399 r = -EFAULT;
2400 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2401 goto out;
2402 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2403 cpuid_arg->entries);
2404 if (r)
2405 goto out;
2406 break;
2407 }
2408 case KVM_GET_CPUID2: {
2409 struct kvm_cpuid2 __user *cpuid_arg = argp;
2410 struct kvm_cpuid2 cpuid;
2411
2412 r = -EFAULT;
2413 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2414 goto out;
2415 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2416 cpuid_arg->entries);
2417 if (r)
2418 goto out;
2419 r = -EFAULT;
2420 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2421 goto out;
2422 r = 0;
2423 break;
2424 }
2425 case KVM_GET_MSRS:
2426 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2427 break;
2428 case KVM_SET_MSRS:
2429 r = msr_io(vcpu, argp, do_set_msr, 0);
2430 break;
2431 case KVM_TPR_ACCESS_REPORTING: {
2432 struct kvm_tpr_access_ctl tac;
2433
2434 r = -EFAULT;
2435 if (copy_from_user(&tac, argp, sizeof tac))
2436 goto out;
2437 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2438 if (r)
2439 goto out;
2440 r = -EFAULT;
2441 if (copy_to_user(argp, &tac, sizeof tac))
2442 goto out;
2443 r = 0;
2444 break;
2445 };
2446 case KVM_SET_VAPIC_ADDR: {
2447 struct kvm_vapic_addr va;
2448
2449 r = -EINVAL;
2450 if (!irqchip_in_kernel(vcpu->kvm))
2451 goto out;
2452 r = -EFAULT;
2453 if (copy_from_user(&va, argp, sizeof va))
2454 goto out;
2455 r = 0;
2456 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2457 break;
2458 }
2459 case KVM_X86_SETUP_MCE: {
2460 u64 mcg_cap;
2461
2462 r = -EFAULT;
2463 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2464 goto out;
2465 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2466 break;
2467 }
2468 case KVM_X86_SET_MCE: {
2469 struct kvm_x86_mce mce;
2470
2471 r = -EFAULT;
2472 if (copy_from_user(&mce, argp, sizeof mce))
2473 goto out;
2474 vcpu_load(vcpu);
2475 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2476 vcpu_put(vcpu);
2477 break;
2478 }
2479 case KVM_GET_VCPU_EVENTS: {
2480 struct kvm_vcpu_events events;
2481
2482 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2483
2484 r = -EFAULT;
2485 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2486 break;
2487 r = 0;
2488 break;
2489 }
2490 case KVM_SET_VCPU_EVENTS: {
2491 struct kvm_vcpu_events events;
2492
2493 r = -EFAULT;
2494 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2495 break;
2496
2497 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2498 break;
2499 }
2500 case KVM_GET_DEBUGREGS: {
2501 struct kvm_debugregs dbgregs;
2502
2503 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2504
2505 r = -EFAULT;
2506 if (copy_to_user(argp, &dbgregs,
2507 sizeof(struct kvm_debugregs)))
2508 break;
2509 r = 0;
2510 break;
2511 }
2512 case KVM_SET_DEBUGREGS: {
2513 struct kvm_debugregs dbgregs;
2514
2515 r = -EFAULT;
2516 if (copy_from_user(&dbgregs, argp,
2517 sizeof(struct kvm_debugregs)))
2518 break;
2519
2520 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2521 break;
2522 }
2523 default:
2524 r = -EINVAL;
2525 }
2526 out:
2527 kfree(lapic);
2528 return r;
2529 }
2530
2531 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2532 {
2533 int ret;
2534
2535 if (addr > (unsigned int)(-3 * PAGE_SIZE))
2536 return -1;
2537 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2538 return ret;
2539 }
2540
2541 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2542 u64 ident_addr)
2543 {
2544 kvm->arch.ept_identity_map_addr = ident_addr;
2545 return 0;
2546 }
2547
2548 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2549 u32 kvm_nr_mmu_pages)
2550 {
2551 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2552 return -EINVAL;
2553
2554 mutex_lock(&kvm->slots_lock);
2555 spin_lock(&kvm->mmu_lock);
2556
2557 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2558 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2559
2560 spin_unlock(&kvm->mmu_lock);
2561 mutex_unlock(&kvm->slots_lock);
2562 return 0;
2563 }
2564
2565 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2566 {
2567 return kvm->arch.n_alloc_mmu_pages;
2568 }
2569
2570 gfn_t unalias_gfn_instantiation(struct kvm *kvm, gfn_t gfn)
2571 {
2572 int i;
2573 struct kvm_mem_alias *alias;
2574 struct kvm_mem_aliases *aliases;
2575
2576 aliases = kvm_aliases(kvm);
2577
2578 for (i = 0; i < aliases->naliases; ++i) {
2579 alias = &aliases->aliases[i];
2580 if (alias->flags & KVM_ALIAS_INVALID)
2581 continue;
2582 if (gfn >= alias->base_gfn
2583 && gfn < alias->base_gfn + alias->npages)
2584 return alias->target_gfn + gfn - alias->base_gfn;
2585 }
2586 return gfn;
2587 }
2588
2589 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
2590 {
2591 int i;
2592 struct kvm_mem_alias *alias;
2593 struct kvm_mem_aliases *aliases;
2594
2595 aliases = kvm_aliases(kvm);
2596
2597 for (i = 0; i < aliases->naliases; ++i) {
2598 alias = &aliases->aliases[i];
2599 if (gfn >= alias->base_gfn
2600 && gfn < alias->base_gfn + alias->npages)
2601 return alias->target_gfn + gfn - alias->base_gfn;
2602 }
2603 return gfn;
2604 }
2605
2606 /*
2607 * Set a new alias region. Aliases map a portion of physical memory into
2608 * another portion. This is useful for memory windows, for example the PC
2609 * VGA region.
2610 */
2611 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
2612 struct kvm_memory_alias *alias)
2613 {
2614 int r, n;
2615 struct kvm_mem_alias *p;
2616 struct kvm_mem_aliases *aliases, *old_aliases;
2617
2618 r = -EINVAL;
2619 /* General sanity checks */
2620 if (alias->memory_size & (PAGE_SIZE - 1))
2621 goto out;
2622 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
2623 goto out;
2624 if (alias->slot >= KVM_ALIAS_SLOTS)
2625 goto out;
2626 if (alias->guest_phys_addr + alias->memory_size
2627 < alias->guest_phys_addr)
2628 goto out;
2629 if (alias->target_phys_addr + alias->memory_size
2630 < alias->target_phys_addr)
2631 goto out;
2632
2633 r = -ENOMEM;
2634 aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
2635 if (!aliases)
2636 goto out;
2637
2638 mutex_lock(&kvm->slots_lock);
2639
2640 /* invalidate any gfn reference in case of deletion/shrinking */
2641 memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
2642 aliases->aliases[alias->slot].flags |= KVM_ALIAS_INVALID;
2643 old_aliases = kvm->arch.aliases;
2644 rcu_assign_pointer(kvm->arch.aliases, aliases);
2645 synchronize_srcu_expedited(&kvm->srcu);
2646 kvm_mmu_zap_all(kvm);
2647 kfree(old_aliases);
2648
2649 r = -ENOMEM;
2650 aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
2651 if (!aliases)
2652 goto out_unlock;
2653
2654 memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
2655
2656 p = &aliases->aliases[alias->slot];
2657 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
2658 p->npages = alias->memory_size >> PAGE_SHIFT;
2659 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
2660 p->flags &= ~(KVM_ALIAS_INVALID);
2661
2662 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
2663 if (aliases->aliases[n - 1].npages)
2664 break;
2665 aliases->naliases = n;
2666
2667 old_aliases = kvm->arch.aliases;
2668 rcu_assign_pointer(kvm->arch.aliases, aliases);
2669 synchronize_srcu_expedited(&kvm->srcu);
2670 kfree(old_aliases);
2671 r = 0;
2672
2673 out_unlock:
2674 mutex_unlock(&kvm->slots_lock);
2675 out:
2676 return r;
2677 }
2678
2679 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2680 {
2681 int r;
2682
2683 r = 0;
2684 switch (chip->chip_id) {
2685 case KVM_IRQCHIP_PIC_MASTER:
2686 memcpy(&chip->chip.pic,
2687 &pic_irqchip(kvm)->pics[0],
2688 sizeof(struct kvm_pic_state));
2689 break;
2690 case KVM_IRQCHIP_PIC_SLAVE:
2691 memcpy(&chip->chip.pic,
2692 &pic_irqchip(kvm)->pics[1],
2693 sizeof(struct kvm_pic_state));
2694 break;
2695 case KVM_IRQCHIP_IOAPIC:
2696 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2697 break;
2698 default:
2699 r = -EINVAL;
2700 break;
2701 }
2702 return r;
2703 }
2704
2705 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2706 {
2707 int r;
2708
2709 r = 0;
2710 switch (chip->chip_id) {
2711 case KVM_IRQCHIP_PIC_MASTER:
2712 raw_spin_lock(&pic_irqchip(kvm)->lock);
2713 memcpy(&pic_irqchip(kvm)->pics[0],
2714 &chip->chip.pic,
2715 sizeof(struct kvm_pic_state));
2716 raw_spin_unlock(&pic_irqchip(kvm)->lock);
2717 break;
2718 case KVM_IRQCHIP_PIC_SLAVE:
2719 raw_spin_lock(&pic_irqchip(kvm)->lock);
2720 memcpy(&pic_irqchip(kvm)->pics[1],
2721 &chip->chip.pic,
2722 sizeof(struct kvm_pic_state));
2723 raw_spin_unlock(&pic_irqchip(kvm)->lock);
2724 break;
2725 case KVM_IRQCHIP_IOAPIC:
2726 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
2727 break;
2728 default:
2729 r = -EINVAL;
2730 break;
2731 }
2732 kvm_pic_update_irq(pic_irqchip(kvm));
2733 return r;
2734 }
2735
2736 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2737 {
2738 int r = 0;
2739
2740 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2741 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2742 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2743 return r;
2744 }
2745
2746 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2747 {
2748 int r = 0;
2749
2750 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2751 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2752 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2753 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2754 return r;
2755 }
2756
2757 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2758 {
2759 int r = 0;
2760
2761 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2762 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2763 sizeof(ps->channels));
2764 ps->flags = kvm->arch.vpit->pit_state.flags;
2765 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2766 return r;
2767 }
2768
2769 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2770 {
2771 int r = 0, start = 0;
2772 u32 prev_legacy, cur_legacy;
2773 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2774 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2775 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2776 if (!prev_legacy && cur_legacy)
2777 start = 1;
2778 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2779 sizeof(kvm->arch.vpit->pit_state.channels));
2780 kvm->arch.vpit->pit_state.flags = ps->flags;
2781 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2782 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2783 return r;
2784 }
2785
2786 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2787 struct kvm_reinject_control *control)
2788 {
2789 if (!kvm->arch.vpit)
2790 return -ENXIO;
2791 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2792 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2793 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2794 return 0;
2795 }
2796
2797 /*
2798 * Get (and clear) the dirty memory log for a memory slot.
