KVM: modify memslots layout in struct kvm
[deliverable/linux.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Amit Shah <amit.shah@qumranet.com>
14 * Ben-Ami Yassour <benami@il.ibm.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
28
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40 #include <linux/user-return-notifier.h>
41 #include <trace/events/kvm.h>
42 #undef TRACE_INCLUDE_FILE
43 #define CREATE_TRACE_POINTS
44 #include "trace.h"
45
46 #include <asm/debugreg.h>
47 #include <asm/uaccess.h>
48 #include <asm/msr.h>
49 #include <asm/desc.h>
50 #include <asm/mtrr.h>
51 #include <asm/mce.h>
52
53 #define MAX_IO_MSRS 256
54 #define CR0_RESERVED_BITS \
55 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
56 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
57 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
58 #define CR4_RESERVED_BITS \
59 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
60 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
61 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
62 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
63
64 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
65
66 #define KVM_MAX_MCE_BANKS 32
67 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
68
69 /* EFER defaults:
70 * - enable syscall per default because its emulated by KVM
71 * - enable LME and LMA per default on 64 bit KVM
72 */
73 #ifdef CONFIG_X86_64
74 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
75 #else
76 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
77 #endif
78
79 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
80 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
81
82 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
83 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
84 struct kvm_cpuid_entry2 __user *entries);
85
86 struct kvm_x86_ops *kvm_x86_ops;
87 EXPORT_SYMBOL_GPL(kvm_x86_ops);
88
89 int ignore_msrs = 0;
90 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
91
92 #define KVM_NR_SHARED_MSRS 16
93
94 struct kvm_shared_msrs_global {
95 int nr;
96 u32 msrs[KVM_NR_SHARED_MSRS];
97 };
98
99 struct kvm_shared_msrs {
100 struct user_return_notifier urn;
101 bool registered;
102 struct kvm_shared_msr_values {
103 u64 host;
104 u64 curr;
105 } values[KVM_NR_SHARED_MSRS];
106 };
107
108 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
109 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
110
111 struct kvm_stats_debugfs_item debugfs_entries[] = {
112 { "pf_fixed", VCPU_STAT(pf_fixed) },
113 { "pf_guest", VCPU_STAT(pf_guest) },
114 { "tlb_flush", VCPU_STAT(tlb_flush) },
115 { "invlpg", VCPU_STAT(invlpg) },
116 { "exits", VCPU_STAT(exits) },
117 { "io_exits", VCPU_STAT(io_exits) },
118 { "mmio_exits", VCPU_STAT(mmio_exits) },
119 { "signal_exits", VCPU_STAT(signal_exits) },
120 { "irq_window", VCPU_STAT(irq_window_exits) },
121 { "nmi_window", VCPU_STAT(nmi_window_exits) },
122 { "halt_exits", VCPU_STAT(halt_exits) },
123 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
124 { "hypercalls", VCPU_STAT(hypercalls) },
125 { "request_irq", VCPU_STAT(request_irq_exits) },
126 { "irq_exits", VCPU_STAT(irq_exits) },
127 { "host_state_reload", VCPU_STAT(host_state_reload) },
128 { "efer_reload", VCPU_STAT(efer_reload) },
129 { "fpu_reload", VCPU_STAT(fpu_reload) },
130 { "insn_emulation", VCPU_STAT(insn_emulation) },
131 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
132 { "irq_injections", VCPU_STAT(irq_injections) },
133 { "nmi_injections", VCPU_STAT(nmi_injections) },
134 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
135 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
136 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
137 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
138 { "mmu_flooded", VM_STAT(mmu_flooded) },
139 { "mmu_recycled", VM_STAT(mmu_recycled) },
140 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
141 { "mmu_unsync", VM_STAT(mmu_unsync) },
142 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
143 { "largepages", VM_STAT(lpages) },
144 { NULL }
145 };
146
147 static void kvm_on_user_return(struct user_return_notifier *urn)
148 {
149 unsigned slot;
150 struct kvm_shared_msrs *locals
151 = container_of(urn, struct kvm_shared_msrs, urn);
152 struct kvm_shared_msr_values *values;
153
154 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
155 values = &locals->values[slot];
156 if (values->host != values->curr) {
157 wrmsrl(shared_msrs_global.msrs[slot], values->host);
158 values->curr = values->host;
159 }
160 }
161 locals->registered = false;
162 user_return_notifier_unregister(urn);
163 }
164
165 static void shared_msr_update(unsigned slot, u32 msr)
166 {
167 struct kvm_shared_msrs *smsr;
168 u64 value;
169
170 smsr = &__get_cpu_var(shared_msrs);
171 /* only read, and nobody should modify it at this time,
172 * so don't need lock */
173 if (slot >= shared_msrs_global.nr) {
174 printk(KERN_ERR "kvm: invalid MSR slot!");
175 return;
176 }
177 rdmsrl_safe(msr, &value);
178 smsr->values[slot].host = value;
179 smsr->values[slot].curr = value;
180 }
181
182 void kvm_define_shared_msr(unsigned slot, u32 msr)
183 {
184 if (slot >= shared_msrs_global.nr)
185 shared_msrs_global.nr = slot + 1;
186 shared_msrs_global.msrs[slot] = msr;
187 /* we need ensured the shared_msr_global have been updated */
188 smp_wmb();
189 }
190 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
191
192 static void kvm_shared_msr_cpu_online(void)
193 {
194 unsigned i;
195
196 for (i = 0; i < shared_msrs_global.nr; ++i)
197 shared_msr_update(i, shared_msrs_global.msrs[i]);
198 }
199
200 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
201 {
202 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
203
204 if (((value ^ smsr->values[slot].curr) & mask) == 0)
205 return;
206 smsr->values[slot].curr = value;
207 wrmsrl(shared_msrs_global.msrs[slot], value);
208 if (!smsr->registered) {
209 smsr->urn.on_user_return = kvm_on_user_return;
210 user_return_notifier_register(&smsr->urn);
211 smsr->registered = true;
212 }
213 }
214 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
215
216 static void drop_user_return_notifiers(void *ignore)
217 {
218 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
219
220 if (smsr->registered)
221 kvm_on_user_return(&smsr->urn);
222 }
223
224 unsigned long segment_base(u16 selector)
225 {
226 struct descriptor_table gdt;
227 struct desc_struct *d;
228 unsigned long table_base;
229 unsigned long v;
230
231 if (selector == 0)
232 return 0;
233
234 kvm_get_gdt(&gdt);
235 table_base = gdt.base;
236
237 if (selector & 4) { /* from ldt */
238 u16 ldt_selector = kvm_read_ldt();
239
240 table_base = segment_base(ldt_selector);
241 }
242 d = (struct desc_struct *)(table_base + (selector & ~7));
243 v = get_desc_base(d);
244 #ifdef CONFIG_X86_64
245 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
246 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
247 #endif
248 return v;
249 }
250 EXPORT_SYMBOL_GPL(segment_base);
251
252 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
253 {
254 if (irqchip_in_kernel(vcpu->kvm))
255 return vcpu->arch.apic_base;
256 else
257 return vcpu->arch.apic_base;
258 }
259 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
260
261 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
262 {
263 /* TODO: reserve bits check */
264 if (irqchip_in_kernel(vcpu->kvm))
265 kvm_lapic_set_base(vcpu, data);
266 else
267 vcpu->arch.apic_base = data;
268 }
269 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
270
271 #define EXCPT_BENIGN 0
272 #define EXCPT_CONTRIBUTORY 1
273 #define EXCPT_PF 2
274
275 static int exception_class(int vector)
276 {
277 switch (vector) {
278 case PF_VECTOR:
279 return EXCPT_PF;
280 case DE_VECTOR:
281 case TS_VECTOR:
282 case NP_VECTOR:
283 case SS_VECTOR:
284 case GP_VECTOR:
285 return EXCPT_CONTRIBUTORY;
286 default:
287 break;
288 }
289 return EXCPT_BENIGN;
290 }
291
292 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
293 unsigned nr, bool has_error, u32 error_code)
294 {
295 u32 prev_nr;
296 int class1, class2;
297
298 if (!vcpu->arch.exception.pending) {
299 queue:
300 vcpu->arch.exception.pending = true;
301 vcpu->arch.exception.has_error_code = has_error;
302 vcpu->arch.exception.nr = nr;
303 vcpu->arch.exception.error_code = error_code;
304 return;
305 }
306
307 /* to check exception */
308 prev_nr = vcpu->arch.exception.nr;
309 if (prev_nr == DF_VECTOR) {
310 /* triple fault -> shutdown */
311 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
312 return;
313 }
314 class1 = exception_class(prev_nr);
315 class2 = exception_class(nr);
316 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
317 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
318 /* generate double fault per SDM Table 5-5 */
319 vcpu->arch.exception.pending = true;
320 vcpu->arch.exception.has_error_code = true;
321 vcpu->arch.exception.nr = DF_VECTOR;
322 vcpu->arch.exception.error_code = 0;
323 } else
324 /* replace previous exception with a new one in a hope
325 that instruction re-execution will regenerate lost
326 exception */
327 goto queue;
328 }
329
330 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
331 {
332 kvm_multiple_exception(vcpu, nr, false, 0);
333 }
334 EXPORT_SYMBOL_GPL(kvm_queue_exception);
335
336 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
337 u32 error_code)
338 {
339 ++vcpu->stat.pf_guest;
340 vcpu->arch.cr2 = addr;
341 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
342 }
343
344 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
345 {
346 vcpu->arch.nmi_pending = 1;
347 }
348 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
349
350 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
351 {
352 kvm_multiple_exception(vcpu, nr, true, error_code);
353 }
354 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
355
356 /*
357 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
358 * a #GP and return false.
359 */
360 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
361 {
362 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
363 return true;
364 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
365 return false;
366 }
367 EXPORT_SYMBOL_GPL(kvm_require_cpl);
368
369 /*
370 * Load the pae pdptrs. Return true is they are all valid.
371 */
372 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
373 {
374 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
375 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
376 int i;
377 int ret;
378 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
379
380 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
381 offset * sizeof(u64), sizeof(pdpte));
382 if (ret < 0) {
383 ret = 0;
384 goto out;
385 }
386 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
387 if (is_present_gpte(pdpte[i]) &&
388 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
389 ret = 0;
390 goto out;
391 }
392 }
393 ret = 1;
394
395 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
396 __set_bit(VCPU_EXREG_PDPTR,
397 (unsigned long *)&vcpu->arch.regs_avail);
398 __set_bit(VCPU_EXREG_PDPTR,
399 (unsigned long *)&vcpu->arch.regs_dirty);
400 out:
401
402 return ret;
403 }
404 EXPORT_SYMBOL_GPL(load_pdptrs);
405
406 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
407 {
408 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
409 bool changed = true;
410 int r;
411
412 if (is_long_mode(vcpu) || !is_pae(vcpu))
413 return false;
414
415 if (!test_bit(VCPU_EXREG_PDPTR,
416 (unsigned long *)&vcpu->arch.regs_avail))
417 return true;
418
419 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
420 if (r < 0)
421 goto out;
422 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
423 out:
424
425 return changed;
426 }
427
428 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
429 {
430 if (cr0 & CR0_RESERVED_BITS) {
431 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
432 cr0, vcpu->arch.cr0);
433 kvm_inject_gp(vcpu, 0);
434 return;
435 }
436
437 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
438 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
439 kvm_inject_gp(vcpu, 0);
440 return;
441 }
442
443 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
444 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
445 "and a clear PE flag\n");
446 kvm_inject_gp(vcpu, 0);
447 return;
448 }
449
450 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
451 #ifdef CONFIG_X86_64
452 if ((vcpu->arch.shadow_efer & EFER_LME)) {
453 int cs_db, cs_l;
454
455 if (!is_pae(vcpu)) {
456 printk(KERN_DEBUG "set_cr0: #GP, start paging "
457 "in long mode while PAE is disabled\n");
458 kvm_inject_gp(vcpu, 0);
459 return;
460 }
461 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
462 if (cs_l) {
463 printk(KERN_DEBUG "set_cr0: #GP, start paging "
464 "in long mode while CS.L == 1\n");
465 kvm_inject_gp(vcpu, 0);
466 return;
467
468 }
469 } else
470 #endif
471 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
472 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
473 "reserved bits\n");
474 kvm_inject_gp(vcpu, 0);
475 return;
476 }
477
478 }
479
480 kvm_x86_ops->set_cr0(vcpu, cr0);
481 vcpu->arch.cr0 = cr0;
482
483 kvm_mmu_reset_context(vcpu);
484 return;
485 }
486 EXPORT_SYMBOL_GPL(kvm_set_cr0);
487
488 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
489 {
490 kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
491 }
492 EXPORT_SYMBOL_GPL(kvm_lmsw);
493
494 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
495 {
496 unsigned long old_cr4 = kvm_read_cr4(vcpu);
497 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
498
499 if (cr4 & CR4_RESERVED_BITS) {
500 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
501 kvm_inject_gp(vcpu, 0);
502 return;
503 }
504
505 if (is_long_mode(vcpu)) {
506 if (!(cr4 & X86_CR4_PAE)) {
507 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
508 "in long mode\n");
509 kvm_inject_gp(vcpu, 0);
510 return;
511 }
512 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
513 && ((cr4 ^ old_cr4) & pdptr_bits)
514 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
515 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
516 kvm_inject_gp(vcpu, 0);
517 return;
518 }
519
520 if (cr4 & X86_CR4_VMXE) {
521 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
522 kvm_inject_gp(vcpu, 0);
523 return;
524 }
525 kvm_x86_ops->set_cr4(vcpu, cr4);
526 vcpu->arch.cr4 = cr4;
527 vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
528 kvm_mmu_reset_context(vcpu);
529 }
530 EXPORT_SYMBOL_GPL(kvm_set_cr4);
531
532 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
533 {
534 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
535 kvm_mmu_sync_roots(vcpu);
536 kvm_mmu_flush_tlb(vcpu);
537 return;
538 }
539
540 if (is_long_mode(vcpu)) {
541 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
542 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
543 kvm_inject_gp(vcpu, 0);
544 return;
545 }
546 } else {
547 if (is_pae(vcpu)) {
548 if (cr3 & CR3_PAE_RESERVED_BITS) {
549 printk(KERN_DEBUG
550 "set_cr3: #GP, reserved bits\n");
551 kvm_inject_gp(vcpu, 0);
552 return;
553 }
554 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
555 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
556 "reserved bits\n");
557 kvm_inject_gp(vcpu, 0);
558 return;
559 }
560 }
561 /*
562 * We don't check reserved bits in nonpae mode, because
563 * this isn't enforced, and VMware depends on this.
564 */
565 }
566
567 /*
568 * Does the new cr3 value map to physical memory? (Note, we
569 * catch an invalid cr3 even in real-mode, because it would
570 * cause trouble later on when we turn on paging anyway.)
571 *
572 * A real CPU would silently accept an invalid cr3 and would
573 * attempt to use it - with largely undefined (and often hard
574 * to debug) behavior on the guest side.
575 */
576 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
577 kvm_inject_gp(vcpu, 0);
578 else {
579 vcpu->arch.cr3 = cr3;
580 vcpu->arch.mmu.new_cr3(vcpu);
581 }
582 }
583 EXPORT_SYMBOL_GPL(kvm_set_cr3);
584
585 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
586 {
587 if (cr8 & CR8_RESERVED_BITS) {
588 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
589 kvm_inject_gp(vcpu, 0);
590 return;
591 }
592 if (irqchip_in_kernel(vcpu->kvm))
593 kvm_lapic_set_tpr(vcpu, cr8);
594 else
595 vcpu->arch.cr8 = cr8;
596 }
597 EXPORT_SYMBOL_GPL(kvm_set_cr8);
598
599 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
600 {
601 if (irqchip_in_kernel(vcpu->kvm))
602 return kvm_lapic_get_cr8(vcpu);
603 else
604 return vcpu->arch.cr8;
605 }
606 EXPORT_SYMBOL_GPL(kvm_get_cr8);
607
608 static inline u32 bit(int bitno)
609 {
610 return 1 << (bitno & 31);
611 }
612
613 /*
614 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
615 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
616 *
617 * This list is modified at module load time to reflect the
618 * capabilities of the host cpu. This capabilities test skips MSRs that are
619 * kvm-specific. Those are put in the beginning of the list.
620 */
621
622 #define KVM_SAVE_MSRS_BEGIN 2
623 static u32 msrs_to_save[] = {
624 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
625 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
626 MSR_K6_STAR,
627 #ifdef CONFIG_X86_64
628 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
629 #endif
630 MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
631 };
632
633 static unsigned num_msrs_to_save;
634
635 static u32 emulated_msrs[] = {
636 MSR_IA32_MISC_ENABLE,
637 };
638
639 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
640 {
641 if (efer & efer_reserved_bits) {
642 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
643 efer);
644 kvm_inject_gp(vcpu, 0);
645 return;
646 }
647
648 if (is_paging(vcpu)
649 && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
650 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
651 kvm_inject_gp(vcpu, 0);
652 return;
653 }
654
655 if (efer & EFER_FFXSR) {
656 struct kvm_cpuid_entry2 *feat;
657
658 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
659 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
660 printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
661 kvm_inject_gp(vcpu, 0);
662 return;
663 }
664 }
665
666 if (efer & EFER_SVME) {
667 struct kvm_cpuid_entry2 *feat;
668
669 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
670 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
671 printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
672 kvm_inject_gp(vcpu, 0);
673 return;
674 }
675 }
676
677 kvm_x86_ops->set_efer(vcpu, efer);
678
679 efer &= ~EFER_LMA;
680 efer |= vcpu->arch.shadow_efer & EFER_LMA;
681
682 vcpu->arch.shadow_efer = efer;
683
684 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
685 kvm_mmu_reset_context(vcpu);
686 }
687
688 void kvm_enable_efer_bits(u64 mask)
689 {
690 efer_reserved_bits &= ~mask;
691 }
692 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
693
694
695 /*
696 * Writes msr value into into the appropriate "register".
697 * Returns 0 on success, non-0 otherwise.
698 * Assumes vcpu_load() was already called.
699 */
700 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
701 {
702 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
703 }
704
705 /*
706 * Adapt set_msr() to msr_io()'s calling convention
707 */
708 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
709 {
710 return kvm_set_msr(vcpu, index, *data);
711 }
712
713 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
714 {
715 static int version;
716 struct pvclock_wall_clock wc;
717 struct timespec boot;
718
719 if (!wall_clock)
720 return;
721
722 version++;
723
724 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
725
726 /*
727 * The guest calculates current wall clock time by adding
728 * system time (updated by kvm_write_guest_time below) to the
729 * wall clock specified here. guest system time equals host
730 * system time for us, thus we must fill in host boot time here.
