KVM: x86 emulator: Move string pio emulation into emulator.c
[deliverable/linux.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Amit Shah <amit.shah@qumranet.com>
14 * Ben-Ami Yassour <benami@il.ibm.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
28
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40 #include <linux/user-return-notifier.h>
41 #include <linux/srcu.h>
42 #include <linux/slab.h>
43 #include <trace/events/kvm.h>
44
45 #define CREATE_TRACE_POINTS
46 #include "trace.h"
47
48 #include <asm/debugreg.h>
49 #include <asm/uaccess.h>
50 #include <asm/msr.h>
51 #include <asm/desc.h>
52 #include <asm/mtrr.h>
53 #include <asm/mce.h>
54
55 #define MAX_IO_MSRS 256
56 #define CR0_RESERVED_BITS \
57 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
58 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
59 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
60 #define CR4_RESERVED_BITS \
61 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
62 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
63 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
64 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
65
66 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
67
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
70
71 /* EFER defaults:
72 * - enable syscall per default because its emulated by KVM
73 * - enable LME and LMA per default on 64 bit KVM
74 */
75 #ifdef CONFIG_X86_64
76 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
77 #else
78 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
79 #endif
80
81 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
82 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
83
84 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
85 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
86 struct kvm_cpuid_entry2 __user *entries);
87
88 struct kvm_x86_ops *kvm_x86_ops;
89 EXPORT_SYMBOL_GPL(kvm_x86_ops);
90
91 int ignore_msrs = 0;
92 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
93
94 #define KVM_NR_SHARED_MSRS 16
95
96 struct kvm_shared_msrs_global {
97 int nr;
98 u32 msrs[KVM_NR_SHARED_MSRS];
99 };
100
101 struct kvm_shared_msrs {
102 struct user_return_notifier urn;
103 bool registered;
104 struct kvm_shared_msr_values {
105 u64 host;
106 u64 curr;
107 } values[KVM_NR_SHARED_MSRS];
108 };
109
110 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
111 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
112
113 struct kvm_stats_debugfs_item debugfs_entries[] = {
114 { "pf_fixed", VCPU_STAT(pf_fixed) },
115 { "pf_guest", VCPU_STAT(pf_guest) },
116 { "tlb_flush", VCPU_STAT(tlb_flush) },
117 { "invlpg", VCPU_STAT(invlpg) },
118 { "exits", VCPU_STAT(exits) },
119 { "io_exits", VCPU_STAT(io_exits) },
120 { "mmio_exits", VCPU_STAT(mmio_exits) },
121 { "signal_exits", VCPU_STAT(signal_exits) },
122 { "irq_window", VCPU_STAT(irq_window_exits) },
123 { "nmi_window", VCPU_STAT(nmi_window_exits) },
124 { "halt_exits", VCPU_STAT(halt_exits) },
125 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
126 { "hypercalls", VCPU_STAT(hypercalls) },
127 { "request_irq", VCPU_STAT(request_irq_exits) },
128 { "irq_exits", VCPU_STAT(irq_exits) },
129 { "host_state_reload", VCPU_STAT(host_state_reload) },
130 { "efer_reload", VCPU_STAT(efer_reload) },
131 { "fpu_reload", VCPU_STAT(fpu_reload) },
132 { "insn_emulation", VCPU_STAT(insn_emulation) },
133 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
134 { "irq_injections", VCPU_STAT(irq_injections) },
135 { "nmi_injections", VCPU_STAT(nmi_injections) },
136 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
137 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
138 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
139 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
140 { "mmu_flooded", VM_STAT(mmu_flooded) },
141 { "mmu_recycled", VM_STAT(mmu_recycled) },
142 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
143 { "mmu_unsync", VM_STAT(mmu_unsync) },
144 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
145 { "largepages", VM_STAT(lpages) },
146 { NULL }
147 };
148
149 static void kvm_on_user_return(struct user_return_notifier *urn)
150 {
151 unsigned slot;
152 struct kvm_shared_msrs *locals
153 = container_of(urn, struct kvm_shared_msrs, urn);
154 struct kvm_shared_msr_values *values;
155
156 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
157 values = &locals->values[slot];
158 if (values->host != values->curr) {
159 wrmsrl(shared_msrs_global.msrs[slot], values->host);
160 values->curr = values->host;
161 }
162 }
163 locals->registered = false;
164 user_return_notifier_unregister(urn);
165 }
166
167 static void shared_msr_update(unsigned slot, u32 msr)
168 {
169 struct kvm_shared_msrs *smsr;
170 u64 value;
171
172 smsr = &__get_cpu_var(shared_msrs);
173 /* only read, and nobody should modify it at this time,
174 * so don't need lock */
175 if (slot >= shared_msrs_global.nr) {
176 printk(KERN_ERR "kvm: invalid MSR slot!");
177 return;
178 }
179 rdmsrl_safe(msr, &value);
180 smsr->values[slot].host = value;
181 smsr->values[slot].curr = value;
182 }
183
184 void kvm_define_shared_msr(unsigned slot, u32 msr)
185 {
186 if (slot >= shared_msrs_global.nr)
187 shared_msrs_global.nr = slot + 1;
188 shared_msrs_global.msrs[slot] = msr;
189 /* we need ensured the shared_msr_global have been updated */
190 smp_wmb();
191 }
192 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
193
194 static void kvm_shared_msr_cpu_online(void)
195 {
196 unsigned i;
197
198 for (i = 0; i < shared_msrs_global.nr; ++i)
199 shared_msr_update(i, shared_msrs_global.msrs[i]);
200 }
201
202 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
203 {
204 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
205
206 if (((value ^ smsr->values[slot].curr) & mask) == 0)
207 return;
208 smsr->values[slot].curr = value;
209 wrmsrl(shared_msrs_global.msrs[slot], value);
210 if (!smsr->registered) {
211 smsr->urn.on_user_return = kvm_on_user_return;
212 user_return_notifier_register(&smsr->urn);
213 smsr->registered = true;
214 }
215 }
216 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
217
218 static void drop_user_return_notifiers(void *ignore)
219 {
220 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
221
222 if (smsr->registered)
223 kvm_on_user_return(&smsr->urn);
224 }
225
226 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
227 {
228 if (irqchip_in_kernel(vcpu->kvm))
229 return vcpu->arch.apic_base;
230 else
231 return vcpu->arch.apic_base;
232 }
233 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
234
235 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
236 {
237 /* TODO: reserve bits check */
238 if (irqchip_in_kernel(vcpu->kvm))
239 kvm_lapic_set_base(vcpu, data);
240 else
241 vcpu->arch.apic_base = data;
242 }
243 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
244
245 #define EXCPT_BENIGN 0
246 #define EXCPT_CONTRIBUTORY 1
247 #define EXCPT_PF 2
248
249 static int exception_class(int vector)
250 {
251 switch (vector) {
252 case PF_VECTOR:
253 return EXCPT_PF;
254 case DE_VECTOR:
255 case TS_VECTOR:
256 case NP_VECTOR:
257 case SS_VECTOR:
258 case GP_VECTOR:
259 return EXCPT_CONTRIBUTORY;
260 default:
261 break;
262 }
263 return EXCPT_BENIGN;
264 }
265
266 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
267 unsigned nr, bool has_error, u32 error_code)
268 {
269 u32 prev_nr;
270 int class1, class2;
271
272 if (!vcpu->arch.exception.pending) {
273 queue:
274 vcpu->arch.exception.pending = true;
275 vcpu->arch.exception.has_error_code = has_error;
276 vcpu->arch.exception.nr = nr;
277 vcpu->arch.exception.error_code = error_code;
278 return;
279 }
280
281 /* to check exception */
282 prev_nr = vcpu->arch.exception.nr;
283 if (prev_nr == DF_VECTOR) {
284 /* triple fault -> shutdown */
285 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
286 return;
287 }
288 class1 = exception_class(prev_nr);
289 class2 = exception_class(nr);
290 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
291 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
292 /* generate double fault per SDM Table 5-5 */
293 vcpu->arch.exception.pending = true;
294 vcpu->arch.exception.has_error_code = true;
295 vcpu->arch.exception.nr = DF_VECTOR;
296 vcpu->arch.exception.error_code = 0;
297 } else
298 /* replace previous exception with a new one in a hope
299 that instruction re-execution will regenerate lost
300 exception */
301 goto queue;
302 }
303
304 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
305 {
306 kvm_multiple_exception(vcpu, nr, false, 0);
307 }
308 EXPORT_SYMBOL_GPL(kvm_queue_exception);
309
310 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
311 u32 error_code)
312 {
313 ++vcpu->stat.pf_guest;
314 vcpu->arch.cr2 = addr;
315 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
316 }
317
318 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
319 {
320 vcpu->arch.nmi_pending = 1;
321 }
322 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
323
324 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
325 {
326 kvm_multiple_exception(vcpu, nr, true, error_code);
327 }
328 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
329
330 /*
331 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
332 * a #GP and return false.
333 */
334 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
335 {
336 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
337 return true;
338 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
339 return false;
340 }
341 EXPORT_SYMBOL_GPL(kvm_require_cpl);
342
343 /*
344 * Load the pae pdptrs. Return true is they are all valid.
345 */
346 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
347 {
348 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
349 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
350 int i;
351 int ret;
352 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
353
354 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
355 offset * sizeof(u64), sizeof(pdpte));
356 if (ret < 0) {
357 ret = 0;
358 goto out;
359 }
360 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
361 if (is_present_gpte(pdpte[i]) &&
362 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
363 ret = 0;
364 goto out;
365 }
366 }
367 ret = 1;
368
369 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
370 __set_bit(VCPU_EXREG_PDPTR,
371 (unsigned long *)&vcpu->arch.regs_avail);
372 __set_bit(VCPU_EXREG_PDPTR,
373 (unsigned long *)&vcpu->arch.regs_dirty);
374 out:
375
376 return ret;
377 }
378 EXPORT_SYMBOL_GPL(load_pdptrs);
379
380 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
381 {
382 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
383 bool changed = true;
384 int r;
385
386 if (is_long_mode(vcpu) || !is_pae(vcpu))
387 return false;
388
389 if (!test_bit(VCPU_EXREG_PDPTR,
390 (unsigned long *)&vcpu->arch.regs_avail))
391 return true;
392
393 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
394 if (r < 0)
395 goto out;
396 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
397 out:
398
399 return changed;
400 }
401
402 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
403 {
404 cr0 |= X86_CR0_ET;
405
406 #ifdef CONFIG_X86_64
407 if (cr0 & 0xffffffff00000000UL) {
408 kvm_inject_gp(vcpu, 0);
409 return;
410 }
411 #endif
412
413 cr0 &= ~CR0_RESERVED_BITS;
414
415 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
416 kvm_inject_gp(vcpu, 0);
417 return;
418 }
419
420 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
421 kvm_inject_gp(vcpu, 0);
422 return;
423 }
424
425 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
426 #ifdef CONFIG_X86_64
427 if ((vcpu->arch.efer & EFER_LME)) {
428 int cs_db, cs_l;
429
430 if (!is_pae(vcpu)) {
431 kvm_inject_gp(vcpu, 0);
432 return;
433 }
434 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
435 if (cs_l) {
436 kvm_inject_gp(vcpu, 0);
437 return;
438
439 }
440 } else
441 #endif
442 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
443 kvm_inject_gp(vcpu, 0);
444 return;
445 }
446
447 }
448
449 kvm_x86_ops->set_cr0(vcpu, cr0);
450
451 kvm_mmu_reset_context(vcpu);
452 return;
453 }
454 EXPORT_SYMBOL_GPL(kvm_set_cr0);
455
456 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
457 {
458 kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0ful) | (msw & 0x0f));
459 }
460 EXPORT_SYMBOL_GPL(kvm_lmsw);
461
462 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
463 {
464 unsigned long old_cr4 = kvm_read_cr4(vcpu);
465 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
466
467 if (cr4 & CR4_RESERVED_BITS) {
468 kvm_inject_gp(vcpu, 0);
469 return;
470 }
471
472 if (is_long_mode(vcpu)) {
473 if (!(cr4 & X86_CR4_PAE)) {
474 kvm_inject_gp(vcpu, 0);
475 return;
476 }
477 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
478 && ((cr4 ^ old_cr4) & pdptr_bits)
479 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
480 kvm_inject_gp(vcpu, 0);
481 return;
482 }
483
484 if (cr4 & X86_CR4_VMXE) {
485 kvm_inject_gp(vcpu, 0);
486 return;
487 }
488 kvm_x86_ops->set_cr4(vcpu, cr4);
489 vcpu->arch.cr4 = cr4;
490 vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
491 kvm_mmu_reset_context(vcpu);
492 }
493 EXPORT_SYMBOL_GPL(kvm_set_cr4);
494
495 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
496 {
497 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
498 kvm_mmu_sync_roots(vcpu);
499 kvm_mmu_flush_tlb(vcpu);
500 return;
501 }
502
503 if (is_long_mode(vcpu)) {
504 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
505 kvm_inject_gp(vcpu, 0);
506 return;
507 }
508 } else {
509 if (is_pae(vcpu)) {
510 if (cr3 & CR3_PAE_RESERVED_BITS) {
511 kvm_inject_gp(vcpu, 0);
512 return;
513 }
514 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
515 kvm_inject_gp(vcpu, 0);
516 return;
517 }
518 }
519 /*
520 * We don't check reserved bits in nonpae mode, because
521 * this isn't enforced, and VMware depends on this.
522 */
523 }
524
525 /*
526 * Does the new cr3 value map to physical memory? (Note, we
527 * catch an invalid cr3 even in real-mode, because it would
528 * cause trouble later on when we turn on paging anyway.)
529 *
530 * A real CPU would silently accept an invalid cr3 and would
531 * attempt to use it - with largely undefined (and often hard
532 * to debug) behavior on the guest side.
533 */
534 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
535 kvm_inject_gp(vcpu, 0);
536 else {
537 vcpu->arch.cr3 = cr3;
538 vcpu->arch.mmu.new_cr3(vcpu);
539 }
540 }
541 EXPORT_SYMBOL_GPL(kvm_set_cr3);
542
543 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
544 {
545 if (cr8 & CR8_RESERVED_BITS) {
546 kvm_inject_gp(vcpu, 0);
547 return;
548 }
549 if (irqchip_in_kernel(vcpu->kvm))
550 kvm_lapic_set_tpr(vcpu, cr8);
551 else
552 vcpu->arch.cr8 = cr8;
553 }
554 EXPORT_SYMBOL_GPL(kvm_set_cr8);
555
556 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
557 {
558 if (irqchip_in_kernel(vcpu->kvm))
559 return kvm_lapic_get_cr8(vcpu);
560 else
561 return vcpu->arch.cr8;
562 }
563 EXPORT_SYMBOL_GPL(kvm_get_cr8);
564
565 static inline u32 bit(int bitno)
566 {
567 return 1 << (bitno & 31);
568 }
569
570 /*
571 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
572 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
573 *
574 * This list is modified at module load time to reflect the
575 * capabilities of the host cpu. This capabilities test skips MSRs that are
576 * kvm-specific. Those are put in the beginning of the list.
577 */
578
579 #define KVM_SAVE_MSRS_BEGIN 5
580 static u32 msrs_to_save[] = {
581 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
582 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
583 HV_X64_MSR_APIC_ASSIST_PAGE,
584 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
585 MSR_K6_STAR,
586 #ifdef CONFIG_X86_64
587 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
588 #endif
589 MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
590 };
591
592 static unsigned num_msrs_to_save;
593
594 static u32 emulated_msrs[] = {
595 MSR_IA32_MISC_ENABLE,
596 };
597
598 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
599 {
600 if (efer & efer_reserved_bits) {
601 kvm_inject_gp(vcpu, 0);
602 return;
603 }
604
605 if (is_paging(vcpu)
606 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) {
607 kvm_inject_gp(vcpu, 0);
608 return;
609 }
610
611 if (efer & EFER_FFXSR) {
612 struct kvm_cpuid_entry2 *feat;
613
614 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
615 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
616 kvm_inject_gp(vcpu, 0);
617 return;
618 }
619 }
620
621 if (efer & EFER_SVME) {
622 struct kvm_cpuid_entry2 *feat;
623
624 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
625 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
626 kvm_inject_gp(vcpu, 0);
627 return;
628 }
629 }
630
631 kvm_x86_ops->set_efer(vcpu, efer);
632
633 efer &= ~EFER_LMA;
634 efer |= vcpu->arch.efer & EFER_LMA;
635
636 vcpu->arch.efer = efer;
637
638 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
639 kvm_mmu_reset_context(vcpu);
640 }
641
642 void kvm_enable_efer_bits(u64 mask)
643 {
644 efer_reserved_bits &= ~mask;
645 }
646 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
647
648
649 /*
650 * Writes msr value into into the appropriate "register".
651 * Returns 0 on success, non-0 otherwise.
652 * Assumes vcpu_load() was already called.
653 */
654 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
655 {
656 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
657 }
658
659 /*
660 * Adapt set_msr() to msr_io()'s calling convention
661 */
662 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
663 {
664 return kvm_set_msr(vcpu, index, *data);
665 }
666
667 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
668 {
669 static int version;
670 struct pvclock_wall_clock wc;
671 struct timespec boot;
672
673 if (!wall_clock)
674 return;
675
676 version++;
677
678 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
679
680 /*
681 * The guest calculates current wall clock time by adding
682 * system time (updated by kvm_write_guest_time below) to the
683 * wall clock specified here. guest system time equals host
684 * system time for us, thus we must fill in host boot time here.
685 */
686 getboottime(&boot);
687
688 wc.sec = boot.tv_sec;
689 wc.nsec = boot.tv_nsec;
690 wc.version = version;
691
692 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
693
694 version++;
695 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
696 }
697
698 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
699 {
700 uint32_t quotient, remainder;
701
702 /* Don't try to replace with do_div(), this one calculates
703 * "(dividend << 32) / divisor" */
704 __asm__ ( "divl %4"
705 : "=a" (quotient), "=d" (remainder)
706 : "0" (0), "1" (dividend), "r" (divisor) );
707 return quotient;
708 }
709
710 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
711 {
712 uint64_t nsecs = 1000000000LL;
713 int32_t shift = 0;
714 uint64_t tps64;
715 uint32_t tps32;
716
717 tps64 = tsc_khz * 1000LL;
718 while (tps64 > nsecs*2) {
719 tps64 >>= 1;
720 shift--;
721 }
722
723 tps32 = (uint32_t)tps64;
724 while (tps32 <= (uint32_t)nsecs) {
725 tps32 <<= 1;
726 shift++;
727 }
728
729 hv_clock->tsc_shift = shift;
730 hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
731
732 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
733 __func__, tsc_khz, hv_clock->tsc_shift,
734 hv_clock->tsc_to_system_mul);
735 }
736
737 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
738
739 static void kvm_write_guest_time(struct kvm_vcpu *v)
740 {
741 struct timespec ts;
742 unsigned long flags;
743 struct kvm_vcpu_arch *vcpu = &v->arch;
744 void *shared_kaddr;
745 unsigned long this_tsc_khz;
746
747 if ((!vcpu->time_page))
748 return;
749
750 this_tsc_khz = get_cpu_var(cpu_tsc_khz);
751 if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
752 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
753 vcpu->hv_clock_tsc_khz = this_tsc_khz;
754 }
755 put_cpu_var(cpu_tsc_khz);
756
757 /* Keep irq disabled to prevent changes to the clock */
758 local_irq_save(flags);
759 kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
760 ktime_get_ts(&ts);
761 monotonic_to_bootbased(&ts);
762 local_irq_restore(flags);
763
764 /* With all the info we got, fill in the values */
765
766 vcpu->hv_clock.system_time = ts.tv_nsec +
767 (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
768
769 /*
770 * The interface expects us to write an even number signaling that the
771 * update is finished. Since the guest won't see the intermediate
772 * state, we just increase by 2 at the end.
