KVM: switch to get_user_pages_fast
[deliverable/linux.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Amit Shah <amit.shah@qumranet.com>
14 * Ben-Ami Yassour <benami@il.ibm.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
28
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/pci.h>
34 #include <linux/vmalloc.h>
35 #include <linux/module.h>
36 #include <linux/mman.h>
37 #include <linux/highmem.h>
38 #include <linux/intel-iommu.h>
39
40 #include <asm/uaccess.h>
41 #include <asm/msr.h>
42 #include <asm/desc.h>
43
44 #define MAX_IO_MSRS 256
45 #define CR0_RESERVED_BITS \
46 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
47 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
48 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
49 #define CR4_RESERVED_BITS \
50 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
51 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
52 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
53 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
54
55 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
56 /* EFER defaults:
57 * - enable syscall per default because its emulated by KVM
58 * - enable LME and LMA per default on 64 bit KVM
59 */
60 #ifdef CONFIG_X86_64
61 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
62 #else
63 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
64 #endif
65
66 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
67 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
68
69 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
70 struct kvm_cpuid_entry2 __user *entries);
71
72 struct kvm_x86_ops *kvm_x86_ops;
73 EXPORT_SYMBOL_GPL(kvm_x86_ops);
74
75 struct kvm_stats_debugfs_item debugfs_entries[] = {
76 { "pf_fixed", VCPU_STAT(pf_fixed) },
77 { "pf_guest", VCPU_STAT(pf_guest) },
78 { "tlb_flush", VCPU_STAT(tlb_flush) },
79 { "invlpg", VCPU_STAT(invlpg) },
80 { "exits", VCPU_STAT(exits) },
81 { "io_exits", VCPU_STAT(io_exits) },
82 { "mmio_exits", VCPU_STAT(mmio_exits) },
83 { "signal_exits", VCPU_STAT(signal_exits) },
84 { "irq_window", VCPU_STAT(irq_window_exits) },
85 { "nmi_window", VCPU_STAT(nmi_window_exits) },
86 { "halt_exits", VCPU_STAT(halt_exits) },
87 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
88 { "hypercalls", VCPU_STAT(hypercalls) },
89 { "request_irq", VCPU_STAT(request_irq_exits) },
90 { "irq_exits", VCPU_STAT(irq_exits) },
91 { "host_state_reload", VCPU_STAT(host_state_reload) },
92 { "efer_reload", VCPU_STAT(efer_reload) },
93 { "fpu_reload", VCPU_STAT(fpu_reload) },
94 { "insn_emulation", VCPU_STAT(insn_emulation) },
95 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
96 { "irq_injections", VCPU_STAT(irq_injections) },
97 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
98 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
99 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
100 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
101 { "mmu_flooded", VM_STAT(mmu_flooded) },
102 { "mmu_recycled", VM_STAT(mmu_recycled) },
103 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
104 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
105 { "largepages", VM_STAT(lpages) },
106 { NULL }
107 };
108
109 static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
110 int assigned_dev_id)
111 {
112 struct list_head *ptr;
113 struct kvm_assigned_dev_kernel *match;
114
115 list_for_each(ptr, head) {
116 match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
117 if (match->assigned_dev_id == assigned_dev_id)
118 return match;
119 }
120 return NULL;
121 }
122
123 static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
124 {
125 struct kvm_assigned_dev_kernel *assigned_dev;
126
127 assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
128 interrupt_work);
129
130 /* This is taken to safely inject irq inside the guest. When
131 * the interrupt injection (or the ioapic code) uses a
132 * finer-grained lock, update this
133 */
134 mutex_lock(&assigned_dev->kvm->lock);
135 kvm_set_irq(assigned_dev->kvm,
136 assigned_dev->guest_irq, 1);
137 mutex_unlock(&assigned_dev->kvm->lock);
138 kvm_put_kvm(assigned_dev->kvm);
139 }
140
141 /* FIXME: Implement the OR logic needed to make shared interrupts on
142 * this line behave properly
143 */
144 static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
145 {
146 struct kvm_assigned_dev_kernel *assigned_dev =
147 (struct kvm_assigned_dev_kernel *) dev_id;
148
149 kvm_get_kvm(assigned_dev->kvm);
150 schedule_work(&assigned_dev->interrupt_work);
151 disable_irq_nosync(irq);
152 return IRQ_HANDLED;
153 }
154
155 /* Ack the irq line for an assigned device */
156 static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
157 {
158 struct kvm_assigned_dev_kernel *dev;
159
160 if (kian->gsi == -1)
161 return;
162
163 dev = container_of(kian, struct kvm_assigned_dev_kernel,
164 ack_notifier);
165 kvm_set_irq(dev->kvm, dev->guest_irq, 0);
166 enable_irq(dev->host_irq);
167 }
168
169 static void kvm_free_assigned_device(struct kvm *kvm,
170 struct kvm_assigned_dev_kernel
171 *assigned_dev)
172 {
173 if (irqchip_in_kernel(kvm) && assigned_dev->irq_requested)
174 free_irq(assigned_dev->host_irq, (void *)assigned_dev);
175
176 kvm_unregister_irq_ack_notifier(kvm, &assigned_dev->ack_notifier);
177
178 if (cancel_work_sync(&assigned_dev->interrupt_work))
179 /* We had pending work. That means we will have to take
180 * care of kvm_put_kvm.
181 */
182 kvm_put_kvm(kvm);
183
184 pci_release_regions(assigned_dev->dev);
185 pci_disable_device(assigned_dev->dev);
186 pci_dev_put(assigned_dev->dev);
187
188 list_del(&assigned_dev->list);
189 kfree(assigned_dev);
190 }
191
192 static void kvm_free_all_assigned_devices(struct kvm *kvm)
193 {
194 struct list_head *ptr, *ptr2;
195 struct kvm_assigned_dev_kernel *assigned_dev;
196
197 list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
198 assigned_dev = list_entry(ptr,
199 struct kvm_assigned_dev_kernel,
200 list);
201
202 kvm_free_assigned_device(kvm, assigned_dev);
203 }
204 }
205
206 static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
207 struct kvm_assigned_irq
208 *assigned_irq)
209 {
210 int r = 0;
211 struct kvm_assigned_dev_kernel *match;
212
213 mutex_lock(&kvm->lock);
214
215 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
216 assigned_irq->assigned_dev_id);
217 if (!match) {
218 mutex_unlock(&kvm->lock);
219 return -EINVAL;
220 }
221
222 if (match->irq_requested) {
223 match->guest_irq = assigned_irq->guest_irq;
224 match->ack_notifier.gsi = assigned_irq->guest_irq;
225 mutex_unlock(&kvm->lock);
226 return 0;
227 }
228
229 INIT_WORK(&match->interrupt_work,
230 kvm_assigned_dev_interrupt_work_handler);
231
232 if (irqchip_in_kernel(kvm)) {
233 if (!capable(CAP_SYS_RAWIO)) {
234 r = -EPERM;
235 goto out_release;
236 }
237
238 if (assigned_irq->host_irq)
239 match->host_irq = assigned_irq->host_irq;
240 else
241 match->host_irq = match->dev->irq;
242 match->guest_irq = assigned_irq->guest_irq;
243 match->ack_notifier.gsi = assigned_irq->guest_irq;
244 match->ack_notifier.irq_acked = kvm_assigned_dev_ack_irq;
245 kvm_register_irq_ack_notifier(kvm, &match->ack_notifier);
246
247 /* Even though this is PCI, we don't want to use shared
248 * interrupts. Sharing host devices with guest-assigned devices
249 * on the same interrupt line is not a happy situation: there
250 * are going to be long delays in accepting, acking, etc.
251 */
252 if (request_irq(match->host_irq, kvm_assigned_dev_intr, 0,
253 "kvm_assigned_device", (void *)match)) {
254 r = -EIO;
255 goto out_release;
256 }
257 }
258
259 match->irq_requested = true;
260 mutex_unlock(&kvm->lock);
261 return r;
262 out_release:
263 mutex_unlock(&kvm->lock);
264 kvm_free_assigned_device(kvm, match);
265 return r;
266 }
267
268 static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
269 struct kvm_assigned_pci_dev *assigned_dev)
270 {
271 int r = 0;
272 struct kvm_assigned_dev_kernel *match;
273 struct pci_dev *dev;
274
275 mutex_lock(&kvm->lock);
276
277 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
278 assigned_dev->assigned_dev_id);
279 if (match) {
280 /* device already assigned */
281 r = -EINVAL;
282 goto out;
283 }
284
285 match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
286 if (match == NULL) {
287 printk(KERN_INFO "%s: Couldn't allocate memory\n",
288 __func__);
289 r = -ENOMEM;
290 goto out;
291 }
292 dev = pci_get_bus_and_slot(assigned_dev->busnr,
293 assigned_dev->devfn);
294 if (!dev) {
295 printk(KERN_INFO "%s: host device not found\n", __func__);
296 r = -EINVAL;
297 goto out_free;
298 }
299 if (pci_enable_device(dev)) {
300 printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
301 r = -EBUSY;
302 goto out_put;
303 }
304 r = pci_request_regions(dev, "kvm_assigned_device");
305 if (r) {
306 printk(KERN_INFO "%s: Could not get access to device regions\n",
307 __func__);
308 goto out_disable;
309 }
310 match->assigned_dev_id = assigned_dev->assigned_dev_id;
311 match->host_busnr = assigned_dev->busnr;
312 match->host_devfn = assigned_dev->devfn;
313 match->dev = dev;
314
315 match->kvm = kvm;
316
317 list_add(&match->list, &kvm->arch.assigned_dev_head);
318
319 if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
320 r = kvm_iommu_map_guest(kvm, match);
321 if (r)
322 goto out_list_del;
323 }
324
325 out:
326 mutex_unlock(&kvm->lock);
327 return r;
328 out_list_del:
329 list_del(&match->list);
330 pci_release_regions(dev);
331 out_disable:
332 pci_disable_device(dev);
333 out_put:
334 pci_dev_put(dev);
335 out_free:
336 kfree(match);
337 mutex_unlock(&kvm->lock);
338 return r;
339 }
340
341 unsigned long segment_base(u16 selector)
342 {
343 struct descriptor_table gdt;
344 struct desc_struct *d;
345 unsigned long table_base;
346 unsigned long v;
347
348 if (selector == 0)
349 return 0;
350
351 asm("sgdt %0" : "=m"(gdt));
352 table_base = gdt.base;
353
354 if (selector & 4) { /* from ldt */
355 u16 ldt_selector;
356
357 asm("sldt %0" : "=g"(ldt_selector));
358 table_base = segment_base(ldt_selector);
359 }
360 d = (struct desc_struct *)(table_base + (selector & ~7));
361 v = d->base0 | ((unsigned long)d->base1 << 16) |
362 ((unsigned long)d->base2 << 24);
363 #ifdef CONFIG_X86_64
364 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
365 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
366 #endif
367 return v;
368 }
369 EXPORT_SYMBOL_GPL(segment_base);
370
371 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
372 {
373 if (irqchip_in_kernel(vcpu->kvm))
374 return vcpu->arch.apic_base;
375 else
376 return vcpu->arch.apic_base;
377 }
378 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
379
380 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
381 {
382 /* TODO: reserve bits check */
383 if (irqchip_in_kernel(vcpu->kvm))
384 kvm_lapic_set_base(vcpu, data);
385 else
386 vcpu->arch.apic_base = data;
387 }
388 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
389
390 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
391 {
392 WARN_ON(vcpu->arch.exception.pending);
393 vcpu->arch.exception.pending = true;
394 vcpu->arch.exception.has_error_code = false;
395 vcpu->arch.exception.nr = nr;
396 }
397 EXPORT_SYMBOL_GPL(kvm_queue_exception);
398
399 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
400 u32 error_code)
401 {
402 ++vcpu->stat.pf_guest;
403 if (vcpu->arch.exception.pending) {
404 if (vcpu->arch.exception.nr == PF_VECTOR) {
405 printk(KERN_DEBUG "kvm: inject_page_fault:"
406 " double fault 0x%lx\n", addr);
407 vcpu->arch.exception.nr = DF_VECTOR;
408 vcpu->arch.exception.error_code = 0;
409 } else if (vcpu->arch.exception.nr == DF_VECTOR) {
410 /* triple fault -> shutdown */
411 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
412 }
413 return;
414 }
415 vcpu->arch.cr2 = addr;
416 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
417 }
418
419 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
420 {
421 vcpu->arch.nmi_pending = 1;
422 }
423 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
424
425 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
426 {
427 WARN_ON(vcpu->arch.exception.pending);
428 vcpu->arch.exception.pending = true;
429 vcpu->arch.exception.has_error_code = true;
430 vcpu->arch.exception.nr = nr;
431 vcpu->arch.exception.error_code = error_code;
432 }
433 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
434
435 static void __queue_exception(struct kvm_vcpu *vcpu)
436 {
437 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
438 vcpu->arch.exception.has_error_code,
439 vcpu->arch.exception.error_code);
440 }
441
442 /*
443 * Load the pae pdptrs. Return true is they are all valid.
444 */
445 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
446 {
447 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
448 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
449 int i;
450 int ret;
451 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
452
453 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
454 offset * sizeof(u64), sizeof(pdpte));
455 if (ret < 0) {
456 ret = 0;
457 goto out;
458 }
459 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
460 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
461 ret = 0;
462 goto out;
463 }
464 }
465 ret = 1;
466
467 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
468 out:
469
470 return ret;
471 }
472 EXPORT_SYMBOL_GPL(load_pdptrs);
473
474 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
475 {
476 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
477 bool changed = true;
478 int r;
479
480 if (is_long_mode(vcpu) || !is_pae(vcpu))
481 return false;
482
483 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
484 if (r < 0)
485 goto out;
486 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
487 out:
488
489 return changed;
490 }
491
492 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
493 {
494 if (cr0 & CR0_RESERVED_BITS) {
495 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
496 cr0, vcpu->arch.cr0);
497 kvm_inject_gp(vcpu, 0);
498 return;
499 }
500
501 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
502 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
503 kvm_inject_gp(vcpu, 0);
504 return;
505 }
506
507 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
508 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
509 "and a clear PE flag\n");
510 kvm_inject_gp(vcpu, 0);
511 return;
512 }
513
514 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
515 #ifdef CONFIG_X86_64
516 if ((vcpu->arch.shadow_efer & EFER_LME)) {
517 int cs_db, cs_l;
518
519 if (!is_pae(vcpu)) {
520 printk(KERN_DEBUG "set_cr0: #GP, start paging "
521 "in long mode while PAE is disabled\n");
522 kvm_inject_gp(vcpu, 0);
523 return;
524 }
525 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
526 if (cs_l) {
527 printk(KERN_DEBUG "set_cr0: #GP, start paging "
528 "in long mode while CS.L == 1\n");
529 kvm_inject_gp(vcpu, 0);
530 return;
531
532 }
533 } else
534 #endif
535 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
536 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
537 "reserved bits\n");
538 kvm_inject_gp(vcpu, 0);
539 return;
540 }
541
542 }
543
544 kvm_x86_ops->set_cr0(vcpu, cr0);
545 vcpu->arch.cr0 = cr0;
546
547 kvm_mmu_reset_context(vcpu);
548 return;
549 }
550 EXPORT_SYMBOL_GPL(kvm_set_cr0);
551
552 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
553 {
554 kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
555 KVMTRACE_1D(LMSW, vcpu,
556 (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
557 handler);
558 }
559 EXPORT_SYMBOL_GPL(kvm_lmsw);
560
561 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
562 {
563 if (cr4 & CR4_RESERVED_BITS) {
564 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
565 kvm_inject_gp(vcpu, 0);
566 return;
567 }
568
569 if (is_long_mode(vcpu)) {
570 if (!(cr4 & X86_CR4_PAE)) {
571 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
572 "in long mode\n");
573 kvm_inject_gp(vcpu, 0);
574 return;
575 }
576 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
577 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
578 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
579 kvm_inject_gp(vcpu, 0);
580 return;
581 }
582
583 if (cr4 & X86_CR4_VMXE) {
584 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
585 kvm_inject_gp(vcpu, 0);
586 return;
587 }
588 kvm_x86_ops->set_cr4(vcpu, cr4);
589 vcpu->arch.cr4 = cr4;
590 kvm_mmu_reset_context(vcpu);
591 }
592 EXPORT_SYMBOL_GPL(kvm_set_cr4);
593
594 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
595 {
596 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
597 kvm_mmu_flush_tlb(vcpu);
598 return;
599 }
600
601 if (is_long_mode(vcpu)) {
602 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
603 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
604 kvm_inject_gp(vcpu, 0);
605 return;
606 }
607 } else {
608 if (is_pae(vcpu)) {
609 if (cr3 & CR3_PAE_RESERVED_BITS) {
610 printk(KERN_DEBUG
611 "set_cr3: #GP, reserved bits\n");
612 kvm_inject_gp(vcpu, 0);
613 return;
614 }
615 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
616 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
617 "reserved bits\n");
618 kvm_inject_gp(vcpu, 0);
619 return;
620 }
621 }
622 /*
623 * We don't check reserved bits in nonpae mode, because
624 * this isn't enforced, and VMware depends on this.