731 */
732 getboottime(&boot);
733
734 wc.sec = boot.tv_sec;
735 wc.nsec = boot.tv_nsec;
736 wc.version = version;
737
738 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
739
740 version++;
741 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
742 }
743
744 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
745 {
746 uint32_t quotient, remainder;
747
748 /* Don't try to replace with do_div(), this one calculates
749 * "(dividend << 32) / divisor" */
750 __asm__ ( "divl %4"
751 : "=a" (quotient), "=d" (remainder)
752 : "0" (0), "1" (dividend), "r" (divisor) );
753 return quotient;
754 }
755
756 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
757 {
758 uint64_t nsecs = 1000000000LL;
759 int32_t shift = 0;
760 uint64_t tps64;
761 uint32_t tps32;
762
763 tps64 = tsc_khz * 1000LL;
764 while (tps64 > nsecs*2) {
765 tps64 >>= 1;
766 shift--;
767 }
768
769 tps32 = (uint32_t)tps64;
770 while (tps32 <= (uint32_t)nsecs) {
771 tps32 <<= 1;
772 shift++;
773 }
774
775 hv_clock->tsc_shift = shift;
776 hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
777
778 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
779 __func__, tsc_khz, hv_clock->tsc_shift,
780 hv_clock->tsc_to_system_mul);
781 }
782
783 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
784
785 static void kvm_write_guest_time(struct kvm_vcpu *v)
786 {
787 struct timespec ts;
788 unsigned long flags;
789 struct kvm_vcpu_arch *vcpu = &v->arch;
790 void *shared_kaddr;
791 unsigned long this_tsc_khz;
792
793 if ((!vcpu->time_page))
794 return;
795
796 this_tsc_khz = get_cpu_var(cpu_tsc_khz);
797 if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
798 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
799 vcpu->hv_clock_tsc_khz = this_tsc_khz;
800 }
801 put_cpu_var(cpu_tsc_khz);
802
803 /* Keep irq disabled to prevent changes to the clock */
804 local_irq_save(flags);
805 kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
806 ktime_get_ts(&ts);
807 monotonic_to_bootbased(&ts);
808 local_irq_restore(flags);
809
810 /* With all the info we got, fill in the values */
811
812 vcpu->hv_clock.system_time = ts.tv_nsec +
813 (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
814
815 /*
816 * The interface expects us to write an even number signaling that the
817 * update is finished. Since the guest won't see the intermediate
818 * state, we just increase by 2 at the end.
819 */
820 vcpu->hv_clock.version += 2;
821
822 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
823
824 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
825 sizeof(vcpu->hv_clock));
826
827 kunmap_atomic(shared_kaddr, KM_USER0);
828
829 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
830 }
831
832 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
833 {
834 struct kvm_vcpu_arch *vcpu = &v->arch;
835
836 if (!vcpu->time_page)
837 return 0;
838 set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
839 return 1;
840 }
841
842 static bool msr_mtrr_valid(unsigned msr)
843 {
844 switch (msr) {
845 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
846 case MSR_MTRRfix64K_00000:
847 case MSR_MTRRfix16K_80000:
848 case MSR_MTRRfix16K_A0000:
849 case MSR_MTRRfix4K_C0000:
850 case MSR_MTRRfix4K_C8000:
851 case MSR_MTRRfix4K_D0000:
852 case MSR_MTRRfix4K_D8000:
853 case MSR_MTRRfix4K_E0000:
854 case MSR_MTRRfix4K_E8000:
855 case MSR_MTRRfix4K_F0000:
856 case MSR_MTRRfix4K_F8000:
857 case MSR_MTRRdefType:
858 case MSR_IA32_CR_PAT:
859 return true;
860 case 0x2f8:
861 return true;
862 }
863 return false;
864 }
865
866 static bool valid_pat_type(unsigned t)
867 {
868 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
869 }
870
871 static bool valid_mtrr_type(unsigned t)
872 {
873 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
874 }
875
876 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
877 {
878 int i;
879
880 if (!msr_mtrr_valid(msr))
881 return false;
882
883 if (msr == MSR_IA32_CR_PAT) {
884 for (i = 0; i < 8; i++)
885 if (!valid_pat_type((data >> (i * 8)) & 0xff))
886 return false;
887 return true;
888 } else if (msr == MSR_MTRRdefType) {
889 if (data & ~0xcff)
890 return false;
891 return valid_mtrr_type(data & 0xff);
892 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
893 for (i = 0; i < 8 ; i++)
894 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
895 return false;
896 return true;
897 }
898
899 /* variable MTRRs */
900 return valid_mtrr_type(data & 0xff);
901 }
902
903 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
904 {
905 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
906
907 if (!mtrr_valid(vcpu, msr, data))
908 return 1;
909
910 if (msr == MSR_MTRRdefType) {
911 vcpu->arch.mtrr_state.def_type = data;
912 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
913 } else if (msr == MSR_MTRRfix64K_00000)
914 p[0] = data;
915 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
916 p[1 + msr - MSR_MTRRfix16K_80000] = data;
917 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
918 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
919 else if (msr == MSR_IA32_CR_PAT)
920 vcpu->arch.pat = data;
921 else { /* Variable MTRRs */
922 int idx, is_mtrr_mask;
923 u64 *pt;
924
925 idx = (msr - 0x200) / 2;
926 is_mtrr_mask = msr - 0x200 - 2 * idx;
927 if (!is_mtrr_mask)
928 pt =
929 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
930 else
931 pt =
932 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
933 *pt = data;
934 }
935
936 kvm_mmu_reset_context(vcpu);
937 return 0;
938 }
939
940 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
941 {
942 u64 mcg_cap = vcpu->arch.mcg_cap;
943 unsigned bank_num = mcg_cap & 0xff;
944
945 switch (msr) {
946 case MSR_IA32_MCG_STATUS:
947 vcpu->arch.mcg_status = data;
948 break;
949 case MSR_IA32_MCG_CTL:
950 if (!(mcg_cap & MCG_CTL_P))
951 return 1;
952 if (data != 0 && data != ~(u64)0)
953 return -1;
954 vcpu->arch.mcg_ctl = data;
955 break;
956 default:
957 if (msr >= MSR_IA32_MC0_CTL &&
958 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
959 u32 offset = msr - MSR_IA32_MC0_CTL;
960 /* only 0 or all 1s can be written to IA32_MCi_CTL */
961 if ((offset & 0x3) == 0 &&
962 data != 0 && data != ~(u64)0)
963 return -1;
964 vcpu->arch.mce_banks[offset] = data;
965 break;
966 }
967 return 1;
968 }
969 return 0;
970 }
971
972 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
973 {
974 struct kvm *kvm = vcpu->kvm;
975 int lm = is_long_mode(vcpu);
976 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
977 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
978 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
979 : kvm->arch.xen_hvm_config.blob_size_32;
980 u32 page_num = data & ~PAGE_MASK;
981 u64 page_addr = data & PAGE_MASK;
982 u8 *page;
983 int r;
984
985 r = -E2BIG;
986 if (page_num >= blob_size)
987 goto out;
988 r = -ENOMEM;
989 page = kzalloc(PAGE_SIZE, GFP_KERNEL);
990 if (!page)
991 goto out;
992 r = -EFAULT;
993 if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
994 goto out_free;
995 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
996 goto out_free;
997 r = 0;
998 out_free:
999 kfree(page);
1000 out:
1001 return r;
1002 }
1003
1004 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1005 {
1006 switch (msr) {
1007 case MSR_EFER:
1008 set_efer(vcpu, data);
1009 break;
1010 case MSR_K7_HWCR:
1011 data &= ~(u64)0x40; /* ignore flush filter disable */
1012 if (data != 0) {
1013 pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1014 data);
1015 return 1;
1016 }
1017 break;
1018 case MSR_FAM10H_MMIO_CONF_BASE:
1019 if (data != 0) {
1020 pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1021 "0x%llx\n", data);
1022 return 1;
1023 }
1024 break;
1025 case MSR_AMD64_NB_CFG:
1026 break;
1027 case MSR_IA32_DEBUGCTLMSR:
1028 if (!data) {
1029 /* We support the non-activated case already */
1030 break;
1031 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1032 /* Values other than LBR and BTF are vendor-specific,
1033 thus reserved and should throw a #GP */
1034 return 1;
1035 }
1036 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1037 __func__, data);
1038 break;
1039 case MSR_IA32_UCODE_REV:
1040 case MSR_IA32_UCODE_WRITE:
1041 case MSR_VM_HSAVE_PA:
1042 case MSR_AMD64_PATCH_LOADER:
1043 break;
1044 case 0x200 ... 0x2ff:
1045 return set_msr_mtrr(vcpu, msr, data);
1046 case MSR_IA32_APICBASE:
1047 kvm_set_apic_base(vcpu, data);
1048 break;
1049 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1050 return kvm_x2apic_msr_write(vcpu, msr, data);
1051 case MSR_IA32_MISC_ENABLE:
1052 vcpu->arch.ia32_misc_enable_msr = data;
1053 break;
1054 case MSR_KVM_WALL_CLOCK:
1055 vcpu->kvm->arch.wall_clock = data;
1056 kvm_write_wall_clock(vcpu->kvm, data);
1057 break;
1058 case MSR_KVM_SYSTEM_TIME: {
1059 if (vcpu->arch.time_page) {
1060 kvm_release_page_dirty(vcpu->arch.time_page);
1061 vcpu->arch.time_page = NULL;
1062 }
1063
1064 vcpu->arch.time = data;
1065
1066 /* we verify if the enable bit is set... */
1067 if (!(data & 1))
1068 break;
1069
1070 /* ...but clean it before doing the actual write */
1071 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1072
1073 vcpu->arch.time_page =
1074 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1075
1076 if (is_error_page(vcpu->arch.time_page)) {
1077 kvm_release_page_clean(vcpu->arch.time_page);
1078 vcpu->arch.time_page = NULL;
1079 }
1080
1081 kvm_request_guest_time_update(vcpu);
1082 break;
1083 }
1084 case MSR_IA32_MCG_CTL:
1085 case MSR_IA32_MCG_STATUS:
1086 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1087 return set_msr_mce(vcpu, msr, data);
1088
1089 /* Performance counters are not protected by a CPUID bit,
1090 * so we should check all of them in the generic path for the sake of
1091 * cross vendor migration.
1092 * Writing a zero into the event select MSRs disables them,
1093 * which we perfectly emulate ;-). Any other value should be at least
1094 * reported, some guests depend on them.
1095 */
1096 case MSR_P6_EVNTSEL0:
1097 case MSR_P6_EVNTSEL1:
1098 case MSR_K7_EVNTSEL0:
1099 case MSR_K7_EVNTSEL1:
1100 case MSR_K7_EVNTSEL2:
1101 case MSR_K7_EVNTSEL3:
1102 if (data != 0)
1103 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1104 "0x%x data 0x%llx\n", msr, data);
1105 break;
1106 /* at least RHEL 4 unconditionally writes to the perfctr registers,
1107 * so we ignore writes to make it happy.
1108 */
1109 case MSR_P6_PERFCTR0:
1110 case MSR_P6_PERFCTR1:
1111 case MSR_K7_PERFCTR0:
1112 case MSR_K7_PERFCTR1:
1113 case MSR_K7_PERFCTR2:
1114 case MSR_K7_PERFCTR3:
1115 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1116 "0x%x data 0x%llx\n", msr, data);
1117 break;
1118 default:
1119 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1120 return xen_hvm_config(vcpu, data);
1121 if (!ignore_msrs) {
1122 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1123 msr, data);
1124 return 1;
1125 } else {
1126 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1127 msr, data);
1128 break;
1129 }
1130 }
1131 return 0;
1132 }
1133 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1134
1135
1136 /*
1137 * Reads an msr value (of 'msr_index') into 'pdata'.
1138 * Returns 0 on success, non-0 otherwise.
1139 * Assumes vcpu_load() was already called.
1140 */
1141 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1142 {
1143 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1144 }
1145
1146 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1147 {
1148 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1149
1150 if (!msr_mtrr_valid(msr))
1151 return 1;
1152
1153 if (msr == MSR_MTRRdefType)
1154 *pdata = vcpu->arch.mtrr_state.def_type +
1155 (vcpu->arch.mtrr_state.enabled << 10);
1156 else if (msr == MSR_MTRRfix64K_00000)
1157 *pdata = p[0];
1158 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1159 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1160 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1161 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1162 else if (msr == MSR_IA32_CR_PAT)
1163 *pdata = vcpu->arch.pat;
1164 else { /* Variable MTRRs */
1165 int idx, is_mtrr_mask;
1166 u64 *pt;
1167
1168 idx = (msr - 0x200) / 2;
1169 is_mtrr_mask = msr - 0x200 - 2 * idx;
1170 if (!is_mtrr_mask)
1171 pt =
1172 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1173 else
1174 pt =
1175 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1176 *pdata = *pt;
1177 }
1178
1179 return 0;
1180 }
1181
1182 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1183 {
1184 u64 data;
1185 u64 mcg_cap = vcpu->arch.mcg_cap;
1186 unsigned bank_num = mcg_cap & 0xff;
1187
1188 switch (msr) {
1189 case MSR_IA32_P5_MC_ADDR:
1190 case MSR_IA32_P5_MC_TYPE:
1191 data = 0;
1192 break;
1193 case MSR_IA32_MCG_CAP:
1194 data = vcpu->arch.mcg_cap;
1195 break;
1196 case MSR_IA32_MCG_CTL:
1197 if (!(mcg_cap & MCG_CTL_P))
1198 return 1;
1199 data = vcpu->arch.mcg_ctl;
1200 break;
1201 case MSR_IA32_MCG_STATUS:
1202 data = vcpu->arch.mcg_status;
1203 break;
1204 default:
1205 if (msr >= MSR_IA32_MC0_CTL &&
1206 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1207 u32 offset = msr - MSR_IA32_MC0_CTL;
1208 data = vcpu->arch.mce_banks[offset];
1209 break;
1210 }
1211 return 1;
1212 }
1213 *pdata = data;
1214 return 0;
1215 }
1216
1217 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1218 {
1219 u64 data;
1220
1221 switch (msr) {
1222 case MSR_IA32_PLATFORM_ID:
1223 case MSR_IA32_UCODE_REV:
1224 case MSR_IA32_EBL_CR_POWERON:
1225 case MSR_IA32_DEBUGCTLMSR:
1226 case MSR_IA32_LASTBRANCHFROMIP:
1227 case MSR_IA32_LASTBRANCHTOIP:
1228 case MSR_IA32_LASTINTFROMIP:
1229 case MSR_IA32_LASTINTTOIP:
1230 case MSR_K8_SYSCFG:
1231 case MSR_K7_HWCR:
1232 case MSR_VM_HSAVE_PA:
1233 case MSR_P6_PERFCTR0:
1234 case MSR_P6_PERFCTR1:
1235 case MSR_P6_EVNTSEL0:
1236 case MSR_P6_EVNTSEL1:
1237 case MSR_K7_EVNTSEL0:
1238 case MSR_K7_PERFCTR0:
1239 case MSR_K8_INT_PENDING_MSG:
1240 case MSR_AMD64_NB_CFG:
1241 case MSR_FAM10H_MMIO_CONF_BASE:
1242 data = 0;
1243 break;
1244 case MSR_MTRRcap:
1245 data = 0x500 | KVM_NR_VAR_MTRR;
1246 break;
1247 case 0x200 ... 0x2ff:
1248 return get_msr_mtrr(vcpu, msr, pdata);
1249 case 0xcd: /* fsb frequency */
1250 data = 3;
1251 break;
1252 case MSR_IA32_APICBASE:
1253 data = kvm_get_apic_base(vcpu);
1254 break;
1255 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1256 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1257 break;
1258 case MSR_IA32_MISC_ENABLE:
1259 data = vcpu->arch.ia32_misc_enable_msr;
1260 break;
1261 case MSR_IA32_PERF_STATUS:
1262 /* TSC increment by tick */
1263 data = 1000ULL;
1264 /* CPU multiplier */
1265 data |= (((uint64_t)4ULL) << 40);
1266 break;
1267 case MSR_EFER:
1268 data = vcpu->arch.shadow_efer;
1269 break;
1270 case MSR_KVM_WALL_CLOCK:
1271 data = vcpu->kvm->arch.wall_clock;
1272 break;
1273 case MSR_KVM_SYSTEM_TIME:
1274 data = vcpu->arch.time;
1275 break;
1276 case MSR_IA32_P5_MC_ADDR:
1277 case MSR_IA32_P5_MC_TYPE:
1278 case MSR_IA32_MCG_CAP:
1279 case MSR_IA32_MCG_CTL:
1280 case MSR_IA32_MCG_STATUS:
1281 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1282 return get_msr_mce(vcpu, msr, pdata);
1283 default:
1284 if (!ignore_msrs) {
1285 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1286 return 1;
1287 } else {
1288 pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1289 data = 0;
1290 }
1291 break;
1292 }
1293 *pdata = data;
1294 return 0;
1295 }
1296 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1297
1298 /*
1299 * Read or write a bunch of msrs. All parameters are kernel addresses.
1300 *
1301 * @return number of msrs set successfully.
1302 */
1303 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1304 struct kvm_msr_entry *entries,
1305 int (*do_msr)(struct kvm_vcpu *vcpu,
1306 unsigned index, u64 *data))
1307 {
1308 int i;
1309
1310 vcpu_load(vcpu);
1311
1312 down_read(&vcpu->kvm->slots_lock);
1313 for (i = 0; i < msrs->nmsrs; ++i)
1314 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1315 break;
1316 up_read(&vcpu->kvm->slots_lock);
1317
1318 vcpu_put(vcpu);
1319
1320 return i;
1321 }
1322
1323 /*
1324 * Read or write a bunch of msrs. Parameters are user addresses.
1325 *
1326 * @return number of msrs set successfully.