773 */
774 vcpu->hv_clock.version += 2;
775
776 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
777
778 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
779 sizeof(vcpu->hv_clock));
780
781 kunmap_atomic(shared_kaddr, KM_USER0);
782
783 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
784 }
785
786 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
787 {
788 struct kvm_vcpu_arch *vcpu = &v->arch;
789
790 if (!vcpu->time_page)
791 return 0;
792 set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
793 return 1;
794 }
795
796 static bool msr_mtrr_valid(unsigned msr)
797 {
798 switch (msr) {
799 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
800 case MSR_MTRRfix64K_00000:
801 case MSR_MTRRfix16K_80000:
802 case MSR_MTRRfix16K_A0000:
803 case MSR_MTRRfix4K_C0000:
804 case MSR_MTRRfix4K_C8000:
805 case MSR_MTRRfix4K_D0000:
806 case MSR_MTRRfix4K_D8000:
807 case MSR_MTRRfix4K_E0000:
808 case MSR_MTRRfix4K_E8000:
809 case MSR_MTRRfix4K_F0000:
810 case MSR_MTRRfix4K_F8000:
811 case MSR_MTRRdefType:
812 case MSR_IA32_CR_PAT:
813 return true;
814 case 0x2f8:
815 return true;
816 }
817 return false;
818 }
819
820 static bool valid_pat_type(unsigned t)
821 {
822 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
823 }
824
825 static bool valid_mtrr_type(unsigned t)
826 {
827 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
828 }
829
830 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
831 {
832 int i;
833
834 if (!msr_mtrr_valid(msr))
835 return false;
836
837 if (msr == MSR_IA32_CR_PAT) {
838 for (i = 0; i < 8; i++)
839 if (!valid_pat_type((data >> (i * 8)) & 0xff))
840 return false;
841 return true;
842 } else if (msr == MSR_MTRRdefType) {
843 if (data & ~0xcff)
844 return false;
845 return valid_mtrr_type(data & 0xff);
846 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
847 for (i = 0; i < 8 ; i++)
848 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
849 return false;
850 return true;
851 }
852
853 /* variable MTRRs */
854 return valid_mtrr_type(data & 0xff);
855 }
856
857 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
858 {
859 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
860
861 if (!mtrr_valid(vcpu, msr, data))
862 return 1;
863
864 if (msr == MSR_MTRRdefType) {
865 vcpu->arch.mtrr_state.def_type = data;
866 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
867 } else if (msr == MSR_MTRRfix64K_00000)
868 p[0] = data;
869 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
870 p[1 + msr - MSR_MTRRfix16K_80000] = data;
871 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
872 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
873 else if (msr == MSR_IA32_CR_PAT)
874 vcpu->arch.pat = data;
875 else { /* Variable MTRRs */
876 int idx, is_mtrr_mask;
877 u64 *pt;
878
879 idx = (msr - 0x200) / 2;
880 is_mtrr_mask = msr - 0x200 - 2 * idx;
881 if (!is_mtrr_mask)
882 pt =
883 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
884 else
885 pt =
886 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
887 *pt = data;
888 }
889
890 kvm_mmu_reset_context(vcpu);
891 return 0;
892 }
893
894 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
895 {
896 u64 mcg_cap = vcpu->arch.mcg_cap;
897 unsigned bank_num = mcg_cap & 0xff;
898
899 switch (msr) {
900 case MSR_IA32_MCG_STATUS:
901 vcpu->arch.mcg_status = data;
902 break;
903 case MSR_IA32_MCG_CTL:
904 if (!(mcg_cap & MCG_CTL_P))
905 return 1;
906 if (data != 0 && data != ~(u64)0)
907 return -1;
908 vcpu->arch.mcg_ctl = data;
909 break;
910 default:
911 if (msr >= MSR_IA32_MC0_CTL &&
912 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
913 u32 offset = msr - MSR_IA32_MC0_CTL;
914 /* only 0 or all 1s can be written to IA32_MCi_CTL
915 * some Linux kernels though clear bit 10 in bank 4 to
916 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
917 * this to avoid an uncatched #GP in the guest
918 */
919 if ((offset & 0x3) == 0 &&
920 data != 0 && (data | (1 << 10)) != ~(u64)0)
921 return -1;
922 vcpu->arch.mce_banks[offset] = data;
923 break;
924 }
925 return 1;
926 }
927 return 0;
928 }
929
930 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
931 {
932 struct kvm *kvm = vcpu->kvm;
933 int lm = is_long_mode(vcpu);
934 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
935 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
936 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
937 : kvm->arch.xen_hvm_config.blob_size_32;
938 u32 page_num = data & ~PAGE_MASK;
939 u64 page_addr = data & PAGE_MASK;
940 u8 *page;
941 int r;
942
943 r = -E2BIG;
944 if (page_num >= blob_size)
945 goto out;
946 r = -ENOMEM;
947 page = kzalloc(PAGE_SIZE, GFP_KERNEL);
948 if (!page)
949 goto out;
950 r = -EFAULT;
951 if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
952 goto out_free;
953 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
954 goto out_free;
955 r = 0;
956 out_free:
957 kfree(page);
958 out:
959 return r;
960 }
961
962 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
963 {
964 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
965 }
966
967 static bool kvm_hv_msr_partition_wide(u32 msr)
968 {
969 bool r = false;
970 switch (msr) {
971 case HV_X64_MSR_GUEST_OS_ID:
972 case HV_X64_MSR_HYPERCALL:
973 r = true;
974 break;
975 }
976
977 return r;
978 }
979
980 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
981 {
982 struct kvm *kvm = vcpu->kvm;
983
984 switch (msr) {
985 case HV_X64_MSR_GUEST_OS_ID:
986 kvm->arch.hv_guest_os_id = data;
987 /* setting guest os id to zero disables hypercall page */
988 if (!kvm->arch.hv_guest_os_id)
989 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
990 break;
991 case HV_X64_MSR_HYPERCALL: {
992 u64 gfn;
993 unsigned long addr;
994 u8 instructions[4];
995
996 /* if guest os id is not set hypercall should remain disabled */
997 if (!kvm->arch.hv_guest_os_id)
998 break;
999 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1000 kvm->arch.hv_hypercall = data;
1001 break;
1002 }
1003 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1004 addr = gfn_to_hva(kvm, gfn);
1005 if (kvm_is_error_hva(addr))
1006 return 1;
1007 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1008 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1009 if (copy_to_user((void __user *)addr, instructions, 4))
1010 return 1;
1011 kvm->arch.hv_hypercall = data;
1012 break;
1013 }
1014 default:
1015 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1016 "data 0x%llx\n", msr, data);
1017 return 1;
1018 }
1019 return 0;
1020 }
1021
1022 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1023 {
1024 switch (msr) {
1025 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1026 unsigned long addr;
1027
1028 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1029 vcpu->arch.hv_vapic = data;
1030 break;
1031 }
1032 addr = gfn_to_hva(vcpu->kvm, data >>
1033 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1034 if (kvm_is_error_hva(addr))
1035 return 1;
1036 if (clear_user((void __user *)addr, PAGE_SIZE))
1037 return 1;
1038 vcpu->arch.hv_vapic = data;
1039 break;
1040 }
1041 case HV_X64_MSR_EOI:
1042 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1043 case HV_X64_MSR_ICR:
1044 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1045 case HV_X64_MSR_TPR:
1046 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1047 default:
1048 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1049 "data 0x%llx\n", msr, data);
1050 return 1;
1051 }
1052
1053 return 0;
1054 }
1055
1056 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1057 {
1058 switch (msr) {
1059 case MSR_EFER:
1060 set_efer(vcpu, data);
1061 break;
1062 case MSR_K7_HWCR:
1063 data &= ~(u64)0x40; /* ignore flush filter disable */
1064 data &= ~(u64)0x100; /* ignore ignne emulation enable */
1065 if (data != 0) {
1066 pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1067 data);
1068 return 1;
1069 }
1070 break;
1071 case MSR_FAM10H_MMIO_CONF_BASE:
1072 if (data != 0) {
1073 pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1074 "0x%llx\n", data);
1075 return 1;
1076 }
1077 break;
1078 case MSR_AMD64_NB_CFG:
1079 break;
1080 case MSR_IA32_DEBUGCTLMSR:
1081 if (!data) {
1082 /* We support the non-activated case already */
1083 break;
1084 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1085 /* Values other than LBR and BTF are vendor-specific,
1086 thus reserved and should throw a #GP */
1087 return 1;
1088 }
1089 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1090 __func__, data);
1091 break;
1092 case MSR_IA32_UCODE_REV:
1093 case MSR_IA32_UCODE_WRITE:
1094 case MSR_VM_HSAVE_PA:
1095 case MSR_AMD64_PATCH_LOADER:
1096 break;
1097 case 0x200 ... 0x2ff:
1098 return set_msr_mtrr(vcpu, msr, data);
1099 case MSR_IA32_APICBASE:
1100 kvm_set_apic_base(vcpu, data);
1101 break;
1102 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1103 return kvm_x2apic_msr_write(vcpu, msr, data);
1104 case MSR_IA32_MISC_ENABLE:
1105 vcpu->arch.ia32_misc_enable_msr = data;
1106 break;
1107 case MSR_KVM_WALL_CLOCK:
1108 vcpu->kvm->arch.wall_clock = data;
1109 kvm_write_wall_clock(vcpu->kvm, data);
1110 break;
1111 case MSR_KVM_SYSTEM_TIME: {
1112 if (vcpu->arch.time_page) {
1113 kvm_release_page_dirty(vcpu->arch.time_page);
1114 vcpu->arch.time_page = NULL;
1115 }
1116
1117 vcpu->arch.time = data;
1118
1119 /* we verify if the enable bit is set... */
1120 if (!(data & 1))
1121 break;
1122
1123 /* ...but clean it before doing the actual write */
1124 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1125
1126 vcpu->arch.time_page =
1127 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1128
1129 if (is_error_page(vcpu->arch.time_page)) {
1130 kvm_release_page_clean(vcpu->arch.time_page);
1131 vcpu->arch.time_page = NULL;
1132 }
1133
1134 kvm_request_guest_time_update(vcpu);
1135 break;
1136 }
1137 case MSR_IA32_MCG_CTL:
1138 case MSR_IA32_MCG_STATUS:
1139 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1140 return set_msr_mce(vcpu, msr, data);
1141
1142 /* Performance counters are not protected by a CPUID bit,
1143 * so we should check all of them in the generic path for the sake of
1144 * cross vendor migration.
1145 * Writing a zero into the event select MSRs disables them,
1146 * which we perfectly emulate ;-). Any other value should be at least
1147 * reported, some guests depend on them.
1148 */
1149 case MSR_P6_EVNTSEL0:
1150 case MSR_P6_EVNTSEL1:
1151 case MSR_K7_EVNTSEL0:
1152 case MSR_K7_EVNTSEL1:
1153 case MSR_K7_EVNTSEL2:
1154 case MSR_K7_EVNTSEL3:
1155 if (data != 0)
1156 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1157 "0x%x data 0x%llx\n", msr, data);
1158 break;
1159 /* at least RHEL 4 unconditionally writes to the perfctr registers,
1160 * so we ignore writes to make it happy.
1161 */
1162 case MSR_P6_PERFCTR0:
1163 case MSR_P6_PERFCTR1:
1164 case MSR_K7_PERFCTR0:
1165 case MSR_K7_PERFCTR1:
1166 case MSR_K7_PERFCTR2:
1167 case MSR_K7_PERFCTR3:
1168 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1169 "0x%x data 0x%llx\n", msr, data);
1170 break;
1171 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1172 if (kvm_hv_msr_partition_wide(msr)) {
1173 int r;
1174 mutex_lock(&vcpu->kvm->lock);
1175 r = set_msr_hyperv_pw(vcpu, msr, data);
1176 mutex_unlock(&vcpu->kvm->lock);
1177 return r;
1178 } else
1179 return set_msr_hyperv(vcpu, msr, data);
1180 break;
1181 default:
1182 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1183 return xen_hvm_config(vcpu, data);
1184 if (!ignore_msrs) {
1185 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1186 msr, data);
1187 return 1;
1188 } else {
1189 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1190 msr, data);
1191 break;
1192 }
1193 }
1194 return 0;
1195 }
1196 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1197
1198
1199 /*
1200 * Reads an msr value (of 'msr_index') into 'pdata'.
1201 * Returns 0 on success, non-0 otherwise.
1202 * Assumes vcpu_load() was already called.
1203 */
1204 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1205 {
1206 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1207 }
1208
1209 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1210 {
1211 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1212
1213 if (!msr_mtrr_valid(msr))
1214 return 1;
1215
1216 if (msr == MSR_MTRRdefType)
1217 *pdata = vcpu->arch.mtrr_state.def_type +
1218 (vcpu->arch.mtrr_state.enabled << 10);
1219 else if (msr == MSR_MTRRfix64K_00000)
1220 *pdata = p[0];
1221 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1222 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1223 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1224 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1225 else if (msr == MSR_IA32_CR_PAT)
1226 *pdata = vcpu->arch.pat;
1227 else { /* Variable MTRRs */
1228 int idx, is_mtrr_mask;
1229 u64 *pt;
1230
1231 idx = (msr - 0x200) / 2;
1232 is_mtrr_mask = msr - 0x200 - 2 * idx;
1233 if (!is_mtrr_mask)
1234 pt =
1235 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1236 else
1237 pt =
1238 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1239 *pdata = *pt;
1240 }
1241
1242 return 0;
1243 }
1244
1245 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1246 {
1247 u64 data;
1248 u64 mcg_cap = vcpu->arch.mcg_cap;
1249 unsigned bank_num = mcg_cap & 0xff;
1250
1251 switch (msr) {
1252 case MSR_IA32_P5_MC_ADDR:
1253 case MSR_IA32_P5_MC_TYPE:
1254 data = 0;
1255 break;
1256 case MSR_IA32_MCG_CAP:
1257 data = vcpu->arch.mcg_cap;
1258 break;
1259 case MSR_IA32_MCG_CTL:
1260 if (!(mcg_cap & MCG_CTL_P))
1261 return 1;
1262 data = vcpu->arch.mcg_ctl;
1263 break;
1264 case MSR_IA32_MCG_STATUS:
1265 data = vcpu->arch.mcg_status;
1266 break;
1267 default:
1268 if (msr >= MSR_IA32_MC0_CTL &&
1269 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1270 u32 offset = msr - MSR_IA32_MC0_CTL;
1271 data = vcpu->arch.mce_banks[offset];
1272 break;
1273 }
1274 return 1;
1275 }
1276 *pdata = data;
1277 return 0;
1278 }
1279
1280 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1281 {
1282 u64 data = 0;
1283 struct kvm *kvm = vcpu->kvm;
1284
1285 switch (msr) {
1286 case HV_X64_MSR_GUEST_OS_ID:
1287 data = kvm->arch.hv_guest_os_id;
1288 break;
1289 case HV_X64_MSR_HYPERCALL:
1290 data = kvm->arch.hv_hypercall;
1291 break;
1292 default:
1293 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1294 return 1;
1295 }
1296
1297 *pdata = data;
1298 return 0;
1299 }
1300
1301 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1302 {
1303 u64 data = 0;
1304
1305 switch (msr) {
1306 case HV_X64_MSR_VP_INDEX: {
1307 int r;
1308 struct kvm_vcpu *v;
1309 kvm_for_each_vcpu(r, v, vcpu->kvm)
1310 if (v == vcpu)
1311 data = r;
1312 break;
1313 }
1314 case HV_X64_MSR_EOI:
1315 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1316 case HV_X64_MSR_ICR:
1317 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1318 case HV_X64_MSR_TPR:
1319 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1320 default:
1321 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1322 return 1;
1323 }
1324 *pdata = data;
1325 return 0;
1326 }
1327
1328 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1329 {
1330 u64 data;
1331
1332 switch (msr) {
1333 case MSR_IA32_PLATFORM_ID:
1334 case MSR_IA32_UCODE_REV:
1335 case MSR_IA32_EBL_CR_POWERON:
1336 case MSR_IA32_DEBUGCTLMSR:
1337 case MSR_IA32_LASTBRANCHFROMIP:
1338 case MSR_IA32_LASTBRANCHTOIP:
1339 case MSR_IA32_LASTINTFROMIP:
1340 case MSR_IA32_LASTINTTOIP:
1341 case MSR_K8_SYSCFG:
1342 case MSR_K7_HWCR:
1343 case MSR_VM_HSAVE_PA:
1344 case MSR_P6_PERFCTR0:
1345 case MSR_P6_PERFCTR1:
1346 case MSR_P6_EVNTSEL0:
1347 case MSR_P6_EVNTSEL1:
1348 case MSR_K7_EVNTSEL0:
1349 case MSR_K7_PERFCTR0:
1350 case MSR_K8_INT_PENDING_MSG:
1351 case MSR_AMD64_NB_CFG:
1352 case MSR_FAM10H_MMIO_CONF_BASE:
1353 data = 0;
1354 break;
1355 case MSR_MTRRcap:
1356 data = 0x500 | KVM_NR_VAR_MTRR;
1357 break;
1358 case 0x200 ... 0x2ff:
1359 return get_msr_mtrr(vcpu, msr, pdata);
1360 case 0xcd: /* fsb frequency */
1361 data = 3;
1362 break;
1363 case MSR_IA32_APICBASE:
1364 data = kvm_get_apic_base(vcpu);
1365 break;
1366 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1367 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1368 break;
1369 case MSR_IA32_MISC_ENABLE:
1370 data = vcpu->arch.ia32_misc_enable_msr;
1371 break;
1372 case MSR_IA32_PERF_STATUS:
1373 /* TSC increment by tick */
1374 data = 1000ULL;
1375 /* CPU multiplier */
1376 data |= (((uint64_t)4ULL) << 40);
1377 break;
1378 case MSR_EFER:
1379 data = vcpu->arch.efer;
1380 break;
1381 case MSR_KVM_WALL_CLOCK:
1382 data = vcpu->kvm->arch.wall_clock;
1383 break;
1384 case MSR_KVM_SYSTEM_TIME:
1385 data = vcpu->arch.time;
1386 break;
1387 case MSR_IA32_P5_MC_ADDR:
1388 case MSR_IA32_P5_MC_TYPE:
1389 case MSR_IA32_MCG_CAP:
1390 case MSR_IA32_MCG_CTL:
1391 case MSR_IA32_MCG_STATUS:
1392 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1393 return get_msr_mce(vcpu, msr, pdata);
1394 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1395 if (kvm_hv_msr_partition_wide(msr)) {
1396 int r;
1397 mutex_lock(&vcpu->kvm->lock);
1398 r = get_msr_hyperv_pw(vcpu, msr, pdata);
1399 mutex_unlock(&vcpu->kvm->lock);
1400 return r;
1401 } else
1402 return get_msr_hyperv(vcpu, msr, pdata);
1403 break;
1404 default:
1405 if (!ignore_msrs) {
1406 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1407 return 1;
1408 } else {
1409 pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1410 data = 0;
1411 }
1412 break;
1413 }
1414 *pdata = data;
1415 return 0;
1416 }
1417 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1418
1419 /*
1420 * Read or write a bunch of msrs. All parameters are kernel addresses.