625 */
626 }
627
628 /*
629 * Does the new cr3 value map to physical memory? (Note, we
630 * catch an invalid cr3 even in real-mode, because it would
631 * cause trouble later on when we turn on paging anyway.)
632 *
633 * A real CPU would silently accept an invalid cr3 and would
634 * attempt to use it - with largely undefined (and often hard
635 * to debug) behavior on the guest side.
636 */
637 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
638 kvm_inject_gp(vcpu, 0);
639 else {
640 vcpu->arch.cr3 = cr3;
641 vcpu->arch.mmu.new_cr3(vcpu);
642 }
643 }
644 EXPORT_SYMBOL_GPL(kvm_set_cr3);
645
646 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
647 {
648 if (cr8 & CR8_RESERVED_BITS) {
649 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
650 kvm_inject_gp(vcpu, 0);
651 return;
652 }
653 if (irqchip_in_kernel(vcpu->kvm))
654 kvm_lapic_set_tpr(vcpu, cr8);
655 else
656 vcpu->arch.cr8 = cr8;
657 }
658 EXPORT_SYMBOL_GPL(kvm_set_cr8);
659
660 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
661 {
662 if (irqchip_in_kernel(vcpu->kvm))
663 return kvm_lapic_get_cr8(vcpu);
664 else
665 return vcpu->arch.cr8;
666 }
667 EXPORT_SYMBOL_GPL(kvm_get_cr8);
668
669 /*
670 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
671 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
672 *
673 * This list is modified at module load time to reflect the
674 * capabilities of the host cpu.
675 */
676 static u32 msrs_to_save[] = {
677 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
678 MSR_K6_STAR,
679 #ifdef CONFIG_X86_64
680 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
681 #endif
682 MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
683 MSR_IA32_PERF_STATUS,
684 };
685
686 static unsigned num_msrs_to_save;
687
688 static u32 emulated_msrs[] = {
689 MSR_IA32_MISC_ENABLE,
690 };
691
692 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
693 {
694 if (efer & efer_reserved_bits) {
695 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
696 efer);
697 kvm_inject_gp(vcpu, 0);
698 return;
699 }
700
701 if (is_paging(vcpu)
702 && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
703 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
704 kvm_inject_gp(vcpu, 0);
705 return;
706 }
707
708 kvm_x86_ops->set_efer(vcpu, efer);
709
710 efer &= ~EFER_LMA;
711 efer |= vcpu->arch.shadow_efer & EFER_LMA;
712
713 vcpu->arch.shadow_efer = efer;
714 }
715
716 void kvm_enable_efer_bits(u64 mask)
717 {
718 efer_reserved_bits &= ~mask;
719 }
720 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
721
722
723 /*
724 * Writes msr value into into the appropriate "register".
725 * Returns 0 on success, non-0 otherwise.
726 * Assumes vcpu_load() was already called.
727 */
728 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
729 {
730 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
731 }
732
733 /*
734 * Adapt set_msr() to msr_io()'s calling convention
735 */
736 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
737 {
738 return kvm_set_msr(vcpu, index, *data);
739 }
740
741 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
742 {
743 static int version;
744 struct pvclock_wall_clock wc;
745 struct timespec now, sys, boot;
746
747 if (!wall_clock)
748 return;
749
750 version++;
751
752 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
753
754 /*
755 * The guest calculates current wall clock time by adding
756 * system time (updated by kvm_write_guest_time below) to the
757 * wall clock specified here. guest system time equals host
758 * system time for us, thus we must fill in host boot time here.
759 */
760 now = current_kernel_time();
761 ktime_get_ts(&sys);
762 boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
763
764 wc.sec = boot.tv_sec;
765 wc.nsec = boot.tv_nsec;
766 wc.version = version;
767
768 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
769
770 version++;
771 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
772 }
773
774 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
775 {
776 uint32_t quotient, remainder;
777
778 /* Don't try to replace with do_div(), this one calculates
779 * "(dividend << 32) / divisor" */
780 __asm__ ( "divl %4"
781 : "=a" (quotient), "=d" (remainder)
782 : "0" (0), "1" (dividend), "r" (divisor) );
783 return quotient;
784 }
785
786 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
787 {
788 uint64_t nsecs = 1000000000LL;
789 int32_t shift = 0;
790 uint64_t tps64;
791 uint32_t tps32;
792
793 tps64 = tsc_khz * 1000LL;
794 while (tps64 > nsecs*2) {
795 tps64 >>= 1;
796 shift--;
797 }
798
799 tps32 = (uint32_t)tps64;
800 while (tps32 <= (uint32_t)nsecs) {
801 tps32 <<= 1;
802 shift++;
803 }
804
805 hv_clock->tsc_shift = shift;
806 hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
807
808 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
809 __FUNCTION__, tsc_khz, hv_clock->tsc_shift,
810 hv_clock->tsc_to_system_mul);
811 }
812
813 static void kvm_write_guest_time(struct kvm_vcpu *v)
814 {
815 struct timespec ts;
816 unsigned long flags;
817 struct kvm_vcpu_arch *vcpu = &v->arch;
818 void *shared_kaddr;
819
820 if ((!vcpu->time_page))
821 return;
822
823 if (unlikely(vcpu->hv_clock_tsc_khz != tsc_khz)) {
824 kvm_set_time_scale(tsc_khz, &vcpu->hv_clock);
825 vcpu->hv_clock_tsc_khz = tsc_khz;
826 }
827
828 /* Keep irq disabled to prevent changes to the clock */
829 local_irq_save(flags);
830 kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
831 &vcpu->hv_clock.tsc_timestamp);
832 ktime_get_ts(&ts);
833 local_irq_restore(flags);
834
835 /* With all the info we got, fill in the values */
836
837 vcpu->hv_clock.system_time = ts.tv_nsec +
838 (NSEC_PER_SEC * (u64)ts.tv_sec);
839 /*
840 * The interface expects us to write an even number signaling that the
841 * update is finished. Since the guest won't see the intermediate
842 * state, we just increase by 2 at the end.
843 */
844 vcpu->hv_clock.version += 2;
845
846 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
847
848 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
849 sizeof(vcpu->hv_clock));
850
851 kunmap_atomic(shared_kaddr, KM_USER0);
852
853 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
854 }
855
856 static bool msr_mtrr_valid(unsigned msr)
857 {
858 switch (msr) {
859 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
860 case MSR_MTRRfix64K_00000:
861 case MSR_MTRRfix16K_80000:
862 case MSR_MTRRfix16K_A0000:
863 case MSR_MTRRfix4K_C0000:
864 case MSR_MTRRfix4K_C8000:
865 case MSR_MTRRfix4K_D0000:
866 case MSR_MTRRfix4K_D8000:
867 case MSR_MTRRfix4K_E0000:
868 case MSR_MTRRfix4K_E8000:
869 case MSR_MTRRfix4K_F0000:
870 case MSR_MTRRfix4K_F8000:
871 case MSR_MTRRdefType:
872 case MSR_IA32_CR_PAT:
873 return true;
874 case 0x2f8:
875 return true;
876 }
877 return false;
878 }
879
880 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
881 {
882 if (!msr_mtrr_valid(msr))
883 return 1;
884
885 vcpu->arch.mtrr[msr - 0x200] = data;
886 return 0;
887 }
888
889 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
890 {
891 switch (msr) {
892 case MSR_EFER:
893 set_efer(vcpu, data);
894 break;
895 case MSR_IA32_MC0_STATUS:
896 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
897 __func__, data);
898 break;
899 case MSR_IA32_MCG_STATUS:
900 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
901 __func__, data);
902 break;
903 case MSR_IA32_MCG_CTL:
904 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
905 __func__, data);
906 break;
907 case MSR_IA32_DEBUGCTLMSR:
908 if (!data) {
909 /* We support the non-activated case already */
910 break;
911 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
912 /* Values other than LBR and BTF are vendor-specific,
913 thus reserved and should throw a #GP */
914 return 1;
915 }
916 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
917 __func__, data);
918 break;
919 case MSR_IA32_UCODE_REV:
920 case MSR_IA32_UCODE_WRITE:
921 break;
922 case 0x200 ... 0x2ff:
923 return set_msr_mtrr(vcpu, msr, data);
924 case MSR_IA32_APICBASE:
925 kvm_set_apic_base(vcpu, data);
926 break;
927 case MSR_IA32_MISC_ENABLE:
928 vcpu->arch.ia32_misc_enable_msr = data;
929 break;
930 case MSR_KVM_WALL_CLOCK:
931 vcpu->kvm->arch.wall_clock = data;
932 kvm_write_wall_clock(vcpu->kvm, data);
933 break;
934 case MSR_KVM_SYSTEM_TIME: {
935 if (vcpu->arch.time_page) {
936 kvm_release_page_dirty(vcpu->arch.time_page);
937 vcpu->arch.time_page = NULL;
938 }
939
940 vcpu->arch.time = data;
941
942 /* we verify if the enable bit is set... */
943 if (!(data & 1))
944 break;
945
946 /* ...but clean it before doing the actual write */
947 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
948
949 vcpu->arch.time_page =
950 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
951
952 if (is_error_page(vcpu->arch.time_page)) {
953 kvm_release_page_clean(vcpu->arch.time_page);
954 vcpu->arch.time_page = NULL;
955 }
956
957 kvm_write_guest_time(vcpu);
958 break;
959 }
960 default:
961 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
962 return 1;
963 }
964 return 0;
965 }
966 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
967
968
969 /*
970 * Reads an msr value (of 'msr_index') into 'pdata'.
971 * Returns 0 on success, non-0 otherwise.
972 * Assumes vcpu_load() was already called.
973 */
974 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
975 {
976 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
977 }
978
979 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
980 {
981 if (!msr_mtrr_valid(msr))
982 return 1;
983
984 *pdata = vcpu->arch.mtrr[msr - 0x200];
985 return 0;
986 }
987
988 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
989 {
990 u64 data;
991
992 switch (msr) {
993 case 0xc0010010: /* SYSCFG */
994 case 0xc0010015: /* HWCR */
995 case MSR_IA32_PLATFORM_ID:
996 case MSR_IA32_P5_MC_ADDR:
997 case MSR_IA32_P5_MC_TYPE:
998 case MSR_IA32_MC0_CTL:
999 case MSR_IA32_MCG_STATUS:
1000 case MSR_IA32_MCG_CAP:
1001 case MSR_IA32_MCG_CTL:
1002 case MSR_IA32_MC0_MISC:
1003 case MSR_IA32_MC0_MISC+4:
1004 case MSR_IA32_MC0_MISC+8:
1005 case MSR_IA32_MC0_MISC+12:
1006 case MSR_IA32_MC0_MISC+16:
1007 case MSR_IA32_MC0_MISC+20:
1008 case MSR_IA32_UCODE_REV:
1009 case MSR_IA32_EBL_CR_POWERON:
1010 case MSR_IA32_DEBUGCTLMSR:
1011 case MSR_IA32_LASTBRANCHFROMIP:
1012 case MSR_IA32_LASTBRANCHTOIP:
1013 case MSR_IA32_LASTINTFROMIP:
1014 case MSR_IA32_LASTINTTOIP:
1015 data = 0;
1016 break;
1017 case MSR_MTRRcap:
1018 data = 0x500 | KVM_NR_VAR_MTRR;
1019 break;
1020 case 0x200 ... 0x2ff:
1021 return get_msr_mtrr(vcpu, msr, pdata);
1022 case 0xcd: /* fsb frequency */
1023 data = 3;
1024 break;
1025 case MSR_IA32_APICBASE:
1026 data = kvm_get_apic_base(vcpu);
1027 break;
1028 case MSR_IA32_MISC_ENABLE:
1029 data = vcpu->arch.ia32_misc_enable_msr;
1030 break;
1031 case MSR_IA32_PERF_STATUS:
1032 /* TSC increment by tick */
1033 data = 1000ULL;
1034 /* CPU multiplier */
1035 data |= (((uint64_t)4ULL) << 40);
1036 break;
1037 case MSR_EFER:
1038 data = vcpu->arch.shadow_efer;
1039 break;
1040 case MSR_KVM_WALL_CLOCK:
1041 data = vcpu->kvm->arch.wall_clock;
1042 break;
1043 case MSR_KVM_SYSTEM_TIME:
1044 data = vcpu->arch.time;
1045 break;
1046 default:
1047 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1048 return 1;
1049 }
1050 *pdata = data;
1051 return 0;
1052 }
1053 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1054
1055 /*
1056 * Read or write a bunch of msrs. All parameters are kernel addresses.
1057 *
1058 * @return number of msrs set successfully.
1059 */
1060 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1061 struct kvm_msr_entry *entries,
1062 int (*do_msr)(struct kvm_vcpu *vcpu,
1063 unsigned index, u64 *data))
1064 {
1065 int i;
1066
1067 vcpu_load(vcpu);
1068
1069 down_read(&vcpu->kvm->slots_lock);
1070 for (i = 0; i < msrs->nmsrs; ++i)
1071 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1072 break;
1073 up_read(&vcpu->kvm->slots_lock);
1074
1075 vcpu_put(vcpu);
1076
1077 return i;
1078 }
1079
1080 /*
1081 * Read or write a bunch of msrs. Parameters are user addresses.
1082 *
1083 * @return number of msrs set successfully.