1327 */
1328 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1329 int (*do_msr)(struct kvm_vcpu *vcpu,
1330 unsigned index, u64 *data),
1331 int writeback)
1332 {
1333 struct kvm_msrs msrs;
1334 struct kvm_msr_entry *entries;
1335 int r, n;
1336 unsigned size;
1337
1338 r = -EFAULT;
1339 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1340 goto out;
1341
1342 r = -E2BIG;
1343 if (msrs.nmsrs >= MAX_IO_MSRS)
1344 goto out;
1345
1346 r = -ENOMEM;
1347 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1348 entries = vmalloc(size);
1349 if (!entries)
1350 goto out;
1351
1352 r = -EFAULT;
1353 if (copy_from_user(entries, user_msrs->entries, size))
1354 goto out_free;
1355
1356 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1357 if (r < 0)
1358 goto out_free;
1359
1360 r = -EFAULT;
1361 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1362 goto out_free;
1363
1364 r = n;
1365
1366 out_free:
1367 vfree(entries);
1368 out:
1369 return r;
1370 }
1371
1372 int kvm_dev_ioctl_check_extension(long ext)
1373 {
1374 int r;
1375
1376 switch (ext) {
1377 case KVM_CAP_IRQCHIP:
1378 case KVM_CAP_HLT:
1379 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1380 case KVM_CAP_SET_TSS_ADDR:
1381 case KVM_CAP_EXT_CPUID:
1382 case KVM_CAP_CLOCKSOURCE:
1383 case KVM_CAP_PIT:
1384 case KVM_CAP_NOP_IO_DELAY:
1385 case KVM_CAP_MP_STATE:
1386 case KVM_CAP_SYNC_MMU:
1387 case KVM_CAP_REINJECT_CONTROL:
1388 case KVM_CAP_IRQ_INJECT_STATUS:
1389 case KVM_CAP_ASSIGN_DEV_IRQ:
1390 case KVM_CAP_IRQFD:
1391 case KVM_CAP_IOEVENTFD:
1392 case KVM_CAP_PIT2:
1393 case KVM_CAP_PIT_STATE2:
1394 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1395 case KVM_CAP_XEN_HVM:
1396 case KVM_CAP_ADJUST_CLOCK:
1397 case KVM_CAP_VCPU_EVENTS:
1398 r = 1;
1399 break;
1400 case KVM_CAP_COALESCED_MMIO:
1401 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1402 break;
1403 case KVM_CAP_VAPIC:
1404 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1405 break;
1406 case KVM_CAP_NR_VCPUS:
1407 r = KVM_MAX_VCPUS;
1408 break;
1409 case KVM_CAP_NR_MEMSLOTS:
1410 r = KVM_MEMORY_SLOTS;
1411 break;
1412 case KVM_CAP_PV_MMU: /* obsolete */
1413 r = 0;
1414 break;
1415 case KVM_CAP_IOMMU:
1416 r = iommu_found();
1417 break;
1418 case KVM_CAP_MCE:
1419 r = KVM_MAX_MCE_BANKS;
1420 break;
1421 default:
1422 r = 0;
1423 break;
1424 }
1425 return r;
1426
1427 }
1428
1429 long kvm_arch_dev_ioctl(struct file *filp,
1430 unsigned int ioctl, unsigned long arg)
1431 {
1432 void __user *argp = (void __user *)arg;
1433 long r;
1434
1435 switch (ioctl) {
1436 case KVM_GET_MSR_INDEX_LIST: {
1437 struct kvm_msr_list __user *user_msr_list = argp;
1438 struct kvm_msr_list msr_list;
1439 unsigned n;
1440
1441 r = -EFAULT;
1442 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1443 goto out;
1444 n = msr_list.nmsrs;
1445 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1446 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1447 goto out;
1448 r = -E2BIG;
1449 if (n < msr_list.nmsrs)
1450 goto out;
1451 r = -EFAULT;
1452 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1453 num_msrs_to_save * sizeof(u32)))
1454 goto out;
1455 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1456 &emulated_msrs,
1457 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1458 goto out;
1459 r = 0;
1460 break;
1461 }
1462 case KVM_GET_SUPPORTED_CPUID: {
1463 struct kvm_cpuid2 __user *cpuid_arg = argp;
1464 struct kvm_cpuid2 cpuid;
1465
1466 r = -EFAULT;
1467 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1468 goto out;
1469 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1470 cpuid_arg->entries);
1471 if (r)
1472 goto out;
1473
1474 r = -EFAULT;
1475 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1476 goto out;
1477 r = 0;
1478 break;
1479 }
1480 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1481 u64 mce_cap;
1482
1483 mce_cap = KVM_MCE_CAP_SUPPORTED;
1484 r = -EFAULT;
1485 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1486 goto out;
1487 r = 0;
1488 break;
1489 }
1490 default:
1491 r = -EINVAL;
1492 }
1493 out:
1494 return r;
1495 }
1496
1497 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1498 {
1499 kvm_x86_ops->vcpu_load(vcpu, cpu);
1500 if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) {
1501 unsigned long khz = cpufreq_quick_get(cpu);
1502 if (!khz)
1503 khz = tsc_khz;
1504 per_cpu(cpu_tsc_khz, cpu) = khz;
1505 }
1506 kvm_request_guest_time_update(vcpu);
1507 }
1508
1509 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1510 {
1511 kvm_x86_ops->vcpu_put(vcpu);
1512 kvm_put_guest_fpu(vcpu);
1513 }
1514
1515 static int is_efer_nx(void)
1516 {
1517 unsigned long long efer = 0;
1518
1519 rdmsrl_safe(MSR_EFER, &efer);
1520 return efer & EFER_NX;
1521 }
1522
1523 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1524 {
1525 int i;
1526 struct kvm_cpuid_entry2 *e, *entry;
1527
1528 entry = NULL;
1529 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1530 e = &vcpu->arch.cpuid_entries[i];
1531 if (e->function == 0x80000001) {
1532 entry = e;
1533 break;
1534 }
1535 }
1536 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1537 entry->edx &= ~(1 << 20);
1538 printk(KERN_INFO "kvm: guest NX capability removed\n");
1539 }
1540 }
1541
1542 /* when an old userspace process fills a new kernel module */
1543 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1544 struct kvm_cpuid *cpuid,
1545 struct kvm_cpuid_entry __user *entries)
1546 {
1547 int r, i;
1548 struct kvm_cpuid_entry *cpuid_entries;
1549
1550 r = -E2BIG;
1551 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1552 goto out;
1553 r = -ENOMEM;
1554 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1555 if (!cpuid_entries)
1556 goto out;
1557 r = -EFAULT;
1558 if (copy_from_user(cpuid_entries, entries,
1559 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1560 goto out_free;
1561 for (i = 0; i < cpuid->nent; i++) {
1562 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1563 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1564 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1565 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1566 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1567 vcpu->arch.cpuid_entries[i].index = 0;
1568 vcpu->arch.cpuid_entries[i].flags = 0;
1569 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1570 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1571 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1572 }
1573 vcpu->arch.cpuid_nent = cpuid->nent;
1574 cpuid_fix_nx_cap(vcpu);
1575 r = 0;
1576 kvm_apic_set_version(vcpu);
1577 kvm_x86_ops->cpuid_update(vcpu);
1578
1579 out_free:
1580 vfree(cpuid_entries);
1581 out:
1582 return r;
1583 }
1584
1585 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1586 struct kvm_cpuid2 *cpuid,
1587 struct kvm_cpuid_entry2 __user *entries)
1588 {
1589 int r;
1590
1591 r = -E2BIG;
1592 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1593 goto out;
1594 r = -EFAULT;
1595 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1596 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1597 goto out;
1598 vcpu->arch.cpuid_nent = cpuid->nent;
1599 kvm_apic_set_version(vcpu);
1600 kvm_x86_ops->cpuid_update(vcpu);
1601 return 0;
1602
1603 out:
1604 return r;
1605 }
1606
1607 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1608 struct kvm_cpuid2 *cpuid,
1609 struct kvm_cpuid_entry2 __user *entries)
1610 {
1611 int r;
1612
1613 r = -E2BIG;
1614 if (cpuid->nent < vcpu->arch.cpuid_nent)
1615 goto out;
1616 r = -EFAULT;
1617 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1618 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1619 goto out;
1620 return 0;
1621
1622 out:
1623 cpuid->nent = vcpu->arch.cpuid_nent;
1624 return r;
1625 }
1626
1627 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1628 u32 index)
1629 {
1630 entry->function = function;
1631 entry->index = index;
1632 cpuid_count(entry->function, entry->index,
1633 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1634 entry->flags = 0;
1635 }
1636
1637 #define F(x) bit(X86_FEATURE_##x)
1638
1639 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1640 u32 index, int *nent, int maxnent)
1641 {
1642 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
1643 unsigned f_gbpages = kvm_x86_ops->gb_page_enable() ? F(GBPAGES) : 0;
1644 #ifdef CONFIG_X86_64
1645 unsigned f_lm = F(LM);
1646 #else
1647 unsigned f_lm = 0;
1648 #endif
1649 unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
1650
1651 /* cpuid 1.edx */
1652 const u32 kvm_supported_word0_x86_features =
1653 F(FPU) | F(VME) | F(DE) | F(PSE) |
1654 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1655 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
1656 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1657 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
1658 0 /* Reserved, DS, ACPI */ | F(MMX) |
1659 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
1660 0 /* HTT, TM, Reserved, PBE */;
1661 /* cpuid 0x80000001.edx */
1662 const u32 kvm_supported_word1_x86_features =
1663 F(FPU) | F(VME) | F(DE) | F(PSE) |
1664 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1665 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
1666 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1667 F(PAT) | F(PSE36) | 0 /* Reserved */ |
1668 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
1669 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
1670 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
1671 /* cpuid 1.ecx */
1672 const u32 kvm_supported_word4_x86_features =
1673 F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
1674 0 /* DS-CPL, VMX, SMX, EST */ |
1675 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1676 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
1677 0 /* Reserved, DCA */ | F(XMM4_1) |
1678 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
1679 0 /* Reserved, XSAVE, OSXSAVE */;
1680 /* cpuid 0x80000001.ecx */
1681 const u32 kvm_supported_word6_x86_features =
1682 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
1683 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
1684 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
1685 0 /* SKINIT */ | 0 /* WDT */;
1686
1687 /* all calls to cpuid_count() should be made on the same cpu */
1688 get_cpu();
1689 do_cpuid_1_ent(entry, function, index);
1690 ++*nent;
1691
1692 switch (function) {
1693 case 0:
1694 entry->eax = min(entry->eax, (u32)0xb);
1695 break;
1696 case 1:
1697 entry->edx &= kvm_supported_word0_x86_features;
1698 entry->ecx &= kvm_supported_word4_x86_features;
1699 /* we support x2apic emulation even if host does not support
1700 * it since we emulate x2apic in software */
1701 entry->ecx |= F(X2APIC);
1702 break;
1703 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1704 * may return different values. This forces us to get_cpu() before
1705 * issuing the first command, and also to emulate this annoying behavior
1706 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1707 case 2: {
1708 int t, times = entry->eax & 0xff;
1709
1710 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1711 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1712 for (t = 1; t < times && *nent < maxnent; ++t) {
1713 do_cpuid_1_ent(&entry[t], function, 0);
1714 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1715 ++*nent;
1716 }
1717 break;
1718 }
1719 /* function 4 and 0xb have additional index. */
1720 case 4: {
1721 int i, cache_type;
1722
1723 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1724 /* read more entries until cache_type is zero */
1725 for (i = 1; *nent < maxnent; ++i) {
1726 cache_type = entry[i - 1].eax & 0x1f;
1727 if (!cache_type)
1728 break;
1729 do_cpuid_1_ent(&entry[i], function, i);
1730 entry[i].flags |=
1731 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1732 ++*nent;
1733 }
1734 break;
1735 }
1736 case 0xb: {
1737 int i, level_type;
1738
1739 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1740 /* read more entries until level_type is zero */
1741 for (i = 1; *nent < maxnent; ++i) {
1742 level_type = entry[i - 1].ecx & 0xff00;
1743 if (!level_type)
1744 break;
1745 do_cpuid_1_ent(&entry[i], function, i);
1746 entry[i].flags |=
1747 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1748 ++*nent;
1749 }
1750 break;
1751 }
1752 case 0x80000000:
1753 entry->eax = min(entry->eax, 0x8000001a);
1754 break;
1755 case 0x80000001:
1756 entry->edx &= kvm_supported_word1_x86_features;
1757 entry->ecx &= kvm_supported_word6_x86_features;
1758 break;
1759 }
1760 put_cpu();
1761 }
1762
1763 #undef F
1764
1765 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1766 struct kvm_cpuid_entry2 __user *entries)
1767 {
1768 struct kvm_cpuid_entry2 *cpuid_entries;
1769 int limit, nent = 0, r = -E2BIG;
1770 u32 func;
1771
1772 if (cpuid->nent < 1)
1773 goto out;
1774 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1775 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1776 r = -ENOMEM;
1777 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1778 if (!cpuid_entries)
1779 goto out;
1780
1781 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1782 limit = cpuid_entries[0].eax;
1783 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1784 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1785 &nent, cpuid->nent);
1786 r = -E2BIG;
1787 if (nent >= cpuid->nent)
1788 goto out_free;
1789
1790 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1791 limit = cpuid_entries[nent - 1].eax;
1792 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1793 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1794 &nent, cpuid->nent);
1795 r = -E2BIG;
1796 if (nent >= cpuid->nent)
1797 goto out_free;
1798
1799 r = -EFAULT;
1800 if (copy_to_user(entries, cpuid_entries,
1801 nent * sizeof(struct kvm_cpuid_entry2)))
1802 goto out_free;
1803 cpuid->nent = nent;
1804 r = 0;
1805
1806 out_free:
1807 vfree(cpuid_entries);
1808 out:
1809 return r;
1810 }
1811
1812 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1813 struct kvm_lapic_state *s)
1814 {
1815 vcpu_load(vcpu);
1816 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1817 vcpu_put(vcpu);
1818
1819 return 0;
1820 }
1821
1822 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1823 struct kvm_lapic_state *s)
1824 {
1825 vcpu_load(vcpu);
1826 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1827 kvm_apic_post_state_restore(vcpu);
1828 update_cr8_intercept(vcpu);
1829 vcpu_put(vcpu);
1830
1831 return 0;
1832 }
1833
1834 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1835 struct kvm_interrupt *irq)
1836 {
1837 if (irq->irq < 0 || irq->irq >= 256)
1838 return -EINVAL;
1839 if (irqchip_in_kernel(vcpu->kvm))
1840 return -ENXIO;
1841 vcpu_load(vcpu);
1842
1843 kvm_queue_interrupt(vcpu, irq->irq, false);
1844
1845 vcpu_put(vcpu);
1846
1847 return 0;
1848 }
1849
1850 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
1851 {
1852 vcpu_load(vcpu);
1853 kvm_inject_nmi(vcpu);
1854 vcpu_put(vcpu);
1855
1856 return 0;
1857 }
1858
1859 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1860 struct kvm_tpr_access_ctl *tac)
1861 {
1862 if (tac->flags)
1863 return -EINVAL;
1864 vcpu->arch.tpr_access_reporting = !!tac->enabled;
1865 return 0;
1866 }
1867
1868 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
1869 u64 mcg_cap)
1870 {
1871 int r;
1872 unsigned bank_num = mcg_cap & 0xff, bank;
1873
1874 r = -EINVAL;
1875 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
1876 goto out;
1877 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
1878 goto out;
1879 r = 0;
1880 vcpu->arch.mcg_cap = mcg_cap;
1881 /* Init IA32_MCG_CTL to all 1s */
1882 if (mcg_cap & MCG_CTL_P)
1883 vcpu->arch.mcg_ctl = ~(u64)0;
1884 /* Init IA32_MCi_CTL to all 1s */
1885 for (bank = 0; bank < bank_num; bank++)
1886 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
1887 out:
1888 return r;
1889 }
1890
1891 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
1892 struct kvm_x86_mce *mce)
1893 {
1894 u64 mcg_cap = vcpu->arch.mcg_cap;
1895 unsigned bank_num = mcg_cap & 0xff;
1896 u64 *banks = vcpu->arch.mce_banks;
1897
1898 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
1899 return -EINVAL;
1900 /*
1901 * if IA32_MCG_CTL is not all 1s, the uncorrected error
1902 * reporting is disabled
1903 */
1904 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
1905 vcpu->arch.mcg_ctl != ~(u64)0)
1906 return 0;
1907 banks += 4 * mce->bank;
1908 /*
1909 * if IA32_MCi_CTL is not all 1s, the uncorrected error
1910 * reporting is disabled for the bank
1911 */
1912 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
1913 return 0;
1914 if (mce->status & MCI_STATUS_UC) {
1915 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
1916 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
1917 printk(KERN_DEBUG "kvm: set_mce: "
1918 "injects mce exception while "
1919 "previous one is in progress!\n");
1920 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
1921 return 0;
1922 }
1923 if (banks[1] & MCI_STATUS_VAL)
1924 mce->status |= MCI_STATUS_OVER;
1925 banks[2] = mce->addr;
1926 banks[3] = mce->misc;
1927 vcpu->arch.mcg_status = mce->mcg_status;
1928 banks[1] = mce->status;
1929 kvm_queue_exception(vcpu, MC_VECTOR);
1930 } else if (!(banks[1] & MCI_STATUS_VAL)
1931 || !(banks[1] & MCI_STATUS_UC)) {
1932 if (banks[1] & MCI_STATUS_VAL)
1933 mce->status |= MCI_STATUS_OVER;
1934 banks[2] = mce->addr;
1935 banks[3] = mce->misc;
1936 banks[1] = mce->status;
1937 } else
1938 banks[1] |= MCI_STATUS_OVER;
1939 return 0;
1940 }
1941
1942 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
1943 struct kvm_vcpu_events *events)
1944 {
1945 vcpu_load(vcpu);
1946
1947 events->exception.injected = vcpu->arch.exception.pending;
1948 events->exception.nr = vcpu->arch.exception.nr;
1949 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
1950 events->exception.error_code = vcpu->arch.exception.error_code;
1951
1952 events->interrupt.injected = vcpu->arch.interrupt.pending;
1953 events->interrupt.nr = vcpu->arch.interrupt.nr;
1954 events->interrupt.soft = vcpu->arch.interrupt.soft;
1955
1956 events->nmi.injected = vcpu->arch.nmi_injected;
1957 events->nmi.pending = vcpu->arch.nmi_pending;
1958 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
1959
1960 events->sipi_vector = vcpu->arch.sipi_vector;
1961
1962 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
1963 | KVM_VCPUEVENT_VALID_SIPI_VECTOR);
1964
1965 vcpu_put(vcpu);
1966 }
1967
1968 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
1969 struct kvm_vcpu_events *events)
1970 {
1971 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
1972 | KVM_VCPUEVENT_VALID_SIPI_VECTOR))
1973 return -EINVAL;
1974
1975 vcpu_load(vcpu);
1976
1977 vcpu->arch.exception.pending = events->exception.injected;
1978 vcpu->arch.exception.nr = events->exception.nr;
1979 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
1980 vcpu->arch.exception.error_code = events->exception.error_code;
1981
1982 vcpu->arch.interrupt.pending = events->interrupt.injected;
1983 vcpu->arch.interrupt.nr = events->interrupt.nr;
1984 vcpu->arch.interrupt.soft = events->interrupt.soft;
1985 if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
1986 kvm_pic_clear_isr_ack(vcpu->kvm);
1987
1988 vcpu->arch.nmi_injected = events->nmi.injected;
1989 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
1990 vcpu->arch.nmi_pending = events->nmi.pending;
1991 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
1992
1993 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
1994 vcpu->arch.sipi_vector = events->sipi_vector;
1995
1996 vcpu_put(vcpu);
1997
1998 return 0;
1999 }
2000
2001 long kvm_arch_vcpu_ioctl(struct file *filp,
2002 unsigned int ioctl, unsigned long arg)
2003 {
2004 struct kvm_vcpu *vcpu = filp->private_data;
2005 void __user *argp = (void __user *)arg;
2006 int r;
2007 struct kvm_lapic_state *lapic = NULL;
2008
2009 switch (ioctl) {
2010 case KVM_GET_LAPIC: {
2011 r = -EINVAL;
2012 if (!vcpu->arch.apic)
2013 goto out;
2014 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2015
2016 r = -ENOMEM;
2017 if (!lapic)
2018 goto out;
2019 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
2020 if (r)
2021 goto out;
2022 r = -EFAULT;
2023 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
2024 goto out;
2025 r = 0;
2026 break;
2027 }
2028 case KVM_SET_LAPIC: {
2029 r = -EINVAL;
2030 if (!vcpu->arch.apic)
2031 goto out;
2032 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2033 r = -ENOMEM;
2034 if (!lapic)
2035 goto out;
2036 r = -EFAULT;
2037 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
2038 goto out;
2039 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
2040 if (r)
2041 goto out;
2042 r = 0;
2043 break;
2044 }
2045 case KVM_INTERRUPT: {
2046 struct kvm_interrupt irq;
2047
2048 r = -EFAULT;
2049 if (copy_from_user(&irq, argp, sizeof irq))
2050 goto out;
2051 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2052 if (r)
2053 goto out;
2054 r = 0;
2055 break;
