Merge tag 'driver-core-4.3-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/module.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <trace/events/kvm.h>
55
56 #define CREATE_TRACE_POINTS
57 #include "trace.h"
58
59 #include <asm/debugreg.h>
60 #include <asm/msr.h>
61 #include <asm/desc.h>
62 #include <asm/mce.h>
63 #include <linux/kernel_stat.h>
64 #include <asm/fpu/internal.h> /* Ugh! */
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67
68 #define MAX_IO_MSRS 256
69 #define KVM_MAX_MCE_BANKS 32
70 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
71
72 #define emul_to_vcpu(ctxt) \
73 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
74
75 /* EFER defaults:
76 * - enable syscall per default because its emulated by KVM
77 * - enable LME and LMA per default on 64 bit KVM
78 */
79 #ifdef CONFIG_X86_64
80 static
81 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
82 #else
83 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
84 #endif
85
86 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
87 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
88
89 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
90 static void process_nmi(struct kvm_vcpu *vcpu);
91 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
92
93 struct kvm_x86_ops *kvm_x86_ops;
94 EXPORT_SYMBOL_GPL(kvm_x86_ops);
95
96 static bool ignore_msrs = 0;
97 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
98
99 unsigned int min_timer_period_us = 500;
100 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
101
102 static bool __read_mostly kvmclock_periodic_sync = true;
103 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
104
105 bool kvm_has_tsc_control;
106 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
107 u32 kvm_max_guest_tsc_khz;
108 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
109
110 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
111 static u32 tsc_tolerance_ppm = 250;
112 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
113
114 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
115 unsigned int lapic_timer_advance_ns = 0;
116 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
117
118 static bool backwards_tsc_observed = false;
119
120 #define KVM_NR_SHARED_MSRS 16
121
122 struct kvm_shared_msrs_global {
123 int nr;
124 u32 msrs[KVM_NR_SHARED_MSRS];
125 };
126
127 struct kvm_shared_msrs {
128 struct user_return_notifier urn;
129 bool registered;
130 struct kvm_shared_msr_values {
131 u64 host;
132 u64 curr;
133 } values[KVM_NR_SHARED_MSRS];
134 };
135
136 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
137 static struct kvm_shared_msrs __percpu *shared_msrs;
138
139 struct kvm_stats_debugfs_item debugfs_entries[] = {
140 { "pf_fixed", VCPU_STAT(pf_fixed) },
141 { "pf_guest", VCPU_STAT(pf_guest) },
142 { "tlb_flush", VCPU_STAT(tlb_flush) },
143 { "invlpg", VCPU_STAT(invlpg) },
144 { "exits", VCPU_STAT(exits) },
145 { "io_exits", VCPU_STAT(io_exits) },
146 { "mmio_exits", VCPU_STAT(mmio_exits) },
147 { "signal_exits", VCPU_STAT(signal_exits) },
148 { "irq_window", VCPU_STAT(irq_window_exits) },
149 { "nmi_window", VCPU_STAT(nmi_window_exits) },
150 { "halt_exits", VCPU_STAT(halt_exits) },
151 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
152 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
153 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
154 { "hypercalls", VCPU_STAT(hypercalls) },
155 { "request_irq", VCPU_STAT(request_irq_exits) },
156 { "irq_exits", VCPU_STAT(irq_exits) },
157 { "host_state_reload", VCPU_STAT(host_state_reload) },
158 { "efer_reload", VCPU_STAT(efer_reload) },
159 { "fpu_reload", VCPU_STAT(fpu_reload) },
160 { "insn_emulation", VCPU_STAT(insn_emulation) },
161 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
162 { "irq_injections", VCPU_STAT(irq_injections) },
163 { "nmi_injections", VCPU_STAT(nmi_injections) },
164 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
165 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
166 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
167 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
168 { "mmu_flooded", VM_STAT(mmu_flooded) },
169 { "mmu_recycled", VM_STAT(mmu_recycled) },
170 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
171 { "mmu_unsync", VM_STAT(mmu_unsync) },
172 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
173 { "largepages", VM_STAT(lpages) },
174 { NULL }
175 };
176
177 u64 __read_mostly host_xcr0;
178
179 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
180
181 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
182 {
183 int i;
184 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
185 vcpu->arch.apf.gfns[i] = ~0;
186 }
187
188 static void kvm_on_user_return(struct user_return_notifier *urn)
189 {
190 unsigned slot;
191 struct kvm_shared_msrs *locals
192 = container_of(urn, struct kvm_shared_msrs, urn);
193 struct kvm_shared_msr_values *values;
194
195 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
196 values = &locals->values[slot];
197 if (values->host != values->curr) {
198 wrmsrl(shared_msrs_global.msrs[slot], values->host);
199 values->curr = values->host;
200 }
201 }
202 locals->registered = false;
203 user_return_notifier_unregister(urn);
204 }
205
206 static void shared_msr_update(unsigned slot, u32 msr)
207 {
208 u64 value;
209 unsigned int cpu = smp_processor_id();
210 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
211
212 /* only read, and nobody should modify it at this time,
213 * so don't need lock */
214 if (slot >= shared_msrs_global.nr) {
215 printk(KERN_ERR "kvm: invalid MSR slot!");
216 return;
217 }
218 rdmsrl_safe(msr, &value);
219 smsr->values[slot].host = value;
220 smsr->values[slot].curr = value;
221 }
222
223 void kvm_define_shared_msr(unsigned slot, u32 msr)
224 {
225 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
226 shared_msrs_global.msrs[slot] = msr;
227 if (slot >= shared_msrs_global.nr)
228 shared_msrs_global.nr = slot + 1;
229 }
230 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
231
232 static void kvm_shared_msr_cpu_online(void)
233 {
234 unsigned i;
235
236 for (i = 0; i < shared_msrs_global.nr; ++i)
237 shared_msr_update(i, shared_msrs_global.msrs[i]);
238 }
239
240 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
241 {
242 unsigned int cpu = smp_processor_id();
243 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
244 int err;
245
246 if (((value ^ smsr->values[slot].curr) & mask) == 0)
247 return 0;
248 smsr->values[slot].curr = value;
249 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
250 if (err)
251 return 1;
252
253 if (!smsr->registered) {
254 smsr->urn.on_user_return = kvm_on_user_return;
255 user_return_notifier_register(&smsr->urn);
256 smsr->registered = true;
257 }
258 return 0;
259 }
260 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
261
262 static void drop_user_return_notifiers(void)
263 {
264 unsigned int cpu = smp_processor_id();
265 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
266
267 if (smsr->registered)
268 kvm_on_user_return(&smsr->urn);
269 }
270
271 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
272 {
273 return vcpu->arch.apic_base;
274 }
275 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
276
277 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
278 {
279 u64 old_state = vcpu->arch.apic_base &
280 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
281 u64 new_state = msr_info->data &
282 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
283 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
284 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
285
286 if (!msr_info->host_initiated &&
287 ((msr_info->data & reserved_bits) != 0 ||
288 new_state == X2APIC_ENABLE ||
289 (new_state == MSR_IA32_APICBASE_ENABLE &&
290 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
291 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
292 old_state == 0)))
293 return 1;
294
295 kvm_lapic_set_base(vcpu, msr_info->data);
296 return 0;
297 }
298 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
299
300 asmlinkage __visible void kvm_spurious_fault(void)
301 {
302 /* Fault while not rebooting. We want the trace. */
303 BUG();
304 }
305 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
306
307 #define EXCPT_BENIGN 0
308 #define EXCPT_CONTRIBUTORY 1
309 #define EXCPT_PF 2
310
311 static int exception_class(int vector)
312 {
313 switch (vector) {
314 case PF_VECTOR:
315 return EXCPT_PF;
316 case DE_VECTOR:
317 case TS_VECTOR:
318 case NP_VECTOR:
319 case SS_VECTOR:
320 case GP_VECTOR:
321 return EXCPT_CONTRIBUTORY;
322 default:
323 break;
324 }
325 return EXCPT_BENIGN;
326 }
327
328 #define EXCPT_FAULT 0
329 #define EXCPT_TRAP 1
330 #define EXCPT_ABORT 2
331 #define EXCPT_INTERRUPT 3
332
333 static int exception_type(int vector)
334 {
335 unsigned int mask;
336
337 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
338 return EXCPT_INTERRUPT;
339
340 mask = 1 << vector;
341
342 /* #DB is trap, as instruction watchpoints are handled elsewhere */
343 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
344 return EXCPT_TRAP;
345
346 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
347 return EXCPT_ABORT;
348
349 /* Reserved exceptions will result in fault */
350 return EXCPT_FAULT;
351 }
352
353 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
354 unsigned nr, bool has_error, u32 error_code,
355 bool reinject)
356 {
357 u32 prev_nr;
358 int class1, class2;
359
360 kvm_make_request(KVM_REQ_EVENT, vcpu);
361
362 if (!vcpu->arch.exception.pending) {
363 queue:
364 if (has_error && !is_protmode(vcpu))
365 has_error = false;
366 vcpu->arch.exception.pending = true;
367 vcpu->arch.exception.has_error_code = has_error;
368 vcpu->arch.exception.nr = nr;
369 vcpu->arch.exception.error_code = error_code;
370 vcpu->arch.exception.reinject = reinject;
371 return;
372 }
373
374 /* to check exception */
375 prev_nr = vcpu->arch.exception.nr;
376 if (prev_nr == DF_VECTOR) {
377 /* triple fault -> shutdown */
378 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
379 return;
380 }
381 class1 = exception_class(prev_nr);
382 class2 = exception_class(nr);
383 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
384 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
385 /* generate double fault per SDM Table 5-5 */
386 vcpu->arch.exception.pending = true;
387 vcpu->arch.exception.has_error_code = true;
388 vcpu->arch.exception.nr = DF_VECTOR;
389 vcpu->arch.exception.error_code = 0;
390 } else
391 /* replace previous exception with a new one in a hope
392 that instruction re-execution will regenerate lost
393 exception */
394 goto queue;
395 }
396
397 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
398 {
399 kvm_multiple_exception(vcpu, nr, false, 0, false);
400 }
401 EXPORT_SYMBOL_GPL(kvm_queue_exception);
402
403 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
404 {
405 kvm_multiple_exception(vcpu, nr, false, 0, true);
406 }
407 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
408
409 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
410 {
411 if (err)
412 kvm_inject_gp(vcpu, 0);
413 else
414 kvm_x86_ops->skip_emulated_instruction(vcpu);
415 }
416 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
417
418 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
419 {
420 ++vcpu->stat.pf_guest;
421 vcpu->arch.cr2 = fault->address;
422 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
423 }
424 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
425
426 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
427 {
428 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
429 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
430 else
431 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
432
433 return fault->nested_page_fault;
434 }
435
436 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
437 {
438 atomic_inc(&vcpu->arch.nmi_queued);
439 kvm_make_request(KVM_REQ_NMI, vcpu);
440 }
441 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
442
443 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
444 {
445 kvm_multiple_exception(vcpu, nr, true, error_code, false);
446 }
447 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
448
449 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
450 {
451 kvm_multiple_exception(vcpu, nr, true, error_code, true);
452 }
453 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
454
455 /*
456 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
457 * a #GP and return false.
458 */
459 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
460 {
461 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
462 return true;
463 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
464 return false;
465 }
466 EXPORT_SYMBOL_GPL(kvm_require_cpl);
467
468 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
469 {
470 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
471 return true;
472
473 kvm_queue_exception(vcpu, UD_VECTOR);
474 return false;
475 }
476 EXPORT_SYMBOL_GPL(kvm_require_dr);
477
478 /*
479 * This function will be used to read from the physical memory of the currently
480 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
481 * can read from guest physical or from the guest's guest physical memory.
482 */
483 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
484 gfn_t ngfn, void *data, int offset, int len,
485 u32 access)
486 {
487 struct x86_exception exception;
488 gfn_t real_gfn;
489 gpa_t ngpa;
490
491 ngpa = gfn_to_gpa(ngfn);
492 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
493 if (real_gfn == UNMAPPED_GVA)
494 return -EFAULT;
495
496 real_gfn = gpa_to_gfn(real_gfn);
497
498 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
499 }
500 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
501
502 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
503 void *data, int offset, int len, u32 access)
504 {
505 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
506 data, offset, len, access);
507 }
508
509 /*
510 * Load the pae pdptrs. Return true is they are all valid.
511 */
512 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
513 {
514 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
515 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
516 int i;
517 int ret;
518 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
519
520 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
521 offset * sizeof(u64), sizeof(pdpte),
522 PFERR_USER_MASK|PFERR_WRITE_MASK);
523 if (ret < 0) {
524 ret = 0;
525 goto out;
526 }
527 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
528 if (is_present_gpte(pdpte[i]) &&
529 (pdpte[i] &
530 vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
531 ret = 0;
532 goto out;
533 }
534 }
535 ret = 1;
536
537 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
538 __set_bit(VCPU_EXREG_PDPTR,
539 (unsigned long *)&vcpu->arch.regs_avail);
540 __set_bit(VCPU_EXREG_PDPTR,
541 (unsigned long *)&vcpu->arch.regs_dirty);
542 out:
543
544 return ret;
545 }
546 EXPORT_SYMBOL_GPL(load_pdptrs);
547
548 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
549 {
550 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
551 bool changed = true;
552 int offset;
553 gfn_t gfn;
554 int r;
555
556 if (is_long_mode(vcpu) || !is_pae(vcpu))
557 return false;
558
559 if (!test_bit(VCPU_EXREG_PDPTR,
560 (unsigned long *)&vcpu->arch.regs_avail))
561 return true;
562
563 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
564 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
565 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
566 PFERR_USER_MASK | PFERR_WRITE_MASK);
567 if (r < 0)
568 goto out;
569 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
570 out:
571
572 return changed;
573 }
574
575 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
576 {
577 unsigned long old_cr0 = kvm_read_cr0(vcpu);
578 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
579
580 cr0 |= X86_CR0_ET;
581
582 #ifdef CONFIG_X86_64
583 if (cr0 & 0xffffffff00000000UL)
584 return 1;
585 #endif
586
587 cr0 &= ~CR0_RESERVED_BITS;
588
589 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
590 return 1;
591
592 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
593 return 1;
594
595 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
596 #ifdef CONFIG_X86_64
597 if ((vcpu->arch.efer & EFER_LME)) {
598 int cs_db, cs_l;
599
600 if (!is_pae(vcpu))
601 return 1;
602 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
603 if (cs_l)
604 return 1;
605 } else
606 #endif
607 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
608 kvm_read_cr3(vcpu)))
609 return 1;
610 }
611
612 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
613 return 1;
614
615 kvm_x86_ops->set_cr0(vcpu, cr0);
616
617 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
618 kvm_clear_async_pf_completion_queue(vcpu);
619 kvm_async_pf_hash_reset(vcpu);
620 }
621
622 if ((cr0 ^ old_cr0) & update_bits)
623 kvm_mmu_reset_context(vcpu);
624
625 if ((cr0 ^ old_cr0) & X86_CR0_CD)
626 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
627
628 return 0;
629 }
630 EXPORT_SYMBOL_GPL(kvm_set_cr0);
631
632 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
633 {
634 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
635 }
636 EXPORT_SYMBOL_GPL(kvm_lmsw);
637
638 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
639 {
640 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
641 !vcpu->guest_xcr0_loaded) {
642 /* kvm_set_xcr() also depends on this */
643 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
644 vcpu->guest_xcr0_loaded = 1;
645 }
646 }
647
648 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
649 {
650 if (vcpu->guest_xcr0_loaded) {
651 if (vcpu->arch.xcr0 != host_xcr0)
652 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
653 vcpu->guest_xcr0_loaded = 0;
654 }
655 }
656
657 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
658 {
659 u64 xcr0 = xcr;
660 u64 old_xcr0 = vcpu->arch.xcr0;
661 u64 valid_bits;
662
663 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
664 if (index != XCR_XFEATURE_ENABLED_MASK)
665 return 1;
666 if (!(xcr0 & XSTATE_FP))
667 return 1;
668 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
669 return 1;
670
671 /*
672 * Do not allow the guest to set bits that we do not support
673 * saving. However, xcr0 bit 0 is always set, even if the
674 * emulated CPU does not support XSAVE (see fx_init).
675 */
676 valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
677 if (xcr0 & ~valid_bits)
678 return 1;
679
680 if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR)))
681 return 1;
682
683 if (xcr0 & XSTATE_AVX512) {
684 if (!(xcr0 & XSTATE_YMM))
685 return 1;
686 if ((xcr0 & XSTATE_AVX512) != XSTATE_AVX512)
687 return 1;
688 }
689 kvm_put_guest_xcr0(vcpu);
690 vcpu->arch.xcr0 = xcr0;
691
692 if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK)
693 kvm_update_cpuid(vcpu);
694 return 0;
695 }
696
697 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
698 {
699 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
700 __kvm_set_xcr(vcpu, index, xcr)) {
701 kvm_inject_gp(vcpu, 0);
702 return 1;
703 }
704 return 0;
705 }
706 EXPORT_SYMBOL_GPL(kvm_set_xcr);
707
708 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
709 {
710 unsigned long old_cr4 = kvm_read_cr4(vcpu);
711 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
712 X86_CR4_SMEP | X86_CR4_SMAP;
713
714 if (cr4 & CR4_RESERVED_BITS)
715 return 1;
716
717 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
718 return 1;
719
720 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
721 return 1;
722
723 if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
724 return 1;
725
726 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
727 return 1;
728
729 if (is_long_mode(vcpu)) {
730 if (!(cr4 & X86_CR4_PAE))
731 return 1;
732 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
733 && ((cr4 ^ old_cr4) & pdptr_bits)
734 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
735 kvm_read_cr3(vcpu)))
736 return 1;
737
738 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
739 if (!guest_cpuid_has_pcid(vcpu))
740 return 1;
741
742 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
743 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
744 return 1;
745 }
746
747 if (kvm_x86_ops->set_cr4(vcpu, cr4))
748 return 1;
749
750 if (((cr4 ^ old_cr4) & pdptr_bits) ||
751 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
752 kvm_mmu_reset_context(vcpu);
753
754 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
755 kvm_update_cpuid(vcpu);
756
757 return 0;
758 }
759 EXPORT_SYMBOL_GPL(kvm_set_cr4);
760
761 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
762 {
763 #ifdef CONFIG_X86_64
764 cr3 &= ~CR3_PCID_INVD;
765 #endif
766
767 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
768 kvm_mmu_sync_roots(vcpu);
769 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
770 return 0;
771 }
772
773 if (is_long_mode(vcpu)) {
774 if (cr3 & CR3_L_MODE_RESERVED_BITS)
775 return 1;
776 } else if (is_pae(vcpu) && is_paging(vcpu) &&
777 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
778 return 1;
779
780 vcpu->arch.cr3 = cr3;
781 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
782 kvm_mmu_new_cr3(vcpu);
783 return 0;
784 }
785 EXPORT_SYMBOL_GPL(kvm_set_cr3);
786
787 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
788 {
789 if (cr8 & CR8_RESERVED_BITS)
790 return 1;
791 if (irqchip_in_kernel(vcpu->kvm))
792 kvm_lapic_set_tpr(vcpu, cr8);
793 else
794 vcpu->arch.cr8 = cr8;
795 return 0;
796 }
797 EXPORT_SYMBOL_GPL(kvm_set_cr8);
798
799 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
800 {
801 if (irqchip_in_kernel(vcpu->kvm))
802 return kvm_lapic_get_cr8(vcpu);
803 else
804 return vcpu->arch.cr8;
805 }
806 EXPORT_SYMBOL_GPL(kvm_get_cr8);
807
808 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
809 {
810 int i;
811
812 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
813 for (i = 0; i < KVM_NR_DB_REGS; i++)
814 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
815 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
816 }
817 }
818
819 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
820 {
821 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
822 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
823 }
824
825 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
826 {
827 unsigned long dr7;
828
829 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
830 dr7 = vcpu->arch.guest_debug_dr7;
831 else
832 dr7 = vcpu->arch.dr7;
833 kvm_x86_ops->set_dr7(vcpu, dr7);
834 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
835 if (dr7 & DR7_BP_EN_MASK)
836 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
837 }
838
839 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
840 {
841 u64 fixed = DR6_FIXED_1;
842
843 if (!guest_cpuid_has_rtm(vcpu))
844 fixed |= DR6_RTM;
845 return fixed;
846 }
847
848 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
849 {
850 switch (dr) {
851 case 0 ... 3:
852 vcpu->arch.db[dr] = val;
853 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
854 vcpu->arch.eff_db[dr] = val;
855 break;
856 case 4:
857 /* fall through */
858 case 6:
859 if (val & 0xffffffff00000000ULL)
860 return -1; /* #GP */
861 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
862 kvm_update_dr6(vcpu);
863 break;
864 case 5:
865 /* fall through */
866 default: /* 7 */
867 if (val & 0xffffffff00000000ULL)
868 return -1; /* #GP */
869 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
870 kvm_update_dr7(vcpu);
871 break;
872 }
873
874 return 0;
875 }
876
877 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
878 {
879 if (__kvm_set_dr(vcpu, dr, val)) {
880 kvm_inject_gp(vcpu, 0);
881 return 1;
882 }
883 return 0;
884 }
885 EXPORT_SYMBOL_GPL(kvm_set_dr);
886
887 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
888 {
889 switch (dr) {
890 case 0 ... 3:
891 *val = vcpu->arch.db[dr];
892 break;
893 case 4:
894 /* fall through */
895 case 6:
896 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
897 *val = vcpu->arch.dr6;
898 else
899 *val = kvm_x86_ops->get_dr6(vcpu);
900 break;
901 case 5:
902 /* fall through */
903 default: /* 7 */
904 *val = vcpu->arch.dr7;
905 break;
906 }
907 return 0;
908 }
909 EXPORT_SYMBOL_GPL(kvm_get_dr);
910
911 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
912 {
913 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
914 u64 data;
915 int err;
916
917 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
918 if (err)
919 return err;
920 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
921 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
922 return err;
923 }
924 EXPORT_SYMBOL_GPL(kvm_rdpmc);
925
926 /*
927 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
928 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
929 *
930 * This list is modified at module load time to reflect the
931 * capabilities of the host cpu. This capabilities test skips MSRs that are
932 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
933 * may depend on host virtualization features rather than host cpu features.
934 */
935
936 static u32 msrs_to_save[] = {
937 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
938 MSR_STAR,
939 #ifdef CONFIG_X86_64
940 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
941 #endif
942 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
943 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
944 };
945
946 static unsigned num_msrs_to_save;
947
948 static u32 emulated_msrs[] = {
949 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
950 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
951 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
952 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
953 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
954 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
955 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
956 MSR_KVM_PV_EOI_EN,
957
958 MSR_IA32_TSC_ADJUST,
959 MSR_IA32_TSCDEADLINE,
960 MSR_IA32_MISC_ENABLE,
961 MSR_IA32_MCG_STATUS,
962 MSR_IA32_MCG_CTL,
963 MSR_IA32_SMBASE,
964 };
965
966 static unsigned num_emulated_msrs;
967
968 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
969 {
970 if (efer & efer_reserved_bits)
971 return false;
972
973 if (efer & EFER_FFXSR) {
974 struct kvm_cpuid_entry2 *feat;
975
976 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
977 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
978 return false;
979 }
980
981 if (efer & EFER_SVME) {
982 struct kvm_cpuid_entry2 *feat;
983
984 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
985 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
986 return false;
987 }
988
989 return true;
990 }
991 EXPORT_SYMBOL_GPL(kvm_valid_efer);
992
993 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
994 {
995 u64 old_efer = vcpu->arch.efer;
996
997 if (!kvm_valid_efer(vcpu, efer))
998 return 1;
999
1000 if (is_paging(vcpu)
1001 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1002 return 1;
1003
1004 efer &= ~EFER_LMA;
1005 efer |= vcpu->arch.efer & EFER_LMA;
1006
1007 kvm_x86_ops->set_efer(vcpu, efer);
1008
1009 /* Update reserved bits */
1010 if ((efer ^ old_efer) & EFER_NX)
1011 kvm_mmu_reset_context(vcpu);
1012
1013 return 0;
1014 }
1015
1016 void kvm_enable_efer_bits(u64 mask)
1017 {
1018 efer_reserved_bits &= ~mask;
1019 }
1020 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1021
1022 /*
1023 * Writes msr value into into the appropriate "register".
1024 * Returns 0 on success, non-0 otherwise.
1025 * Assumes vcpu_load() was already called.
1026 */
1027 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1028 {
1029 switch (msr->index) {
1030 case MSR_FS_BASE:
1031 case MSR_GS_BASE:
1032 case MSR_KERNEL_GS_BASE:
1033 case MSR_CSTAR:
1034 case MSR_LSTAR:
1035 if (is_noncanonical_address(msr->data))
1036 return 1;
1037 break;
1038 case MSR_IA32_SYSENTER_EIP:
1039 case MSR_IA32_SYSENTER_ESP:
1040 /*
1041 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1042 * non-canonical address is written on Intel but not on
1043 * AMD (which ignores the top 32-bits, because it does
1044 * not implement 64-bit SYSENTER).
1045 *
1046 * 64-bit code should hence be able to write a non-canonical
1047 * value on AMD. Making the address canonical ensures that
1048 * vmentry does not fail on Intel after writing a non-canonical
1049 * value, and that something deterministic happens if the guest
1050 * invokes 64-bit SYSENTER.
1051 */
1052 msr->data = get_canonical(msr->data);
1053 }
1054 return kvm_x86_ops->set_msr(vcpu, msr);
1055 }
1056 EXPORT_SYMBOL_GPL(kvm_set_msr);
1057
1058 /*
1059 * Adapt set_msr() to msr_io()'s calling convention
1060 */
1061 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1062 {
1063 struct msr_data msr;
1064 int r;
1065
1066 msr.index = index;
1067 msr.host_initiated = true;
1068 r = kvm_get_msr(vcpu, &msr);
1069 if (r)
1070 return r;
1071
1072 *data = msr.data;
1073 return 0;
1074 }
1075
1076 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1077 {
1078 struct msr_data msr;
1079
1080 msr.data = *data;
1081 msr.index = index;
1082 msr.host_initiated = true;
1083 return kvm_set_msr(vcpu, &msr);
1084 }
1085
1086 #ifdef CONFIG_X86_64
1087 struct pvclock_gtod_data {
1088 seqcount_t seq;
1089
1090 struct { /* extract of a clocksource struct */
1091 int vclock_mode;
1092 cycle_t cycle_last;
1093 cycle_t mask;
1094 u32 mult;
1095 u32 shift;
1096 } clock;
1097
1098 u64 boot_ns;
1099 u64 nsec_base;
1100 };
1101
1102 static struct pvclock_gtod_data pvclock_gtod_data;
1103
1104 static void update_pvclock_gtod(struct timekeeper *tk)
1105 {
1106 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1107 u64 boot_ns;
1108
1109 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1110
1111 write_seqcount_begin(&vdata->seq);
1112
1113 /* copy pvclock gtod data */
1114 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
1115 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1116 vdata->clock.mask = tk->tkr_mono.mask;
1117 vdata->clock.mult = tk->tkr_mono.mult;
1118 vdata->clock.shift = tk->tkr_mono.shift;
1119
1120 vdata->boot_ns = boot_ns;
1121 vdata->nsec_base = tk->tkr_mono.xtime_nsec;
1122
1123 write_seqcount_end(&vdata->seq);
1124 }
1125 #endif
1126
1127 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1128 {
1129 /*
1130 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1131 * vcpu_enter_guest. This function is only called from
1132 * the physical CPU that is running vcpu.