1084 */
1085 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1086 int (*do_msr)(struct kvm_vcpu *vcpu,
1087 unsigned index, u64 *data),
1088 int writeback)
1089 {
1090 struct kvm_msrs msrs;
1091 struct kvm_msr_entry *entries;
1092 int r, n;
1093 unsigned size;
1094
1095 r = -EFAULT;
1096 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1097 goto out;
1098
1099 r = -E2BIG;
1100 if (msrs.nmsrs >= MAX_IO_MSRS)
1101 goto out;
1102
1103 r = -ENOMEM;
1104 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1105 entries = vmalloc(size);
1106 if (!entries)
1107 goto out;
1108
1109 r = -EFAULT;
1110 if (copy_from_user(entries, user_msrs->entries, size))
1111 goto out_free;
1112
1113 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1114 if (r < 0)
1115 goto out_free;
1116
1117 r = -EFAULT;
1118 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1119 goto out_free;
1120
1121 r = n;
1122
1123 out_free:
1124 vfree(entries);
1125 out:
1126 return r;
1127 }
1128
1129 int kvm_dev_ioctl_check_extension(long ext)
1130 {
1131 int r;
1132
1133 switch (ext) {
1134 case KVM_CAP_IRQCHIP:
1135 case KVM_CAP_HLT:
1136 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1137 case KVM_CAP_USER_MEMORY:
1138 case KVM_CAP_SET_TSS_ADDR:
1139 case KVM_CAP_EXT_CPUID:
1140 case KVM_CAP_CLOCKSOURCE:
1141 case KVM_CAP_PIT:
1142 case KVM_CAP_NOP_IO_DELAY:
1143 case KVM_CAP_MP_STATE:
1144 case KVM_CAP_SYNC_MMU:
1145 r = 1;
1146 break;
1147 case KVM_CAP_COALESCED_MMIO:
1148 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1149 break;
1150 case KVM_CAP_VAPIC:
1151 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1152 break;
1153 case KVM_CAP_NR_VCPUS:
1154 r = KVM_MAX_VCPUS;
1155 break;
1156 case KVM_CAP_NR_MEMSLOTS:
1157 r = KVM_MEMORY_SLOTS;
1158 break;
1159 case KVM_CAP_PV_MMU:
1160 r = !tdp_enabled;
1161 break;
1162 case KVM_CAP_IOMMU:
1163 r = intel_iommu_found();
1164 break;
1165 default:
1166 r = 0;
1167 break;
1168 }
1169 return r;
1170
1171 }
1172
1173 long kvm_arch_dev_ioctl(struct file *filp,
1174 unsigned int ioctl, unsigned long arg)
1175 {
1176 void __user *argp = (void __user *)arg;
1177 long r;
1178
1179 switch (ioctl) {
1180 case KVM_GET_MSR_INDEX_LIST: {
1181 struct kvm_msr_list __user *user_msr_list = argp;
1182 struct kvm_msr_list msr_list;
1183 unsigned n;
1184
1185 r = -EFAULT;
1186 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1187 goto out;
1188 n = msr_list.nmsrs;
1189 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1190 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1191 goto out;
1192 r = -E2BIG;
1193 if (n < num_msrs_to_save)
1194 goto out;
1195 r = -EFAULT;
1196 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1197 num_msrs_to_save * sizeof(u32)))
1198 goto out;
1199 if (copy_to_user(user_msr_list->indices
1200 + num_msrs_to_save * sizeof(u32),
1201 &emulated_msrs,
1202 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1203 goto out;
1204 r = 0;
1205 break;
1206 }
1207 case KVM_GET_SUPPORTED_CPUID: {
1208 struct kvm_cpuid2 __user *cpuid_arg = argp;
1209 struct kvm_cpuid2 cpuid;
1210
1211 r = -EFAULT;
1212 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1213 goto out;
1214 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1215 cpuid_arg->entries);
1216 if (r)
1217 goto out;
1218
1219 r = -EFAULT;
1220 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1221 goto out;
1222 r = 0;
1223 break;
1224 }
1225 default:
1226 r = -EINVAL;
1227 }
1228 out:
1229 return r;
1230 }
1231
1232 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1233 {
1234 kvm_x86_ops->vcpu_load(vcpu, cpu);
1235 kvm_write_guest_time(vcpu);
1236 }
1237
1238 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1239 {
1240 kvm_x86_ops->vcpu_put(vcpu);
1241 kvm_put_guest_fpu(vcpu);
1242 }
1243
1244 static int is_efer_nx(void)
1245 {
1246 u64 efer;
1247
1248 rdmsrl(MSR_EFER, efer);
1249 return efer & EFER_NX;
1250 }
1251
1252 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1253 {
1254 int i;
1255 struct kvm_cpuid_entry2 *e, *entry;
1256
1257 entry = NULL;
1258 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1259 e = &vcpu->arch.cpuid_entries[i];
1260 if (e->function == 0x80000001) {
1261 entry = e;
1262 break;
1263 }
1264 }
1265 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1266 entry->edx &= ~(1 << 20);
1267 printk(KERN_INFO "kvm: guest NX capability removed\n");
1268 }
1269 }
1270
1271 /* when an old userspace process fills a new kernel module */
1272 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1273 struct kvm_cpuid *cpuid,
1274 struct kvm_cpuid_entry __user *entries)
1275 {
1276 int r, i;
1277 struct kvm_cpuid_entry *cpuid_entries;
1278
1279 r = -E2BIG;
1280 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1281 goto out;
1282 r = -ENOMEM;
1283 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1284 if (!cpuid_entries)
1285 goto out;
1286 r = -EFAULT;
1287 if (copy_from_user(cpuid_entries, entries,
1288 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1289 goto out_free;
1290 for (i = 0; i < cpuid->nent; i++) {
1291 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1292 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1293 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1294 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1295 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1296 vcpu->arch.cpuid_entries[i].index = 0;
1297 vcpu->arch.cpuid_entries[i].flags = 0;
1298 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1299 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1300 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1301 }
1302 vcpu->arch.cpuid_nent = cpuid->nent;
1303 cpuid_fix_nx_cap(vcpu);
1304 r = 0;
1305
1306 out_free:
1307 vfree(cpuid_entries);
1308 out:
1309 return r;
1310 }
1311
1312 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1313 struct kvm_cpuid2 *cpuid,
1314 struct kvm_cpuid_entry2 __user *entries)
1315 {
1316 int r;
1317
1318 r = -E2BIG;
1319 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1320 goto out;
1321 r = -EFAULT;
1322 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1323 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1324 goto out;
1325 vcpu->arch.cpuid_nent = cpuid->nent;
1326 return 0;
1327
1328 out:
1329 return r;
1330 }
1331
1332 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1333 struct kvm_cpuid2 *cpuid,
1334 struct kvm_cpuid_entry2 __user *entries)
1335 {
1336 int r;
1337
1338 r = -E2BIG;
1339 if (cpuid->nent < vcpu->arch.cpuid_nent)
1340 goto out;
1341 r = -EFAULT;
1342 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1343 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1344 goto out;
1345 return 0;
1346
1347 out:
1348 cpuid->nent = vcpu->arch.cpuid_nent;
1349 return r;
1350 }
1351
1352 static inline u32 bit(int bitno)
1353 {
1354 return 1 << (bitno & 31);
1355 }
1356
1357 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1358 u32 index)
1359 {
1360 entry->function = function;
1361 entry->index = index;
1362 cpuid_count(entry->function, entry->index,
1363 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1364 entry->flags = 0;
1365 }
1366
1367 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1368 u32 index, int *nent, int maxnent)
1369 {
1370 const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
1371 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1372 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1373 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1374 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1375 bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
1376 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1377 bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
1378 bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
1379 bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
1380 const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
1381 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1382 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1383 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1384 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1385 bit(X86_FEATURE_PGE) |
1386 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1387 bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
1388 bit(X86_FEATURE_SYSCALL) |
1389 (bit(X86_FEATURE_NX) && is_efer_nx()) |
1390 #ifdef CONFIG_X86_64
1391 bit(X86_FEATURE_LM) |
1392 #endif
1393 bit(X86_FEATURE_MMXEXT) |
1394 bit(X86_FEATURE_3DNOWEXT) |
1395 bit(X86_FEATURE_3DNOW);
1396 const u32 kvm_supported_word3_x86_features =
1397 bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
1398 const u32 kvm_supported_word6_x86_features =
1399 bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);
1400
1401 /* all func 2 cpuid_count() should be called on the same cpu */
1402 get_cpu();
1403 do_cpuid_1_ent(entry, function, index);
1404 ++*nent;
1405
1406 switch (function) {
1407 case 0:
1408 entry->eax = min(entry->eax, (u32)0xb);
1409 break;
1410 case 1:
1411 entry->edx &= kvm_supported_word0_x86_features;
1412 entry->ecx &= kvm_supported_word3_x86_features;
1413 break;
1414 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1415 * may return different values. This forces us to get_cpu() before
1416 * issuing the first command, and also to emulate this annoying behavior
1417 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1418 case 2: {
1419 int t, times = entry->eax & 0xff;
1420
1421 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1422 for (t = 1; t < times && *nent < maxnent; ++t) {
1423 do_cpuid_1_ent(&entry[t], function, 0);
1424 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1425 ++*nent;
1426 }
1427 break;
1428 }
1429 /* function 4 and 0xb have additional index. */
1430 case 4: {
1431 int i, cache_type;
1432
1433 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1434 /* read more entries until cache_type is zero */
1435 for (i = 1; *nent < maxnent; ++i) {
1436 cache_type = entry[i - 1].eax & 0x1f;
1437 if (!cache_type)
1438 break;
1439 do_cpuid_1_ent(&entry[i], function, i);
1440 entry[i].flags |=
1441 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1442 ++*nent;
1443 }
1444 break;
1445 }
1446 case 0xb: {
1447 int i, level_type;
1448
1449 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1450 /* read more entries until level_type is zero */
1451 for (i = 1; *nent < maxnent; ++i) {
1452 level_type = entry[i - 1].ecx & 0xff;
1453 if (!level_type)
1454 break;
1455 do_cpuid_1_ent(&entry[i], function, i);
1456 entry[i].flags |=
1457 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1458 ++*nent;
1459 }
1460 break;
1461 }
1462 case 0x80000000:
1463 entry->eax = min(entry->eax, 0x8000001a);
1464 break;
1465 case 0x80000001:
1466 entry->edx &= kvm_supported_word1_x86_features;
1467 entry->ecx &= kvm_supported_word6_x86_features;
1468 break;
1469 }
1470 put_cpu();
1471 }
1472
1473 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1474 struct kvm_cpuid_entry2 __user *entries)
1475 {
1476 struct kvm_cpuid_entry2 *cpuid_entries;
1477 int limit, nent = 0, r = -E2BIG;
1478 u32 func;
1479
1480 if (cpuid->nent < 1)
1481 goto out;
1482 r = -ENOMEM;
1483 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1484 if (!cpuid_entries)
1485 goto out;
1486
1487 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1488 limit = cpuid_entries[0].eax;
1489 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1490 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1491 &nent, cpuid->nent);
1492 r = -E2BIG;
1493 if (nent >= cpuid->nent)
1494 goto out_free;
1495
1496 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1497 limit = cpuid_entries[nent - 1].eax;
1498 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1499 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1500 &nent, cpuid->nent);
1501 r = -EFAULT;
1502 if (copy_to_user(entries, cpuid_entries,
1503 nent * sizeof(struct kvm_cpuid_entry2)))
1504 goto out_free;
1505 cpuid->nent = nent;
1506 r = 0;
1507
1508 out_free:
1509 vfree(cpuid_entries);
1510 out:
1511 return r;
1512 }
1513
1514 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1515 struct kvm_lapic_state *s)
1516 {
1517 vcpu_load(vcpu);
1518 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1519 vcpu_put(vcpu);
1520
1521 return 0;
1522 }
1523
1524 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1525 struct kvm_lapic_state *s)
1526 {
1527 vcpu_load(vcpu);
1528 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1529 kvm_apic_post_state_restore(vcpu);
1530 vcpu_put(vcpu);
1531
1532 return 0;
1533 }
1534
1535 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1536 struct kvm_interrupt *irq)
1537 {
1538 if (irq->irq < 0 || irq->irq >= 256)
1539 return -EINVAL;
1540 if (irqchip_in_kernel(vcpu->kvm))
1541 return -ENXIO;
1542 vcpu_load(vcpu);
1543
1544 set_bit(irq->irq, vcpu->arch.irq_pending);
1545 set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1546
1547 vcpu_put(vcpu);
1548
1549 return 0;
1550 }
1551
1552 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1553 struct kvm_tpr_access_ctl *tac)
1554 {
1555 if (tac->flags)
1556 return -EINVAL;
1557 vcpu->arch.tpr_access_reporting = !!tac->enabled;
1558 return 0;
1559 }
1560
1561 long kvm_arch_vcpu_ioctl(struct file *filp,
1562 unsigned int ioctl, unsigned long arg)
1563 {
1564 struct kvm_vcpu *vcpu = filp->private_data;
1565 void __user *argp = (void __user *)arg;
1566 int r;
1567 struct kvm_lapic_state *lapic = NULL;
1568
1569 switch (ioctl) {
1570 case KVM_GET_LAPIC: {
1571 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1572
1573 r = -ENOMEM;
1574 if (!lapic)
1575 goto out;
1576 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
1577 if (r)
1578 goto out;
1579 r = -EFAULT;
1580 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
1581 goto out;
1582 r = 0;
1583 break;
1584 }
1585 case KVM_SET_LAPIC: {
1586 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1587 r = -ENOMEM;
1588 if (!lapic)
1589 goto out;
1590 r = -EFAULT;
1591 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
1592 goto out;
1593 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
1594 if (r)
1595 goto out;
1596 r = 0;
1597 break;
1598 }
1599 case KVM_INTERRUPT: {
1600 struct kvm_interrupt irq;
1601
1602 r = -EFAULT;
1603 if (copy_from_user(&irq, argp, sizeof irq))
1604 goto out;
1605 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1606 if (r)
1607 goto out;
1608 r = 0;
1609 break;
1610 }
1611 case KVM_SET_CPUID: {
1612 struct kvm_cpuid __user *cpuid_arg = argp;
1613 struct kvm_cpuid cpuid;
1614
1615 r = -EFAULT;
1616 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1617 goto out;
1618 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1619 if (r)
1620 goto out;
1621 break;
1622 }
1623 case KVM_SET_CPUID2: {
1624 struct kvm_cpuid2 __user *cpuid_arg = argp;
1625 struct kvm_cpuid2 cpuid;
1626
1627 r = -EFAULT;
1628 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1629 goto out;
1630 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1631 cpuid_arg->entries);
1632 if (r)
1633 goto out;
1634 break;
1635 }
1636 case KVM_GET_CPUID2: {
1637 struct kvm_cpuid2 __user *cpuid_arg = argp;
1638 struct kvm_cpuid2 cpuid;
1639
1640 r = -EFAULT;
1641 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1642 goto out;
1643 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1644 cpuid_arg->entries);
1645 if (r)
1646 goto out;
1647 r = -EFAULT;
1648 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1649 goto out;
1650 r = 0;
1651 break;
1652 }
1653 case KVM_GET_MSRS:
1654 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1655 break;
1656 case KVM_SET_MSRS:
1657 r = msr_io(vcpu, argp, do_set_msr, 0);
1658 break;
1659 case KVM_TPR_ACCESS_REPORTING: {
1660 struct kvm_tpr_access_ctl tac;
1661
1662 r = -EFAULT;
1663 if (copy_from_user(&tac, argp, sizeof tac))
1664 goto out;
1665 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1666 if (r)
1667 goto out;
1668 r = -EFAULT;
1669 if (copy_to_user(argp, &tac, sizeof tac))
1670 goto out;
1671 r = 0;
1672 break;
1673 };
1674 case KVM_SET_VAPIC_ADDR: {
1675 struct kvm_vapic_addr va;
1676
1677 r = -EINVAL;
1678 if (!irqchip_in_kernel(vcpu->kvm))
1679 goto out;
1680 r = -EFAULT;
1681 if (copy_from_user(&va, argp, sizeof va))
1682 goto out;
1683 r = 0;
1684 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1685 break;
1686 }
1687 default:
1688 r = -EINVAL;
1689 }
1690 out:
1691 if (lapic)
1692 kfree(lapic);
1693 return r;
1694 }
1695
1696 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1697 {
1698 int ret;
1699
1700 if (addr > (unsigned int)(-3 * PAGE_SIZE))
1701 return -1;
1702 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1703 return ret;
1704 }
1705
1706 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1707 u32 kvm_nr_mmu_pages)
1708 {
1709 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1710 return -EINVAL;
1711
1712 down_write(&kvm->slots_lock);
1713
1714 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1715 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1716
1717 up_write(&kvm->slots_lock);
1718 return 0;
1719 }
1720
1721 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1722 {
1723 return kvm->arch.n_alloc_mmu_pages;
1724 }
1725
1726 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1727 {
1728 int i;
1729 struct kvm_mem_alias *alias;
1730
1731 for (i = 0; i < kvm->arch.naliases; ++i) {
1732 alias = &kvm->arch.aliases[i];
1733 if (gfn >= alias->base_gfn
1734 && gfn < alias->base_gfn + alias->npages)
1735 return alias->target_gfn + gfn - alias->base_gfn;
1736 }
1737 return gfn;
1738 }
1739
1740 /*
1741 * Set a new alias region. Aliases map a portion of physical memory into
1742 * another portion. This is useful for memory windows, for example the PC
1743 * VGA region.