2056 }
2057 case KVM_NMI: {
2058 r = kvm_vcpu_ioctl_nmi(vcpu);
2059 if (r)
2060 goto out;
2061 r = 0;
2062 break;
2063 }
2064 case KVM_SET_CPUID: {
2065 struct kvm_cpuid __user *cpuid_arg = argp;
2066 struct kvm_cpuid cpuid;
2067
2068 r = -EFAULT;
2069 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2070 goto out;
2071 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2072 if (r)
2073 goto out;
2074 break;
2075 }
2076 case KVM_SET_CPUID2: {
2077 struct kvm_cpuid2 __user *cpuid_arg = argp;
2078 struct kvm_cpuid2 cpuid;
2079
2080 r = -EFAULT;
2081 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2082 goto out;
2083 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2084 cpuid_arg->entries);
2085 if (r)
2086 goto out;
2087 break;
2088 }
2089 case KVM_GET_CPUID2: {
2090 struct kvm_cpuid2 __user *cpuid_arg = argp;
2091 struct kvm_cpuid2 cpuid;
2092
2093 r = -EFAULT;
2094 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2095 goto out;
2096 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2097 cpuid_arg->entries);
2098 if (r)
2099 goto out;
2100 r = -EFAULT;
2101 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2102 goto out;
2103 r = 0;
2104 break;
2105 }
2106 case KVM_GET_MSRS:
2107 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2108 break;
2109 case KVM_SET_MSRS:
2110 r = msr_io(vcpu, argp, do_set_msr, 0);
2111 break;
2112 case KVM_TPR_ACCESS_REPORTING: {
2113 struct kvm_tpr_access_ctl tac;
2114
2115 r = -EFAULT;
2116 if (copy_from_user(&tac, argp, sizeof tac))
2117 goto out;
2118 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2119 if (r)
2120 goto out;
2121 r = -EFAULT;
2122 if (copy_to_user(argp, &tac, sizeof tac))
2123 goto out;
2124 r = 0;
2125 break;
2126 };
2127 case KVM_SET_VAPIC_ADDR: {
2128 struct kvm_vapic_addr va;
2129
2130 r = -EINVAL;
2131 if (!irqchip_in_kernel(vcpu->kvm))
2132 goto out;
2133 r = -EFAULT;
2134 if (copy_from_user(&va, argp, sizeof va))
2135 goto out;
2136 r = 0;
2137 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2138 break;
2139 }
2140 case KVM_X86_SETUP_MCE: {
2141 u64 mcg_cap;
2142
2143 r = -EFAULT;
2144 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2145 goto out;
2146 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2147 break;
2148 }
2149 case KVM_X86_SET_MCE: {
2150 struct kvm_x86_mce mce;
2151
2152 r = -EFAULT;
2153 if (copy_from_user(&mce, argp, sizeof mce))
2154 goto out;
2155 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2156 break;
2157 }
2158 case KVM_GET_VCPU_EVENTS: {
2159 struct kvm_vcpu_events events;
2160
2161 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2162
2163 r = -EFAULT;
2164 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2165 break;
2166 r = 0;
2167 break;
2168 }
2169 case KVM_SET_VCPU_EVENTS: {
2170 struct kvm_vcpu_events events;
2171
2172 r = -EFAULT;
2173 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2174 break;
2175
2176 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2177 break;
2178 }
2179 default:
2180 r = -EINVAL;
2181 }
2182 out:
2183 kfree(lapic);
2184 return r;
2185 }
2186
2187 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2188 {
2189 int ret;
2190
2191 if (addr > (unsigned int)(-3 * PAGE_SIZE))
2192 return -1;
2193 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2194 return ret;
2195 }
2196
2197 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2198 u64 ident_addr)
2199 {
2200 kvm->arch.ept_identity_map_addr = ident_addr;
2201 return 0;
2202 }
2203
2204 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2205 u32 kvm_nr_mmu_pages)
2206 {
2207 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2208 return -EINVAL;
2209
2210 down_write(&kvm->slots_lock);
2211 spin_lock(&kvm->mmu_lock);
2212
2213 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2214 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2215
2216 spin_unlock(&kvm->mmu_lock);
2217 up_write(&kvm->slots_lock);
2218 return 0;
2219 }
2220
2221 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2222 {
2223 return kvm->arch.n_alloc_mmu_pages;
2224 }
2225
2226 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
2227 {
2228 int i;
2229 struct kvm_mem_alias *alias;
2230
2231 for (i = 0; i < kvm->arch.naliases; ++i) {
2232 alias = &kvm->arch.aliases[i];
2233 if (gfn >= alias->base_gfn
2234 && gfn < alias->base_gfn + alias->npages)
2235 return alias->target_gfn + gfn - alias->base_gfn;
2236 }
2237 return gfn;
2238 }
2239
2240 /*
2241 * Set a new alias region. Aliases map a portion of physical memory into
2242 * another portion. This is useful for memory windows, for example the PC
2243 * VGA region.
2244 */
2245 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
2246 struct kvm_memory_alias *alias)
2247 {
2248 int r, n;
2249 struct kvm_mem_alias *p;
2250
2251 r = -EINVAL;
2252 /* General sanity checks */
2253 if (alias->memory_size & (PAGE_SIZE - 1))
2254 goto out;
2255 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
2256 goto out;
2257 if (alias->slot >= KVM_ALIAS_SLOTS)
2258 goto out;
2259 if (alias->guest_phys_addr + alias->memory_size
2260 < alias->guest_phys_addr)
2261 goto out;
2262 if (alias->target_phys_addr + alias->memory_size
2263 < alias->target_phys_addr)
2264 goto out;
2265
2266 down_write(&kvm->slots_lock);
2267 spin_lock(&kvm->mmu_lock);
2268
2269 p = &kvm->arch.aliases[alias->slot];
2270 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
2271 p->npages = alias->memory_size >> PAGE_SHIFT;
2272 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
2273
2274 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
2275 if (kvm->arch.aliases[n - 1].npages)
2276 break;
2277 kvm->arch.naliases = n;
2278
2279 spin_unlock(&kvm->mmu_lock);
2280 kvm_mmu_zap_all(kvm);
2281
2282 up_write(&kvm->slots_lock);
2283
2284 return 0;
2285
2286 out:
2287 return r;
2288 }
2289
2290 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2291 {
2292 int r;
2293
2294 r = 0;
2295 switch (chip->chip_id) {
2296 case KVM_IRQCHIP_PIC_MASTER:
2297 memcpy(&chip->chip.pic,
2298 &pic_irqchip(kvm)->pics[0],
2299 sizeof(struct kvm_pic_state));
2300 break;
2301 case KVM_IRQCHIP_PIC_SLAVE:
2302 memcpy(&chip->chip.pic,
2303 &pic_irqchip(kvm)->pics[1],
2304 sizeof(struct kvm_pic_state));
2305 break;
2306 case KVM_IRQCHIP_IOAPIC:
2307 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2308 break;
2309 default:
2310 r = -EINVAL;
2311 break;
2312 }
2313 return r;
2314 }
2315
2316 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2317 {
2318 int r;
2319
2320 r = 0;
2321 switch (chip->chip_id) {
2322 case KVM_IRQCHIP_PIC_MASTER:
2323 spin_lock(&pic_irqchip(kvm)->lock);
2324 memcpy(&pic_irqchip(kvm)->pics[0],
2325 &chip->chip.pic,
2326 sizeof(struct kvm_pic_state));
2327 spin_unlock(&pic_irqchip(kvm)->lock);
2328 break;
2329 case KVM_IRQCHIP_PIC_SLAVE:
2330 spin_lock(&pic_irqchip(kvm)->lock);
2331 memcpy(&pic_irqchip(kvm)->pics[1],
2332 &chip->chip.pic,
2333 sizeof(struct kvm_pic_state));
2334 spin_unlock(&pic_irqchip(kvm)->lock);
2335 break;
2336 case KVM_IRQCHIP_IOAPIC:
2337 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
2338 break;
2339 default:
2340 r = -EINVAL;
2341 break;
2342 }
2343 kvm_pic_update_irq(pic_irqchip(kvm));
2344 return r;
2345 }
2346
2347 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2348 {
2349 int r = 0;
2350
2351 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2352 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2353 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2354 return r;
2355 }
2356
2357 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2358 {
2359 int r = 0;
2360
2361 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2362 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2363 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2364 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2365 return r;
2366 }
2367
2368 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2369 {
2370 int r = 0;
2371
2372 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2373 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2374 sizeof(ps->channels));
2375 ps->flags = kvm->arch.vpit->pit_state.flags;
2376 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2377 return r;
2378 }
2379
2380 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2381 {
2382 int r = 0, start = 0;
2383 u32 prev_legacy, cur_legacy;
2384 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2385 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2386 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2387 if (!prev_legacy && cur_legacy)
2388 start = 1;
2389 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2390 sizeof(kvm->arch.vpit->pit_state.channels));
2391 kvm->arch.vpit->pit_state.flags = ps->flags;
2392 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2393 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2394 return r;
2395 }
2396
2397 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2398 struct kvm_reinject_control *control)
2399 {
2400 if (!kvm->arch.vpit)
2401 return -ENXIO;
2402 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2403 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2404 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2405 return 0;
2406 }
2407
2408 /*
2409 * Get (and clear) the dirty memory log for a memory slot.
2410 */
2411 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2412 struct kvm_dirty_log *log)
2413 {
2414 int r;
2415 int n;
2416 struct kvm_memory_slot *memslot;
2417 int is_dirty = 0;
2418
2419 down_write(&kvm->slots_lock);
2420
2421 r = kvm_get_dirty_log(kvm, log, &is_dirty);
2422 if (r)
2423 goto out;
2424
2425 /* If nothing is dirty, don't bother messing with page tables. */
2426 if (is_dirty) {
2427 spin_lock(&kvm->mmu_lock);
2428 kvm_mmu_slot_remove_write_access(kvm, log->slot);
2429 spin_unlock(&kvm->mmu_lock);
2430 memslot = &kvm->memslots->memslots[log->slot];
2431 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
2432 memset(memslot->dirty_bitmap, 0, n);
2433 }
2434 r = 0;
2435 out:
2436 up_write(&kvm->slots_lock);
2437 return r;
2438 }
2439
2440 long kvm_arch_vm_ioctl(struct file *filp,
2441 unsigned int ioctl, unsigned long arg)
2442 {
2443 struct kvm *kvm = filp->private_data;
2444 void __user *argp = (void __user *)arg;
2445 int r = -ENOTTY;
2446 /*
2447 * This union makes it completely explicit to gcc-3.x
2448 * that these two variables' stack usage should be
2449 * combined, not added together.
2450 */
2451 union {
2452 struct kvm_pit_state ps;
2453 struct kvm_pit_state2 ps2;
2454 struct kvm_memory_alias alias;
2455 struct kvm_pit_config pit_config;
2456 } u;
2457
2458 switch (ioctl) {
2459 case KVM_SET_TSS_ADDR:
2460 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
2461 if (r < 0)
2462 goto out;
2463 break;
2464 case KVM_SET_IDENTITY_MAP_ADDR: {
2465 u64 ident_addr;
2466
2467 r = -EFAULT;
2468 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
2469 goto out;
2470 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
2471 if (r < 0)
2472 goto out;
2473 break;
2474 }
2475 case KVM_SET_MEMORY_REGION: {
2476 struct kvm_memory_region kvm_mem;
2477 struct kvm_userspace_memory_region kvm_userspace_mem;
2478
2479 r = -EFAULT;
2480 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2481 goto out;
2482 kvm_userspace_mem.slot = kvm_mem.slot;
2483 kvm_userspace_mem.flags = kvm_mem.flags;
2484 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
2485 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
2486 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
2487 if (r)
2488 goto out;
2489 break;
2490 }
2491 case KVM_SET_NR_MMU_PAGES:
2492 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
2493 if (r)
2494 goto out;
2495 break;
2496 case KVM_GET_NR_MMU_PAGES:
2497 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
2498 break;
2499 case KVM_SET_MEMORY_ALIAS:
2500 r = -EFAULT;
2501 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
2502 goto out;
2503 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
2504 if (r)
2505 goto out;
2506 break;
2507 case KVM_CREATE_IRQCHIP: {
2508 struct kvm_pic *vpic;
2509
2510 mutex_lock(&kvm->lock);
2511 r = -EEXIST;
2512 if (kvm->arch.vpic)
2513 goto create_irqchip_unlock;
2514 r = -ENOMEM;
2515 vpic = kvm_create_pic(kvm);
2516 if (vpic) {
2517 r = kvm_ioapic_init(kvm);
2518 if (r) {
2519 kfree(vpic);
2520 goto create_irqchip_unlock;
2521 }
2522 } else
2523 goto create_irqchip_unlock;
2524 smp_wmb();
2525 kvm->arch.vpic = vpic;
2526 smp_wmb();
2527 r = kvm_setup_default_irq_routing(kvm);
2528 if (r) {
2529 mutex_lock(&kvm->irq_lock);
2530 kfree(kvm->arch.vpic);
2531 kfree(kvm->arch.vioapic);
2532 kvm->arch.vpic = NULL;
2533 kvm->arch.vioapic = NULL;
2534 mutex_unlock(&kvm->irq_lock);
2535 }
2536 create_irqchip_unlock:
2537 mutex_unlock(&kvm->lock);
2538 break;
2539 }
2540 case KVM_CREATE_PIT:
2541 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
2542 goto create_pit;
2543 case KVM_CREATE_PIT2:
2544 r = -EFAULT;
2545 if (copy_from_user(&u.pit_config, argp,
2546 sizeof(struct kvm_pit_config)))
2547 goto out;
2548 create_pit:
2549 down_write(&kvm->slots_lock);
2550 r = -EEXIST;
2551 if (kvm->arch.vpit)
2552 goto create_pit_unlock;
2553 r = -ENOMEM;
2554 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
2555 if (kvm->arch.vpit)
2556 r = 0;
2557 create_pit_unlock:
2558 up_write(&kvm->slots_lock);
2559 break;
2560 case KVM_IRQ_LINE_STATUS:
2561 case KVM_IRQ_LINE: {
2562 struct kvm_irq_level irq_event;
2563
2564 r = -EFAULT;
2565 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2566 goto out;
2567 if (irqchip_in_kernel(kvm)) {
2568 __s32 status;
2569 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2570 irq_event.irq, irq_event.level);
2571 if (ioctl == KVM_IRQ_LINE_STATUS) {
2572 irq_event.status = status;
2573 if (copy_to_user(argp, &irq_event,
2574 sizeof irq_event))
2575 goto out;
2576 }
2577 r = 0;
2578 }
2579 break;
2580 }
2581 case KVM_GET_IRQCHIP: {
2582 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2583 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2584
2585 r = -ENOMEM;
2586 if (!chip)
2587 goto out;
2588 r = -EFAULT;
2589 if (copy_from_user(chip, argp, sizeof *chip))
2590 goto get_irqchip_out;
2591 r = -ENXIO;
2592 if (!irqchip_in_kernel(kvm))
2593 goto get_irqchip_out;
2594 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
2595 if (r)
2596 goto get_irqchip_out;
2597 r = -EFAULT;
2598 if (copy_to_user(argp, chip, sizeof *chip))
2599 goto get_irqchip_out;
2600 r = 0;
2601 get_irqchip_out:
2602 kfree(chip);
2603 if (r)
2604 goto out;
2605 break;
2606 }
2607 case KVM_SET_IRQCHIP: {
2608 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2609 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2610
2611 r = -ENOMEM;
2612 if (!chip)
2613 goto out;
2614 r = -EFAULT;
2615 if (copy_from_user(chip, argp, sizeof *chip))
2616 goto set_irqchip_out;
2617 r = -ENXIO;
2618 if (!irqchip_in_kernel(kvm))
2619 goto set_irqchip_out;
2620 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
2621 if (r)
2622 goto set_irqchip_out;
2623 r = 0;
2624 set_irqchip_out:
2625 kfree(chip);
2626 if (r)
2627 goto out;
2628 break;
2629 }
2630 case KVM_GET_PIT: {
2631 r = -EFAULT;
2632 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
2633 goto out;
2634 r = -ENXIO;
2635 if (!kvm->arch.vpit)
2636 goto out;
2637 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
2638 if (r)
2639 goto out;
2640 r = -EFAULT;
2641 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
2642 goto out;
2643 r = 0;
2644 break;
2645 }
2646 case KVM_SET_PIT: {
2647 r = -EFAULT;
2648 if (copy_from_user(&u.ps, argp, sizeof u.ps))
2649 goto out;
2650 r = -ENXIO;
2651 if (!kvm->arch.vpit)
2652 goto out;
2653 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
2654 if (r)
2655 goto out;
2656 r = 0;
2657 break;
2658 }
2659 case KVM_GET_PIT2: {
2660 r = -ENXIO;
2661 if (!kvm->arch.vpit)
2662 goto out;
2663 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
2664 if (r)
2665 goto out;
2666 r = -EFAULT;
2667 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
2668 goto out;
2669 r = 0;
2670 break;
2671 }
2672 case KVM_SET_PIT2: {
2673 r = -EFAULT;
2674 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
2675 goto out;
2676 r = -ENXIO;
2677 if (!kvm->arch.vpit)
2678 goto out;
2679 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
2680 if (r)
2681 goto out;
2682 r = 0;
2683 break;
2684 }
2685 case KVM_REINJECT_CONTROL: {
2686 struct kvm_reinject_control control;
2687 r = -EFAULT;
2688 if (copy_from_user(&control, argp, sizeof(control)))
2689 goto out;
2690 r = kvm_vm_ioctl_reinject(kvm, &control);
2691 if (r)
2692 goto out;
2693 r = 0;
2694 break;
2695 }
2696 case KVM_XEN_HVM_CONFIG: {
2697 r = -EFAULT;
2698 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
2699 sizeof(struct kvm_xen_hvm_config)))
2700 goto out;
2701 r = -EINVAL;
2702 if (kvm->arch.xen_hvm_config.flags)
2703 goto out;
2704 r = 0;
2705 break;
2706 }
2707 case KVM_SET_CLOCK: {
2708 struct timespec now;
2709 struct kvm_clock_data user_ns;
2710 u64 now_ns;
2711 s64 delta;
2712
2713 r = -EFAULT;
2714 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
2715 goto out;
2716
2717 r = -EINVAL;
2718 if (user_ns.flags)
2719 goto out;
2720
2721 r = 0;
2722 ktime_get_ts(&now);
2723 now_ns = timespec_to_ns(&now);
2724 delta = user_ns.clock - now_ns;
2725 kvm->arch.kvmclock_offset = delta;
2726 break;
2727 }
2728 case KVM_GET_CLOCK: {
2729 struct timespec now;
2730 struct kvm_clock_data user_ns;
2731 u64 now_ns;
2732
2733 ktime_get_ts(&now);
2734 now_ns = timespec_to_ns(&now);
2735 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
2736 user_ns.flags = 0;
2737
2738 r = -EFAULT;
2739 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
2740 goto out;
2741 r = 0;
2742 break;
2743 }
2744
2745 default:
2746 ;
2747 }
2748 out:
2749 return r;
2750 }
2751
2752 static void kvm_init_msr_list(void)
2753 {
2754 u32 dummy[2];
2755 unsigned i, j;
2756
2757 /* skip the first msrs in the list. KVM-specific */
2758 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
2759 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2760 continue;
2761 if (j < i)
2762 msrs_to_save[j] = msrs_to_save[i];
2763 j++;
2764 }
2765 num_msrs_to_save = j;
2766 }
2767
2768 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
2769 const void *v)
2770 {
2771 if (vcpu->arch.apic &&
2772 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
2773 return 0;
2774
2775 return kvm_io_bus_write(&vcpu->kvm->mmio_bus, addr, len, v);
2776 }
2777
2778 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
2779 {
2780 if (vcpu->arch.apic &&
2781 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
2782 return 0;
2783
2784 return kvm_io_bus_read(&vcpu->kvm->mmio_bus, addr, len, v);
2785 }
2786
2787 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
2788 struct kvm_vcpu *vcpu)
2789 {
2790 void *data = val;
2791 int r = X86EMUL_CONTINUE;
2792
2793 while (bytes) {
2794 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2795 unsigned offset = addr & (PAGE_SIZE-1);
2796 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
2797 int ret;
2798
2799 if (gpa == UNMAPPED_GVA) {
2800 r = X86EMUL_PROPAGATE_FAULT;
2801 goto out;
2802 }
2803 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
2804 if (ret < 0) {
2805 r = X86EMUL_UNHANDLEABLE;
2806 goto out;
2807 }
2808
2809 bytes -= toread;
2810 data += toread;
2811 addr += toread;
2812 }
2813 out:
2814 return r;
2815 }
2816
2817 static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
2818 struct kvm_vcpu *vcpu)
2819 {
2820 void *data = val;
2821 int r = X86EMUL_CONTINUE;
2822
2823 while (bytes) {
2824 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2825 unsigned offset = addr & (PAGE_SIZE-1);
2826 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
2827 int ret;
2828
2829 if (gpa == UNMAPPED_GVA) {
2830 r = X86EMUL_PROPAGATE_FAULT;
2831 goto out;
2832 }
2833 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
2834 if (ret < 0) {
2835 r = X86EMUL_UNHANDLEABLE;
2836 goto out;
2837 }
2838
2839 bytes -= towrite;
2840 data += towrite;
2841 addr += towrite;
2842 }
2843 out:
2844 return r;
2845 }
2846
2847
2848 static int emulator_read_emulated(unsigned long addr,
2849 void *val,
2850 unsigned int bytes,
2851 struct kvm_vcpu *vcpu)
2852 {
2853 gpa_t gpa;
2854
2855 if (vcpu->mmio_read_completed) {
2856 memcpy(val, vcpu->mmio_data, bytes);
2857 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
2858 vcpu->mmio_phys_addr, *(u64 *)val);
2859 vcpu->mmio_read_completed = 0;
2860 return X86EMUL_CONTINUE;
2861 }
2862
2863 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2864
2865 /* For APIC access vmexit */
2866 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2867 goto mmio;
2868
2869 if (kvm_read_guest_virt(addr, val, bytes, vcpu)
2870 == X86EMUL_CONTINUE)
2871 return X86EMUL_CONTINUE;
2872 if (gpa == UNMAPPED_GVA)
2873 return X86EMUL_PROPAGATE_FAULT;
2874
2875 mmio:
2876 /*
2877 * Is this MMIO handled locally?