1421 *
1422 * @return number of msrs set successfully.
1423 */
1424 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1425 struct kvm_msr_entry *entries,
1426 int (*do_msr)(struct kvm_vcpu *vcpu,
1427 unsigned index, u64 *data))
1428 {
1429 int i, idx;
1430
1431 vcpu_load(vcpu);
1432
1433 idx = srcu_read_lock(&vcpu->kvm->srcu);
1434 for (i = 0; i < msrs->nmsrs; ++i)
1435 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1436 break;
1437 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1438
1439 vcpu_put(vcpu);
1440
1441 return i;
1442 }
1443
1444 /*
1445 * Read or write a bunch of msrs. Parameters are user addresses.
1446 *
1447 * @return number of msrs set successfully.
1448 */
1449 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1450 int (*do_msr)(struct kvm_vcpu *vcpu,
1451 unsigned index, u64 *data),
1452 int writeback)
1453 {
1454 struct kvm_msrs msrs;
1455 struct kvm_msr_entry *entries;
1456 int r, n;
1457 unsigned size;
1458
1459 r = -EFAULT;
1460 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1461 goto out;
1462
1463 r = -E2BIG;
1464 if (msrs.nmsrs >= MAX_IO_MSRS)
1465 goto out;
1466
1467 r = -ENOMEM;
1468 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1469 entries = vmalloc(size);
1470 if (!entries)
1471 goto out;
1472
1473 r = -EFAULT;
1474 if (copy_from_user(entries, user_msrs->entries, size))
1475 goto out_free;
1476
1477 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1478 if (r < 0)
1479 goto out_free;
1480
1481 r = -EFAULT;
1482 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1483 goto out_free;
1484
1485 r = n;
1486
1487 out_free:
1488 vfree(entries);
1489 out:
1490 return r;
1491 }
1492
1493 int kvm_dev_ioctl_check_extension(long ext)
1494 {
1495 int r;
1496
1497 switch (ext) {
1498 case KVM_CAP_IRQCHIP:
1499 case KVM_CAP_HLT:
1500 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1501 case KVM_CAP_SET_TSS_ADDR:
1502 case KVM_CAP_EXT_CPUID:
1503 case KVM_CAP_CLOCKSOURCE:
1504 case KVM_CAP_PIT:
1505 case KVM_CAP_NOP_IO_DELAY:
1506 case KVM_CAP_MP_STATE:
1507 case KVM_CAP_SYNC_MMU:
1508 case KVM_CAP_REINJECT_CONTROL:
1509 case KVM_CAP_IRQ_INJECT_STATUS:
1510 case KVM_CAP_ASSIGN_DEV_IRQ:
1511 case KVM_CAP_IRQFD:
1512 case KVM_CAP_IOEVENTFD:
1513 case KVM_CAP_PIT2:
1514 case KVM_CAP_PIT_STATE2:
1515 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1516 case KVM_CAP_XEN_HVM:
1517 case KVM_CAP_ADJUST_CLOCK:
1518 case KVM_CAP_VCPU_EVENTS:
1519 case KVM_CAP_HYPERV:
1520 case KVM_CAP_HYPERV_VAPIC:
1521 case KVM_CAP_HYPERV_SPIN:
1522 case KVM_CAP_PCI_SEGMENT:
1523 case KVM_CAP_DEBUGREGS:
1524 case KVM_CAP_X86_ROBUST_SINGLESTEP:
1525 r = 1;
1526 break;
1527 case KVM_CAP_COALESCED_MMIO:
1528 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1529 break;
1530 case KVM_CAP_VAPIC:
1531 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1532 break;
1533 case KVM_CAP_NR_VCPUS:
1534 r = KVM_MAX_VCPUS;
1535 break;
1536 case KVM_CAP_NR_MEMSLOTS:
1537 r = KVM_MEMORY_SLOTS;
1538 break;
1539 case KVM_CAP_PV_MMU: /* obsolete */
1540 r = 0;
1541 break;
1542 case KVM_CAP_IOMMU:
1543 r = iommu_found();
1544 break;
1545 case KVM_CAP_MCE:
1546 r = KVM_MAX_MCE_BANKS;
1547 break;
1548 default:
1549 r = 0;
1550 break;
1551 }
1552 return r;
1553
1554 }
1555
1556 long kvm_arch_dev_ioctl(struct file *filp,
1557 unsigned int ioctl, unsigned long arg)
1558 {
1559 void __user *argp = (void __user *)arg;
1560 long r;
1561
1562 switch (ioctl) {
1563 case KVM_GET_MSR_INDEX_LIST: {
1564 struct kvm_msr_list __user *user_msr_list = argp;
1565 struct kvm_msr_list msr_list;
1566 unsigned n;
1567
1568 r = -EFAULT;
1569 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1570 goto out;
1571 n = msr_list.nmsrs;
1572 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1573 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1574 goto out;
1575 r = -E2BIG;
1576 if (n < msr_list.nmsrs)
1577 goto out;
1578 r = -EFAULT;
1579 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1580 num_msrs_to_save * sizeof(u32)))
1581 goto out;
1582 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1583 &emulated_msrs,
1584 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1585 goto out;
1586 r = 0;
1587 break;
1588 }
1589 case KVM_GET_SUPPORTED_CPUID: {
1590 struct kvm_cpuid2 __user *cpuid_arg = argp;
1591 struct kvm_cpuid2 cpuid;
1592
1593 r = -EFAULT;
1594 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1595 goto out;
1596 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1597 cpuid_arg->entries);
1598 if (r)
1599 goto out;
1600
1601 r = -EFAULT;
1602 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1603 goto out;
1604 r = 0;
1605 break;
1606 }
1607 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1608 u64 mce_cap;
1609
1610 mce_cap = KVM_MCE_CAP_SUPPORTED;
1611 r = -EFAULT;
1612 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1613 goto out;
1614 r = 0;
1615 break;
1616 }
1617 default:
1618 r = -EINVAL;
1619 }
1620 out:
1621 return r;
1622 }
1623
1624 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1625 {
1626 kvm_x86_ops->vcpu_load(vcpu, cpu);
1627 if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) {
1628 unsigned long khz = cpufreq_quick_get(cpu);
1629 if (!khz)
1630 khz = tsc_khz;
1631 per_cpu(cpu_tsc_khz, cpu) = khz;
1632 }
1633 kvm_request_guest_time_update(vcpu);
1634 }
1635
1636 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1637 {
1638 kvm_put_guest_fpu(vcpu);
1639 kvm_x86_ops->vcpu_put(vcpu);
1640 }
1641
1642 static int is_efer_nx(void)
1643 {
1644 unsigned long long efer = 0;
1645
1646 rdmsrl_safe(MSR_EFER, &efer);
1647 return efer & EFER_NX;
1648 }
1649
1650 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1651 {
1652 int i;
1653 struct kvm_cpuid_entry2 *e, *entry;
1654
1655 entry = NULL;
1656 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1657 e = &vcpu->arch.cpuid_entries[i];
1658 if (e->function == 0x80000001) {
1659 entry = e;
1660 break;
1661 }
1662 }
1663 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1664 entry->edx &= ~(1 << 20);
1665 printk(KERN_INFO "kvm: guest NX capability removed\n");
1666 }
1667 }
1668
1669 /* when an old userspace process fills a new kernel module */
1670 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1671 struct kvm_cpuid *cpuid,
1672 struct kvm_cpuid_entry __user *entries)
1673 {
1674 int r, i;
1675 struct kvm_cpuid_entry *cpuid_entries;
1676
1677 r = -E2BIG;
1678 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1679 goto out;
1680 r = -ENOMEM;
1681 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1682 if (!cpuid_entries)
1683 goto out;
1684 r = -EFAULT;
1685 if (copy_from_user(cpuid_entries, entries,
1686 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1687 goto out_free;
1688 for (i = 0; i < cpuid->nent; i++) {
1689 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1690 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1691 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1692 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1693 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1694 vcpu->arch.cpuid_entries[i].index = 0;
1695 vcpu->arch.cpuid_entries[i].flags = 0;
1696 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1697 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1698 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1699 }
1700 vcpu->arch.cpuid_nent = cpuid->nent;
1701 cpuid_fix_nx_cap(vcpu);
1702 r = 0;
1703 kvm_apic_set_version(vcpu);
1704 kvm_x86_ops->cpuid_update(vcpu);
1705
1706 out_free:
1707 vfree(cpuid_entries);
1708 out:
1709 return r;
1710 }
1711
1712 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1713 struct kvm_cpuid2 *cpuid,
1714 struct kvm_cpuid_entry2 __user *entries)
1715 {
1716 int r;
1717
1718 r = -E2BIG;
1719 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1720 goto out;
1721 r = -EFAULT;
1722 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1723 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1724 goto out;
1725 vcpu->arch.cpuid_nent = cpuid->nent;
1726 kvm_apic_set_version(vcpu);
1727 kvm_x86_ops->cpuid_update(vcpu);
1728 return 0;
1729
1730 out:
1731 return r;
1732 }
1733
1734 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1735 struct kvm_cpuid2 *cpuid,
1736 struct kvm_cpuid_entry2 __user *entries)
1737 {
1738 int r;
1739
1740 r = -E2BIG;
1741 if (cpuid->nent < vcpu->arch.cpuid_nent)
1742 goto out;
1743 r = -EFAULT;
1744 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1745 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1746 goto out;
1747 return 0;
1748
1749 out:
1750 cpuid->nent = vcpu->arch.cpuid_nent;
1751 return r;
1752 }
1753
1754 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1755 u32 index)
1756 {
1757 entry->function = function;
1758 entry->index = index;
1759 cpuid_count(entry->function, entry->index,
1760 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1761 entry->flags = 0;
1762 }
1763
1764 #define F(x) bit(X86_FEATURE_##x)
1765
1766 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1767 u32 index, int *nent, int maxnent)
1768 {
1769 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
1770 #ifdef CONFIG_X86_64
1771 unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
1772 ? F(GBPAGES) : 0;
1773 unsigned f_lm = F(LM);
1774 #else
1775 unsigned f_gbpages = 0;
1776 unsigned f_lm = 0;
1777 #endif
1778 unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
1779
1780 /* cpuid 1.edx */
1781 const u32 kvm_supported_word0_x86_features =
1782 F(FPU) | F(VME) | F(DE) | F(PSE) |
1783 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1784 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
1785 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1786 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
1787 0 /* Reserved, DS, ACPI */ | F(MMX) |
1788 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
1789 0 /* HTT, TM, Reserved, PBE */;
1790 /* cpuid 0x80000001.edx */
1791 const u32 kvm_supported_word1_x86_features =
1792 F(FPU) | F(VME) | F(DE) | F(PSE) |
1793 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1794 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
1795 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1796 F(PAT) | F(PSE36) | 0 /* Reserved */ |
1797 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
1798 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
1799 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
1800 /* cpuid 1.ecx */
1801 const u32 kvm_supported_word4_x86_features =
1802 F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
1803 0 /* DS-CPL, VMX, SMX, EST */ |
1804 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1805 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
1806 0 /* Reserved, DCA */ | F(XMM4_1) |
1807 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
1808 0 /* Reserved, XSAVE, OSXSAVE */;
1809 /* cpuid 0x80000001.ecx */
1810 const u32 kvm_supported_word6_x86_features =
1811 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
1812 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
1813 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
1814 0 /* SKINIT */ | 0 /* WDT */;
1815
1816 /* all calls to cpuid_count() should be made on the same cpu */
1817 get_cpu();
1818 do_cpuid_1_ent(entry, function, index);
1819 ++*nent;
1820
1821 switch (function) {
1822 case 0:
1823 entry->eax = min(entry->eax, (u32)0xb);
1824 break;
1825 case 1:
1826 entry->edx &= kvm_supported_word0_x86_features;
1827 entry->ecx &= kvm_supported_word4_x86_features;
1828 /* we support x2apic emulation even if host does not support
1829 * it since we emulate x2apic in software */
1830 entry->ecx |= F(X2APIC);
1831 break;
1832 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1833 * may return different values. This forces us to get_cpu() before
1834 * issuing the first command, and also to emulate this annoying behavior
1835 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1836 case 2: {
1837 int t, times = entry->eax & 0xff;
1838
1839 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1840 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1841 for (t = 1; t < times && *nent < maxnent; ++t) {
1842 do_cpuid_1_ent(&entry[t], function, 0);
1843 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1844 ++*nent;
1845 }
1846 break;
1847 }
1848 /* function 4 and 0xb have additional index. */
1849 case 4: {
1850 int i, cache_type;
1851
1852 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1853 /* read more entries until cache_type is zero */
1854 for (i = 1; *nent < maxnent; ++i) {
1855 cache_type = entry[i - 1].eax & 0x1f;
1856 if (!cache_type)
1857 break;
1858 do_cpuid_1_ent(&entry[i], function, i);
1859 entry[i].flags |=
1860 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1861 ++*nent;
1862 }
1863 break;
1864 }
1865 case 0xb: {
1866 int i, level_type;
1867
1868 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1869 /* read more entries until level_type is zero */
1870 for (i = 1; *nent < maxnent; ++i) {
1871 level_type = entry[i - 1].ecx & 0xff00;
1872 if (!level_type)
1873 break;
1874 do_cpuid_1_ent(&entry[i], function, i);
1875 entry[i].flags |=
1876 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1877 ++*nent;
1878 }
1879 break;
1880 }
1881 case 0x80000000:
1882 entry->eax = min(entry->eax, 0x8000001a);
1883 break;
1884 case 0x80000001:
1885 entry->edx &= kvm_supported_word1_x86_features;
1886 entry->ecx &= kvm_supported_word6_x86_features;
1887 break;
1888 }
1889 put_cpu();
1890 }
1891
1892 #undef F
1893
1894 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1895 struct kvm_cpuid_entry2 __user *entries)
1896 {
1897 struct kvm_cpuid_entry2 *cpuid_entries;
1898 int limit, nent = 0, r = -E2BIG;
1899 u32 func;
1900
1901 if (cpuid->nent < 1)
1902 goto out;
1903 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1904 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1905 r = -ENOMEM;
1906 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1907 if (!cpuid_entries)
1908 goto out;
1909
1910 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1911 limit = cpuid_entries[0].eax;
1912 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1913 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1914 &nent, cpuid->nent);
1915 r = -E2BIG;
1916 if (nent >= cpuid->nent)
1917 goto out_free;
1918
1919 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1920 limit = cpuid_entries[nent - 1].eax;
1921 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1922 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1923 &nent, cpuid->nent);
1924 r = -E2BIG;
1925 if (nent >= cpuid->nent)
1926 goto out_free;
1927
1928 r = -EFAULT;
1929 if (copy_to_user(entries, cpuid_entries,
1930 nent * sizeof(struct kvm_cpuid_entry2)))
1931 goto out_free;
1932 cpuid->nent = nent;
1933 r = 0;
1934
1935 out_free:
1936 vfree(cpuid_entries);
1937 out:
1938 return r;
1939 }
1940
1941 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1942 struct kvm_lapic_state *s)
1943 {
1944 vcpu_load(vcpu);
1945 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1946 vcpu_put(vcpu);
1947
1948 return 0;
1949 }
1950
1951 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1952 struct kvm_lapic_state *s)
1953 {
1954 vcpu_load(vcpu);
1955 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1956 kvm_apic_post_state_restore(vcpu);
1957 update_cr8_intercept(vcpu);
1958 vcpu_put(vcpu);
1959
1960 return 0;
1961 }
1962
1963 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1964 struct kvm_interrupt *irq)
1965 {
1966 if (irq->irq < 0 || irq->irq >= 256)
1967 return -EINVAL;
1968 if (irqchip_in_kernel(vcpu->kvm))
1969 return -ENXIO;
1970 vcpu_load(vcpu);
1971
1972 kvm_queue_interrupt(vcpu, irq->irq, false);
1973
1974 vcpu_put(vcpu);
1975
1976 return 0;
1977 }
1978
1979 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
1980 {
1981 vcpu_load(vcpu);
1982 kvm_inject_nmi(vcpu);
1983 vcpu_put(vcpu);
1984
1985 return 0;
1986 }
1987
1988 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1989 struct kvm_tpr_access_ctl *tac)
1990 {
1991 if (tac->flags)
1992 return -EINVAL;
1993 vcpu->arch.tpr_access_reporting = !!tac->enabled;
1994 return 0;
1995 }
1996
1997 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
1998 u64 mcg_cap)
1999 {
2000 int r;
2001 unsigned bank_num = mcg_cap & 0xff, bank;
2002
2003 r = -EINVAL;
2004 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2005 goto out;
2006 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2007 goto out;
2008 r = 0;
2009 vcpu->arch.mcg_cap = mcg_cap;
2010 /* Init IA32_MCG_CTL to all 1s */
2011 if (mcg_cap & MCG_CTL_P)
2012 vcpu->arch.mcg_ctl = ~(u64)0;
2013 /* Init IA32_MCi_CTL to all 1s */
2014 for (bank = 0; bank < bank_num; bank++)
2015 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2016 out:
2017 return r;
2018 }
2019
2020 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2021 struct kvm_x86_mce *mce)
2022 {
2023 u64 mcg_cap = vcpu->arch.mcg_cap;
2024 unsigned bank_num = mcg_cap & 0xff;
2025 u64 *banks = vcpu->arch.mce_banks;
2026
2027 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2028 return -EINVAL;
2029 /*
2030 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2031 * reporting is disabled
2032 */
2033 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2034 vcpu->arch.mcg_ctl != ~(u64)0)
2035 return 0;
2036 banks += 4 * mce->bank;
2037 /*
2038 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2039 * reporting is disabled for the bank
2040 */
2041 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2042 return 0;
2043 if (mce->status & MCI_STATUS_UC) {
2044 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2045 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2046 printk(KERN_DEBUG "kvm: set_mce: "
2047 "injects mce exception while "
2048 "previous one is in progress!\n");
2049 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
2050 return 0;
2051 }
2052 if (banks[1] & MCI_STATUS_VAL)
2053 mce->status |= MCI_STATUS_OVER;
2054 banks[2] = mce->addr;
2055 banks[3] = mce->misc;
2056 vcpu->arch.mcg_status = mce->mcg_status;
2057 banks[1] = mce->status;
2058 kvm_queue_exception(vcpu, MC_VECTOR);
2059 } else if (!(banks[1] & MCI_STATUS_VAL)
2060 || !(banks[1] & MCI_STATUS_UC)) {