1744 */
1745 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1746 struct kvm_memory_alias *alias)
1747 {
1748 int r, n;
1749 struct kvm_mem_alias *p;
1750
1751 r = -EINVAL;
1752 /* General sanity checks */
1753 if (alias->memory_size & (PAGE_SIZE - 1))
1754 goto out;
1755 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1756 goto out;
1757 if (alias->slot >= KVM_ALIAS_SLOTS)
1758 goto out;
1759 if (alias->guest_phys_addr + alias->memory_size
1760 < alias->guest_phys_addr)
1761 goto out;
1762 if (alias->target_phys_addr + alias->memory_size
1763 < alias->target_phys_addr)
1764 goto out;
1765
1766 down_write(&kvm->slots_lock);
1767 spin_lock(&kvm->mmu_lock);
1768
1769 p = &kvm->arch.aliases[alias->slot];
1770 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1771 p->npages = alias->memory_size >> PAGE_SHIFT;
1772 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1773
1774 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1775 if (kvm->arch.aliases[n - 1].npages)
1776 break;
1777 kvm->arch.naliases = n;
1778
1779 spin_unlock(&kvm->mmu_lock);
1780 kvm_mmu_zap_all(kvm);
1781
1782 up_write(&kvm->slots_lock);
1783
1784 return 0;
1785
1786 out:
1787 return r;
1788 }
1789
1790 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1791 {
1792 int r;
1793
1794 r = 0;
1795 switch (chip->chip_id) {
1796 case KVM_IRQCHIP_PIC_MASTER:
1797 memcpy(&chip->chip.pic,
1798 &pic_irqchip(kvm)->pics[0],
1799 sizeof(struct kvm_pic_state));
1800 break;
1801 case KVM_IRQCHIP_PIC_SLAVE:
1802 memcpy(&chip->chip.pic,
1803 &pic_irqchip(kvm)->pics[1],
1804 sizeof(struct kvm_pic_state));
1805 break;
1806 case KVM_IRQCHIP_IOAPIC:
1807 memcpy(&chip->chip.ioapic,
1808 ioapic_irqchip(kvm),
1809 sizeof(struct kvm_ioapic_state));
1810 break;
1811 default:
1812 r = -EINVAL;
1813 break;
1814 }
1815 return r;
1816 }
1817
1818 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1819 {
1820 int r;
1821
1822 r = 0;
1823 switch (chip->chip_id) {
1824 case KVM_IRQCHIP_PIC_MASTER:
1825 memcpy(&pic_irqchip(kvm)->pics[0],
1826 &chip->chip.pic,
1827 sizeof(struct kvm_pic_state));
1828 break;
1829 case KVM_IRQCHIP_PIC_SLAVE:
1830 memcpy(&pic_irqchip(kvm)->pics[1],
1831 &chip->chip.pic,
1832 sizeof(struct kvm_pic_state));
1833 break;
1834 case KVM_IRQCHIP_IOAPIC:
1835 memcpy(ioapic_irqchip(kvm),
1836 &chip->chip.ioapic,
1837 sizeof(struct kvm_ioapic_state));
1838 break;
1839 default:
1840 r = -EINVAL;
1841 break;
1842 }
1843 kvm_pic_update_irq(pic_irqchip(kvm));
1844 return r;
1845 }
1846
1847 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1848 {
1849 int r = 0;
1850
1851 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
1852 return r;
1853 }
1854
1855 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1856 {
1857 int r = 0;
1858
1859 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
1860 kvm_pit_load_count(kvm, 0, ps->channels[0].count);
1861 return r;
1862 }
1863
1864 /*
1865 * Get (and clear) the dirty memory log for a memory slot.
1866 */
1867 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1868 struct kvm_dirty_log *log)
1869 {
1870 int r;
1871 int n;
1872 struct kvm_memory_slot *memslot;
1873 int is_dirty = 0;
1874
1875 down_write(&kvm->slots_lock);
1876
1877 r = kvm_get_dirty_log(kvm, log, &is_dirty);
1878 if (r)
1879 goto out;
1880
1881 /* If nothing is dirty, don't bother messing with page tables. */
1882 if (is_dirty) {
1883 kvm_mmu_slot_remove_write_access(kvm, log->slot);
1884 kvm_flush_remote_tlbs(kvm);
1885 memslot = &kvm->memslots[log->slot];
1886 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1887 memset(memslot->dirty_bitmap, 0, n);
1888 }
1889 r = 0;
1890 out:
1891 up_write(&kvm->slots_lock);
1892 return r;
1893 }
1894
1895 long kvm_arch_vm_ioctl(struct file *filp,
1896 unsigned int ioctl, unsigned long arg)
1897 {
1898 struct kvm *kvm = filp->private_data;
1899 void __user *argp = (void __user *)arg;
1900 int r = -EINVAL;
1901 /*
1902 * This union makes it completely explicit to gcc-3.x
1903 * that these two variables' stack usage should be
1904 * combined, not added together.
1905 */
1906 union {
1907 struct kvm_pit_state ps;
1908 struct kvm_memory_alias alias;
1909 } u;
1910
1911 switch (ioctl) {
1912 case KVM_SET_TSS_ADDR:
1913 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
1914 if (r < 0)
1915 goto out;
1916 break;
1917 case KVM_SET_MEMORY_REGION: {
1918 struct kvm_memory_region kvm_mem;
1919 struct kvm_userspace_memory_region kvm_userspace_mem;
1920
1921 r = -EFAULT;
1922 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
1923 goto out;
1924 kvm_userspace_mem.slot = kvm_mem.slot;
1925 kvm_userspace_mem.flags = kvm_mem.flags;
1926 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
1927 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
1928 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
1929 if (r)
1930 goto out;
1931 break;
1932 }
1933 case KVM_SET_NR_MMU_PAGES:
1934 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
1935 if (r)
1936 goto out;
1937 break;
1938 case KVM_GET_NR_MMU_PAGES:
1939 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
1940 break;
1941 case KVM_SET_MEMORY_ALIAS:
1942 r = -EFAULT;
1943 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
1944 goto out;
1945 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
1946 if (r)
1947 goto out;
1948 break;
1949 case KVM_CREATE_IRQCHIP:
1950 r = -ENOMEM;
1951 kvm->arch.vpic = kvm_create_pic(kvm);
1952 if (kvm->arch.vpic) {
1953 r = kvm_ioapic_init(kvm);
1954 if (r) {
1955 kfree(kvm->arch.vpic);
1956 kvm->arch.vpic = NULL;
1957 goto out;
1958 }
1959 } else
1960 goto out;
1961 break;
1962 case KVM_CREATE_PIT:
1963 r = -ENOMEM;
1964 kvm->arch.vpit = kvm_create_pit(kvm);
1965 if (kvm->arch.vpit)
1966 r = 0;
1967 break;
1968 case KVM_IRQ_LINE: {
1969 struct kvm_irq_level irq_event;
1970
1971 r = -EFAULT;
1972 if (copy_from_user(&irq_event, argp, sizeof irq_event))
1973 goto out;
1974 if (irqchip_in_kernel(kvm)) {
1975 mutex_lock(&kvm->lock);
1976 kvm_set_irq(kvm, irq_event.irq, irq_event.level);
1977 mutex_unlock(&kvm->lock);
1978 r = 0;
1979 }
1980 break;
1981 }
1982 case KVM_GET_IRQCHIP: {
1983 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1984 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1985
1986 r = -ENOMEM;
1987 if (!chip)
1988 goto out;
1989 r = -EFAULT;
1990 if (copy_from_user(chip, argp, sizeof *chip))
1991 goto get_irqchip_out;
1992 r = -ENXIO;
1993 if (!irqchip_in_kernel(kvm))
1994 goto get_irqchip_out;
1995 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
1996 if (r)
1997 goto get_irqchip_out;
1998 r = -EFAULT;
1999 if (copy_to_user(argp, chip, sizeof *chip))
2000 goto get_irqchip_out;
2001 r = 0;
2002 get_irqchip_out:
2003 kfree(chip);
2004 if (r)
2005 goto out;
2006 break;
2007 }
2008 case KVM_SET_IRQCHIP: {
2009 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2010 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2011
2012 r = -ENOMEM;
2013 if (!chip)
2014 goto out;
2015 r = -EFAULT;
2016 if (copy_from_user(chip, argp, sizeof *chip))
2017 goto set_irqchip_out;
2018 r = -ENXIO;
2019 if (!irqchip_in_kernel(kvm))
2020 goto set_irqchip_out;
2021 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
2022 if (r)
2023 goto set_irqchip_out;
2024 r = 0;
2025 set_irqchip_out:
2026 kfree(chip);
2027 if (r)
2028 goto out;
2029 break;
2030 }
2031 case KVM_ASSIGN_PCI_DEVICE: {
2032 struct kvm_assigned_pci_dev assigned_dev;
2033
2034 r = -EFAULT;
2035 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
2036 goto out;
2037 r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
2038 if (r)
2039 goto out;
2040 break;
2041 }
2042 case KVM_ASSIGN_IRQ: {
2043 struct kvm_assigned_irq assigned_irq;
2044
2045 r = -EFAULT;
2046 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
2047 goto out;
2048 r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
2049 if (r)
2050 goto out;
2051 break;
2052 }
2053 case KVM_GET_PIT: {
2054 r = -EFAULT;
2055 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
2056 goto out;
2057 r = -ENXIO;
2058 if (!kvm->arch.vpit)
2059 goto out;
2060 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
2061 if (r)
2062 goto out;
2063 r = -EFAULT;
2064 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
2065 goto out;
2066 r = 0;
2067 break;
2068 }
2069 case KVM_SET_PIT: {
2070 r = -EFAULT;
2071 if (copy_from_user(&u.ps, argp, sizeof u.ps))
2072 goto out;
2073 r = -ENXIO;
2074 if (!kvm->arch.vpit)
2075 goto out;
2076 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
2077 if (r)
2078 goto out;
2079 r = 0;
2080 break;
2081 }
2082 default:
2083 ;
2084 }
2085 out:
2086 return r;
2087 }
2088
2089 static void kvm_init_msr_list(void)
2090 {
2091 u32 dummy[2];
2092 unsigned i, j;
2093
2094 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2095 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2096 continue;
2097 if (j < i)
2098 msrs_to_save[j] = msrs_to_save[i];
2099 j++;
2100 }
2101 num_msrs_to_save = j;
2102 }
2103
2104 /*
2105 * Only apic need an MMIO device hook, so shortcut now..
2106 */
2107 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
2108 gpa_t addr, int len,
2109 int is_write)
2110 {
2111 struct kvm_io_device *dev;
2112
2113 if (vcpu->arch.apic) {
2114 dev = &vcpu->arch.apic->dev;
2115 if (dev->in_range(dev, addr, len, is_write))
2116 return dev;
2117 }
2118 return NULL;
2119 }
2120
2121
2122 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
2123 gpa_t addr, int len,
2124 int is_write)
2125 {
2126 struct kvm_io_device *dev;
2127
2128 dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
2129 if (dev == NULL)
2130 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
2131 is_write);
2132 return dev;
2133 }
2134
2135 int emulator_read_std(unsigned long addr,
2136 void *val,
2137 unsigned int bytes,
2138 struct kvm_vcpu *vcpu)
2139 {
2140 void *data = val;
2141 int r = X86EMUL_CONTINUE;
2142
2143 while (bytes) {
2144 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2145 unsigned offset = addr & (PAGE_SIZE-1);
2146 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
2147 int ret;
2148
2149 if (gpa == UNMAPPED_GVA) {
2150 r = X86EMUL_PROPAGATE_FAULT;
2151 goto out;
2152 }
2153 ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
2154 if (ret < 0) {
2155 r = X86EMUL_UNHANDLEABLE;
2156 goto out;
2157 }
2158
2159 bytes -= tocopy;
2160 data += tocopy;
2161 addr += tocopy;
2162 }
2163 out:
2164 return r;
2165 }
2166 EXPORT_SYMBOL_GPL(emulator_read_std);
2167
2168 static int emulator_read_emulated(unsigned long addr,
2169 void *val,
2170 unsigned int bytes,
2171 struct kvm_vcpu *vcpu)
2172 {
2173 struct kvm_io_device *mmio_dev;
2174 gpa_t gpa;
2175
2176 if (vcpu->mmio_read_completed) {
2177 memcpy(val, vcpu->mmio_data, bytes);
2178 vcpu->mmio_read_completed = 0;
2179 return X86EMUL_CONTINUE;
2180 }
2181
2182 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2183
2184 /* For APIC access vmexit */
2185 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2186 goto mmio;
2187
2188 if (emulator_read_std(addr, val, bytes, vcpu)
2189 == X86EMUL_CONTINUE)
2190 return X86EMUL_CONTINUE;
2191 if (gpa == UNMAPPED_GVA)
2192 return X86EMUL_PROPAGATE_FAULT;
2193
2194 mmio:
2195 /*
2196 * Is this MMIO handled locally?