2878 */
2879 if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
2880 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
2881 return X86EMUL_CONTINUE;
2882 }
2883
2884 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
2885
2886 vcpu->mmio_needed = 1;
2887 vcpu->mmio_phys_addr = gpa;
2888 vcpu->mmio_size = bytes;
2889 vcpu->mmio_is_write = 0;
2890
2891 return X86EMUL_UNHANDLEABLE;
2892 }
2893
2894 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2895 const void *val, int bytes)
2896 {
2897 int ret;
2898
2899 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
2900 if (ret < 0)
2901 return 0;
2902 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
2903 return 1;
2904 }
2905
2906 static int emulator_write_emulated_onepage(unsigned long addr,
2907 const void *val,
2908 unsigned int bytes,
2909 struct kvm_vcpu *vcpu)
2910 {
2911 gpa_t gpa;
2912
2913 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2914
2915 if (gpa == UNMAPPED_GVA) {
2916 kvm_inject_page_fault(vcpu, addr, 2);
2917 return X86EMUL_PROPAGATE_FAULT;
2918 }
2919
2920 /* For APIC access vmexit */
2921 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2922 goto mmio;
2923
2924 if (emulator_write_phys(vcpu, gpa, val, bytes))
2925 return X86EMUL_CONTINUE;
2926
2927 mmio:
2928 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
2929 /*
2930 * Is this MMIO handled locally?
2931 */
2932 if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
2933 return X86EMUL_CONTINUE;
2934
2935 vcpu->mmio_needed = 1;
2936 vcpu->mmio_phys_addr = gpa;
2937 vcpu->mmio_size = bytes;
2938 vcpu->mmio_is_write = 1;
2939 memcpy(vcpu->mmio_data, val, bytes);
2940
2941 return X86EMUL_CONTINUE;
2942 }
2943
2944 int emulator_write_emulated(unsigned long addr,
2945 const void *val,
2946 unsigned int bytes,
2947 struct kvm_vcpu *vcpu)
2948 {
2949 /* Crossing a page boundary? */
2950 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
2951 int rc, now;
2952
2953 now = -addr & ~PAGE_MASK;
2954 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
2955 if (rc != X86EMUL_CONTINUE)
2956 return rc;
2957 addr += now;
2958 val += now;
2959 bytes -= now;
2960 }
2961 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
2962 }
2963 EXPORT_SYMBOL_GPL(emulator_write_emulated);
2964
2965 static int emulator_cmpxchg_emulated(unsigned long addr,
2966 const void *old,
2967 const void *new,
2968 unsigned int bytes,
2969 struct kvm_vcpu *vcpu)
2970 {
2971 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
2972 #ifndef CONFIG_X86_64
2973 /* guests cmpxchg8b have to be emulated atomically */
2974 if (bytes == 8) {
2975 gpa_t gpa;
2976 struct page *page;
2977 char *kaddr;
2978 u64 val;
2979
2980 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2981
2982 if (gpa == UNMAPPED_GVA ||
2983 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2984 goto emul_write;
2985
2986 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2987 goto emul_write;
2988
2989 val = *(u64 *)new;
2990
2991 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2992
2993 kaddr = kmap_atomic(page, KM_USER0);
2994 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2995 kunmap_atomic(kaddr, KM_USER0);
2996 kvm_release_page_dirty(page);
2997 }
2998 emul_write:
2999 #endif
3000
3001 return emulator_write_emulated(addr, new, bytes, vcpu);
3002 }
3003
3004 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
3005 {
3006 return kvm_x86_ops->get_segment_base(vcpu, seg);
3007 }
3008
3009 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
3010 {
3011 kvm_mmu_invlpg(vcpu, address);
3012 return X86EMUL_CONTINUE;
3013 }
3014
3015 int emulate_clts(struct kvm_vcpu *vcpu)
3016 {
3017 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
3018 return X86EMUL_CONTINUE;
3019 }
3020
3021 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
3022 {
3023 struct kvm_vcpu *vcpu = ctxt->vcpu;
3024
3025 switch (dr) {
3026 case 0 ... 3:
3027 *dest = kvm_x86_ops->get_dr(vcpu, dr);
3028 return X86EMUL_CONTINUE;
3029 default:
3030 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
3031 return X86EMUL_UNHANDLEABLE;
3032 }
3033 }
3034
3035 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
3036 {
3037 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
3038 int exception;
3039
3040 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
3041 if (exception) {
3042 /* FIXME: better handling */
3043 return X86EMUL_UNHANDLEABLE;
3044 }
3045 return X86EMUL_CONTINUE;
3046 }
3047
3048 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
3049 {
3050 u8 opcodes[4];
3051 unsigned long rip = kvm_rip_read(vcpu);
3052 unsigned long rip_linear;
3053
3054 if (!printk_ratelimit())
3055 return;
3056
3057 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
3058
3059 kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
3060
3061 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
3062 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
3063 }
3064 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
3065
3066 static struct x86_emulate_ops emulate_ops = {
3067 .read_std = kvm_read_guest_virt,
3068 .read_emulated = emulator_read_emulated,
3069 .write_emulated = emulator_write_emulated,
3070 .cmpxchg_emulated = emulator_cmpxchg_emulated,
3071 };
3072
3073 static void cache_all_regs(struct kvm_vcpu *vcpu)
3074 {
3075 kvm_register_read(vcpu, VCPU_REGS_RAX);
3076 kvm_register_read(vcpu, VCPU_REGS_RSP);
3077 kvm_register_read(vcpu, VCPU_REGS_RIP);
3078 vcpu->arch.regs_dirty = ~0;
3079 }
3080
3081 int emulate_instruction(struct kvm_vcpu *vcpu,
3082 unsigned long cr2,
3083 u16 error_code,
3084 int emulation_type)
3085 {
3086 int r, shadow_mask;
3087 struct decode_cache *c;
3088 struct kvm_run *run = vcpu->run;
3089
3090 kvm_clear_exception_queue(vcpu);
3091 vcpu->arch.mmio_fault_cr2 = cr2;
3092 /*
3093 * TODO: fix emulate.c to use guest_read/write_register
3094 * instead of direct ->regs accesses, can save hundred cycles
3095 * on Intel for instructions that don't read/change RSP, for
3096 * for example.
3097 */
3098 cache_all_regs(vcpu);
3099
3100 vcpu->mmio_is_write = 0;
3101 vcpu->arch.pio.string = 0;
3102
3103 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
3104 int cs_db, cs_l;
3105 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
3106
3107 vcpu->arch.emulate_ctxt.vcpu = vcpu;
3108 vcpu->arch.emulate_ctxt.eflags = kvm_get_rflags(vcpu);
3109 vcpu->arch.emulate_ctxt.mode =
3110 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
3111 ? X86EMUL_MODE_REAL : cs_l
3112 ? X86EMUL_MODE_PROT64 : cs_db
3113 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
3114
3115 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
3116
3117 /* Only allow emulation of specific instructions on #UD
3118 * (namely VMMCALL, sysenter, sysexit, syscall)*/
3119 c = &vcpu->arch.emulate_ctxt.decode;
3120 if (emulation_type & EMULTYPE_TRAP_UD) {
3121 if (!c->twobyte)
3122 return EMULATE_FAIL;
3123 switch (c->b) {
3124 case 0x01: /* VMMCALL */
3125 if (c->modrm_mod != 3 || c->modrm_rm != 1)
3126 return EMULATE_FAIL;
3127 break;
3128 case 0x34: /* sysenter */
3129 case 0x35: /* sysexit */
3130 if (c->modrm_mod != 0 || c->modrm_rm != 0)
3131 return EMULATE_FAIL;
3132 break;
3133 case 0x05: /* syscall */
3134 if (c->modrm_mod != 0 || c->modrm_rm != 0)
3135 return EMULATE_FAIL;
3136 break;
3137 default:
3138 return EMULATE_FAIL;
3139 }
3140
3141 if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
3142 return EMULATE_FAIL;
3143 }
3144
3145 ++vcpu->stat.insn_emulation;
3146 if (r) {
3147 ++vcpu->stat.insn_emulation_fail;
3148 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
3149 return EMULATE_DONE;
3150 return EMULATE_FAIL;
3151 }
3152 }
3153
3154 if (emulation_type & EMULTYPE_SKIP) {
3155 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
3156 return EMULATE_DONE;
3157 }
3158
3159 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
3160 shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
3161
3162 if (r == 0)
3163 kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
3164
3165 if (vcpu->arch.pio.string)
3166 return EMULATE_DO_MMIO;
3167
3168 if ((r || vcpu->mmio_is_write) && run) {
3169 run->exit_reason = KVM_EXIT_MMIO;
3170 run->mmio.phys_addr = vcpu->mmio_phys_addr;
3171 memcpy(run->mmio.data, vcpu->mmio_data, 8);
3172 run->mmio.len = vcpu->mmio_size;
3173 run->mmio.is_write = vcpu->mmio_is_write;
3174 }
3175
3176 if (r) {
3177 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
3178 return EMULATE_DONE;
3179 if (!vcpu->mmio_needed) {
3180 kvm_report_emulation_failure(vcpu, "mmio");
3181 return EMULATE_FAIL;
3182 }
3183 return EMULATE_DO_MMIO;
3184 }
3185
3186 kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
3187
3188 if (vcpu->mmio_is_write) {
3189 vcpu->mmio_needed = 0;
3190 return EMULATE_DO_MMIO;
3191 }
3192
3193 return EMULATE_DONE;
3194 }
3195 EXPORT_SYMBOL_GPL(emulate_instruction);
3196
3197 static int pio_copy_data(struct kvm_vcpu *vcpu)
3198 {
3199 void *p = vcpu->arch.pio_data;
3200 gva_t q = vcpu->arch.pio.guest_gva;
3201 unsigned bytes;
3202 int ret;
3203
3204 bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
3205 if (vcpu->arch.pio.in)
3206 ret = kvm_write_guest_virt(q, p, bytes, vcpu);
3207 else
3208 ret = kvm_read_guest_virt(q, p, bytes, vcpu);
3209 return ret;
3210 }
3211
3212 int complete_pio(struct kvm_vcpu *vcpu)
3213 {
3214 struct kvm_pio_request *io = &vcpu->arch.pio;
3215 long delta;
3216 int r;
3217 unsigned long val;
3218
3219 if (!io->string) {
3220 if (io->in) {
3221 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
3222 memcpy(&val, vcpu->arch.pio_data, io->size);
3223 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
3224 }
3225 } else {
3226 if (io->in) {
3227 r = pio_copy_data(vcpu);
3228 if (r)
3229 return r;
3230 }
3231
3232 delta = 1;
3233 if (io->rep) {
3234 delta *= io->cur_count;
3235 /*
3236 * The size of the register should really depend on
3237 * current address size.
3238 */
3239 val = kvm_register_read(vcpu, VCPU_REGS_RCX);
3240 val -= delta;
3241 kvm_register_write(vcpu, VCPU_REGS_RCX, val);
3242 }
3243 if (io->down)
3244 delta = -delta;
3245 delta *= io->size;
3246 if (io->in) {
3247 val = kvm_register_read(vcpu, VCPU_REGS_RDI);
3248 val += delta;
3249 kvm_register_write(vcpu, VCPU_REGS_RDI, val);
3250 } else {
3251 val = kvm_register_read(vcpu, VCPU_REGS_RSI);
3252 val += delta;
3253 kvm_register_write(vcpu, VCPU_REGS_RSI, val);
3254 }
3255 }
3256
3257 io->count -= io->cur_count;
3258 io->cur_count = 0;
3259
3260 return 0;
3261 }
3262
3263 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3264 {
3265 /* TODO: String I/O for in kernel device */
3266 int r;
3267
3268 if (vcpu->arch.pio.in)
3269 r = kvm_io_bus_read(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
3270 vcpu->arch.pio.size, pd);
3271 else
3272 r = kvm_io_bus_write(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
3273 vcpu->arch.pio.size, pd);
3274 return r;
3275 }
3276
3277 static int pio_string_write(struct kvm_vcpu *vcpu)
3278 {
3279 struct kvm_pio_request *io = &vcpu->arch.pio;
3280 void *pd = vcpu->arch.pio_data;
3281 int i, r = 0;
3282
3283 for (i = 0; i < io->cur_count; i++) {
3284 if (kvm_io_bus_write(&vcpu->kvm->pio_bus,
3285 io->port, io->size, pd)) {
3286 r = -EOPNOTSUPP;
3287 break;
3288 }
3289 pd += io->size;
3290 }
3291 return r;
3292 }
3293
3294 int kvm_emulate_pio(struct kvm_vcpu *vcpu, int in, int size, unsigned port)
3295 {
3296 unsigned long val;
3297
3298 vcpu->run->exit_reason = KVM_EXIT_IO;
3299 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3300 vcpu->run->io.size = vcpu->arch.pio.size = size;
3301 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3302 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
3303 vcpu->run->io.port = vcpu->arch.pio.port = port;
3304 vcpu->arch.pio.in = in;
3305 vcpu->arch.pio.string = 0;
3306 vcpu->arch.pio.down = 0;
3307 vcpu->arch.pio.rep = 0;
3308
3309 trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
3310 size, 1);
3311
3312 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
3313 memcpy(vcpu->arch.pio_data, &val, 4);
3314
3315 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3316 complete_pio(vcpu);
3317 return 1;
3318 }
3319 return 0;
3320 }
3321 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
3322
3323 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, int in,
3324 int size, unsigned long count, int down,
3325 gva_t address, int rep, unsigned port)
3326 {
3327 unsigned now, in_page;
3328 int ret = 0;
3329
3330 vcpu->run->exit_reason = KVM_EXIT_IO;
3331 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3332 vcpu->run->io.size = vcpu->arch.pio.size = size;
3333 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3334 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
3335 vcpu->run->io.port = vcpu->arch.pio.port = port;
3336 vcpu->arch.pio.in = in;
3337 vcpu->arch.pio.string = 1;
3338 vcpu->arch.pio.down = down;
3339 vcpu->arch.pio.rep = rep;
3340
3341 trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
3342 size, count);
3343
3344 if (!count) {
3345 kvm_x86_ops->skip_emulated_instruction(vcpu);
3346 return 1;
3347 }
3348
3349 if (!down)
3350 in_page = PAGE_SIZE - offset_in_page(address);
3351 else
3352 in_page = offset_in_page(address) + size;
3353 now = min(count, (unsigned long)in_page / size);
3354 if (!now)
3355 now = 1;
3356 if (down) {
3357 /*
3358 * String I/O in reverse. Yuck. Kill the guest, fix later.