1133 */
1134 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1135 }
1136
1137 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1138 {
1139 int version;
1140 int r;
1141 struct pvclock_wall_clock wc;
1142 struct timespec boot;
1143
1144 if (!wall_clock)
1145 return;
1146
1147 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1148 if (r)
1149 return;
1150
1151 if (version & 1)
1152 ++version; /* first time write, random junk */
1153
1154 ++version;
1155
1156 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1157
1158 /*
1159 * The guest calculates current wall clock time by adding
1160 * system time (updated by kvm_guest_time_update below) to the
1161 * wall clock specified here. guest system time equals host
1162 * system time for us, thus we must fill in host boot time here.
1163 */
1164 getboottime(&boot);
1165
1166 if (kvm->arch.kvmclock_offset) {
1167 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1168 boot = timespec_sub(boot, ts);
1169 }
1170 wc.sec = boot.tv_sec;
1171 wc.nsec = boot.tv_nsec;
1172 wc.version = version;
1173
1174 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1175
1176 version++;
1177 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1178 }
1179
1180 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1181 {
1182 uint32_t quotient, remainder;
1183
1184 /* Don't try to replace with do_div(), this one calculates
1185 * "(dividend << 32) / divisor" */
1186 __asm__ ( "divl %4"
1187 : "=a" (quotient), "=d" (remainder)
1188 : "0" (0), "1" (dividend), "r" (divisor) );
1189 return quotient;
1190 }
1191
1192 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1193 s8 *pshift, u32 *pmultiplier)
1194 {
1195 uint64_t scaled64;
1196 int32_t shift = 0;
1197 uint64_t tps64;
1198 uint32_t tps32;
1199
1200 tps64 = base_khz * 1000LL;
1201 scaled64 = scaled_khz * 1000LL;
1202 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1203 tps64 >>= 1;
1204 shift--;
1205 }
1206
1207 tps32 = (uint32_t)tps64;
1208 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1209 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1210 scaled64 >>= 1;
1211 else
1212 tps32 <<= 1;
1213 shift++;
1214 }
1215
1216 *pshift = shift;
1217 *pmultiplier = div_frac(scaled64, tps32);
1218
1219 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1220 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1221 }
1222
1223 #ifdef CONFIG_X86_64
1224 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1225 #endif
1226
1227 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1228 static unsigned long max_tsc_khz;
1229
1230 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1231 {
1232 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1233 vcpu->arch.virtual_tsc_shift);
1234 }
1235
1236 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1237 {
1238 u64 v = (u64)khz * (1000000 + ppm);
1239 do_div(v, 1000000);
1240 return v;
1241 }
1242
1243 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1244 {
1245 u32 thresh_lo, thresh_hi;
1246 int use_scaling = 0;
1247
1248 /* tsc_khz can be zero if TSC calibration fails */
1249 if (this_tsc_khz == 0)
1250 return;
1251
1252 /* Compute a scale to convert nanoseconds in TSC cycles */
1253 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1254 &vcpu->arch.virtual_tsc_shift,
1255 &vcpu->arch.virtual_tsc_mult);
1256 vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1257
1258 /*
1259 * Compute the variation in TSC rate which is acceptable
1260 * within the range of tolerance and decide if the
1261 * rate being applied is within that bounds of the hardware
1262 * rate. If so, no scaling or compensation need be done.
1263 */
1264 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1265 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1266 if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1267 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1268 use_scaling = 1;
1269 }
1270 kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1271 }
1272
1273 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1274 {
1275 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1276 vcpu->arch.virtual_tsc_mult,
1277 vcpu->arch.virtual_tsc_shift);
1278 tsc += vcpu->arch.this_tsc_write;
1279 return tsc;
1280 }
1281
1282 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1283 {
1284 #ifdef CONFIG_X86_64
1285 bool vcpus_matched;
1286 struct kvm_arch *ka = &vcpu->kvm->arch;
1287 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1288
1289 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1290 atomic_read(&vcpu->kvm->online_vcpus));
1291
1292 /*
1293 * Once the masterclock is enabled, always perform request in
1294 * order to update it.
1295 *
1296 * In order to enable masterclock, the host clocksource must be TSC
1297 * and the vcpus need to have matched TSCs. When that happens,
1298 * perform request to enable masterclock.
1299 */
1300 if (ka->use_master_clock ||
1301 (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1302 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1303
1304 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1305 atomic_read(&vcpu->kvm->online_vcpus),
1306 ka->use_master_clock, gtod->clock.vclock_mode);
1307 #endif
1308 }
1309
1310 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1311 {
1312 u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1313 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1314 }
1315
1316 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1317 {
1318 struct kvm *kvm = vcpu->kvm;
1319 u64 offset, ns, elapsed;
1320 unsigned long flags;
1321 s64 usdiff;
1322 bool matched;
1323 bool already_matched;
1324 u64 data = msr->data;
1325
1326 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1327 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1328 ns = get_kernel_ns();
1329 elapsed = ns - kvm->arch.last_tsc_nsec;
1330
1331 if (vcpu->arch.virtual_tsc_khz) {
1332 int faulted = 0;
1333
1334 /* n.b - signed multiplication and division required */
1335 usdiff = data - kvm->arch.last_tsc_write;
1336 #ifdef CONFIG_X86_64
1337 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1338 #else
1339 /* do_div() only does unsigned */
1340 asm("1: idivl %[divisor]\n"
1341 "2: xor %%edx, %%edx\n"
1342 " movl $0, %[faulted]\n"
1343 "3:\n"
1344 ".section .fixup,\"ax\"\n"
1345 "4: movl $1, %[faulted]\n"
1346 " jmp 3b\n"
1347 ".previous\n"
1348
1349 _ASM_EXTABLE(1b, 4b)
1350
1351 : "=A"(usdiff), [faulted] "=r" (faulted)
1352 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1353
1354 #endif
1355 do_div(elapsed, 1000);
1356 usdiff -= elapsed;
1357 if (usdiff < 0)
1358 usdiff = -usdiff;
1359
1360 /* idivl overflow => difference is larger than USEC_PER_SEC */
1361 if (faulted)
1362 usdiff = USEC_PER_SEC;
1363 } else
1364 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1365
1366 /*
1367 * Special case: TSC write with a small delta (1 second) of virtual
1368 * cycle time against real time is interpreted as an attempt to
1369 * synchronize the CPU.
1370 *
1371 * For a reliable TSC, we can match TSC offsets, and for an unstable
1372 * TSC, we add elapsed time in this computation. We could let the
1373 * compensation code attempt to catch up if we fall behind, but
1374 * it's better to try to match offsets from the beginning.
1375 */
1376 if (usdiff < USEC_PER_SEC &&
1377 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1378 if (!check_tsc_unstable()) {
1379 offset = kvm->arch.cur_tsc_offset;
1380 pr_debug("kvm: matched tsc offset for %llu\n", data);
1381 } else {
1382 u64 delta = nsec_to_cycles(vcpu, elapsed);
1383 data += delta;
1384 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1385 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1386 }
1387 matched = true;
1388 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1389 } else {
1390 /*
1391 * We split periods of matched TSC writes into generations.
1392 * For each generation, we track the original measured
1393 * nanosecond time, offset, and write, so if TSCs are in
1394 * sync, we can match exact offset, and if not, we can match
1395 * exact software computation in compute_guest_tsc()
1396 *
1397 * These values are tracked in kvm->arch.cur_xxx variables.
1398 */
1399 kvm->arch.cur_tsc_generation++;
1400 kvm->arch.cur_tsc_nsec = ns;
1401 kvm->arch.cur_tsc_write = data;
1402 kvm->arch.cur_tsc_offset = offset;
1403 matched = false;
1404 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1405 kvm->arch.cur_tsc_generation, data);
1406 }
1407
1408 /*
1409 * We also track th most recent recorded KHZ, write and time to
1410 * allow the matching interval to be extended at each write.
1411 */
1412 kvm->arch.last_tsc_nsec = ns;
1413 kvm->arch.last_tsc_write = data;
1414 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1415
1416 vcpu->arch.last_guest_tsc = data;
1417
1418 /* Keep track of which generation this VCPU has synchronized to */
1419 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1420 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1421 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1422
1423 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1424 update_ia32_tsc_adjust_msr(vcpu, offset);
1425 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1426 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1427
1428 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1429 if (!matched) {
1430 kvm->arch.nr_vcpus_matched_tsc = 0;
1431 } else if (!already_matched) {
1432 kvm->arch.nr_vcpus_matched_tsc++;
1433 }
1434
1435 kvm_track_tsc_matching(vcpu);
1436 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1437 }
1438
1439 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1440
1441 #ifdef CONFIG_X86_64
1442
1443 static cycle_t read_tsc(void)
1444 {
1445 cycle_t ret = (cycle_t)rdtsc_ordered();
1446 u64 last = pvclock_gtod_data.clock.cycle_last;
1447
1448 if (likely(ret >= last))
1449 return ret;
1450
1451 /*
1452 * GCC likes to generate cmov here, but this branch is extremely
1453 * predictable (it's just a funciton of time and the likely is
1454 * very likely) and there's a data dependence, so force GCC
1455 * to generate a branch instead. I don't barrier() because
1456 * we don't actually need a barrier, and if this function
1457 * ever gets inlined it will generate worse code.
1458 */
1459 asm volatile ("");
1460 return last;
1461 }
1462
1463 static inline u64 vgettsc(cycle_t *cycle_now)
1464 {
1465 long v;
1466 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1467
1468 *cycle_now = read_tsc();
1469
1470 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1471 return v * gtod->clock.mult;
1472 }
1473
1474 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1475 {
1476 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1477 unsigned long seq;
1478 int mode;
1479 u64 ns;
1480
1481 do {
1482 seq = read_seqcount_begin(&gtod->seq);
1483 mode = gtod->clock.vclock_mode;
1484 ns = gtod->nsec_base;
1485 ns += vgettsc(cycle_now);
1486 ns >>= gtod->clock.shift;
1487 ns += gtod->boot_ns;
1488 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1489 *t = ns;
1490
1491 return mode;
1492 }
1493
1494 /* returns true if host is using tsc clocksource */
1495 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1496 {
1497 /* checked again under seqlock below */
1498 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1499 return false;
1500
1501 return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1502 }
1503 #endif
1504
1505 /*
1506 *
1507 * Assuming a stable TSC across physical CPUS, and a stable TSC
1508 * across virtual CPUs, the following condition is possible.
1509 * Each numbered line represents an event visible to both
1510 * CPUs at the next numbered event.
1511 *
1512 * "timespecX" represents host monotonic time. "tscX" represents
1513 * RDTSC value.
1514 *
1515 * VCPU0 on CPU0 | VCPU1 on CPU1
1516 *
1517 * 1. read timespec0,tsc0
1518 * 2. | timespec1 = timespec0 + N
1519 * | tsc1 = tsc0 + M
1520 * 3. transition to guest | transition to guest
1521 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1522 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1523 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1524 *
1525 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1526 *
1527 * - ret0 < ret1
1528 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1529 * ...
1530 * - 0 < N - M => M < N
1531 *
1532 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1533 * always the case (the difference between two distinct xtime instances
1534 * might be smaller then the difference between corresponding TSC reads,
1535 * when updating guest vcpus pvclock areas).
1536 *
1537 * To avoid that problem, do not allow visibility of distinct
1538 * system_timestamp/tsc_timestamp values simultaneously: use a master
1539 * copy of host monotonic time values. Update that master copy
1540 * in lockstep.
1541 *
1542 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1543 *
1544 */
1545
1546 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1547 {
1548 #ifdef CONFIG_X86_64
1549 struct kvm_arch *ka = &kvm->arch;
1550 int vclock_mode;
1551 bool host_tsc_clocksource, vcpus_matched;
1552
1553 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1554 atomic_read(&kvm->online_vcpus));
1555
1556 /*
1557 * If the host uses TSC clock, then passthrough TSC as stable
1558 * to the guest.
1559 */
1560 host_tsc_clocksource = kvm_get_time_and_clockread(
1561 &ka->master_kernel_ns,
1562 &ka->master_cycle_now);
1563
1564 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1565 && !backwards_tsc_observed
1566 && !ka->boot_vcpu_runs_old_kvmclock;
1567
1568 if (ka->use_master_clock)
1569 atomic_set(&kvm_guest_has_master_clock, 1);
1570
1571 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1572 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1573 vcpus_matched);
1574 #endif
1575 }
1576
1577 static void kvm_gen_update_masterclock(struct kvm *kvm)
1578 {
1579 #ifdef CONFIG_X86_64
1580 int i;
1581 struct kvm_vcpu *vcpu;
1582 struct kvm_arch *ka = &kvm->arch;
1583
1584 spin_lock(&ka->pvclock_gtod_sync_lock);
1585 kvm_make_mclock_inprogress_request(kvm);
1586 /* no guest entries from this point */
1587 pvclock_update_vm_gtod_copy(kvm);
1588
1589 kvm_for_each_vcpu(i, vcpu, kvm)
1590 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1591
1592 /* guest entries allowed */
1593 kvm_for_each_vcpu(i, vcpu, kvm)
1594 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1595
1596 spin_unlock(&ka->pvclock_gtod_sync_lock);
1597 #endif
1598 }
1599
1600 static int kvm_guest_time_update(struct kvm_vcpu *v)
1601 {
1602 unsigned long flags, this_tsc_khz;
1603 struct kvm_vcpu_arch *vcpu = &v->arch;
1604 struct kvm_arch *ka = &v->kvm->arch;
1605 s64 kernel_ns;
1606 u64 tsc_timestamp, host_tsc;
1607 struct pvclock_vcpu_time_info guest_hv_clock;
1608 u8 pvclock_flags;
1609 bool use_master_clock;
1610
1611 kernel_ns = 0;
1612 host_tsc = 0;
1613
1614 /*
1615 * If the host uses TSC clock, then passthrough TSC as stable
1616 * to the guest.
1617 */
1618 spin_lock(&ka->pvclock_gtod_sync_lock);
1619 use_master_clock = ka->use_master_clock;
1620 if (use_master_clock) {
1621 host_tsc = ka->master_cycle_now;
1622 kernel_ns = ka->master_kernel_ns;
1623 }
1624 spin_unlock(&ka->pvclock_gtod_sync_lock);
1625
1626 /* Keep irq disabled to prevent changes to the clock */
1627 local_irq_save(flags);
1628 this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1629 if (unlikely(this_tsc_khz == 0)) {
1630 local_irq_restore(flags);
1631 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1632 return 1;
1633 }
1634 if (!use_master_clock) {
1635 host_tsc = rdtsc();
1636 kernel_ns = get_kernel_ns();
1637 }
1638
1639 tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1640
1641 /*
1642 * We may have to catch up the TSC to match elapsed wall clock
1643 * time for two reasons, even if kvmclock is used.
1644 * 1) CPU could have been running below the maximum TSC rate
1645 * 2) Broken TSC compensation resets the base at each VCPU
1646 * entry to avoid unknown leaps of TSC even when running
1647 * again on the same CPU. This may cause apparent elapsed
1648 * time to disappear, and the guest to stand still or run
1649 * very slowly.
1650 */
1651 if (vcpu->tsc_catchup) {
1652 u64 tsc = compute_guest_tsc(v, kernel_ns);
1653 if (tsc > tsc_timestamp) {
1654 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1655 tsc_timestamp = tsc;
1656 }
1657 }
1658
1659 local_irq_restore(flags);
1660
1661 if (!vcpu->pv_time_enabled)
1662 return 0;
1663
1664 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1665 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1666 &vcpu->hv_clock.tsc_shift,
1667 &vcpu->hv_clock.tsc_to_system_mul);
1668 vcpu->hw_tsc_khz = this_tsc_khz;
1669 }
1670
1671 /* With all the info we got, fill in the values */
1672 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1673 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1674 vcpu->last_guest_tsc = tsc_timestamp;
1675
1676 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1677 &guest_hv_clock, sizeof(guest_hv_clock))))
1678 return 0;
1679
1680 /* This VCPU is paused, but it's legal for a guest to read another
1681 * VCPU's kvmclock, so we really have to follow the specification where
1682 * it says that version is odd if data is being modified, and even after
1683 * it is consistent.
1684 *
1685 * Version field updates must be kept separate. This is because
1686 * kvm_write_guest_cached might use a "rep movs" instruction, and
1687 * writes within a string instruction are weakly ordered. So there
1688 * are three writes overall.
1689 *
1690 * As a small optimization, only write the version field in the first
1691 * and third write. The vcpu->pv_time cache is still valid, because the
1692 * version field is the first in the struct.
1693 */
1694 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1695
1696 vcpu->hv_clock.version = guest_hv_clock.version + 1;
1697 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1698 &vcpu->hv_clock,
1699 sizeof(vcpu->hv_clock.version));
1700
1701 smp_wmb();
1702
1703 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1704 pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1705
1706 if (vcpu->pvclock_set_guest_stopped_request) {
1707 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1708 vcpu->pvclock_set_guest_stopped_request = false;
1709 }
1710
1711 pvclock_flags |= PVCLOCK_COUNTS_FROM_ZERO;
1712
1713 /* If the host uses TSC clocksource, then it is stable */
1714 if (use_master_clock)
1715 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1716
1717 vcpu->hv_clock.flags = pvclock_flags;
1718
1719 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1720
1721 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1722 &vcpu->hv_clock,
1723 sizeof(vcpu->hv_clock));
1724
1725 smp_wmb();
1726
1727 vcpu->hv_clock.version++;
1728 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1729 &vcpu->hv_clock,
1730 sizeof(vcpu->hv_clock.version));
1731 return 0;
1732 }
1733
1734 /*
1735 * kvmclock updates which are isolated to a given vcpu, such as
1736 * vcpu->cpu migration, should not allow system_timestamp from
1737 * the rest of the vcpus to remain static. Otherwise ntp frequency
1738 * correction applies to one vcpu's system_timestamp but not
1739 * the others.
1740 *
1741 * So in those cases, request a kvmclock update for all vcpus.
1742 * We need to rate-limit these requests though, as they can
1743 * considerably slow guests that have a large number of vcpus.
1744 * The time for a remote vcpu to update its kvmclock is bound
1745 * by the delay we use to rate-limit the updates.
1746 */
1747
1748 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1749
1750 static void kvmclock_update_fn(struct work_struct *work)
1751 {
1752 int i;
1753 struct delayed_work *dwork = to_delayed_work(work);
1754 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1755 kvmclock_update_work);
1756 struct kvm *kvm = container_of(ka, struct kvm, arch);
1757 struct kvm_vcpu *vcpu;
1758
1759 kvm_for_each_vcpu(i, vcpu, kvm) {
1760 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1761 kvm_vcpu_kick(vcpu);
1762 }
1763 }
1764
1765 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1766 {
1767 struct kvm *kvm = v->kvm;
1768
1769 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1770 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1771 KVMCLOCK_UPDATE_DELAY);
1772 }
1773
1774 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1775
1776 static void kvmclock_sync_fn(struct work_struct *work)
1777 {
1778 struct delayed_work *dwork = to_delayed_work(work);
1779 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1780 kvmclock_sync_work);
1781 struct kvm *kvm = container_of(ka, struct kvm, arch);
1782
1783 if (!kvmclock_periodic_sync)
1784 return;
1785
1786 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1787 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1788 KVMCLOCK_SYNC_PERIOD);
1789 }
1790
1791 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1792 {
1793 u64 mcg_cap = vcpu->arch.mcg_cap;
1794 unsigned bank_num = mcg_cap & 0xff;
1795
1796 switch (msr) {
1797 case MSR_IA32_MCG_STATUS:
1798 vcpu->arch.mcg_status = data;
1799 break;
1800 case MSR_IA32_MCG_CTL:
1801 if (!(mcg_cap & MCG_CTL_P))
1802 return 1;
1803 if (data != 0 && data != ~(u64)0)
1804 return -1;
1805 vcpu->arch.mcg_ctl = data;
1806 break;
1807 default:
1808 if (msr >= MSR_IA32_MC0_CTL &&
1809 msr < MSR_IA32_MCx_CTL(bank_num)) {
1810 u32 offset = msr - MSR_IA32_MC0_CTL;
1811 /* only 0 or all 1s can be written to IA32_MCi_CTL
1812 * some Linux kernels though clear bit 10 in bank 4 to
1813 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1814 * this to avoid an uncatched #GP in the guest
1815 */
1816 if ((offset & 0x3) == 0 &&
1817 data != 0 && (data | (1 << 10)) != ~(u64)0)
1818 return -1;
1819 vcpu->arch.mce_banks[offset] = data;
1820 break;
1821 }
1822 return 1;
1823 }
1824 return 0;
1825 }
1826
1827 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1828 {
1829 struct kvm *kvm = vcpu->kvm;
1830 int lm = is_long_mode(vcpu);
1831 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1832 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1833 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1834 : kvm->arch.xen_hvm_config.blob_size_32;
1835 u32 page_num = data & ~PAGE_MASK;
1836 u64 page_addr = data & PAGE_MASK;
1837 u8 *page;
1838 int r;
1839
1840 r = -E2BIG;
1841 if (page_num >= blob_size)
1842 goto out;
1843 r = -ENOMEM;
1844 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1845 if (IS_ERR(page)) {
1846 r = PTR_ERR(page);
1847 goto out;
1848 }
1849 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
1850 goto out_free;
1851 r = 0;
1852 out_free:
1853 kfree(page);
1854 out:
1855 return r;
1856 }
1857
1858 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1859 {
1860 gpa_t gpa = data & ~0x3f;
1861
1862 /* Bits 2:5 are reserved, Should be zero */
1863 if (data & 0x3c)
1864 return 1;
1865
1866 vcpu->arch.apf.msr_val = data;
1867
1868 if (!(data & KVM_ASYNC_PF_ENABLED)) {
1869 kvm_clear_async_pf_completion_queue(vcpu);
1870 kvm_async_pf_hash_reset(vcpu);
1871 return 0;
1872 }
1873
1874 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1875 sizeof(u32)))
1876 return 1;
1877
1878 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1879 kvm_async_pf_wakeup_all(vcpu);
1880 return 0;
1881 }
1882
1883 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1884 {
1885 vcpu->arch.pv_time_enabled = false;
1886 }
1887
1888 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1889 {
1890 u64 delta;
1891
1892 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1893 return;
1894
1895 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1896 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1897 vcpu->arch.st.accum_steal = delta;
1898 }
1899
1900 static void record_steal_time(struct kvm_vcpu *vcpu)
1901 {
1902 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1903 return;
1904
1905 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1906 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1907 return;
1908
1909 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1910 vcpu->arch.st.steal.version += 2;
1911 vcpu->arch.st.accum_steal = 0;
1912
1913 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1914 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1915 }
1916
1917 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1918 {
1919 bool pr = false;
1920 u32 msr = msr_info->index;
1921 u64 data = msr_info->data;
1922
1923 switch (msr) {
1924 case MSR_AMD64_NB_CFG:
1925 case MSR_IA32_UCODE_REV:
1926 case MSR_IA32_UCODE_WRITE:
1927 case MSR_VM_HSAVE_PA:
1928 case MSR_AMD64_PATCH_LOADER:
1929 case MSR_AMD64_BU_CFG2:
1930 break;
1931
1932 case MSR_EFER:
1933 return set_efer(vcpu, data);
1934 case MSR_K7_HWCR:
1935 data &= ~(u64)0x40; /* ignore flush filter disable */
1936 data &= ~(u64)0x100; /* ignore ignne emulation enable */
1937 data &= ~(u64)0x8; /* ignore TLB cache disable */
1938 data &= ~(u64)0x40000; /* ignore Mc status write enable */
1939 if (data != 0) {
1940 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1941 data);
1942 return 1;
1943 }
1944 break;
1945 case MSR_FAM10H_MMIO_CONF_BASE:
1946 if (data != 0) {
1947 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1948 "0x%llx\n", data);
1949 return 1;
1950 }
1951 break;
1952 case MSR_IA32_DEBUGCTLMSR:
1953 if (!data) {
1954 /* We support the non-activated case already */
1955 break;
1956 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1957 /* Values other than LBR and BTF are vendor-specific,
1958 thus reserved and should throw a #GP */
1959 return 1;
1960 }
1961 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1962 __func__, data);
1963 break;
1964 case 0x200 ... 0x2ff:
1965 return kvm_mtrr_set_msr(vcpu, msr, data);
1966 case MSR_IA32_APICBASE:
1967 return kvm_set_apic_base(vcpu, msr_info);
1968 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1969 return kvm_x2apic_msr_write(vcpu, msr, data);
1970 case MSR_IA32_TSCDEADLINE:
1971 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1972 break;
1973 case MSR_IA32_TSC_ADJUST:
1974 if (guest_cpuid_has_tsc_adjust(vcpu)) {
1975 if (!msr_info->host_initiated) {
1976 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
1977 adjust_tsc_offset_guest(vcpu, adj);
1978 }
1979 vcpu->arch.ia32_tsc_adjust_msr = data;
1980 }
1981 break;
1982 case MSR_IA32_MISC_ENABLE:
1983 vcpu->arch.ia32_misc_enable_msr = data;
1984 break;
1985 case MSR_IA32_SMBASE:
1986 if (!msr_info->host_initiated)
1987 return 1;
1988 vcpu->arch.smbase = data;
1989 break;
1990 case MSR_KVM_WALL_CLOCK_NEW:
1991 case MSR_KVM_WALL_CLOCK:
1992 vcpu->kvm->arch.wall_clock = data;
1993 kvm_write_wall_clock(vcpu->kvm, data);
1994 break;
1995 case MSR_KVM_SYSTEM_TIME_NEW:
1996 case MSR_KVM_SYSTEM_TIME: {
1997 u64 gpa_offset;
1998 struct kvm_arch *ka = &vcpu->kvm->arch;
1999
2000 kvmclock_reset(vcpu);
2001
2002 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2003 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2004
2005 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2006 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2007 &vcpu->requests);
2008
2009 ka->boot_vcpu_runs_old_kvmclock = tmp;
2010
2011 ka->kvmclock_offset = -get_kernel_ns();
2012 }
2013
2014 vcpu->arch.time = data;
2015 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2016
2017 /* we verify if the enable bit is set... */
2018 if (!(data & 1))
2019 break;
2020
2021 gpa_offset = data & ~(PAGE_MASK | 1);
2022
2023 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2024 &vcpu->arch.pv_time, data & ~1ULL,
2025 sizeof(struct pvclock_vcpu_time_info)))
2026 vcpu->arch.pv_time_enabled = false;
2027 else
2028 vcpu->arch.pv_time_enabled = true;
2029
2030 break;
2031 }
2032 case MSR_KVM_ASYNC_PF_EN:
2033 if (kvm_pv_enable_async_pf(vcpu, data))
2034 return 1;
2035 break;
2036 case MSR_KVM_STEAL_TIME:
2037
2038 if (unlikely(!sched_info_on()))
2039 return 1;
2040
2041 if (data & KVM_STEAL_RESERVED_MASK)
2042 return 1;
2043
2044 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2045 data & KVM_STEAL_VALID_BITS,
2046 sizeof(struct kvm_steal_time)))
2047 return 1;
2048
2049 vcpu->arch.st.msr_val = data;
2050
2051 if (!(data & KVM_MSR_ENABLED))
2052 break;
2053
2054 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2055
2056 preempt_disable();
2057 accumulate_steal_time(vcpu);
2058 preempt_enable();
2059
2060 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2061
2062 break;
2063 case MSR_KVM_PV_EOI_EN:
2064 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2065 return 1;
2066 break;
2067
2068 case MSR_IA32_MCG_CTL:
2069 case MSR_IA32_MCG_STATUS:
2070 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2071 return set_msr_mce(vcpu, msr, data);
2072
2073 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2074 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2075 pr = true; /* fall through */
2076 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2077 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2078 if (kvm_pmu_is_valid_msr(vcpu, msr))
2079 return kvm_pmu_set_msr(vcpu, msr_info);
2080
2081 if (pr || data != 0)
2082 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2083 "0x%x data 0x%llx\n", msr, data);
2084 break;
2085 case MSR_K7_CLK_CTL:
2086 /*
2087 * Ignore all writes to this no longer documented MSR.