2197 */
2198 mutex_lock(&vcpu->kvm->lock);
2199 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
2200 if (mmio_dev) {
2201 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
2202 mutex_unlock(&vcpu->kvm->lock);
2203 return X86EMUL_CONTINUE;
2204 }
2205 mutex_unlock(&vcpu->kvm->lock);
2206
2207 vcpu->mmio_needed = 1;
2208 vcpu->mmio_phys_addr = gpa;
2209 vcpu->mmio_size = bytes;
2210 vcpu->mmio_is_write = 0;
2211
2212 return X86EMUL_UNHANDLEABLE;
2213 }
2214
2215 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2216 const void *val, int bytes)
2217 {
2218 int ret;
2219
2220 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
2221 if (ret < 0)
2222 return 0;
2223 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
2224 return 1;
2225 }
2226
2227 static int emulator_write_emulated_onepage(unsigned long addr,
2228 const void *val,
2229 unsigned int bytes,
2230 struct kvm_vcpu *vcpu)
2231 {
2232 struct kvm_io_device *mmio_dev;
2233 gpa_t gpa;
2234
2235 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2236
2237 if (gpa == UNMAPPED_GVA) {
2238 kvm_inject_page_fault(vcpu, addr, 2);
2239 return X86EMUL_PROPAGATE_FAULT;
2240 }
2241
2242 /* For APIC access vmexit */
2243 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2244 goto mmio;
2245
2246 if (emulator_write_phys(vcpu, gpa, val, bytes))
2247 return X86EMUL_CONTINUE;
2248
2249 mmio:
2250 /*
2251 * Is this MMIO handled locally?
2252 */
2253 mutex_lock(&vcpu->kvm->lock);
2254 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
2255 if (mmio_dev) {
2256 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
2257 mutex_unlock(&vcpu->kvm->lock);
2258 return X86EMUL_CONTINUE;
2259 }
2260 mutex_unlock(&vcpu->kvm->lock);
2261
2262 vcpu->mmio_needed = 1;
2263 vcpu->mmio_phys_addr = gpa;
2264 vcpu->mmio_size = bytes;
2265 vcpu->mmio_is_write = 1;
2266 memcpy(vcpu->mmio_data, val, bytes);
2267
2268 return X86EMUL_CONTINUE;
2269 }
2270
2271 int emulator_write_emulated(unsigned long addr,
2272 const void *val,
2273 unsigned int bytes,
2274 struct kvm_vcpu *vcpu)
2275 {
2276 /* Crossing a page boundary? */
2277 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
2278 int rc, now;
2279
2280 now = -addr & ~PAGE_MASK;
2281 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
2282 if (rc != X86EMUL_CONTINUE)
2283 return rc;
2284 addr += now;
2285 val += now;
2286 bytes -= now;
2287 }
2288 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
2289 }
2290 EXPORT_SYMBOL_GPL(emulator_write_emulated);
2291
2292 static int emulator_cmpxchg_emulated(unsigned long addr,
2293 const void *old,
2294 const void *new,
2295 unsigned int bytes,
2296 struct kvm_vcpu *vcpu)
2297 {
2298 static int reported;
2299
2300 if (!reported) {
2301 reported = 1;
2302 printk(KERN_WARNING "kvm: emulating exchange as write\n");
2303 }
2304 #ifndef CONFIG_X86_64
2305 /* guests cmpxchg8b have to be emulated atomically */
2306 if (bytes == 8) {
2307 gpa_t gpa;
2308 struct page *page;
2309 char *kaddr;
2310 u64 val;
2311
2312 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2313
2314 if (gpa == UNMAPPED_GVA ||
2315 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2316 goto emul_write;
2317
2318 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2319 goto emul_write;
2320
2321 val = *(u64 *)new;
2322
2323 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2324
2325 kaddr = kmap_atomic(page, KM_USER0);
2326 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2327 kunmap_atomic(kaddr, KM_USER0);
2328 kvm_release_page_dirty(page);
2329 }
2330 emul_write:
2331 #endif
2332
2333 return emulator_write_emulated(addr, new, bytes, vcpu);
2334 }
2335
2336 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2337 {
2338 return kvm_x86_ops->get_segment_base(vcpu, seg);
2339 }
2340
2341 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2342 {
2343 return X86EMUL_CONTINUE;
2344 }
2345
2346 int emulate_clts(struct kvm_vcpu *vcpu)
2347 {
2348 KVMTRACE_0D(CLTS, vcpu, handler);
2349 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2350 return X86EMUL_CONTINUE;
2351 }
2352
2353 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2354 {
2355 struct kvm_vcpu *vcpu = ctxt->vcpu;
2356
2357 switch (dr) {
2358 case 0 ... 3:
2359 *dest = kvm_x86_ops->get_dr(vcpu, dr);
2360 return X86EMUL_CONTINUE;
2361 default:
2362 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2363 return X86EMUL_UNHANDLEABLE;
2364 }
2365 }
2366
2367 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2368 {
2369 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2370 int exception;
2371
2372 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2373 if (exception) {
2374 /* FIXME: better handling */
2375 return X86EMUL_UNHANDLEABLE;
2376 }
2377 return X86EMUL_CONTINUE;
2378 }
2379
2380 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2381 {
2382 u8 opcodes[4];
2383 unsigned long rip = kvm_rip_read(vcpu);
2384 unsigned long rip_linear;
2385
2386 if (!printk_ratelimit())
2387 return;
2388
2389 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2390
2391 emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
2392
2393 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2394 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2395 }
2396 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2397
2398 static struct x86_emulate_ops emulate_ops = {
2399 .read_std = emulator_read_std,
2400 .read_emulated = emulator_read_emulated,
2401 .write_emulated = emulator_write_emulated,
2402 .cmpxchg_emulated = emulator_cmpxchg_emulated,
2403 };
2404
2405 static void cache_all_regs(struct kvm_vcpu *vcpu)
2406 {
2407 kvm_register_read(vcpu, VCPU_REGS_RAX);
2408 kvm_register_read(vcpu, VCPU_REGS_RSP);
2409 kvm_register_read(vcpu, VCPU_REGS_RIP);
2410 vcpu->arch.regs_dirty = ~0;
2411 }
2412
2413 int emulate_instruction(struct kvm_vcpu *vcpu,
2414 struct kvm_run *run,
2415 unsigned long cr2,
2416 u16 error_code,
2417 int emulation_type)
2418 {
2419 int r;
2420 struct decode_cache *c;
2421
2422 kvm_clear_exception_queue(vcpu);
2423 vcpu->arch.mmio_fault_cr2 = cr2;
2424 /*
2425 * TODO: fix x86_emulate.c to use guest_read/write_register
2426 * instead of direct ->regs accesses, can save hundred cycles
2427 * on Intel for instructions that don't read/change RSP, for
2428 * for example.
2429 */
2430 cache_all_regs(vcpu);
2431
2432 vcpu->mmio_is_write = 0;
2433 vcpu->arch.pio.string = 0;
2434
2435 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2436 int cs_db, cs_l;
2437 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2438
2439 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2440 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2441 vcpu->arch.emulate_ctxt.mode =
2442 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2443 ? X86EMUL_MODE_REAL : cs_l
2444 ? X86EMUL_MODE_PROT64 : cs_db
2445 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2446
2447 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2448
2449 /* Reject the instructions other than VMCALL/VMMCALL when
2450 * try to emulate invalid opcode */
2451 c = &vcpu->arch.emulate_ctxt.decode;
2452 if ((emulation_type & EMULTYPE_TRAP_UD) &&
2453 (!(c->twobyte && c->b == 0x01 &&
2454 (c->modrm_reg == 0 || c->modrm_reg == 3) &&
2455 c->modrm_mod == 3 && c->modrm_rm == 1)))
2456 return EMULATE_FAIL;
2457
2458 ++vcpu->stat.insn_emulation;
2459 if (r) {
2460 ++vcpu->stat.insn_emulation_fail;
2461 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2462 return EMULATE_DONE;
2463 return EMULATE_FAIL;
2464 }
2465 }
2466
2467 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2468
2469 if (vcpu->arch.pio.string)
2470 return EMULATE_DO_MMIO;
2471
2472 if ((r || vcpu->mmio_is_write) && run) {
2473 run->exit_reason = KVM_EXIT_MMIO;
2474 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2475 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2476 run->mmio.len = vcpu->mmio_size;
2477 run->mmio.is_write = vcpu->mmio_is_write;
2478 }
2479
2480 if (r) {
2481 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2482 return EMULATE_DONE;
2483 if (!vcpu->mmio_needed) {
2484 kvm_report_emulation_failure(vcpu, "mmio");
2485 return EMULATE_FAIL;
2486 }
2487 return EMULATE_DO_MMIO;
2488 }
2489
2490 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2491
2492 if (vcpu->mmio_is_write) {
2493 vcpu->mmio_needed = 0;
2494 return EMULATE_DO_MMIO;
2495 }
2496
2497 return EMULATE_DONE;
2498 }
2499 EXPORT_SYMBOL_GPL(emulate_instruction);
2500
2501 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
2502 {
2503 int i;
2504
2505 for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
2506 if (vcpu->arch.pio.guest_pages[i]) {
2507 kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
2508 vcpu->arch.pio.guest_pages[i] = NULL;
2509 }
2510 }
2511
2512 static int pio_copy_data(struct kvm_vcpu *vcpu)
2513 {
2514 void *p = vcpu->arch.pio_data;
2515 void *q;
2516 unsigned bytes;
2517 int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
2518
2519 q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
2520 PAGE_KERNEL);
2521 if (!q) {
2522 free_pio_guest_pages(vcpu);
2523 return -ENOMEM;
2524 }
2525 q += vcpu->arch.pio.guest_page_offset;
2526 bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2527 if (vcpu->arch.pio.in)
2528 memcpy(q, p, bytes);
2529 else
2530 memcpy(p, q, bytes);
2531 q -= vcpu->arch.pio.guest_page_offset;
2532 vunmap(q);
2533 free_pio_guest_pages(vcpu);
2534 return 0;
2535 }
2536
2537 int complete_pio(struct kvm_vcpu *vcpu)
2538 {
2539 struct kvm_pio_request *io = &vcpu->arch.pio;
2540 long delta;
2541 int r;
2542 unsigned long val;
2543
2544 if (!io->string) {
2545 if (io->in) {
2546 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2547 memcpy(&val, vcpu->arch.pio_data, io->size);
2548 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
2549 }
2550 } else {
2551 if (io->in) {
2552 r = pio_copy_data(vcpu);
2553 if (r)
2554 return r;
2555 }
2556
2557 delta = 1;
2558 if (io->rep) {
2559 delta *= io->cur_count;
2560 /*
2561 * The size of the register should really depend on
2562 * current address size.
2563 */
2564 val = kvm_register_read(vcpu, VCPU_REGS_RCX);
2565 val -= delta;
2566 kvm_register_write(vcpu, VCPU_REGS_RCX, val);
2567 }
2568 if (io->down)
2569 delta = -delta;
2570 delta *= io->size;
2571 if (io->in) {
2572 val = kvm_register_read(vcpu, VCPU_REGS_RDI);
2573 val += delta;
2574 kvm_register_write(vcpu, VCPU_REGS_RDI, val);
2575 } else {
2576 val = kvm_register_read(vcpu, VCPU_REGS_RSI);
2577 val += delta;
2578 kvm_register_write(vcpu, VCPU_REGS_RSI, val);
2579 }
2580 }
2581
2582 io->count -= io->cur_count;
2583 io->cur_count = 0;
2584
2585 return 0;
2586 }
2587
2588 static void kernel_pio(struct kvm_io_device *pio_dev,
2589 struct kvm_vcpu *vcpu,
2590 void *pd)
2591 {
2592 /* TODO: String I/O for in kernel device */
2593
2594 mutex_lock(&vcpu->kvm->lock);
2595 if (vcpu->arch.pio.in)
2596 kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
2597 vcpu->arch.pio.size,
2598 pd);
2599 else
2600 kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
2601 vcpu->arch.pio.size,
2602 pd);
2603 mutex_unlock(&vcpu->kvm->lock);
2604 }
2605
2606 static void pio_string_write(struct kvm_io_device *pio_dev,
2607 struct kvm_vcpu *vcpu)
2608 {
2609 struct kvm_pio_request *io = &vcpu->arch.pio;
2610 void *pd = vcpu->arch.pio_data;
2611 int i;
2612
2613 mutex_lock(&vcpu->kvm->lock);
2614 for (i = 0; i < io->cur_count; i++) {
2615 kvm_iodevice_write(pio_dev, io->port,
2616 io->size,
2617 pd);
2618 pd += io->size;
2619 }
2620 mutex_unlock(&vcpu->kvm->lock);
2621 }
2622
2623 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2624 gpa_t addr, int len,
2625 int is_write)
2626 {
2627 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
2628 }
2629
2630 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2631 int size, unsigned port)
2632 {
2633 struct kvm_io_device *pio_dev;
2634 unsigned long val;
2635
2636 vcpu->run->exit_reason = KVM_EXIT_IO;
2637 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2638 vcpu->run->io.size = vcpu->arch.pio.size = size;
2639 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2640 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2641 vcpu->run->io.port = vcpu->arch.pio.port = port;
2642 vcpu->arch.pio.in = in;
2643 vcpu->arch.pio.string = 0;
2644 vcpu->arch.pio.down = 0;
2645 vcpu->arch.pio.guest_page_offset = 0;
2646 vcpu->arch.pio.rep = 0;
2647
2648 if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2649 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2650 handler);
2651 else
2652 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2653 handler);
2654
2655 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2656 memcpy(vcpu->arch.pio_data, &val, 4);
2657
2658 kvm_x86_ops->skip_emulated_instruction(vcpu);
2659
2660 pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
2661 if (pio_dev) {
2662 kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2663 complete_pio(vcpu);
2664 return 1;
2665 }
2666 return 0;
2667 }
2668 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2669
2670 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2671 int size, unsigned long count, int down,
2672 gva_t address, int rep, unsigned port)
2673 {
2674 unsigned now, in_page;
2675 int i, ret = 0;
2676 int nr_pages = 1;
2677 struct page *page;
2678 struct kvm_io_device *pio_dev;
2679
2680 vcpu->run->exit_reason = KVM_EXIT_IO;
2681 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2682 vcpu->run->io.size = vcpu->arch.pio.size = size;
2683 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2684 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2685 vcpu->run->io.port = vcpu->arch.pio.port = port;
2686 vcpu->arch.pio.in = in;
2687 vcpu->arch.pio.string = 1;
2688 vcpu->arch.pio.down = down;
2689 vcpu->arch.pio.guest_page_offset = offset_in_page(address);
2690 vcpu->arch.pio.rep = rep;
2691
2692 if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2693 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2694 handler);
2695 else
2696 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2697 handler);
2698
2699 if (!count) {
2700 kvm_x86_ops->skip_emulated_instruction(vcpu);
2701 return 1;
2702 }
2703
2704 if (!down)
2705 in_page = PAGE_SIZE - offset_in_page(address);
2706 else
2707 in_page = offset_in_page(address) + size;
2708 now = min(count, (unsigned long)in_page / size);
2709 if (!now) {
2710 /*
2711 * String I/O straddles page boundary. Pin two guest pages
2712 * so that we satisfy atomicity constraints. Do just one
2713 * transaction to avoid complexity.
2714 */
2715 nr_pages = 2;
2716 now = 1;
2717 }
2718 if (down) {
2719 /*
2720 * String I/O in reverse. Yuck. Kill the guest, fix later.