2061 if (banks[1] & MCI_STATUS_VAL)
2062 mce->status |= MCI_STATUS_OVER;
2063 banks[2] = mce->addr;
2064 banks[3] = mce->misc;
2065 banks[1] = mce->status;
2066 } else
2067 banks[1] |= MCI_STATUS_OVER;
2068 return 0;
2069 }
2070
2071 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2072 struct kvm_vcpu_events *events)
2073 {
2074 vcpu_load(vcpu);
2075
2076 events->exception.injected =
2077 vcpu->arch.exception.pending &&
2078 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2079 events->exception.nr = vcpu->arch.exception.nr;
2080 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2081 events->exception.error_code = vcpu->arch.exception.error_code;
2082
2083 events->interrupt.injected =
2084 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2085 events->interrupt.nr = vcpu->arch.interrupt.nr;
2086 events->interrupt.soft = 0;
2087 events->interrupt.shadow =
2088 kvm_x86_ops->get_interrupt_shadow(vcpu,
2089 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2090
2091 events->nmi.injected = vcpu->arch.nmi_injected;
2092 events->nmi.pending = vcpu->arch.nmi_pending;
2093 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2094
2095 events->sipi_vector = vcpu->arch.sipi_vector;
2096
2097 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2098 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2099 | KVM_VCPUEVENT_VALID_SHADOW);
2100
2101 vcpu_put(vcpu);
2102 }
2103
2104 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2105 struct kvm_vcpu_events *events)
2106 {
2107 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2108 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2109 | KVM_VCPUEVENT_VALID_SHADOW))
2110 return -EINVAL;
2111
2112 vcpu_load(vcpu);
2113
2114 vcpu->arch.exception.pending = events->exception.injected;
2115 vcpu->arch.exception.nr = events->exception.nr;
2116 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2117 vcpu->arch.exception.error_code = events->exception.error_code;
2118
2119 vcpu->arch.interrupt.pending = events->interrupt.injected;
2120 vcpu->arch.interrupt.nr = events->interrupt.nr;
2121 vcpu->arch.interrupt.soft = events->interrupt.soft;
2122 if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
2123 kvm_pic_clear_isr_ack(vcpu->kvm);
2124 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2125 kvm_x86_ops->set_interrupt_shadow(vcpu,
2126 events->interrupt.shadow);
2127
2128 vcpu->arch.nmi_injected = events->nmi.injected;
2129 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2130 vcpu->arch.nmi_pending = events->nmi.pending;
2131 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2132
2133 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2134 vcpu->arch.sipi_vector = events->sipi_vector;
2135
2136 vcpu_put(vcpu);
2137
2138 return 0;
2139 }
2140
2141 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2142 struct kvm_debugregs *dbgregs)
2143 {
2144 vcpu_load(vcpu);
2145
2146 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2147 dbgregs->dr6 = vcpu->arch.dr6;
2148 dbgregs->dr7 = vcpu->arch.dr7;
2149 dbgregs->flags = 0;
2150
2151 vcpu_put(vcpu);
2152 }
2153
2154 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2155 struct kvm_debugregs *dbgregs)
2156 {
2157 if (dbgregs->flags)
2158 return -EINVAL;
2159
2160 vcpu_load(vcpu);
2161
2162 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2163 vcpu->arch.dr6 = dbgregs->dr6;
2164 vcpu->arch.dr7 = dbgregs->dr7;
2165
2166 vcpu_put(vcpu);
2167
2168 return 0;
2169 }
2170
2171 long kvm_arch_vcpu_ioctl(struct file *filp,
2172 unsigned int ioctl, unsigned long arg)
2173 {
2174 struct kvm_vcpu *vcpu = filp->private_data;
2175 void __user *argp = (void __user *)arg;
2176 int r;
2177 struct kvm_lapic_state *lapic = NULL;
2178
2179 switch (ioctl) {
2180 case KVM_GET_LAPIC: {
2181 r = -EINVAL;
2182 if (!vcpu->arch.apic)
2183 goto out;
2184 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2185
2186 r = -ENOMEM;
2187 if (!lapic)
2188 goto out;
2189 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
2190 if (r)
2191 goto out;
2192 r = -EFAULT;
2193 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
2194 goto out;
2195 r = 0;
2196 break;
2197 }
2198 case KVM_SET_LAPIC: {
2199 r = -EINVAL;
2200 if (!vcpu->arch.apic)
2201 goto out;
2202 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2203 r = -ENOMEM;
2204 if (!lapic)
2205 goto out;
2206 r = -EFAULT;
2207 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
2208 goto out;
2209 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
2210 if (r)
2211 goto out;
2212 r = 0;
2213 break;
2214 }
2215 case KVM_INTERRUPT: {
2216 struct kvm_interrupt irq;
2217
2218 r = -EFAULT;
2219 if (copy_from_user(&irq, argp, sizeof irq))
2220 goto out;
2221 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2222 if (r)
2223 goto out;
2224 r = 0;
2225 break;
2226 }
2227 case KVM_NMI: {
2228 r = kvm_vcpu_ioctl_nmi(vcpu);
2229 if (r)
2230 goto out;
2231 r = 0;
2232 break;
2233 }
2234 case KVM_SET_CPUID: {
2235 struct kvm_cpuid __user *cpuid_arg = argp;
2236 struct kvm_cpuid cpuid;
2237
2238 r = -EFAULT;
2239 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2240 goto out;
2241 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2242 if (r)
2243 goto out;
2244 break;
2245 }
2246 case KVM_SET_CPUID2: {
2247 struct kvm_cpuid2 __user *cpuid_arg = argp;
2248 struct kvm_cpuid2 cpuid;
2249
2250 r = -EFAULT;
2251 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2252 goto out;
2253 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2254 cpuid_arg->entries);
2255 if (r)
2256 goto out;
2257 break;
2258 }
2259 case KVM_GET_CPUID2: {
2260 struct kvm_cpuid2 __user *cpuid_arg = argp;
2261 struct kvm_cpuid2 cpuid;
2262
2263 r = -EFAULT;
2264 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2265 goto out;
2266 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2267 cpuid_arg->entries);
2268 if (r)
2269 goto out;
2270 r = -EFAULT;
2271 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2272 goto out;
2273 r = 0;
2274 break;
2275 }
2276 case KVM_GET_MSRS:
2277 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2278 break;
2279 case KVM_SET_MSRS:
2280 r = msr_io(vcpu, argp, do_set_msr, 0);
2281 break;
2282 case KVM_TPR_ACCESS_REPORTING: {
2283 struct kvm_tpr_access_ctl tac;
2284
2285 r = -EFAULT;
2286 if (copy_from_user(&tac, argp, sizeof tac))
2287 goto out;
2288 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2289 if (r)
2290 goto out;
2291 r = -EFAULT;
2292 if (copy_to_user(argp, &tac, sizeof tac))
2293 goto out;
2294 r = 0;
2295 break;
2296 };
2297 case KVM_SET_VAPIC_ADDR: {
2298 struct kvm_vapic_addr va;
2299
2300 r = -EINVAL;
2301 if (!irqchip_in_kernel(vcpu->kvm))
2302 goto out;
2303 r = -EFAULT;
2304 if (copy_from_user(&va, argp, sizeof va))
2305 goto out;
2306 r = 0;
2307 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2308 break;
2309 }
2310 case KVM_X86_SETUP_MCE: {
2311 u64 mcg_cap;
2312
2313 r = -EFAULT;
2314 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2315 goto out;
2316 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2317 break;
2318 }
2319 case KVM_X86_SET_MCE: {
2320 struct kvm_x86_mce mce;
2321
2322 r = -EFAULT;
2323 if (copy_from_user(&mce, argp, sizeof mce))
2324 goto out;
2325 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2326 break;
2327 }
2328 case KVM_GET_VCPU_EVENTS: {
2329 struct kvm_vcpu_events events;
2330
2331 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2332
2333 r = -EFAULT;
2334 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2335 break;
2336 r = 0;
2337 break;
2338 }
2339 case KVM_SET_VCPU_EVENTS: {
2340 struct kvm_vcpu_events events;
2341
2342 r = -EFAULT;
2343 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2344 break;
2345
2346 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2347 break;
2348 }
2349 case KVM_GET_DEBUGREGS: {
2350 struct kvm_debugregs dbgregs;
2351
2352 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2353
2354 r = -EFAULT;
2355 if (copy_to_user(argp, &dbgregs,
2356 sizeof(struct kvm_debugregs)))
2357 break;
2358 r = 0;
2359 break;
2360 }
2361 case KVM_SET_DEBUGREGS: {
2362 struct kvm_debugregs dbgregs;
2363
2364 r = -EFAULT;
2365 if (copy_from_user(&dbgregs, argp,
2366 sizeof(struct kvm_debugregs)))
2367 break;
2368
2369 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2370 break;
2371 }
2372 default:
2373 r = -EINVAL;
2374 }
2375 out:
2376 kfree(lapic);
2377 return r;
2378 }
2379
2380 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2381 {
2382 int ret;
2383
2384 if (addr > (unsigned int)(-3 * PAGE_SIZE))
2385 return -1;
2386 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2387 return ret;
2388 }
2389
2390 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2391 u64 ident_addr)
2392 {
2393 kvm->arch.ept_identity_map_addr = ident_addr;
2394 return 0;
2395 }
2396
2397 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2398 u32 kvm_nr_mmu_pages)
2399 {
2400 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2401 return -EINVAL;
2402
2403 mutex_lock(&kvm->slots_lock);
2404 spin_lock(&kvm->mmu_lock);
2405
2406 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2407 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2408
2409 spin_unlock(&kvm->mmu_lock);
2410 mutex_unlock(&kvm->slots_lock);
2411 return 0;
2412 }
2413
2414 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2415 {
2416 return kvm->arch.n_alloc_mmu_pages;
2417 }
2418
2419 gfn_t unalias_gfn_instantiation(struct kvm *kvm, gfn_t gfn)
2420 {
2421 int i;
2422 struct kvm_mem_alias *alias;
2423 struct kvm_mem_aliases *aliases;
2424
2425 aliases = rcu_dereference(kvm->arch.aliases);
2426
2427 for (i = 0; i < aliases->naliases; ++i) {
2428 alias = &aliases->aliases[i];
2429 if (alias->flags & KVM_ALIAS_INVALID)
2430 continue;
2431 if (gfn >= alias->base_gfn
2432 && gfn < alias->base_gfn + alias->npages)
2433 return alias->target_gfn + gfn - alias->base_gfn;
2434 }
2435 return gfn;
2436 }
2437
2438 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
2439 {
2440 int i;
2441 struct kvm_mem_alias *alias;
2442 struct kvm_mem_aliases *aliases;
2443
2444 aliases = rcu_dereference(kvm->arch.aliases);
2445
2446 for (i = 0; i < aliases->naliases; ++i) {
2447 alias = &aliases->aliases[i];
2448 if (gfn >= alias->base_gfn
2449 && gfn < alias->base_gfn + alias->npages)
2450 return alias->target_gfn + gfn - alias->base_gfn;
2451 }
2452 return gfn;
2453 }
2454
2455 /*
2456 * Set a new alias region. Aliases map a portion of physical memory into
2457 * another portion. This is useful for memory windows, for example the PC
2458 * VGA region.
2459 */
2460 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
2461 struct kvm_memory_alias *alias)
2462 {
2463 int r, n;
2464 struct kvm_mem_alias *p;
2465 struct kvm_mem_aliases *aliases, *old_aliases;
2466
2467 r = -EINVAL;
2468 /* General sanity checks */
2469 if (alias->memory_size & (PAGE_SIZE - 1))
2470 goto out;
2471 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
2472 goto out;
2473 if (alias->slot >= KVM_ALIAS_SLOTS)
2474 goto out;
2475 if (alias->guest_phys_addr + alias->memory_size
2476 < alias->guest_phys_addr)
2477 goto out;
2478 if (alias->target_phys_addr + alias->memory_size
2479 < alias->target_phys_addr)
2480 goto out;
2481
2482 r = -ENOMEM;
2483 aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
2484 if (!aliases)
2485 goto out;
2486
2487 mutex_lock(&kvm->slots_lock);
2488
2489 /* invalidate any gfn reference in case of deletion/shrinking */
2490 memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
2491 aliases->aliases[alias->slot].flags |= KVM_ALIAS_INVALID;
2492 old_aliases = kvm->arch.aliases;
2493 rcu_assign_pointer(kvm->arch.aliases, aliases);
2494 synchronize_srcu_expedited(&kvm->srcu);
2495 kvm_mmu_zap_all(kvm);
2496 kfree(old_aliases);
2497
2498 r = -ENOMEM;
2499 aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
2500 if (!aliases)
2501 goto out_unlock;
2502
2503 memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
2504
2505 p = &aliases->aliases[alias->slot];
2506 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
2507 p->npages = alias->memory_size >> PAGE_SHIFT;
2508 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
2509 p->flags &= ~(KVM_ALIAS_INVALID);
2510
2511 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
2512 if (aliases->aliases[n - 1].npages)
2513 break;
2514 aliases->naliases = n;
2515
2516 old_aliases = kvm->arch.aliases;
2517 rcu_assign_pointer(kvm->arch.aliases, aliases);
2518 synchronize_srcu_expedited(&kvm->srcu);
2519 kfree(old_aliases);
2520 r = 0;
2521
2522 out_unlock:
2523 mutex_unlock(&kvm->slots_lock);
2524 out:
2525 return r;
2526 }
2527
2528 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2529 {
2530 int r;
2531
2532 r = 0;
2533 switch (chip->chip_id) {
2534 case KVM_IRQCHIP_PIC_MASTER:
2535 memcpy(&chip->chip.pic,
2536 &pic_irqchip(kvm)->pics[0],
2537 sizeof(struct kvm_pic_state));
2538 break;
2539 case KVM_IRQCHIP_PIC_SLAVE:
2540 memcpy(&chip->chip.pic,
2541 &pic_irqchip(kvm)->pics[1],
2542 sizeof(struct kvm_pic_state));
2543 break;
2544 case KVM_IRQCHIP_IOAPIC:
2545 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2546 break;
2547 default:
2548 r = -EINVAL;
2549 break;
2550 }
2551 return r;
2552 }
2553
2554 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2555 {
2556 int r;
2557
2558 r = 0;
2559 switch (chip->chip_id) {
2560 case KVM_IRQCHIP_PIC_MASTER:
2561 raw_spin_lock(&pic_irqchip(kvm)->lock);
2562 memcpy(&pic_irqchip(kvm)->pics[0],
2563 &chip->chip.pic,
2564 sizeof(struct kvm_pic_state));
2565 raw_spin_unlock(&pic_irqchip(kvm)->lock);
2566 break;
2567 case KVM_IRQCHIP_PIC_SLAVE:
2568 raw_spin_lock(&pic_irqchip(kvm)->lock);
2569 memcpy(&pic_irqchip(kvm)->pics[1],
2570 &chip->chip.pic,
2571 sizeof(struct kvm_pic_state));
2572 raw_spin_unlock(&pic_irqchip(kvm)->lock);
2573 break;
2574 case KVM_IRQCHIP_IOAPIC:
2575 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
2576 break;
2577 default:
2578 r = -EINVAL;
2579 break;
2580 }
2581 kvm_pic_update_irq(pic_irqchip(kvm));
2582 return r;
2583 }
2584
2585 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2586 {
2587 int r = 0;
2588
2589 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2590 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2591 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2592 return r;
2593 }
2594
2595 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2596 {
2597 int r = 0;
2598
2599 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2600 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2601 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2602 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2603 return r;
2604 }
2605
2606 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2607 {
2608 int r = 0;
2609
2610 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2611 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2612 sizeof(ps->channels));
2613 ps->flags = kvm->arch.vpit->pit_state.flags;
2614 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2615 return r;
2616 }
2617
2618 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2619 {
2620 int r = 0, start = 0;
2621 u32 prev_legacy, cur_legacy;
2622 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2623 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2624 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2625 if (!prev_legacy && cur_legacy)
2626 start = 1;
2627 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2628 sizeof(kvm->arch.vpit->pit_state.channels));
2629 kvm->arch.vpit->pit_state.flags = ps->flags;
2630 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2631 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2632 return r;
2633 }
2634
2635 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2636 struct kvm_reinject_control *control)
2637 {
2638 if (!kvm->arch.vpit)
2639 return -ENXIO;
2640 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2641 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2642 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2643 return 0;
2644 }
2645
2646 /*
2647 * Get (and clear) the dirty memory log for a memory slot.
2648 */
2649 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2650 struct kvm_dirty_log *log)
2651 {
2652 int r, i;
2653 struct kvm_memory_slot *memslot;
2654 unsigned long n;
2655 unsigned long is_dirty = 0;
2656 unsigned long *dirty_bitmap = NULL;
2657
2658 mutex_lock(&kvm->slots_lock);
2659
2660 r = -EINVAL;
2661 if (log->slot >= KVM_MEMORY_SLOTS)
2662 goto out;
2663
2664 memslot = &kvm->memslots->memslots[log->slot];
2665 r = -ENOENT;
2666 if (!memslot->dirty_bitmap)
2667 goto out;
2668
2669 n = kvm_dirty_bitmap_bytes(memslot);
2670
2671 r = -ENOMEM;
2672 dirty_bitmap = vmalloc(n);
2673 if (!dirty_bitmap)
2674 goto out;
2675 memset(dirty_bitmap, 0, n);
2676
2677 for (i = 0; !is_dirty && i < n/sizeof(long); i++)
2678 is_dirty = memslot->dirty_bitmap[i];
2679
2680 /* If nothing is dirty, don't bother messing with page tables. */
2681 if (is_dirty) {
2682 struct kvm_memslots *slots, *old_slots;
2683
2684 spin_lock(&kvm->mmu_lock);
2685 kvm_mmu_slot_remove_write_access(kvm, log->slot);
2686 spin_unlock(&kvm->mmu_lock);
2687
2688 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
2689 if (!slots)
2690 goto out_free;
2691
2692 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
2693 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
2694
2695 old_slots = kvm->memslots;
2696 rcu_assign_pointer(kvm->memslots, slots);
2697 synchronize_srcu_expedited(&kvm->srcu);
2698 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
2699 kfree(old_slots);
2700 }
2701
2702 r = 0;
2703 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
2704 r = -EFAULT;
2705 out_free:
2706 vfree(dirty_bitmap);
2707 out:
2708 mutex_unlock(&kvm->slots_lock);
2709 return r;
2710 }
2711
2712 long kvm_arch_vm_ioctl(struct file *filp,
2713 unsigned int ioctl, unsigned long arg)
2714 {
2715 struct kvm *kvm = filp->private_data;
2716 void __user *argp = (void __user *)arg;
2717 int r = -ENOTTY;
2718 /*
2719 * This union makes it completely explicit to gcc-3.x
2720 * that these two variables' stack usage should be
2721 * combined, not added together.
