KVM: MMU: protect kvm_mmu_change_mmu_pages with mmu_lock
[deliverable/linux.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Amit Shah <amit.shah@qumranet.com>
14 * Ben-Ami Yassour <benami@il.ibm.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
28
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40
41 #include <asm/uaccess.h>
42 #include <asm/msr.h>
43 #include <asm/desc.h>
44 #include <asm/mtrr.h>
45
46 #define MAX_IO_MSRS 256
47 #define CR0_RESERVED_BITS \
48 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
49 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
50 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
51 #define CR4_RESERVED_BITS \
52 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
53 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
54 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
55 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
56
57 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
58 /* EFER defaults:
59 * - enable syscall per default because its emulated by KVM
60 * - enable LME and LMA per default on 64 bit KVM
61 */
62 #ifdef CONFIG_X86_64
63 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
64 #else
65 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
66 #endif
67
68 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
69 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
70
71 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
72 struct kvm_cpuid_entry2 __user *entries);
73 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
74 u32 function, u32 index);
75
76 struct kvm_x86_ops *kvm_x86_ops;
77 EXPORT_SYMBOL_GPL(kvm_x86_ops);
78
79 struct kvm_stats_debugfs_item debugfs_entries[] = {
80 { "pf_fixed", VCPU_STAT(pf_fixed) },
81 { "pf_guest", VCPU_STAT(pf_guest) },
82 { "tlb_flush", VCPU_STAT(tlb_flush) },
83 { "invlpg", VCPU_STAT(invlpg) },
84 { "exits", VCPU_STAT(exits) },
85 { "io_exits", VCPU_STAT(io_exits) },
86 { "mmio_exits", VCPU_STAT(mmio_exits) },
87 { "signal_exits", VCPU_STAT(signal_exits) },
88 { "irq_window", VCPU_STAT(irq_window_exits) },
89 { "nmi_window", VCPU_STAT(nmi_window_exits) },
90 { "halt_exits", VCPU_STAT(halt_exits) },
91 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
92 { "hypercalls", VCPU_STAT(hypercalls) },
93 { "request_irq", VCPU_STAT(request_irq_exits) },
94 { "irq_exits", VCPU_STAT(irq_exits) },
95 { "host_state_reload", VCPU_STAT(host_state_reload) },
96 { "efer_reload", VCPU_STAT(efer_reload) },
97 { "fpu_reload", VCPU_STAT(fpu_reload) },
98 { "insn_emulation", VCPU_STAT(insn_emulation) },
99 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
100 { "irq_injections", VCPU_STAT(irq_injections) },
101 { "nmi_injections", VCPU_STAT(nmi_injections) },
102 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
103 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
104 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
105 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
106 { "mmu_flooded", VM_STAT(mmu_flooded) },
107 { "mmu_recycled", VM_STAT(mmu_recycled) },
108 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
109 { "mmu_unsync", VM_STAT(mmu_unsync) },
110 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
111 { "largepages", VM_STAT(lpages) },
112 { NULL }
113 };
114
115 unsigned long segment_base(u16 selector)
116 {
117 struct descriptor_table gdt;
118 struct desc_struct *d;
119 unsigned long table_base;
120 unsigned long v;
121
122 if (selector == 0)
123 return 0;
124
125 asm("sgdt %0" : "=m"(gdt));
126 table_base = gdt.base;
127
128 if (selector & 4) { /* from ldt */
129 u16 ldt_selector;
130
131 asm("sldt %0" : "=g"(ldt_selector));
132 table_base = segment_base(ldt_selector);
133 }
134 d = (struct desc_struct *)(table_base + (selector & ~7));
135 v = d->base0 | ((unsigned long)d->base1 << 16) |
136 ((unsigned long)d->base2 << 24);
137 #ifdef CONFIG_X86_64
138 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
139 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
140 #endif
141 return v;
142 }
143 EXPORT_SYMBOL_GPL(segment_base);
144
145 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
146 {
147 if (irqchip_in_kernel(vcpu->kvm))
148 return vcpu->arch.apic_base;
149 else
150 return vcpu->arch.apic_base;
151 }
152 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
153
154 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
155 {
156 /* TODO: reserve bits check */
157 if (irqchip_in_kernel(vcpu->kvm))
158 kvm_lapic_set_base(vcpu, data);
159 else
160 vcpu->arch.apic_base = data;
161 }
162 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
163
164 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
165 {
166 WARN_ON(vcpu->arch.exception.pending);
167 vcpu->arch.exception.pending = true;
168 vcpu->arch.exception.has_error_code = false;
169 vcpu->arch.exception.nr = nr;
170 }
171 EXPORT_SYMBOL_GPL(kvm_queue_exception);
172
173 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
174 u32 error_code)
175 {
176 ++vcpu->stat.pf_guest;
177
178 if (vcpu->arch.exception.pending) {
179 if (vcpu->arch.exception.nr == PF_VECTOR) {
180 printk(KERN_DEBUG "kvm: inject_page_fault:"
181 " double fault 0x%lx\n", addr);
182 vcpu->arch.exception.nr = DF_VECTOR;
183 vcpu->arch.exception.error_code = 0;
184 } else if (vcpu->arch.exception.nr == DF_VECTOR) {
185 /* triple fault -> shutdown */
186 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
187 }
188 return;
189 }
190 vcpu->arch.cr2 = addr;
191 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
192 }
193
194 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
195 {
196 vcpu->arch.nmi_pending = 1;
197 }
198 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
199
200 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
201 {
202 WARN_ON(vcpu->arch.exception.pending);
203 vcpu->arch.exception.pending = true;
204 vcpu->arch.exception.has_error_code = true;
205 vcpu->arch.exception.nr = nr;
206 vcpu->arch.exception.error_code = error_code;
207 }
208 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
209
210 static void __queue_exception(struct kvm_vcpu *vcpu)
211 {
212 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
213 vcpu->arch.exception.has_error_code,
214 vcpu->arch.exception.error_code);
215 }
216
217 /*
218 * Load the pae pdptrs. Return true is they are all valid.