2799 */
2800 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2801 struct kvm_dirty_log *log)
2802 {
2803 int r, i;
2804 struct kvm_memory_slot *memslot;
2805 unsigned long n;
2806 unsigned long is_dirty = 0;
2807
2808 mutex_lock(&kvm->slots_lock);
2809
2810 r = -EINVAL;
2811 if (log->slot >= KVM_MEMORY_SLOTS)
2812 goto out;
2813
2814 memslot = &kvm->memslots->memslots[log->slot];
2815 r = -ENOENT;
2816 if (!memslot->dirty_bitmap)
2817 goto out;
2818
2819 n = kvm_dirty_bitmap_bytes(memslot);
2820
2821 for (i = 0; !is_dirty && i < n/sizeof(long); i++)
2822 is_dirty = memslot->dirty_bitmap[i];
2823
2824 /* If nothing is dirty, don't bother messing with page tables. */
2825 if (is_dirty) {
2826 struct kvm_memslots *slots, *old_slots;
2827 unsigned long *dirty_bitmap;
2828
2829 spin_lock(&kvm->mmu_lock);
2830 kvm_mmu_slot_remove_write_access(kvm, log->slot);
2831 spin_unlock(&kvm->mmu_lock);
2832
2833 r = -ENOMEM;
2834 dirty_bitmap = vmalloc(n);
2835 if (!dirty_bitmap)
2836 goto out;
2837 memset(dirty_bitmap, 0, n);
2838
2839 r = -ENOMEM;
2840 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
2841 if (!slots) {
2842 vfree(dirty_bitmap);
2843 goto out;
2844 }
2845 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
2846 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
2847
2848 old_slots = kvm->memslots;
2849 rcu_assign_pointer(kvm->memslots, slots);
2850 synchronize_srcu_expedited(&kvm->srcu);
2851 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
2852 kfree(old_slots);
2853
2854 r = -EFAULT;
2855 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n)) {
2856 vfree(dirty_bitmap);
2857 goto out;
2858 }
2859 vfree(dirty_bitmap);
2860 } else {
2861 r = -EFAULT;
2862 if (clear_user(log->dirty_bitmap, n))
2863 goto out;
2864 }
2865
2866 r = 0;
2867 out:
2868 mutex_unlock(&kvm->slots_lock);
2869 return r;
2870 }
2871
2872 long kvm_arch_vm_ioctl(struct file *filp,
2873 unsigned int ioctl, unsigned long arg)
2874 {
2875 struct kvm *kvm = filp->private_data;
2876 void __user *argp = (void __user *)arg;
2877 int r = -ENOTTY;
2878 /*
2879 * This union makes it completely explicit to gcc-3.x
2880 * that these two variables' stack usage should be
2881 * combined, not added together.
2882 */
2883 union {
2884 struct kvm_pit_state ps;
2885 struct kvm_pit_state2 ps2;
2886 struct kvm_memory_alias alias;
2887 struct kvm_pit_config pit_config;
2888 } u;
2889
2890 switch (ioctl) {
2891 case KVM_SET_TSS_ADDR:
2892 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
2893 if (r < 0)
2894 goto out;
2895 break;
2896 case KVM_SET_IDENTITY_MAP_ADDR: {
2897 u64 ident_addr;
2898
2899 r = -EFAULT;
2900 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
2901 goto out;
2902 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
2903 if (r < 0)
2904 goto out;
2905 break;
2906 }
2907 case KVM_SET_MEMORY_REGION: {
2908 struct kvm_memory_region kvm_mem;
2909 struct kvm_userspace_memory_region kvm_userspace_mem;
2910
2911 r = -EFAULT;
2912 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2913 goto out;
2914 kvm_userspace_mem.slot = kvm_mem.slot;
2915 kvm_userspace_mem.flags = kvm_mem.flags;
2916 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
2917 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
2918 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
2919 if (r)
2920 goto out;
2921 break;
2922 }
2923 case KVM_SET_NR_MMU_PAGES:
2924 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
2925 if (r)
2926 goto out;
2927 break;
2928 case KVM_GET_NR_MMU_PAGES:
2929 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
2930 break;
2931 case KVM_SET_MEMORY_ALIAS:
2932 r = -EFAULT;
2933 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
2934 goto out;
2935 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
2936 if (r)
2937 goto out;
2938 break;
2939 case KVM_CREATE_IRQCHIP: {
2940 struct kvm_pic *vpic;
2941
2942 mutex_lock(&kvm->lock);
2943 r = -EEXIST;
2944 if (kvm->arch.vpic)
2945 goto create_irqchip_unlock;
2946 r = -ENOMEM;
2947 vpic = kvm_create_pic(kvm);
2948 if (vpic) {
2949 r = kvm_ioapic_init(kvm);
2950 if (r) {
2951 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
2952 &vpic->dev);
2953 kfree(vpic);
2954 goto create_irqchip_unlock;
2955 }
2956 } else
2957 goto create_irqchip_unlock;
2958 smp_wmb();
2959 kvm->arch.vpic = vpic;
2960 smp_wmb();
2961 r = kvm_setup_default_irq_routing(kvm);
2962 if (r) {
2963 mutex_lock(&kvm->irq_lock);
2964 kvm_ioapic_destroy(kvm);
2965 kvm_destroy_pic(kvm);
2966 mutex_unlock(&kvm->irq_lock);
2967 }
2968 create_irqchip_unlock:
2969 mutex_unlock(&kvm->lock);
2970 break;
2971 }
2972 case KVM_CREATE_PIT:
2973 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
2974 goto create_pit;
2975 case KVM_CREATE_PIT2:
2976 r = -EFAULT;
2977 if (copy_from_user(&u.pit_config, argp,
2978 sizeof(struct kvm_pit_config)))
2979 goto out;
2980 create_pit:
2981 mutex_lock(&kvm->slots_lock);
2982 r = -EEXIST;
2983 if (kvm->arch.vpit)
2984 goto create_pit_unlock;
2985 r = -ENOMEM;
2986 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
2987 if (kvm->arch.vpit)
2988 r = 0;
2989 create_pit_unlock:
2990 mutex_unlock(&kvm->slots_lock);
2991 break;
2992 case KVM_IRQ_LINE_STATUS:
2993 case KVM_IRQ_LINE: {
2994 struct kvm_irq_level irq_event;
2995
2996 r = -EFAULT;
2997 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2998 goto out;
2999 r = -ENXIO;
3000 if (irqchip_in_kernel(kvm)) {
3001 __s32 status;
3002 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3003 irq_event.irq, irq_event.level);
3004 if (ioctl == KVM_IRQ_LINE_STATUS) {
3005 r = -EFAULT;
3006 irq_event.status = status;
3007 if (copy_to_user(argp, &irq_event,
3008 sizeof irq_event))
3009 goto out;
3010 }
3011 r = 0;
3012 }
3013 break;
3014 }
3015 case KVM_GET_IRQCHIP: {
3016 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3017 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3018
3019 r = -ENOMEM;
3020 if (!chip)
3021 goto out;
3022 r = -EFAULT;
3023 if (copy_from_user(chip, argp, sizeof *chip))
3024 goto get_irqchip_out;
3025 r = -ENXIO;
3026 if (!irqchip_in_kernel(kvm))
3027 goto get_irqchip_out;
3028 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3029 if (r)
3030 goto get_irqchip_out;
3031 r = -EFAULT;
3032 if (copy_to_user(argp, chip, sizeof *chip))
3033 goto get_irqchip_out;
3034 r = 0;
3035 get_irqchip_out:
3036 kfree(chip);
3037 if (r)
3038 goto out;
3039 break;
3040 }
3041 case KVM_SET_IRQCHIP: {
3042 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3043 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3044
3045 r = -ENOMEM;
3046 if (!chip)
3047 goto out;
3048 r = -EFAULT;
3049 if (copy_from_user(chip, argp, sizeof *chip))
3050 goto set_irqchip_out;
3051 r = -ENXIO;
3052 if (!irqchip_in_kernel(kvm))
3053 goto set_irqchip_out;
3054 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3055 if (r)
3056 goto set_irqchip_out;
3057 r = 0;
3058 set_irqchip_out:
3059 kfree(chip);
3060 if (r)
3061 goto out;
3062 break;
3063 }
3064 case KVM_GET_PIT: {
3065 r = -EFAULT;
3066 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3067 goto out;
3068 r = -ENXIO;
3069 if (!kvm->arch.vpit)
3070 goto out;
3071 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3072 if (r)
3073 goto out;
3074 r = -EFAULT;
3075 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3076 goto out;
3077 r = 0;
3078 break;
3079 }
3080 case KVM_SET_PIT: {
3081 r = -EFAULT;
3082 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3083 goto out;
3084 r = -ENXIO;
3085 if (!kvm->arch.vpit)
3086 goto out;
3087 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3088 if (r)
3089 goto out;
3090 r = 0;
3091 break;
3092 }
3093 case KVM_GET_PIT2: {
3094 r = -ENXIO;
3095 if (!kvm->arch.vpit)
3096 goto out;
3097 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3098 if (r)
3099 goto out;
3100 r = -EFAULT;
3101 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3102 goto out;
3103 r = 0;
3104 break;
3105 }
3106 case KVM_SET_PIT2: {
3107 r = -EFAULT;
3108 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3109 goto out;
3110 r = -ENXIO;
3111 if (!kvm->arch.vpit)
3112 goto out;
3113 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3114 if (r)
3115 goto out;
3116 r = 0;
3117 break;
3118 }
3119 case KVM_REINJECT_CONTROL: {
3120 struct kvm_reinject_control control;
3121 r = -EFAULT;
3122 if (copy_from_user(&control, argp, sizeof(control)))
3123 goto out;
3124 r = kvm_vm_ioctl_reinject(kvm, &control);
3125 if (r)
3126 goto out;
3127 r = 0;
3128 break;
3129 }
3130 case KVM_XEN_HVM_CONFIG: {
3131 r = -EFAULT;
3132 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3133 sizeof(struct kvm_xen_hvm_config)))
3134 goto out;
3135 r = -EINVAL;
3136 if (kvm->arch.xen_hvm_config.flags)
3137 goto out;
3138 r = 0;
3139 break;
3140 }
3141 case KVM_SET_CLOCK: {
3142 struct timespec now;
3143 struct kvm_clock_data user_ns;
3144 u64 now_ns;
3145 s64 delta;
3146
3147 r = -EFAULT;
3148 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3149 goto out;
3150
3151 r = -EINVAL;
3152 if (user_ns.flags)
3153 goto out;
3154
3155 r = 0;
3156 ktime_get_ts(&now);
3157 now_ns = timespec_to_ns(&now);
3158 delta = user_ns.clock - now_ns;
3159 kvm->arch.kvmclock_offset = delta;
3160 break;
3161 }
3162 case KVM_GET_CLOCK: {
3163 struct timespec now;
3164 struct kvm_clock_data user_ns;
3165 u64 now_ns;
3166
3167 ktime_get_ts(&now);
3168 now_ns = timespec_to_ns(&now);
3169 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3170 user_ns.flags = 0;
3171
3172 r = -EFAULT;
3173 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3174 goto out;
3175 r = 0;
3176 break;
3177 }
3178
3179 default:
3180 ;
3181 }
3182 out:
3183 return r;
3184 }
3185
3186 static void kvm_init_msr_list(void)
3187 {
3188 u32 dummy[2];
3189 unsigned i, j;
3190
3191 /* skip the first msrs in the list. KVM-specific */
3192 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3193 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3194 continue;
3195 if (j < i)
3196 msrs_to_save[j] = msrs_to_save[i];
3197 j++;
3198 }
3199 num_msrs_to_save = j;
3200 }
3201
3202 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3203 const void *v)
3204 {
3205 if (vcpu->arch.apic &&
3206 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
3207 return 0;
3208
3209 return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3210 }
3211
3212 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3213 {
3214 if (vcpu->arch.apic &&
3215 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
3216 return 0;
3217
3218 return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3219 }
3220
3221 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3222 struct kvm_segment *var, int seg)
3223 {
3224 kvm_x86_ops->set_segment(vcpu, var, seg);
3225 }
3226
3227 void kvm_get_segment(struct kvm_vcpu *vcpu,
3228 struct kvm_segment *var, int seg)
3229 {