3359 */
3360 pr_unimpl(vcpu, "guest string pio down\n");
3361 kvm_inject_gp(vcpu, 0);
3362 return 1;
3363 }
3364 vcpu->run->io.count = now;
3365 vcpu->arch.pio.cur_count = now;
3366
3367 if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
3368 kvm_x86_ops->skip_emulated_instruction(vcpu);
3369
3370 vcpu->arch.pio.guest_gva = address;
3371
3372 if (!vcpu->arch.pio.in) {
3373 /* string PIO write */
3374 ret = pio_copy_data(vcpu);
3375 if (ret == X86EMUL_PROPAGATE_FAULT) {
3376 kvm_inject_gp(vcpu, 0);
3377 return 1;
3378 }
3379 if (ret == 0 && !pio_string_write(vcpu)) {
3380 complete_pio(vcpu);
3381 if (vcpu->arch.pio.count == 0)
3382 ret = 1;
3383 }
3384 }
3385 /* no string PIO read support yet */
3386
3387 return ret;
3388 }
3389 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
3390
3391 static void bounce_off(void *info)
3392 {
3393 /* nothing */
3394 }
3395
3396 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
3397 void *data)
3398 {
3399 struct cpufreq_freqs *freq = data;
3400 struct kvm *kvm;
3401 struct kvm_vcpu *vcpu;
3402 int i, send_ipi = 0;
3403
3404 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
3405 return 0;
3406 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
3407 return 0;
3408 per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
3409
3410 spin_lock(&kvm_lock);
3411 list_for_each_entry(kvm, &vm_list, vm_list) {
3412 kvm_for_each_vcpu(i, vcpu, kvm) {
3413 if (vcpu->cpu != freq->cpu)
3414 continue;
3415 if (!kvm_request_guest_time_update(vcpu))
3416 continue;
3417 if (vcpu->cpu != smp_processor_id())
3418 send_ipi++;
3419 }
3420 }
3421 spin_unlock(&kvm_lock);
3422
3423 if (freq->old < freq->new && send_ipi) {
3424 /*
3425 * We upscale the frequency. Must make the guest
3426 * doesn't see old kvmclock values while running with
3427 * the new frequency, otherwise we risk the guest sees
3428 * time go backwards.
3429 *
3430 * In case we update the frequency for another cpu
3431 * (which might be in guest context) send an interrupt
3432 * to kick the cpu out of guest context. Next time
3433 * guest context is entered kvmclock will be updated,
3434 * so the guest will not see stale values.
3435 */
3436 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
3437 }
3438 return 0;
3439 }
3440
3441 static struct notifier_block kvmclock_cpufreq_notifier_block = {
3442 .notifier_call = kvmclock_cpufreq_notifier
3443 };
3444
3445 static void kvm_timer_init(void)
3446 {
3447 int cpu;
3448
3449 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
3450 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
3451 CPUFREQ_TRANSITION_NOTIFIER);
3452 for_each_online_cpu(cpu) {
3453 unsigned long khz = cpufreq_get(cpu);
3454 if (!khz)
3455 khz = tsc_khz;
3456 per_cpu(cpu_tsc_khz, cpu) = khz;
3457 }
3458 } else {
3459 for_each_possible_cpu(cpu)
3460 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
3461 }
3462 }
3463
3464 int kvm_arch_init(void *opaque)
3465 {
3466 int r;
3467 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
3468
3469 if (kvm_x86_ops) {
3470 printk(KERN_ERR "kvm: already loaded the other module\n");
3471 r = -EEXIST;
3472 goto out;
3473 }
3474
3475 if (!ops->cpu_has_kvm_support()) {
3476 printk(KERN_ERR "kvm: no hardware support\n");
3477 r = -EOPNOTSUPP;
3478 goto out;
3479 }
3480 if (ops->disabled_by_bios()) {
3481 printk(KERN_ERR "kvm: disabled by bios\n");
3482 r = -EOPNOTSUPP;
3483 goto out;
3484 }
3485
3486 r = kvm_mmu_module_init();
3487 if (r)
3488 goto out;
3489
3490 kvm_init_msr_list();
3491
3492 kvm_x86_ops = ops;
3493 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
3494 kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
3495 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
3496 PT_DIRTY_MASK, PT64_NX_MASK, 0);
3497
3498 kvm_timer_init();
3499
3500 return 0;
3501
3502 out:
3503 return r;
3504 }
3505
3506 void kvm_arch_exit(void)
3507 {
3508 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
3509 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
3510 CPUFREQ_TRANSITION_NOTIFIER);
3511 kvm_x86_ops = NULL;
3512 kvm_mmu_module_exit();
3513 }
3514
3515 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
3516 {
3517 ++vcpu->stat.halt_exits;
3518 if (irqchip_in_kernel(vcpu->kvm)) {
3519 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
3520 return 1;
3521 } else {
3522 vcpu->run->exit_reason = KVM_EXIT_HLT;
3523 return 0;
3524 }
3525 }
3526 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
3527
3528 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
3529 unsigned long a1)
3530 {
3531 if (is_long_mode(vcpu))
3532 return a0;
3533 else
3534 return a0 | ((gpa_t)a1 << 32);
3535 }
3536
3537 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
3538 {
3539 unsigned long nr, a0, a1, a2, a3, ret;
3540 int r = 1;
3541
3542 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
3543 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
3544 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
3545 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
3546 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
3547
3548 trace_kvm_hypercall(nr, a0, a1, a2, a3);
3549
3550 if (!is_long_mode(vcpu)) {
3551 nr &= 0xFFFFFFFF;
3552 a0 &= 0xFFFFFFFF;
3553 a1 &= 0xFFFFFFFF;
3554 a2 &= 0xFFFFFFFF;
3555 a3 &= 0xFFFFFFFF;
3556 }
3557
3558 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
3559 ret = -KVM_EPERM;
3560 goto out;
3561 }
3562
3563 switch (nr) {
3564 case KVM_HC_VAPIC_POLL_IRQ:
3565 ret = 0;
3566 break;
3567 case KVM_HC_MMU_OP:
3568 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
3569 break;
3570 default:
3571 ret = -KVM_ENOSYS;
3572 break;
3573 }
3574 out:
3575 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
3576 ++vcpu->stat.hypercalls;
3577 return r;
3578 }
3579 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
3580
3581 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
3582 {
3583 char instruction[3];
3584 int ret = 0;
3585 unsigned long rip = kvm_rip_read(vcpu);
3586
3587
3588 /*
3589 * Blow out the MMU to ensure that no other VCPU has an active mapping
3590 * to ensure that the updated hypercall appears atomically across all
3591 * VCPUs.
3592 */
3593 kvm_mmu_zap_all(vcpu->kvm);
3594
3595 kvm_x86_ops->patch_hypercall(vcpu, instruction);
3596 if (emulator_write_emulated(rip, instruction, 3, vcpu)
3597 != X86EMUL_CONTINUE)
3598 ret = -EFAULT;
3599
3600 return ret;
3601 }
3602
3603 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3604 {
3605 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3606 }
3607
3608 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3609 {
3610 struct descriptor_table dt = { limit, base };
3611
3612 kvm_x86_ops->set_gdt(vcpu, &dt);
3613 }
3614
3615 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3616 {
3617 struct descriptor_table dt = { limit, base };
3618
3619 kvm_x86_ops->set_idt(vcpu, &dt);
3620 }
3621
3622 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
3623 unsigned long *rflags)
3624 {
3625 kvm_lmsw(vcpu, msw);
3626 *rflags = kvm_get_rflags(vcpu);
3627 }
3628
3629 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
3630 {
3631 unsigned long value;
3632
3633 switch (cr) {
3634 case 0:
3635 value = vcpu->arch.cr0;
3636 break;
3637 case 2:
3638 value = vcpu->arch.cr2;
3639 break;
3640 case 3:
3641 value = vcpu->arch.cr3;
3642 break;
3643 case 4:
3644 value = kvm_read_cr4(vcpu);
3645 break;
3646 case 8:
3647 value = kvm_get_cr8(vcpu);
3648 break;
3649 default:
3650 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3651 return 0;
3652 }
3653
3654 return value;
3655 }
3656
3657 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
3658 unsigned long *rflags)
3659 {
3660 switch (cr) {
3661 case 0:
3662 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
3663 *rflags = kvm_get_rflags(vcpu);
3664 break;
3665 case 2:
3666 vcpu->arch.cr2 = val;
3667 break;
3668 case 3:
3669 kvm_set_cr3(vcpu, val);
3670 break;
3671 case 4:
3672 kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
3673 break;
3674 case 8:
3675 kvm_set_cr8(vcpu, val & 0xfUL);
3676 break;
3677 default:
3678 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3679 }
3680 }
3681
3682 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
3683 {
3684 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
3685 int j, nent = vcpu->arch.cpuid_nent;
3686
3687 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
3688 /* when no next entry is found, the current entry[i] is reselected */
3689 for (j = i + 1; ; j = (j + 1) % nent) {
3690 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
3691 if (ej->function == e->function) {
3692 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
3693 return j;
3694 }
3695 }
3696 return 0; /* silence gcc, even though control never reaches here */
3697 }
3698
3699 /* find an entry with matching function, matching index (if needed), and that
3700 * should be read next (if it's stateful) */
3701 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
3702 u32 function, u32 index)
3703 {
3704 if (e->function != function)
3705 return 0;
3706 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
3707 return 0;
3708 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
3709 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
3710 return 0;
3711 return 1;
3712 }
3713
3714 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
3715 u32 function, u32 index)
3716 {
3717 int i;
3718 struct kvm_cpuid_entry2 *best = NULL;
3719
3720 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
3721 struct kvm_cpuid_entry2 *e;
3722
3723 e = &vcpu->arch.cpuid_entries[i];
3724 if (is_matching_cpuid_entry(e, function, index)) {
3725 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
3726 move_to_next_stateful_cpuid_entry(vcpu, i);
3727 best = e;
3728 break;
3729 }
3730 /*
3731 * Both basic or both extended?
3732 */
3733 if (((e->function ^ function) & 0x80000000) == 0)
3734 if (!best || e->function > best->function)
3735 best = e;
3736 }
3737 return best;
3738 }
3739 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
3740
3741 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
3742 {
3743 struct kvm_cpuid_entry2 *best;
3744
3745 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
3746 if (best)
3747 return best->eax & 0xff;
3748 return 36;
3749 }
3750
3751 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
3752 {
3753 u32 function, index;
3754 struct kvm_cpuid_entry2 *best;
3755
3756 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
3757 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3758 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
3759 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
3760 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
3761 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
3762 best = kvm_find_cpuid_entry(vcpu, function, index);
3763 if (best) {
3764 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
3765 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
3766 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
3767 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
3768 }
3769 kvm_x86_ops->skip_emulated_instruction(vcpu);
3770 trace_kvm_cpuid(function,
3771 kvm_register_read(vcpu, VCPU_REGS_RAX),
3772 kvm_register_read(vcpu, VCPU_REGS_RBX),
3773 kvm_register_read(vcpu, VCPU_REGS_RCX),
3774 kvm_register_read(vcpu, VCPU_REGS_RDX));
3775 }
3776 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
3777
3778 /*
3779 * Check if userspace requested an interrupt window, and that the
3780 * interrupt window is open.
3781 *
3782 * No need to exit to userspace if we already have an interrupt queued.
3783 */
3784 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
3785 {
3786 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
3787 vcpu->run->request_interrupt_window &&
3788 kvm_arch_interrupt_allowed(vcpu));
3789 }
3790
3791 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
3792 {
3793 struct kvm_run *kvm_run = vcpu->run;
3794
3795 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
3796 kvm_run->cr8 = kvm_get_cr8(vcpu);
3797 kvm_run->apic_base = kvm_get_apic_base(vcpu);
3798 if (irqchip_in_kernel(vcpu->kvm))
3799 kvm_run->ready_for_interrupt_injection = 1;
3800 else
3801 kvm_run->ready_for_interrupt_injection =
3802 kvm_arch_interrupt_allowed(vcpu) &&
3803 !kvm_cpu_has_interrupt(vcpu) &&
3804 !kvm_event_needs_reinjection(vcpu);
3805 }
3806
3807 static void vapic_enter(struct kvm_vcpu *vcpu)
3808 {
3809 struct kvm_lapic *apic = vcpu->arch.apic;
3810 struct page *page;
3811
3812 if (!apic || !apic->vapic_addr)
3813 return;
3814
3815 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3816
3817 vcpu->arch.apic->vapic_page = page;
3818 }
3819
3820 static void vapic_exit(struct kvm_vcpu *vcpu)
3821 {
3822 struct kvm_lapic *apic = vcpu->arch.apic;
3823
3824 if (!apic || !apic->vapic_addr)
3825 return;
3826
3827 down_read(&vcpu->kvm->slots_lock);
3828 kvm_release_page_dirty(apic->vapic_page);
3829 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3830 up_read(&vcpu->kvm->slots_lock);
3831 }
3832
3833 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
3834 {
3835 int max_irr, tpr;
3836
3837 if (!kvm_x86_ops->update_cr8_intercept)
3838 return;
3839
3840 if (!vcpu->arch.apic)
3841 return;
3842
3843 if (!vcpu->arch.apic->vapic_addr)
3844 max_irr = kvm_lapic_find_highest_irr(vcpu);
3845 else
3846 max_irr = -1;
3847
3848 if (max_irr != -1)
3849 max_irr >>= 4;
3850
3851 tpr = kvm_lapic_get_cr8(vcpu);
3852
3853 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
3854 }
3855
3856 static void inject_pending_event(struct kvm_vcpu *vcpu)
3857 {
3858 /* try to reinject previous events if any */
3859 if (vcpu->arch.exception.pending) {
3860 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
3861 vcpu->arch.exception.has_error_code,
3862 vcpu->arch.exception.error_code);
3863 return;
3864 }
3865
3866 if (vcpu->arch.nmi_injected) {
3867 kvm_x86_ops->set_nmi(vcpu);
3868 return;
3869 }
3870
3871 if (vcpu->arch.interrupt.pending) {
3872 kvm_x86_ops->set_irq(vcpu);
3873 return;
3874 }
3875
3876 /* try to inject new event if pending */
3877 if (vcpu->arch.nmi_pending) {
3878 if (kvm_x86_ops->nmi_allowed(vcpu)) {
3879 vcpu->arch.nmi_pending = false;
3880 vcpu->arch.nmi_injected = true;
3881 kvm_x86_ops->set_nmi(vcpu);
3882 }
3883 } else if (kvm_cpu_has_interrupt(vcpu)) {
3884 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
3885 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
3886 false);
3887 kvm_x86_ops->set_irq(vcpu);
3888 }
3889 }
3890 }
3891
3892 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
3893 {
3894 int r;
3895 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
3896 vcpu->run->request_interrupt_window;
3897
3898 if (vcpu->requests)
3899 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
3900 kvm_mmu_unload(vcpu);
3901
3902 r = kvm_mmu_reload(vcpu);
3903 if (unlikely(r))
3904 goto out;
3905
3906 if (vcpu->requests) {
3907 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
3908 __kvm_migrate_timers(vcpu);
3909 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
3910 kvm_write_guest_time(vcpu);
3911 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
3912 kvm_mmu_sync_roots(vcpu);
3913 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
3914 kvm_x86_ops->tlb_flush(vcpu);
3915 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
3916 &vcpu->requests)) {
3917 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
3918 r = 0;
3919 goto out;
3920 }
3921 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
3922 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
3923 r = 0;
3924 goto out;
3925 }
3926 }
3927
3928 preempt_disable();
3929
3930 kvm_x86_ops->prepare_guest_switch(vcpu);
3931 kvm_load_guest_fpu(vcpu);
3932
3933 local_irq_disable();
3934
3935 clear_bit(KVM_REQ_KICK, &vcpu->requests);
3936 smp_mb__after_clear_bit();
3937
3938 if (vcpu->requests || need_resched() || signal_pending(current)) {
3939 set_bit(KVM_REQ_KICK, &vcpu->requests);
3940 local_irq_enable();
3941 preempt_enable();
3942 r = 1;
3943 goto out;
3944 }
3945
3946 inject_pending_event(vcpu);
3947
3948 /* enable NMI/IRQ window open exits if needed */
3949 if (vcpu->arch.nmi_pending)
3950 kvm_x86_ops->enable_nmi_window(vcpu);
3951 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
3952 kvm_x86_ops->enable_irq_window(vcpu);
3953
3954 if (kvm_lapic_enabled(vcpu)) {
3955 update_cr8_intercept(vcpu);
3956 kvm_lapic_sync_to_vapic(vcpu);
3957 }
3958
3959 up_read(&vcpu->kvm->slots_lock);
3960
3961 kvm_guest_enter();
3962
3963 if (unlikely(vcpu->arch.switch_db_regs)) {
3964 set_debugreg(0, 7);
3965 set_debugreg(vcpu->arch.eff_db[0], 0);
3966 set_debugreg(vcpu->arch.eff_db[1], 1);
3967 set_debugreg(vcpu->arch.eff_db[2], 2);
3968 set_debugreg(vcpu->arch.eff_db[3], 3);
3969 }
3970
3971 trace_kvm_entry(vcpu->vcpu_id);
3972 kvm_x86_ops->run(vcpu);
3973
3974 /*
3975 * If the guest has used debug registers, at least dr7
3976 * will be disabled while returning to the host.
3977 * If we don't have active breakpoints in the host, we don't
3978 * care about the messed up debug address registers. But if
3979 * we have some of them active, restore the old state.
3980 */
3981 if (hw_breakpoint_active())
3982 hw_breakpoint_restore();
3983
3984 set_bit(KVM_REQ_KICK, &vcpu->requests);
3985 local_irq_enable();
3986
3987 ++vcpu->stat.exits;
3988
3989 /*
3990 * We must have an instruction between local_irq_enable() and
3991 * kvm_guest_exit(), so the timer interrupt isn't delayed by
3992 * the interrupt shadow. The stat.exits increment will do nicely.