2088 * Writes are only relevant for old K7 processors,
2089 * all pre-dating SVM, but a recommended workaround from
2090 * AMD for these chips. It is possible to specify the
2091 * affected processor models on the command line, hence
2092 * the need to ignore the workaround.
2093 */
2094 break;
2095 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2096 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2097 case HV_X64_MSR_CRASH_CTL:
2098 return kvm_hv_set_msr_common(vcpu, msr, data,
2099 msr_info->host_initiated);
2100 case MSR_IA32_BBL_CR_CTL3:
2101 /* Drop writes to this legacy MSR -- see rdmsr
2102 * counterpart for further detail.
2103 */
2104 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2105 break;
2106 case MSR_AMD64_OSVW_ID_LENGTH:
2107 if (!guest_cpuid_has_osvw(vcpu))
2108 return 1;
2109 vcpu->arch.osvw.length = data;
2110 break;
2111 case MSR_AMD64_OSVW_STATUS:
2112 if (!guest_cpuid_has_osvw(vcpu))
2113 return 1;
2114 vcpu->arch.osvw.status = data;
2115 break;
2116 default:
2117 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2118 return xen_hvm_config(vcpu, data);
2119 if (kvm_pmu_is_valid_msr(vcpu, msr))
2120 return kvm_pmu_set_msr(vcpu, msr_info);
2121 if (!ignore_msrs) {
2122 vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2123 msr, data);
2124 return 1;
2125 } else {
2126 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2127 msr, data);
2128 break;
2129 }
2130 }
2131 return 0;
2132 }
2133 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2134
2135
2136 /*
2137 * Reads an msr value (of 'msr_index') into 'pdata'.
2138 * Returns 0 on success, non-0 otherwise.
2139 * Assumes vcpu_load() was already called.
2140 */
2141 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2142 {
2143 return kvm_x86_ops->get_msr(vcpu, msr);
2144 }
2145 EXPORT_SYMBOL_GPL(kvm_get_msr);
2146
2147 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2148 {
2149 u64 data;
2150 u64 mcg_cap = vcpu->arch.mcg_cap;
2151 unsigned bank_num = mcg_cap & 0xff;
2152
2153 switch (msr) {
2154 case MSR_IA32_P5_MC_ADDR:
2155 case MSR_IA32_P5_MC_TYPE:
2156 data = 0;
2157 break;
2158 case MSR_IA32_MCG_CAP:
2159 data = vcpu->arch.mcg_cap;
2160 break;
2161 case MSR_IA32_MCG_CTL:
2162 if (!(mcg_cap & MCG_CTL_P))
2163 return 1;
2164 data = vcpu->arch.mcg_ctl;
2165 break;
2166 case MSR_IA32_MCG_STATUS:
2167 data = vcpu->arch.mcg_status;
2168 break;
2169 default:
2170 if (msr >= MSR_IA32_MC0_CTL &&
2171 msr < MSR_IA32_MCx_CTL(bank_num)) {
2172 u32 offset = msr - MSR_IA32_MC0_CTL;
2173 data = vcpu->arch.mce_banks[offset];
2174 break;
2175 }
2176 return 1;
2177 }
2178 *pdata = data;
2179 return 0;
2180 }
2181
2182 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2183 {
2184 switch (msr_info->index) {
2185 case MSR_IA32_PLATFORM_ID:
2186 case MSR_IA32_EBL_CR_POWERON:
2187 case MSR_IA32_DEBUGCTLMSR:
2188 case MSR_IA32_LASTBRANCHFROMIP:
2189 case MSR_IA32_LASTBRANCHTOIP:
2190 case MSR_IA32_LASTINTFROMIP:
2191 case MSR_IA32_LASTINTTOIP:
2192 case MSR_K8_SYSCFG:
2193 case MSR_K8_TSEG_ADDR:
2194 case MSR_K8_TSEG_MASK:
2195 case MSR_K7_HWCR:
2196 case MSR_VM_HSAVE_PA:
2197 case MSR_K8_INT_PENDING_MSG:
2198 case MSR_AMD64_NB_CFG:
2199 case MSR_FAM10H_MMIO_CONF_BASE:
2200 case MSR_AMD64_BU_CFG2:
2201 msr_info->data = 0;
2202 break;
2203 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2204 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2205 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2206 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2207 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2208 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2209 msr_info->data = 0;
2210 break;
2211 case MSR_IA32_UCODE_REV:
2212 msr_info->data = 0x100000000ULL;
2213 break;
2214 case MSR_MTRRcap:
2215 case 0x200 ... 0x2ff:
2216 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2217 case 0xcd: /* fsb frequency */
2218 msr_info->data = 3;
2219 break;
2220 /*
2221 * MSR_EBC_FREQUENCY_ID
2222 * Conservative value valid for even the basic CPU models.
2223 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2224 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2225 * and 266MHz for model 3, or 4. Set Core Clock
2226 * Frequency to System Bus Frequency Ratio to 1 (bits
2227 * 31:24) even though these are only valid for CPU
2228 * models > 2, however guests may end up dividing or
2229 * multiplying by zero otherwise.
2230 */
2231 case MSR_EBC_FREQUENCY_ID:
2232 msr_info->data = 1 << 24;
2233 break;
2234 case MSR_IA32_APICBASE:
2235 msr_info->data = kvm_get_apic_base(vcpu);
2236 break;
2237 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2238 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2239 break;
2240 case MSR_IA32_TSCDEADLINE:
2241 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2242 break;
2243 case MSR_IA32_TSC_ADJUST:
2244 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2245 break;
2246 case MSR_IA32_MISC_ENABLE:
2247 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2248 break;
2249 case MSR_IA32_SMBASE:
2250 if (!msr_info->host_initiated)
2251 return 1;
2252 msr_info->data = vcpu->arch.smbase;
2253 break;
2254 case MSR_IA32_PERF_STATUS:
2255 /* TSC increment by tick */
2256 msr_info->data = 1000ULL;
2257 /* CPU multiplier */
2258 msr_info->data |= (((uint64_t)4ULL) << 40);
2259 break;
2260 case MSR_EFER:
2261 msr_info->data = vcpu->arch.efer;
2262 break;
2263 case MSR_KVM_WALL_CLOCK:
2264 case MSR_KVM_WALL_CLOCK_NEW:
2265 msr_info->data = vcpu->kvm->arch.wall_clock;
2266 break;
2267 case MSR_KVM_SYSTEM_TIME:
2268 case MSR_KVM_SYSTEM_TIME_NEW:
2269 msr_info->data = vcpu->arch.time;
2270 break;
2271 case MSR_KVM_ASYNC_PF_EN:
2272 msr_info->data = vcpu->arch.apf.msr_val;
2273 break;
2274 case MSR_KVM_STEAL_TIME:
2275 msr_info->data = vcpu->arch.st.msr_val;
2276 break;
2277 case MSR_KVM_PV_EOI_EN:
2278 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2279 break;
2280 case MSR_IA32_P5_MC_ADDR:
2281 case MSR_IA32_P5_MC_TYPE:
2282 case MSR_IA32_MCG_CAP:
2283 case MSR_IA32_MCG_CTL:
2284 case MSR_IA32_MCG_STATUS:
2285 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2286 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2287 case MSR_K7_CLK_CTL:
2288 /*
2289 * Provide expected ramp-up count for K7. All other
2290 * are set to zero, indicating minimum divisors for
2291 * every field.
2292 *
2293 * This prevents guest kernels on AMD host with CPU
2294 * type 6, model 8 and higher from exploding due to
2295 * the rdmsr failing.
2296 */
2297 msr_info->data = 0x20000000;
2298 break;
2299 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2300 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2301 case HV_X64_MSR_CRASH_CTL:
2302 return kvm_hv_get_msr_common(vcpu,
2303 msr_info->index, &msr_info->data);
2304 break;
2305 case MSR_IA32_BBL_CR_CTL3:
2306 /* This legacy MSR exists but isn't fully documented in current
2307 * silicon. It is however accessed by winxp in very narrow
2308 * scenarios where it sets bit #19, itself documented as
2309 * a "reserved" bit. Best effort attempt to source coherent
2310 * read data here should the balance of the register be
2311 * interpreted by the guest:
2312 *
2313 * L2 cache control register 3: 64GB range, 256KB size,
2314 * enabled, latency 0x1, configured
2315 */
2316 msr_info->data = 0xbe702111;
2317 break;
2318 case MSR_AMD64_OSVW_ID_LENGTH:
2319 if (!guest_cpuid_has_osvw(vcpu))
2320 return 1;
2321 msr_info->data = vcpu->arch.osvw.length;
2322 break;
2323 case MSR_AMD64_OSVW_STATUS:
2324 if (!guest_cpuid_has_osvw(vcpu))
2325 return 1;
2326 msr_info->data = vcpu->arch.osvw.status;
2327 break;
2328 default:
2329 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2330 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2331 if (!ignore_msrs) {
2332 vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2333 return 1;
2334 } else {
2335 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2336 msr_info->data = 0;
2337 }
2338 break;
2339 }
2340 return 0;
2341 }
2342 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2343
2344 /*
2345 * Read or write a bunch of msrs. All parameters are kernel addresses.
2346 *
2347 * @return number of msrs set successfully.
2348 */
2349 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2350 struct kvm_msr_entry *entries,
2351 int (*do_msr)(struct kvm_vcpu *vcpu,
2352 unsigned index, u64 *data))
2353 {
2354 int i, idx;
2355
2356 idx = srcu_read_lock(&vcpu->kvm->srcu);
2357 for (i = 0; i < msrs->nmsrs; ++i)
2358 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2359 break;
2360 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2361
2362 return i;
2363 }
2364
2365 /*
2366 * Read or write a bunch of msrs. Parameters are user addresses.
2367 *
2368 * @return number of msrs set successfully.
2369 */
2370 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2371 int (*do_msr)(struct kvm_vcpu *vcpu,
2372 unsigned index, u64 *data),
2373 int writeback)
2374 {
2375 struct kvm_msrs msrs;
2376 struct kvm_msr_entry *entries;
2377 int r, n;
2378 unsigned size;
2379
2380 r = -EFAULT;
2381 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2382 goto out;
2383
2384 r = -E2BIG;
2385 if (msrs.nmsrs >= MAX_IO_MSRS)
2386 goto out;
2387
2388 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2389 entries = memdup_user(user_msrs->entries, size);
2390 if (IS_ERR(entries)) {
2391 r = PTR_ERR(entries);
2392 goto out;
2393 }
2394
2395 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2396 if (r < 0)
2397 goto out_free;
2398
2399 r = -EFAULT;
2400 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2401 goto out_free;
2402
2403 r = n;
2404
2405 out_free:
2406 kfree(entries);
2407 out:
2408 return r;
2409 }
2410
2411 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2412 {
2413 int r;
2414
2415 switch (ext) {
2416 case KVM_CAP_IRQCHIP:
2417 case KVM_CAP_HLT:
2418 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2419 case KVM_CAP_SET_TSS_ADDR:
2420 case KVM_CAP_EXT_CPUID:
2421 case KVM_CAP_EXT_EMUL_CPUID:
2422 case KVM_CAP_CLOCKSOURCE:
2423 case KVM_CAP_PIT:
2424 case KVM_CAP_NOP_IO_DELAY:
2425 case KVM_CAP_MP_STATE:
2426 case KVM_CAP_SYNC_MMU:
2427 case KVM_CAP_USER_NMI:
2428 case KVM_CAP_REINJECT_CONTROL:
2429 case KVM_CAP_IRQ_INJECT_STATUS:
2430 case KVM_CAP_IOEVENTFD:
2431 case KVM_CAP_IOEVENTFD_NO_LENGTH:
2432 case KVM_CAP_PIT2:
2433 case KVM_CAP_PIT_STATE2:
2434 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2435 case KVM_CAP_XEN_HVM:
2436 case KVM_CAP_ADJUST_CLOCK:
2437 case KVM_CAP_VCPU_EVENTS:
2438 case KVM_CAP_HYPERV:
2439 case KVM_CAP_HYPERV_VAPIC:
2440 case KVM_CAP_HYPERV_SPIN:
2441 case KVM_CAP_PCI_SEGMENT:
2442 case KVM_CAP_DEBUGREGS:
2443 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2444 case KVM_CAP_XSAVE:
2445 case KVM_CAP_ASYNC_PF:
2446 case KVM_CAP_GET_TSC_KHZ:
2447 case KVM_CAP_KVMCLOCK_CTRL:
2448 case KVM_CAP_READONLY_MEM:
2449 case KVM_CAP_HYPERV_TIME:
2450 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2451 case KVM_CAP_TSC_DEADLINE_TIMER:
2452 case KVM_CAP_ENABLE_CAP_VM:
2453 case KVM_CAP_DISABLE_QUIRKS:
2454 case KVM_CAP_SET_BOOT_CPU_ID:
2455 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2456 case KVM_CAP_ASSIGN_DEV_IRQ:
2457 case KVM_CAP_PCI_2_3:
2458 #endif
2459 r = 1;
2460 break;
2461 case KVM_CAP_X86_SMM:
2462 /* SMBASE is usually relocated above 1M on modern chipsets,
2463 * and SMM handlers might indeed rely on 4G segment limits,
2464 * so do not report SMM to be available if real mode is
2465 * emulated via vm86 mode. Still, do not go to great lengths
2466 * to avoid userspace's usage of the feature, because it is a
2467 * fringe case that is not enabled except via specific settings
2468 * of the module parameters.
2469 */
2470 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2471 break;
2472 case KVM_CAP_COALESCED_MMIO:
2473 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2474 break;
2475 case KVM_CAP_VAPIC:
2476 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2477 break;
2478 case KVM_CAP_NR_VCPUS:
2479 r = KVM_SOFT_MAX_VCPUS;
2480 break;
2481 case KVM_CAP_MAX_VCPUS:
2482 r = KVM_MAX_VCPUS;
2483 break;
2484 case KVM_CAP_NR_MEMSLOTS:
2485 r = KVM_USER_MEM_SLOTS;
2486 break;
2487 case KVM_CAP_PV_MMU: /* obsolete */
2488 r = 0;
2489 break;
2490 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2491 case KVM_CAP_IOMMU:
2492 r = iommu_present(&pci_bus_type);
2493 break;
2494 #endif
2495 case KVM_CAP_MCE:
2496 r = KVM_MAX_MCE_BANKS;
2497 break;
2498 case KVM_CAP_XCRS:
2499 r = cpu_has_xsave;
2500 break;
2501 case KVM_CAP_TSC_CONTROL:
2502 r = kvm_has_tsc_control;
2503 break;
2504 default:
2505 r = 0;
2506 break;
2507 }
2508 return r;
2509
2510 }
2511
2512 long kvm_arch_dev_ioctl(struct file *filp,
2513 unsigned int ioctl, unsigned long arg)
2514 {
2515 void __user *argp = (void __user *)arg;
2516 long r;
2517
2518 switch (ioctl) {
2519 case KVM_GET_MSR_INDEX_LIST: {
2520 struct kvm_msr_list __user *user_msr_list = argp;
2521 struct kvm_msr_list msr_list;
2522 unsigned n;
2523
2524 r = -EFAULT;
2525 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2526 goto out;
2527 n = msr_list.nmsrs;
2528 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2529 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2530 goto out;
2531 r = -E2BIG;
2532 if (n < msr_list.nmsrs)
2533 goto out;
2534 r = -EFAULT;
2535 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2536 num_msrs_to_save * sizeof(u32)))
2537 goto out;
2538 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2539 &emulated_msrs,
2540 num_emulated_msrs * sizeof(u32)))
2541 goto out;
2542 r = 0;
2543 break;
2544 }
2545 case KVM_GET_SUPPORTED_CPUID:
2546 case KVM_GET_EMULATED_CPUID: {
2547 struct kvm_cpuid2 __user *cpuid_arg = argp;
2548 struct kvm_cpuid2 cpuid;
2549
2550 r = -EFAULT;
2551 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2552 goto out;
2553
2554 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2555 ioctl);
2556 if (r)
2557 goto out;
2558
2559 r = -EFAULT;
2560 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2561 goto out;
2562 r = 0;
2563 break;
2564 }
2565 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2566 u64 mce_cap;
2567
2568 mce_cap = KVM_MCE_CAP_SUPPORTED;
2569 r = -EFAULT;
2570 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2571 goto out;
2572 r = 0;
2573 break;
2574 }
2575 default:
2576 r = -EINVAL;
2577 }
2578 out:
2579 return r;
2580 }
2581
2582 static void wbinvd_ipi(void *garbage)
2583 {
2584 wbinvd();
2585 }
2586
2587 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2588 {
2589 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2590 }
2591
2592 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2593 {
2594 /* Address WBINVD may be executed by guest */
2595 if (need_emulate_wbinvd(vcpu)) {
2596 if (kvm_x86_ops->has_wbinvd_exit())
2597 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2598 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2599 smp_call_function_single(vcpu->cpu,
2600 wbinvd_ipi, NULL, 1);
2601 }
2602
2603 kvm_x86_ops->vcpu_load(vcpu, cpu);
2604
2605 /* Apply any externally detected TSC adjustments (due to suspend) */
2606 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2607 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2608 vcpu->arch.tsc_offset_adjustment = 0;
2609 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2610 }
2611
2612 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2613 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2614 rdtsc() - vcpu->arch.last_host_tsc;
2615 if (tsc_delta < 0)
2616 mark_tsc_unstable("KVM discovered backwards TSC");
2617 if (check_tsc_unstable()) {
2618 u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2619 vcpu->arch.last_guest_tsc);
2620 kvm_x86_ops->write_tsc_offset(vcpu, offset);
2621 vcpu->arch.tsc_catchup = 1;
2622 }
2623 /*
2624 * On a host with synchronized TSC, there is no need to update
2625 * kvmclock on vcpu->cpu migration
2626 */
2627 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2628 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2629 if (vcpu->cpu != cpu)
2630 kvm_migrate_timers(vcpu);
2631 vcpu->cpu = cpu;
2632 }
2633
2634 accumulate_steal_time(vcpu);
2635 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2636 }
2637
2638 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2639 {
2640 kvm_x86_ops->vcpu_put(vcpu);
2641 kvm_put_guest_fpu(vcpu);
2642 vcpu->arch.last_host_tsc = rdtsc();
2643 }
2644
2645 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2646 struct kvm_lapic_state *s)
2647 {
2648 kvm_x86_ops->sync_pir_to_irr(vcpu);
2649 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2650
2651 return 0;
2652 }
2653
2654 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2655 struct kvm_lapic_state *s)
2656 {
2657 kvm_apic_post_state_restore(vcpu, s);
2658 update_cr8_intercept(vcpu);
2659
2660 return 0;
2661 }
2662
2663 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2664 struct kvm_interrupt *irq)
2665 {
2666 if (irq->irq >= KVM_NR_INTERRUPTS)
2667 return -EINVAL;
2668 if (irqchip_in_kernel(vcpu->kvm))
2669 return -ENXIO;
2670
2671 kvm_queue_interrupt(vcpu, irq->irq, false);
2672 kvm_make_request(KVM_REQ_EVENT, vcpu);
2673
2674 return 0;
2675 }
2676
2677 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2678 {
2679 kvm_inject_nmi(vcpu);
2680
2681 return 0;
2682 }
2683
2684 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2685 {
2686 kvm_make_request(KVM_REQ_SMI, vcpu);
2687
2688 return 0;
2689 }
2690
2691 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2692 struct kvm_tpr_access_ctl *tac)
2693 {
2694 if (tac->flags)
2695 return -EINVAL;
2696 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2697 return 0;
2698 }
2699
2700 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2701 u64 mcg_cap)
2702 {
2703 int r;
2704 unsigned bank_num = mcg_cap & 0xff, bank;
2705
2706 r = -EINVAL;
2707 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2708 goto out;
2709 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2710 goto out;
2711 r = 0;
2712 vcpu->arch.mcg_cap = mcg_cap;
2713 /* Init IA32_MCG_CTL to all 1s */
2714 if (mcg_cap & MCG_CTL_P)
2715 vcpu->arch.mcg_ctl = ~(u64)0;
2716 /* Init IA32_MCi_CTL to all 1s */
2717 for (bank = 0; bank < bank_num; bank++)
2718 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2719 out:
2720 return r;
2721 }
2722
2723 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2724 struct kvm_x86_mce *mce)
2725 {
2726 u64 mcg_cap = vcpu->arch.mcg_cap;
2727 unsigned bank_num = mcg_cap & 0xff;
2728 u64 *banks = vcpu->arch.mce_banks;
2729
2730 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2731 return -EINVAL;
2732 /*
2733 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2734 * reporting is disabled
2735 */
2736 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2737 vcpu->arch.mcg_ctl != ~(u64)0)
2738 return 0;
2739 banks += 4 * mce->bank;
2740 /*
2741 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2742 * reporting is disabled for the bank
2743 */
2744 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2745 return 0;
2746 if (mce->status & MCI_STATUS_UC) {
2747 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2748 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2749 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2750 return 0;
2751 }
2752 if (banks[1] & MCI_STATUS_VAL)
2753 mce->status |= MCI_STATUS_OVER;
2754 banks[2] = mce->addr;
2755 banks[3] = mce->misc;
2756 vcpu->arch.mcg_status = mce->mcg_status;
2757 banks[1] = mce->status;
2758 kvm_queue_exception(vcpu, MC_VECTOR);
2759 } else if (!(banks[1] & MCI_STATUS_VAL)
2760 || !(banks[1] & MCI_STATUS_UC)) {
2761 if (banks[1] & MCI_STATUS_VAL)
2762 mce->status |= MCI_STATUS_OVER;
2763 banks[2] = mce->addr;
2764 banks[3] = mce->misc;
2765 banks[1] = mce->status;
2766 } else
2767 banks[1] |= MCI_STATUS_OVER;
2768 return 0;
2769 }
2770
2771 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2772 struct kvm_vcpu_events *events)
2773 {
2774 process_nmi(vcpu);
2775 events->exception.injected =
2776 vcpu->arch.exception.pending &&
2777 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2778 events->exception.nr = vcpu->arch.exception.nr;
2779 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2780 events->exception.pad = 0;
2781 events->exception.error_code = vcpu->arch.exception.error_code;
2782
2783 events->interrupt.injected =
2784 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2785 events->interrupt.nr = vcpu->arch.interrupt.nr;
2786 events->interrupt.soft = 0;
2787 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
2788
2789 events->nmi.injected = vcpu->arch.nmi_injected;
2790 events->nmi.pending = vcpu->arch.nmi_pending != 0;
2791 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2792 events->nmi.pad = 0;
2793
2794 events->sipi_vector = 0; /* never valid when reporting to user space */
2795
2796 events->smi.smm = is_smm(vcpu);
2797 events->smi.pending = vcpu->arch.smi_pending;
2798 events->smi.smm_inside_nmi =
2799 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
2800 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
2801
2802 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2803 | KVM_VCPUEVENT_VALID_SHADOW
2804 | KVM_VCPUEVENT_VALID_SMM);
2805 memset(&events->reserved, 0, sizeof(events->reserved));
2806 }
2807
2808 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2809 struct kvm_vcpu_events *events)
2810 {
2811 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2812 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2813 | KVM_VCPUEVENT_VALID_SHADOW
2814 | KVM_VCPUEVENT_VALID_SMM))
2815 return -EINVAL;
2816
2817 process_nmi(vcpu);
2818 vcpu->arch.exception.pending = events->exception.injected;
2819 vcpu->arch.exception.nr = events->exception.nr;
2820 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2821 vcpu->arch.exception.error_code = events->exception.error_code;
2822
2823 vcpu->arch.interrupt.pending = events->interrupt.injected;
2824 vcpu->arch.interrupt.nr = events->interrupt.nr;
2825 vcpu->arch.interrupt.soft = events->interrupt.soft;
2826 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2827 kvm_x86_ops->set_interrupt_shadow(vcpu,
2828 events->interrupt.shadow);
2829
2830 vcpu->arch.nmi_injected = events->nmi.injected;
2831 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2832 vcpu->arch.nmi_pending = events->nmi.pending;
2833 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2834
2835 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2836 kvm_vcpu_has_lapic(vcpu))
2837 vcpu->arch.apic->sipi_vector = events->sipi_vector;
2838
2839 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
2840 if (events->smi.smm)
2841 vcpu->arch.hflags |= HF_SMM_MASK;
2842 else
2843 vcpu->arch.hflags &= ~HF_SMM_MASK;
2844 vcpu->arch.smi_pending = events->smi.pending;
2845 if (events->smi.smm_inside_nmi)
2846 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
2847 else
2848 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
2849 if (kvm_vcpu_has_lapic(vcpu)) {
2850 if (events->smi.latched_init)
2851 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
2852 else
2853 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
2854 }
2855 }
2856
2857 kvm_make_request(KVM_REQ_EVENT, vcpu);
2858
2859 return 0;
2860 }
2861
2862 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2863 struct kvm_debugregs *dbgregs)
2864 {
2865 unsigned long val;
2866
2867 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2868 kvm_get_dr(vcpu, 6, &val);
2869 dbgregs->dr6 = val;
2870 dbgregs->dr7 = vcpu->arch.dr7;
2871 dbgregs->flags = 0;
2872 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2873 }
2874
2875 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2876 struct kvm_debugregs *dbgregs)
2877 {
2878 if (dbgregs->flags)
2879 return -EINVAL;
2880
2881 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2882 kvm_update_dr0123(vcpu);
2883 vcpu->arch.dr6 = dbgregs->dr6;
2884 kvm_update_dr6(vcpu);
2885 vcpu->arch.dr7 = dbgregs->dr7;
2886 kvm_update_dr7(vcpu);
2887
2888 return 0;
2889 }
2890
2891 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
2892
2893 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
2894 {
2895 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
2896 u64 xstate_bv = xsave->header.xfeatures;
2897 u64 valid;
2898
2899 /*
2900 * Copy legacy XSAVE area, to avoid complications with CPUID
2901 * leaves 0 and 1 in the loop below.
2902 */
2903 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
2904
2905 /* Set XSTATE_BV */
2906 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
2907
2908 /*
2909 * Copy each region from the possibly compacted offset to the
2910 * non-compacted offset.
2911 */
2912 valid = xstate_bv & ~XSTATE_FPSSE;
2913 while (valid) {
2914 u64 feature = valid & -valid;
2915 int index = fls64(feature) - 1;
2916 void *src = get_xsave_addr(xsave, feature);
2917
2918 if (src) {
2919 u32 size, offset, ecx, edx;
2920 cpuid_count(XSTATE_CPUID, index,
2921 &size, &offset, &ecx, &edx);
2922 memcpy(dest + offset, src, size);
2923 }
2924
2925 valid -= feature;
2926 }
2927 }
2928
2929 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
2930 {
2931 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
2932 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
2933 u64 valid;
2934
2935 /*
2936 * Copy legacy XSAVE area, to avoid complications with CPUID
2937 * leaves 0 and 1 in the loop below.
2938 */
2939 memcpy(xsave, src, XSAVE_HDR_OFFSET);
2940
2941 /* Set XSTATE_BV and possibly XCOMP_BV. */
2942 xsave->header.xfeatures = xstate_bv;
2943 if (cpu_has_xsaves)
2944 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
2945
2946 /*
2947 * Copy each region from the non-compacted offset to the
2948 * possibly compacted offset.