3230 kvm_x86_ops->get_segment(vcpu, var, seg);
3231 }
3232
3233 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3234 {
3235 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3236 return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3237 }
3238
3239 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3240 {
3241 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3242 access |= PFERR_FETCH_MASK;
3243 return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3244 }
3245
3246 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3247 {
3248 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3249 access |= PFERR_WRITE_MASK;
3250 return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3251 }
3252
3253 /* uses this to access any guest's mapped memory without checking CPL */
3254 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3255 {
3256 return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, 0, error);
3257 }
3258
3259 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3260 struct kvm_vcpu *vcpu, u32 access,
3261 u32 *error)
3262 {
3263 void *data = val;
3264 int r = X86EMUL_CONTINUE;
3265
3266 while (bytes) {
3267 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr, access, error);
3268 unsigned offset = addr & (PAGE_SIZE-1);
3269 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3270 int ret;
3271
3272 if (gpa == UNMAPPED_GVA) {
3273 r = X86EMUL_PROPAGATE_FAULT;
3274 goto out;
3275 }
3276 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3277 if (ret < 0) {
3278 r = X86EMUL_UNHANDLEABLE;
3279 goto out;
3280 }
3281
3282 bytes -= toread;
3283 data += toread;
3284 addr += toread;
3285 }
3286 out:
3287 return r;
3288 }
3289
3290 /* used for instruction fetching */
3291 static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
3292 struct kvm_vcpu *vcpu, u32 *error)
3293 {
3294 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3295 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3296 access | PFERR_FETCH_MASK, error);
3297 }
3298
3299 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
3300 struct kvm_vcpu *vcpu, u32 *error)
3301 {
3302 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3303 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3304 error);
3305 }
3306
3307 static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
3308 struct kvm_vcpu *vcpu, u32 *error)
3309 {
3310 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
3311 }
3312
3313 static int kvm_write_guest_virt_system(gva_t addr, void *val,
3314 unsigned int bytes,
3315 struct kvm_vcpu *vcpu,
3316 u32 *error)
3317 {
3318 void *data = val;
3319 int r = X86EMUL_CONTINUE;
3320
3321 while (bytes) {
3322 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr,
3323 PFERR_WRITE_MASK, error);
3324 unsigned offset = addr & (PAGE_SIZE-1);
3325 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3326 int ret;
3327
3328 if (gpa == UNMAPPED_GVA) {
3329 r = X86EMUL_PROPAGATE_FAULT;
3330 goto out;
3331 }
3332 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3333 if (ret < 0) {
3334 r = X86EMUL_UNHANDLEABLE;
3335 goto out;
3336 }
3337
3338 bytes -= towrite;
3339 data += towrite;
3340 addr += towrite;
3341 }
3342 out:
3343 return r;
3344 }
3345
3346 static int emulator_read_emulated(unsigned long addr,
3347 void *val,
3348 unsigned int bytes,
3349 struct kvm_vcpu *vcpu)
3350 {
3351 gpa_t gpa;
3352 u32 error_code;
3353
3354 if (vcpu->mmio_read_completed) {
3355 memcpy(val, vcpu->mmio_data, bytes);
3356 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3357 vcpu->mmio_phys_addr, *(u64 *)val);
3358 vcpu->mmio_read_completed = 0;
3359 return X86EMUL_CONTINUE;
3360 }
3361
3362 gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, &error_code);
3363
3364 if (gpa == UNMAPPED_GVA) {
3365 kvm_inject_page_fault(vcpu, addr, error_code);
3366 return X86EMUL_PROPAGATE_FAULT;
3367 }
3368
3369 /* For APIC access vmexit */
3370 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3371 goto mmio;
3372
3373 if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
3374 == X86EMUL_CONTINUE)
3375 return X86EMUL_CONTINUE;
3376
3377 mmio:
3378 /*
3379 * Is this MMIO handled locally?
3380 */
3381 if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
3382 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
3383 return X86EMUL_CONTINUE;
3384 }
3385
3386 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3387
3388 vcpu->mmio_needed = 1;
3389 vcpu->mmio_phys_addr = gpa;
3390 vcpu->mmio_size = bytes;
3391 vcpu->mmio_is_write = 0;
3392
3393 return X86EMUL_UNHANDLEABLE;
3394 }
3395
3396 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3397 const void *val, int bytes)
3398 {
3399 int ret;
3400
3401 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3402 if (ret < 0)
3403 return 0;
3404 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3405 return 1;
3406 }
3407
3408 static int emulator_write_emulated_onepage(unsigned long addr,
3409 const void *val,
3410 unsigned int bytes,
3411 struct kvm_vcpu *vcpu)
3412 {
3413 gpa_t gpa;
3414 u32 error_code;
3415
3416 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, &error_code);
3417
3418 if (gpa == UNMAPPED_GVA) {
3419 kvm_inject_page_fault(vcpu, addr, error_code);
3420 return X86EMUL_PROPAGATE_FAULT;
3421 }
3422
3423 /* For APIC access vmexit */
3424 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3425 goto mmio;
3426
3427 if (emulator_write_phys(vcpu, gpa, val, bytes))
3428 return X86EMUL_CONTINUE;
3429
3430 mmio:
3431 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3432 /*
3433 * Is this MMIO handled locally?
3434 */
3435 if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
3436 return X86EMUL_CONTINUE;
3437
3438 vcpu->mmio_needed = 1;
3439 vcpu->mmio_phys_addr = gpa;
3440 vcpu->mmio_size = bytes;
3441 vcpu->mmio_is_write = 1;
3442 memcpy(vcpu->mmio_data, val, bytes);
3443
3444 return X86EMUL_CONTINUE;
3445 }
3446
3447 int emulator_write_emulated(unsigned long addr,
3448 const void *val,
3449 unsigned int bytes,
3450 struct kvm_vcpu *vcpu)
3451 {
3452 /* Crossing a page boundary? */
3453 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3454 int rc, now;
3455
3456 now = -addr & ~PAGE_MASK;
3457 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
3458 if (rc != X86EMUL_CONTINUE)
3459 return rc;
3460 addr += now;
3461 val += now;
3462 bytes -= now;
3463 }
3464 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
3465 }
3466 EXPORT_SYMBOL_GPL(emulator_write_emulated);
3467
3468 #define CMPXCHG_TYPE(t, ptr, old, new) \
3469 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3470
3471 #ifdef CONFIG_X86_64
3472 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3473 #else
3474 # define CMPXCHG64(ptr, old, new) \
3475 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3476 #endif
3477
3478 static int emulator_cmpxchg_emulated(unsigned long addr,
3479 const void *old,
3480 const void *new,
3481 unsigned int bytes,
3482 struct kvm_vcpu *vcpu)
3483 {
3484 gpa_t gpa;
3485 struct page *page;
3486 char *kaddr;
3487 bool exchanged;
3488
3489 /* guests cmpxchg8b have to be emulated atomically */
3490 if (bytes > 8 || (bytes & (bytes - 1)))
3491 goto emul_write;
3492
3493 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3494
3495 if (gpa == UNMAPPED_GVA ||
3496 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3497 goto emul_write;
3498
3499 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3500 goto emul_write;
3501
3502 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3503
3504 kaddr = kmap_atomic(page, KM_USER0);
3505 kaddr += offset_in_page(gpa);
3506 switch (bytes) {
3507 case 1:
3508 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3509 break;
3510 case 2:
3511 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3512 break;
3513 case 4:
3514 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3515 break;
3516 case 8:
3517 exchanged = CMPXCHG64(kaddr, old, new);
3518 break;
3519 default:
3520 BUG();
3521 }
3522 kunmap_atomic(kaddr, KM_USER0);
3523 kvm_release_page_dirty(page);
3524
3525 if (!exchanged)
3526 return X86EMUL_CMPXCHG_FAILED;
3527
3528 kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
3529
3530 return X86EMUL_CONTINUE;
3531
3532 emul_write:
3533 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3534
3535 return emulator_write_emulated(addr, new, bytes, vcpu);
3536 }
3537
3538 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3539 {
3540 /* TODO: String I/O for in kernel device */
3541 int r;
3542
3543 if (vcpu->arch.pio.in)
3544 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3545 vcpu->arch.pio.size, pd);
3546 else
3547 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3548 vcpu->arch.pio.port, vcpu->arch.pio.size,
3549 pd);
3550 return r;
3551 }
3552
3553
3554 static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
3555 unsigned int count, struct kvm_vcpu *vcpu)
3556 {
3557 if (vcpu->arch.pio.count)
3558 goto data_avail;
3559
3560 trace_kvm_pio(1, port, size, 1);
3561
3562 vcpu->arch.pio.port = port;
3563 vcpu->arch.pio.in = 1;
3564 vcpu->arch.pio.count = count;
3565 vcpu->arch.pio.size = size;
3566
3567 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3568 data_avail:
3569 memcpy(val, vcpu->arch.pio_data, size * count);
3570 vcpu->arch.pio.count = 0;
3571 return 1;
3572 }
3573
3574 vcpu->run->exit_reason = KVM_EXIT_IO;
3575 vcpu->run->io.direction = KVM_EXIT_IO_IN;
3576 vcpu->run->io.size = size;
3577 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3578 vcpu->run->io.count = count;
3579 vcpu->run->io.port = port;
3580
3581 return 0;
3582 }
3583
3584 static int emulator_pio_out_emulated(int size, unsigned short port,
3585 const void *val, unsigned int count,
3586 struct kvm_vcpu *vcpu)
3587 {
3588 trace_kvm_pio(0, port, size, 1);
3589
3590 vcpu->arch.pio.port = port;
3591 vcpu->arch.pio.in = 0;
3592 vcpu->arch.pio.count = count;
3593 vcpu->arch.pio.size = size;
3594
3595 memcpy(vcpu->arch.pio_data, val, size * count);
3596
3597 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3598 vcpu->arch.pio.count = 0;
3599 return 1;
3600 }
3601
3602 vcpu->run->exit_reason = KVM_EXIT_IO;
3603 vcpu->run->io.direction = KVM_EXIT_IO_OUT;
3604 vcpu->run->io.size = size;
3605 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3606 vcpu->run->io.count = count;
3607 vcpu->run->io.port = port;
3608
3609 return 0;
3610 }
3611
3612 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
3613 {
3614 return kvm_x86_ops->get_segment_base(vcpu, seg);
3615 }
3616
3617 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
3618 {
3619 kvm_mmu_invlpg(vcpu, address);
3620 return X86EMUL_CONTINUE;
3621 }
3622
3623 int emulate_clts(struct kvm_vcpu *vcpu)
3624 {
3625 kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3626 kvm_x86_ops->fpu_activate(vcpu);
3627 return X86EMUL_CONTINUE;
3628 }
3629
3630 int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu)