3993 * But we need to prevent reordering, hence this barrier():
3994 */
3995 barrier();
3996
3997 kvm_guest_exit();
3998
3999 preempt_enable();
4000
4001 down_read(&vcpu->kvm->slots_lock);
4002
4003 /*
4004 * Profile KVM exit RIPs:
4005 */
4006 if (unlikely(prof_on == KVM_PROFILING)) {
4007 unsigned long rip = kvm_rip_read(vcpu);
4008 profile_hit(KVM_PROFILING, (void *)rip);
4009 }
4010
4011
4012 kvm_lapic_sync_from_vapic(vcpu);
4013
4014 r = kvm_x86_ops->handle_exit(vcpu);
4015 out:
4016 return r;
4017 }
4018
4019
4020 static int __vcpu_run(struct kvm_vcpu *vcpu)
4021 {
4022 int r;
4023
4024 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
4025 pr_debug("vcpu %d received sipi with vector # %x\n",
4026 vcpu->vcpu_id, vcpu->arch.sipi_vector);
4027 kvm_lapic_reset(vcpu);
4028 r = kvm_arch_vcpu_reset(vcpu);
4029 if (r)
4030 return r;
4031 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4032 }
4033
4034 down_read(&vcpu->kvm->slots_lock);
4035 vapic_enter(vcpu);
4036
4037 r = 1;
4038 while (r > 0) {
4039 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
4040 r = vcpu_enter_guest(vcpu);
4041 else {
4042 up_read(&vcpu->kvm->slots_lock);
4043 kvm_vcpu_block(vcpu);
4044 down_read(&vcpu->kvm->slots_lock);
4045 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
4046 {
4047 switch(vcpu->arch.mp_state) {
4048 case KVM_MP_STATE_HALTED:
4049 vcpu->arch.mp_state =
4050 KVM_MP_STATE_RUNNABLE;
4051 case KVM_MP_STATE_RUNNABLE:
4052 break;
4053 case KVM_MP_STATE_SIPI_RECEIVED:
4054 default:
4055 r = -EINTR;
4056 break;
4057 }
4058 }
4059 }
4060
4061 if (r <= 0)
4062 break;
4063
4064 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
4065 if (kvm_cpu_has_pending_timer(vcpu))
4066 kvm_inject_pending_timer_irqs(vcpu);
4067
4068 if (dm_request_for_irq_injection(vcpu)) {
4069 r = -EINTR;
4070 vcpu->run->exit_reason = KVM_EXIT_INTR;
4071 ++vcpu->stat.request_irq_exits;
4072 }
4073 if (signal_pending(current)) {
4074 r = -EINTR;
4075 vcpu->run->exit_reason = KVM_EXIT_INTR;
4076 ++vcpu->stat.signal_exits;
4077 }
4078 if (need_resched()) {
4079 up_read(&vcpu->kvm->slots_lock);
4080 kvm_resched(vcpu);
4081 down_read(&vcpu->kvm->slots_lock);
4082 }
4083 }
4084
4085 up_read(&vcpu->kvm->slots_lock);
4086 post_kvm_run_save(vcpu);
4087
4088 vapic_exit(vcpu);
4089
4090 return r;
4091 }
4092
4093 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
4094 {
4095 int r;
4096 sigset_t sigsaved;
4097
4098 vcpu_load(vcpu);
4099
4100 if (vcpu->sigset_active)
4101 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
4102
4103 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
4104 kvm_vcpu_block(vcpu);
4105 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
4106 r = -EAGAIN;
4107 goto out;
4108 }
4109
4110 /* re-sync apic's tpr */
4111 if (!irqchip_in_kernel(vcpu->kvm))
4112 kvm_set_cr8(vcpu, kvm_run->cr8);
4113
4114 if (vcpu->arch.pio.cur_count) {
4115 r = complete_pio(vcpu);
4116 if (r)
4117 goto out;
4118 }
4119 if (vcpu->mmio_needed) {
4120 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
4121 vcpu->mmio_read_completed = 1;
4122 vcpu->mmio_needed = 0;
4123
4124 down_read(&vcpu->kvm->slots_lock);
4125 r = emulate_instruction(vcpu, vcpu->arch.mmio_fault_cr2, 0,
4126 EMULTYPE_NO_DECODE);
4127 up_read(&vcpu->kvm->slots_lock);
4128 if (r == EMULATE_DO_MMIO) {
4129 /*
4130 * Read-modify-write. Back to userspace.
4131 */
4132 r = 0;
4133 goto out;
4134 }
4135 }
4136 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
4137 kvm_register_write(vcpu, VCPU_REGS_RAX,
4138 kvm_run->hypercall.ret);
4139
4140 r = __vcpu_run(vcpu);
4141
4142 out:
4143 if (vcpu->sigset_active)
4144 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
4145
4146 vcpu_put(vcpu);
4147 return r;
4148 }
4149
4150 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4151 {
4152 vcpu_load(vcpu);
4153
4154 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4155 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4156 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4157 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4158 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4159 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4160 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4161 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4162 #ifdef CONFIG_X86_64
4163 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
4164 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
4165 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
4166 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
4167 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
4168 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
4169 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
4170 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
4171 #endif
4172
4173 regs->rip = kvm_rip_read(vcpu);
4174 regs->rflags = kvm_get_rflags(vcpu);
4175
4176 vcpu_put(vcpu);
4177
4178 return 0;
4179 }
4180
4181 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4182 {
4183 vcpu_load(vcpu);
4184
4185 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
4186 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
4187 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
4188 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
4189 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
4190 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
4191 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
4192 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
4193 #ifdef CONFIG_X86_64
4194 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
4195 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
4196 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
4197 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
4198 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
4199 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
4200 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
4201 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
4202 #endif
4203
4204 kvm_rip_write(vcpu, regs->rip);
4205 kvm_set_rflags(vcpu, regs->rflags);
4206
4207 vcpu->arch.exception.pending = false;
4208
4209 vcpu_put(vcpu);
4210
4211 return 0;
4212 }
4213
4214 void kvm_get_segment(struct kvm_vcpu *vcpu,
4215 struct kvm_segment *var, int seg)
4216 {
4217 kvm_x86_ops->get_segment(vcpu, var, seg);
4218 }
4219
4220 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4221 {
4222 struct kvm_segment cs;
4223
4224 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
4225 *db = cs.db;
4226 *l = cs.l;
4227 }
4228 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
4229
4230 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
4231 struct kvm_sregs *sregs)
4232 {
4233 struct descriptor_table dt;
4234
4235 vcpu_load(vcpu);
4236
4237 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4238 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4239 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4240 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4241 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4242 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4243
4244 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4245 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4246
4247 kvm_x86_ops->get_idt(vcpu, &dt);
4248 sregs->idt.limit = dt.limit;
4249 sregs->idt.base = dt.base;
4250 kvm_x86_ops->get_gdt(vcpu, &dt);
4251 sregs->gdt.limit = dt.limit;
4252 sregs->gdt.base = dt.base;
4253
4254 sregs->cr0 = vcpu->arch.cr0;
4255 sregs->cr2 = vcpu->arch.cr2;
4256 sregs->cr3 = vcpu->arch.cr3;
4257 sregs->cr4 = kvm_read_cr4(vcpu);
4258 sregs->cr8 = kvm_get_cr8(vcpu);
4259 sregs->efer = vcpu->arch.shadow_efer;
4260 sregs->apic_base = kvm_get_apic_base(vcpu);
4261
4262 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
4263
4264 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
4265 set_bit(vcpu->arch.interrupt.nr,
4266 (unsigned long *)sregs->interrupt_bitmap);
4267
4268 vcpu_put(vcpu);
4269
4270 return 0;
4271 }
4272
4273 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
4274 struct kvm_mp_state *mp_state)
4275 {
4276 vcpu_load(vcpu);
4277 mp_state->mp_state = vcpu->arch.mp_state;
4278 vcpu_put(vcpu);
4279 return 0;
4280 }
4281
4282 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
4283 struct kvm_mp_state *mp_state)
4284 {
4285 vcpu_load(vcpu);
4286 vcpu->arch.mp_state = mp_state->mp_state;
4287 vcpu_put(vcpu);
4288 return 0;
4289 }
4290
4291 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4292 struct kvm_segment *var, int seg)
4293 {
4294 kvm_x86_ops->set_segment(vcpu, var, seg);
4295 }
4296
4297 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
4298 struct kvm_segment *kvm_desct)
4299 {
4300 kvm_desct->base = get_desc_base(seg_desc);
4301 kvm_desct->limit = get_desc_limit(seg_desc);
4302 if (seg_desc->g) {
4303 kvm_desct->limit <<= 12;
4304 kvm_desct->limit |= 0xfff;
4305 }
4306 kvm_desct->selector = selector;
4307 kvm_desct->type = seg_desc->type;
4308 kvm_desct->present = seg_desc->p;
4309 kvm_desct->dpl = seg_desc->dpl;
4310 kvm_desct->db = seg_desc->d;
4311 kvm_desct->s = seg_desc->s;
4312 kvm_desct->l = seg_desc->l;
4313 kvm_desct->g = seg_desc->g;
4314 kvm_desct->avl = seg_desc->avl;
4315 if (!selector)
4316 kvm_desct->unusable = 1;
4317 else
4318 kvm_desct->unusable = 0;
4319 kvm_desct->padding = 0;
4320 }
4321
4322 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
4323 u16 selector,
4324 struct descriptor_table *dtable)
4325 {
4326 if (selector & 1 << 2) {
4327 struct kvm_segment kvm_seg;
4328
4329 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
4330
4331 if (kvm_seg.unusable)
4332 dtable->limit = 0;
4333 else
4334 dtable->limit = kvm_seg.limit;
4335 dtable->base = kvm_seg.base;
4336 }
4337 else
4338 kvm_x86_ops->get_gdt(vcpu, dtable);
4339 }
4340
4341 /* allowed just for 8 bytes segments */
4342 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4343 struct desc_struct *seg_desc)
4344 {
4345 struct descriptor_table dtable;
4346 u16 index = selector >> 3;
4347
4348 get_segment_descriptor_dtable(vcpu, selector, &dtable);
4349
4350 if (dtable.limit < index * 8 + 7) {
4351 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
4352 return 1;
4353 }
4354 return kvm_read_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
4355 }
4356
4357 /* allowed just for 8 bytes segments */
4358 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4359 struct desc_struct *seg_desc)
4360 {
4361 struct descriptor_table dtable;
4362 u16 index = selector >> 3;
4363
4364 get_segment_descriptor_dtable(vcpu, selector, &dtable);
4365
4366 if (dtable.limit < index * 8 + 7)
4367 return 1;
4368 return kvm_write_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
4369 }
4370
4371 static gpa_t get_tss_base_addr(struct kvm_vcpu *vcpu,
4372 struct desc_struct *seg_desc)
4373 {
4374 u32 base_addr = get_desc_base(seg_desc);
4375
4376 return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
4377 }
4378
4379 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
4380 {
4381 struct kvm_segment kvm_seg;
4382
4383 kvm_get_segment(vcpu, &kvm_seg, seg);
4384 return kvm_seg.selector;
4385 }
4386
4387 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
4388 u16 selector,
4389 struct kvm_segment *kvm_seg)
4390 {
4391 struct desc_struct seg_desc;
4392
4393 if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
4394 return 1;
4395 seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
4396 return 0;
4397 }
4398
4399 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
4400 {
4401 struct kvm_segment segvar = {
4402 .base = selector << 4,
4403 .limit = 0xffff,
4404 .selector = selector,
4405 .type = 3,
4406 .present = 1,
4407 .dpl = 3,
4408 .db = 0,
4409 .s = 1,
4410 .l = 0,
4411 .g = 0,
4412 .avl = 0,
4413 .unusable = 0,
4414 };
4415 kvm_x86_ops->set_segment(vcpu, &segvar, seg);
4416 return 0;
4417 }
4418
4419 static int is_vm86_segment(struct kvm_vcpu *vcpu, int seg)
4420 {
4421 return (seg != VCPU_SREG_LDTR) &&
4422 (seg != VCPU_SREG_TR) &&
4423 (kvm_get_rflags(vcpu) & X86_EFLAGS_VM);
4424 }
4425
4426 static void kvm_check_segment_descriptor(struct kvm_vcpu *vcpu, int seg,
4427 u16 selector)
4428 {
4429 /* NULL selector is not valid for CS and SS */
4430 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
4431 if (!selector)
4432 kvm_queue_exception_e(vcpu, TS_VECTOR, selector >> 3);
4433 }
4434
4435 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4436 int type_bits, int seg)
4437 {
4438 struct kvm_segment kvm_seg;
4439
4440 if (is_vm86_segment(vcpu, seg) || !(vcpu->arch.cr0 & X86_CR0_PE))
4441 return kvm_load_realmode_segment(vcpu, selector, seg);
4442 if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
4443 return 1;
4444
4445 kvm_check_segment_descriptor(vcpu, seg, selector);
4446 kvm_seg.type |= type_bits;
4447
4448 if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
4449 seg != VCPU_SREG_LDTR)
4450 if (!kvm_seg.s)
4451 kvm_seg.unusable = 1;
4452
4453 kvm_set_segment(vcpu, &kvm_seg, seg);
4454 return 0;
4455 }
4456
4457 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
4458 struct tss_segment_32 *tss)
4459 {
4460 tss->cr3 = vcpu->arch.cr3;
4461 tss->eip = kvm_rip_read(vcpu);
4462 tss->eflags = kvm_get_rflags(vcpu);
4463 tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4464 tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4465 tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4466 tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4467 tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4468 tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4469 tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4470 tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4471 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4472 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4473 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4474 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4475 tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
4476 tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
4477 tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4478 }
4479
4480 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
4481 struct tss_segment_32 *tss)
4482 {
4483 kvm_set_cr3(vcpu, tss->cr3);
4484
4485 kvm_rip_write(vcpu, tss->eip);
4486 kvm_set_rflags(vcpu, tss->eflags | 2);
4487
4488 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
4489 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
4490 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
4491 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
4492 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
4493 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
4494 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
4495 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
4496
4497 if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
4498 return 1;
4499
4500 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4501 return 1;
4502
4503 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4504 return 1;
4505
4506 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4507 return 1;
4508
4509 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4510 return 1;
4511
4512 if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
4513 return 1;
4514
4515 if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
4516 return 1;
4517 return 0;
4518 }
4519
4520 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
4521 struct tss_segment_16 *tss)
4522 {
4523 tss->ip = kvm_rip_read(vcpu);
4524 tss->flag = kvm_get_rflags(vcpu);
4525 tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4526 tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4527 tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4528 tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4529 tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4530 tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4531 tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
4532 tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
4533
4534 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4535 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4536 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4537 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4538 tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4539 }
4540
4541 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
4542 struct tss_segment_16 *tss)
4543 {
4544 kvm_rip_write(vcpu, tss->ip);
4545 kvm_set_rflags(vcpu, tss->flag | 2);
4546 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
4547 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
4548 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
4549 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
4550 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
4551 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
4552 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
4553 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
4554
4555 if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
4556 return 1;
4557
4558 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4559 return 1;
4560
4561 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4562 return 1;
4563
4564 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4565 return 1;
4566
4567 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4568 return 1;
4569 return 0;
4570 }
4571
4572 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
4573 u16 old_tss_sel, u32 old_tss_base,
4574 struct desc_struct *nseg_desc)
4575 {
4576 struct tss_segment_16 tss_segment_16;
4577 int ret = 0;
4578
4579 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4580 sizeof tss_segment_16))
4581 goto out;
4582
4583 save_state_to_tss16(vcpu, &tss_segment_16);
4584
4585 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4586 sizeof tss_segment_16))
4587 goto out;
4588
4589 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4590 &tss_segment_16, sizeof tss_segment_16))
4591 goto out;
4592
4593 if (old_tss_sel != 0xffff) {
4594 tss_segment_16.prev_task_link = old_tss_sel;
4595
4596 if (kvm_write_guest(vcpu->kvm,
4597 get_tss_base_addr(vcpu, nseg_desc),
4598 &tss_segment_16.prev_task_link,
4599 sizeof tss_segment_16.prev_task_link))
4600 goto out;
4601 }
4602
4603 if (load_state_from_tss16(vcpu, &tss_segment_16))
4604 goto out;
4605
4606 ret = 1;
4607 out:
4608 return ret;
4609 }
4610
4611 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
4612 u16 old_tss_sel, u32 old_tss_base,
4613 struct desc_struct *nseg_desc)
4614 {
4615 struct tss_segment_32 tss_segment_32;
4616 int ret = 0;
4617
4618 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4619 sizeof tss_segment_32))
4620 goto out;
4621
4622 save_state_to_tss32(vcpu, &tss_segment_32);
4623
4624 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4625 sizeof tss_segment_32))
4626 goto out;
4627
4628 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4629 &tss_segment_32, sizeof tss_segment_32))
4630 goto out;
4631
4632 if (old_tss_sel != 0xffff) {
4633 tss_segment_32.prev_task_link = old_tss_sel;
4634
4635 if (kvm_write_guest(vcpu->kvm,
4636 get_tss_base_addr(vcpu, nseg_desc),
4637 &tss_segment_32.prev_task_link,
4638 sizeof tss_segment_32.prev_task_link))
4639 goto out;
4640 }
4641
4642 if (load_state_from_tss32(vcpu, &tss_segment_32))
4643 goto out;
4644
4645 ret = 1;
4646 out:
4647 return ret;
4648 }
4649
4650 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
4651 {
4652 struct kvm_segment tr_seg;
4653 struct desc_struct cseg_desc;
4654 struct desc_struct nseg_desc;
4655 int ret = 0;
4656 u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
4657 u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
4658
4659 old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
4660
4661 /* FIXME: Handle errors. Failure to read either TSS or their
4662 * descriptors should generate a pagefault.