2722 */
2723 union {
2724 struct kvm_pit_state ps;
2725 struct kvm_pit_state2 ps2;
2726 struct kvm_memory_alias alias;
2727 struct kvm_pit_config pit_config;
2728 } u;
2729
2730 switch (ioctl) {
2731 case KVM_SET_TSS_ADDR:
2732 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
2733 if (r < 0)
2734 goto out;
2735 break;
2736 case KVM_SET_IDENTITY_MAP_ADDR: {
2737 u64 ident_addr;
2738
2739 r = -EFAULT;
2740 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
2741 goto out;
2742 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
2743 if (r < 0)
2744 goto out;
2745 break;
2746 }
2747 case KVM_SET_MEMORY_REGION: {
2748 struct kvm_memory_region kvm_mem;
2749 struct kvm_userspace_memory_region kvm_userspace_mem;
2750
2751 r = -EFAULT;
2752 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2753 goto out;
2754 kvm_userspace_mem.slot = kvm_mem.slot;
2755 kvm_userspace_mem.flags = kvm_mem.flags;
2756 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
2757 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
2758 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
2759 if (r)
2760 goto out;
2761 break;
2762 }
2763 case KVM_SET_NR_MMU_PAGES:
2764 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
2765 if (r)
2766 goto out;
2767 break;
2768 case KVM_GET_NR_MMU_PAGES:
2769 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
2770 break;
2771 case KVM_SET_MEMORY_ALIAS:
2772 r = -EFAULT;
2773 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
2774 goto out;
2775 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
2776 if (r)
2777 goto out;
2778 break;
2779 case KVM_CREATE_IRQCHIP: {
2780 struct kvm_pic *vpic;
2781
2782 mutex_lock(&kvm->lock);
2783 r = -EEXIST;
2784 if (kvm->arch.vpic)
2785 goto create_irqchip_unlock;
2786 r = -ENOMEM;
2787 vpic = kvm_create_pic(kvm);
2788 if (vpic) {
2789 r = kvm_ioapic_init(kvm);
2790 if (r) {
2791 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
2792 &vpic->dev);
2793 kfree(vpic);
2794 goto create_irqchip_unlock;
2795 }
2796 } else
2797 goto create_irqchip_unlock;
2798 smp_wmb();
2799 kvm->arch.vpic = vpic;
2800 smp_wmb();
2801 r = kvm_setup_default_irq_routing(kvm);
2802 if (r) {
2803 mutex_lock(&kvm->irq_lock);
2804 kvm_ioapic_destroy(kvm);
2805 kvm_destroy_pic(kvm);
2806 mutex_unlock(&kvm->irq_lock);
2807 }
2808 create_irqchip_unlock:
2809 mutex_unlock(&kvm->lock);
2810 break;
2811 }
2812 case KVM_CREATE_PIT:
2813 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
2814 goto create_pit;
2815 case KVM_CREATE_PIT2:
2816 r = -EFAULT;
2817 if (copy_from_user(&u.pit_config, argp,
2818 sizeof(struct kvm_pit_config)))
2819 goto out;
2820 create_pit:
2821 mutex_lock(&kvm->slots_lock);
2822 r = -EEXIST;
2823 if (kvm->arch.vpit)
2824 goto create_pit_unlock;
2825 r = -ENOMEM;
2826 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
2827 if (kvm->arch.vpit)
2828 r = 0;
2829 create_pit_unlock:
2830 mutex_unlock(&kvm->slots_lock);
2831 break;
2832 case KVM_IRQ_LINE_STATUS:
2833 case KVM_IRQ_LINE: {
2834 struct kvm_irq_level irq_event;
2835
2836 r = -EFAULT;
2837 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2838 goto out;
2839 r = -ENXIO;
2840 if (irqchip_in_kernel(kvm)) {
2841 __s32 status;
2842 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2843 irq_event.irq, irq_event.level);
2844 if (ioctl == KVM_IRQ_LINE_STATUS) {
2845 r = -EFAULT;
2846 irq_event.status = status;
2847 if (copy_to_user(argp, &irq_event,
2848 sizeof irq_event))
2849 goto out;
2850 }
2851 r = 0;
2852 }
2853 break;
2854 }
2855 case KVM_GET_IRQCHIP: {
2856 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2857 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2858
2859 r = -ENOMEM;
2860 if (!chip)
2861 goto out;
2862 r = -EFAULT;
2863 if (copy_from_user(chip, argp, sizeof *chip))
2864 goto get_irqchip_out;
2865 r = -ENXIO;
2866 if (!irqchip_in_kernel(kvm))
2867 goto get_irqchip_out;
2868 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
2869 if (r)
2870 goto get_irqchip_out;
2871 r = -EFAULT;
2872 if (copy_to_user(argp, chip, sizeof *chip))
2873 goto get_irqchip_out;
2874 r = 0;
2875 get_irqchip_out:
2876 kfree(chip);
2877 if (r)
2878 goto out;
2879 break;
2880 }
2881 case KVM_SET_IRQCHIP: {
2882 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2883 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2884
2885 r = -ENOMEM;
2886 if (!chip)
2887 goto out;
2888 r = -EFAULT;
2889 if (copy_from_user(chip, argp, sizeof *chip))
2890 goto set_irqchip_out;
2891 r = -ENXIO;
2892 if (!irqchip_in_kernel(kvm))
2893 goto set_irqchip_out;
2894 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
2895 if (r)
2896 goto set_irqchip_out;
2897 r = 0;
2898 set_irqchip_out:
2899 kfree(chip);
2900 if (r)
2901 goto out;
2902 break;
2903 }
2904 case KVM_GET_PIT: {
2905 r = -EFAULT;
2906 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
2907 goto out;
2908 r = -ENXIO;
2909 if (!kvm->arch.vpit)
2910 goto out;
2911 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
2912 if (r)
2913 goto out;
2914 r = -EFAULT;
2915 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
2916 goto out;
2917 r = 0;
2918 break;
2919 }
2920 case KVM_SET_PIT: {
2921 r = -EFAULT;
2922 if (copy_from_user(&u.ps, argp, sizeof u.ps))
2923 goto out;
2924 r = -ENXIO;
2925 if (!kvm->arch.vpit)
2926 goto out;
2927 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
2928 if (r)
2929 goto out;
2930 r = 0;
2931 break;
2932 }
2933 case KVM_GET_PIT2: {
2934 r = -ENXIO;
2935 if (!kvm->arch.vpit)
2936 goto out;
2937 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
2938 if (r)
2939 goto out;
2940 r = -EFAULT;
2941 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
2942 goto out;
2943 r = 0;
2944 break;
2945 }
2946 case KVM_SET_PIT2: {
2947 r = -EFAULT;
2948 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
2949 goto out;
2950 r = -ENXIO;
2951 if (!kvm->arch.vpit)
2952 goto out;
2953 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
2954 if (r)
2955 goto out;
2956 r = 0;
2957 break;
2958 }
2959 case KVM_REINJECT_CONTROL: {
2960 struct kvm_reinject_control control;
2961 r = -EFAULT;
2962 if (copy_from_user(&control, argp, sizeof(control)))
2963 goto out;
2964 r = kvm_vm_ioctl_reinject(kvm, &control);
2965 if (r)
2966 goto out;
2967 r = 0;
2968 break;
2969 }
2970 case KVM_XEN_HVM_CONFIG: {
2971 r = -EFAULT;
2972 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
2973 sizeof(struct kvm_xen_hvm_config)))
2974 goto out;
2975 r = -EINVAL;
2976 if (kvm->arch.xen_hvm_config.flags)
2977 goto out;
2978 r = 0;
2979 break;
2980 }
2981 case KVM_SET_CLOCK: {
2982 struct timespec now;
2983 struct kvm_clock_data user_ns;
2984 u64 now_ns;
2985 s64 delta;
2986
2987 r = -EFAULT;
2988 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
2989 goto out;
2990
2991 r = -EINVAL;
2992 if (user_ns.flags)
2993 goto out;
2994
2995 r = 0;
2996 ktime_get_ts(&now);
2997 now_ns = timespec_to_ns(&now);
2998 delta = user_ns.clock - now_ns;
2999 kvm->arch.kvmclock_offset = delta;
3000 break;
3001 }
3002 case KVM_GET_CLOCK: {
3003 struct timespec now;
3004 struct kvm_clock_data user_ns;
3005 u64 now_ns;
3006
3007 ktime_get_ts(&now);
3008 now_ns = timespec_to_ns(&now);
3009 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3010 user_ns.flags = 0;
3011
3012 r = -EFAULT;
3013 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3014 goto out;
3015 r = 0;
3016 break;
3017 }
3018
3019 default:
3020 ;
3021 }
3022 out:
3023 return r;
3024 }
3025
3026 static void kvm_init_msr_list(void)
3027 {
3028 u32 dummy[2];
3029 unsigned i, j;
3030
3031 /* skip the first msrs in the list. KVM-specific */
3032 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3033 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3034 continue;
3035 if (j < i)
3036 msrs_to_save[j] = msrs_to_save[i];
3037 j++;
3038 }
3039 num_msrs_to_save = j;
3040 }
3041
3042 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3043 const void *v)
3044 {
3045 if (vcpu->arch.apic &&
3046 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
3047 return 0;
3048
3049 return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3050 }
3051
3052 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3053 {
3054 if (vcpu->arch.apic &&
3055 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
3056 return 0;
3057
3058 return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3059 }
3060
3061 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3062 struct kvm_segment *var, int seg)
3063 {
3064 kvm_x86_ops->set_segment(vcpu, var, seg);
3065 }
3066
3067 void kvm_get_segment(struct kvm_vcpu *vcpu,
3068 struct kvm_segment *var, int seg)
3069 {
3070 kvm_x86_ops->get_segment(vcpu, var, seg);
3071 }
3072
3073 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3074 {
3075 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3076 return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3077 }
3078
3079 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3080 {
3081 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3082 access |= PFERR_FETCH_MASK;
3083 return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3084 }
3085
3086 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3087 {
3088 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3089 access |= PFERR_WRITE_MASK;
3090 return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3091 }
3092
3093 /* uses this to access any guest's mapped memory without checking CPL */
3094 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3095 {
3096 return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, 0, error);
3097 }
3098
3099 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3100 struct kvm_vcpu *vcpu, u32 access,
3101 u32 *error)
3102 {
3103 void *data = val;
3104 int r = X86EMUL_CONTINUE;
3105
3106 while (bytes) {
3107 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr, access, error);
3108 unsigned offset = addr & (PAGE_SIZE-1);
3109 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3110 int ret;
3111
3112 if (gpa == UNMAPPED_GVA) {
3113 r = X86EMUL_PROPAGATE_FAULT;
3114 goto out;
3115 }
3116 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3117 if (ret < 0) {
3118 r = X86EMUL_UNHANDLEABLE;
3119 goto out;
3120 }
3121
3122 bytes -= toread;
3123 data += toread;
3124 addr += toread;
3125 }
3126 out:
3127 return r;
3128 }
3129
3130 /* used for instruction fetching */
3131 static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
3132 struct kvm_vcpu *vcpu, u32 *error)
3133 {
3134 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3135 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3136 access | PFERR_FETCH_MASK, error);
3137 }
3138
3139 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
3140 struct kvm_vcpu *vcpu, u32 *error)
3141 {
3142 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3143 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3144 error);
3145 }
3146
3147 static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
3148 struct kvm_vcpu *vcpu, u32 *error)
3149 {
3150 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
3151 }
3152
3153 static int kvm_write_guest_virt_system(gva_t addr, void *val,
3154 unsigned int bytes,
3155 struct kvm_vcpu *vcpu,
3156 u32 *error)
3157 {
3158 void *data = val;
3159 int r = X86EMUL_CONTINUE;
3160
3161 while (bytes) {
3162 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr,
3163 PFERR_WRITE_MASK, error);
3164 unsigned offset = addr & (PAGE_SIZE-1);
3165 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3166 int ret;
3167
3168 if (gpa == UNMAPPED_GVA) {
3169 r = X86EMUL_PROPAGATE_FAULT;
3170 goto out;
3171 }
3172 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3173 if (ret < 0) {
3174 r = X86EMUL_UNHANDLEABLE;
3175 goto out;
3176 }
3177
3178 bytes -= towrite;
3179 data += towrite;
3180 addr += towrite;
3181 }
3182 out:
3183 return r;
3184 }
3185
3186 static int emulator_read_emulated(unsigned long addr,
3187 void *val,
3188 unsigned int bytes,
3189 struct kvm_vcpu *vcpu)
3190 {
3191 gpa_t gpa;
3192 u32 error_code;
3193
3194 if (vcpu->mmio_read_completed) {
3195 memcpy(val, vcpu->mmio_data, bytes);
3196 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3197 vcpu->mmio_phys_addr, *(u64 *)val);
3198 vcpu->mmio_read_completed = 0;
3199 return X86EMUL_CONTINUE;
3200 }
3201
3202 gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, &error_code);
3203
3204 if (gpa == UNMAPPED_GVA) {
3205 kvm_inject_page_fault(vcpu, addr, error_code);
3206 return X86EMUL_PROPAGATE_FAULT;
3207 }
3208
3209 /* For APIC access vmexit */
3210 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3211 goto mmio;
3212
3213 if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
3214 == X86EMUL_CONTINUE)
3215 return X86EMUL_CONTINUE;
3216
3217 mmio:
3218 /*
3219 * Is this MMIO handled locally?
3220 */
3221 if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
3222 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
3223 return X86EMUL_CONTINUE;
3224 }
3225
3226 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3227
3228 vcpu->mmio_needed = 1;
3229 vcpu->mmio_phys_addr = gpa;
3230 vcpu->mmio_size = bytes;
3231 vcpu->mmio_is_write = 0;
3232
3233 return X86EMUL_UNHANDLEABLE;
3234 }
3235
3236 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3237 const void *val, int bytes)
3238 {
3239 int ret;
3240
3241 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3242 if (ret < 0)
3243 return 0;
3244 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3245 return 1;
3246 }
3247
3248 static int emulator_write_emulated_onepage(unsigned long addr,
3249 const void *val,
3250 unsigned int bytes,
3251 struct kvm_vcpu *vcpu,
3252 bool mmu_only)
3253 {
3254 gpa_t gpa;
3255 u32 error_code;
3256
3257 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, &error_code);
3258
3259 if (gpa == UNMAPPED_GVA) {
3260 kvm_inject_page_fault(vcpu, addr, error_code);
3261 return X86EMUL_PROPAGATE_FAULT;
3262 }
3263
3264 /* For APIC access vmexit */
3265 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3266 goto mmio;
3267
3268 if (mmu_only) {
3269 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3270 return X86EMUL_CONTINUE;
3271 }
3272 if (emulator_write_phys(vcpu, gpa, val, bytes))
3273 return X86EMUL_CONTINUE;
3274
3275 mmio:
3276 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3277 /*
3278 * Is this MMIO handled locally?