3631 {
3632 return _kvm_get_dr(vcpu, dr, dest);
3633 }
3634
3635 int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu)
3636 {
3637
3638 return __kvm_set_dr(vcpu, dr, value);
3639 }
3640
3641 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
3642 {
3643 u8 opcodes[4];
3644 unsigned long rip = kvm_rip_read(vcpu);
3645 unsigned long rip_linear;
3646
3647 if (!printk_ratelimit())
3648 return;
3649
3650 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
3651
3652 kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu, NULL);
3653
3654 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
3655 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
3656 }
3657 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
3658
3659 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3660 {
3661 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3662 }
3663
3664 static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
3665 {
3666 unsigned long value;
3667
3668 switch (cr) {
3669 case 0:
3670 value = kvm_read_cr0(vcpu);
3671 break;
3672 case 2:
3673 value = vcpu->arch.cr2;
3674 break;
3675 case 3:
3676 value = vcpu->arch.cr3;
3677 break;
3678 case 4:
3679 value = kvm_read_cr4(vcpu);
3680 break;
3681 case 8:
3682 value = kvm_get_cr8(vcpu);
3683 break;
3684 default:
3685 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3686 return 0;
3687 }
3688
3689 return value;
3690 }
3691
3692 static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
3693 {
3694 int res = 0;
3695
3696 switch (cr) {
3697 case 0:
3698 res = __kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
3699 break;
3700 case 2:
3701 vcpu->arch.cr2 = val;
3702 break;
3703 case 3:
3704 res = __kvm_set_cr3(vcpu, val);
3705 break;
3706 case 4:
3707 res = __kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
3708 break;
3709 case 8:
3710 res = __kvm_set_cr8(vcpu, val & 0xfUL);
3711 break;
3712 default:
3713 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3714 res = -1;
3715 }
3716
3717 return res;
3718 }
3719
3720 static int emulator_get_cpl(struct kvm_vcpu *vcpu)
3721 {
3722 return kvm_x86_ops->get_cpl(vcpu);
3723 }
3724
3725 static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
3726 {
3727 kvm_x86_ops->get_gdt(vcpu, dt);
3728 }
3729
3730 static unsigned long emulator_get_cached_segment_base(int seg,
3731 struct kvm_vcpu *vcpu)
3732 {
3733 return get_segment_base(vcpu, seg);
3734 }
3735
3736 static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
3737 struct kvm_vcpu *vcpu)
3738 {
3739 struct kvm_segment var;
3740
3741 kvm_get_segment(vcpu, &var, seg);
3742
3743 if (var.unusable)
3744 return false;
3745
3746 if (var.g)
3747 var.limit >>= 12;
3748 set_desc_limit(desc, var.limit);
3749 set_desc_base(desc, (unsigned long)var.base);
3750 desc->type = var.type;
3751 desc->s = var.s;
3752 desc->dpl = var.dpl;
3753 desc->p = var.present;
3754 desc->avl = var.avl;
3755 desc->l = var.l;
3756 desc->d = var.db;
3757 desc->g = var.g;
3758
3759 return true;
3760 }
3761
3762 static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
3763 struct kvm_vcpu *vcpu)
3764 {
3765 struct kvm_segment var;
3766
3767 /* needed to preserve selector */
3768 kvm_get_segment(vcpu, &var, seg);
3769
3770 var.base = get_desc_base(desc);
3771 var.limit = get_desc_limit(desc);
3772 if (desc->g)
3773 var.limit = (var.limit << 12) | 0xfff;
3774 var.type = desc->type;
3775 var.present = desc->p;
3776 var.dpl = desc->dpl;
3777 var.db = desc->d;
3778 var.s = desc->s;
3779 var.l = desc->l;
3780 var.g = desc->g;
3781 var.avl = desc->avl;
3782 var.present = desc->p;
3783 var.unusable = !var.present;
3784 var.padding = 0;
3785
3786 kvm_set_segment(vcpu, &var, seg);
3787 return;
3788 }
3789
3790 static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
3791 {
3792 struct kvm_segment kvm_seg;
3793
3794 kvm_get_segment(vcpu, &kvm_seg, seg);
3795 return kvm_seg.selector;
3796 }
3797
3798 static void emulator_set_segment_selector(u16 sel, int seg,
3799 struct kvm_vcpu *vcpu)
3800 {
3801 struct kvm_segment kvm_seg;
3802
3803 kvm_get_segment(vcpu, &kvm_seg, seg);
3804 kvm_seg.selector = sel;
3805 kvm_set_segment(vcpu, &kvm_seg, seg);
3806 }
3807
3808 static void emulator_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
3809 {
3810 kvm_x86_ops->set_rflags(vcpu, rflags);
3811 }
3812
3813 static struct x86_emulate_ops emulate_ops = {
3814 .read_std = kvm_read_guest_virt_system,
3815 .write_std = kvm_write_guest_virt_system,
3816 .fetch = kvm_fetch_guest_virt,
3817 .read_emulated = emulator_read_emulated,
3818 .write_emulated = emulator_write_emulated,
3819 .cmpxchg_emulated = emulator_cmpxchg_emulated,
3820 .pio_in_emulated = emulator_pio_in_emulated,
3821 .pio_out_emulated = emulator_pio_out_emulated,
3822 .get_cached_descriptor = emulator_get_cached_descriptor,
3823 .set_cached_descriptor = emulator_set_cached_descriptor,
3824 .get_segment_selector = emulator_get_segment_selector,
3825 .set_segment_selector = emulator_set_segment_selector,
3826 .get_cached_segment_base = emulator_get_cached_segment_base,
3827 .get_gdt = emulator_get_gdt,
3828 .get_cr = emulator_get_cr,
3829 .set_cr = emulator_set_cr,
3830 .cpl = emulator_get_cpl,
3831 .set_rflags = emulator_set_rflags,
3832 .get_dr = emulator_get_dr,
3833 .set_dr = emulator_set_dr,
3834 .set_msr = kvm_set_msr,
3835 .get_msr = kvm_get_msr,
3836 };
3837
3838 static void cache_all_regs(struct kvm_vcpu *vcpu)
3839 {
3840 kvm_register_read(vcpu, VCPU_REGS_RAX);
3841 kvm_register_read(vcpu, VCPU_REGS_RSP);
3842 kvm_register_read(vcpu, VCPU_REGS_RIP);
3843 vcpu->arch.regs_dirty = ~0;
3844 }
3845
3846 int emulate_instruction(struct kvm_vcpu *vcpu,
3847 unsigned long cr2,
3848 u16 error_code,
3849 int emulation_type)
3850 {
3851 int r, shadow_mask;
3852 struct decode_cache *c;
3853 struct kvm_run *run = vcpu->run;
3854
3855 kvm_clear_exception_queue(vcpu);
3856 vcpu->arch.mmio_fault_cr2 = cr2;
3857 /*
3858 * TODO: fix emulate.c to use guest_read/write_register
3859 * instead of direct ->regs accesses, can save hundred cycles
3860 * on Intel for instructions that don't read/change RSP, for
3861 * for example.
3862 */
3863 cache_all_regs(vcpu);
3864
3865 vcpu->mmio_is_write = 0;
3866
3867 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
3868 int cs_db, cs_l;
3869 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
3870
3871 vcpu->arch.emulate_ctxt.vcpu = vcpu;
3872 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
3873 vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
3874 vcpu->arch.emulate_ctxt.mode =
3875 (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
3876 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
3877 ? X86EMUL_MODE_VM86 : cs_l
3878 ? X86EMUL_MODE_PROT64 : cs_db
3879 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
3880
3881 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
3882 trace_kvm_emulate_insn_start(vcpu);
3883
3884 /* Only allow emulation of specific instructions on #UD
3885 * (namely VMMCALL, sysenter, sysexit, syscall)*/
3886 c = &vcpu->arch.emulate_ctxt.decode;
3887 if (emulation_type & EMULTYPE_TRAP_UD) {
3888 if (!c->twobyte)
3889 return EMULATE_FAIL;
3890 switch (c->b) {
3891 case 0x01: /* VMMCALL */
3892 if (c->modrm_mod != 3 || c->modrm_rm != 1)
3893 return EMULATE_FAIL;
3894 break;
3895 case 0x34: /* sysenter */
3896 case 0x35: /* sysexit */
3897 if (c->modrm_mod != 0 || c->modrm_rm != 0)
3898 return EMULATE_FAIL;
3899 break;
3900 case 0x05: /* syscall */
3901 if (c->modrm_mod != 0 || c->modrm_rm != 0)
3902 return EMULATE_FAIL;
3903 break;
3904 default:
3905 return EMULATE_FAIL;
3906 }
3907
3908 if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
3909 return EMULATE_FAIL;
3910 }
3911
3912 ++vcpu->stat.insn_emulation;
3913 if (r) {
3914 ++vcpu->stat.insn_emulation_fail;
3915 trace_kvm_emulate_insn_failed(vcpu);
3916 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
3917 return EMULATE_DONE;
3918 return EMULATE_FAIL;
3919 }
3920 }
3921
3922 if (emulation_type & EMULTYPE_SKIP) {
3923 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
3924 return EMULATE_DONE;
3925 }
3926
3927 restart:
3928 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
3929 shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
3930
3931 if (r == 0)
3932 kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
3933
3934 if (vcpu->arch.pio.count) {
3935 if (!vcpu->arch.pio.in)
3936 vcpu->arch.pio.count = 0;
3937 return EMULATE_DO_MMIO;
3938 }
3939
3940 if (r || vcpu->mmio_is_write) {
3941 run->exit_reason = KVM_EXIT_MMIO;
3942 run->mmio.phys_addr = vcpu->mmio_phys_addr;
3943 memcpy(run->mmio.data, vcpu->mmio_data, 8);
3944 run->mmio.len = vcpu->mmio_size;
3945 run->mmio.is_write = vcpu->mmio_is_write;
3946 }
3947
3948 if (r) {
3949 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
3950 goto done;
3951 if (!vcpu->mmio_needed) {
3952 ++vcpu->stat.insn_emulation_fail;
3953 trace_kvm_emulate_insn_failed(vcpu);
3954 kvm_report_emulation_failure(vcpu, "mmio");
3955 return EMULATE_FAIL;
3956 }
3957 return EMULATE_DO_MMIO;
3958 }
3959
3960 if (vcpu->mmio_is_write) {
3961 vcpu->mmio_needed = 0;
3962 return EMULATE_DO_MMIO;
3963 }
3964
3965 done:
3966 if (vcpu->arch.exception.pending)
3967 vcpu->arch.emulate_ctxt.restart = false;
3968
3969 if (vcpu->arch.emulate_ctxt.restart)
3970 goto restart;
3971
3972 return EMULATE_DONE;
3973 }
3974 EXPORT_SYMBOL_GPL(emulate_instruction);
3975
3976 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
3977 {
3978 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
3979 int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
3980 /* do not return to emulator after return from userspace */
3981 vcpu->arch.pio.count = 0;
3982 return ret;
3983 }
3984 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
3985
3986 static void bounce_off(void *info)
3987 {
3988 /* nothing */
3989 }
3990
3991 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
3992 void *data)
3993 {
3994 struct cpufreq_freqs *freq = data;
3995 struct kvm *kvm;
3996 struct kvm_vcpu *vcpu;
3997 int i, send_ipi = 0;
3998
3999 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4000 return 0;
4001 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4002 return 0;
4003 per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
4004
4005 spin_lock(&kvm_lock);
4006 list_for_each_entry(kvm, &vm_list, vm_list) {
4007 kvm_for_each_vcpu(i, vcpu, kvm) {
4008 if (vcpu->cpu != freq->cpu)
4009 continue;
4010 if (!kvm_request_guest_time_update(vcpu))
4011 continue;
4012 if (vcpu->cpu != smp_processor_id())
4013 send_ipi++;
4014 }
4015 }
4016 spin_unlock(&kvm_lock);
4017
4018 if (freq->old < freq->new && send_ipi) {
4019 /*
4020 * We upscale the frequency. Must make the guest
4021 * doesn't see old kvmclock values while running with
4022 * the new frequency, otherwise we risk the guest sees
4023 * time go backwards.