2949 */
2950 valid = xstate_bv & ~XSTATE_FPSSE;
2951 while (valid) {
2952 u64 feature = valid & -valid;
2953 int index = fls64(feature) - 1;
2954 void *dest = get_xsave_addr(xsave, feature);
2955
2956 if (dest) {
2957 u32 size, offset, ecx, edx;
2958 cpuid_count(XSTATE_CPUID, index,
2959 &size, &offset, &ecx, &edx);
2960 memcpy(dest, src + offset, size);
2961 }
2962
2963 valid -= feature;
2964 }
2965 }
2966
2967 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2968 struct kvm_xsave *guest_xsave)
2969 {
2970 if (cpu_has_xsave) {
2971 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
2972 fill_xsave((u8 *) guest_xsave->region, vcpu);
2973 } else {
2974 memcpy(guest_xsave->region,
2975 &vcpu->arch.guest_fpu.state.fxsave,
2976 sizeof(struct fxregs_state));
2977 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2978 XSTATE_FPSSE;
2979 }
2980 }
2981
2982 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2983 struct kvm_xsave *guest_xsave)
2984 {
2985 u64 xstate_bv =
2986 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2987
2988 if (cpu_has_xsave) {
2989 /*
2990 * Here we allow setting states that are not present in
2991 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
2992 * with old userspace.
2993 */
2994 if (xstate_bv & ~kvm_supported_xcr0())
2995 return -EINVAL;
2996 load_xsave(vcpu, (u8 *)guest_xsave->region);
2997 } else {
2998 if (xstate_bv & ~XSTATE_FPSSE)
2999 return -EINVAL;
3000 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3001 guest_xsave->region, sizeof(struct fxregs_state));
3002 }
3003 return 0;
3004 }
3005
3006 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3007 struct kvm_xcrs *guest_xcrs)
3008 {
3009 if (!cpu_has_xsave) {
3010 guest_xcrs->nr_xcrs = 0;
3011 return;
3012 }
3013
3014 guest_xcrs->nr_xcrs = 1;
3015 guest_xcrs->flags = 0;
3016 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3017 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3018 }
3019
3020 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3021 struct kvm_xcrs *guest_xcrs)
3022 {
3023 int i, r = 0;
3024
3025 if (!cpu_has_xsave)
3026 return -EINVAL;
3027
3028 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3029 return -EINVAL;
3030
3031 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3032 /* Only support XCR0 currently */
3033 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3034 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3035 guest_xcrs->xcrs[i].value);
3036 break;
3037 }
3038 if (r)
3039 r = -EINVAL;
3040 return r;
3041 }
3042
3043 /*
3044 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3045 * stopped by the hypervisor. This function will be called from the host only.
3046 * EINVAL is returned when the host attempts to set the flag for a guest that
3047 * does not support pv clocks.
3048 */
3049 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3050 {
3051 if (!vcpu->arch.pv_time_enabled)
3052 return -EINVAL;
3053 vcpu->arch.pvclock_set_guest_stopped_request = true;
3054 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3055 return 0;
3056 }
3057
3058 long kvm_arch_vcpu_ioctl(struct file *filp,
3059 unsigned int ioctl, unsigned long arg)
3060 {
3061 struct kvm_vcpu *vcpu = filp->private_data;
3062 void __user *argp = (void __user *)arg;
3063 int r;
3064 union {
3065 struct kvm_lapic_state *lapic;
3066 struct kvm_xsave *xsave;
3067 struct kvm_xcrs *xcrs;
3068 void *buffer;
3069 } u;
3070
3071 u.buffer = NULL;
3072 switch (ioctl) {
3073 case KVM_GET_LAPIC: {
3074 r = -EINVAL;
3075 if (!vcpu->arch.apic)
3076 goto out;
3077 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3078
3079 r = -ENOMEM;
3080 if (!u.lapic)
3081 goto out;
3082 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3083 if (r)
3084 goto out;
3085 r = -EFAULT;
3086 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3087 goto out;
3088 r = 0;
3089 break;
3090 }
3091 case KVM_SET_LAPIC: {
3092 r = -EINVAL;
3093 if (!vcpu->arch.apic)
3094 goto out;
3095 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3096 if (IS_ERR(u.lapic))
3097 return PTR_ERR(u.lapic);
3098
3099 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3100 break;
3101 }
3102 case KVM_INTERRUPT: {
3103 struct kvm_interrupt irq;
3104
3105 r = -EFAULT;
3106 if (copy_from_user(&irq, argp, sizeof irq))
3107 goto out;
3108 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3109 break;
3110 }
3111 case KVM_NMI: {
3112 r = kvm_vcpu_ioctl_nmi(vcpu);
3113 break;
3114 }
3115 case KVM_SMI: {
3116 r = kvm_vcpu_ioctl_smi(vcpu);
3117 break;
3118 }
3119 case KVM_SET_CPUID: {
3120 struct kvm_cpuid __user *cpuid_arg = argp;
3121 struct kvm_cpuid cpuid;
3122
3123 r = -EFAULT;
3124 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3125 goto out;
3126 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3127 break;
3128 }
3129 case KVM_SET_CPUID2: {
3130 struct kvm_cpuid2 __user *cpuid_arg = argp;
3131 struct kvm_cpuid2 cpuid;
3132
3133 r = -EFAULT;
3134 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3135 goto out;
3136 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3137 cpuid_arg->entries);
3138 break;
3139 }
3140 case KVM_GET_CPUID2: {
3141 struct kvm_cpuid2 __user *cpuid_arg = argp;
3142 struct kvm_cpuid2 cpuid;
3143
3144 r = -EFAULT;
3145 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3146 goto out;
3147 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3148 cpuid_arg->entries);
3149 if (r)
3150 goto out;
3151 r = -EFAULT;
3152 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3153 goto out;
3154 r = 0;
3155 break;
3156 }
3157 case KVM_GET_MSRS:
3158 r = msr_io(vcpu, argp, do_get_msr, 1);
3159 break;
3160 case KVM_SET_MSRS:
3161 r = msr_io(vcpu, argp, do_set_msr, 0);
3162 break;
3163 case KVM_TPR_ACCESS_REPORTING: {
3164 struct kvm_tpr_access_ctl tac;
3165
3166 r = -EFAULT;
3167 if (copy_from_user(&tac, argp, sizeof tac))
3168 goto out;
3169 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3170 if (r)
3171 goto out;
3172 r = -EFAULT;
3173 if (copy_to_user(argp, &tac, sizeof tac))
3174 goto out;
3175 r = 0;
3176 break;
3177 };
3178 case KVM_SET_VAPIC_ADDR: {
3179 struct kvm_vapic_addr va;
3180
3181 r = -EINVAL;
3182 if (!irqchip_in_kernel(vcpu->kvm))
3183 goto out;
3184 r = -EFAULT;
3185 if (copy_from_user(&va, argp, sizeof va))
3186 goto out;
3187 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3188 break;
3189 }
3190 case KVM_X86_SETUP_MCE: {
3191 u64 mcg_cap;
3192
3193 r = -EFAULT;
3194 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3195 goto out;
3196 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3197 break;
3198 }
3199 case KVM_X86_SET_MCE: {
3200 struct kvm_x86_mce mce;
3201
3202 r = -EFAULT;
3203 if (copy_from_user(&mce, argp, sizeof mce))
3204 goto out;
3205 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3206 break;
3207 }
3208 case KVM_GET_VCPU_EVENTS: {
3209 struct kvm_vcpu_events events;
3210
3211 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3212
3213 r = -EFAULT;
3214 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3215 break;
3216 r = 0;
3217 break;
3218 }
3219 case KVM_SET_VCPU_EVENTS: {
3220 struct kvm_vcpu_events events;
3221
3222 r = -EFAULT;
3223 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3224 break;
3225
3226 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3227 break;
3228 }
3229 case KVM_GET_DEBUGREGS: {
3230 struct kvm_debugregs dbgregs;
3231
3232 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3233
3234 r = -EFAULT;
3235 if (copy_to_user(argp, &dbgregs,
3236 sizeof(struct kvm_debugregs)))
3237 break;
3238 r = 0;
3239 break;
3240 }
3241 case KVM_SET_DEBUGREGS: {
3242 struct kvm_debugregs dbgregs;
3243
3244 r = -EFAULT;
3245 if (copy_from_user(&dbgregs, argp,
3246 sizeof(struct kvm_debugregs)))
3247 break;
3248
3249 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3250 break;
3251 }
3252 case KVM_GET_XSAVE: {
3253 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3254 r = -ENOMEM;
3255 if (!u.xsave)
3256 break;
3257
3258 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3259
3260 r = -EFAULT;
3261 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3262 break;
3263 r = 0;
3264 break;
3265 }
3266 case KVM_SET_XSAVE: {
3267 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3268 if (IS_ERR(u.xsave))
3269 return PTR_ERR(u.xsave);
3270
3271 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3272 break;
3273 }
3274 case KVM_GET_XCRS: {
3275 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3276 r = -ENOMEM;
3277 if (!u.xcrs)
3278 break;
3279
3280 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3281
3282 r = -EFAULT;
3283 if (copy_to_user(argp, u.xcrs,
3284 sizeof(struct kvm_xcrs)))
3285 break;
3286 r = 0;
3287 break;
3288 }
3289 case KVM_SET_XCRS: {
3290 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3291 if (IS_ERR(u.xcrs))
3292 return PTR_ERR(u.xcrs);
3293
3294 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3295 break;
3296 }
3297 case KVM_SET_TSC_KHZ: {
3298 u32 user_tsc_khz;
3299
3300 r = -EINVAL;
3301 user_tsc_khz = (u32)arg;
3302
3303 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3304 goto out;
3305
3306 if (user_tsc_khz == 0)
3307 user_tsc_khz = tsc_khz;
3308
3309 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3310
3311 r = 0;
3312 goto out;
3313 }
3314 case KVM_GET_TSC_KHZ: {
3315 r = vcpu->arch.virtual_tsc_khz;
3316 goto out;
3317 }
3318 case KVM_KVMCLOCK_CTRL: {
3319 r = kvm_set_guest_paused(vcpu);
3320 goto out;
3321 }
3322 default:
3323 r = -EINVAL;
3324 }
3325 out:
3326 kfree(u.buffer);
3327 return r;
3328 }
3329
3330 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3331 {
3332 return VM_FAULT_SIGBUS;
3333 }
3334
3335 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3336 {
3337 int ret;
3338
3339 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3340 return -EINVAL;
3341 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3342 return ret;
3343 }
3344
3345 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3346 u64 ident_addr)
3347 {
3348 kvm->arch.ept_identity_map_addr = ident_addr;
3349 return 0;
3350 }
3351
3352 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3353 u32 kvm_nr_mmu_pages)
3354 {
3355 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3356 return -EINVAL;
3357
3358 mutex_lock(&kvm->slots_lock);
3359
3360 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3361 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3362
3363 mutex_unlock(&kvm->slots_lock);
3364 return 0;
3365 }
3366
3367 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3368 {
3369 return kvm->arch.n_max_mmu_pages;
3370 }
3371
3372 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3373 {
3374 int r;
3375
3376 r = 0;
3377 switch (chip->chip_id) {
3378 case KVM_IRQCHIP_PIC_MASTER:
3379 memcpy(&chip->chip.pic,
3380 &pic_irqchip(kvm)->pics[0],
3381 sizeof(struct kvm_pic_state));
3382 break;
3383 case KVM_IRQCHIP_PIC_SLAVE:
3384 memcpy(&chip->chip.pic,
3385 &pic_irqchip(kvm)->pics[1],
3386 sizeof(struct kvm_pic_state));
3387 break;
3388 case KVM_IRQCHIP_IOAPIC:
3389 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3390 break;
3391 default:
3392 r = -EINVAL;
3393 break;
3394 }
3395 return r;
3396 }
3397
3398 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3399 {
3400 int r;
3401
3402 r = 0;
3403 switch (chip->chip_id) {
3404 case KVM_IRQCHIP_PIC_MASTER:
3405 spin_lock(&pic_irqchip(kvm)->lock);
3406 memcpy(&pic_irqchip(kvm)->pics[0],
3407 &chip->chip.pic,
3408 sizeof(struct kvm_pic_state));
3409 spin_unlock(&pic_irqchip(kvm)->lock);
3410 break;
3411 case KVM_IRQCHIP_PIC_SLAVE:
3412 spin_lock(&pic_irqchip(kvm)->lock);
3413 memcpy(&pic_irqchip(kvm)->pics[1],
3414 &chip->chip.pic,
3415 sizeof(struct kvm_pic_state));
3416 spin_unlock(&pic_irqchip(kvm)->lock);
3417 break;
3418 case KVM_IRQCHIP_IOAPIC:
3419 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3420 break;
3421 default:
3422 r = -EINVAL;
3423 break;
3424 }
3425 kvm_pic_update_irq(pic_irqchip(kvm));
3426 return r;
3427 }
3428
3429 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3430 {
3431 int r = 0;
3432
3433 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3434 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3435 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3436 return r;
3437 }
3438
3439 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3440 {
3441 int r = 0;
3442
3443 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3444 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3445 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3446 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3447 return r;
3448 }
3449
3450 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3451 {
3452 int r = 0;
3453
3454 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3455 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3456 sizeof(ps->channels));
3457 ps->flags = kvm->arch.vpit->pit_state.flags;
3458 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3459 memset(&ps->reserved, 0, sizeof(ps->reserved));
3460 return r;
3461 }
3462
3463 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3464 {
3465 int r = 0, start = 0;
3466 u32 prev_legacy, cur_legacy;
3467 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3468 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3469 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3470 if (!prev_legacy && cur_legacy)
3471 start = 1;
3472 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3473 sizeof(kvm->arch.vpit->pit_state.channels));
3474 kvm->arch.vpit->pit_state.flags = ps->flags;
3475 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3476 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3477 return r;
3478 }
3479
3480 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3481 struct kvm_reinject_control *control)
3482 {
3483 if (!kvm->arch.vpit)
3484 return -ENXIO;
3485 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3486 kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3487 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3488 return 0;
3489 }
3490
3491 /**
3492 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3493 * @kvm: kvm instance
3494 * @log: slot id and address to which we copy the log
3495 *
3496 * Steps 1-4 below provide general overview of dirty page logging. See
3497 * kvm_get_dirty_log_protect() function description for additional details.
3498 *
3499 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3500 * always flush the TLB (step 4) even if previous step failed and the dirty
3501 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3502 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3503 * writes will be marked dirty for next log read.
3504 *
3505 * 1. Take a snapshot of the bit and clear it if needed.
3506 * 2. Write protect the corresponding page.
3507 * 3. Copy the snapshot to the userspace.
3508 * 4. Flush TLB's if needed.
3509 */
3510 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3511 {
3512 bool is_dirty = false;
3513 int r;
3514
3515 mutex_lock(&kvm->slots_lock);
3516
3517 /*
3518 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3519 */
3520 if (kvm_x86_ops->flush_log_dirty)
3521 kvm_x86_ops->flush_log_dirty(kvm);
3522
3523 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3524
3525 /*
3526 * All the TLBs can be flushed out of mmu lock, see the comments in
3527 * kvm_mmu_slot_remove_write_access().
3528 */
3529 lockdep_assert_held(&kvm->slots_lock);
3530 if (is_dirty)
3531 kvm_flush_remote_tlbs(kvm);
3532
3533 mutex_unlock(&kvm->slots_lock);
3534 return r;
3535 }
3536
3537 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3538 bool line_status)
3539 {
3540 if (!irqchip_in_kernel(kvm))
3541 return -ENXIO;
3542
3543 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3544 irq_event->irq, irq_event->level,
3545 line_status);
3546 return 0;
3547 }
3548
3549 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3550 struct kvm_enable_cap *cap)
3551 {
3552 int r;
3553
3554 if (cap->flags)
3555 return -EINVAL;
3556
3557 switch (cap->cap) {
3558 case KVM_CAP_DISABLE_QUIRKS:
3559 kvm->arch.disabled_quirks = cap->args[0];
3560 r = 0;
3561 break;
3562 default:
3563 r = -EINVAL;
3564 break;
3565 }
3566 return r;
3567 }
3568
3569 long kvm_arch_vm_ioctl(struct file *filp,
3570 unsigned int ioctl, unsigned long arg)
3571 {
3572 struct kvm *kvm = filp->private_data;
3573 void __user *argp = (void __user *)arg;
3574 int r = -ENOTTY;
3575 /*
3576 * This union makes it completely explicit to gcc-3.x
3577 * that these two variables' stack usage should be
3578 * combined, not added together.
3579 */
3580 union {
3581 struct kvm_pit_state ps;
3582 struct kvm_pit_state2 ps2;
3583 struct kvm_pit_config pit_config;
3584 } u;
3585
3586 switch (ioctl) {
3587 case KVM_SET_TSS_ADDR:
3588 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3589 break;
3590 case KVM_SET_IDENTITY_MAP_ADDR: {
3591 u64 ident_addr;
3592
3593 r = -EFAULT;
3594 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3595 goto out;
3596 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3597 break;
3598 }
3599 case KVM_SET_NR_MMU_PAGES:
3600 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3601 break;
3602 case KVM_GET_NR_MMU_PAGES:
3603 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3604 break;
3605 case KVM_CREATE_IRQCHIP: {
3606 struct kvm_pic *vpic;
3607
3608 mutex_lock(&kvm->lock);
3609 r = -EEXIST;
3610 if (kvm->arch.vpic)
3611 goto create_irqchip_unlock;
3612 r = -EINVAL;
3613 if (atomic_read(&kvm->online_vcpus))
3614 goto create_irqchip_unlock;
3615 r = -ENOMEM;
3616 vpic = kvm_create_pic(kvm);
3617 if (vpic) {
3618 r = kvm_ioapic_init(kvm);
3619 if (r) {
3620 mutex_lock(&kvm->slots_lock);
3621 kvm_destroy_pic(vpic);
3622 mutex_unlock(&kvm->slots_lock);
3623 goto create_irqchip_unlock;
3624 }
3625 } else
3626 goto create_irqchip_unlock;
3627 r = kvm_setup_default_irq_routing(kvm);
3628 if (r) {
3629 mutex_lock(&kvm->slots_lock);
3630 mutex_lock(&kvm->irq_lock);
3631 kvm_ioapic_destroy(kvm);
3632 kvm_destroy_pic(vpic);
3633 mutex_unlock(&kvm->irq_lock);
3634 mutex_unlock(&kvm->slots_lock);
3635 goto create_irqchip_unlock;
3636 }
3637 /* Write kvm->irq_routing before kvm->arch.vpic. */
3638 smp_wmb();
3639 kvm->arch.vpic = vpic;
3640 create_irqchip_unlock:
3641 mutex_unlock(&kvm->lock);
3642 break;
3643 }
3644 case KVM_CREATE_PIT:
3645 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3646 goto create_pit;
3647 case KVM_CREATE_PIT2:
3648 r = -EFAULT;
3649 if (copy_from_user(&u.pit_config, argp,
3650 sizeof(struct kvm_pit_config)))
3651 goto out;
3652 create_pit:
3653 mutex_lock(&kvm->slots_lock);
3654 r = -EEXIST;
3655 if (kvm->arch.vpit)
3656 goto create_pit_unlock;
3657 r = -ENOMEM;
3658 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3659 if (kvm->arch.vpit)
3660 r = 0;
3661 create_pit_unlock:
3662 mutex_unlock(&kvm->slots_lock);
3663 break;
3664 case KVM_GET_IRQCHIP: {
3665 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3666 struct kvm_irqchip *chip;
3667
3668 chip = memdup_user(argp, sizeof(*chip));
3669 if (IS_ERR(chip)) {
3670 r = PTR_ERR(chip);
3671 goto out;
3672 }
3673
3674 r = -ENXIO;
3675 if (!irqchip_in_kernel(kvm))
3676 goto get_irqchip_out;
3677 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3678 if (r)
3679 goto get_irqchip_out;
3680 r = -EFAULT;
3681 if (copy_to_user(argp, chip, sizeof *chip))
3682 goto get_irqchip_out;
3683 r = 0;
3684 get_irqchip_out:
3685 kfree(chip);
3686 break;
3687 }
3688 case KVM_SET_IRQCHIP: {
3689 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3690 struct kvm_irqchip *chip;
3691
3692 chip = memdup_user(argp, sizeof(*chip));
3693 if (IS_ERR(chip)) {
3694 r = PTR_ERR(chip);
3695 goto out;
3696 }
3697
3698 r = -ENXIO;
3699 if (!irqchip_in_kernel(kvm))
3700 goto set_irqchip_out;
3701 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3702 if (r)
3703 goto set_irqchip_out;
3704 r = 0;
3705 set_irqchip_out:
3706 kfree(chip);
3707 break;
3708 }
3709 case KVM_GET_PIT: {
3710 r = -EFAULT;
3711 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3712 goto out;
3713 r = -ENXIO;
3714 if (!kvm->arch.vpit)
3715 goto out;
3716 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3717 if (r)
3718 goto out;
3719 r = -EFAULT;
3720 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3721 goto out;
3722 r = 0;
3723 break;
3724 }
3725 case KVM_SET_PIT: {
3726 r = -EFAULT;
3727 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3728 goto out;
3729 r = -ENXIO;
3730 if (!kvm->arch.vpit)
3731 goto out;
3732 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3733 break;
3734 }
3735 case KVM_GET_PIT2: {
3736 r = -ENXIO;
3737 if (!kvm->arch.vpit)
3738 goto out;
3739 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3740 if (r)
3741 goto out;
3742 r = -EFAULT;
3743 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3744 goto out;
3745 r = 0;
3746 break;
3747 }
3748 case KVM_SET_PIT2: {
3749 r = -EFAULT;
3750 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3751 goto out;
3752 r = -ENXIO;
3753 if (!kvm->arch.vpit)
3754 goto out;
3755 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3756 break;
3757 }
3758 case KVM_REINJECT_CONTROL: {
3759 struct kvm_reinject_control control;
3760 r = -EFAULT;
3761 if (copy_from_user(&control, argp, sizeof(control)))
3762 goto out;
3763 r = kvm_vm_ioctl_reinject(kvm, &control);
3764 break;
3765 }
3766 case KVM_SET_BOOT_CPU_ID:
3767 r = 0;
3768 mutex_lock(&kvm->lock);
3769 if (atomic_read(&kvm->online_vcpus) != 0)
3770 r = -EBUSY;
3771 else
3772 kvm->arch.bsp_vcpu_id = arg;
3773 mutex_unlock(&kvm->lock);
3774 break;
3775 case KVM_XEN_HVM_CONFIG: {
3776 r = -EFAULT;
3777 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3778 sizeof(struct kvm_xen_hvm_config)))
3779 goto out;
3780 r = -EINVAL;
3781 if (kvm->arch.xen_hvm_config.flags)
3782 goto out;
3783 r = 0;
3784 break;
3785 }
3786 case KVM_SET_CLOCK: {
3787 struct kvm_clock_data user_ns;
3788 u64 now_ns;
3789 s64 delta;
3790
3791 r = -EFAULT;
3792 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3793 goto out;
3794
3795 r = -EINVAL;
3796 if (user_ns.flags)
3797 goto out;
3798
3799 r = 0;
3800 local_irq_disable();
3801 now_ns = get_kernel_ns();
3802 delta = user_ns.clock - now_ns;
3803 local_irq_enable();
3804 kvm->arch.kvmclock_offset = delta;
3805 kvm_gen_update_masterclock(kvm);
3806 break;
3807 }
3808 case KVM_GET_CLOCK: {
3809 struct kvm_clock_data user_ns;
3810 u64 now_ns;
3811
3812 local_irq_disable();
3813 now_ns = get_kernel_ns();
3814 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3815 local_irq_enable();
3816 user_ns.flags = 0;
3817 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3818
3819 r = -EFAULT;
3820 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3821 goto out;
3822 r = 0;
3823 break;
3824 }
3825 case KVM_ENABLE_CAP: {
3826 struct kvm_enable_cap cap;
3827
3828 r = -EFAULT;
3829 if (copy_from_user(&cap, argp, sizeof(cap)))
3830 goto out;
3831 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
3832 break;
3833 }
3834 default:
3835 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
3836 }
3837 out:
3838 return r;
3839 }
3840
3841 static void kvm_init_msr_list(void)
3842 {
3843 u32 dummy[2];
3844 unsigned i, j;
3845
3846 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
3847 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3848 continue;
3849
3850 /*
3851 * Even MSRs that are valid in the host may not be exposed
3852 * to the guests in some cases. We could work around this
3853 * in VMX with the generic MSR save/load machinery, but it
3854 * is not really worthwhile since it will really only
3855 * happen with nested virtualization.