4663 */
4664 if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
4665 goto out;
4666
4667 if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
4668 goto out;
4669
4670 if (reason != TASK_SWITCH_IRET) {
4671 int cpl;
4672
4673 cpl = kvm_x86_ops->get_cpl(vcpu);
4674 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
4675 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4676 return 1;
4677 }
4678 }
4679
4680 if (!nseg_desc.p || get_desc_limit(&nseg_desc) < 0x67) {
4681 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
4682 return 1;
4683 }
4684
4685 if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
4686 cseg_desc.type &= ~(1 << 1); //clear the B flag
4687 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
4688 }
4689
4690 if (reason == TASK_SWITCH_IRET) {
4691 u32 eflags = kvm_get_rflags(vcpu);
4692 kvm_set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
4693 }
4694
4695 /* set back link to prev task only if NT bit is set in eflags
4696 note that old_tss_sel is not used afetr this point */
4697 if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4698 old_tss_sel = 0xffff;
4699
4700 if (nseg_desc.type & 8)
4701 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
4702 old_tss_base, &nseg_desc);
4703 else
4704 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
4705 old_tss_base, &nseg_desc);
4706
4707 if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
4708 u32 eflags = kvm_get_rflags(vcpu);
4709 kvm_set_rflags(vcpu, eflags | X86_EFLAGS_NT);
4710 }
4711
4712 if (reason != TASK_SWITCH_IRET) {
4713 nseg_desc.type |= (1 << 1);
4714 save_guest_segment_descriptor(vcpu, tss_selector,
4715 &nseg_desc);
4716 }
4717
4718 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
4719 seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
4720 tr_seg.type = 11;
4721 kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
4722 out:
4723 return ret;
4724 }
4725 EXPORT_SYMBOL_GPL(kvm_task_switch);
4726
4727 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
4728 struct kvm_sregs *sregs)
4729 {
4730 int mmu_reset_needed = 0;
4731 int pending_vec, max_bits;
4732 struct descriptor_table dt;
4733
4734 vcpu_load(vcpu);
4735
4736 dt.limit = sregs->idt.limit;
4737 dt.base = sregs->idt.base;
4738 kvm_x86_ops->set_idt(vcpu, &dt);
4739 dt.limit = sregs->gdt.limit;
4740 dt.base = sregs->gdt.base;
4741 kvm_x86_ops->set_gdt(vcpu, &dt);
4742
4743 vcpu->arch.cr2 = sregs->cr2;
4744 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
4745 vcpu->arch.cr3 = sregs->cr3;
4746
4747 kvm_set_cr8(vcpu, sregs->cr8);
4748
4749 mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
4750 kvm_x86_ops->set_efer(vcpu, sregs->efer);
4751 kvm_set_apic_base(vcpu, sregs->apic_base);
4752
4753 mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
4754 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
4755 vcpu->arch.cr0 = sregs->cr0;
4756
4757 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
4758 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
4759 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
4760 load_pdptrs(vcpu, vcpu->arch.cr3);
4761 mmu_reset_needed = 1;
4762 }
4763
4764 if (mmu_reset_needed)
4765 kvm_mmu_reset_context(vcpu);
4766
4767 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
4768 pending_vec = find_first_bit(
4769 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
4770 if (pending_vec < max_bits) {
4771 kvm_queue_interrupt(vcpu, pending_vec, false);
4772 pr_debug("Set back pending irq %d\n", pending_vec);
4773 if (irqchip_in_kernel(vcpu->kvm))
4774 kvm_pic_clear_isr_ack(vcpu->kvm);
4775 }
4776
4777 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4778 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4779 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4780 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4781 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4782 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4783
4784 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4785 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4786
4787 update_cr8_intercept(vcpu);
4788
4789 /* Older userspace won't unhalt the vcpu on reset. */
4790 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
4791 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
4792 !(vcpu->arch.cr0 & X86_CR0_PE))
4793 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4794
4795 vcpu_put(vcpu);
4796
4797 return 0;
4798 }
4799
4800 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
4801 struct kvm_guest_debug *dbg)
4802 {
4803 unsigned long rflags;
4804 int i, r;
4805
4806 vcpu_load(vcpu);
4807
4808 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
4809 r = -EBUSY;
4810 if (vcpu->arch.exception.pending)
4811 goto unlock_out;
4812 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
4813 kvm_queue_exception(vcpu, DB_VECTOR);
4814 else
4815 kvm_queue_exception(vcpu, BP_VECTOR);
4816 }
4817
4818 /*
4819 * Read rflags as long as potentially injected trace flags are still
4820 * filtered out.
4821 */
4822 rflags = kvm_get_rflags(vcpu);
4823
4824 vcpu->guest_debug = dbg->control;
4825 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
4826 vcpu->guest_debug = 0;
4827
4828 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4829 for (i = 0; i < KVM_NR_DB_REGS; ++i)
4830 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
4831 vcpu->arch.switch_db_regs =
4832 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
4833 } else {
4834 for (i = 0; i < KVM_NR_DB_REGS; i++)
4835 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
4836 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
4837 }
4838
4839 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
4840 vcpu->arch.singlestep_cs =
4841 get_segment_selector(vcpu, VCPU_SREG_CS);
4842 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu);
4843 }
4844
4845 /*
4846 * Trigger an rflags update that will inject or remove the trace
4847 * flags.
4848 */
4849 kvm_set_rflags(vcpu, rflags);
4850
4851 kvm_x86_ops->set_guest_debug(vcpu, dbg);
4852
4853 r = 0;
4854
4855 unlock_out:
4856 vcpu_put(vcpu);
4857
4858 return r;
4859 }
4860
4861 /*
4862 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
4863 * we have asm/x86/processor.h
4864 */
4865 struct fxsave {
4866 u16 cwd;
4867 u16 swd;
4868 u16 twd;
4869 u16 fop;
4870 u64 rip;
4871 u64 rdp;
4872 u32 mxcsr;
4873 u32 mxcsr_mask;
4874 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
4875 #ifdef CONFIG_X86_64
4876 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
4877 #else
4878 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
4879 #endif
4880 };
4881
4882 /*
4883 * Translate a guest virtual address to a guest physical address.
4884 */
4885 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
4886 struct kvm_translation *tr)
4887 {
4888 unsigned long vaddr = tr->linear_address;
4889 gpa_t gpa;
4890
4891 vcpu_load(vcpu);
4892 down_read(&vcpu->kvm->slots_lock);
4893 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
4894 up_read(&vcpu->kvm->slots_lock);
4895 tr->physical_address = gpa;
4896 tr->valid = gpa != UNMAPPED_GVA;
4897 tr->writeable = 1;
4898 tr->usermode = 0;
4899 vcpu_put(vcpu);
4900
4901 return 0;
4902 }
4903
4904 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4905 {
4906 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4907
4908 vcpu_load(vcpu);
4909
4910 memcpy(fpu->fpr, fxsave->st_space, 128);
4911 fpu->fcw = fxsave->cwd;
4912 fpu->fsw = fxsave->swd;
4913 fpu->ftwx = fxsave->twd;
4914 fpu->last_opcode = fxsave->fop;
4915 fpu->last_ip = fxsave->rip;
4916 fpu->last_dp = fxsave->rdp;
4917 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
4918
4919 vcpu_put(vcpu);
4920
4921 return 0;
4922 }
4923
4924 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4925 {
4926 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4927
4928 vcpu_load(vcpu);
4929
4930 memcpy(fxsave->st_space, fpu->fpr, 128);
4931 fxsave->cwd = fpu->fcw;
4932 fxsave->swd = fpu->fsw;
4933 fxsave->twd = fpu->ftwx;
4934 fxsave->fop = fpu->last_opcode;
4935 fxsave->rip = fpu->last_ip;
4936 fxsave->rdp = fpu->last_dp;
4937 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
4938
4939 vcpu_put(vcpu);
4940
4941 return 0;
4942 }
4943
4944 void fx_init(struct kvm_vcpu *vcpu)
4945 {
4946 unsigned after_mxcsr_mask;
4947
4948 /*
4949 * Touch the fpu the first time in non atomic context as if
4950 * this is the first fpu instruction the exception handler
4951 * will fire before the instruction returns and it'll have to
4952 * allocate ram with GFP_KERNEL.
4953 */
4954 if (!used_math())
4955 kvm_fx_save(&vcpu->arch.host_fx_image);
4956
4957 /* Initialize guest FPU by resetting ours and saving into guest's */
4958 preempt_disable();
4959 kvm_fx_save(&vcpu->arch.host_fx_image);
4960 kvm_fx_finit();
4961 kvm_fx_save(&vcpu->arch.guest_fx_image);
4962 kvm_fx_restore(&vcpu->arch.host_fx_image);
4963 preempt_enable();
4964
4965 vcpu->arch.cr0 |= X86_CR0_ET;
4966 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
4967 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
4968 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
4969 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
4970 }
4971 EXPORT_SYMBOL_GPL(fx_init);
4972
4973 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
4974 {
4975 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
4976 return;
4977
4978 vcpu->guest_fpu_loaded = 1;
4979 kvm_fx_save(&vcpu->arch.host_fx_image);
4980 kvm_fx_restore(&vcpu->arch.guest_fx_image);
4981 }
4982 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
4983
4984 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
4985 {
4986 if (!vcpu->guest_fpu_loaded)
4987 return;
4988
4989 vcpu->guest_fpu_loaded = 0;
4990 kvm_fx_save(&vcpu->arch.guest_fx_image);
4991 kvm_fx_restore(&vcpu->arch.host_fx_image);
4992 ++vcpu->stat.fpu_reload;
4993 }
4994 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
4995
4996 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
4997 {
4998 if (vcpu->arch.time_page) {
4999 kvm_release_page_dirty(vcpu->arch.time_page);
5000 vcpu->arch.time_page = NULL;
5001 }
5002
5003 kvm_x86_ops->vcpu_free(vcpu);
5004 }
5005
5006 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5007 unsigned int id)
5008 {
5009 return kvm_x86_ops->vcpu_create(kvm, id);
5010 }
5011
5012 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5013 {
5014 int r;
5015
5016 /* We do fxsave: this must be aligned. */
5017 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
5018
5019 vcpu->arch.mtrr_state.have_fixed = 1;
5020 vcpu_load(vcpu);
5021 r = kvm_arch_vcpu_reset(vcpu);
5022 if (r == 0)
5023 r = kvm_mmu_setup(vcpu);
5024 vcpu_put(vcpu);
5025 if (r < 0)
5026 goto free_vcpu;
5027
5028 return 0;
5029 free_vcpu:
5030 kvm_x86_ops->vcpu_free(vcpu);
5031 return r;
5032 }
5033
5034 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5035 {
5036 vcpu_load(vcpu);
5037 kvm_mmu_unload(vcpu);
5038 vcpu_put(vcpu);
5039
5040 kvm_x86_ops->vcpu_free(vcpu);
5041 }
5042
5043 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5044 {
5045 vcpu->arch.nmi_pending = false;
5046 vcpu->arch.nmi_injected = false;
5047
5048 vcpu->arch.switch_db_regs = 0;
5049 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5050 vcpu->arch.dr6 = DR6_FIXED_1;
5051 vcpu->arch.dr7 = DR7_FIXED_1;
5052
5053 return kvm_x86_ops->vcpu_reset(vcpu);
5054 }
5055
5056 int kvm_arch_hardware_enable(void *garbage)
5057 {
5058 /*
5059 * Since this may be called from a hotplug notifcation,
5060 * we can't get the CPU frequency directly.
5061 */
5062 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5063 int cpu = raw_smp_processor_id();
5064 per_cpu(cpu_tsc_khz, cpu) = 0;
5065 }
5066
5067 kvm_shared_msr_cpu_online();
5068
5069 return kvm_x86_ops->hardware_enable(garbage);
5070 }
5071
5072 void kvm_arch_hardware_disable(void *garbage)
5073 {
5074 kvm_x86_ops->hardware_disable(garbage);
5075 drop_user_return_notifiers(garbage);
5076 }
5077
5078 int kvm_arch_hardware_setup(void)
5079 {
5080 return kvm_x86_ops->hardware_setup();
5081 }
5082
5083 void kvm_arch_hardware_unsetup(void)
5084 {
5085 kvm_x86_ops->hardware_unsetup();
5086 }
5087
5088 void kvm_arch_check_processor_compat(void *rtn)
5089 {
5090 kvm_x86_ops->check_processor_compatibility(rtn);
5091 }
5092
5093 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5094 {
5095 struct page *page;
5096 struct kvm *kvm;
5097 int r;
5098
5099 BUG_ON(vcpu->kvm == NULL);
5100 kvm = vcpu->kvm;
5101
5102 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5103 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5104 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5105 else
5106 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5107
5108 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5109 if (!page) {
5110 r = -ENOMEM;
5111 goto fail;
5112 }
5113 vcpu->arch.pio_data = page_address(page);
5114
5115 r = kvm_mmu_create(vcpu);
5116 if (r < 0)
5117 goto fail_free_pio_data;
5118
5119 if (irqchip_in_kernel(kvm)) {
5120 r = kvm_create_lapic(vcpu);
5121 if (r < 0)
5122 goto fail_mmu_destroy;
5123 }
5124
5125 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5126 GFP_KERNEL);
5127 if (!vcpu->arch.mce_banks) {
5128 r = -ENOMEM;
5129 goto fail_free_lapic;
5130 }
5131 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5132
5133 return 0;
5134 fail_free_lapic:
5135 kvm_free_lapic(vcpu);
5136 fail_mmu_destroy:
5137 kvm_mmu_destroy(vcpu);
5138 fail_free_pio_data:
5139 free_page((unsigned long)vcpu->arch.pio_data);
5140 fail:
5141 return r;
5142 }
5143
5144 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
5145 {
5146 kfree(vcpu->arch.mce_banks);
5147 kvm_free_lapic(vcpu);
5148 down_read(&vcpu->kvm->slots_lock);
5149 kvm_mmu_destroy(vcpu);
5150 up_read(&vcpu->kvm->slots_lock);
5151 free_page((unsigned long)vcpu->arch.pio_data);
5152 }
5153
5154 struct kvm *kvm_arch_create_vm(void)
5155 {
5156 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
5157
5158 if (!kvm)
5159 return ERR_PTR(-ENOMEM);
5160
5161 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5162 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
5163
5164 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5165 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
5166
5167 rdtscll(kvm->arch.vm_init_tsc);
5168
5169 return kvm;
5170 }
5171
5172 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
5173 {
5174 vcpu_load(vcpu);
5175 kvm_mmu_unload(vcpu);
5176 vcpu_put(vcpu);
5177 }
5178
5179 static void kvm_free_vcpus(struct kvm *kvm)
5180 {
5181 unsigned int i;
5182 struct kvm_vcpu *vcpu;
5183
5184 /*
5185 * Unpin any mmu pages first.
5186 */
5187 kvm_for_each_vcpu(i, vcpu, kvm)
5188 kvm_unload_vcpu_mmu(vcpu);
5189 kvm_for_each_vcpu(i, vcpu, kvm)
5190 kvm_arch_vcpu_free(vcpu);
5191
5192 mutex_lock(&kvm->lock);
5193 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
5194 kvm->vcpus[i] = NULL;
5195
5196 atomic_set(&kvm->online_vcpus, 0);
5197 mutex_unlock(&kvm->lock);
5198 }
5199
5200 void kvm_arch_sync_events(struct kvm *kvm)
5201 {
5202 kvm_free_all_assigned_devices(kvm);
5203 }
5204
5205 void kvm_arch_destroy_vm(struct kvm *kvm)
5206 {
5207 kvm_iommu_unmap_guest(kvm);
5208 kvm_free_pit(kvm);
5209 kfree(kvm->arch.vpic);
5210 kfree(kvm->arch.vioapic);
5211 kvm_free_vcpus(kvm);
5212 kvm_free_physmem(kvm);
5213 if (kvm->arch.apic_access_page)
5214 put_page(kvm->arch.apic_access_page);
5215 if (kvm->arch.ept_identity_pagetable)
5216 put_page(kvm->arch.ept_identity_pagetable);
5217 kfree(kvm);
5218 }
5219
5220 int kvm_arch_set_memory_region(struct kvm *kvm,
5221 struct kvm_userspace_memory_region *mem,
5222 struct kvm_memory_slot old,
5223 int user_alloc)
5224 {
5225 int npages = mem->memory_size >> PAGE_SHIFT;
5226 struct kvm_memory_slot *memslot = &kvm->memslots->memslots[mem->slot];
5227
5228 /*To keep backward compatibility with older userspace,
5229 *x86 needs to hanlde !user_alloc case.
5230 */
5231 if (!user_alloc) {
5232 if (npages && !old.rmap) {
5233 unsigned long userspace_addr;
5234
5235 down_write(&current->mm->mmap_sem);
5236 userspace_addr = do_mmap(NULL, 0,
5237 npages * PAGE_SIZE,
5238 PROT_READ | PROT_WRITE,
5239 MAP_PRIVATE | MAP_ANONYMOUS,
5240 0);
5241 up_write(&current->mm->mmap_sem);
5242
5243 if (IS_ERR((void *)userspace_addr))
5244 return PTR_ERR((void *)userspace_addr);
5245
5246 /* set userspace_addr atomically for kvm_hva_to_rmapp */
5247 spin_lock(&kvm->mmu_lock);
5248 memslot->userspace_addr = userspace_addr;
5249 spin_unlock(&kvm->mmu_lock);
5250 } else {
5251 if (!old.user_alloc && old.rmap) {
5252 int ret;
5253
5254 down_write(&current->mm->mmap_sem);
5255 ret = do_munmap(current->mm, old.userspace_addr,
5256 old.npages * PAGE_SIZE);
5257 up_write(&current->mm->mmap_sem);
5258 if (ret < 0)
5259 printk(KERN_WARNING
5260 "kvm_vm_ioctl_set_memory_region: "
5261 "failed to munmap memory\n");
5262 }
5263 }
5264 }
5265
5266 spin_lock(&kvm->mmu_lock);
5267 if (!kvm->arch.n_requested_mmu_pages) {
5268 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
5269 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
5270 }
5271
5272 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
5273 spin_unlock(&kvm->mmu_lock);
5274
5275 return 0;
5276 }
5277
5278 void kvm_arch_flush_shadow(struct kvm *kvm)
5279 {
5280 kvm_mmu_zap_all(kvm);
5281 kvm_reload_remote_mmus(kvm);
5282 }
5283
5284 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
5285 {
5286 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
5287 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
5288 || vcpu->arch.nmi_pending ||
5289 (kvm_arch_interrupt_allowed(vcpu) &&
5290 kvm_cpu_has_interrupt(vcpu));
5291 }
5292
5293 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
5294 {
5295 int me;
5296 int cpu = vcpu->cpu;
5297
5298 if (waitqueue_active(&vcpu->wq)) {
5299 wake_up_interruptible(&vcpu->wq);
5300 ++vcpu->stat.halt_wakeup;
5301 }
5302
5303 me = get_cpu();
5304 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
5305 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
5306 smp_send_reschedule(cpu);
5307 put_cpu();
5308 }
5309
5310 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
5311 {
5312 return kvm_x86_ops->interrupt_allowed(vcpu);
5313 }
5314
5315 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
5316 {
5317 unsigned long rflags;
5318
5319 rflags = kvm_x86_ops->get_rflags(vcpu);
5320 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5321 rflags &= ~(unsigned long)(X86_EFLAGS_TF | X86_EFLAGS_RF);
5322 return rflags;
5323 }
5324 EXPORT_SYMBOL_GPL(kvm_get_rflags);
5325
5326 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
5327 {
5328 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
5329 vcpu->arch.singlestep_cs ==
5330 get_segment_selector(vcpu, VCPU_SREG_CS) &&
5331 vcpu->arch.singlestep_rip == kvm_rip_read(vcpu))
5332 rflags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
5333 kvm_x86_ops->set_rflags(vcpu, rflags);
5334 }
5335 EXPORT_SYMBOL_GPL(kvm_set_rflags);
5336
5337 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
5338 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
5339 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
5340 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
5341 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
5342 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
5343 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
5344 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
5345 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
5346 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
5347 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
This page took 0.13978 seconds and 6 git commands to generate.