4024 *
4025 * In case we update the frequency for another cpu
4026 * (which might be in guest context) send an interrupt
4027 * to kick the cpu out of guest context. Next time
4028 * guest context is entered kvmclock will be updated,
4029 * so the guest will not see stale values.
4030 */
4031 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
4032 }
4033 return 0;
4034 }
4035
4036 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4037 .notifier_call = kvmclock_cpufreq_notifier
4038 };
4039
4040 static void kvm_timer_init(void)
4041 {
4042 int cpu;
4043
4044 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4045 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4046 CPUFREQ_TRANSITION_NOTIFIER);
4047 for_each_online_cpu(cpu) {
4048 unsigned long khz = cpufreq_get(cpu);
4049 if (!khz)
4050 khz = tsc_khz;
4051 per_cpu(cpu_tsc_khz, cpu) = khz;
4052 }
4053 } else {
4054 for_each_possible_cpu(cpu)
4055 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
4056 }
4057 }
4058
4059 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4060
4061 static int kvm_is_in_guest(void)
4062 {
4063 return percpu_read(current_vcpu) != NULL;
4064 }
4065
4066 static int kvm_is_user_mode(void)
4067 {
4068 int user_mode = 3;
4069
4070 if (percpu_read(current_vcpu))
4071 user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
4072
4073 return user_mode != 0;
4074 }
4075
4076 static unsigned long kvm_get_guest_ip(void)
4077 {
4078 unsigned long ip = 0;
4079
4080 if (percpu_read(current_vcpu))
4081 ip = kvm_rip_read(percpu_read(current_vcpu));
4082
4083 return ip;
4084 }
4085
4086 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4087 .is_in_guest = kvm_is_in_guest,
4088 .is_user_mode = kvm_is_user_mode,
4089 .get_guest_ip = kvm_get_guest_ip,
4090 };
4091
4092 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4093 {
4094 percpu_write(current_vcpu, vcpu);
4095 }
4096 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4097
4098 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4099 {
4100 percpu_write(current_vcpu, NULL);
4101 }
4102 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4103
4104 int kvm_arch_init(void *opaque)
4105 {
4106 int r;
4107 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4108
4109 if (kvm_x86_ops) {
4110 printk(KERN_ERR "kvm: already loaded the other module\n");
4111 r = -EEXIST;
4112 goto out;
4113 }
4114
4115 if (!ops->cpu_has_kvm_support()) {
4116 printk(KERN_ERR "kvm: no hardware support\n");
4117 r = -EOPNOTSUPP;
4118 goto out;
4119 }
4120 if (ops->disabled_by_bios()) {
4121 printk(KERN_ERR "kvm: disabled by bios\n");
4122 r = -EOPNOTSUPP;
4123 goto out;
4124 }
4125
4126 r = kvm_mmu_module_init();
4127 if (r)
4128 goto out;
4129
4130 kvm_init_msr_list();
4131
4132 kvm_x86_ops = ops;
4133 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
4134 kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
4135 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4136 PT_DIRTY_MASK, PT64_NX_MASK, 0);
4137
4138 kvm_timer_init();
4139
4140 perf_register_guest_info_callbacks(&kvm_guest_cbs);
4141
4142 return 0;
4143
4144 out:
4145 return r;
4146 }
4147
4148 void kvm_arch_exit(void)
4149 {
4150 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4151
4152 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4153 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4154 CPUFREQ_TRANSITION_NOTIFIER);
4155 kvm_x86_ops = NULL;
4156 kvm_mmu_module_exit();
4157 }
4158
4159 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4160 {
4161 ++vcpu->stat.halt_exits;
4162 if (irqchip_in_kernel(vcpu->kvm)) {
4163 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4164 return 1;
4165 } else {
4166 vcpu->run->exit_reason = KVM_EXIT_HLT;
4167 return 0;
4168 }
4169 }
4170 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4171
4172 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
4173 unsigned long a1)
4174 {
4175 if (is_long_mode(vcpu))
4176 return a0;
4177 else
4178 return a0 | ((gpa_t)a1 << 32);
4179 }
4180
4181 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4182 {
4183 u64 param, ingpa, outgpa, ret;
4184 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4185 bool fast, longmode;
4186 int cs_db, cs_l;
4187
4188 /*
4189 * hypercall generates UD from non zero cpl and real mode
4190 * per HYPER-V spec
4191 */
4192 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4193 kvm_queue_exception(vcpu, UD_VECTOR);
4194 return 0;
4195 }
4196
4197 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4198 longmode = is_long_mode(vcpu) && cs_l == 1;
4199
4200 if (!longmode) {
4201 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4202 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4203 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4204 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4205 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4206 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4207 }
4208 #ifdef CONFIG_X86_64
4209 else {
4210 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4211 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4212 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4213 }
4214 #endif
4215
4216 code = param & 0xffff;
4217 fast = (param >> 16) & 0x1;
4218 rep_cnt = (param >> 32) & 0xfff;
4219 rep_idx = (param >> 48) & 0xfff;
4220
4221 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4222
4223 switch (code) {
4224 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4225 kvm_vcpu_on_spin(vcpu);
4226 break;
4227 default:
4228 res = HV_STATUS_INVALID_HYPERCALL_CODE;
4229 break;
4230 }
4231
4232 ret = res | (((u64)rep_done & 0xfff) << 32);
4233 if (longmode) {
4234 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4235 } else {
4236 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
4237 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
4238 }
4239
4240 return 1;
4241 }
4242
4243 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
4244 {
4245 unsigned long nr, a0, a1, a2, a3, ret;
4246 int r = 1;
4247
4248 if (kvm_hv_hypercall_enabled(vcpu->kvm))
4249 return kvm_hv_hypercall(vcpu);
4250
4251 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
4252 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
4253 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
4254 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
4255 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
4256
4257 trace_kvm_hypercall(nr, a0, a1, a2, a3);
4258
4259 if (!is_long_mode(vcpu)) {
4260 nr &= 0xFFFFFFFF;
4261 a0 &= 0xFFFFFFFF;
4262 a1 &= 0xFFFFFFFF;
4263 a2 &= 0xFFFFFFFF;
4264 a3 &= 0xFFFFFFFF;
4265 }
4266
4267 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
4268 ret = -KVM_EPERM;
4269 goto out;
4270 }
4271
4272 switch (nr) {
4273 case KVM_HC_VAPIC_POLL_IRQ:
4274 ret = 0;
4275 break;
4276 case KVM_HC_MMU_OP:
4277 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
4278 break;
4279 default:
4280 ret = -KVM_ENOSYS;
4281 break;
4282 }
4283 out:
4284 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4285 ++vcpu->stat.hypercalls;
4286 return r;
4287 }
4288 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
4289
4290 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
4291 {
4292 char instruction[3];
4293 unsigned long rip = kvm_rip_read(vcpu);
4294
4295 /*
4296 * Blow out the MMU to ensure that no other VCPU has an active mapping
4297 * to ensure that the updated hypercall appears atomically across all
4298 * VCPUs.
4299 */
4300 kvm_mmu_zap_all(vcpu->kvm);
4301
4302 kvm_x86_ops->patch_hypercall(vcpu, instruction);
4303
4304 return emulator_write_emulated(rip, instruction, 3, vcpu);
4305 }
4306
4307 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4308 {
4309 struct desc_ptr dt = { limit, base };
4310
4311 kvm_x86_ops->set_gdt(vcpu, &dt);
4312 }
4313
4314 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4315 {
4316 struct desc_ptr dt = { limit, base };
4317
4318 kvm_x86_ops->set_idt(vcpu, &dt);
4319 }
4320
4321 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
4322 {
4323 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
4324 int j, nent = vcpu->arch.cpuid_nent;
4325
4326 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
4327 /* when no next entry is found, the current entry[i] is reselected */
4328 for (j = i + 1; ; j = (j + 1) % nent) {
4329 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
4330 if (ej->function == e->function) {
4331 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
4332 return j;
4333 }
4334 }
4335 return 0; /* silence gcc, even though control never reaches here */
4336 }
4337
4338 /* find an entry with matching function, matching index (if needed), and that
4339 * should be read next (if it's stateful) */
4340 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
4341 u32 function, u32 index)
4342 {
4343 if (e->function != function)
4344 return 0;
4345 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
4346 return 0;
4347 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
4348 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
4349 return 0;
4350 return 1;
4351 }
4352
4353 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
4354 u32 function, u32 index)
4355 {
4356 int i;
4357 struct kvm_cpuid_entry2 *best = NULL;
4358
4359 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
4360 struct kvm_cpuid_entry2 *e;
4361
4362 e = &vcpu->arch.cpuid_entries[i];
4363 if (is_matching_cpuid_entry(e, function, index)) {
4364 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
4365 move_to_next_stateful_cpuid_entry(vcpu, i);
4366 best = e;
4367 break;
4368 }
4369 /*
4370 * Both basic or both extended?
4371 */
4372 if (((e->function ^ function) & 0x80000000) == 0)
4373 if (!best || e->function > best->function)
4374 best = e;
4375 }
4376 return best;
4377 }
4378 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
4379
4380 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
4381 {
4382 struct kvm_cpuid_entry2 *best;
4383
4384 best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
4385 if (!best || best->eax < 0x80000008)
4386 goto not_found;
4387 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
4388 if (best)
4389 return best->eax & 0xff;
4390 not_found:
4391 return 36;
4392 }
4393
4394 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
4395 {
4396 u32 function, index;
4397 struct kvm_cpuid_entry2 *best;
4398
4399 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
4400 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4401 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
4402 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
4403 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
4404 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
4405 best = kvm_find_cpuid_entry(vcpu, function, index);
4406 if (best) {
4407 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
4408 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
4409 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
4410 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
4411 }
4412 kvm_x86_ops->skip_emulated_instruction(vcpu);
4413 trace_kvm_cpuid(function,
4414 kvm_register_read(vcpu, VCPU_REGS_RAX),
4415 kvm_register_read(vcpu, VCPU_REGS_RBX),
4416 kvm_register_read(vcpu, VCPU_REGS_RCX),
4417 kvm_register_read(vcpu, VCPU_REGS_RDX));
4418 }
4419 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
4420
4421 /*
4422 * Check if userspace requested an interrupt window, and that the
4423 * interrupt window is open.
4424 *
4425 * No need to exit to userspace if we already have an interrupt queued.