2721 */
2722 pr_unimpl(vcpu, "guest string pio down\n");
2723 kvm_inject_gp(vcpu, 0);
2724 return 1;
2725 }
2726 vcpu->run->io.count = now;
2727 vcpu->arch.pio.cur_count = now;
2728
2729 if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2730 kvm_x86_ops->skip_emulated_instruction(vcpu);
2731
2732 for (i = 0; i < nr_pages; ++i) {
2733 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
2734 vcpu->arch.pio.guest_pages[i] = page;
2735 if (!page) {
2736 kvm_inject_gp(vcpu, 0);
2737 free_pio_guest_pages(vcpu);
2738 return 1;
2739 }
2740 }
2741
2742 pio_dev = vcpu_find_pio_dev(vcpu, port,
2743 vcpu->arch.pio.cur_count,
2744 !vcpu->arch.pio.in);
2745 if (!vcpu->arch.pio.in) {
2746 /* string PIO write */
2747 ret = pio_copy_data(vcpu);
2748 if (ret >= 0 && pio_dev) {
2749 pio_string_write(pio_dev, vcpu);
2750 complete_pio(vcpu);
2751 if (vcpu->arch.pio.count == 0)
2752 ret = 1;
2753 }
2754 } else if (pio_dev)
2755 pr_unimpl(vcpu, "no string pio read support yet, "
2756 "port %x size %d count %ld\n",
2757 port, size, count);
2758
2759 return ret;
2760 }
2761 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2762
2763 int kvm_arch_init(void *opaque)
2764 {
2765 int r;
2766 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
2767
2768 if (kvm_x86_ops) {
2769 printk(KERN_ERR "kvm: already loaded the other module\n");
2770 r = -EEXIST;
2771 goto out;
2772 }
2773
2774 if (!ops->cpu_has_kvm_support()) {
2775 printk(KERN_ERR "kvm: no hardware support\n");
2776 r = -EOPNOTSUPP;
2777 goto out;
2778 }
2779 if (ops->disabled_by_bios()) {
2780 printk(KERN_ERR "kvm: disabled by bios\n");
2781 r = -EOPNOTSUPP;
2782 goto out;
2783 }
2784
2785 r = kvm_mmu_module_init();
2786 if (r)
2787 goto out;
2788
2789 kvm_init_msr_list();
2790
2791 kvm_x86_ops = ops;
2792 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2793 kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
2794 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
2795 PT_DIRTY_MASK, PT64_NX_MASK, 0);
2796 return 0;
2797
2798 out:
2799 return r;
2800 }
2801
2802 void kvm_arch_exit(void)
2803 {
2804 kvm_x86_ops = NULL;
2805 kvm_mmu_module_exit();
2806 }
2807
2808 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
2809 {
2810 ++vcpu->stat.halt_exits;
2811 KVMTRACE_0D(HLT, vcpu, handler);
2812 if (irqchip_in_kernel(vcpu->kvm)) {
2813 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
2814 return 1;
2815 } else {
2816 vcpu->run->exit_reason = KVM_EXIT_HLT;
2817 return 0;
2818 }
2819 }
2820 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
2821
2822 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
2823 unsigned long a1)
2824 {
2825 if (is_long_mode(vcpu))
2826 return a0;
2827 else
2828 return a0 | ((gpa_t)a1 << 32);
2829 }
2830
2831 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
2832 {
2833 unsigned long nr, a0, a1, a2, a3, ret;
2834 int r = 1;
2835
2836 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
2837 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
2838 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
2839 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
2840 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
2841
2842 KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
2843
2844 if (!is_long_mode(vcpu)) {
2845 nr &= 0xFFFFFFFF;
2846 a0 &= 0xFFFFFFFF;
2847 a1 &= 0xFFFFFFFF;
2848 a2 &= 0xFFFFFFFF;
2849 a3 &= 0xFFFFFFFF;
2850 }
2851
2852 switch (nr) {
2853 case KVM_HC_VAPIC_POLL_IRQ:
2854 ret = 0;
2855 break;
2856 case KVM_HC_MMU_OP:
2857 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
2858 break;
2859 default:
2860 ret = -KVM_ENOSYS;
2861 break;
2862 }
2863 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
2864 ++vcpu->stat.hypercalls;
2865 return r;
2866 }
2867 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
2868
2869 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
2870 {
2871 char instruction[3];
2872 int ret = 0;
2873 unsigned long rip = kvm_rip_read(vcpu);
2874
2875
2876 /*
2877 * Blow out the MMU to ensure that no other VCPU has an active mapping
2878 * to ensure that the updated hypercall appears atomically across all
2879 * VCPUs.
2880 */
2881 kvm_mmu_zap_all(vcpu->kvm);
2882
2883 kvm_x86_ops->patch_hypercall(vcpu, instruction);
2884 if (emulator_write_emulated(rip, instruction, 3, vcpu)
2885 != X86EMUL_CONTINUE)
2886 ret = -EFAULT;
2887
2888 return ret;
2889 }
2890
2891 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
2892 {
2893 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
2894 }
2895
2896 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2897 {
2898 struct descriptor_table dt = { limit, base };
2899
2900 kvm_x86_ops->set_gdt(vcpu, &dt);
2901 }
2902
2903 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2904 {
2905 struct descriptor_table dt = { limit, base };
2906
2907 kvm_x86_ops->set_idt(vcpu, &dt);
2908 }
2909
2910 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
2911 unsigned long *rflags)
2912 {
2913 kvm_lmsw(vcpu, msw);
2914 *rflags = kvm_x86_ops->get_rflags(vcpu);
2915 }
2916
2917 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
2918 {
2919 unsigned long value;
2920
2921 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2922 switch (cr) {
2923 case 0:
2924 value = vcpu->arch.cr0;
2925 break;
2926 case 2:
2927 value = vcpu->arch.cr2;
2928 break;
2929 case 3:
2930 value = vcpu->arch.cr3;
2931 break;
2932 case 4:
2933 value = vcpu->arch.cr4;
2934 break;
2935 case 8:
2936 value = kvm_get_cr8(vcpu);
2937 break;
2938 default:
2939 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2940 return 0;
2941 }
2942 KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
2943 (u32)((u64)value >> 32), handler);
2944
2945 return value;
2946 }
2947
2948 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
2949 unsigned long *rflags)
2950 {
2951 KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
2952 (u32)((u64)val >> 32), handler);
2953
2954 switch (cr) {
2955 case 0:
2956 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2957 *rflags = kvm_x86_ops->get_rflags(vcpu);
2958 break;
2959 case 2:
2960 vcpu->arch.cr2 = val;
2961 break;
2962 case 3:
2963 kvm_set_cr3(vcpu, val);
2964 break;
2965 case 4:
2966 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2967 break;
2968 case 8:
2969 kvm_set_cr8(vcpu, val & 0xfUL);
2970 break;
2971 default:
2972 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2973 }
2974 }
2975
2976 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
2977 {
2978 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
2979 int j, nent = vcpu->arch.cpuid_nent;
2980
2981 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
2982 /* when no next entry is found, the current entry[i] is reselected */
2983 for (j = i + 1; j == i; j = (j + 1) % nent) {
2984 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2985 if (ej->function == e->function) {
2986 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2987 return j;
2988 }
2989 }
2990 return 0; /* silence gcc, even though control never reaches here */
2991 }
2992
2993 /* find an entry with matching function, matching index (if needed), and that
2994 * should be read next (if it's stateful) */
2995 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
2996 u32 function, u32 index)
2997 {
2998 if (e->function != function)
2999 return 0;
3000 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
3001 return 0;
3002 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
3003 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
3004 return 0;
3005 return 1;
3006 }
3007
3008 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
3009 {
3010 int i;
3011 u32 function, index;
3012 struct kvm_cpuid_entry2 *e, *best;
3013
3014 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
3015 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3016 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
3017 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
3018 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
3019 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
3020 best = NULL;
3021 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
3022 e = &vcpu->arch.cpuid_entries[i];
3023 if (is_matching_cpuid_entry(e, function, index)) {
3024 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
3025 move_to_next_stateful_cpuid_entry(vcpu, i);
3026 best = e;
3027 break;
3028 }
3029 /*
3030 * Both basic or both extended?
3031 */
3032 if (((e->function ^ function) & 0x80000000) == 0)
3033 if (!best || e->function > best->function)
3034 best = e;
3035 }
3036 if (best) {
3037 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
3038 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
3039 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
3040 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
3041 }
3042 kvm_x86_ops->skip_emulated_instruction(vcpu);
3043 KVMTRACE_5D(CPUID, vcpu, function,
3044 (u32)kvm_register_read(vcpu, VCPU_REGS_RAX),
3045 (u32)kvm_register_read(vcpu, VCPU_REGS_RBX),
3046 (u32)kvm_register_read(vcpu, VCPU_REGS_RCX),
3047 (u32)kvm_register_read(vcpu, VCPU_REGS_RDX), handler);
3048 }
3049 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
3050
3051 /*
3052 * Check if userspace requested an interrupt window, and that the
3053 * interrupt window is open.
3054 *
3055 * No need to exit to userspace if we already have an interrupt queued.
3056 */
3057 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
3058 struct kvm_run *kvm_run)
3059 {
3060 return (!vcpu->arch.irq_summary &&
3061 kvm_run->request_interrupt_window &&
3062 vcpu->arch.interrupt_window_open &&
3063 (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
3064 }
3065
3066 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
3067 struct kvm_run *kvm_run)
3068 {
3069 kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
3070 kvm_run->cr8 = kvm_get_cr8(vcpu);
3071 kvm_run->apic_base = kvm_get_apic_base(vcpu);
3072 if (irqchip_in_kernel(vcpu->kvm))
3073 kvm_run->ready_for_interrupt_injection = 1;
3074 else
3075 kvm_run->ready_for_interrupt_injection =
3076 (vcpu->arch.interrupt_window_open &&
3077 vcpu->arch.irq_summary == 0);
3078 }
3079
3080 static void vapic_enter(struct kvm_vcpu *vcpu)
3081 {
3082 struct kvm_lapic *apic = vcpu->arch.apic;
3083 struct page *page;
3084
3085 if (!apic || !apic->vapic_addr)
3086 return;
3087
3088 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3089
3090 vcpu->arch.apic->vapic_page = page;
3091 }
3092
3093 static void vapic_exit(struct kvm_vcpu *vcpu)
3094 {
3095 struct kvm_lapic *apic = vcpu->arch.apic;
3096
3097 if (!apic || !apic->vapic_addr)
3098 return;
3099
3100 down_read(&vcpu->kvm->slots_lock);
3101 kvm_release_page_dirty(apic->vapic_page);
3102 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3103 up_read(&vcpu->kvm->slots_lock);
3104 }
3105
3106 static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3107 {
3108 int r;
3109
3110 if (vcpu->requests)
3111 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
3112 kvm_mmu_unload(vcpu);
3113
3114 r = kvm_mmu_reload(vcpu);
3115 if (unlikely(r))
3116 goto out;
3117
3118 if (vcpu->requests) {
3119 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
3120 __kvm_migrate_timers(vcpu);
3121 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
3122 kvm_x86_ops->tlb_flush(vcpu);
3123 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
3124 &vcpu->requests)) {
3125 kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
3126 r = 0;
3127 goto out;
3128 }
3129 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
3130 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
3131 r = 0;
3132 goto out;
3133 }
3134 }
3135
3136 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
3137 kvm_inject_pending_timer_irqs(vcpu);
3138
3139 preempt_disable();
3140
3141 kvm_x86_ops->prepare_guest_switch(vcpu);
3142 kvm_load_guest_fpu(vcpu);
3143
3144 local_irq_disable();
3145
3146 if (vcpu->requests || need_resched() || signal_pending(current)) {
3147 local_irq_enable();
3148 preempt_enable();
3149 r = 1;
3150 goto out;
3151 }
3152
3153 if (vcpu->guest_debug.enabled)
3154 kvm_x86_ops->guest_debug_pre(vcpu);
3155
3156 vcpu->guest_mode = 1;
3157 /*
3158 * Make sure that guest_mode assignment won't happen after
3159 * testing the pending IRQ vector bitmap.
3160 */
3161 smp_wmb();
3162
3163 if (vcpu->arch.exception.pending)
3164 __queue_exception(vcpu);
3165 else if (irqchip_in_kernel(vcpu->kvm))
3166 kvm_x86_ops->inject_pending_irq(vcpu);
3167 else
3168 kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
3169
3170 kvm_lapic_sync_to_vapic(vcpu);
3171
3172 up_read(&vcpu->kvm->slots_lock);
3173
3174 kvm_guest_enter();
3175
3176
3177 KVMTRACE_0D(VMENTRY, vcpu, entryexit);
3178 kvm_x86_ops->run(vcpu, kvm_run);
3179
3180 vcpu->guest_mode = 0;
3181 local_irq_enable();
3182
3183 ++vcpu->stat.exits;
3184
3185 /*
3186 * We must have an instruction between local_irq_enable() and
3187 * kvm_guest_exit(), so the timer interrupt isn't delayed by
3188 * the interrupt shadow. The stat.exits increment will do nicely.
3189 * But we need to prevent reordering, hence this barrier():
3190 */
3191 barrier();
3192
3193 kvm_guest_exit();
3194
3195 preempt_enable();
3196
3197 down_read(&vcpu->kvm->slots_lock);
3198
3199 /*
3200 * Profile KVM exit RIPs:
3201 */
3202 if (unlikely(prof_on == KVM_PROFILING)) {
3203 unsigned long rip = kvm_rip_read(vcpu);
3204 profile_hit(KVM_PROFILING, (void *)rip);
3205 }
3206
3207 if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
3208 vcpu->arch.exception.pending = false;
3209
3210 kvm_lapic_sync_from_vapic(vcpu);
3211
3212 r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
3213 out:
3214 return r;
3215 }
3216
3217 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3218 {
3219 int r;
3220
3221 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
3222 printk("vcpu %d received sipi with vector # %x\n",
3223 vcpu->vcpu_id, vcpu->arch.sipi_vector);
3224 kvm_lapic_reset(vcpu);
3225 r = kvm_x86_ops->vcpu_reset(vcpu);
3226 if (r)
3227 return r;
3228 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3229 }
3230
3231 down_read(&vcpu->kvm->slots_lock);
3232 vapic_enter(vcpu);
3233
3234 r = 1;
3235 while (r > 0) {
3236 if (kvm_arch_vcpu_runnable(vcpu))
3237 r = vcpu_enter_guest(vcpu, kvm_run);
3238 else {
3239 up_read(&vcpu->kvm->slots_lock);
3240 kvm_vcpu_block(vcpu);
3241 down_read(&vcpu->kvm->slots_lock);
3242 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
3243 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
3244 vcpu->arch.mp_state =
3245 KVM_MP_STATE_RUNNABLE;
3246 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
3247 r = -EINTR;
3248 }
3249
3250 if (r > 0) {
3251 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
3252 r = -EINTR;
3253 kvm_run->exit_reason = KVM_EXIT_INTR;
3254 ++vcpu->stat.request_irq_exits;
3255 }
3256 if (signal_pending(current)) {
3257 r = -EINTR;
3258 kvm_run->exit_reason = KVM_EXIT_INTR;
3259 ++vcpu->stat.signal_exits;
3260 }
3261 if (need_resched()) {
3262 up_read(&vcpu->kvm->slots_lock);
3263 kvm_resched(vcpu);
3264 down_read(&vcpu->kvm->slots_lock);
3265 }
3266 }
3267 }
3268
3269 up_read(&vcpu->kvm->slots_lock);
3270 post_kvm_run_save(vcpu, kvm_run);
3271
3272 vapic_exit(vcpu);
3273
3274 return r;
3275 }
3276
3277 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3278 {
3279 int r;
3280 sigset_t sigsaved;
3281
3282 vcpu_load(vcpu);
3283
3284 if (vcpu->sigset_active)
3285 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
3286
3287 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
3288 kvm_vcpu_block(vcpu);
3289 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
3290 r = -EAGAIN;
3291 goto out;
3292 }
3293
3294 /* re-sync apic's tpr */
3295 if (!irqchip_in_kernel(vcpu->kvm))
3296 kvm_set_cr8(vcpu, kvm_run->cr8);
3297
3298 if (vcpu->arch.pio.cur_count) {
3299 r = complete_pio(vcpu);
3300 if (r)
3301 goto out;
3302 }
3303 #if CONFIG_HAS_IOMEM
3304 if (vcpu->mmio_needed) {
3305 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
3306 vcpu->mmio_read_completed = 1;
3307 vcpu->mmio_needed = 0;
3308
3309 down_read(&vcpu->kvm->slots_lock);
3310 r = emulate_instruction(vcpu, kvm_run,
3311 vcpu->arch.mmio_fault_cr2, 0,
3312 EMULTYPE_NO_DECODE);
3313 up_read(&vcpu->kvm->slots_lock);
3314 if (r == EMULATE_DO_MMIO) {
3315 /*
3316 * Read-modify-write. Back to userspace.