3856 */
3857 switch (msrs_to_save[i]) {
3858 case MSR_IA32_BNDCFGS:
3859 if (!kvm_x86_ops->mpx_supported())
3860 continue;
3861 break;
3862 default:
3863 break;
3864 }
3865
3866 if (j < i)
3867 msrs_to_save[j] = msrs_to_save[i];
3868 j++;
3869 }
3870 num_msrs_to_save = j;
3871
3872 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
3873 switch (emulated_msrs[i]) {
3874 case MSR_IA32_SMBASE:
3875 if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
3876 continue;
3877 break;
3878 default:
3879 break;
3880 }
3881
3882 if (j < i)
3883 emulated_msrs[j] = emulated_msrs[i];
3884 j++;
3885 }
3886 num_emulated_msrs = j;
3887 }
3888
3889 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3890 const void *v)
3891 {
3892 int handled = 0;
3893 int n;
3894
3895 do {
3896 n = min(len, 8);
3897 if (!(vcpu->arch.apic &&
3898 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
3899 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
3900 break;
3901 handled += n;
3902 addr += n;
3903 len -= n;
3904 v += n;
3905 } while (len);
3906
3907 return handled;
3908 }
3909
3910 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3911 {
3912 int handled = 0;
3913 int n;
3914
3915 do {
3916 n = min(len, 8);
3917 if (!(vcpu->arch.apic &&
3918 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
3919 addr, n, v))
3920 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
3921 break;
3922 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3923 handled += n;
3924 addr += n;
3925 len -= n;
3926 v += n;
3927 } while (len);
3928
3929 return handled;
3930 }
3931
3932 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3933 struct kvm_segment *var, int seg)
3934 {
3935 kvm_x86_ops->set_segment(vcpu, var, seg);
3936 }
3937
3938 void kvm_get_segment(struct kvm_vcpu *vcpu,
3939 struct kvm_segment *var, int seg)
3940 {
3941 kvm_x86_ops->get_segment(vcpu, var, seg);
3942 }
3943
3944 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
3945 struct x86_exception *exception)
3946 {
3947 gpa_t t_gpa;
3948
3949 BUG_ON(!mmu_is_nested(vcpu));
3950
3951 /* NPT walks are always user-walks */
3952 access |= PFERR_USER_MASK;
3953 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
3954
3955 return t_gpa;
3956 }
3957
3958 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3959 struct x86_exception *exception)
3960 {
3961 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3962 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3963 }
3964
3965 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3966 struct x86_exception *exception)
3967 {
3968 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3969 access |= PFERR_FETCH_MASK;
3970 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3971 }
3972
3973 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3974 struct x86_exception *exception)
3975 {
3976 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3977 access |= PFERR_WRITE_MASK;
3978 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3979 }
3980
3981 /* uses this to access any guest's mapped memory without checking CPL */
3982 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3983 struct x86_exception *exception)
3984 {
3985 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3986 }
3987
3988 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3989 struct kvm_vcpu *vcpu, u32 access,
3990 struct x86_exception *exception)
3991 {
3992 void *data = val;
3993 int r = X86EMUL_CONTINUE;
3994
3995 while (bytes) {
3996 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3997 exception);
3998 unsigned offset = addr & (PAGE_SIZE-1);
3999 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4000 int ret;
4001
4002 if (gpa == UNMAPPED_GVA)
4003 return X86EMUL_PROPAGATE_FAULT;
4004 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4005 offset, toread);
4006 if (ret < 0) {
4007 r = X86EMUL_IO_NEEDED;
4008 goto out;
4009 }
4010
4011 bytes -= toread;
4012 data += toread;
4013 addr += toread;
4014 }
4015 out:
4016 return r;
4017 }
4018
4019 /* used for instruction fetching */
4020 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4021 gva_t addr, void *val, unsigned int bytes,
4022 struct x86_exception *exception)
4023 {
4024 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4025 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4026 unsigned offset;
4027 int ret;
4028
4029 /* Inline kvm_read_guest_virt_helper for speed. */
4030 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4031 exception);
4032 if (unlikely(gpa == UNMAPPED_GVA))
4033 return X86EMUL_PROPAGATE_FAULT;
4034
4035 offset = addr & (PAGE_SIZE-1);
4036 if (WARN_ON(offset + bytes > PAGE_SIZE))
4037 bytes = (unsigned)PAGE_SIZE - offset;
4038 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4039 offset, bytes);
4040 if (unlikely(ret < 0))
4041 return X86EMUL_IO_NEEDED;
4042
4043 return X86EMUL_CONTINUE;
4044 }
4045
4046 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4047 gva_t addr, void *val, unsigned int bytes,
4048 struct x86_exception *exception)
4049 {
4050 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4051 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4052
4053 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4054 exception);
4055 }
4056 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4057
4058 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4059 gva_t addr, void *val, unsigned int bytes,
4060 struct x86_exception *exception)
4061 {
4062 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4063 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4064 }
4065
4066 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4067 gva_t addr, void *val,
4068 unsigned int bytes,
4069 struct x86_exception *exception)
4070 {
4071 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4072 void *data = val;
4073 int r = X86EMUL_CONTINUE;
4074
4075 while (bytes) {
4076 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4077 PFERR_WRITE_MASK,
4078 exception);
4079 unsigned offset = addr & (PAGE_SIZE-1);
4080 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4081 int ret;
4082
4083 if (gpa == UNMAPPED_GVA)
4084 return X86EMUL_PROPAGATE_FAULT;
4085 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4086 if (ret < 0) {
4087 r = X86EMUL_IO_NEEDED;
4088 goto out;
4089 }
4090
4091 bytes -= towrite;
4092 data += towrite;
4093 addr += towrite;
4094 }
4095 out:
4096 return r;
4097 }
4098 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4099
4100 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4101 gpa_t *gpa, struct x86_exception *exception,
4102 bool write)
4103 {
4104 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4105 | (write ? PFERR_WRITE_MASK : 0);
4106
4107 if (vcpu_match_mmio_gva(vcpu, gva)
4108 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4109 vcpu->arch.access, access)) {
4110 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4111 (gva & (PAGE_SIZE - 1));
4112 trace_vcpu_match_mmio(gva, *gpa, write, false);
4113 return 1;
4114 }
4115
4116 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4117
4118 if (*gpa == UNMAPPED_GVA)
4119 return -1;
4120
4121 /* For APIC access vmexit */
4122 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4123 return 1;
4124
4125 if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4126 trace_vcpu_match_mmio(gva, *gpa, write, true);
4127 return 1;
4128 }
4129
4130 return 0;
4131 }
4132
4133 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4134 const void *val, int bytes)
4135 {
4136 int ret;
4137
4138 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4139 if (ret < 0)
4140 return 0;
4141 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4142 return 1;
4143 }
4144
4145 struct read_write_emulator_ops {
4146 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4147 int bytes);
4148 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4149 void *val, int bytes);
4150 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4151 int bytes, void *val);
4152 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4153 void *val, int bytes);
4154 bool write;
4155 };
4156
4157 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4158 {
4159 if (vcpu->mmio_read_completed) {
4160 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4161 vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4162 vcpu->mmio_read_completed = 0;
4163 return 1;
4164 }
4165
4166 return 0;
4167 }
4168
4169 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4170 void *val, int bytes)
4171 {
4172 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4173 }
4174
4175 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4176 void *val, int bytes)
4177 {
4178 return emulator_write_phys(vcpu, gpa, val, bytes);
4179 }
4180
4181 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4182 {
4183 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4184 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4185 }
4186
4187 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4188 void *val, int bytes)
4189 {
4190 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4191 return X86EMUL_IO_NEEDED;
4192 }
4193
4194 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4195 void *val, int bytes)
4196 {
4197 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4198
4199 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4200 return X86EMUL_CONTINUE;
4201 }
4202
4203 static const struct read_write_emulator_ops read_emultor = {
4204 .read_write_prepare = read_prepare,
4205 .read_write_emulate = read_emulate,
4206 .read_write_mmio = vcpu_mmio_read,
4207 .read_write_exit_mmio = read_exit_mmio,
4208 };
4209
4210 static const struct read_write_emulator_ops write_emultor = {
4211 .read_write_emulate = write_emulate,
4212 .read_write_mmio = write_mmio,
4213 .read_write_exit_mmio = write_exit_mmio,
4214 .write = true,
4215 };
4216
4217 static int emulator_read_write_onepage(unsigned long addr, void *val,
4218 unsigned int bytes,
4219 struct x86_exception *exception,
4220 struct kvm_vcpu *vcpu,
4221 const struct read_write_emulator_ops *ops)
4222 {
4223 gpa_t gpa;
4224 int handled, ret;
4225 bool write = ops->write;
4226 struct kvm_mmio_fragment *frag;
4227
4228 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4229
4230 if (ret < 0)
4231 return X86EMUL_PROPAGATE_FAULT;
4232
4233 /* For APIC access vmexit */
4234 if (ret)
4235 goto mmio;
4236
4237 if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4238 return X86EMUL_CONTINUE;
4239
4240 mmio:
4241 /*
4242 * Is this MMIO handled locally?
4243 */
4244 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4245 if (handled == bytes)
4246 return X86EMUL_CONTINUE;
4247
4248 gpa += handled;
4249 bytes -= handled;
4250 val += handled;
4251
4252 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4253 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4254 frag->gpa = gpa;
4255 frag->data = val;
4256 frag->len = bytes;
4257 return X86EMUL_CONTINUE;
4258 }
4259
4260 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4261 unsigned long addr,
4262 void *val, unsigned int bytes,
4263 struct x86_exception *exception,
4264 const struct read_write_emulator_ops *ops)
4265 {
4266 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4267 gpa_t gpa;
4268 int rc;
4269
4270 if (ops->read_write_prepare &&
4271 ops->read_write_prepare(vcpu, val, bytes))
4272 return X86EMUL_CONTINUE;
4273
4274 vcpu->mmio_nr_fragments = 0;
4275
4276 /* Crossing a page boundary? */
4277 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4278 int now;
4279
4280 now = -addr & ~PAGE_MASK;
4281 rc = emulator_read_write_onepage(addr, val, now, exception,
4282 vcpu, ops);
4283
4284 if (rc != X86EMUL_CONTINUE)
4285 return rc;
4286 addr += now;
4287 if (ctxt->mode != X86EMUL_MODE_PROT64)
4288 addr = (u32)addr;
4289 val += now;
4290 bytes -= now;
4291 }
4292
4293 rc = emulator_read_write_onepage(addr, val, bytes, exception,
4294 vcpu, ops);
4295 if (rc != X86EMUL_CONTINUE)
4296 return rc;
4297
4298 if (!vcpu->mmio_nr_fragments)
4299 return rc;
4300
4301 gpa = vcpu->mmio_fragments[0].gpa;
4302
4303 vcpu->mmio_needed = 1;
4304 vcpu->mmio_cur_fragment = 0;
4305
4306 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4307 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4308 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4309 vcpu->run->mmio.phys_addr = gpa;
4310
4311 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4312 }
4313
4314 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4315 unsigned long addr,
4316 void *val,
4317 unsigned int bytes,
4318 struct x86_exception *exception)
4319 {
4320 return emulator_read_write(ctxt, addr, val, bytes,
4321 exception, &read_emultor);
4322 }
4323
4324 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4325 unsigned long addr,
4326 const void *val,
4327 unsigned int bytes,
4328 struct x86_exception *exception)
4329 {
4330 return emulator_read_write(ctxt, addr, (void *)val, bytes,
4331 exception, &write_emultor);
4332 }
4333
4334 #define CMPXCHG_TYPE(t, ptr, old, new) \
4335 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4336
4337 #ifdef CONFIG_X86_64
4338 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4339 #else
4340 # define CMPXCHG64(ptr, old, new) \
4341 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4342 #endif
4343
4344 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4345 unsigned long addr,
4346 const void *old,
4347 const void *new,
4348 unsigned int bytes,
4349 struct x86_exception *exception)
4350 {
4351 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4352 gpa_t gpa;
4353 struct page *page;
4354 char *kaddr;
4355 bool exchanged;
4356
4357 /* guests cmpxchg8b have to be emulated atomically */
4358 if (bytes > 8 || (bytes & (bytes - 1)))
4359 goto emul_write;
4360
4361 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4362
4363 if (gpa == UNMAPPED_GVA ||
4364 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4365 goto emul_write;
4366
4367 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4368 goto emul_write;
4369
4370 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4371 if (is_error_page(page))
4372 goto emul_write;
4373
4374 kaddr = kmap_atomic(page);
4375 kaddr += offset_in_page(gpa);
4376 switch (bytes) {
4377 case 1:
4378 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4379 break;
4380 case 2:
4381 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4382 break;
4383 case 4:
4384 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4385 break;
4386 case 8:
4387 exchanged = CMPXCHG64(kaddr, old, new);
4388 break;
4389 default:
4390 BUG();
4391 }
4392 kunmap_atomic(kaddr);
4393 kvm_release_page_dirty(page);
4394
4395 if (!exchanged)
4396 return X86EMUL_CMPXCHG_FAILED;
4397
4398 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4399 kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4400
4401 return X86EMUL_CONTINUE;
4402
4403 emul_write:
4404 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4405
4406 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4407 }
4408
4409 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4410 {
4411 /* TODO: String I/O for in kernel device */
4412 int r;
4413
4414 if (vcpu->arch.pio.in)
4415 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4416 vcpu->arch.pio.size, pd);
4417 else
4418 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4419 vcpu->arch.pio.port, vcpu->arch.pio.size,
4420 pd);
4421 return r;
4422 }
4423
4424 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4425 unsigned short port, void *val,
4426 unsigned int count, bool in)
4427 {
4428 vcpu->arch.pio.port = port;
4429 vcpu->arch.pio.in = in;
4430 vcpu->arch.pio.count = count;
4431 vcpu->arch.pio.size = size;
4432
4433 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4434 vcpu->arch.pio.count = 0;
4435 return 1;
4436 }
4437
4438 vcpu->run->exit_reason = KVM_EXIT_IO;
4439 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4440 vcpu->run->io.size = size;
4441 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4442 vcpu->run->io.count = count;
4443 vcpu->run->io.port = port;
4444
4445 return 0;
4446 }
4447
4448 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4449 int size, unsigned short port, void *val,
4450 unsigned int count)
4451 {
4452 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4453 int ret;
4454
4455 if (vcpu->arch.pio.count)
4456 goto data_avail;
4457
4458 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4459 if (ret) {
4460 data_avail:
4461 memcpy(val, vcpu->arch.pio_data, size * count);
4462 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4463 vcpu->arch.pio.count = 0;
4464 return 1;
4465 }
4466
4467 return 0;
4468 }
4469
4470 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4471 int size, unsigned short port,
4472 const void *val, unsigned int count)
4473 {
4474 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4475
4476 memcpy(vcpu->arch.pio_data, val, size * count);
4477 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4478 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4479 }
4480
4481 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4482 {
4483 return kvm_x86_ops->get_segment_base(vcpu, seg);
4484 }
4485
4486 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4487 {
4488 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4489 }
4490
4491 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4492 {
4493 if (!need_emulate_wbinvd(vcpu))
4494 return X86EMUL_CONTINUE;
4495
4496 if (kvm_x86_ops->has_wbinvd_exit()) {
4497 int cpu = get_cpu();
4498
4499 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4500 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4501 wbinvd_ipi, NULL, 1);
4502 put_cpu();
4503 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4504 } else
4505 wbinvd();
4506 return X86EMUL_CONTINUE;
4507 }
4508
4509 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4510 {
4511 kvm_x86_ops->skip_emulated_instruction(vcpu);
4512 return kvm_emulate_wbinvd_noskip(vcpu);
4513 }
4514 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4515
4516
4517
4518 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4519 {
4520 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4521 }
4522
4523 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4524 unsigned long *dest)
4525 {
4526 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4527 }
4528
4529 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4530 unsigned long value)
4531 {
4532
4533 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4534 }
4535
4536 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4537 {
4538 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4539 }
4540
4541 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4542 {
4543 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4544 unsigned long value;
4545
4546 switch (cr) {
4547 case 0:
4548 value = kvm_read_cr0(vcpu);
4549 break;
4550 case 2:
4551 value = vcpu->arch.cr2;
4552 break;
4553 case 3:
4554 value = kvm_read_cr3(vcpu);
4555 break;
4556 case 4:
4557 value = kvm_read_cr4(vcpu);
4558 break;
4559 case 8:
4560 value = kvm_get_cr8(vcpu);
4561 break;
4562 default:
4563 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4564 return 0;
4565 }
4566
4567 return value;
4568 }
4569
4570 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4571 {
4572 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4573 int res = 0;
4574
4575 switch (cr) {
4576 case 0:
4577 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4578 break;
4579 case 2:
4580 vcpu->arch.cr2 = val;
4581 break;
4582 case 3:
4583 res = kvm_set_cr3(vcpu, val);
4584 break;
4585 case 4:
4586 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4587 break;
4588 case 8:
4589 res = kvm_set_cr8(vcpu, val);
4590 break;
4591 default:
4592 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4593 res = -1;
4594 }
4595
4596 return res;
4597 }
4598
4599 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4600 {
4601 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4602 }
4603
4604 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4605 {
4606 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4607 }
4608
4609 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4610 {
4611 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4612 }
4613
4614 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4615 {
4616 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4617 }
4618
4619 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4620 {
4621 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4622 }
4623
4624 static unsigned long emulator_get_cached_segment_base(
4625 struct x86_emulate_ctxt *ctxt, int seg)
4626 {
4627 return get_segment_base(emul_to_vcpu(ctxt), seg);
4628 }
4629
4630 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4631 struct desc_struct *desc, u32 *base3,
4632 int seg)
4633 {
4634 struct kvm_segment var;
4635
4636 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4637 *selector = var.selector;
4638
4639 if (var.unusable) {
4640 memset(desc, 0, sizeof(*desc));
4641 return false;
4642 }
4643
4644 if (var.g)
4645 var.limit >>= 12;
4646 set_desc_limit(desc, var.limit);
4647 set_desc_base(desc, (unsigned long)var.base);
4648 #ifdef CONFIG_X86_64
4649 if (base3)
4650 *base3 = var.base >> 32;
4651 #endif
4652 desc->type = var.type;
4653 desc->s = var.s;
4654 desc->dpl = var.dpl;
4655 desc->p = var.present;
4656 desc->avl = var.avl;
4657 desc->l = var.l;
4658 desc->d = var.db;
4659 desc->g = var.g;
4660
4661 return true;
4662 }
4663
4664 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4665 struct desc_struct *desc, u32 base3,
4666 int seg)
4667 {
4668 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4669 struct kvm_segment var;
4670
4671 var.selector = selector;
4672 var.base = get_desc_base(desc);
4673 #ifdef CONFIG_X86_64
4674 var.base |= ((u64)base3) << 32;
4675 #endif
4676 var.limit = get_desc_limit(desc);
4677 if (desc->g)
4678 var.limit = (var.limit << 12) | 0xfff;
4679 var.type = desc->type;
4680 var.dpl = desc->dpl;
4681 var.db = desc->d;
4682 var.s = desc->s;
4683 var.l = desc->l;
4684 var.g = desc->g;
4685 var.avl = desc->avl;
4686 var.present = desc->p;
4687 var.unusable = !var.present;
4688 var.padding = 0;
4689
4690 kvm_set_segment(vcpu, &var, seg);
4691 return;
4692 }
4693
4694 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4695 u32 msr_index, u64 *pdata)
4696 {
4697 struct msr_data msr;
4698 int r;
4699
4700 msr.index = msr_index;
4701 msr.host_initiated = false;
4702 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
4703 if (r)
4704 return r;
4705
4706 *pdata = msr.data;
4707 return 0;
4708 }
4709
4710 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4711 u32 msr_index, u64 data)
4712 {
4713 struct msr_data msr;
4714
4715 msr.data = data;
4716 msr.index = msr_index;
4717 msr.host_initiated = false;
4718 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4719 }
4720
4721 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
4722 {
4723 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4724
4725 return vcpu->arch.smbase;
4726 }
4727
4728 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
4729 {
4730 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4731
4732 vcpu->arch.smbase = smbase;
4733 }
4734
4735 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4736 u32 pmc)
4737 {
4738 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
4739 }
4740
4741 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4742 u32 pmc, u64 *pdata)
4743 {
4744 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
4745 }
4746
4747 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4748 {
4749 emul_to_vcpu(ctxt)->arch.halt_request = 1;
4750 }
4751
4752 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4753 {
4754 preempt_disable();
4755 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4756 /*
4757 * CR0.TS may reference the host fpu state, not the guest fpu state,
4758 * so it may be clear at this point.
4759 */
4760 clts();
4761 }
4762
4763 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4764 {
4765 preempt_enable();
4766 }
4767
4768 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4769 struct x86_instruction_info *info,
4770 enum x86_intercept_stage stage)
4771 {
4772 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4773 }
4774
4775 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4776 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4777 {
4778 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4779 }
4780
4781 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4782 {
4783 return kvm_register_read(emul_to_vcpu(ctxt), reg);
4784 }
4785
4786 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4787 {
4788 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4789 }
4790
4791 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
4792 {
4793 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
4794 }
4795
4796 static const struct x86_emulate_ops emulate_ops = {
4797 .read_gpr = emulator_read_gpr,
4798 .write_gpr = emulator_write_gpr,
4799 .read_std = kvm_read_guest_virt_system,
4800 .write_std = kvm_write_guest_virt_system,
4801 .fetch = kvm_fetch_guest_virt,
4802 .read_emulated = emulator_read_emulated,
4803 .write_emulated = emulator_write_emulated,
4804 .cmpxchg_emulated = emulator_cmpxchg_emulated,
4805 .invlpg = emulator_invlpg,
4806 .pio_in_emulated = emulator_pio_in_emulated,
4807 .pio_out_emulated = emulator_pio_out_emulated,
4808 .get_segment = emulator_get_segment,
4809 .set_segment = emulator_set_segment,
4810 .get_cached_segment_base = emulator_get_cached_segment_base,
4811 .get_gdt = emulator_get_gdt,
4812 .get_idt = emulator_get_idt,
4813 .set_gdt = emulator_set_gdt,
4814 .set_idt = emulator_set_idt,
4815 .get_cr = emulator_get_cr,
4816 .set_cr = emulator_set_cr,
4817 .cpl = emulator_get_cpl,
4818 .get_dr = emulator_get_dr,
4819 .set_dr = emulator_set_dr,
4820 .get_smbase = emulator_get_smbase,
4821 .set_smbase = emulator_set_smbase,
4822 .set_msr = emulator_set_msr,
4823 .get_msr = emulator_get_msr,
4824 .check_pmc = emulator_check_pmc,
4825 .read_pmc = emulator_read_pmc,
4826 .halt = emulator_halt,
4827 .wbinvd = emulator_wbinvd,
4828 .fix_hypercall = emulator_fix_hypercall,
4829 .get_fpu = emulator_get_fpu,
4830 .put_fpu = emulator_put_fpu,
4831 .intercept = emulator_intercept,
4832 .get_cpuid = emulator_get_cpuid,
4833 .set_nmi_mask = emulator_set_nmi_mask,
4834 };
4835
4836 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4837 {
4838 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
4839 /*
4840 * an sti; sti; sequence only disable interrupts for the first
4841 * instruction. So, if the last instruction, be it emulated or
4842 * not, left the system with the INT_STI flag enabled, it
4843 * means that the last instruction is an sti. We should not
4844 * leave the flag on in this case. The same goes for mov ss
4845 */
4846 if (int_shadow & mask)
4847 mask = 0;
4848 if (unlikely(int_shadow || mask)) {
4849 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4850 if (!mask)
4851 kvm_make_request(KVM_REQ_EVENT, vcpu);
4852 }
4853 }
4854
4855 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
4856 {
4857 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4858 if (ctxt->exception.vector == PF_VECTOR)
4859 return kvm_propagate_fault(vcpu, &ctxt->exception);
4860
4861 if (ctxt->exception.error_code_valid)
4862 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4863 ctxt->exception.error_code);
4864 else
4865 kvm_queue_exception(vcpu, ctxt->exception.vector);
4866 return false;
4867 }
4868
4869 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4870 {
4871 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4872 int cs_db, cs_l;
4873
4874 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4875
4876 ctxt->eflags = kvm_get_rflags(vcpu);
4877 ctxt->eip = kvm_rip_read(vcpu);
4878 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4879 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
4880 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
4881 cs_db ? X86EMUL_MODE_PROT32 :
4882 X86EMUL_MODE_PROT16;
4883 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
4884 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
4885 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
4886 ctxt->emul_flags = vcpu->arch.hflags;
4887
4888 init_decode_cache(ctxt);
4889 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4890 }
4891
4892 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4893 {
4894 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4895 int ret;
4896
4897 init_emulate_ctxt(vcpu);
4898
4899 ctxt->op_bytes = 2;
4900 ctxt->ad_bytes = 2;
4901 ctxt->_eip = ctxt->eip + inc_eip;
4902 ret = emulate_int_real(ctxt, irq);
4903
4904 if (ret != X86EMUL_CONTINUE)
4905 return EMULATE_FAIL;
4906
4907 ctxt->eip = ctxt->_eip;
4908 kvm_rip_write(vcpu, ctxt->eip);
4909 kvm_set_rflags(vcpu, ctxt->eflags);
4910
4911 if (irq == NMI_VECTOR)
4912 vcpu->arch.nmi_pending = 0;
4913 else
4914 vcpu->arch.interrupt.pending = false;
4915
4916 return EMULATE_DONE;
4917 }
4918 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4919
4920 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4921 {
4922 int r = EMULATE_DONE;
4923
4924 ++vcpu->stat.insn_emulation_fail;
4925 trace_kvm_emulate_insn_failed(vcpu);
4926 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
4927 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4928 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4929 vcpu->run->internal.ndata = 0;
4930 r = EMULATE_FAIL;
4931 }
4932 kvm_queue_exception(vcpu, UD_VECTOR);
4933
4934 return r;
4935 }
4936
4937 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
4938 bool write_fault_to_shadow_pgtable,
4939 int emulation_type)
4940 {
4941 gpa_t gpa = cr2;
4942 pfn_t pfn;
4943
4944 if (emulation_type & EMULTYPE_NO_REEXECUTE)
4945 return false;
4946
4947 if (!vcpu->arch.mmu.direct_map) {
4948 /*
4949 * Write permission should be allowed since only
4950 * write access need to be emulated.
4951 */
4952 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4953
4954 /*
4955 * If the mapping is invalid in guest, let cpu retry
4956 * it to generate fault.
4957 */
4958 if (gpa == UNMAPPED_GVA)
4959 return true;
4960 }
4961
4962 /*
4963 * Do not retry the unhandleable instruction if it faults on the
4964 * readonly host memory, otherwise it will goto a infinite loop:
4965 * retry instruction -> write #PF -> emulation fail -> retry
4966 * instruction -> ...
4967 */
4968 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4969
4970 /*
4971 * If the instruction failed on the error pfn, it can not be fixed,
4972 * report the error to userspace.
4973 */
4974 if (is_error_noslot_pfn(pfn))
4975 return false;
4976
4977 kvm_release_pfn_clean(pfn);
4978
4979 /* The instructions are well-emulated on direct mmu. */
4980 if (vcpu->arch.mmu.direct_map) {
4981 unsigned int indirect_shadow_pages;
4982
4983 spin_lock(&vcpu->kvm->mmu_lock);
4984 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
4985 spin_unlock(&vcpu->kvm->mmu_lock);
4986
4987 if (indirect_shadow_pages)
4988 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4989
4990 return true;
4991 }
4992
4993 /*
4994 * if emulation was due to access to shadowed page table
4995 * and it failed try to unshadow page and re-enter the
4996 * guest to let CPU execute the instruction.
4997 */
4998 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4999
5000 /*
5001 * If the access faults on its page table, it can not
5002 * be fixed by unprotecting shadow page and it should
5003 * be reported to userspace.
5004 */
5005 return !write_fault_to_shadow_pgtable;
5006 }
5007
5008 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5009 unsigned long cr2, int emulation_type)
5010 {
5011 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5012 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5013
5014 last_retry_eip = vcpu->arch.last_retry_eip;
5015 last_retry_addr = vcpu->arch.last_retry_addr;
5016
5017 /*
5018 * If the emulation is caused by #PF and it is non-page_table
5019 * writing instruction, it means the VM-EXIT is caused by shadow
5020 * page protected, we can zap the shadow page and retry this
5021 * instruction directly.
5022 *
5023 * Note: if the guest uses a non-page-table modifying instruction
5024 * on the PDE that points to the instruction, then we will unmap
5025 * the instruction and go to an infinite loop. So, we cache the
5026 * last retried eip and the last fault address, if we meet the eip
5027 * and the address again, we can break out of the potential infinite
5028 * loop.
5029 */
5030 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5031
5032 if (!(emulation_type & EMULTYPE_RETRY))
5033 return false;
5034
5035 if (x86_page_table_writing_insn(ctxt))
5036 return false;
5037
5038 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5039 return false;
5040
5041 vcpu->arch.last_retry_eip = ctxt->eip;
5042 vcpu->arch.last_retry_addr = cr2;
5043
5044 if (!vcpu->arch.mmu.direct_map)
5045 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5046
5047 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5048
5049 return true;
5050 }
5051
5052 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5053 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5054
5055 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5056 {
5057 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5058 /* This is a good place to trace that we are exiting SMM. */
5059 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5060
5061 if (unlikely(vcpu->arch.smi_pending)) {
5062 kvm_make_request(KVM_REQ_SMI, vcpu);
5063 vcpu->arch.smi_pending = 0;
5064 } else {
5065 /* Process a latched INIT, if any. */
5066 kvm_make_request(KVM_REQ_EVENT, vcpu);
5067 }
5068 }
5069
5070 kvm_mmu_reset_context(vcpu);
5071 }
5072
5073 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5074 {
5075 unsigned changed = vcpu->arch.hflags ^ emul_flags;
5076
5077 vcpu->arch.hflags = emul_flags;
5078
5079 if (changed & HF_SMM_MASK)
5080 kvm_smm_changed(vcpu);
5081 }
5082
5083 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5084 unsigned long *db)
5085 {
5086 u32 dr6 = 0;
5087 int i;
5088 u32 enable, rwlen;
5089
5090 enable = dr7;
5091 rwlen = dr7 >> 16;
5092 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5093 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5094 dr6 |= (1 << i);
5095 return dr6;
5096 }
5097
5098 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5099 {
5100 struct kvm_run *kvm_run = vcpu->run;
5101
5102 /*
5103 * rflags is the old, "raw" value of the flags. The new value has
5104 * not been saved yet.
5105 *
5106 * This is correct even for TF set by the guest, because "the
5107 * processor will not generate this exception after the instruction
5108 * that sets the TF flag".
5109 */
5110 if (unlikely(rflags & X86_EFLAGS_TF)) {
5111 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5112 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5113 DR6_RTM;
5114 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5115 kvm_run->debug.arch.exception = DB_VECTOR;
5116 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5117 *r = EMULATE_USER_EXIT;
5118 } else {
5119 vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5120 /*
5121 * "Certain debug exceptions may clear bit 0-3. The
5122 * remaining contents of the DR6 register are never
5123 * cleared by the processor".