4426 */
4427 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
4428 {
4429 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
4430 vcpu->run->request_interrupt_window &&
4431 kvm_arch_interrupt_allowed(vcpu));
4432 }
4433
4434 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
4435 {
4436 struct kvm_run *kvm_run = vcpu->run;
4437
4438 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
4439 kvm_run->cr8 = kvm_get_cr8(vcpu);
4440 kvm_run->apic_base = kvm_get_apic_base(vcpu);
4441 if (irqchip_in_kernel(vcpu->kvm))
4442 kvm_run->ready_for_interrupt_injection = 1;
4443 else
4444 kvm_run->ready_for_interrupt_injection =
4445 kvm_arch_interrupt_allowed(vcpu) &&
4446 !kvm_cpu_has_interrupt(vcpu) &&
4447 !kvm_event_needs_reinjection(vcpu);
4448 }
4449
4450 static void vapic_enter(struct kvm_vcpu *vcpu)
4451 {
4452 struct kvm_lapic *apic = vcpu->arch.apic;
4453 struct page *page;
4454
4455 if (!apic || !apic->vapic_addr)
4456 return;
4457
4458 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4459
4460 vcpu->arch.apic->vapic_page = page;
4461 }
4462
4463 static void vapic_exit(struct kvm_vcpu *vcpu)
4464 {
4465 struct kvm_lapic *apic = vcpu->arch.apic;
4466 int idx;
4467
4468 if (!apic || !apic->vapic_addr)
4469 return;
4470
4471 idx = srcu_read_lock(&vcpu->kvm->srcu);
4472 kvm_release_page_dirty(apic->vapic_page);
4473 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4474 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4475 }
4476
4477 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
4478 {
4479 int max_irr, tpr;
4480
4481 if (!kvm_x86_ops->update_cr8_intercept)
4482 return;
4483
4484 if (!vcpu->arch.apic)
4485 return;
4486
4487 if (!vcpu->arch.apic->vapic_addr)
4488 max_irr = kvm_lapic_find_highest_irr(vcpu);
4489 else
4490 max_irr = -1;
4491
4492 if (max_irr != -1)
4493 max_irr >>= 4;
4494
4495 tpr = kvm_lapic_get_cr8(vcpu);
4496
4497 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
4498 }
4499
4500 static void inject_pending_event(struct kvm_vcpu *vcpu)
4501 {
4502 /* try to reinject previous events if any */
4503 if (vcpu->arch.exception.pending) {
4504 trace_kvm_inj_exception(vcpu->arch.exception.nr,
4505 vcpu->arch.exception.has_error_code,
4506 vcpu->arch.exception.error_code);
4507 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
4508 vcpu->arch.exception.has_error_code,
4509 vcpu->arch.exception.error_code,
4510 vcpu->arch.exception.reinject);
4511 return;
4512 }
4513
4514 if (vcpu->arch.nmi_injected) {
4515 kvm_x86_ops->set_nmi(vcpu);
4516 return;
4517 }
4518
4519 if (vcpu->arch.interrupt.pending) {
4520 kvm_x86_ops->set_irq(vcpu);
4521 return;
4522 }
4523
4524 /* try to inject new event if pending */
4525 if (vcpu->arch.nmi_pending) {
4526 if (kvm_x86_ops->nmi_allowed(vcpu)) {
4527 vcpu->arch.nmi_pending = false;
4528 vcpu->arch.nmi_injected = true;
4529 kvm_x86_ops->set_nmi(vcpu);
4530 }
4531 } else if (kvm_cpu_has_interrupt(vcpu)) {
4532 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
4533 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
4534 false);
4535 kvm_x86_ops->set_irq(vcpu);
4536 }
4537 }
4538 }
4539
4540 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
4541 {
4542 int r;
4543 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
4544 vcpu->run->request_interrupt_window;
4545
4546 if (vcpu->requests)
4547 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
4548 kvm_mmu_unload(vcpu);
4549
4550 r = kvm_mmu_reload(vcpu);
4551 if (unlikely(r))
4552 goto out;
4553
4554 if (vcpu->requests) {
4555 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
4556 __kvm_migrate_timers(vcpu);
4557 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
4558 kvm_write_guest_time(vcpu);
4559 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
4560 kvm_mmu_sync_roots(vcpu);
4561 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
4562 kvm_x86_ops->tlb_flush(vcpu);
4563 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
4564 &vcpu->requests)) {
4565 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
4566 r = 0;
4567 goto out;
4568 }
4569 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
4570 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4571 r = 0;
4572 goto out;
4573 }
4574 if (test_and_clear_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests)) {
4575 vcpu->fpu_active = 0;
4576 kvm_x86_ops->fpu_deactivate(vcpu);
4577 }
4578 }
4579
4580 preempt_disable();
4581
4582 kvm_x86_ops->prepare_guest_switch(vcpu);
4583 if (vcpu->fpu_active)
4584 kvm_load_guest_fpu(vcpu);
4585
4586 local_irq_disable();
4587
4588 clear_bit(KVM_REQ_KICK, &vcpu->requests);
4589 smp_mb__after_clear_bit();
4590
4591 if (vcpu->requests || need_resched() || signal_pending(current)) {
4592 set_bit(KVM_REQ_KICK, &vcpu->requests);
4593 local_irq_enable();
4594 preempt_enable();
4595 r = 1;
4596 goto out;
4597 }
4598
4599 inject_pending_event(vcpu);
4600
4601 /* enable NMI/IRQ window open exits if needed */
4602 if (vcpu->arch.nmi_pending)
4603 kvm_x86_ops->enable_nmi_window(vcpu);
4604 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
4605 kvm_x86_ops->enable_irq_window(vcpu);
4606
4607 if (kvm_lapic_enabled(vcpu)) {
4608 update_cr8_intercept(vcpu);
4609 kvm_lapic_sync_to_vapic(vcpu);
4610 }
4611
4612 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4613
4614 kvm_guest_enter();
4615
4616 if (unlikely(vcpu->arch.switch_db_regs)) {
4617 set_debugreg(0, 7);
4618 set_debugreg(vcpu->arch.eff_db[0], 0);
4619 set_debugreg(vcpu->arch.eff_db[1], 1);
4620 set_debugreg(vcpu->arch.eff_db[2], 2);
4621 set_debugreg(vcpu->arch.eff_db[3], 3);
4622 }
4623
4624 trace_kvm_entry(vcpu->vcpu_id);
4625 kvm_x86_ops->run(vcpu);
4626
4627 /*
4628 * If the guest has used debug registers, at least dr7
4629 * will be disabled while returning to the host.
4630 * If we don't have active breakpoints in the host, we don't
4631 * care about the messed up debug address registers. But if
4632 * we have some of them active, restore the old state.
4633 */
4634 if (hw_breakpoint_active())
4635 hw_breakpoint_restore();
4636
4637 set_bit(KVM_REQ_KICK, &vcpu->requests);
4638 local_irq_enable();
4639
4640 ++vcpu->stat.exits;
4641
4642 /*
4643 * We must have an instruction between local_irq_enable() and
4644 * kvm_guest_exit(), so the timer interrupt isn't delayed by
4645 * the interrupt shadow. The stat.exits increment will do nicely.
4646 * But we need to prevent reordering, hence this barrier():
4647 */
4648 barrier();
4649
4650 kvm_guest_exit();
4651
4652 preempt_enable();
4653
4654 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4655
4656 /*
4657 * Profile KVM exit RIPs:
4658 */
4659 if (unlikely(prof_on == KVM_PROFILING)) {
4660 unsigned long rip = kvm_rip_read(vcpu);
4661 profile_hit(KVM_PROFILING, (void *)rip);
4662 }
4663
4664
4665 kvm_lapic_sync_from_vapic(vcpu);
4666
4667 r = kvm_x86_ops->handle_exit(vcpu);
4668 out:
4669 return r;
4670 }
4671
4672
4673 static int __vcpu_run(struct kvm_vcpu *vcpu)
4674 {
4675 int r;
4676 struct kvm *kvm = vcpu->kvm;
4677
4678 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
4679 pr_debug("vcpu %d received sipi with vector # %x\n",
4680 vcpu->vcpu_id, vcpu->arch.sipi_vector);
4681 kvm_lapic_reset(vcpu);
4682 r = kvm_arch_vcpu_reset(vcpu);
4683 if (r)
4684 return r;
4685 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4686 }
4687
4688 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4689 vapic_enter(vcpu);
4690
4691 r = 1;
4692 while (r > 0) {
4693 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
4694 r = vcpu_enter_guest(vcpu);
4695 else {
4696 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4697 kvm_vcpu_block(vcpu);
4698 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4699 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
4700 {
4701 switch(vcpu->arch.mp_state) {
4702 case KVM_MP_STATE_HALTED:
4703 vcpu->arch.mp_state =
4704 KVM_MP_STATE_RUNNABLE;
4705 case KVM_MP_STATE_RUNNABLE:
4706 break;
4707 case KVM_MP_STATE_SIPI_RECEIVED:
4708 default:
4709 r = -EINTR;
4710 break;
4711 }
4712 }
4713 }
4714
4715 if (r <= 0)
4716 break;
4717
4718 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
4719 if (kvm_cpu_has_pending_timer(vcpu))
4720 kvm_inject_pending_timer_irqs(vcpu);
4721
4722 if (dm_request_for_irq_injection(vcpu)) {
4723 r = -EINTR;
4724 vcpu->run->exit_reason = KVM_EXIT_INTR;
4725 ++vcpu->stat.request_irq_exits;
4726 }
4727 if (signal_pending(current)) {
4728 r = -EINTR;
4729 vcpu->run->exit_reason = KVM_EXIT_INTR;
4730 ++vcpu->stat.signal_exits;
4731 }
4732 if (need_resched()) {
4733 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4734 kvm_resched(vcpu);
4735 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4736 }
4737 }
4738
4739 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4740
4741 vapic_exit(vcpu);
4742
4743 return r;
4744 }
4745
4746 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
4747 {
4748 int r;
4749 sigset_t sigsaved;
4750
4751 vcpu_load(vcpu);
4752
4753 if (vcpu->sigset_active)
4754 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
4755
4756 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
4757 kvm_vcpu_block(vcpu);
4758 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
4759 r = -EAGAIN;
4760 goto out;
4761 }
4762
4763 /* re-sync apic's tpr */
4764 if (!irqchip_in_kernel(vcpu->kvm))
4765 kvm_set_cr8(vcpu, kvm_run->cr8);
4766
4767 if (vcpu->arch.pio.count || vcpu->mmio_needed ||
4768 vcpu->arch.emulate_ctxt.restart) {
4769 if (vcpu->mmio_needed) {
4770 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
4771 vcpu->mmio_read_completed = 1;
4772 vcpu->mmio_needed = 0;
4773 }
4774 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4775 r = emulate_instruction(vcpu, 0, 0, EMULTYPE_NO_DECODE);
4776 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4777 if (r == EMULATE_DO_MMIO) {
4778 r = 0;
4779 goto out;
4780 }
4781 }
4782 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
4783 kvm_register_write(vcpu, VCPU_REGS_RAX,
4784 kvm_run->hypercall.ret);
4785
4786 r = __vcpu_run(vcpu);
4787
4788 out:
4789 post_kvm_run_save(vcpu);
4790 if (vcpu->sigset_active)
4791 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
4792
4793 vcpu_put(vcpu);
4794 return r;
4795 }
4796
4797 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4798 {
4799 vcpu_load(vcpu);
4800
4801 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4802 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4803 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4804 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4805 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4806 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4807 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4808 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4809 #ifdef CONFIG_X86_64
4810 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
4811 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
4812 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
4813 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
4814 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
4815 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