3317 */
3318 r = 0;
3319 goto out;
3320 }
3321 }
3322 #endif
3323 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
3324 kvm_register_write(vcpu, VCPU_REGS_RAX,
3325 kvm_run->hypercall.ret);
3326
3327 r = __vcpu_run(vcpu, kvm_run);
3328
3329 out:
3330 if (vcpu->sigset_active)
3331 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
3332
3333 vcpu_put(vcpu);
3334 return r;
3335 }
3336
3337 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3338 {
3339 vcpu_load(vcpu);
3340
3341 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3342 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3343 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3344 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3345 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3346 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3347 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3348 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3349 #ifdef CONFIG_X86_64
3350 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
3351 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
3352 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
3353 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
3354 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
3355 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
3356 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
3357 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
3358 #endif
3359
3360 regs->rip = kvm_rip_read(vcpu);
3361 regs->rflags = kvm_x86_ops->get_rflags(vcpu);
3362
3363 /*
3364 * Don't leak debug flags in case they were set for guest debugging
3365 */
3366 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
3367 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
3368
3369 vcpu_put(vcpu);
3370
3371 return 0;
3372 }
3373
3374 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3375 {
3376 vcpu_load(vcpu);
3377
3378 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
3379 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
3380 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
3381 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
3382 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
3383 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
3384 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
3385 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
3386 #ifdef CONFIG_X86_64
3387 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
3388 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
3389 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
3390 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
3391 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
3392 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
3393 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
3394 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
3395
3396 #endif
3397
3398 kvm_rip_write(vcpu, regs->rip);
3399 kvm_x86_ops->set_rflags(vcpu, regs->rflags);
3400
3401
3402 vcpu->arch.exception.pending = false;
3403
3404 vcpu_put(vcpu);
3405
3406 return 0;
3407 }
3408
3409 void kvm_get_segment(struct kvm_vcpu *vcpu,
3410 struct kvm_segment *var, int seg)
3411 {
3412 kvm_x86_ops->get_segment(vcpu, var, seg);
3413 }
3414
3415 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3416 {
3417 struct kvm_segment cs;
3418
3419 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3420 *db = cs.db;
3421 *l = cs.l;
3422 }
3423 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3424
3425 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3426 struct kvm_sregs *sregs)
3427 {
3428 struct descriptor_table dt;
3429 int pending_vec;
3430
3431 vcpu_load(vcpu);
3432
3433 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3434 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3435 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3436 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3437 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3438 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3439
3440 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3441 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3442
3443 kvm_x86_ops->get_idt(vcpu, &dt);
3444 sregs->idt.limit = dt.limit;
3445 sregs->idt.base = dt.base;
3446 kvm_x86_ops->get_gdt(vcpu, &dt);
3447 sregs->gdt.limit = dt.limit;
3448 sregs->gdt.base = dt.base;
3449
3450 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3451 sregs->cr0 = vcpu->arch.cr0;
3452 sregs->cr2 = vcpu->arch.cr2;
3453 sregs->cr3 = vcpu->arch.cr3;
3454 sregs->cr4 = vcpu->arch.cr4;
3455 sregs->cr8 = kvm_get_cr8(vcpu);
3456 sregs->efer = vcpu->arch.shadow_efer;
3457 sregs->apic_base = kvm_get_apic_base(vcpu);
3458
3459 if (irqchip_in_kernel(vcpu->kvm)) {
3460 memset(sregs->interrupt_bitmap, 0,
3461 sizeof sregs->interrupt_bitmap);
3462 pending_vec = kvm_x86_ops->get_irq(vcpu);
3463 if (pending_vec >= 0)
3464 set_bit(pending_vec,
3465 (unsigned long *)sregs->interrupt_bitmap);
3466 } else
3467 memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
3468 sizeof sregs->interrupt_bitmap);
3469
3470 vcpu_put(vcpu);
3471
3472 return 0;
3473 }
3474
3475 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3476 struct kvm_mp_state *mp_state)
3477 {
3478 vcpu_load(vcpu);
3479 mp_state->mp_state = vcpu->arch.mp_state;
3480 vcpu_put(vcpu);
3481 return 0;
3482 }
3483
3484 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3485 struct kvm_mp_state *mp_state)
3486 {
3487 vcpu_load(vcpu);
3488 vcpu->arch.mp_state = mp_state->mp_state;
3489 vcpu_put(vcpu);
3490 return 0;
3491 }
3492
3493 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3494 struct kvm_segment *var, int seg)
3495 {
3496 kvm_x86_ops->set_segment(vcpu, var, seg);
3497 }
3498
3499 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
3500 struct kvm_segment *kvm_desct)
3501 {
3502 kvm_desct->base = seg_desc->base0;
3503 kvm_desct->base |= seg_desc->base1 << 16;
3504 kvm_desct->base |= seg_desc->base2 << 24;
3505 kvm_desct->limit = seg_desc->limit0;
3506 kvm_desct->limit |= seg_desc->limit << 16;
3507 if (seg_desc->g) {
3508 kvm_desct->limit <<= 12;
3509 kvm_desct->limit |= 0xfff;
3510 }
3511 kvm_desct->selector = selector;
3512 kvm_desct->type = seg_desc->type;
3513 kvm_desct->present = seg_desc->p;
3514 kvm_desct->dpl = seg_desc->dpl;
3515 kvm_desct->db = seg_desc->d;
3516 kvm_desct->s = seg_desc->s;
3517 kvm_desct->l = seg_desc->l;
3518 kvm_desct->g = seg_desc->g;
3519 kvm_desct->avl = seg_desc->avl;
3520 if (!selector)
3521 kvm_desct->unusable = 1;
3522 else
3523 kvm_desct->unusable = 0;
3524 kvm_desct->padding = 0;
3525 }
3526
3527 static void get_segment_descritptor_dtable(struct kvm_vcpu *vcpu,
3528 u16 selector,
3529 struct descriptor_table *dtable)
3530 {
3531 if (selector & 1 << 2) {
3532 struct kvm_segment kvm_seg;
3533
3534 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
3535
3536 if (kvm_seg.unusable)
3537 dtable->limit = 0;
3538 else
3539 dtable->limit = kvm_seg.limit;
3540 dtable->base = kvm_seg.base;
3541 }
3542 else
3543 kvm_x86_ops->get_gdt(vcpu, dtable);
3544 }
3545
3546 /* allowed just for 8 bytes segments */
3547 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3548 struct desc_struct *seg_desc)
3549 {
3550 gpa_t gpa;
3551 struct descriptor_table dtable;
3552 u16 index = selector >> 3;
3553
3554 get_segment_descritptor_dtable(vcpu, selector, &dtable);
3555
3556 if (dtable.limit < index * 8 + 7) {
3557 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
3558 return 1;
3559 }
3560 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3561 gpa += index * 8;
3562 return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
3563 }
3564
3565 /* allowed just for 8 bytes segments */
3566 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3567 struct desc_struct *seg_desc)
3568 {
3569 gpa_t gpa;
3570 struct descriptor_table dtable;
3571 u16 index = selector >> 3;
3572
3573 get_segment_descritptor_dtable(vcpu, selector, &dtable);
3574
3575 if (dtable.limit < index * 8 + 7)
3576 return 1;
3577 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3578 gpa += index * 8;
3579 return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
3580 }
3581
3582 static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
3583 struct desc_struct *seg_desc)
3584 {
3585 u32 base_addr;
3586
3587 base_addr = seg_desc->base0;
3588 base_addr |= (seg_desc->base1 << 16);
3589 base_addr |= (seg_desc->base2 << 24);
3590
3591 return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
3592 }
3593
3594 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
3595 {
3596 struct kvm_segment kvm_seg;
3597
3598 kvm_get_segment(vcpu, &kvm_seg, seg);
3599 return kvm_seg.selector;
3600 }
3601
3602 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
3603 u16 selector,
3604 struct kvm_segment *kvm_seg)
3605 {
3606 struct desc_struct seg_desc;
3607
3608 if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
3609 return 1;
3610 seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
3611 return 0;
3612 }
3613
3614 int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
3615 {
3616 struct kvm_segment segvar = {
3617 .base = selector << 4,
3618 .limit = 0xffff,
3619 .selector = selector,
3620 .type = 3,
3621 .present = 1,
3622 .dpl = 3,
3623 .db = 0,
3624 .s = 1,
3625 .l = 0,
3626 .g = 0,
3627 .avl = 0,
3628 .unusable = 0,
3629 };
3630 kvm_x86_ops->set_segment(vcpu, &segvar, seg);
3631 return 0;
3632 }
3633
3634 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3635 int type_bits, int seg)
3636 {
3637 struct kvm_segment kvm_seg;
3638
3639 if (!(vcpu->arch.cr0 & X86_CR0_PE))
3640 return kvm_load_realmode_segment(vcpu, selector, seg);
3641 if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
3642 return 1;
3643 kvm_seg.type |= type_bits;
3644
3645 if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
3646 seg != VCPU_SREG_LDTR)
3647 if (!kvm_seg.s)
3648 kvm_seg.unusable = 1;
3649
3650 kvm_set_segment(vcpu, &kvm_seg, seg);
3651 return 0;
3652 }
3653
3654 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
3655 struct tss_segment_32 *tss)
3656 {
3657 tss->cr3 = vcpu->arch.cr3;
3658 tss->eip = kvm_rip_read(vcpu);
3659 tss->eflags = kvm_x86_ops->get_rflags(vcpu);
3660 tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3661 tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3662 tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3663 tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3664 tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3665 tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3666 tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3667 tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3668 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3669 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3670 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3671 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3672 tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
3673 tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
3674 tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3675 tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3676 }
3677
3678 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
3679 struct tss_segment_32 *tss)
3680 {
3681 kvm_set_cr3(vcpu, tss->cr3);
3682
3683 kvm_rip_write(vcpu, tss->eip);
3684 kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
3685
3686 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
3687 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
3688 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
3689 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
3690 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
3691 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
3692 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
3693 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
3694
3695 if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
3696 return 1;
3697
3698 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3699 return 1;
3700
3701 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3702 return 1;
3703
3704 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3705 return 1;
3706
3707 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3708 return 1;
3709
3710 if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
3711 return 1;
3712
3713 if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
3714 return 1;
3715 return 0;
3716 }
3717
3718 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
3719 struct tss_segment_16 *tss)
3720 {
3721 tss->ip = kvm_rip_read(vcpu);
3722 tss->flag = kvm_x86_ops->get_rflags(vcpu);
3723 tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3724 tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3725 tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3726 tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3727 tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3728 tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3729 tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
3730 tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
3731
3732 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3733 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3734 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3735 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3736 tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3737 tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3738 }
3739
3740 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
3741 struct tss_segment_16 *tss)
3742 {
3743 kvm_rip_write(vcpu, tss->ip);
3744 kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
3745 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
3746 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
3747 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
3748 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
3749 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
3750 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
3751 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
3752 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
3753
3754 if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
3755 return 1;
3756
3757 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3758 return 1;
3759
3760 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3761 return 1;
3762
3763 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3764 return 1;
3765
3766 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3767 return 1;
3768 return 0;
3769 }
3770
3771 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
3772 u32 old_tss_base,
3773 struct desc_struct *nseg_desc)
3774 {
3775 struct tss_segment_16 tss_segment_16;
3776 int ret = 0;
3777
3778 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3779 sizeof tss_segment_16))
3780 goto out;
3781
3782 save_state_to_tss16(vcpu, &tss_segment_16);
3783
3784 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3785 sizeof tss_segment_16))
3786 goto out;
3787
3788 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3789 &tss_segment_16, sizeof tss_segment_16))
3790 goto out;
3791
3792 if (load_state_from_tss16(vcpu, &tss_segment_16))
3793 goto out;
3794
3795 ret = 1;
3796 out:
3797 return ret;
3798 }
3799
3800 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
3801 u32 old_tss_base,
3802 struct desc_struct *nseg_desc)
3803 {
3804 struct tss_segment_32 tss_segment_32;
3805 int ret = 0;
3806
3807 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3808 sizeof tss_segment_32))
3809 goto out;
3810
3811 save_state_to_tss32(vcpu, &tss_segment_32);
3812
3813 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3814 sizeof tss_segment_32))
3815 goto out;
3816
3817 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3818 &tss_segment_32, sizeof tss_segment_32))
3819 goto out;
3820
3821 if (load_state_from_tss32(vcpu, &tss_segment_32))
3822 goto out;
3823
3824 ret = 1;
3825 out:
3826 return ret;
3827 }
3828
3829 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
3830 {
3831 struct kvm_segment tr_seg;
3832 struct desc_struct cseg_desc;
3833 struct desc_struct nseg_desc;
3834 int ret = 0;
3835 u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
3836 u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
3837
3838 old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
3839
3840 /* FIXME: Handle errors. Failure to read either TSS or their
3841 * descriptors should generate a pagefault.