5124 */
5125 vcpu->arch.dr6 &= ~15;
5126 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5127 kvm_queue_exception(vcpu, DB_VECTOR);
5128 }
5129 }
5130 }
5131
5132 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5133 {
5134 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5135 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5136 struct kvm_run *kvm_run = vcpu->run;
5137 unsigned long eip = kvm_get_linear_rip(vcpu);
5138 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5139 vcpu->arch.guest_debug_dr7,
5140 vcpu->arch.eff_db);
5141
5142 if (dr6 != 0) {
5143 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5144 kvm_run->debug.arch.pc = eip;
5145 kvm_run->debug.arch.exception = DB_VECTOR;
5146 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5147 *r = EMULATE_USER_EXIT;
5148 return true;
5149 }
5150 }
5151
5152 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5153 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5154 unsigned long eip = kvm_get_linear_rip(vcpu);
5155 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5156 vcpu->arch.dr7,
5157 vcpu->arch.db);
5158
5159 if (dr6 != 0) {
5160 vcpu->arch.dr6 &= ~15;
5161 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5162 kvm_queue_exception(vcpu, DB_VECTOR);
5163 *r = EMULATE_DONE;
5164 return true;
5165 }
5166 }
5167
5168 return false;
5169 }
5170
5171 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5172 unsigned long cr2,
5173 int emulation_type,
5174 void *insn,
5175 int insn_len)
5176 {
5177 int r;
5178 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5179 bool writeback = true;
5180 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5181
5182 /*
5183 * Clear write_fault_to_shadow_pgtable here to ensure it is
5184 * never reused.
5185 */
5186 vcpu->arch.write_fault_to_shadow_pgtable = false;
5187 kvm_clear_exception_queue(vcpu);
5188
5189 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5190 init_emulate_ctxt(vcpu);
5191
5192 /*
5193 * We will reenter on the same instruction since
5194 * we do not set complete_userspace_io. This does not
5195 * handle watchpoints yet, those would be handled in
5196 * the emulate_ops.
5197 */
5198 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5199 return r;
5200
5201 ctxt->interruptibility = 0;
5202 ctxt->have_exception = false;
5203 ctxt->exception.vector = -1;
5204 ctxt->perm_ok = false;
5205
5206 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5207
5208 r = x86_decode_insn(ctxt, insn, insn_len);
5209
5210 trace_kvm_emulate_insn_start(vcpu);
5211 ++vcpu->stat.insn_emulation;
5212 if (r != EMULATION_OK) {
5213 if (emulation_type & EMULTYPE_TRAP_UD)
5214 return EMULATE_FAIL;
5215 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5216 emulation_type))
5217 return EMULATE_DONE;
5218 if (emulation_type & EMULTYPE_SKIP)
5219 return EMULATE_FAIL;
5220 return handle_emulation_failure(vcpu);
5221 }
5222 }
5223
5224 if (emulation_type & EMULTYPE_SKIP) {
5225 kvm_rip_write(vcpu, ctxt->_eip);
5226 if (ctxt->eflags & X86_EFLAGS_RF)
5227 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5228 return EMULATE_DONE;
5229 }
5230
5231 if (retry_instruction(ctxt, cr2, emulation_type))
5232 return EMULATE_DONE;
5233
5234 /* this is needed for vmware backdoor interface to work since it
5235 changes registers values during IO operation */
5236 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5237 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5238 emulator_invalidate_register_cache(ctxt);
5239 }
5240
5241 restart:
5242 r = x86_emulate_insn(ctxt);
5243
5244 if (r == EMULATION_INTERCEPTED)
5245 return EMULATE_DONE;
5246
5247 if (r == EMULATION_FAILED) {
5248 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5249 emulation_type))
5250 return EMULATE_DONE;
5251
5252 return handle_emulation_failure(vcpu);
5253 }
5254
5255 if (ctxt->have_exception) {
5256 r = EMULATE_DONE;
5257 if (inject_emulated_exception(vcpu))
5258 return r;
5259 } else if (vcpu->arch.pio.count) {
5260 if (!vcpu->arch.pio.in) {
5261 /* FIXME: return into emulator if single-stepping. */
5262 vcpu->arch.pio.count = 0;
5263 } else {
5264 writeback = false;
5265 vcpu->arch.complete_userspace_io = complete_emulated_pio;
5266 }
5267 r = EMULATE_USER_EXIT;
5268 } else if (vcpu->mmio_needed) {
5269 if (!vcpu->mmio_is_write)
5270 writeback = false;
5271 r = EMULATE_USER_EXIT;
5272 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5273 } else if (r == EMULATION_RESTART)
5274 goto restart;
5275 else
5276 r = EMULATE_DONE;
5277
5278 if (writeback) {
5279 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5280 toggle_interruptibility(vcpu, ctxt->interruptibility);
5281 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5282 if (vcpu->arch.hflags != ctxt->emul_flags)
5283 kvm_set_hflags(vcpu, ctxt->emul_flags);
5284 kvm_rip_write(vcpu, ctxt->eip);
5285 if (r == EMULATE_DONE)
5286 kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5287 if (!ctxt->have_exception ||
5288 exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5289 __kvm_set_rflags(vcpu, ctxt->eflags);
5290
5291 /*
5292 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5293 * do nothing, and it will be requested again as soon as
5294 * the shadow expires. But we still need to check here,
5295 * because POPF has no interrupt shadow.
5296 */
5297 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5298 kvm_make_request(KVM_REQ_EVENT, vcpu);
5299 } else
5300 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5301
5302 return r;
5303 }
5304 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5305
5306 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5307 {
5308 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5309 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5310 size, port, &val, 1);
5311 /* do not return to emulator after return from userspace */
5312 vcpu->arch.pio.count = 0;
5313 return ret;
5314 }
5315 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5316
5317 static void tsc_bad(void *info)
5318 {
5319 __this_cpu_write(cpu_tsc_khz, 0);
5320 }
5321
5322 static void tsc_khz_changed(void *data)
5323 {
5324 struct cpufreq_freqs *freq = data;
5325 unsigned long khz = 0;
5326
5327 if (data)
5328 khz = freq->new;
5329 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5330 khz = cpufreq_quick_get(raw_smp_processor_id());
5331 if (!khz)
5332 khz = tsc_khz;
5333 __this_cpu_write(cpu_tsc_khz, khz);
5334 }
5335
5336 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5337 void *data)
5338 {
5339 struct cpufreq_freqs *freq = data;
5340 struct kvm *kvm;
5341 struct kvm_vcpu *vcpu;
5342 int i, send_ipi = 0;
5343
5344 /*
5345 * We allow guests to temporarily run on slowing clocks,
5346 * provided we notify them after, or to run on accelerating
5347 * clocks, provided we notify them before. Thus time never
5348 * goes backwards.
5349 *
5350 * However, we have a problem. We can't atomically update
5351 * the frequency of a given CPU from this function; it is
5352 * merely a notifier, which can be called from any CPU.
5353 * Changing the TSC frequency at arbitrary points in time
5354 * requires a recomputation of local variables related to
5355 * the TSC for each VCPU. We must flag these local variables
5356 * to be updated and be sure the update takes place with the
5357 * new frequency before any guests proceed.
5358 *
5359 * Unfortunately, the combination of hotplug CPU and frequency
5360 * change creates an intractable locking scenario; the order
5361 * of when these callouts happen is undefined with respect to
5362 * CPU hotplug, and they can race with each other. As such,
5363 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5364 * undefined; you can actually have a CPU frequency change take
5365 * place in between the computation of X and the setting of the
5366 * variable. To protect against this problem, all updates of
5367 * the per_cpu tsc_khz variable are done in an interrupt
5368 * protected IPI, and all callers wishing to update the value
5369 * must wait for a synchronous IPI to complete (which is trivial
5370 * if the caller is on the CPU already). This establishes the
5371 * necessary total order on variable updates.
5372 *
5373 * Note that because a guest time update may take place
5374 * anytime after the setting of the VCPU's request bit, the
5375 * correct TSC value must be set before the request. However,
5376 * to ensure the update actually makes it to any guest which
5377 * starts running in hardware virtualization between the set
5378 * and the acquisition of the spinlock, we must also ping the
5379 * CPU after setting the request bit.
5380 *
5381 */
5382
5383 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5384 return 0;
5385 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5386 return 0;
5387
5388 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5389
5390 spin_lock(&kvm_lock);
5391 list_for_each_entry(kvm, &vm_list, vm_list) {
5392 kvm_for_each_vcpu(i, vcpu, kvm) {
5393 if (vcpu->cpu != freq->cpu)
5394 continue;
5395 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5396 if (vcpu->cpu != smp_processor_id())
5397 send_ipi = 1;
5398 }
5399 }
5400 spin_unlock(&kvm_lock);
5401
5402 if (freq->old < freq->new && send_ipi) {
5403 /*
5404 * We upscale the frequency. Must make the guest
5405 * doesn't see old kvmclock values while running with
5406 * the new frequency, otherwise we risk the guest sees
5407 * time go backwards.
5408 *
5409 * In case we update the frequency for another cpu
5410 * (which might be in guest context) send an interrupt
5411 * to kick the cpu out of guest context. Next time
5412 * guest context is entered kvmclock will be updated,
5413 * so the guest will not see stale values.
5414 */
5415 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5416 }
5417 return 0;
5418 }
5419
5420 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5421 .notifier_call = kvmclock_cpufreq_notifier
5422 };
5423
5424 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5425 unsigned long action, void *hcpu)
5426 {
5427 unsigned int cpu = (unsigned long)hcpu;
5428
5429 switch (action) {
5430 case CPU_ONLINE:
5431 case CPU_DOWN_FAILED:
5432 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5433 break;
5434 case CPU_DOWN_PREPARE:
5435 smp_call_function_single(cpu, tsc_bad, NULL, 1);
5436 break;
5437 }
5438 return NOTIFY_OK;
5439 }
5440
5441 static struct notifier_block kvmclock_cpu_notifier_block = {
5442 .notifier_call = kvmclock_cpu_notifier,
5443 .priority = -INT_MAX
5444 };
5445
5446 static void kvm_timer_init(void)
5447 {
5448 int cpu;
5449
5450 max_tsc_khz = tsc_khz;
5451
5452 cpu_notifier_register_begin();
5453 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5454 #ifdef CONFIG_CPU_FREQ
5455 struct cpufreq_policy policy;
5456 memset(&policy, 0, sizeof(policy));
5457 cpu = get_cpu();
5458 cpufreq_get_policy(&policy, cpu);
5459 if (policy.cpuinfo.max_freq)
5460 max_tsc_khz = policy.cpuinfo.max_freq;
5461 put_cpu();
5462 #endif
5463 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5464 CPUFREQ_TRANSITION_NOTIFIER);
5465 }
5466 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5467 for_each_online_cpu(cpu)
5468 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5469
5470 __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5471 cpu_notifier_register_done();
5472
5473 }
5474
5475 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5476
5477 int kvm_is_in_guest(void)
5478 {
5479 return __this_cpu_read(current_vcpu) != NULL;
5480 }
5481
5482 static int kvm_is_user_mode(void)
5483 {
5484 int user_mode = 3;
5485
5486 if (__this_cpu_read(current_vcpu))
5487 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5488
5489 return user_mode != 0;
5490 }
5491
5492 static unsigned long kvm_get_guest_ip(void)
5493 {
5494 unsigned long ip = 0;
5495
5496 if (__this_cpu_read(current_vcpu))
5497 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5498
5499 return ip;
5500 }
5501
5502 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5503 .is_in_guest = kvm_is_in_guest,
5504 .is_user_mode = kvm_is_user_mode,
5505 .get_guest_ip = kvm_get_guest_ip,
5506 };
5507
5508 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5509 {
5510 __this_cpu_write(current_vcpu, vcpu);
5511 }
5512 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5513
5514 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5515 {
5516 __this_cpu_write(current_vcpu, NULL);
5517 }
5518 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5519
5520 static void kvm_set_mmio_spte_mask(void)
5521 {
5522 u64 mask;
5523 int maxphyaddr = boot_cpu_data.x86_phys_bits;
5524
5525 /*
5526 * Set the reserved bits and the present bit of an paging-structure
5527 * entry to generate page fault with PFER.RSV = 1.
5528 */
5529 /* Mask the reserved physical address bits. */
5530 mask = rsvd_bits(maxphyaddr, 51);
5531
5532 /* Bit 62 is always reserved for 32bit host. */
5533 mask |= 0x3ull << 62;
5534
5535 /* Set the present bit. */
5536 mask |= 1ull;
5537
5538 #ifdef CONFIG_X86_64
5539 /*
5540 * If reserved bit is not supported, clear the present bit to disable
5541 * mmio page fault.
5542 */
5543 if (maxphyaddr == 52)
5544 mask &= ~1ull;
5545 #endif
5546
5547 kvm_mmu_set_mmio_spte_mask(mask);
5548 }
5549
5550 #ifdef CONFIG_X86_64
5551 static void pvclock_gtod_update_fn(struct work_struct *work)
5552 {
5553 struct kvm *kvm;
5554
5555 struct kvm_vcpu *vcpu;
5556 int i;
5557
5558 spin_lock(&kvm_lock);
5559 list_for_each_entry(kvm, &vm_list, vm_list)
5560 kvm_for_each_vcpu(i, vcpu, kvm)
5561 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5562 atomic_set(&kvm_guest_has_master_clock, 0);
5563 spin_unlock(&kvm_lock);
5564 }
5565
5566 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5567
5568 /*
5569 * Notification about pvclock gtod data update.
5570 */
5571 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5572 void *priv)
5573 {
5574 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5575 struct timekeeper *tk = priv;
5576
5577 update_pvclock_gtod(tk);
5578
5579 /* disable master clock if host does not trust, or does not
5580 * use, TSC clocksource
5581 */
5582 if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5583 atomic_read(&kvm_guest_has_master_clock) != 0)
5584 queue_work(system_long_wq, &pvclock_gtod_work);
5585
5586 return 0;
5587 }
5588
5589 static struct notifier_block pvclock_gtod_notifier = {
5590 .notifier_call = pvclock_gtod_notify,
5591 };
5592 #endif
5593
5594 int kvm_arch_init(void *opaque)
5595 {
5596 int r;
5597 struct kvm_x86_ops *ops = opaque;
5598
5599 if (kvm_x86_ops) {
5600 printk(KERN_ERR "kvm: already loaded the other module\n");
5601 r = -EEXIST;
5602 goto out;
5603 }
5604
5605 if (!ops->cpu_has_kvm_support()) {
5606 printk(KERN_ERR "kvm: no hardware support\n");
5607 r = -EOPNOTSUPP;
5608 goto out;
5609 }
5610 if (ops->disabled_by_bios()) {
5611 printk(KERN_ERR "kvm: disabled by bios\n");
5612 r = -EOPNOTSUPP;
5613 goto out;
5614 }
5615
5616 r = -ENOMEM;
5617 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5618 if (!shared_msrs) {
5619 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5620 goto out;
5621 }
5622
5623 r = kvm_mmu_module_init();
5624 if (r)
5625 goto out_free_percpu;
5626
5627 kvm_set_mmio_spte_mask();
5628
5629 kvm_x86_ops = ops;
5630
5631 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5632 PT_DIRTY_MASK, PT64_NX_MASK, 0);
5633
5634 kvm_timer_init();
5635
5636 perf_register_guest_info_callbacks(&kvm_guest_cbs);
5637
5638 if (cpu_has_xsave)
5639 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5640
5641 kvm_lapic_init();
5642 #ifdef CONFIG_X86_64
5643 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5644 #endif
5645
5646 return 0;
5647
5648 out_free_percpu:
5649 free_percpu(shared_msrs);
5650 out:
5651 return r;
5652 }
5653
5654 void kvm_arch_exit(void)
5655 {
5656 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5657
5658 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5659 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5660 CPUFREQ_TRANSITION_NOTIFIER);
5661 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5662 #ifdef CONFIG_X86_64
5663 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5664 #endif
5665 kvm_x86_ops = NULL;
5666 kvm_mmu_module_exit();
5667 free_percpu(shared_msrs);
5668 }
5669
5670 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5671 {
5672 ++vcpu->stat.halt_exits;
5673 if (irqchip_in_kernel(vcpu->kvm)) {
5674 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5675 return 1;
5676 } else {
5677 vcpu->run->exit_reason = KVM_EXIT_HLT;
5678 return 0;
5679 }
5680 }
5681 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5682
5683 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5684 {
5685 kvm_x86_ops->skip_emulated_instruction(vcpu);
5686 return kvm_vcpu_halt(vcpu);
5687 }
5688 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5689
5690 /*
5691 * kvm_pv_kick_cpu_op: Kick a vcpu.
5692 *
5693 * @apicid - apicid of vcpu to be kicked.
5694 */
5695 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5696 {
5697 struct kvm_lapic_irq lapic_irq;
5698
5699 lapic_irq.shorthand = 0;
5700 lapic_irq.dest_mode = 0;
5701 lapic_irq.dest_id = apicid;
5702 lapic_irq.msi_redir_hint = false;
5703
5704 lapic_irq.delivery_mode = APIC_DM_REMRD;
5705 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5706 }
5707
5708 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5709 {
5710 unsigned long nr, a0, a1, a2, a3, ret;
5711 int op_64_bit, r = 1;
5712
5713 kvm_x86_ops->skip_emulated_instruction(vcpu);
5714
5715 if (kvm_hv_hypercall_enabled(vcpu->kvm))
5716 return kvm_hv_hypercall(vcpu);
5717
5718 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5719 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5720 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5721 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5722 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5723
5724 trace_kvm_hypercall(nr, a0, a1, a2, a3);
5725
5726 op_64_bit = is_64_bit_mode(vcpu);
5727 if (!op_64_bit) {
5728 nr &= 0xFFFFFFFF;
5729 a0 &= 0xFFFFFFFF;
5730 a1 &= 0xFFFFFFFF;
5731 a2 &= 0xFFFFFFFF;
5732 a3 &= 0xFFFFFFFF;
5733 }
5734
5735 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5736 ret = -KVM_EPERM;
5737 goto out;
5738 }
5739
5740 switch (nr) {
5741 case KVM_HC_VAPIC_POLL_IRQ:
5742 ret = 0;
5743 break;
5744 case KVM_HC_KICK_CPU:
5745 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5746 ret = 0;
5747 break;
5748 default:
5749 ret = -KVM_ENOSYS;
5750 break;
5751 }
5752 out:
5753 if (!op_64_bit)
5754 ret = (u32)ret;
5755 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5756 ++vcpu->stat.hypercalls;
5757 return r;
5758 }
5759 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5760
5761 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5762 {
5763 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5764 char instruction[3];
5765 unsigned long rip = kvm_rip_read(vcpu);
5766
5767 kvm_x86_ops->patch_hypercall(vcpu, instruction);
5768
5769 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5770 }
5771
5772 /*
5773 * Check if userspace requested an interrupt window, and that the
5774 * interrupt window is open.
5775 *
5776 * No need to exit to userspace if we already have an interrupt queued.
5777 */
5778 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5779 {
5780 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5781 vcpu->run->request_interrupt_window &&
5782 kvm_arch_interrupt_allowed(vcpu));
5783 }
5784
5785 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5786 {
5787 struct kvm_run *kvm_run = vcpu->run;
5788
5789 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5790 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
5791 kvm_run->cr8 = kvm_get_cr8(vcpu);
5792 kvm_run->apic_base = kvm_get_apic_base(vcpu);
5793 if (irqchip_in_kernel(vcpu->kvm))
5794 kvm_run->ready_for_interrupt_injection = 1;
5795 else
5796 kvm_run->ready_for_interrupt_injection =
5797 kvm_arch_interrupt_allowed(vcpu) &&
5798 !kvm_cpu_has_interrupt(vcpu) &&
5799 !kvm_event_needs_reinjection(vcpu);
5800 }
5801
5802 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5803 {
5804 int max_irr, tpr;
5805
5806 if (!kvm_x86_ops->update_cr8_intercept)
5807 return;
5808
5809 if (!vcpu->arch.apic)
5810 return;
5811
5812 if (!vcpu->arch.apic->vapic_addr)
5813 max_irr = kvm_lapic_find_highest_irr(vcpu);
5814 else
5815 max_irr = -1;
5816
5817 if (max_irr != -1)
5818 max_irr >>= 4;
5819
5820 tpr = kvm_lapic_get_cr8(vcpu);
5821
5822 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5823 }
5824
5825 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
5826 {
5827 int r;
5828
5829 /* try to reinject previous events if any */
5830 if (vcpu->arch.exception.pending) {
5831 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5832 vcpu->arch.exception.has_error_code,
5833 vcpu->arch.exception.error_code);
5834
5835 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
5836 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
5837 X86_EFLAGS_RF);
5838
5839 if (vcpu->arch.exception.nr == DB_VECTOR &&
5840 (vcpu->arch.dr7 & DR7_GD)) {
5841 vcpu->arch.dr7 &= ~DR7_GD;
5842 kvm_update_dr7(vcpu);
5843 }
5844
5845 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5846 vcpu->arch.exception.has_error_code,
5847 vcpu->arch.exception.error_code,
5848 vcpu->arch.exception.reinject);
5849 return 0;
5850 }
5851
5852 if (vcpu->arch.nmi_injected) {
5853 kvm_x86_ops->set_nmi(vcpu);
5854 return 0;
5855 }
5856
5857 if (vcpu->arch.interrupt.pending) {
5858 kvm_x86_ops->set_irq(vcpu);
5859 return 0;
5860 }
5861
5862 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
5863 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
5864 if (r != 0)
5865 return r;
5866 }
5867
5868 /* try to inject new event if pending */
5869 if (vcpu->arch.nmi_pending) {
5870 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5871 --vcpu->arch.nmi_pending;
5872 vcpu->arch.nmi_injected = true;
5873 kvm_x86_ops->set_nmi(vcpu);
5874 }
5875 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
5876 /*
5877 * Because interrupts can be injected asynchronously, we are
5878 * calling check_nested_events again here to avoid a race condition.
5879 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
5880 * proposal and current concerns. Perhaps we should be setting
5881 * KVM_REQ_EVENT only on certain events and not unconditionally?
5882 */
5883 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
5884 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
5885 if (r != 0)
5886 return r;
5887 }
5888 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5889 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5890 false);
5891 kvm_x86_ops->set_irq(vcpu);
5892 }
5893 }
5894 return 0;
5895 }
5896
5897 static void process_nmi(struct kvm_vcpu *vcpu)
5898 {
5899 unsigned limit = 2;
5900
5901 /*
5902 * x86 is limited to one NMI running, and one NMI pending after it.
5903 * If an NMI is already in progress, limit further NMIs to just one.
5904 * Otherwise, allow two (and we'll inject the first one immediately).
5905 */
5906 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5907 limit = 1;
5908
5909 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5910 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5911 kvm_make_request(KVM_REQ_EVENT, vcpu);
5912 }
5913
5914 #define put_smstate(type, buf, offset, val) \
5915 *(type *)((buf) + (offset) - 0x7e00) = val
5916
5917 static u32 process_smi_get_segment_flags(struct kvm_segment *seg)
5918 {
5919 u32 flags = 0;
5920 flags |= seg->g << 23;
5921 flags |= seg->db << 22;
5922 flags |= seg->l << 21;
5923 flags |= seg->avl << 20;
5924 flags |= seg->present << 15;
5925 flags |= seg->dpl << 13;
5926 flags |= seg->s << 12;
5927 flags |= seg->type << 8;
5928 return flags;
5929 }
5930
5931 static void process_smi_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
5932 {
5933 struct kvm_segment seg;
5934 int offset;
5935
5936 kvm_get_segment(vcpu, &seg, n);
5937 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
5938
5939 if (n < 3)
5940 offset = 0x7f84 + n * 12;
5941 else
5942 offset = 0x7f2c + (n - 3) * 12;
5943
5944 put_smstate(u32, buf, offset + 8, seg.base);
5945 put_smstate(u32, buf, offset + 4, seg.limit);
5946 put_smstate(u32, buf, offset, process_smi_get_segment_flags(&seg));
5947 }
5948
5949 #ifdef CONFIG_X86_64
5950 static void process_smi_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
5951 {
5952 struct kvm_segment seg;
5953 int offset;
5954 u16 flags;
5955
5956 kvm_get_segment(vcpu, &seg, n);
5957 offset = 0x7e00 + n * 16;
5958
5959 flags = process_smi_get_segment_flags(&seg) >> 8;
5960 put_smstate(u16, buf, offset, seg.selector);
5961 put_smstate(u16, buf, offset + 2, flags);
5962 put_smstate(u32, buf, offset + 4, seg.limit);
5963 put_smstate(u64, buf, offset + 8, seg.base);
5964 }
5965 #endif
5966
5967 static void process_smi_save_state_32(struct kvm_vcpu *vcpu, char *buf)
5968 {
5969 struct desc_ptr dt;
5970 struct kvm_segment seg;
5971 unsigned long val;
5972 int i;
5973
5974 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
5975 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
5976 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
5977 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
5978
5979 for (i = 0; i < 8; i++)
5980 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
5981
5982 kvm_get_dr(vcpu, 6, &val);
5983 put_smstate(u32, buf, 0x7fcc, (u32)val);
5984 kvm_get_dr(vcpu, 7, &val);
5985 put_smstate(u32, buf, 0x7fc8, (u32)val);
5986
5987 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
5988 put_smstate(u32, buf, 0x7fc4, seg.selector);
5989 put_smstate(u32, buf, 0x7f64, seg.base);
5990 put_smstate(u32, buf, 0x7f60, seg.limit);
5991 put_smstate(u32, buf, 0x7f5c, process_smi_get_segment_flags(&seg));
5992
5993 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
5994 put_smstate(u32, buf, 0x7fc0, seg.selector);
5995 put_smstate(u32, buf, 0x7f80, seg.base);
5996 put_smstate(u32, buf, 0x7f7c, seg.limit);
5997 put_smstate(u32, buf, 0x7f78, process_smi_get_segment_flags(&seg));
5998
5999 kvm_x86_ops->get_gdt(vcpu, &dt);
6000 put_smstate(u32, buf, 0x7f74, dt.address);
6001 put_smstate(u32, buf, 0x7f70, dt.size);
6002
6003 kvm_x86_ops->get_idt(vcpu, &dt);
6004 put_smstate(u32, buf, 0x7f58, dt.address);
6005 put_smstate(u32, buf, 0x7f54, dt.size);
6006
6007 for (i = 0; i < 6; i++)
6008 process_smi_save_seg_32(vcpu, buf, i);
6009
6010 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6011
6012 /* revision id */
6013 put_smstate(u32, buf, 0x7efc, 0x00020000);
6014 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6015 }
6016
6017 static void process_smi_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6018 {
6019 #ifdef CONFIG_X86_64
6020 struct desc_ptr dt;
6021 struct kvm_segment seg;
6022 unsigned long val;
6023 int i;
6024
6025 for (i = 0; i < 16; i++)
6026 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6027
6028 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6029 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6030
6031 kvm_get_dr(vcpu, 6, &val);
6032 put_smstate(u64, buf, 0x7f68, val);
6033 kvm_get_dr(vcpu, 7, &val);
6034 put_smstate(u64, buf, 0x7f60, val);
6035
6036 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6037 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6038 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6039
6040 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6041
6042 /* revision id */
6043 put_smstate(u32, buf, 0x7efc, 0x00020064);
6044
6045 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6046
6047 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6048 put_smstate(u16, buf, 0x7e90, seg.selector);
6049 put_smstate(u16, buf, 0x7e92, process_smi_get_segment_flags(&seg) >> 8);
6050 put_smstate(u32, buf, 0x7e94, seg.limit);
6051 put_smstate(u64, buf, 0x7e98, seg.base);
6052
6053 kvm_x86_ops->get_idt(vcpu, &dt);
6054 put_smstate(u32, buf, 0x7e84, dt.size);
6055 put_smstate(u64, buf, 0x7e88, dt.address);
6056
6057 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6058 put_smstate(u16, buf, 0x7e70, seg.selector);
6059 put_smstate(u16, buf, 0x7e72, process_smi_get_segment_flags(&seg) >> 8);
6060 put_smstate(u32, buf, 0x7e74, seg.limit);
6061 put_smstate(u64, buf, 0x7e78, seg.base);
6062
6063 kvm_x86_ops->get_gdt(vcpu, &dt);
6064 put_smstate(u32, buf, 0x7e64, dt.size);
6065 put_smstate(u64, buf, 0x7e68, dt.address);
6066
6067 for (i = 0; i < 6; i++)
6068 process_smi_save_seg_64(vcpu, buf, i);
6069 #else
6070 WARN_ON_ONCE(1);
6071 #endif
6072 }
6073
6074 static void process_smi(struct kvm_vcpu *vcpu)
6075 {
6076 struct kvm_segment cs, ds;
6077 struct desc_ptr dt;
6078 char buf[512];
6079 u32 cr0;
6080
6081 if (is_smm(vcpu)) {
6082 vcpu->arch.smi_pending = true;
6083 return;
6084 }
6085
6086 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6087 vcpu->arch.hflags |= HF_SMM_MASK;
6088 memset(buf, 0, 512);
6089 if (guest_cpuid_has_longmode(vcpu))
6090 process_smi_save_state_64(vcpu, buf);
6091 else
6092 process_smi_save_state_32(vcpu, buf);
6093
6094 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6095
6096 if (kvm_x86_ops->get_nmi_mask(vcpu))
6097 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6098 else
6099 kvm_x86_ops->set_nmi_mask(vcpu, true);
6100
6101 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6102 kvm_rip_write(vcpu, 0x8000);
6103
6104 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6105 kvm_x86_ops->set_cr0(vcpu, cr0);
6106 vcpu->arch.cr0 = cr0;
6107
6108 kvm_x86_ops->set_cr4(vcpu, 0);
6109
6110 /* Undocumented: IDT limit is set to zero on entry to SMM. */
6111 dt.address = dt.size = 0;
6112 kvm_x86_ops->set_idt(vcpu, &dt);
6113
6114 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6115
6116 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6117 cs.base = vcpu->arch.smbase;
6118
6119 ds.selector = 0;
6120 ds.base = 0;
6121
6122 cs.limit = ds.limit = 0xffffffff;
6123 cs.type = ds.type = 0x3;
6124 cs.dpl = ds.dpl = 0;
6125 cs.db = ds.db = 0;
6126 cs.s = ds.s = 1;
6127 cs.l = ds.l = 0;
6128 cs.g = ds.g = 1;
6129 cs.avl = ds.avl = 0;
6130 cs.present = ds.present = 1;
6131 cs.unusable = ds.unusable = 0;
6132 cs.padding = ds.padding = 0;
6133
6134 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6135 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6136 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6137 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6138 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6139 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6140
6141 if (guest_cpuid_has_longmode(vcpu))
6142 kvm_x86_ops->set_efer(vcpu, 0);
6143
6144 kvm_update_cpuid(vcpu);
6145 kvm_mmu_reset_context(vcpu);
6146 }
6147
6148 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6149 {
6150 u64 eoi_exit_bitmap[4];
6151 u32 tmr[8];
6152
6153 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6154 return;
6155
6156 memset(eoi_exit_bitmap, 0, 32);
6157 memset(tmr, 0, 32);
6158
6159 kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
6160 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6161 kvm_apic_update_tmr(vcpu, tmr);
6162 }
6163
6164 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6165 {
6166 ++vcpu->stat.tlb_flush;
6167 kvm_x86_ops->tlb_flush(vcpu);
6168 }
6169
6170 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6171 {
6172 struct page *page = NULL;
6173
6174 if (!irqchip_in_kernel(vcpu->kvm))
6175 return;
6176
6177 if (!kvm_x86_ops->set_apic_access_page_addr)
6178 return;
6179
6180 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6181 if (is_error_page(page))
6182 return;
6183 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6184
6185 /*
6186 * Do not pin apic access page in memory, the MMU notifier
6187 * will call us again if it is migrated or swapped out.