3279 */
3280 if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
3281 return X86EMUL_CONTINUE;
3282
3283 vcpu->mmio_needed = 1;
3284 vcpu->mmio_phys_addr = gpa;
3285 vcpu->mmio_size = bytes;
3286 vcpu->mmio_is_write = 1;
3287 memcpy(vcpu->mmio_data, val, bytes);
3288
3289 return X86EMUL_CONTINUE;
3290 }
3291
3292 int __emulator_write_emulated(unsigned long addr,
3293 const void *val,
3294 unsigned int bytes,
3295 struct kvm_vcpu *vcpu,
3296 bool mmu_only)
3297 {
3298 /* Crossing a page boundary? */
3299 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3300 int rc, now;
3301
3302 now = -addr & ~PAGE_MASK;
3303 rc = emulator_write_emulated_onepage(addr, val, now, vcpu,
3304 mmu_only);
3305 if (rc != X86EMUL_CONTINUE)
3306 return rc;
3307 addr += now;
3308 val += now;
3309 bytes -= now;
3310 }
3311 return emulator_write_emulated_onepage(addr, val, bytes, vcpu,
3312 mmu_only);
3313 }
3314
3315 int emulator_write_emulated(unsigned long addr,
3316 const void *val,
3317 unsigned int bytes,
3318 struct kvm_vcpu *vcpu)
3319 {
3320 return __emulator_write_emulated(addr, val, bytes, vcpu, false);
3321 }
3322 EXPORT_SYMBOL_GPL(emulator_write_emulated);
3323
3324 #define CMPXCHG_TYPE(t, ptr, old, new) \
3325 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3326
3327 #ifdef CONFIG_X86_64
3328 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3329 #else
3330 # define CMPXCHG64(ptr, old, new) \
3331 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u *)(new)) == *(u64 *)(old))
3332 #endif
3333
3334 static int emulator_cmpxchg_emulated(unsigned long addr,
3335 const void *old,
3336 const void *new,
3337 unsigned int bytes,
3338 struct kvm_vcpu *vcpu)
3339 {
3340 gpa_t gpa;
3341 struct page *page;
3342 char *kaddr;
3343 bool exchanged;
3344
3345 /* guests cmpxchg8b have to be emulated atomically */
3346 if (bytes > 8 || (bytes & (bytes - 1)))
3347 goto emul_write;
3348
3349 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3350
3351 if (gpa == UNMAPPED_GVA ||
3352 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3353 goto emul_write;
3354
3355 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3356 goto emul_write;
3357
3358 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3359
3360 kaddr = kmap_atomic(page, KM_USER0);
3361 kaddr += offset_in_page(gpa);
3362 switch (bytes) {
3363 case 1:
3364 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3365 break;
3366 case 2:
3367 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3368 break;
3369 case 4:
3370 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3371 break;
3372 case 8:
3373 exchanged = CMPXCHG64(kaddr, old, new);
3374 break;
3375 default:
3376 BUG();
3377 }
3378 kunmap_atomic(kaddr, KM_USER0);
3379 kvm_release_page_dirty(page);
3380
3381 if (!exchanged)
3382 return X86EMUL_CMPXCHG_FAILED;
3383
3384 return __emulator_write_emulated(addr, new, bytes, vcpu, true);
3385
3386 emul_write:
3387 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3388
3389 return emulator_write_emulated(addr, new, bytes, vcpu);
3390 }
3391
3392 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3393 {
3394 /* TODO: String I/O for in kernel device */
3395 int r;
3396
3397 if (vcpu->arch.pio.in)
3398 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3399 vcpu->arch.pio.size, pd);
3400 else
3401 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3402 vcpu->arch.pio.port, vcpu->arch.pio.size,
3403 pd);
3404 return r;
3405 }
3406
3407
3408 static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
3409 unsigned int count, struct kvm_vcpu *vcpu)
3410 {
3411 if (vcpu->arch.pio.count)
3412 goto data_avail;
3413
3414 trace_kvm_pio(1, port, size, 1);
3415
3416 vcpu->arch.pio.port = port;
3417 vcpu->arch.pio.in = 1;
3418 vcpu->arch.pio.count = count;
3419 vcpu->arch.pio.size = size;
3420
3421 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3422 data_avail:
3423 memcpy(val, vcpu->arch.pio_data, size * count);
3424 vcpu->arch.pio.count = 0;
3425 return 1;
3426 }
3427
3428 vcpu->run->exit_reason = KVM_EXIT_IO;
3429 vcpu->run->io.direction = KVM_EXIT_IO_IN;
3430 vcpu->run->io.size = size;
3431 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3432 vcpu->run->io.count = count;
3433 vcpu->run->io.port = port;
3434
3435 return 0;
3436 }
3437
3438 static int emulator_pio_out_emulated(int size, unsigned short port,
3439 const void *val, unsigned int count,
3440 struct kvm_vcpu *vcpu)
3441 {
3442 trace_kvm_pio(0, port, size, 1);
3443
3444 vcpu->arch.pio.port = port;
3445 vcpu->arch.pio.in = 0;
3446 vcpu->arch.pio.count = count;
3447 vcpu->arch.pio.size = size;
3448
3449 memcpy(vcpu->arch.pio_data, val, size * count);
3450
3451 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3452 vcpu->arch.pio.count = 0;
3453 return 1;
3454 }
3455
3456 vcpu->run->exit_reason = KVM_EXIT_IO;
3457 vcpu->run->io.direction = KVM_EXIT_IO_OUT;
3458 vcpu->run->io.size = size;
3459 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3460 vcpu->run->io.count = count;
3461 vcpu->run->io.port = port;
3462
3463 return 0;
3464 }
3465
3466 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
3467 {
3468 return kvm_x86_ops->get_segment_base(vcpu, seg);
3469 }
3470
3471 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
3472 {
3473 kvm_mmu_invlpg(vcpu, address);
3474 return X86EMUL_CONTINUE;
3475 }
3476
3477 int emulate_clts(struct kvm_vcpu *vcpu)
3478 {
3479 kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3480 kvm_x86_ops->fpu_activate(vcpu);
3481 return X86EMUL_CONTINUE;
3482 }
3483
3484 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
3485 {
3486 return kvm_x86_ops->get_dr(ctxt->vcpu, dr, dest);
3487 }
3488
3489 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
3490 {
3491 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
3492
3493 return kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask);
3494 }
3495
3496 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
3497 {
3498 u8 opcodes[4];
3499 unsigned long rip = kvm_rip_read(vcpu);
3500 unsigned long rip_linear;
3501
3502 if (!printk_ratelimit())
3503 return;
3504
3505 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
3506
3507 kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu, NULL);
3508
3509 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
3510 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
3511 }
3512 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
3513
3514 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3515 {
3516 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3517 }
3518
3519 static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
3520 {
3521 unsigned long value;
3522
3523 switch (cr) {
3524 case 0:
3525 value = kvm_read_cr0(vcpu);
3526 break;
3527 case 2:
3528 value = vcpu->arch.cr2;
3529 break;
3530 case 3:
3531 value = vcpu->arch.cr3;
3532 break;
3533 case 4:
3534 value = kvm_read_cr4(vcpu);
3535 break;
3536 case 8:
3537 value = kvm_get_cr8(vcpu);
3538 break;
3539 default:
3540 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3541 return 0;
3542 }
3543
3544 return value;
3545 }
3546
3547 static void emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
3548 {
3549 switch (cr) {
3550 case 0:
3551 kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
3552 break;
3553 case 2:
3554 vcpu->arch.cr2 = val;
3555 break;
3556 case 3:
3557 kvm_set_cr3(vcpu, val);
3558 break;
3559 case 4:
3560 kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
3561 break;
3562 case 8:
3563 kvm_set_cr8(vcpu, val & 0xfUL);
3564 break;
3565 default:
3566 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3567 }
3568 }
3569
3570 static int emulator_get_cpl(struct kvm_vcpu *vcpu)
3571 {
3572 return kvm_x86_ops->get_cpl(vcpu);
3573 }
3574
3575 static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
3576 {
3577 kvm_x86_ops->get_gdt(vcpu, dt);
3578 }
3579
3580 static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
3581 struct kvm_vcpu *vcpu)
3582 {
3583 struct kvm_segment var;
3584
3585 kvm_get_segment(vcpu, &var, seg);
3586
3587 if (var.unusable)
3588 return false;
3589
3590 if (var.g)
3591 var.limit >>= 12;
3592 set_desc_limit(desc, var.limit);
3593 set_desc_base(desc, (unsigned long)var.base);
3594 desc->type = var.type;
3595 desc->s = var.s;
3596 desc->dpl = var.dpl;
3597 desc->p = var.present;
3598 desc->avl = var.avl;
3599 desc->l = var.l;
3600 desc->d = var.db;
3601 desc->g = var.g;
3602
3603 return true;
3604 }
3605
3606 static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
3607 struct kvm_vcpu *vcpu)
3608 {
3609 struct kvm_segment var;
3610
3611 /* needed to preserve selector */
3612 kvm_get_segment(vcpu, &var, seg);
3613
3614 var.base = get_desc_base(desc);
3615 var.limit = get_desc_limit(desc);
3616 if (desc->g)
3617 var.limit = (var.limit << 12) | 0xfff;
3618 var.type = desc->type;
3619 var.present = desc->p;
3620 var.dpl = desc->dpl;
3621 var.db = desc->d;
3622 var.s = desc->s;
3623 var.l = desc->l;
3624 var.g = desc->g;
3625 var.avl = desc->avl;
3626 var.present = desc->p;
3627 var.unusable = !var.present;
3628 var.padding = 0;
3629
3630 kvm_set_segment(vcpu, &var, seg);
3631 return;
3632 }
3633
3634 static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
3635 {
3636 struct kvm_segment kvm_seg;
3637
3638 kvm_get_segment(vcpu, &kvm_seg, seg);
3639 return kvm_seg.selector;
3640 }
3641
3642 static void emulator_set_segment_selector(u16 sel, int seg,
3643 struct kvm_vcpu *vcpu)
3644 {
3645 struct kvm_segment kvm_seg;
3646
3647 kvm_get_segment(vcpu, &kvm_seg, seg);
3648 kvm_seg.selector = sel;
3649 kvm_set_segment(vcpu, &kvm_seg, seg);
3650 }
3651
3652 static struct x86_emulate_ops emulate_ops = {
3653 .read_std = kvm_read_guest_virt_system,
3654 .write_std = kvm_write_guest_virt_system,
3655 .fetch = kvm_fetch_guest_virt,
3656 .read_emulated = emulator_read_emulated,
3657 .write_emulated = emulator_write_emulated,
3658 .cmpxchg_emulated = emulator_cmpxchg_emulated,
3659 .pio_in_emulated = emulator_pio_in_emulated,
3660 .pio_out_emulated = emulator_pio_out_emulated,
3661 .get_cached_descriptor = emulator_get_cached_descriptor,
3662 .set_cached_descriptor = emulator_set_cached_descriptor,
3663 .get_segment_selector = emulator_get_segment_selector,
3664 .set_segment_selector = emulator_set_segment_selector,
3665 .get_gdt = emulator_get_gdt,
3666 .get_cr = emulator_get_cr,
3667 .set_cr = emulator_set_cr,
3668 .cpl = emulator_get_cpl,
3669 };
3670
3671 static void cache_all_regs(struct kvm_vcpu *vcpu)
3672 {
3673 kvm_register_read(vcpu, VCPU_REGS_RAX);
3674 kvm_register_read(vcpu, VCPU_REGS_RSP);
3675 kvm_register_read(vcpu, VCPU_REGS_RIP);
3676 vcpu->arch.regs_dirty = ~0;
3677 }
3678
3679 int emulate_instruction(struct kvm_vcpu *vcpu,
3680 unsigned long cr2,
3681 u16 error_code,
3682 int emulation_type)
3683 {
3684 int r, shadow_mask;
3685 struct decode_cache *c;
3686 struct kvm_run *run = vcpu->run;
3687
3688 kvm_clear_exception_queue(vcpu);
3689 vcpu->arch.mmio_fault_cr2 = cr2;
3690 /*
3691 * TODO: fix emulate.c to use guest_read/write_register
3692 * instead of direct ->regs accesses, can save hundred cycles
3693 * on Intel for instructions that don't read/change RSP, for
3694 * for example.
3695 */
3696 cache_all_regs(vcpu);
3697
3698 vcpu->mmio_is_write = 0;
3699
3700 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
3701 int cs_db, cs_l;
3702 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
3703
3704 vcpu->arch.emulate_ctxt.vcpu = vcpu;
3705 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
3706 vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
3707 vcpu->arch.emulate_ctxt.mode =
3708 (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
3709 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
3710 ? X86EMUL_MODE_VM86 : cs_l
3711 ? X86EMUL_MODE_PROT64 : cs_db
3712 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
3713
3714 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
3715
3716 /* Only allow emulation of specific instructions on #UD
3717 * (namely VMMCALL, sysenter, sysexit, syscall)*/
3718 c = &vcpu->arch.emulate_ctxt.decode;
3719 if (emulation_type & EMULTYPE_TRAP_UD) {
3720 if (!c->twobyte)
3721 return EMULATE_FAIL;
3722 switch (c->b) {
3723 case 0x01: /* VMMCALL */
3724 if (c->modrm_mod != 3 || c->modrm_rm != 1)
3725 return EMULATE_FAIL;
3726 break;
3727 case 0x34: /* sysenter */
3728 case 0x35: /* sysexit */
3729 if (c->modrm_mod != 0 || c->modrm_rm != 0)
3730 return EMULATE_FAIL;
3731 break;
3732 case 0x05: /* syscall */
3733 if (c->modrm_mod != 0 || c->modrm_rm != 0)
3734 return EMULATE_FAIL;
3735 break;
3736 default:
3737 return EMULATE_FAIL;
3738 }
3739
3740 if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
3741 return EMULATE_FAIL;
3742 }
3743
3744 ++vcpu->stat.insn_emulation;
3745 if (r) {
3746 ++vcpu->stat.insn_emulation_fail;
3747 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
3748 return EMULATE_DONE;
3749 return EMULATE_FAIL;
3750 }
3751 }
3752
3753 if (emulation_type & EMULTYPE_SKIP) {
3754 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
3755 return EMULATE_DONE;
3756 }
3757
3758 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
3759 shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
3760
3761 if (r == 0)
3762 kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
3763
3764 if (vcpu->arch.pio.count) {
3765 if (!vcpu->arch.pio.in)
3766 vcpu->arch.pio.count = 0;
3767 return EMULATE_DO_MMIO;
3768 }
3769
3770 if (r || vcpu->mmio_is_write) {
3771 run->exit_reason = KVM_EXIT_MMIO;
3772 run->mmio.phys_addr = vcpu->mmio_phys_addr;
3773 memcpy(run->mmio.data, vcpu->mmio_data, 8);
3774 run->mmio.len = vcpu->mmio_size;
3775 run->mmio.is_write = vcpu->mmio_is_write;
3776 }
3777
3778 if (r) {
3779 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
3780 return EMULATE_DONE;
3781 if (!vcpu->mmio_needed) {
3782 kvm_report_emulation_failure(vcpu, "mmio");
3783 return EMULATE_FAIL;
3784 }
3785 return EMULATE_DO_MMIO;
3786 }
3787
3788 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
3789
3790 if (vcpu->mmio_is_write) {
3791 vcpu->mmio_needed = 0;
3792 return EMULATE_DO_MMIO;
3793 }
3794
3795 return EMULATE_DONE;
3796 }
3797 EXPORT_SYMBOL_GPL(emulate_instruction);
3798
3799 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
3800 {
3801 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
3802 int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
3803 /* do not return to emulator after return from userspace */
3804 vcpu->arch.pio.count = 0;
3805 return ret;
3806 }
3807 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
3808
3809 static void bounce_off(void *info)
3810 {
3811 /* nothing */
3812 }
3813
3814 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
3815 void *data)
3816 {
3817 struct cpufreq_freqs *freq = data;
3818 struct kvm *kvm;
3819 struct kvm_vcpu *vcpu;
3820 int i, send_ipi = 0;
3821
3822 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
3823 return 0;
3824 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
3825 return 0;
3826 per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
3827
3828 spin_lock(&kvm_lock);
3829 list_for_each_entry(kvm, &vm_list, vm_list) {
3830 kvm_for_each_vcpu(i, vcpu, kvm) {
3831 if (vcpu->cpu != freq->cpu)
3832 continue;
3833 if (!kvm_request_guest_time_update(vcpu))
3834 continue;
3835 if (vcpu->cpu != smp_processor_id())
3836 send_ipi++;
3837 }
3838 }
3839 spin_unlock(&kvm_lock);
3840
3841 if (freq->old < freq->new && send_ipi) {
3842 /*
3843 * We upscale the frequency. Must make the guest
3844 * doesn't see old kvmclock values while running with
3845 * the new frequency, otherwise we risk the guest sees
3846 * time go backwards.
3847 *
3848 * In case we update the frequency for another cpu
3849 * (which might be in guest context) send an interrupt
3850 * to kick the cpu out of guest context. Next time
3851 * guest context is entered kvmclock will be updated,
3852 * so the guest will not see stale values.
3853 */
3854 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
3855 }
3856 return 0;
3857 }
3858
3859 static struct notifier_block kvmclock_cpufreq_notifier_block = {
3860 .notifier_call = kvmclock_cpufreq_notifier
3861 };
3862
3863 static void kvm_timer_init(void)
3864 {
3865 int cpu;
3866
3867 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
3868 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
3869 CPUFREQ_TRANSITION_NOTIFIER);
3870 for_each_online_cpu(cpu) {
3871 unsigned long khz = cpufreq_get(cpu);
3872 if (!khz)
3873 khz = tsc_khz;
3874 per_cpu(cpu_tsc_khz, cpu) = khz;
3875 }
3876 } else {
3877 for_each_possible_cpu(cpu)
3878 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
3879 }
3880 }
3881
3882 int kvm_arch_init(void *opaque)
3883 {
3884 int r;
3885 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
3886
3887 if (kvm_x86_ops) {
3888 printk(KERN_ERR "kvm: already loaded the other module\n");
3889 r = -EEXIST;
3890 goto out;
3891 }
3892
3893 if (!ops->cpu_has_kvm_support()) {
3894 printk(KERN_ERR "kvm: no hardware support\n");
3895 r = -EOPNOTSUPP;
3896 goto out;
3897 }
3898 if (ops->disabled_by_bios()) {
3899 printk(KERN_ERR "kvm: disabled by bios\n");
3900 r = -EOPNOTSUPP;
3901 goto out;
3902 }
3903
3904 r = kvm_mmu_module_init();
3905 if (r)
3906 goto out;
3907
3908 kvm_init_msr_list();
3909
3910 kvm_x86_ops = ops;
3911 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
3912 kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
3913 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
3914 PT_DIRTY_MASK, PT64_NX_MASK, 0);
3915
3916 kvm_timer_init();
3917
3918 return 0;
3919
3920 out:
3921 return r;
3922 }
3923
3924 void kvm_arch_exit(void)
3925 {
3926 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
3927 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
3928 CPUFREQ_TRANSITION_NOTIFIER);
3929 kvm_x86_ops = NULL;
3930 kvm_mmu_module_exit();
3931 }
3932
3933 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
3934 {
3935 ++vcpu->stat.halt_exits;
3936 if (irqchip_in_kernel(vcpu->kvm)) {
3937 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
3938 return 1;
3939 } else {
3940 vcpu->run->exit_reason = KVM_EXIT_HLT;
3941 return 0;
3942 }
3943 }
3944 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
3945
3946 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
3947 unsigned long a1)
3948 {
3949 if (is_long_mode(vcpu))
3950 return a0;
3951 else
3952 return a0 | ((gpa_t)a1 << 32);
3953 }
3954
3955 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
3956 {
3957 u64 param, ingpa, outgpa, ret;
3958 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
3959 bool fast, longmode;
3960 int cs_db, cs_l;
3961
3962 /*
3963 * hypercall generates UD from non zero cpl and real mode
3964 * per HYPER-V spec
3965 */
3966 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
3967 kvm_queue_exception(vcpu, UD_VECTOR);
3968 return 0;
3969 }
3970
3971 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
3972 longmode = is_long_mode(vcpu) && cs_l == 1;
3973
3974 if (!longmode) {
3975 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
3976 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
3977 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
3978 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
3979 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
3980 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
3981 }
3982 #ifdef CONFIG_X86_64
3983 else {
3984 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
3985 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
3986 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
3987 }
3988 #endif
3989
3990 code = param & 0xffff;
3991 fast = (param >> 16) & 0x1;
3992 rep_cnt = (param >> 32) & 0xfff;
3993 rep_idx = (param >> 48) & 0xfff;
3994
3995 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
3996
3997 switch (code) {
3998 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
3999 kvm_vcpu_on_spin(vcpu);
4000 break;
4001 default:
4002 res = HV_STATUS_INVALID_HYPERCALL_CODE;
4003 break;
4004 }
4005
4006 ret = res | (((u64)rep_done & 0xfff) << 32);
4007 if (longmode) {
4008 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4009 } else {
4010 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
4011 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
4012 }
4013
4014 return 1;
4015 }
4016
4017 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
4018 {
4019 unsigned long nr, a0, a1, a2, a3, ret;
4020 int r = 1;
4021
4022 if (kvm_hv_hypercall_enabled(vcpu->kvm))
4023 return kvm_hv_hypercall(vcpu);
4024
4025 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
4026 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
4027 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
4028 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
4029 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
4030
4031 trace_kvm_hypercall(nr, a0, a1, a2, a3);
4032
4033 if (!is_long_mode(vcpu)) {
4034 nr &= 0xFFFFFFFF;
4035 a0 &= 0xFFFFFFFF;
4036 a1 &= 0xFFFFFFFF;
4037 a2 &= 0xFFFFFFFF;
4038 a3 &= 0xFFFFFFFF;
4039 }
4040
4041 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
4042 ret = -KVM_EPERM;
4043 goto out;
4044 }
4045
4046 switch (nr) {
4047 case KVM_HC_VAPIC_POLL_IRQ:
4048 ret = 0;
4049 break;
4050 case KVM_HC_MMU_OP:
4051 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
4052 break;
4053 default:
4054 ret = -KVM_ENOSYS;
4055 break;
4056 }
4057 out:
4058 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4059 ++vcpu->stat.hypercalls;
4060 return r;
4061 }
4062 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
4063
4064 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
4065 {
4066 char instruction[3];
4067 unsigned long rip = kvm_rip_read(vcpu);
4068
4069 /*
4070 * Blow out the MMU to ensure that no other VCPU has an active mapping
4071 * to ensure that the updated hypercall appears atomically across all
4072 * VCPUs.