3842 */
3843 if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
3844 goto out;
3845
3846 if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
3847 goto out;
3848
3849 if (reason != TASK_SWITCH_IRET) {
3850 int cpl;
3851
3852 cpl = kvm_x86_ops->get_cpl(vcpu);
3853 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
3854 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
3855 return 1;
3856 }
3857 }
3858
3859 if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
3860 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
3861 return 1;
3862 }
3863
3864 if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
3865 cseg_desc.type &= ~(1 << 1); //clear the B flag
3866 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
3867 }
3868
3869 if (reason == TASK_SWITCH_IRET) {
3870 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3871 kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
3872 }
3873
3874 kvm_x86_ops->skip_emulated_instruction(vcpu);
3875
3876 if (nseg_desc.type & 8)
3877 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_base,
3878 &nseg_desc);
3879 else
3880 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_base,
3881 &nseg_desc);
3882
3883 if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
3884 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3885 kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
3886 }
3887
3888 if (reason != TASK_SWITCH_IRET) {
3889 nseg_desc.type |= (1 << 1);
3890 save_guest_segment_descriptor(vcpu, tss_selector,
3891 &nseg_desc);
3892 }
3893
3894 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
3895 seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
3896 tr_seg.type = 11;
3897 kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
3898 out:
3899 return ret;
3900 }
3901 EXPORT_SYMBOL_GPL(kvm_task_switch);
3902
3903 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
3904 struct kvm_sregs *sregs)
3905 {
3906 int mmu_reset_needed = 0;
3907 int i, pending_vec, max_bits;
3908 struct descriptor_table dt;
3909
3910 vcpu_load(vcpu);
3911
3912 dt.limit = sregs->idt.limit;
3913 dt.base = sregs->idt.base;
3914 kvm_x86_ops->set_idt(vcpu, &dt);
3915 dt.limit = sregs->gdt.limit;
3916 dt.base = sregs->gdt.base;
3917 kvm_x86_ops->set_gdt(vcpu, &dt);
3918
3919 vcpu->arch.cr2 = sregs->cr2;
3920 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
3921 vcpu->arch.cr3 = sregs->cr3;
3922
3923 kvm_set_cr8(vcpu, sregs->cr8);
3924
3925 mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
3926 kvm_x86_ops->set_efer(vcpu, sregs->efer);
3927 kvm_set_apic_base(vcpu, sregs->apic_base);
3928
3929 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3930
3931 mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
3932 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
3933 vcpu->arch.cr0 = sregs->cr0;
3934
3935 mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
3936 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
3937 if (!is_long_mode(vcpu) && is_pae(vcpu))
3938 load_pdptrs(vcpu, vcpu->arch.cr3);
3939
3940 if (mmu_reset_needed)
3941 kvm_mmu_reset_context(vcpu);
3942
3943 if (!irqchip_in_kernel(vcpu->kvm)) {
3944 memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
3945 sizeof vcpu->arch.irq_pending);
3946 vcpu->arch.irq_summary = 0;
3947 for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
3948 if (vcpu->arch.irq_pending[i])
3949 __set_bit(i, &vcpu->arch.irq_summary);
3950 } else {
3951 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
3952 pending_vec = find_first_bit(
3953 (const unsigned long *)sregs->interrupt_bitmap,
3954 max_bits);
3955 /* Only pending external irq is handled here */
3956 if (pending_vec < max_bits) {
3957 kvm_x86_ops->set_irq(vcpu, pending_vec);
3958 pr_debug("Set back pending irq %d\n",
3959 pending_vec);
3960 }
3961 }
3962
3963 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3964 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3965 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3966 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3967 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3968 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3969
3970 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3971 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3972
3973 /* Older userspace won't unhalt the vcpu on reset. */
3974 if (vcpu->vcpu_id == 0 && kvm_rip_read(vcpu) == 0xfff0 &&
3975 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
3976 !(vcpu->arch.cr0 & X86_CR0_PE))
3977 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3978
3979 vcpu_put(vcpu);
3980
3981 return 0;
3982 }
3983
3984 int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
3985 struct kvm_debug_guest *dbg)
3986 {
3987 int r;
3988
3989 vcpu_load(vcpu);
3990
3991 r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
3992
3993 vcpu_put(vcpu);
3994
3995 return r;
3996 }
3997
3998 /*
3999 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
4000 * we have asm/x86/processor.h
4001 */
4002 struct fxsave {
4003 u16 cwd;
4004 u16 swd;
4005 u16 twd;
4006 u16 fop;
4007 u64 rip;
4008 u64 rdp;
4009 u32 mxcsr;
4010 u32 mxcsr_mask;
4011 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
4012 #ifdef CONFIG_X86_64
4013 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
4014 #else
4015 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
4016 #endif
4017 };
4018
4019 /*
4020 * Translate a guest virtual address to a guest physical address.
4021 */
4022 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
4023 struct kvm_translation *tr)
4024 {
4025 unsigned long vaddr = tr->linear_address;
4026 gpa_t gpa;
4027
4028 vcpu_load(vcpu);
4029 down_read(&vcpu->kvm->slots_lock);
4030 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
4031 up_read(&vcpu->kvm->slots_lock);
4032 tr->physical_address = gpa;
4033 tr->valid = gpa != UNMAPPED_GVA;
4034 tr->writeable = 1;
4035 tr->usermode = 0;
4036 vcpu_put(vcpu);
4037
4038 return 0;
4039 }
4040
4041 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4042 {
4043 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4044
4045 vcpu_load(vcpu);
4046
4047 memcpy(fpu->fpr, fxsave->st_space, 128);
4048 fpu->fcw = fxsave->cwd;
4049 fpu->fsw = fxsave->swd;
4050 fpu->ftwx = fxsave->twd;
4051 fpu->last_opcode = fxsave->fop;
4052 fpu->last_ip = fxsave->rip;
4053 fpu->last_dp = fxsave->rdp;
4054 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
4055
4056 vcpu_put(vcpu);
4057
4058 return 0;
4059 }
4060
4061 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4062 {
4063 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4064
4065 vcpu_load(vcpu);
4066
4067 memcpy(fxsave->st_space, fpu->fpr, 128);
4068 fxsave->cwd = fpu->fcw;
4069 fxsave->swd = fpu->fsw;
4070 fxsave->twd = fpu->ftwx;
4071 fxsave->fop = fpu->last_opcode;
4072 fxsave->rip = fpu->last_ip;
4073 fxsave->rdp = fpu->last_dp;
4074 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
4075
4076 vcpu_put(vcpu);
4077
4078 return 0;
4079 }
4080
4081 void fx_init(struct kvm_vcpu *vcpu)
4082 {
4083 unsigned after_mxcsr_mask;
4084
4085 /*
4086 * Touch the fpu the first time in non atomic context as if
4087 * this is the first fpu instruction the exception handler
4088 * will fire before the instruction returns and it'll have to
4089 * allocate ram with GFP_KERNEL.
4090 */
4091 if (!used_math())
4092 kvm_fx_save(&vcpu->arch.host_fx_image);
4093
4094 /* Initialize guest FPU by resetting ours and saving into guest's */
4095 preempt_disable();
4096 kvm_fx_save(&vcpu->arch.host_fx_image);
4097 kvm_fx_finit();
4098 kvm_fx_save(&vcpu->arch.guest_fx_image);
4099 kvm_fx_restore(&vcpu->arch.host_fx_image);
4100 preempt_enable();
4101
4102 vcpu->arch.cr0 |= X86_CR0_ET;
4103 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
4104 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
4105 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
4106 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
4107 }
4108 EXPORT_SYMBOL_GPL(fx_init);
4109
4110 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
4111 {
4112 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
4113 return;
4114
4115 vcpu->guest_fpu_loaded = 1;
4116 kvm_fx_save(&vcpu->arch.host_fx_image);
4117 kvm_fx_restore(&vcpu->arch.guest_fx_image);
4118 }
4119 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
4120
4121 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
4122 {
4123 if (!vcpu->guest_fpu_loaded)
4124 return;
4125
4126 vcpu->guest_fpu_loaded = 0;
4127 kvm_fx_save(&vcpu->arch.guest_fx_image);
4128 kvm_fx_restore(&vcpu->arch.host_fx_image);
4129 ++vcpu->stat.fpu_reload;
4130 }
4131 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
4132
4133 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
4134 {
4135 kvm_x86_ops->vcpu_free(vcpu);
4136 }
4137
4138 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
4139 unsigned int id)
4140 {
4141 return kvm_x86_ops->vcpu_create(kvm, id);
4142 }
4143
4144 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
4145 {
4146 int r;
4147
4148 /* We do fxsave: this must be aligned. */
4149 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
4150
4151 vcpu_load(vcpu);
4152 r = kvm_arch_vcpu_reset(vcpu);
4153 if (r == 0)
4154 r = kvm_mmu_setup(vcpu);
4155 vcpu_put(vcpu);
4156 if (r < 0)
4157 goto free_vcpu;
4158
4159 return 0;
4160 free_vcpu:
4161 kvm_x86_ops->vcpu_free(vcpu);
4162 return r;
4163 }
4164
4165 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
4166 {
4167 vcpu_load(vcpu);
4168 kvm_mmu_unload(vcpu);
4169 vcpu_put(vcpu);
4170
4171 kvm_x86_ops->vcpu_free(vcpu);
4172 }
4173
4174 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
4175 {
4176 return kvm_x86_ops->vcpu_reset(vcpu);
4177 }
4178
4179 void kvm_arch_hardware_enable(void *garbage)
4180 {
4181 kvm_x86_ops->hardware_enable(garbage);
4182 }
4183
4184 void kvm_arch_hardware_disable(void *garbage)
4185 {
4186 kvm_x86_ops->hardware_disable(garbage);
4187 }
4188
4189 int kvm_arch_hardware_setup(void)
4190 {
4191 return kvm_x86_ops->hardware_setup();
4192 }
4193
4194 void kvm_arch_hardware_unsetup(void)
4195 {
4196 kvm_x86_ops->hardware_unsetup();
4197 }
4198
4199 void kvm_arch_check_processor_compat(void *rtn)
4200 {
4201 kvm_x86_ops->check_processor_compatibility(rtn);
4202 }
4203
4204 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
4205 {
4206 struct page *page;
4207 struct kvm *kvm;
4208 int r;
4209
4210 BUG_ON(vcpu->kvm == NULL);
4211 kvm = vcpu->kvm;
4212
4213 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4214 if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
4215 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4216 else
4217 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
4218
4219 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
4220 if (!page) {
4221 r = -ENOMEM;
4222 goto fail;
4223 }
4224 vcpu->arch.pio_data = page_address(page);
4225
4226 r = kvm_mmu_create(vcpu);
4227 if (r < 0)
4228 goto fail_free_pio_data;
4229
4230 if (irqchip_in_kernel(kvm)) {
4231 r = kvm_create_lapic(vcpu);
4232 if (r < 0)
4233 goto fail_mmu_destroy;
4234 }
4235
4236 return 0;
4237
4238 fail_mmu_destroy:
4239 kvm_mmu_destroy(vcpu);
4240 fail_free_pio_data:
4241 free_page((unsigned long)vcpu->arch.pio_data);
4242 fail:
4243 return r;
4244 }
4245
4246 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
4247 {
4248 kvm_free_lapic(vcpu);
4249 down_read(&vcpu->kvm->slots_lock);
4250 kvm_mmu_destroy(vcpu);
4251 up_read(&vcpu->kvm->slots_lock);
4252 free_page((unsigned long)vcpu->arch.pio_data);
4253 }
4254
4255 struct kvm *kvm_arch_create_vm(void)
4256 {
4257 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
4258
4259 if (!kvm)
4260 return ERR_PTR(-ENOMEM);
4261
4262 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
4263 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
4264
4265 return kvm;
4266 }
4267
4268 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
4269 {
4270 vcpu_load(vcpu);
4271 kvm_mmu_unload(vcpu);
4272 vcpu_put(vcpu);
4273 }
4274
4275 static void kvm_free_vcpus(struct kvm *kvm)
4276 {
4277 unsigned int i;
4278
4279 /*
4280 * Unpin any mmu pages first.
4281 */
4282 for (i = 0; i < KVM_MAX_VCPUS; ++i)
4283 if (kvm->vcpus[i])
4284 kvm_unload_vcpu_mmu(kvm->vcpus[i]);
4285 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
4286 if (kvm->vcpus[i]) {
4287 kvm_arch_vcpu_free(kvm->vcpus[i]);
4288 kvm->vcpus[i] = NULL;
4289 }
4290 }
4291
4292 }
4293
4294 void kvm_arch_destroy_vm(struct kvm *kvm)
4295 {
4296 kvm_iommu_unmap_guest(kvm);
4297 kvm_free_all_assigned_devices(kvm);
4298 kvm_free_pit(kvm);
4299 kfree(kvm->arch.vpic);
4300 kfree(kvm->arch.vioapic);
4301 kvm_free_vcpus(kvm);
4302 kvm_free_physmem(kvm);
4303 if (kvm->arch.apic_access_page)
4304 put_page(kvm->arch.apic_access_page);
4305 if (kvm->arch.ept_identity_pagetable)
4306 put_page(kvm->arch.ept_identity_pagetable);
4307 kfree(kvm);
4308 }
4309
4310 int kvm_arch_set_memory_region(struct kvm *kvm,
4311 struct kvm_userspace_memory_region *mem,
4312 struct kvm_memory_slot old,
4313 int user_alloc)
4314 {
4315 int npages = mem->memory_size >> PAGE_SHIFT;
4316 struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
4317
4318 /*To keep backward compatibility with older userspace,
4319 *x86 needs to hanlde !user_alloc case.
4320 */
4321 if (!user_alloc) {
4322 if (npages && !old.rmap) {
4323 unsigned long userspace_addr;
4324
4325 down_write(&current->mm->mmap_sem);
4326 userspace_addr = do_mmap(NULL, 0,
4327 npages * PAGE_SIZE,
4328 PROT_READ | PROT_WRITE,
4329 MAP_PRIVATE | MAP_ANONYMOUS,
4330 0);
4331 up_write(&current->mm->mmap_sem);
4332
4333 if (IS_ERR((void *)userspace_addr))
4334 return PTR_ERR((void *)userspace_addr);
4335
4336 /* set userspace_addr atomically for kvm_hva_to_rmapp */
4337 spin_lock(&kvm->mmu_lock);
4338 memslot->userspace_addr = userspace_addr;
4339 spin_unlock(&kvm->mmu_lock);
4340 } else {
4341 if (!old.user_alloc && old.rmap) {
4342 int ret;
4343
4344 down_write(&current->mm->mmap_sem);
4345 ret = do_munmap(current->mm, old.userspace_addr,
4346 old.npages * PAGE_SIZE);
4347 up_write(&current->mm->mmap_sem);
4348 if (ret < 0)
4349 printk(KERN_WARNING
4350 "kvm_vm_ioctl_set_memory_region: "
4351 "failed to munmap memory\n");
4352 }
4353 }
4354 }
4355
4356 if (!kvm->arch.n_requested_mmu_pages) {
4357 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
4358 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
4359 }
4360
4361 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
4362 kvm_flush_remote_tlbs(kvm);
4363
4364 return 0;
4365 }
4366
4367 void kvm_arch_flush_shadow(struct kvm *kvm)
4368 {
4369 kvm_mmu_zap_all(kvm);
4370 }
4371
4372 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
4373 {
4374 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
4375 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED;
4376 }
4377
4378 static void vcpu_kick_intr(void *info)
4379 {
4380 #ifdef DEBUG
4381 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
4382 printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
4383 #endif
4384 }
4385
4386 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
4387 {
4388 int ipi_pcpu = vcpu->cpu;
4389 int cpu = get_cpu();
4390
4391 if (waitqueue_active(&vcpu->wq)) {
4392 wake_up_interruptible(&vcpu->wq);
4393 ++vcpu->stat.halt_wakeup;
4394 }
4395 /*
4396 * We may be called synchronously with irqs disabled in guest mode,
4397 * So need not to call smp_call_function_single() in that case.
4398 */
4399 if (vcpu->guest_mode && vcpu->cpu != cpu)
4400 smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
4401 put_cpu();
4402 }
This page took 0.16676 seconds and 6 git commands to generate.