6188 */
6189 put_page(page);
6190 }
6191 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6192
6193 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6194 unsigned long address)
6195 {
6196 /*
6197 * The physical address of apic access page is stored in the VMCS.
6198 * Update it when it becomes invalid.
6199 */
6200 if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6201 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6202 }
6203
6204 /*
6205 * Returns 1 to let vcpu_run() continue the guest execution loop without
6206 * exiting to the userspace. Otherwise, the value will be returned to the
6207 * userspace.
6208 */
6209 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6210 {
6211 int r;
6212 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
6213 vcpu->run->request_interrupt_window;
6214 bool req_immediate_exit = false;
6215
6216 if (vcpu->requests) {
6217 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6218 kvm_mmu_unload(vcpu);
6219 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6220 __kvm_migrate_timers(vcpu);
6221 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6222 kvm_gen_update_masterclock(vcpu->kvm);
6223 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6224 kvm_gen_kvmclock_update(vcpu);
6225 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6226 r = kvm_guest_time_update(vcpu);
6227 if (unlikely(r))
6228 goto out;
6229 }
6230 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6231 kvm_mmu_sync_roots(vcpu);
6232 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6233 kvm_vcpu_flush_tlb(vcpu);
6234 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6235 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6236 r = 0;
6237 goto out;
6238 }
6239 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6240 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6241 r = 0;
6242 goto out;
6243 }
6244 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6245 vcpu->fpu_active = 0;
6246 kvm_x86_ops->fpu_deactivate(vcpu);
6247 }
6248 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6249 /* Page is swapped out. Do synthetic halt */
6250 vcpu->arch.apf.halted = true;
6251 r = 1;
6252 goto out;
6253 }
6254 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6255 record_steal_time(vcpu);
6256 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6257 process_smi(vcpu);
6258 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6259 process_nmi(vcpu);
6260 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6261 kvm_pmu_handle_event(vcpu);
6262 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6263 kvm_pmu_deliver_pmi(vcpu);
6264 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6265 vcpu_scan_ioapic(vcpu);
6266 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6267 kvm_vcpu_reload_apic_access_page(vcpu);
6268 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6269 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6270 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6271 r = 0;
6272 goto out;
6273 }
6274 }
6275
6276 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6277 kvm_apic_accept_events(vcpu);
6278 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6279 r = 1;
6280 goto out;
6281 }
6282
6283 if (inject_pending_event(vcpu, req_int_win) != 0)
6284 req_immediate_exit = true;
6285 /* enable NMI/IRQ window open exits if needed */
6286 else if (vcpu->arch.nmi_pending)
6287 kvm_x86_ops->enable_nmi_window(vcpu);
6288 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6289 kvm_x86_ops->enable_irq_window(vcpu);
6290
6291 if (kvm_lapic_enabled(vcpu)) {
6292 /*
6293 * Update architecture specific hints for APIC
6294 * virtual interrupt delivery.
6295 */
6296 if (kvm_x86_ops->hwapic_irr_update)
6297 kvm_x86_ops->hwapic_irr_update(vcpu,
6298 kvm_lapic_find_highest_irr(vcpu));
6299 update_cr8_intercept(vcpu);
6300 kvm_lapic_sync_to_vapic(vcpu);
6301 }
6302 }
6303
6304 r = kvm_mmu_reload(vcpu);
6305 if (unlikely(r)) {
6306 goto cancel_injection;
6307 }
6308
6309 preempt_disable();
6310
6311 kvm_x86_ops->prepare_guest_switch(vcpu);
6312 if (vcpu->fpu_active)
6313 kvm_load_guest_fpu(vcpu);
6314 kvm_load_guest_xcr0(vcpu);
6315
6316 vcpu->mode = IN_GUEST_MODE;
6317
6318 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6319
6320 /* We should set ->mode before check ->requests,
6321 * see the comment in make_all_cpus_request.
6322 */
6323 smp_mb__after_srcu_read_unlock();
6324
6325 local_irq_disable();
6326
6327 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6328 || need_resched() || signal_pending(current)) {
6329 vcpu->mode = OUTSIDE_GUEST_MODE;
6330 smp_wmb();
6331 local_irq_enable();
6332 preempt_enable();
6333 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6334 r = 1;
6335 goto cancel_injection;
6336 }
6337
6338 if (req_immediate_exit)
6339 smp_send_reschedule(vcpu->cpu);
6340
6341 __kvm_guest_enter();
6342
6343 if (unlikely(vcpu->arch.switch_db_regs)) {
6344 set_debugreg(0, 7);
6345 set_debugreg(vcpu->arch.eff_db[0], 0);
6346 set_debugreg(vcpu->arch.eff_db[1], 1);
6347 set_debugreg(vcpu->arch.eff_db[2], 2);
6348 set_debugreg(vcpu->arch.eff_db[3], 3);
6349 set_debugreg(vcpu->arch.dr6, 6);
6350 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6351 }
6352
6353 trace_kvm_entry(vcpu->vcpu_id);
6354 wait_lapic_expire(vcpu);
6355 kvm_x86_ops->run(vcpu);
6356
6357 /*
6358 * Do this here before restoring debug registers on the host. And
6359 * since we do this before handling the vmexit, a DR access vmexit
6360 * can (a) read the correct value of the debug registers, (b) set
6361 * KVM_DEBUGREG_WONT_EXIT again.
6362 */
6363 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6364 int i;
6365
6366 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6367 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6368 for (i = 0; i < KVM_NR_DB_REGS; i++)
6369 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6370 }
6371
6372 /*
6373 * If the guest has used debug registers, at least dr7
6374 * will be disabled while returning to the host.
6375 * If we don't have active breakpoints in the host, we don't
6376 * care about the messed up debug address registers. But if
6377 * we have some of them active, restore the old state.
6378 */
6379 if (hw_breakpoint_active())
6380 hw_breakpoint_restore();
6381
6382 vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
6383 rdtsc());
6384
6385 vcpu->mode = OUTSIDE_GUEST_MODE;
6386 smp_wmb();
6387
6388 /* Interrupt is enabled by handle_external_intr() */
6389 kvm_x86_ops->handle_external_intr(vcpu);
6390
6391 ++vcpu->stat.exits;
6392
6393 /*
6394 * We must have an instruction between local_irq_enable() and
6395 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6396 * the interrupt shadow. The stat.exits increment will do nicely.
6397 * But we need to prevent reordering, hence this barrier():
6398 */
6399 barrier();
6400
6401 kvm_guest_exit();
6402
6403 preempt_enable();
6404
6405 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6406
6407 /*
6408 * Profile KVM exit RIPs:
6409 */
6410 if (unlikely(prof_on == KVM_PROFILING)) {
6411 unsigned long rip = kvm_rip_read(vcpu);
6412 profile_hit(KVM_PROFILING, (void *)rip);
6413 }
6414
6415 if (unlikely(vcpu->arch.tsc_always_catchup))
6416 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6417
6418 if (vcpu->arch.apic_attention)
6419 kvm_lapic_sync_from_vapic(vcpu);
6420
6421 r = kvm_x86_ops->handle_exit(vcpu);
6422 return r;
6423
6424 cancel_injection:
6425 kvm_x86_ops->cancel_injection(vcpu);
6426 if (unlikely(vcpu->arch.apic_attention))
6427 kvm_lapic_sync_from_vapic(vcpu);
6428 out:
6429 return r;
6430 }
6431
6432 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6433 {
6434 if (!kvm_arch_vcpu_runnable(vcpu)) {
6435 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6436 kvm_vcpu_block(vcpu);
6437 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6438 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6439 return 1;
6440 }
6441
6442 kvm_apic_accept_events(vcpu);
6443 switch(vcpu->arch.mp_state) {
6444 case KVM_MP_STATE_HALTED:
6445 vcpu->arch.pv.pv_unhalted = false;
6446 vcpu->arch.mp_state =
6447 KVM_MP_STATE_RUNNABLE;
6448 case KVM_MP_STATE_RUNNABLE:
6449 vcpu->arch.apf.halted = false;
6450 break;
6451 case KVM_MP_STATE_INIT_RECEIVED:
6452 break;
6453 default:
6454 return -EINTR;
6455 break;
6456 }
6457 return 1;
6458 }
6459
6460 static int vcpu_run(struct kvm_vcpu *vcpu)
6461 {
6462 int r;
6463 struct kvm *kvm = vcpu->kvm;
6464
6465 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6466
6467 for (;;) {
6468 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6469 !vcpu->arch.apf.halted)
6470 r = vcpu_enter_guest(vcpu);
6471 else
6472 r = vcpu_block(kvm, vcpu);
6473 if (r <= 0)
6474 break;
6475
6476 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6477 if (kvm_cpu_has_pending_timer(vcpu))
6478 kvm_inject_pending_timer_irqs(vcpu);
6479
6480 if (dm_request_for_irq_injection(vcpu)) {
6481 r = -EINTR;
6482 vcpu->run->exit_reason = KVM_EXIT_INTR;
6483 ++vcpu->stat.request_irq_exits;
6484 break;
6485 }
6486
6487 kvm_check_async_pf_completion(vcpu);
6488
6489 if (signal_pending(current)) {
6490 r = -EINTR;
6491 vcpu->run->exit_reason = KVM_EXIT_INTR;
6492 ++vcpu->stat.signal_exits;
6493 break;
6494 }
6495 if (need_resched()) {
6496 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6497 cond_resched();
6498 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6499 }
6500 }
6501
6502 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6503
6504 return r;
6505 }
6506
6507 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6508 {
6509 int r;
6510 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6511 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6512 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6513 if (r != EMULATE_DONE)
6514 return 0;
6515 return 1;
6516 }
6517
6518 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6519 {
6520 BUG_ON(!vcpu->arch.pio.count);
6521
6522 return complete_emulated_io(vcpu);
6523 }
6524
6525 /*
6526 * Implements the following, as a state machine:
6527 *
6528 * read:
6529 * for each fragment
6530 * for each mmio piece in the fragment
6531 * write gpa, len
6532 * exit
6533 * copy data
6534 * execute insn
6535 *
6536 * write:
6537 * for each fragment
6538 * for each mmio piece in the fragment
6539 * write gpa, len
6540 * copy data
6541 * exit
6542 */
6543 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6544 {
6545 struct kvm_run *run = vcpu->run;
6546 struct kvm_mmio_fragment *frag;
6547 unsigned len;
6548
6549 BUG_ON(!vcpu->mmio_needed);
6550
6551 /* Complete previous fragment */
6552 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6553 len = min(8u, frag->len);
6554 if (!vcpu->mmio_is_write)
6555 memcpy(frag->data, run->mmio.data, len);
6556
6557 if (frag->len <= 8) {
6558 /* Switch to the next fragment. */
6559 frag++;
6560 vcpu->mmio_cur_fragment++;
6561 } else {
6562 /* Go forward to the next mmio piece. */
6563 frag->data += len;
6564 frag->gpa += len;
6565 frag->len -= len;
6566 }
6567
6568 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6569 vcpu->mmio_needed = 0;
6570
6571 /* FIXME: return into emulator if single-stepping. */
6572 if (vcpu->mmio_is_write)
6573 return 1;
6574 vcpu->mmio_read_completed = 1;
6575 return complete_emulated_io(vcpu);
6576 }
6577
6578 run->exit_reason = KVM_EXIT_MMIO;
6579 run->mmio.phys_addr = frag->gpa;
6580 if (vcpu->mmio_is_write)
6581 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6582 run->mmio.len = min(8u, frag->len);
6583 run->mmio.is_write = vcpu->mmio_is_write;
6584 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6585 return 0;
6586 }
6587
6588
6589 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6590 {
6591 struct fpu *fpu = &current->thread.fpu;
6592 int r;
6593 sigset_t sigsaved;
6594
6595 fpu__activate_curr(fpu);
6596
6597 if (vcpu->sigset_active)
6598 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6599
6600 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6601 kvm_vcpu_block(vcpu);
6602 kvm_apic_accept_events(vcpu);
6603 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6604 r = -EAGAIN;
6605 goto out;
6606 }
6607
6608 /* re-sync apic's tpr */
6609 if (!irqchip_in_kernel(vcpu->kvm)) {
6610 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6611 r = -EINVAL;
6612 goto out;
6613 }
6614 }
6615
6616 if (unlikely(vcpu->arch.complete_userspace_io)) {
6617 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6618 vcpu->arch.complete_userspace_io = NULL;
6619 r = cui(vcpu);
6620 if (r <= 0)
6621 goto out;
6622 } else
6623 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6624
6625 r = vcpu_run(vcpu);
6626
6627 out:
6628 post_kvm_run_save(vcpu);
6629 if (vcpu->sigset_active)
6630 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6631
6632 return r;
6633 }
6634
6635 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6636 {
6637 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6638 /*
6639 * We are here if userspace calls get_regs() in the middle of
6640 * instruction emulation. Registers state needs to be copied
6641 * back from emulation context to vcpu. Userspace shouldn't do
6642 * that usually, but some bad designed PV devices (vmware
6643 * backdoor interface) need this to work
6644 */
6645 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6646 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6647 }
6648 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6649 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6650 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6651 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6652 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6653 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6654 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6655 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6656 #ifdef CONFIG_X86_64
6657 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6658 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6659 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6660 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6661 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6662 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6663 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6664 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6665 #endif
6666
6667 regs->rip = kvm_rip_read(vcpu);
6668 regs->rflags = kvm_get_rflags(vcpu);
6669
6670 return 0;
6671 }
6672
6673 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6674 {
6675 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6676 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6677
6678 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6679 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6680 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6681 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6682 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6683 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6684 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6685 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6686 #ifdef CONFIG_X86_64
6687 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6688 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6689 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6690 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6691 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6692 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6693 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6694 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6695 #endif
6696
6697 kvm_rip_write(vcpu, regs->rip);
6698 kvm_set_rflags(vcpu, regs->rflags);
6699
6700 vcpu->arch.exception.pending = false;
6701
6702 kvm_make_request(KVM_REQ_EVENT, vcpu);
6703
6704 return 0;
6705 }
6706
6707 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6708 {
6709 struct kvm_segment cs;
6710
6711 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6712 *db = cs.db;
6713 *l = cs.l;
6714 }
6715 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6716
6717 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6718 struct kvm_sregs *sregs)
6719 {
6720 struct desc_ptr dt;
6721
6722 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6723 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6724 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6725 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6726 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6727 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6728
6729 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6730 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6731
6732 kvm_x86_ops->get_idt(vcpu, &dt);
6733 sregs->idt.limit = dt.size;
6734 sregs->idt.base = dt.address;
6735 kvm_x86_ops->get_gdt(vcpu, &dt);
6736 sregs->gdt.limit = dt.size;
6737 sregs->gdt.base = dt.address;
6738
6739 sregs->cr0 = kvm_read_cr0(vcpu);
6740 sregs->cr2 = vcpu->arch.cr2;
6741 sregs->cr3 = kvm_read_cr3(vcpu);
6742 sregs->cr4 = kvm_read_cr4(vcpu);
6743 sregs->cr8 = kvm_get_cr8(vcpu);
6744 sregs->efer = vcpu->arch.efer;
6745 sregs->apic_base = kvm_get_apic_base(vcpu);
6746
6747 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6748
6749 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6750 set_bit(vcpu->arch.interrupt.nr,
6751 (unsigned long *)sregs->interrupt_bitmap);
6752
6753 return 0;
6754 }
6755
6756 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6757 struct kvm_mp_state *mp_state)
6758 {
6759 kvm_apic_accept_events(vcpu);
6760 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6761 vcpu->arch.pv.pv_unhalted)
6762 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6763 else
6764 mp_state->mp_state = vcpu->arch.mp_state;
6765
6766 return 0;
6767 }
6768
6769 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6770 struct kvm_mp_state *mp_state)
6771 {
6772 if (!kvm_vcpu_has_lapic(vcpu) &&
6773 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6774 return -EINVAL;
6775
6776 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6777 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6778 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6779 } else
6780 vcpu->arch.mp_state = mp_state->mp_state;
6781 kvm_make_request(KVM_REQ_EVENT, vcpu);
6782 return 0;
6783 }
6784
6785 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6786 int reason, bool has_error_code, u32 error_code)
6787 {
6788 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6789 int ret;
6790
6791 init_emulate_ctxt(vcpu);
6792
6793 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6794 has_error_code, error_code);
6795
6796 if (ret)
6797 return EMULATE_FAIL;
6798
6799 kvm_rip_write(vcpu, ctxt->eip);
6800 kvm_set_rflags(vcpu, ctxt->eflags);
6801 kvm_make_request(KVM_REQ_EVENT, vcpu);
6802 return EMULATE_DONE;
6803 }
6804 EXPORT_SYMBOL_GPL(kvm_task_switch);
6805
6806 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6807 struct kvm_sregs *sregs)
6808 {
6809 struct msr_data apic_base_msr;
6810 int mmu_reset_needed = 0;
6811 int pending_vec, max_bits, idx;
6812 struct desc_ptr dt;
6813
6814 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6815 return -EINVAL;
6816
6817 dt.size = sregs->idt.limit;
6818 dt.address = sregs->idt.base;
6819 kvm_x86_ops->set_idt(vcpu, &dt);
6820 dt.size = sregs->gdt.limit;
6821 dt.address = sregs->gdt.base;
6822 kvm_x86_ops->set_gdt(vcpu, &dt);
6823
6824 vcpu->arch.cr2 = sregs->cr2;
6825 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6826 vcpu->arch.cr3 = sregs->cr3;
6827 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6828
6829 kvm_set_cr8(vcpu, sregs->cr8);
6830
6831 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6832 kvm_x86_ops->set_efer(vcpu, sregs->efer);
6833 apic_base_msr.data = sregs->apic_base;
6834 apic_base_msr.host_initiated = true;
6835 kvm_set_apic_base(vcpu, &apic_base_msr);
6836
6837 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6838 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6839 vcpu->arch.cr0 = sregs->cr0;
6840
6841 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6842 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6843 if (sregs->cr4 & X86_CR4_OSXSAVE)
6844 kvm_update_cpuid(vcpu);
6845
6846 idx = srcu_read_lock(&vcpu->kvm->srcu);
6847 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6848 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6849 mmu_reset_needed = 1;
6850 }
6851 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6852
6853 if (mmu_reset_needed)
6854 kvm_mmu_reset_context(vcpu);
6855
6856 max_bits = KVM_NR_INTERRUPTS;
6857 pending_vec = find_first_bit(
6858 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6859 if (pending_vec < max_bits) {
6860 kvm_queue_interrupt(vcpu, pending_vec, false);
6861 pr_debug("Set back pending irq %d\n", pending_vec);
6862 }
6863
6864 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6865 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6866 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6867 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6868 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6869 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6870
6871 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6872 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6873
6874 update_cr8_intercept(vcpu);
6875
6876 /* Older userspace won't unhalt the vcpu on reset. */
6877 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6878 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6879 !is_protmode(vcpu))
6880 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6881
6882 kvm_make_request(KVM_REQ_EVENT, vcpu);
6883
6884 return 0;
6885 }
6886
6887 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6888 struct kvm_guest_debug *dbg)
6889 {
6890 unsigned long rflags;
6891 int i, r;
6892
6893 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6894 r = -EBUSY;
6895 if (vcpu->arch.exception.pending)
6896 goto out;
6897 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6898 kvm_queue_exception(vcpu, DB_VECTOR);
6899 else
6900 kvm_queue_exception(vcpu, BP_VECTOR);
6901 }
6902
6903 /*
6904 * Read rflags as long as potentially injected trace flags are still
6905 * filtered out.
6906 */
6907 rflags = kvm_get_rflags(vcpu);
6908
6909 vcpu->guest_debug = dbg->control;
6910 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6911 vcpu->guest_debug = 0;
6912
6913 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6914 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6915 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6916 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6917 } else {
6918 for (i = 0; i < KVM_NR_DB_REGS; i++)
6919 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6920 }
6921 kvm_update_dr7(vcpu);
6922
6923 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6924 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6925 get_segment_base(vcpu, VCPU_SREG_CS);
6926
6927 /*
6928 * Trigger an rflags update that will inject or remove the trace
6929 * flags.
6930 */
6931 kvm_set_rflags(vcpu, rflags);
6932
6933 kvm_x86_ops->update_db_bp_intercept(vcpu);
6934
6935 r = 0;
6936
6937 out:
6938
6939 return r;
6940 }
6941
6942 /*
6943 * Translate a guest virtual address to a guest physical address.
6944 */
6945 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6946 struct kvm_translation *tr)
6947 {
6948 unsigned long vaddr = tr->linear_address;
6949 gpa_t gpa;
6950 int idx;
6951
6952 idx = srcu_read_lock(&vcpu->kvm->srcu);
6953 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6954 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6955 tr->physical_address = gpa;
6956 tr->valid = gpa != UNMAPPED_GVA;
6957 tr->writeable = 1;
6958 tr->usermode = 0;
6959
6960 return 0;
6961 }
6962
6963 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6964 {
6965 struct fxregs_state *fxsave =
6966 &vcpu->arch.guest_fpu.state.fxsave;
6967
6968 memcpy(fpu->fpr, fxsave->st_space, 128);
6969 fpu->fcw = fxsave->cwd;
6970 fpu->fsw = fxsave->swd;
6971 fpu->ftwx = fxsave->twd;
6972 fpu->last_opcode = fxsave->fop;
6973 fpu->last_ip = fxsave->rip;
6974 fpu->last_dp = fxsave->rdp;
6975 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6976
6977 return 0;
6978 }
6979
6980 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6981 {
6982 struct fxregs_state *fxsave =
6983 &vcpu->arch.guest_fpu.state.fxsave;
6984
6985 memcpy(fxsave->st_space, fpu->fpr, 128);
6986 fxsave->cwd = fpu->fcw;
6987 fxsave->swd = fpu->fsw;
6988 fxsave->twd = fpu->ftwx;
6989 fxsave->fop = fpu->last_opcode;
6990 fxsave->rip = fpu->last_ip;
6991 fxsave->rdp = fpu->last_dp;
6992 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6993
6994 return 0;
6995 }
6996
6997 static void fx_init(struct kvm_vcpu *vcpu)
6998 {
6999 fpstate_init(&vcpu->arch.guest_fpu.state);
7000 if (cpu_has_xsaves)
7001 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7002 host_xcr0 | XSTATE_COMPACTION_ENABLED;
7003
7004 /*
7005 * Ensure guest xcr0 is valid for loading
7006 */
7007 vcpu->arch.xcr0 = XSTATE_FP;
7008
7009 vcpu->arch.cr0 |= X86_CR0_ET;
7010 }
7011
7012 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7013 {
7014 if (vcpu->guest_fpu_loaded)
7015 return;
7016
7017 /*
7018 * Restore all possible states in the guest,
7019 * and assume host would use all available bits.
7020 * Guest xcr0 would be loaded later.
7021 */
7022 kvm_put_guest_xcr0(vcpu);
7023 vcpu->guest_fpu_loaded = 1;
7024 __kernel_fpu_begin();
7025 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7026 trace_kvm_fpu(1);
7027 }
7028
7029 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7030 {
7031 kvm_put_guest_xcr0(vcpu);
7032
7033 if (!vcpu->guest_fpu_loaded) {
7034 vcpu->fpu_counter = 0;
7035 return;
7036 }
7037
7038 vcpu->guest_fpu_loaded = 0;
7039 copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7040 __kernel_fpu_end();
7041 ++vcpu->stat.fpu_reload;
7042 /*
7043 * If using eager FPU mode, or if the guest is a frequent user
7044 * of the FPU, just leave the FPU active for next time.
7045 * Every 255 times fpu_counter rolls over to 0; a guest that uses
7046 * the FPU in bursts will revert to loading it on demand.