4073 */
4074 kvm_mmu_zap_all(vcpu->kvm);
4075
4076 kvm_x86_ops->patch_hypercall(vcpu, instruction);
4077
4078 return __emulator_write_emulated(rip, instruction, 3, vcpu, false);
4079 }
4080
4081 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4082 {
4083 struct desc_ptr dt = { limit, base };
4084
4085 kvm_x86_ops->set_gdt(vcpu, &dt);
4086 }
4087
4088 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4089 {
4090 struct desc_ptr dt = { limit, base };
4091
4092 kvm_x86_ops->set_idt(vcpu, &dt);
4093 }
4094
4095 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
4096 {
4097 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
4098 int j, nent = vcpu->arch.cpuid_nent;
4099
4100 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
4101 /* when no next entry is found, the current entry[i] is reselected */
4102 for (j = i + 1; ; j = (j + 1) % nent) {
4103 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
4104 if (ej->function == e->function) {
4105 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
4106 return j;
4107 }
4108 }
4109 return 0; /* silence gcc, even though control never reaches here */
4110 }
4111
4112 /* find an entry with matching function, matching index (if needed), and that
4113 * should be read next (if it's stateful) */
4114 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
4115 u32 function, u32 index)
4116 {
4117 if (e->function != function)
4118 return 0;
4119 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
4120 return 0;
4121 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
4122 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
4123 return 0;
4124 return 1;
4125 }
4126
4127 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
4128 u32 function, u32 index)
4129 {
4130 int i;
4131 struct kvm_cpuid_entry2 *best = NULL;
4132
4133 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
4134 struct kvm_cpuid_entry2 *e;
4135
4136 e = &vcpu->arch.cpuid_entries[i];
4137 if (is_matching_cpuid_entry(e, function, index)) {
4138 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
4139 move_to_next_stateful_cpuid_entry(vcpu, i);
4140 best = e;
4141 break;
4142 }
4143 /*
4144 * Both basic or both extended?
4145 */
4146 if (((e->function ^ function) & 0x80000000) == 0)
4147 if (!best || e->function > best->function)
4148 best = e;
4149 }
4150 return best;
4151 }
4152 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
4153
4154 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
4155 {
4156 struct kvm_cpuid_entry2 *best;
4157
4158 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
4159 if (best)
4160 return best->eax & 0xff;
4161 return 36;
4162 }
4163
4164 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
4165 {
4166 u32 function, index;
4167 struct kvm_cpuid_entry2 *best;
4168
4169 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
4170 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4171 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
4172 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
4173 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
4174 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
4175 best = kvm_find_cpuid_entry(vcpu, function, index);
4176 if (best) {
4177 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
4178 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
4179 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
4180 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
4181 }
4182 kvm_x86_ops->skip_emulated_instruction(vcpu);
4183 trace_kvm_cpuid(function,
4184 kvm_register_read(vcpu, VCPU_REGS_RAX),
4185 kvm_register_read(vcpu, VCPU_REGS_RBX),
4186 kvm_register_read(vcpu, VCPU_REGS_RCX),
4187 kvm_register_read(vcpu, VCPU_REGS_RDX));
4188 }
4189 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
4190
4191 /*
4192 * Check if userspace requested an interrupt window, and that the
4193 * interrupt window is open.
4194 *
4195 * No need to exit to userspace if we already have an interrupt queued.
4196 */
4197 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
4198 {
4199 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
4200 vcpu->run->request_interrupt_window &&
4201 kvm_arch_interrupt_allowed(vcpu));
4202 }
4203
4204 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
4205 {
4206 struct kvm_run *kvm_run = vcpu->run;
4207
4208 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
4209 kvm_run->cr8 = kvm_get_cr8(vcpu);
4210 kvm_run->apic_base = kvm_get_apic_base(vcpu);
4211 if (irqchip_in_kernel(vcpu->kvm))
4212 kvm_run->ready_for_interrupt_injection = 1;
4213 else
4214 kvm_run->ready_for_interrupt_injection =
4215 kvm_arch_interrupt_allowed(vcpu) &&
4216 !kvm_cpu_has_interrupt(vcpu) &&
4217 !kvm_event_needs_reinjection(vcpu);
4218 }
4219
4220 static void vapic_enter(struct kvm_vcpu *vcpu)
4221 {
4222 struct kvm_lapic *apic = vcpu->arch.apic;
4223 struct page *page;
4224
4225 if (!apic || !apic->vapic_addr)
4226 return;
4227
4228 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4229
4230 vcpu->arch.apic->vapic_page = page;
4231 }
4232
4233 static void vapic_exit(struct kvm_vcpu *vcpu)
4234 {
4235 struct kvm_lapic *apic = vcpu->arch.apic;
4236 int idx;
4237
4238 if (!apic || !apic->vapic_addr)
4239 return;
4240
4241 idx = srcu_read_lock(&vcpu->kvm->srcu);
4242 kvm_release_page_dirty(apic->vapic_page);
4243 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4244 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4245 }
4246
4247 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
4248 {
4249 int max_irr, tpr;
4250
4251 if (!kvm_x86_ops->update_cr8_intercept)
4252 return;
4253
4254 if (!vcpu->arch.apic)
4255 return;
4256
4257 if (!vcpu->arch.apic->vapic_addr)
4258 max_irr = kvm_lapic_find_highest_irr(vcpu);
4259 else
4260 max_irr = -1;
4261
4262 if (max_irr != -1)
4263 max_irr >>= 4;
4264
4265 tpr = kvm_lapic_get_cr8(vcpu);
4266
4267 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
4268 }
4269
4270 static void inject_pending_event(struct kvm_vcpu *vcpu)
4271 {
4272 /* try to reinject previous events if any */
4273 if (vcpu->arch.exception.pending) {
4274 trace_kvm_inj_exception(vcpu->arch.exception.nr,
4275 vcpu->arch.exception.has_error_code,
4276 vcpu->arch.exception.error_code);
4277 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
4278 vcpu->arch.exception.has_error_code,
4279 vcpu->arch.exception.error_code);
4280 return;
4281 }
4282
4283 if (vcpu->arch.nmi_injected) {
4284 kvm_x86_ops->set_nmi(vcpu);
4285 return;
4286 }
4287
4288 if (vcpu->arch.interrupt.pending) {
4289 kvm_x86_ops->set_irq(vcpu);
4290 return;
4291 }
4292
4293 /* try to inject new event if pending */
4294 if (vcpu->arch.nmi_pending) {
4295 if (kvm_x86_ops->nmi_allowed(vcpu)) {
4296 vcpu->arch.nmi_pending = false;
4297 vcpu->arch.nmi_injected = true;
4298 kvm_x86_ops->set_nmi(vcpu);
4299 }
4300 } else if (kvm_cpu_has_interrupt(vcpu)) {
4301 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
4302 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
4303 false);
4304 kvm_x86_ops->set_irq(vcpu);
4305 }
4306 }
4307 }
4308
4309 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
4310 {
4311 int r;
4312 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
4313 vcpu->run->request_interrupt_window;
4314
4315 if (vcpu->requests)
4316 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
4317 kvm_mmu_unload(vcpu);
4318
4319 r = kvm_mmu_reload(vcpu);
4320 if (unlikely(r))
4321 goto out;
4322
4323 if (vcpu->requests) {
4324 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
4325 __kvm_migrate_timers(vcpu);
4326 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
4327 kvm_write_guest_time(vcpu);
4328 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
4329 kvm_mmu_sync_roots(vcpu);
4330 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
4331 kvm_x86_ops->tlb_flush(vcpu);
4332 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
4333 &vcpu->requests)) {
4334 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
4335 r = 0;
4336 goto out;
4337 }
4338 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
4339 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4340 r = 0;
4341 goto out;
4342 }
4343 if (test_and_clear_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests)) {
4344 vcpu->fpu_active = 0;
4345 kvm_x86_ops->fpu_deactivate(vcpu);
4346 }
4347 }
4348
4349 preempt_disable();
4350
4351 kvm_x86_ops->prepare_guest_switch(vcpu);
4352 if (vcpu->fpu_active)
4353 kvm_load_guest_fpu(vcpu);
4354
4355 local_irq_disable();
4356
4357 clear_bit(KVM_REQ_KICK, &vcpu->requests);
4358 smp_mb__after_clear_bit();
4359
4360 if (vcpu->requests || need_resched() || signal_pending(current)) {
4361 set_bit(KVM_REQ_KICK, &vcpu->requests);
4362 local_irq_enable();
4363 preempt_enable();
4364 r = 1;
4365 goto out;
4366 }
4367
4368 inject_pending_event(vcpu);
4369
4370 /* enable NMI/IRQ window open exits if needed */
4371 if (vcpu->arch.nmi_pending)
4372 kvm_x86_ops->enable_nmi_window(vcpu);
4373 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
4374 kvm_x86_ops->enable_irq_window(vcpu);
4375
4376 if (kvm_lapic_enabled(vcpu)) {
4377 update_cr8_intercept(vcpu);
4378 kvm_lapic_sync_to_vapic(vcpu);
4379 }
4380
4381 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4382
4383 kvm_guest_enter();
4384
4385 if (unlikely(vcpu->arch.switch_db_regs)) {
4386 set_debugreg(0, 7);
4387 set_debugreg(vcpu->arch.eff_db[0], 0);
4388 set_debugreg(vcpu->arch.eff_db[1], 1);
4389 set_debugreg(vcpu->arch.eff_db[2], 2);
4390 set_debugreg(vcpu->arch.eff_db[3], 3);
4391 }
4392
4393 trace_kvm_entry(vcpu->vcpu_id);
4394 kvm_x86_ops->run(vcpu);
4395
4396 /*
4397 * If the guest has used debug registers, at least dr7
4398 * will be disabled while returning to the host.
4399 * If we don't have active breakpoints in the host, we don't
4400 * care about the messed up debug address registers. But if
4401 * we have some of them active, restore the old state.
4402 */
4403 if (hw_breakpoint_active())
4404 hw_breakpoint_restore();
4405
4406 set_bit(KVM_REQ_KICK, &vcpu->requests);
4407 local_irq_enable();
4408
4409 ++vcpu->stat.exits;
4410
4411 /*
4412 * We must have an instruction between local_irq_enable() and
4413 * kvm_guest_exit(), so the timer interrupt isn't delayed by
4414 * the interrupt shadow. The stat.exits increment will do nicely.
4415 * But we need to prevent reordering, hence this barrier():
4416 */
4417 barrier();
4418
4419 kvm_guest_exit();
4420
4421 preempt_enable();
4422
4423 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4424
4425 /*
4426 * Profile KVM exit RIPs:
4427 */
4428 if (unlikely(prof_on == KVM_PROFILING)) {
4429 unsigned long rip = kvm_rip_read(vcpu);
4430 profile_hit(KVM_PROFILING, (void *)rip);
4431 }
4432
4433
4434 kvm_lapic_sync_from_vapic(vcpu);
4435
4436 r = kvm_x86_ops->handle_exit(vcpu);
4437 out:
4438 return r;
4439 }
4440
4441
4442 static int __vcpu_run(struct kvm_vcpu *vcpu)
4443 {
4444 int r;
4445 struct kvm *kvm = vcpu->kvm;
4446
4447 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
4448 pr_debug("vcpu %d received sipi with vector # %x\n",
4449 vcpu->vcpu_id, vcpu->arch.sipi_vector);
4450 kvm_lapic_reset(vcpu);
4451 r = kvm_arch_vcpu_reset(vcpu);
4452 if (r)
4453 return r;
4454 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4455 }
4456
4457 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4458 vapic_enter(vcpu);
4459
4460 r = 1;
4461 while (r > 0) {
4462 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
4463 r = vcpu_enter_guest(vcpu);
4464 else {
4465 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4466 kvm_vcpu_block(vcpu);
4467 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4468 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
4469 {
4470 switch(vcpu->arch.mp_state) {
4471 case KVM_MP_STATE_HALTED:
4472 vcpu->arch.mp_state =
4473 KVM_MP_STATE_RUNNABLE;
4474 case KVM_MP_STATE_RUNNABLE:
4475 break;
4476 case KVM_MP_STATE_SIPI_RECEIVED:
4477 default:
4478 r = -EINTR;
4479 break;
4480 }
4481 }
4482 }
4483
4484 if (r <= 0)
4485 break;
4486
4487 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
4488 if (kvm_cpu_has_pending_timer(vcpu))
4489 kvm_inject_pending_timer_irqs(vcpu);
4490
4491 if (dm_request_for_irq_injection(vcpu)) {
4492 r = -EINTR;
4493 vcpu->run->exit_reason = KVM_EXIT_INTR;
4494 ++vcpu->stat.request_irq_exits;
4495 }
4496 if (signal_pending(current)) {
4497 r = -EINTR;
4498 vcpu->run->exit_reason = KVM_EXIT_INTR;
4499 ++vcpu->stat.signal_exits;
4500 }
4501 if (need_resched()) {
4502 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4503 kvm_resched(vcpu);
4504 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4505 }
4506 }
4507
4508 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4509 post_kvm_run_save(vcpu);
4510
4511 vapic_exit(vcpu);
4512
4513 return r;
4514 }
4515
4516 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
4517 {
4518 int r;
4519 sigset_t sigsaved;
4520
4521 vcpu_load(vcpu);
4522
4523 if (vcpu->sigset_active)
4524 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
4525
4526 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
4527 kvm_vcpu_block(vcpu);
4528 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
4529 r = -EAGAIN;
4530 goto out;
4531 }
4532
4533 /* re-sync apic's tpr */
4534 if (!irqchip_in_kernel(vcpu->kvm))
4535 kvm_set_cr8(vcpu, kvm_run->cr8);
4536
4537 if (vcpu->arch.pio.count) {
4538 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4539 r = emulate_instruction(vcpu, 0, 0, EMULTYPE_NO_DECODE);
4540 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4541 if (r == EMULATE_DO_MMIO) {
4542 r = 0;
4543 goto out;
4544 }
4545 }
4546 if (vcpu->mmio_needed) {
4547 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
4548 vcpu->mmio_read_completed = 1;
4549 vcpu->mmio_needed = 0;
4550
4551 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4552 r = emulate_instruction(vcpu, vcpu->arch.mmio_fault_cr2, 0,
4553 EMULTYPE_NO_DECODE);
4554 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4555 if (r == EMULATE_DO_MMIO) {
4556 /*
4557 * Read-modify-write. Back to userspace.
4558 */
4559 r = 0;
4560 goto out;
4561 }
4562 }
4563 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
4564 kvm_register_write(vcpu, VCPU_REGS_RAX,
4565 kvm_run->hypercall.ret);
4566
4567 r = __vcpu_run(vcpu);
4568
4569 out:
4570 if (vcpu->sigset_active)
4571 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
4572
4573 vcpu_put(vcpu);
4574 return r;
4575 }
4576
4577 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4578 {
4579 vcpu_load(vcpu);
4580
4581 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4582 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4583 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4584 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4585 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4586 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4587 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4588 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4589 #ifdef CONFIG_X86_64
4590 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
4591 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
4592 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
4593 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
4594 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
4595 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
4596 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
4597 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
4598 #endif
4599
4600 regs->rip = kvm_rip_read(vcpu);
4601 regs->rflags = kvm_get_rflags(vcpu);
4602
4603 vcpu_put(vcpu);
4604
4605 return 0;
4606 }
4607
4608 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4609 {
4610 vcpu_load(vcpu);
4611
4612 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
4613 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
4614 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
4615 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
4616 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
4617 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
4618 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
4619 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
4620 #ifdef CONFIG_X86_64
4621 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
4622 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
4623 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
4624 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
4625 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
4626 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
4627 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
4628 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
4629 #endif
4630
4631 kvm_rip_write(vcpu, regs->rip);
4632 kvm_set_rflags(vcpu, regs->rflags);
4633
4634 vcpu->arch.exception.pending = false;
4635
4636 vcpu_put(vcpu);
4637
4638 return 0;
4639 }
4640
4641 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4642 {
4643 struct kvm_segment cs;
4644
4645 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
4646 *db = cs.db;
4647 *l = cs.l;
4648 }
4649 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
4650
4651 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
4652 struct kvm_sregs *sregs)
4653 {
4654 struct desc_ptr dt;
4655
4656 vcpu_load(vcpu);
4657
4658 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4659 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4660 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4661 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4662 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4663 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4664
4665 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4666 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4667
4668 kvm_x86_ops->get_idt(vcpu, &dt);
4669 sregs->idt.limit = dt.size;
4670 sregs->idt.base = dt.address;
4671 kvm_x86_ops->get_gdt(vcpu, &dt);
4672 sregs->gdt.limit = dt.size;
4673 sregs->gdt.base = dt.address;
4674
4675 sregs->cr0 = kvm_read_cr0(vcpu);
4676 sregs->cr2 = vcpu->arch.cr2;
4677 sregs->cr3 = vcpu->arch.cr3;
4678 sregs->cr4 = kvm_read_cr4(vcpu);
4679 sregs->cr8 = kvm_get_cr8(vcpu);
4680 sregs->efer = vcpu->arch.efer;
4681 sregs->apic_base = kvm_get_apic_base(vcpu);
4682
4683 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
4684
4685 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
4686 set_bit(vcpu->arch.interrupt.nr,
4687 (unsigned long *)sregs->interrupt_bitmap);
4688
4689 vcpu_put(vcpu);
4690
4691 return 0;
4692 }
4693
4694 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
4695 struct kvm_mp_state *mp_state)
4696 {
4697 vcpu_load(vcpu);
4698 mp_state->mp_state = vcpu->arch.mp_state;
4699 vcpu_put(vcpu);
4700 return 0;
4701 }
4702
4703 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
4704 struct kvm_mp_state *mp_state)
4705 {
4706 vcpu_load(vcpu);
4707 vcpu->arch.mp_state = mp_state->mp_state;
4708 vcpu_put(vcpu);
4709 return 0;
4710 }
4711
4712 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
4713 {
4714 int cs_db, cs_l, ret;
4715 cache_all_regs(vcpu);
4716
4717 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4718
4719 vcpu->arch.emulate_ctxt.vcpu = vcpu;
4720 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
4721 vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
4722 vcpu->arch.emulate_ctxt.mode =
4723 (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4724 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
4725 ? X86EMUL_MODE_VM86 : cs_l
4726 ? X86EMUL_MODE_PROT64 : cs_db
4727 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
4728
4729 ret = emulator_task_switch(&vcpu->arch.emulate_ctxt, &emulate_ops,
4730 tss_selector, reason);
4731
4732 if (ret == X86EMUL_CONTINUE)
4733 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4734
4735 return (ret != X86EMUL_CONTINUE);
4736 }
4737 EXPORT_SYMBOL_GPL(kvm_task_switch);
4738
4739 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
4740 struct kvm_sregs *sregs)
4741 {
4742 int mmu_reset_needed = 0;
4743 int pending_vec, max_bits;
4744 struct desc_ptr dt;
4745
4746 vcpu_load(vcpu);
4747
4748 dt.size = sregs->idt.limit;
4749 dt.address = sregs->idt.base;
4750 kvm_x86_ops->set_idt(vcpu, &dt);
4751 dt.size = sregs->gdt.limit;
4752 dt.address = sregs->gdt.base;
4753 kvm_x86_ops->set_gdt(vcpu, &dt);
4754
4755 vcpu->arch.cr2 = sregs->cr2;
4756 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
4757 vcpu->arch.cr3 = sregs->cr3;
4758
4759 kvm_set_cr8(vcpu, sregs->cr8);
4760
4761 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
4762 kvm_x86_ops->set_efer(vcpu, sregs->efer);
4763 kvm_set_apic_base(vcpu, sregs->apic_base);
4764
4765 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
4766 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
4767 vcpu->arch.cr0 = sregs->cr0;
4768
4769 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
4770 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
4771 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
4772 load_pdptrs(vcpu, vcpu->arch.cr3);
4773 mmu_reset_needed = 1;
4774 }
4775
4776 if (mmu_reset_needed)
4777 kvm_mmu_reset_context(vcpu);
4778
4779 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
4780 pending_vec = find_first_bit(
4781 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
4782 if (pending_vec < max_bits) {
4783 kvm_queue_interrupt(vcpu, pending_vec, false);
4784 pr_debug("Set back pending irq %d\n", pending_vec);
4785 if (irqchip_in_kernel(vcpu->kvm))
4786 kvm_pic_clear_isr_ack(vcpu->kvm);
4787 }
4788
4789 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4790 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4791 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4792 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4793 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4794 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4795
4796 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4797 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4798
4799 update_cr8_intercept(vcpu);
4800
4801 /* Older userspace won't unhalt the vcpu on reset. */
4802 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
4803 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
4804 !is_protmode(vcpu))
4805 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4806
4807 vcpu_put(vcpu);
4808
4809 return 0;
4810 }
4811
4812 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
4813 struct kvm_guest_debug *dbg)
4814 {
4815 unsigned long rflags;
4816 int i, r;
4817
4818 vcpu_load(vcpu);
4819
4820 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
4821 r = -EBUSY;
4822 if (vcpu->arch.exception.pending)
4823 goto unlock_out;
4824 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
4825 kvm_queue_exception(vcpu, DB_VECTOR);
4826 else
4827 kvm_queue_exception(vcpu, BP_VECTOR);
4828 }
4829
4830 /*
4831 * Read rflags as long as potentially injected trace flags are still
4832 * filtered out.