4816 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
4817 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
4818 #endif
4819
4820 regs->rip = kvm_rip_read(vcpu);
4821 regs->rflags = kvm_get_rflags(vcpu);
4822
4823 vcpu_put(vcpu);
4824
4825 return 0;
4826 }
4827
4828 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4829 {
4830 vcpu_load(vcpu);
4831
4832 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
4833 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
4834 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
4835 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
4836 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
4837 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
4838 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
4839 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
4840 #ifdef CONFIG_X86_64
4841 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
4842 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
4843 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
4844 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
4845 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
4846 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
4847 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
4848 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
4849 #endif
4850
4851 kvm_rip_write(vcpu, regs->rip);
4852 kvm_set_rflags(vcpu, regs->rflags);
4853
4854 vcpu->arch.exception.pending = false;
4855
4856 vcpu_put(vcpu);
4857
4858 return 0;
4859 }
4860
4861 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4862 {
4863 struct kvm_segment cs;
4864
4865 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
4866 *db = cs.db;
4867 *l = cs.l;
4868 }
4869 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
4870
4871 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
4872 struct kvm_sregs *sregs)
4873 {
4874 struct desc_ptr dt;
4875
4876 vcpu_load(vcpu);
4877
4878 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4879 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4880 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4881 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4882 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4883 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4884
4885 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4886 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4887
4888 kvm_x86_ops->get_idt(vcpu, &dt);
4889 sregs->idt.limit = dt.size;
4890 sregs->idt.base = dt.address;
4891 kvm_x86_ops->get_gdt(vcpu, &dt);
4892 sregs->gdt.limit = dt.size;
4893 sregs->gdt.base = dt.address;
4894
4895 sregs->cr0 = kvm_read_cr0(vcpu);
4896 sregs->cr2 = vcpu->arch.cr2;
4897 sregs->cr3 = vcpu->arch.cr3;
4898 sregs->cr4 = kvm_read_cr4(vcpu);
4899 sregs->cr8 = kvm_get_cr8(vcpu);
4900 sregs->efer = vcpu->arch.efer;
4901 sregs->apic_base = kvm_get_apic_base(vcpu);
4902
4903 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
4904
4905 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
4906 set_bit(vcpu->arch.interrupt.nr,
4907 (unsigned long *)sregs->interrupt_bitmap);
4908
4909 vcpu_put(vcpu);
4910
4911 return 0;
4912 }
4913
4914 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
4915 struct kvm_mp_state *mp_state)
4916 {
4917 vcpu_load(vcpu);
4918 mp_state->mp_state = vcpu->arch.mp_state;
4919 vcpu_put(vcpu);
4920 return 0;
4921 }
4922
4923 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
4924 struct kvm_mp_state *mp_state)
4925 {
4926 vcpu_load(vcpu);
4927 vcpu->arch.mp_state = mp_state->mp_state;
4928 vcpu_put(vcpu);
4929 return 0;
4930 }
4931
4932 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
4933 bool has_error_code, u32 error_code)
4934 {
4935 int cs_db, cs_l, ret;
4936 cache_all_regs(vcpu);
4937
4938 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4939
4940 vcpu->arch.emulate_ctxt.vcpu = vcpu;
4941 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
4942 vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
4943 vcpu->arch.emulate_ctxt.mode =
4944 (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4945 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
4946 ? X86EMUL_MODE_VM86 : cs_l
4947 ? X86EMUL_MODE_PROT64 : cs_db
4948 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
4949
4950 ret = emulator_task_switch(&vcpu->arch.emulate_ctxt, &emulate_ops,
4951 tss_selector, reason, has_error_code,
4952 error_code);
4953
4954 if (ret)
4955 return EMULATE_FAIL;
4956
4957 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4958 return EMULATE_DONE;
4959 }
4960 EXPORT_SYMBOL_GPL(kvm_task_switch);
4961
4962 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
4963 struct kvm_sregs *sregs)
4964 {
4965 int mmu_reset_needed = 0;
4966 int pending_vec, max_bits;
4967 struct desc_ptr dt;
4968
4969 vcpu_load(vcpu);
4970
4971 dt.size = sregs->idt.limit;
4972 dt.address = sregs->idt.base;
4973 kvm_x86_ops->set_idt(vcpu, &dt);
4974 dt.size = sregs->gdt.limit;
4975 dt.address = sregs->gdt.base;
4976 kvm_x86_ops->set_gdt(vcpu, &dt);
4977
4978 vcpu->arch.cr2 = sregs->cr2;
4979 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
4980 vcpu->arch.cr3 = sregs->cr3;
4981
4982 kvm_set_cr8(vcpu, sregs->cr8);
4983
4984 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
4985 kvm_x86_ops->set_efer(vcpu, sregs->efer);
4986 kvm_set_apic_base(vcpu, sregs->apic_base);
4987
4988 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
4989 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
4990 vcpu->arch.cr0 = sregs->cr0;
4991
4992 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
4993 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
4994 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
4995 load_pdptrs(vcpu, vcpu->arch.cr3);
4996 mmu_reset_needed = 1;
4997 }
4998
4999 if (mmu_reset_needed)
5000 kvm_mmu_reset_context(vcpu);
5001
5002 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5003 pending_vec = find_first_bit(
5004 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5005 if (pending_vec < max_bits) {
5006 kvm_queue_interrupt(vcpu, pending_vec, false);
5007 pr_debug("Set back pending irq %d\n", pending_vec);
5008 if (irqchip_in_kernel(vcpu->kvm))
5009 kvm_pic_clear_isr_ack(vcpu->kvm);
5010 }
5011
5012 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5013 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5014 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5015 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5016 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5017 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5018
5019 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5020 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5021
5022 update_cr8_intercept(vcpu);
5023
5024 /* Older userspace won't unhalt the vcpu on reset. */
5025 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5026 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5027 !is_protmode(vcpu))
5028 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5029
5030 vcpu_put(vcpu);
5031
5032 return 0;
5033 }
5034
5035 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5036 struct kvm_guest_debug *dbg)
5037 {
5038 unsigned long rflags;
5039 int i, r;
5040
5041 vcpu_load(vcpu);
5042
5043 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5044 r = -EBUSY;
5045 if (vcpu->arch.exception.pending)
5046 goto unlock_out;
5047 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5048 kvm_queue_exception(vcpu, DB_VECTOR);
5049 else
5050 kvm_queue_exception(vcpu, BP_VECTOR);
5051 }
5052
5053 /*
5054 * Read rflags as long as potentially injected trace flags are still
5055 * filtered out.
5056 */
5057 rflags = kvm_get_rflags(vcpu);
5058
5059 vcpu->guest_debug = dbg->control;
5060 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5061 vcpu->guest_debug = 0;
5062
5063 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5064 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5065 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5066 vcpu->arch.switch_db_regs =
5067 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5068 } else {
5069 for (i = 0; i < KVM_NR_DB_REGS; i++)
5070 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5071 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5072 }
5073
5074 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5075 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5076 get_segment_base(vcpu, VCPU_SREG_CS);
5077
5078 /*
5079 * Trigger an rflags update that will inject or remove the trace
5080 * flags.
5081 */
5082 kvm_set_rflags(vcpu, rflags);
5083
5084 kvm_x86_ops->set_guest_debug(vcpu, dbg);
5085
5086 r = 0;
5087
5088 unlock_out:
5089 vcpu_put(vcpu);
5090
5091 return r;
5092 }
5093
5094 /*
5095 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
5096 * we have asm/x86/processor.h
5097 */
5098 struct fxsave {
5099 u16 cwd;
5100 u16 swd;
5101 u16 twd;
5102 u16 fop;
5103 u64 rip;
5104 u64 rdp;
5105 u32 mxcsr;
5106 u32 mxcsr_mask;
5107 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
5108 #ifdef CONFIG_X86_64
5109 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
5110 #else
5111 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
5112 #endif
5113 };
5114
5115 /*
5116 * Translate a guest virtual address to a guest physical address.
5117 */
5118 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5119 struct kvm_translation *tr)
5120 {
5121 unsigned long vaddr = tr->linear_address;
5122 gpa_t gpa;
5123 int idx;
5124
5125 vcpu_load(vcpu);
5126 idx = srcu_read_lock(&vcpu->kvm->srcu);
5127 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5128 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5129 tr->physical_address = gpa;
5130 tr->valid = gpa != UNMAPPED_GVA;
5131 tr->writeable = 1;
5132 tr->usermode = 0;
5133 vcpu_put(vcpu);
5134
5135 return 0;
5136 }
5137
5138 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5139 {
5140 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
5141
5142 vcpu_load(vcpu);
5143
5144 memcpy(fpu->fpr, fxsave->st_space, 128);
5145 fpu->fcw = fxsave->cwd;
5146 fpu->fsw = fxsave->swd;
5147 fpu->ftwx = fxsave->twd;
5148 fpu->last_opcode = fxsave->fop;
5149 fpu->last_ip = fxsave->rip;
5150 fpu->last_dp = fxsave->rdp;
5151 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5152
5153 vcpu_put(vcpu);
5154
5155 return 0;
5156 }
5157
5158 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5159 {
5160 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
5161
5162 vcpu_load(vcpu);
5163
5164 memcpy(fxsave->st_space, fpu->fpr, 128);
5165 fxsave->cwd = fpu->fcw;
5166 fxsave->swd = fpu->fsw;
5167 fxsave->twd = fpu->ftwx;
5168 fxsave->fop = fpu->last_opcode;
5169 fxsave->rip = fpu->last_ip;
5170 fxsave->rdp = fpu->last_dp;
5171 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5172
5173 vcpu_put(vcpu);
5174
5175 return 0;
5176 }
5177
5178 void fx_init(struct kvm_vcpu *vcpu)
5179 {
5180 unsigned after_mxcsr_mask;
5181
5182 /*
5183 * Touch the fpu the first time in non atomic context as if
5184 * this is the first fpu instruction the exception handler
5185 * will fire before the instruction returns and it'll have to
5186 * allocate ram with GFP_KERNEL.