7047 */
7048 if (!vcpu->arch.eager_fpu) {
7049 if (++vcpu->fpu_counter < 5)
7050 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7051 }
7052 trace_kvm_fpu(0);
7053 }
7054
7055 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7056 {
7057 kvmclock_reset(vcpu);
7058
7059 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7060 kvm_x86_ops->vcpu_free(vcpu);
7061 }
7062
7063 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7064 unsigned int id)
7065 {
7066 struct kvm_vcpu *vcpu;
7067
7068 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7069 printk_once(KERN_WARNING
7070 "kvm: SMP vm created on host with unstable TSC; "
7071 "guest TSC will not be reliable\n");
7072
7073 vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7074
7075 return vcpu;
7076 }
7077
7078 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7079 {
7080 int r;
7081
7082 kvm_vcpu_mtrr_init(vcpu);
7083 r = vcpu_load(vcpu);
7084 if (r)
7085 return r;
7086 kvm_vcpu_reset(vcpu, false);
7087 kvm_mmu_setup(vcpu);
7088 vcpu_put(vcpu);
7089 return r;
7090 }
7091
7092 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7093 {
7094 struct msr_data msr;
7095 struct kvm *kvm = vcpu->kvm;
7096
7097 if (vcpu_load(vcpu))
7098 return;
7099 msr.data = 0x0;
7100 msr.index = MSR_IA32_TSC;
7101 msr.host_initiated = true;
7102 kvm_write_tsc(vcpu, &msr);
7103 vcpu_put(vcpu);
7104
7105 if (!kvmclock_periodic_sync)
7106 return;
7107
7108 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7109 KVMCLOCK_SYNC_PERIOD);
7110 }
7111
7112 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7113 {
7114 int r;
7115 vcpu->arch.apf.msr_val = 0;
7116
7117 r = vcpu_load(vcpu);
7118 BUG_ON(r);
7119 kvm_mmu_unload(vcpu);
7120 vcpu_put(vcpu);
7121
7122 kvm_x86_ops->vcpu_free(vcpu);
7123 }
7124
7125 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7126 {
7127 vcpu->arch.hflags = 0;
7128
7129 atomic_set(&vcpu->arch.nmi_queued, 0);
7130 vcpu->arch.nmi_pending = 0;
7131 vcpu->arch.nmi_injected = false;
7132 kvm_clear_interrupt_queue(vcpu);
7133 kvm_clear_exception_queue(vcpu);
7134
7135 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7136 kvm_update_dr0123(vcpu);
7137 vcpu->arch.dr6 = DR6_INIT;
7138 kvm_update_dr6(vcpu);
7139 vcpu->arch.dr7 = DR7_FIXED_1;
7140 kvm_update_dr7(vcpu);
7141
7142 vcpu->arch.cr2 = 0;
7143
7144 kvm_make_request(KVM_REQ_EVENT, vcpu);
7145 vcpu->arch.apf.msr_val = 0;
7146 vcpu->arch.st.msr_val = 0;
7147
7148 kvmclock_reset(vcpu);
7149
7150 kvm_clear_async_pf_completion_queue(vcpu);
7151 kvm_async_pf_hash_reset(vcpu);
7152 vcpu->arch.apf.halted = false;
7153
7154 if (!init_event) {
7155 kvm_pmu_reset(vcpu);
7156 vcpu->arch.smbase = 0x30000;
7157 }
7158
7159 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7160 vcpu->arch.regs_avail = ~0;
7161 vcpu->arch.regs_dirty = ~0;
7162
7163 kvm_x86_ops->vcpu_reset(vcpu, init_event);
7164 }
7165
7166 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7167 {
7168 struct kvm_segment cs;
7169
7170 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7171 cs.selector = vector << 8;
7172 cs.base = vector << 12;
7173 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7174 kvm_rip_write(vcpu, 0);
7175 }
7176
7177 int kvm_arch_hardware_enable(void)
7178 {
7179 struct kvm *kvm;
7180 struct kvm_vcpu *vcpu;
7181 int i;
7182 int ret;
7183 u64 local_tsc;
7184 u64 max_tsc = 0;
7185 bool stable, backwards_tsc = false;
7186
7187 kvm_shared_msr_cpu_online();
7188 ret = kvm_x86_ops->hardware_enable();
7189 if (ret != 0)
7190 return ret;
7191
7192 local_tsc = rdtsc();
7193 stable = !check_tsc_unstable();
7194 list_for_each_entry(kvm, &vm_list, vm_list) {
7195 kvm_for_each_vcpu(i, vcpu, kvm) {
7196 if (!stable && vcpu->cpu == smp_processor_id())
7197 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7198 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7199 backwards_tsc = true;
7200 if (vcpu->arch.last_host_tsc > max_tsc)
7201 max_tsc = vcpu->arch.last_host_tsc;
7202 }
7203 }
7204 }
7205
7206 /*
7207 * Sometimes, even reliable TSCs go backwards. This happens on
7208 * platforms that reset TSC during suspend or hibernate actions, but
7209 * maintain synchronization. We must compensate. Fortunately, we can
7210 * detect that condition here, which happens early in CPU bringup,
7211 * before any KVM threads can be running. Unfortunately, we can't
7212 * bring the TSCs fully up to date with real time, as we aren't yet far
7213 * enough into CPU bringup that we know how much real time has actually
7214 * elapsed; our helper function, get_kernel_ns() will be using boot
7215 * variables that haven't been updated yet.
7216 *
7217 * So we simply find the maximum observed TSC above, then record the
7218 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
7219 * the adjustment will be applied. Note that we accumulate
7220 * adjustments, in case multiple suspend cycles happen before some VCPU
7221 * gets a chance to run again. In the event that no KVM threads get a
7222 * chance to run, we will miss the entire elapsed period, as we'll have
7223 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7224 * loose cycle time. This isn't too big a deal, since the loss will be
7225 * uniform across all VCPUs (not to mention the scenario is extremely
7226 * unlikely). It is possible that a second hibernate recovery happens
7227 * much faster than a first, causing the observed TSC here to be
7228 * smaller; this would require additional padding adjustment, which is
7229 * why we set last_host_tsc to the local tsc observed here.
7230 *
7231 * N.B. - this code below runs only on platforms with reliable TSC,
7232 * as that is the only way backwards_tsc is set above. Also note
7233 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7234 * have the same delta_cyc adjustment applied if backwards_tsc
7235 * is detected. Note further, this adjustment is only done once,
7236 * as we reset last_host_tsc on all VCPUs to stop this from being
7237 * called multiple times (one for each physical CPU bringup).
7238 *
7239 * Platforms with unreliable TSCs don't have to deal with this, they
7240 * will be compensated by the logic in vcpu_load, which sets the TSC to
7241 * catchup mode. This will catchup all VCPUs to real time, but cannot
7242 * guarantee that they stay in perfect synchronization.
7243 */
7244 if (backwards_tsc) {
7245 u64 delta_cyc = max_tsc - local_tsc;
7246 backwards_tsc_observed = true;
7247 list_for_each_entry(kvm, &vm_list, vm_list) {
7248 kvm_for_each_vcpu(i, vcpu, kvm) {
7249 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7250 vcpu->arch.last_host_tsc = local_tsc;
7251 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7252 }
7253
7254 /*
7255 * We have to disable TSC offset matching.. if you were
7256 * booting a VM while issuing an S4 host suspend....
7257 * you may have some problem. Solving this issue is
7258 * left as an exercise to the reader.
7259 */
7260 kvm->arch.last_tsc_nsec = 0;
7261 kvm->arch.last_tsc_write = 0;
7262 }
7263
7264 }
7265 return 0;
7266 }
7267
7268 void kvm_arch_hardware_disable(void)
7269 {
7270 kvm_x86_ops->hardware_disable();
7271 drop_user_return_notifiers();
7272 }
7273
7274 int kvm_arch_hardware_setup(void)
7275 {
7276 int r;
7277
7278 r = kvm_x86_ops->hardware_setup();
7279 if (r != 0)
7280 return r;
7281
7282 kvm_init_msr_list();
7283 return 0;
7284 }
7285
7286 void kvm_arch_hardware_unsetup(void)
7287 {
7288 kvm_x86_ops->hardware_unsetup();
7289 }
7290
7291 void kvm_arch_check_processor_compat(void *rtn)
7292 {
7293 kvm_x86_ops->check_processor_compatibility(rtn);
7294 }
7295
7296 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7297 {
7298 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7299 }
7300 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7301
7302 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7303 {
7304 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7305 }
7306
7307 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7308 {
7309 return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
7310 }
7311
7312 struct static_key kvm_no_apic_vcpu __read_mostly;
7313
7314 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7315 {
7316 struct page *page;
7317 struct kvm *kvm;
7318 int r;
7319
7320 BUG_ON(vcpu->kvm == NULL);
7321 kvm = vcpu->kvm;
7322
7323 vcpu->arch.pv.pv_unhalted = false;
7324 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7325 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7326 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7327 else
7328 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7329
7330 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7331 if (!page) {
7332 r = -ENOMEM;
7333 goto fail;
7334 }
7335 vcpu->arch.pio_data = page_address(page);
7336
7337 kvm_set_tsc_khz(vcpu, max_tsc_khz);
7338
7339 r = kvm_mmu_create(vcpu);
7340 if (r < 0)
7341 goto fail_free_pio_data;
7342
7343 if (irqchip_in_kernel(kvm)) {
7344 r = kvm_create_lapic(vcpu);
7345 if (r < 0)
7346 goto fail_mmu_destroy;
7347 } else
7348 static_key_slow_inc(&kvm_no_apic_vcpu);
7349
7350 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7351 GFP_KERNEL);
7352 if (!vcpu->arch.mce_banks) {
7353 r = -ENOMEM;
7354 goto fail_free_lapic;
7355 }
7356 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7357
7358 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7359 r = -ENOMEM;
7360 goto fail_free_mce_banks;
7361 }
7362
7363 fx_init(vcpu);
7364
7365 vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7366 vcpu->arch.pv_time_enabled = false;
7367
7368 vcpu->arch.guest_supported_xcr0 = 0;
7369 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7370
7371 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7372
7373 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7374
7375 kvm_async_pf_hash_reset(vcpu);
7376 kvm_pmu_init(vcpu);
7377
7378 return 0;
7379
7380 fail_free_mce_banks:
7381 kfree(vcpu->arch.mce_banks);
7382 fail_free_lapic:
7383 kvm_free_lapic(vcpu);
7384 fail_mmu_destroy:
7385 kvm_mmu_destroy(vcpu);
7386 fail_free_pio_data:
7387 free_page((unsigned long)vcpu->arch.pio_data);
7388 fail:
7389 return r;
7390 }
7391
7392 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7393 {
7394 int idx;
7395
7396 kvm_pmu_destroy(vcpu);
7397 kfree(vcpu->arch.mce_banks);
7398 kvm_free_lapic(vcpu);
7399 idx = srcu_read_lock(&vcpu->kvm->srcu);
7400 kvm_mmu_destroy(vcpu);
7401 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7402 free_page((unsigned long)vcpu->arch.pio_data);
7403 if (!irqchip_in_kernel(vcpu->kvm))
7404 static_key_slow_dec(&kvm_no_apic_vcpu);
7405 }
7406
7407 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7408 {
7409 kvm_x86_ops->sched_in(vcpu, cpu);
7410 }
7411
7412 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7413 {
7414 if (type)
7415 return -EINVAL;
7416
7417 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7418 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7419 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7420 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7421 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7422
7423 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7424 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7425 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7426 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7427 &kvm->arch.irq_sources_bitmap);
7428
7429 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7430 mutex_init(&kvm->arch.apic_map_lock);
7431 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7432
7433 pvclock_update_vm_gtod_copy(kvm);
7434
7435 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7436 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7437
7438 return 0;
7439 }
7440
7441 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7442 {
7443 int r;
7444 r = vcpu_load(vcpu);
7445 BUG_ON(r);
7446 kvm_mmu_unload(vcpu);
7447 vcpu_put(vcpu);
7448 }
7449
7450 static void kvm_free_vcpus(struct kvm *kvm)
7451 {
7452 unsigned int i;
7453 struct kvm_vcpu *vcpu;
7454
7455 /*
7456 * Unpin any mmu pages first.
7457 */
7458 kvm_for_each_vcpu(i, vcpu, kvm) {
7459 kvm_clear_async_pf_completion_queue(vcpu);
7460 kvm_unload_vcpu_mmu(vcpu);
7461 }
7462 kvm_for_each_vcpu(i, vcpu, kvm)
7463 kvm_arch_vcpu_free(vcpu);
7464
7465 mutex_lock(&kvm->lock);
7466 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7467 kvm->vcpus[i] = NULL;
7468
7469 atomic_set(&kvm->online_vcpus, 0);
7470 mutex_unlock(&kvm->lock);
7471 }
7472
7473 void kvm_arch_sync_events(struct kvm *kvm)
7474 {
7475 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7476 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7477 kvm_free_all_assigned_devices(kvm);
7478 kvm_free_pit(kvm);
7479 }
7480
7481 int __x86_set_memory_region(struct kvm *kvm,
7482 const struct kvm_userspace_memory_region *mem)
7483 {
7484 int i, r;
7485
7486 /* Called with kvm->slots_lock held. */
7487 BUG_ON(mem->slot >= KVM_MEM_SLOTS_NUM);
7488
7489 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7490 struct kvm_userspace_memory_region m = *mem;
7491
7492 m.slot |= i << 16;
7493 r = __kvm_set_memory_region(kvm, &m);
7494 if (r < 0)
7495 return r;
7496 }
7497
7498 return 0;
7499 }
7500 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7501
7502 int x86_set_memory_region(struct kvm *kvm,
7503 const struct kvm_userspace_memory_region *mem)
7504 {
7505 int r;
7506
7507 mutex_lock(&kvm->slots_lock);
7508 r = __x86_set_memory_region(kvm, mem);
7509 mutex_unlock(&kvm->slots_lock);
7510
7511 return r;
7512 }
7513 EXPORT_SYMBOL_GPL(x86_set_memory_region);
7514
7515 void kvm_arch_destroy_vm(struct kvm *kvm)
7516 {
7517 if (current->mm == kvm->mm) {
7518 /*
7519 * Free memory regions allocated on behalf of userspace,
7520 * unless the the memory map has changed due to process exit
7521 * or fd copying.
7522 */
7523 struct kvm_userspace_memory_region mem;
7524 memset(&mem, 0, sizeof(mem));
7525 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7526 x86_set_memory_region(kvm, &mem);
7527
7528 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7529 x86_set_memory_region(kvm, &mem);
7530
7531 mem.slot = TSS_PRIVATE_MEMSLOT;
7532 x86_set_memory_region(kvm, &mem);
7533 }
7534 kvm_iommu_unmap_guest(kvm);
7535 kfree(kvm->arch.vpic);
7536 kfree(kvm->arch.vioapic);
7537 kvm_free_vcpus(kvm);
7538 kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7539 }
7540
7541 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7542 struct kvm_memory_slot *dont)
7543 {
7544 int i;
7545
7546 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7547 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7548 kvfree(free->arch.rmap[i]);
7549 free->arch.rmap[i] = NULL;
7550 }
7551 if (i == 0)
7552 continue;
7553
7554 if (!dont || free->arch.lpage_info[i - 1] !=
7555 dont->arch.lpage_info[i - 1]) {
7556 kvfree(free->arch.lpage_info[i - 1]);
7557 free->arch.lpage_info[i - 1] = NULL;
7558 }
7559 }
7560 }
7561
7562 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7563 unsigned long npages)
7564 {
7565 int i;
7566
7567 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7568 unsigned long ugfn;
7569 int lpages;
7570 int level = i + 1;
7571
7572 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7573 slot->base_gfn, level) + 1;
7574
7575 slot->arch.rmap[i] =
7576 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7577 if (!slot->arch.rmap[i])
7578 goto out_free;
7579 if (i == 0)
7580 continue;
7581
7582 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7583 sizeof(*slot->arch.lpage_info[i - 1]));
7584 if (!slot->arch.lpage_info[i - 1])
7585 goto out_free;
7586
7587 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7588 slot->arch.lpage_info[i - 1][0].write_count = 1;
7589 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7590 slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7591 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7592 /*
7593 * If the gfn and userspace address are not aligned wrt each
7594 * other, or if explicitly asked to, disable large page
7595 * support for this slot
7596 */
7597 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7598 !kvm_largepages_enabled()) {
7599 unsigned long j;
7600
7601 for (j = 0; j < lpages; ++j)
7602 slot->arch.lpage_info[i - 1][j].write_count = 1;
7603 }
7604 }
7605
7606 return 0;
7607
7608 out_free:
7609 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7610 kvfree(slot->arch.rmap[i]);
7611 slot->arch.rmap[i] = NULL;
7612 if (i == 0)
7613 continue;
7614
7615 kvfree(slot->arch.lpage_info[i - 1]);
7616 slot->arch.lpage_info[i - 1] = NULL;
7617 }
7618 return -ENOMEM;
7619 }
7620
7621 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
7622 {
7623 /*
7624 * memslots->generation has been incremented.
7625 * mmio generation may have reached its maximum value.
7626 */
7627 kvm_mmu_invalidate_mmio_sptes(kvm, slots);
7628 }
7629
7630 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7631 struct kvm_memory_slot *memslot,
7632 const struct kvm_userspace_memory_region *mem,
7633 enum kvm_mr_change change)
7634 {
7635 /*
7636 * Only private memory slots need to be mapped here since
7637 * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7638 */
7639 if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7640 unsigned long userspace_addr;
7641
7642 /*
7643 * MAP_SHARED to prevent internal slot pages from being moved
7644 * by fork()/COW.
7645 */
7646 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7647 PROT_READ | PROT_WRITE,
7648 MAP_SHARED | MAP_ANONYMOUS, 0);
7649
7650 if (IS_ERR((void *)userspace_addr))
7651 return PTR_ERR((void *)userspace_addr);
7652
7653 memslot->userspace_addr = userspace_addr;
7654 }
7655
7656 return 0;
7657 }
7658
7659 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
7660 struct kvm_memory_slot *new)
7661 {
7662 /* Still write protect RO slot */
7663 if (new->flags & KVM_MEM_READONLY) {
7664 kvm_mmu_slot_remove_write_access(kvm, new);
7665 return;
7666 }
7667
7668 /*
7669 * Call kvm_x86_ops dirty logging hooks when they are valid.
7670 *
7671 * kvm_x86_ops->slot_disable_log_dirty is called when:
7672 *
7673 * - KVM_MR_CREATE with dirty logging is disabled
7674 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
7675 *
7676 * The reason is, in case of PML, we need to set D-bit for any slots
7677 * with dirty logging disabled in order to eliminate unnecessary GPA
7678 * logging in PML buffer (and potential PML buffer full VMEXT). This
7679 * guarantees leaving PML enabled during guest's lifetime won't have
7680 * any additonal overhead from PML when guest is running with dirty
7681 * logging disabled for memory slots.
7682 *
7683 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
7684 * to dirty logging mode.
7685 *
7686 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
7687 *
7688 * In case of write protect:
7689 *
7690 * Write protect all pages for dirty logging.
7691 *
7692 * All the sptes including the large sptes which point to this
7693 * slot are set to readonly. We can not create any new large
7694 * spte on this slot until the end of the logging.
7695 *
7696 * See the comments in fast_page_fault().
7697 */
7698 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
7699 if (kvm_x86_ops->slot_enable_log_dirty)
7700 kvm_x86_ops->slot_enable_log_dirty(kvm, new);
7701 else
7702 kvm_mmu_slot_remove_write_access(kvm, new);
7703 } else {
7704 if (kvm_x86_ops->slot_disable_log_dirty)
7705 kvm_x86_ops->slot_disable_log_dirty(kvm, new);
7706 }
7707 }
7708
7709 void kvm_arch_commit_memory_region(struct kvm *kvm,
7710 const struct kvm_userspace_memory_region *mem,
7711 const struct kvm_memory_slot *old,
7712 const struct kvm_memory_slot *new,
7713 enum kvm_mr_change change)
7714 {
7715 int nr_mmu_pages = 0;
7716
7717 if (change == KVM_MR_DELETE && old->id >= KVM_USER_MEM_SLOTS) {
7718 int ret;
7719
7720 ret = vm_munmap(old->userspace_addr,
7721 old->npages * PAGE_SIZE);
7722 if (ret < 0)
7723 printk(KERN_WARNING
7724 "kvm_vm_ioctl_set_memory_region: "
7725 "failed to munmap memory\n");
7726 }
7727
7728 if (!kvm->arch.n_requested_mmu_pages)
7729 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7730
7731 if (nr_mmu_pages)
7732 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7733
7734 /*
7735 * Dirty logging tracks sptes in 4k granularity, meaning that large
7736 * sptes have to be split. If live migration is successful, the guest
7737 * in the source machine will be destroyed and large sptes will be
7738 * created in the destination. However, if the guest continues to run
7739 * in the source machine (for example if live migration fails), small
7740 * sptes will remain around and cause bad performance.
7741 *
7742 * Scan sptes if dirty logging has been stopped, dropping those
7743 * which can be collapsed into a single large-page spte. Later
7744 * page faults will create the large-page sptes.
7745 */
7746 if ((change != KVM_MR_DELETE) &&
7747 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
7748 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
7749 kvm_mmu_zap_collapsible_sptes(kvm, new);
7750
7751 /*
7752 * Set up write protection and/or dirty logging for the new slot.
7753 *
7754 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
7755 * been zapped so no dirty logging staff is needed for old slot. For
7756 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
7757 * new and it's also covered when dealing with the new slot.
7758 *
7759 * FIXME: const-ify all uses of struct kvm_memory_slot.
7760 */
7761 if (change != KVM_MR_DELETE)
7762 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
7763 }
7764
7765 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7766 {
7767 kvm_mmu_invalidate_zap_all_pages(kvm);
7768 }
7769
7770 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7771 struct kvm_memory_slot *slot)
7772 {
7773 kvm_mmu_invalidate_zap_all_pages(kvm);
7774 }
7775
7776 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7777 {
7778 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7779 kvm_x86_ops->check_nested_events(vcpu, false);
7780
7781 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7782 !vcpu->arch.apf.halted)
7783 || !list_empty_careful(&vcpu->async_pf.done)
7784 || kvm_apic_has_events(vcpu)
7785 || vcpu->arch.pv.pv_unhalted
7786 || atomic_read(&vcpu->arch.nmi_queued) ||
7787 (kvm_arch_interrupt_allowed(vcpu) &&
7788 kvm_cpu_has_interrupt(vcpu));
7789 }
7790
7791 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7792 {
7793 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7794 }
7795
7796 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7797 {
7798 return kvm_x86_ops->interrupt_allowed(vcpu);
7799 }
7800
7801 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
7802 {
7803 if (is_64_bit_mode(vcpu))
7804 return kvm_rip_read(vcpu);
7805 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
7806 kvm_rip_read(vcpu));
7807 }
7808 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
7809
7810 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7811 {
7812 return kvm_get_linear_rip(vcpu) == linear_rip;
7813 }
7814 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7815
7816 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7817 {
7818 unsigned long rflags;
7819
7820 rflags = kvm_x86_ops->get_rflags(vcpu);
7821 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7822 rflags &= ~X86_EFLAGS_TF;
7823 return rflags;
7824 }
7825 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7826
7827 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7828 {
7829 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7830 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7831 rflags |= X86_EFLAGS_TF;
7832 kvm_x86_ops->set_rflags(vcpu, rflags);
7833 }
7834
7835 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7836 {
7837 __kvm_set_rflags(vcpu, rflags);
7838 kvm_make_request(KVM_REQ_EVENT, vcpu);
7839 }
7840 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7841
7842 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7843 {
7844 int r;
7845
7846 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7847 work->wakeup_all)
7848 return;
7849
7850 r = kvm_mmu_reload(vcpu);
7851 if (unlikely(r))
7852 return;
7853
7854 if (!vcpu->arch.mmu.direct_map &&
7855 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7856 return;
7857
7858 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7859 }
7860
7861 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7862 {
7863 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7864 }
7865
7866 static inline u32 kvm_async_pf_next_probe(u32 key)
7867 {
7868 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7869 }
7870
7871 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7872 {
7873 u32 key = kvm_async_pf_hash_fn(gfn);
7874
7875 while (vcpu->arch.apf.gfns[key] != ~0)
7876 key = kvm_async_pf_next_probe(key);
7877
7878 vcpu->arch.apf.gfns[key] = gfn;
7879 }
7880
7881 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7882 {
7883 int i;
7884 u32 key = kvm_async_pf_hash_fn(gfn);
7885
7886 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7887 (vcpu->arch.apf.gfns[key] != gfn &&
7888 vcpu->arch.apf.gfns[key] != ~0); i++)
7889 key = kvm_async_pf_next_probe(key);
7890
7891 return key;
7892 }
7893
7894 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7895 {
7896 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7897 }
7898
7899 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7900 {
7901 u32 i, j, k;
7902
7903 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7904 while (true) {
7905 vcpu->arch.apf.gfns[i] = ~0;
7906 do {
7907 j = kvm_async_pf_next_probe(j);
7908 if (vcpu->arch.apf.gfns[j] == ~0)
7909 return;
7910 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7911 /*
7912 * k lies cyclically in ]i,j]
7913 * | i.k.j |
7914 * |....j i.k.| or |.k..j i...|
7915 */
7916 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7917 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7918 i = j;
7919 }
7920 }
7921
7922 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7923 {
7924
7925 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7926 sizeof(val));
7927 }
7928
7929 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7930 struct kvm_async_pf *work)
7931 {
7932 struct x86_exception fault;
7933
7934 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7935 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7936
7937 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7938 (vcpu->arch.apf.send_user_only &&
7939 kvm_x86_ops->get_cpl(vcpu) == 0))
7940 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7941 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7942 fault.vector = PF_VECTOR;
7943 fault.error_code_valid = true;
7944 fault.error_code = 0;
7945 fault.nested_page_fault = false;
7946 fault.address = work->arch.token;
7947 kvm_inject_page_fault(vcpu, &fault);
7948 }
7949 }
7950
7951 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7952 struct kvm_async_pf *work)
7953 {
7954 struct x86_exception fault;
7955
7956 trace_kvm_async_pf_ready(work->arch.token, work->gva);
7957 if (work->wakeup_all)
7958 work->arch.token = ~0; /* broadcast wakeup */
7959 else
7960 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7961
7962 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7963 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7964 fault.vector = PF_VECTOR;
7965 fault.error_code_valid = true;
7966 fault.error_code = 0;
7967 fault.nested_page_fault = false;
7968 fault.address = work->arch.token;
7969 kvm_inject_page_fault(vcpu, &fault);
7970 }
7971 vcpu->arch.apf.halted = false;
7972 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7973 }
7974
7975 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7976 {
7977 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7978 return true;
7979 else
7980 return !kvm_event_needs_reinjection(vcpu) &&
7981 kvm_x86_ops->interrupt_allowed(vcpu);
7982 }
7983
7984 void kvm_arch_start_assignment(struct kvm *kvm)
7985 {
7986 atomic_inc(&kvm->arch.assigned_device_count);
7987 }
7988 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
7989
7990 void kvm_arch_end_assignment(struct kvm *kvm)
7991 {
7992 atomic_dec(&kvm->arch.assigned_device_count);
7993 }
7994 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
7995
7996 bool kvm_arch_has_assigned_device(struct kvm *kvm)
7997 {
7998 return atomic_read(&kvm->arch.assigned_device_count);
7999 }
8000 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8001
8002 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8003 {
8004 atomic_inc(&kvm->arch.noncoherent_dma_count);
8005 }
8006 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8007
8008 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8009 {
8010 atomic_dec(&kvm->arch.noncoherent_dma_count);
8011 }
8012 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8013
8014 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8015 {
8016 return atomic_read(&kvm->arch.noncoherent_dma_count);
8017 }
8018 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8019
8020 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8021 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8022 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8023 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8024 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8025 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8026 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8027 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8028 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8029 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8030 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8031 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8032 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8033 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8034 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
This page took 0.191787 seconds and 6 git commands to generate.