4833 */
4834 rflags = kvm_get_rflags(vcpu);
4835
4836 vcpu->guest_debug = dbg->control;
4837 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
4838 vcpu->guest_debug = 0;
4839
4840 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4841 for (i = 0; i < KVM_NR_DB_REGS; ++i)
4842 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
4843 vcpu->arch.switch_db_regs =
4844 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
4845 } else {
4846 for (i = 0; i < KVM_NR_DB_REGS; i++)
4847 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
4848 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
4849 }
4850
4851 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
4852 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
4853 get_segment_base(vcpu, VCPU_SREG_CS);
4854
4855 /*
4856 * Trigger an rflags update that will inject or remove the trace
4857 * flags.
4858 */
4859 kvm_set_rflags(vcpu, rflags);
4860
4861 kvm_x86_ops->set_guest_debug(vcpu, dbg);
4862
4863 r = 0;
4864
4865 unlock_out:
4866 vcpu_put(vcpu);
4867
4868 return r;
4869 }
4870
4871 /*
4872 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
4873 * we have asm/x86/processor.h
4874 */
4875 struct fxsave {
4876 u16 cwd;
4877 u16 swd;
4878 u16 twd;
4879 u16 fop;
4880 u64 rip;
4881 u64 rdp;
4882 u32 mxcsr;
4883 u32 mxcsr_mask;
4884 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
4885 #ifdef CONFIG_X86_64
4886 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
4887 #else
4888 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
4889 #endif
4890 };
4891
4892 /*
4893 * Translate a guest virtual address to a guest physical address.
4894 */
4895 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
4896 struct kvm_translation *tr)
4897 {
4898 unsigned long vaddr = tr->linear_address;
4899 gpa_t gpa;
4900 int idx;
4901
4902 vcpu_load(vcpu);
4903 idx = srcu_read_lock(&vcpu->kvm->srcu);
4904 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
4905 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4906 tr->physical_address = gpa;
4907 tr->valid = gpa != UNMAPPED_GVA;
4908 tr->writeable = 1;
4909 tr->usermode = 0;
4910 vcpu_put(vcpu);
4911
4912 return 0;
4913 }
4914
4915 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4916 {
4917 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4918
4919 vcpu_load(vcpu);
4920
4921 memcpy(fpu->fpr, fxsave->st_space, 128);
4922 fpu->fcw = fxsave->cwd;
4923 fpu->fsw = fxsave->swd;
4924 fpu->ftwx = fxsave->twd;
4925 fpu->last_opcode = fxsave->fop;
4926 fpu->last_ip = fxsave->rip;
4927 fpu->last_dp = fxsave->rdp;
4928 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
4929
4930 vcpu_put(vcpu);
4931
4932 return 0;
4933 }
4934
4935 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4936 {
4937 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4938
4939 vcpu_load(vcpu);
4940
4941 memcpy(fxsave->st_space, fpu->fpr, 128);
4942 fxsave->cwd = fpu->fcw;
4943 fxsave->swd = fpu->fsw;
4944 fxsave->twd = fpu->ftwx;
4945 fxsave->fop = fpu->last_opcode;
4946 fxsave->rip = fpu->last_ip;
4947 fxsave->rdp = fpu->last_dp;
4948 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
4949
4950 vcpu_put(vcpu);
4951
4952 return 0;
4953 }
4954
4955 void fx_init(struct kvm_vcpu *vcpu)
4956 {
4957 unsigned after_mxcsr_mask;
4958
4959 /*
4960 * Touch the fpu the first time in non atomic context as if
4961 * this is the first fpu instruction the exception handler
4962 * will fire before the instruction returns and it'll have to
4963 * allocate ram with GFP_KERNEL.
4964 */
4965 if (!used_math())
4966 kvm_fx_save(&vcpu->arch.host_fx_image);
4967
4968 /* Initialize guest FPU by resetting ours and saving into guest's */
4969 preempt_disable();
4970 kvm_fx_save(&vcpu->arch.host_fx_image);
4971 kvm_fx_finit();
4972 kvm_fx_save(&vcpu->arch.guest_fx_image);
4973 kvm_fx_restore(&vcpu->arch.host_fx_image);
4974 preempt_enable();
4975
4976 vcpu->arch.cr0 |= X86_CR0_ET;
4977 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
4978 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
4979 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
4980 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
4981 }
4982 EXPORT_SYMBOL_GPL(fx_init);
4983
4984 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
4985 {
4986 if (vcpu->guest_fpu_loaded)
4987 return;
4988
4989 vcpu->guest_fpu_loaded = 1;
4990 kvm_fx_save(&vcpu->arch.host_fx_image);
4991 kvm_fx_restore(&vcpu->arch.guest_fx_image);
4992 trace_kvm_fpu(1);
4993 }
4994
4995 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
4996 {
4997 if (!vcpu->guest_fpu_loaded)
4998 return;
4999
5000 vcpu->guest_fpu_loaded = 0;
5001 kvm_fx_save(&vcpu->arch.guest_fx_image);
5002 kvm_fx_restore(&vcpu->arch.host_fx_image);
5003 ++vcpu->stat.fpu_reload;
5004 set_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests);
5005 trace_kvm_fpu(0);
5006 }
5007
5008 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5009 {
5010 if (vcpu->arch.time_page) {
5011 kvm_release_page_dirty(vcpu->arch.time_page);
5012 vcpu->arch.time_page = NULL;
5013 }
5014
5015 kvm_x86_ops->vcpu_free(vcpu);
5016 }
5017
5018 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5019 unsigned int id)
5020 {
5021 return kvm_x86_ops->vcpu_create(kvm, id);
5022 }
5023
5024 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5025 {
5026 int r;
5027
5028 /* We do fxsave: this must be aligned. */
5029 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
5030
5031 vcpu->arch.mtrr_state.have_fixed = 1;
5032 vcpu_load(vcpu);
5033 r = kvm_arch_vcpu_reset(vcpu);
5034 if (r == 0)
5035 r = kvm_mmu_setup(vcpu);
5036 vcpu_put(vcpu);
5037 if (r < 0)
5038 goto free_vcpu;
5039
5040 return 0;
5041 free_vcpu:
5042 kvm_x86_ops->vcpu_free(vcpu);
5043 return r;
5044 }
5045
5046 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5047 {
5048 vcpu_load(vcpu);
5049 kvm_mmu_unload(vcpu);
5050 vcpu_put(vcpu);
5051
5052 kvm_x86_ops->vcpu_free(vcpu);
5053 }
5054
5055 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5056 {
5057 vcpu->arch.nmi_pending = false;
5058 vcpu->arch.nmi_injected = false;
5059
5060 vcpu->arch.switch_db_regs = 0;
5061 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5062 vcpu->arch.dr6 = DR6_FIXED_1;
5063 vcpu->arch.dr7 = DR7_FIXED_1;
5064
5065 return kvm_x86_ops->vcpu_reset(vcpu);
5066 }
5067
5068 int kvm_arch_hardware_enable(void *garbage)
5069 {
5070 /*
5071 * Since this may be called from a hotplug notifcation,
5072 * we can't get the CPU frequency directly.
5073 */
5074 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5075 int cpu = raw_smp_processor_id();
5076 per_cpu(cpu_tsc_khz, cpu) = 0;
5077 }
5078
5079 kvm_shared_msr_cpu_online();
5080
5081 return kvm_x86_ops->hardware_enable(garbage);
5082 }
5083
5084 void kvm_arch_hardware_disable(void *garbage)
5085 {
5086 kvm_x86_ops->hardware_disable(garbage);
5087 drop_user_return_notifiers(garbage);
5088 }
5089
5090 int kvm_arch_hardware_setup(void)
5091 {
5092 return kvm_x86_ops->hardware_setup();
5093 }
5094
5095 void kvm_arch_hardware_unsetup(void)
5096 {
5097 kvm_x86_ops->hardware_unsetup();
5098 }
5099
5100 void kvm_arch_check_processor_compat(void *rtn)
5101 {
5102 kvm_x86_ops->check_processor_compatibility(rtn);
5103 }
5104
5105 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5106 {
5107 struct page *page;
5108 struct kvm *kvm;
5109 int r;
5110
5111 BUG_ON(vcpu->kvm == NULL);
5112 kvm = vcpu->kvm;
5113
5114 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5115 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5116 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5117 else
5118 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5119
5120 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5121 if (!page) {
5122 r = -ENOMEM;
5123 goto fail;
5124 }
5125 vcpu->arch.pio_data = page_address(page);
5126
5127 r = kvm_mmu_create(vcpu);
5128 if (r < 0)
5129 goto fail_free_pio_data;
5130
5131 if (irqchip_in_kernel(kvm)) {
5132 r = kvm_create_lapic(vcpu);
5133 if (r < 0)
5134 goto fail_mmu_destroy;
5135 }
5136
5137 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5138 GFP_KERNEL);
5139 if (!vcpu->arch.mce_banks) {
5140 r = -ENOMEM;
5141 goto fail_free_lapic;
5142 }
5143 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5144
5145 return 0;
5146 fail_free_lapic:
5147 kvm_free_lapic(vcpu);
5148 fail_mmu_destroy:
5149 kvm_mmu_destroy(vcpu);
5150 fail_free_pio_data:
5151 free_page((unsigned long)vcpu->arch.pio_data);
5152 fail:
5153 return r;
5154 }
5155
5156 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
5157 {
5158 int idx;
5159
5160 kfree(vcpu->arch.mce_banks);
5161 kvm_free_lapic(vcpu);
5162 idx = srcu_read_lock(&vcpu->kvm->srcu);
5163 kvm_mmu_destroy(vcpu);
5164 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5165 free_page((unsigned long)vcpu->arch.pio_data);
5166 }
5167
5168 struct kvm *kvm_arch_create_vm(void)
5169 {
5170 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
5171
5172 if (!kvm)
5173 return ERR_PTR(-ENOMEM);
5174
5175 kvm->arch.aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
5176 if (!kvm->arch.aliases) {
5177 kfree(kvm);
5178 return ERR_PTR(-ENOMEM);
5179 }
5180
5181 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5182 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
5183
5184 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5185 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
5186
5187 rdtscll(kvm->arch.vm_init_tsc);
5188
5189 return kvm;
5190 }
5191
5192 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
5193 {
5194 vcpu_load(vcpu);
5195 kvm_mmu_unload(vcpu);
5196 vcpu_put(vcpu);
5197 }
5198
5199 static void kvm_free_vcpus(struct kvm *kvm)
5200 {
5201 unsigned int i;
5202 struct kvm_vcpu *vcpu;
5203
5204 /*
5205 * Unpin any mmu pages first.
5206 */
5207 kvm_for_each_vcpu(i, vcpu, kvm)
5208 kvm_unload_vcpu_mmu(vcpu);
5209 kvm_for_each_vcpu(i, vcpu, kvm)
5210 kvm_arch_vcpu_free(vcpu);
5211
5212 mutex_lock(&kvm->lock);
5213 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
5214 kvm->vcpus[i] = NULL;
5215
5216 atomic_set(&kvm->online_vcpus, 0);
5217 mutex_unlock(&kvm->lock);
5218 }
5219
5220 void kvm_arch_sync_events(struct kvm *kvm)
5221 {
5222 kvm_free_all_assigned_devices(kvm);
5223 }
5224
5225 void kvm_arch_destroy_vm(struct kvm *kvm)
5226 {
5227 kvm_iommu_unmap_guest(kvm);
5228 kvm_free_pit(kvm);
5229 kfree(kvm->arch.vpic);
5230 kfree(kvm->arch.vioapic);
5231 kvm_free_vcpus(kvm);
5232 kvm_free_physmem(kvm);
5233 if (kvm->arch.apic_access_page)
5234 put_page(kvm->arch.apic_access_page);
5235 if (kvm->arch.ept_identity_pagetable)
5236 put_page(kvm->arch.ept_identity_pagetable);
5237 cleanup_srcu_struct(&kvm->srcu);
5238 kfree(kvm->arch.aliases);
5239 kfree(kvm);
5240 }
5241
5242 int kvm_arch_prepare_memory_region(struct kvm *kvm,
5243 struct kvm_memory_slot *memslot,
5244 struct kvm_memory_slot old,
5245 struct kvm_userspace_memory_region *mem,
5246 int user_alloc)
5247 {
5248 int npages = memslot->npages;
5249
5250 /*To keep backward compatibility with older userspace,
5251 *x86 needs to hanlde !user_alloc case.
5252 */
5253 if (!user_alloc) {
5254 if (npages && !old.rmap) {
5255 unsigned long userspace_addr;
5256
5257 down_write(&current->mm->mmap_sem);
5258 userspace_addr = do_mmap(NULL, 0,
5259 npages * PAGE_SIZE,
5260 PROT_READ | PROT_WRITE,
5261 MAP_PRIVATE | MAP_ANONYMOUS,
5262 0);
5263 up_write(&current->mm->mmap_sem);
5264
5265 if (IS_ERR((void *)userspace_addr))
5266 return PTR_ERR((void *)userspace_addr);
5267
5268 memslot->userspace_addr = userspace_addr;
5269 }
5270 }
5271
5272
5273 return 0;
5274 }
5275
5276 void kvm_arch_commit_memory_region(struct kvm *kvm,
5277 struct kvm_userspace_memory_region *mem,
5278 struct kvm_memory_slot old,
5279 int user_alloc)
5280 {
5281
5282 int npages = mem->memory_size >> PAGE_SHIFT;
5283
5284 if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
5285 int ret;
5286
5287 down_write(&current->mm->mmap_sem);
5288 ret = do_munmap(current->mm, old.userspace_addr,
5289 old.npages * PAGE_SIZE);
5290 up_write(&current->mm->mmap_sem);
5291 if (ret < 0)
5292 printk(KERN_WARNING
5293 "kvm_vm_ioctl_set_memory_region: "
5294 "failed to munmap memory\n");
5295 }
5296
5297 spin_lock(&kvm->mmu_lock);
5298 if (!kvm->arch.n_requested_mmu_pages) {
5299 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
5300 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
5301 }
5302
5303 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
5304 spin_unlock(&kvm->mmu_lock);
5305 }
5306
5307 void kvm_arch_flush_shadow(struct kvm *kvm)
5308 {
5309 kvm_mmu_zap_all(kvm);
5310 kvm_reload_remote_mmus(kvm);
5311 }
5312
5313 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
5314 {
5315 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
5316 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
5317 || vcpu->arch.nmi_pending ||
5318 (kvm_arch_interrupt_allowed(vcpu) &&
5319 kvm_cpu_has_interrupt(vcpu));
5320 }
5321
5322 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
5323 {
5324 int me;
5325 int cpu = vcpu->cpu;
5326
5327 if (waitqueue_active(&vcpu->wq)) {
5328 wake_up_interruptible(&vcpu->wq);
5329 ++vcpu->stat.halt_wakeup;
5330 }
5331
5332 me = get_cpu();
5333 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
5334 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
5335 smp_send_reschedule(cpu);
5336 put_cpu();
5337 }
5338
5339 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
5340 {
5341 return kvm_x86_ops->interrupt_allowed(vcpu);
5342 }
5343
5344 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
5345 {
5346 unsigned long current_rip = kvm_rip_read(vcpu) +
5347 get_segment_base(vcpu, VCPU_SREG_CS);
5348
5349 return current_rip == linear_rip;
5350 }
5351 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
5352
5353 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
5354 {
5355 unsigned long rflags;
5356
5357 rflags = kvm_x86_ops->get_rflags(vcpu);
5358 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5359 rflags &= ~X86_EFLAGS_TF;
5360 return rflags;
5361 }
5362 EXPORT_SYMBOL_GPL(kvm_get_rflags);
5363
5364 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
5365 {
5366 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
5367 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
5368 rflags |= X86_EFLAGS_TF;
5369 kvm_x86_ops->set_rflags(vcpu, rflags);
5370 }
5371 EXPORT_SYMBOL_GPL(kvm_set_rflags);
5372
5373 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
5374 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
5375 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
5376 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
5377 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
5378 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
5379 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
5380 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
5381 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
5382 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
5383 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
5384 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
This page took 0.137434 seconds and 6 git commands to generate.