5187 */
5188 if (!used_math())
5189 kvm_fx_save(&vcpu->arch.host_fx_image);
5190
5191 /* Initialize guest FPU by resetting ours and saving into guest's */
5192 preempt_disable();
5193 kvm_fx_save(&vcpu->arch.host_fx_image);
5194 kvm_fx_finit();
5195 kvm_fx_save(&vcpu->arch.guest_fx_image);
5196 kvm_fx_restore(&vcpu->arch.host_fx_image);
5197 preempt_enable();
5198
5199 vcpu->arch.cr0 |= X86_CR0_ET;
5200 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
5201 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
5202 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
5203 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
5204 }
5205 EXPORT_SYMBOL_GPL(fx_init);
5206
5207 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5208 {
5209 if (vcpu->guest_fpu_loaded)
5210 return;
5211
5212 vcpu->guest_fpu_loaded = 1;
5213 kvm_fx_save(&vcpu->arch.host_fx_image);
5214 kvm_fx_restore(&vcpu->arch.guest_fx_image);
5215 trace_kvm_fpu(1);
5216 }
5217
5218 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5219 {
5220 if (!vcpu->guest_fpu_loaded)
5221 return;
5222
5223 vcpu->guest_fpu_loaded = 0;
5224 kvm_fx_save(&vcpu->arch.guest_fx_image);
5225 kvm_fx_restore(&vcpu->arch.host_fx_image);
5226 ++vcpu->stat.fpu_reload;
5227 set_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests);
5228 trace_kvm_fpu(0);
5229 }
5230
5231 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5232 {
5233 if (vcpu->arch.time_page) {
5234 kvm_release_page_dirty(vcpu->arch.time_page);
5235 vcpu->arch.time_page = NULL;
5236 }
5237
5238 kvm_x86_ops->vcpu_free(vcpu);
5239 }
5240
5241 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5242 unsigned int id)
5243 {
5244 return kvm_x86_ops->vcpu_create(kvm, id);
5245 }
5246
5247 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5248 {
5249 int r;
5250
5251 /* We do fxsave: this must be aligned. */
5252 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
5253
5254 vcpu->arch.mtrr_state.have_fixed = 1;
5255 vcpu_load(vcpu);
5256 r = kvm_arch_vcpu_reset(vcpu);
5257 if (r == 0)
5258 r = kvm_mmu_setup(vcpu);
5259 vcpu_put(vcpu);
5260 if (r < 0)
5261 goto free_vcpu;
5262
5263 return 0;
5264 free_vcpu:
5265 kvm_x86_ops->vcpu_free(vcpu);
5266 return r;
5267 }
5268
5269 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5270 {
5271 vcpu_load(vcpu);
5272 kvm_mmu_unload(vcpu);
5273 vcpu_put(vcpu);
5274
5275 kvm_x86_ops->vcpu_free(vcpu);
5276 }
5277
5278 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5279 {
5280 vcpu->arch.nmi_pending = false;
5281 vcpu->arch.nmi_injected = false;
5282
5283 vcpu->arch.switch_db_regs = 0;
5284 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5285 vcpu->arch.dr6 = DR6_FIXED_1;
5286 vcpu->arch.dr7 = DR7_FIXED_1;
5287
5288 return kvm_x86_ops->vcpu_reset(vcpu);
5289 }
5290
5291 int kvm_arch_hardware_enable(void *garbage)
5292 {
5293 /*
5294 * Since this may be called from a hotplug notifcation,
5295 * we can't get the CPU frequency directly.
5296 */
5297 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5298 int cpu = raw_smp_processor_id();
5299 per_cpu(cpu_tsc_khz, cpu) = 0;
5300 }
5301
5302 kvm_shared_msr_cpu_online();
5303
5304 return kvm_x86_ops->hardware_enable(garbage);
5305 }
5306
5307 void kvm_arch_hardware_disable(void *garbage)
5308 {
5309 kvm_x86_ops->hardware_disable(garbage);
5310 drop_user_return_notifiers(garbage);
5311 }
5312
5313 int kvm_arch_hardware_setup(void)
5314 {
5315 return kvm_x86_ops->hardware_setup();
5316 }
5317
5318 void kvm_arch_hardware_unsetup(void)
5319 {
5320 kvm_x86_ops->hardware_unsetup();
5321 }
5322
5323 void kvm_arch_check_processor_compat(void *rtn)
5324 {
5325 kvm_x86_ops->check_processor_compatibility(rtn);
5326 }
5327
5328 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5329 {
5330 struct page *page;
5331 struct kvm *kvm;
5332 int r;
5333
5334 BUG_ON(vcpu->kvm == NULL);
5335 kvm = vcpu->kvm;
5336
5337 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5338 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5339 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5340 else
5341 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5342
5343 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5344 if (!page) {
5345 r = -ENOMEM;
5346 goto fail;
5347 }
5348 vcpu->arch.pio_data = page_address(page);
5349
5350 r = kvm_mmu_create(vcpu);
5351 if (r < 0)
5352 goto fail_free_pio_data;
5353
5354 if (irqchip_in_kernel(kvm)) {
5355 r = kvm_create_lapic(vcpu);
5356 if (r < 0)
5357 goto fail_mmu_destroy;
5358 }
5359
5360 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5361 GFP_KERNEL);
5362 if (!vcpu->arch.mce_banks) {
5363 r = -ENOMEM;
5364 goto fail_free_lapic;
5365 }
5366 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5367
5368 return 0;
5369 fail_free_lapic:
5370 kvm_free_lapic(vcpu);
5371 fail_mmu_destroy:
5372 kvm_mmu_destroy(vcpu);
5373 fail_free_pio_data:
5374 free_page((unsigned long)vcpu->arch.pio_data);
5375 fail:
5376 return r;
5377 }
5378
5379 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
5380 {
5381 int idx;
5382
5383 kfree(vcpu->arch.mce_banks);
5384 kvm_free_lapic(vcpu);
5385 idx = srcu_read_lock(&vcpu->kvm->srcu);
5386 kvm_mmu_destroy(vcpu);
5387 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5388 free_page((unsigned long)vcpu->arch.pio_data);
5389 }
5390
5391 struct kvm *kvm_arch_create_vm(void)
5392 {
5393 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
5394
5395 if (!kvm)
5396 return ERR_PTR(-ENOMEM);
5397
5398 kvm->arch.aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
5399 if (!kvm->arch.aliases) {
5400 kfree(kvm);
5401 return ERR_PTR(-ENOMEM);
5402 }
5403
5404 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5405 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
5406
5407 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5408 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
5409
5410 rdtscll(kvm->arch.vm_init_tsc);
5411
5412 return kvm;
5413 }
5414
5415 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
5416 {
5417 vcpu_load(vcpu);
5418 kvm_mmu_unload(vcpu);
5419 vcpu_put(vcpu);
5420 }
5421
5422 static void kvm_free_vcpus(struct kvm *kvm)
5423 {
5424 unsigned int i;
5425 struct kvm_vcpu *vcpu;
5426
5427 /*
5428 * Unpin any mmu pages first.
5429 */
5430 kvm_for_each_vcpu(i, vcpu, kvm)
5431 kvm_unload_vcpu_mmu(vcpu);
5432 kvm_for_each_vcpu(i, vcpu, kvm)
5433 kvm_arch_vcpu_free(vcpu);
5434
5435 mutex_lock(&kvm->lock);
5436 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
5437 kvm->vcpus[i] = NULL;
5438
5439 atomic_set(&kvm->online_vcpus, 0);
5440 mutex_unlock(&kvm->lock);
5441 }
5442
5443 void kvm_arch_sync_events(struct kvm *kvm)
5444 {
5445 kvm_free_all_assigned_devices(kvm);
5446 }
5447
5448 void kvm_arch_destroy_vm(struct kvm *kvm)
5449 {
5450 kvm_iommu_unmap_guest(kvm);
5451 kvm_free_pit(kvm);
5452 kfree(kvm->arch.vpic);
5453 kfree(kvm->arch.vioapic);
5454 kvm_free_vcpus(kvm);
5455 kvm_free_physmem(kvm);
5456 if (kvm->arch.apic_access_page)
5457 put_page(kvm->arch.apic_access_page);
5458 if (kvm->arch.ept_identity_pagetable)
5459 put_page(kvm->arch.ept_identity_pagetable);
5460 cleanup_srcu_struct(&kvm->srcu);
5461 kfree(kvm->arch.aliases);
5462 kfree(kvm);
5463 }
5464
5465 int kvm_arch_prepare_memory_region(struct kvm *kvm,
5466 struct kvm_memory_slot *memslot,
5467 struct kvm_memory_slot old,
5468 struct kvm_userspace_memory_region *mem,
5469 int user_alloc)
5470 {
5471 int npages = memslot->npages;
5472
5473 /*To keep backward compatibility with older userspace,
5474 *x86 needs to hanlde !user_alloc case.
5475 */
5476 if (!user_alloc) {
5477 if (npages && !old.rmap) {
5478 unsigned long userspace_addr;
5479
5480 down_write(&current->mm->mmap_sem);
5481 userspace_addr = do_mmap(NULL, 0,
5482 npages * PAGE_SIZE,
5483 PROT_READ | PROT_WRITE,
5484 MAP_PRIVATE | MAP_ANONYMOUS,
5485 0);
5486 up_write(&current->mm->mmap_sem);
5487
5488 if (IS_ERR((void *)userspace_addr))
5489 return PTR_ERR((void *)userspace_addr);
5490
5491 memslot->userspace_addr = userspace_addr;
5492 }
5493 }
5494
5495
5496 return 0;
5497 }
5498
5499 void kvm_arch_commit_memory_region(struct kvm *kvm,
5500 struct kvm_userspace_memory_region *mem,
5501 struct kvm_memory_slot old,
5502 int user_alloc)
5503 {
5504
5505 int npages = mem->memory_size >> PAGE_SHIFT;
5506
5507 if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
5508 int ret;
5509
5510 down_write(&current->mm->mmap_sem);
5511 ret = do_munmap(current->mm, old.userspace_addr,
5512 old.npages * PAGE_SIZE);
5513 up_write(&current->mm->mmap_sem);
5514 if (ret < 0)
5515 printk(KERN_WARNING
5516 "kvm_vm_ioctl_set_memory_region: "
5517 "failed to munmap memory\n");
5518 }
5519
5520 spin_lock(&kvm->mmu_lock);
5521 if (!kvm->arch.n_requested_mmu_pages) {
5522 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
5523 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
5524 }
5525
5526 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
5527 spin_unlock(&kvm->mmu_lock);
5528 }
5529
5530 void kvm_arch_flush_shadow(struct kvm *kvm)
5531 {
5532 kvm_mmu_zap_all(kvm);
5533 kvm_reload_remote_mmus(kvm);
5534 }
5535
5536 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
5537 {
5538 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
5539 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
5540 || vcpu->arch.nmi_pending ||
5541 (kvm_arch_interrupt_allowed(vcpu) &&
5542 kvm_cpu_has_interrupt(vcpu));
5543 }
5544
5545 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
5546 {
5547 int me;
5548 int cpu = vcpu->cpu;
5549
5550 if (waitqueue_active(&vcpu->wq)) {
5551 wake_up_interruptible(&vcpu->wq);
5552 ++vcpu->stat.halt_wakeup;
5553 }
5554
5555 me = get_cpu();
5556 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
5557 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
5558 smp_send_reschedule(cpu);
5559 put_cpu();
5560 }
5561
5562 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
5563 {
5564 return kvm_x86_ops->interrupt_allowed(vcpu);
5565 }
5566
5567 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
5568 {
5569 unsigned long current_rip = kvm_rip_read(vcpu) +
5570 get_segment_base(vcpu, VCPU_SREG_CS);
5571
5572 return current_rip == linear_rip;
5573 }
5574 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
5575
5576 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
5577 {
5578 unsigned long rflags;
5579
5580 rflags = kvm_x86_ops->get_rflags(vcpu);
5581 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5582 rflags &= ~X86_EFLAGS_TF;
5583 return rflags;
5584 }
5585 EXPORT_SYMBOL_GPL(kvm_get_rflags);
5586
5587 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
5588 {
5589 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
5590 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
5591 rflags |= X86_EFLAGS_TF;
5592 kvm_x86_ops->set_rflags(vcpu, rflags);
5593 }
5594 EXPORT_SYMBOL_GPL(kvm_set_rflags);
5595
5596 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
5597 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
5598 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
5599 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
5600 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
5601 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
5602 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
5603 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
5604 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
5605 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
5606 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
5607 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
This page took 0.156209 seconds and 6 git commands to generate.