219 */
220 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
221 {
222 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
223 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
224 int i;
225 int ret;
226 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
227
228 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
229 offset * sizeof(u64), sizeof(pdpte));
230 if (ret < 0) {
231 ret = 0;
232 goto out;
233 }
234 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
235 if (is_present_pte(pdpte[i]) &&
236 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
237 ret = 0;
238 goto out;
239 }
240 }
241 ret = 1;
242
243 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
244 out:
245
246 return ret;
247 }
248 EXPORT_SYMBOL_GPL(load_pdptrs);
249
250 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
251 {
252 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
253 bool changed = true;
254 int r;
255
256 if (is_long_mode(vcpu) || !is_pae(vcpu))
257 return false;
258
259 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
260 if (r < 0)
261 goto out;
262 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
263 out:
264
265 return changed;
266 }
267
268 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
269 {
270 if (cr0 & CR0_RESERVED_BITS) {
271 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
272 cr0, vcpu->arch.cr0);
273 kvm_inject_gp(vcpu, 0);
274 return;
275 }
276
277 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
278 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
279 kvm_inject_gp(vcpu, 0);
280 return;
281 }
282
283 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
284 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
285 "and a clear PE flag\n");
286 kvm_inject_gp(vcpu, 0);
287 return;
288 }
289
290 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
291 #ifdef CONFIG_X86_64
292 if ((vcpu->arch.shadow_efer & EFER_LME)) {
293 int cs_db, cs_l;
294
295 if (!is_pae(vcpu)) {
296 printk(KERN_DEBUG "set_cr0: #GP, start paging "
297 "in long mode while PAE is disabled\n");
298 kvm_inject_gp(vcpu, 0);
299 return;
300 }
301 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
302 if (cs_l) {
303 printk(KERN_DEBUG "set_cr0: #GP, start paging "
304 "in long mode while CS.L == 1\n");
305 kvm_inject_gp(vcpu, 0);
306 return;
307
308 }
309 } else
310 #endif
311 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
312 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
313 "reserved bits\n");
314 kvm_inject_gp(vcpu, 0);
315 return;
316 }
317
318 }
319
320 kvm_x86_ops->set_cr0(vcpu, cr0);
321 vcpu->arch.cr0 = cr0;
322
323 kvm_mmu_reset_context(vcpu);
324 return;
325 }
326 EXPORT_SYMBOL_GPL(kvm_set_cr0);
327
328 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
329 {
330 kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
331 KVMTRACE_1D(LMSW, vcpu,
332 (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
333 handler);
334 }
335 EXPORT_SYMBOL_GPL(kvm_lmsw);
336
337 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
338 {
339 unsigned long old_cr4 = vcpu->arch.cr4;
340 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
341
342 if (cr4 & CR4_RESERVED_BITS) {
343 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
344 kvm_inject_gp(vcpu, 0);
345 return;
346 }
347
348 if (is_long_mode(vcpu)) {
349 if (!(cr4 & X86_CR4_PAE)) {
350 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
351 "in long mode\n");
352 kvm_inject_gp(vcpu, 0);
353 return;
354 }
355 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
356 && ((cr4 ^ old_cr4) & pdptr_bits)
357 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
358 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
359 kvm_inject_gp(vcpu, 0);
360 return;
361 }
362
363 if (cr4 & X86_CR4_VMXE) {
364 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
365 kvm_inject_gp(vcpu, 0);
366 return;
367 }
368 kvm_x86_ops->set_cr4(vcpu, cr4);
369 vcpu->arch.cr4 = cr4;
370 vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
371 kvm_mmu_reset_context(vcpu);
372 }
373 EXPORT_SYMBOL_GPL(kvm_set_cr4);
374
375 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
376 {
377 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
378 kvm_mmu_sync_roots(vcpu);
379 kvm_mmu_flush_tlb(vcpu);
380 return;
381 }
382
383 if (is_long_mode(vcpu)) {
384 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
385 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
386 kvm_inject_gp(vcpu, 0);
387 return;
388 }
389 } else {
390 if (is_pae(vcpu)) {
391 if (cr3 & CR3_PAE_RESERVED_BITS) {
392 printk(KERN_DEBUG
393 "set_cr3: #GP, reserved bits\n");
394 kvm_inject_gp(vcpu, 0);
395 return;
396 }
397 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
398 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
399 "reserved bits\n");
400 kvm_inject_gp(vcpu, 0);
401 return;
402 }
403 }
404 /*
405 * We don't check reserved bits in nonpae mode, because
406 * this isn't enforced, and VMware depends on this.
407 */
408 }
409
410 /*
411 * Does the new cr3 value map to physical memory? (Note, we
412 * catch an invalid cr3 even in real-mode, because it would
413 * cause trouble later on when we turn on paging anyway.)
414 *
415 * A real CPU would silently accept an invalid cr3 and would
416 * attempt to use it - with largely undefined (and often hard
417 * to debug) behavior on the guest side.
418 */
419 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
420 kvm_inject_gp(vcpu, 0);
421 else {
422 vcpu->arch.cr3 = cr3;
423 vcpu->arch.mmu.new_cr3(vcpu);
424 }
425 }
426 EXPORT_SYMBOL_GPL(kvm_set_cr3);
427
428 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
429 {
430 if (cr8 & CR8_RESERVED_BITS) {
431 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
432 kvm_inject_gp(vcpu, 0);
433 return;
434 }
435 if (irqchip_in_kernel(vcpu->kvm))
436 kvm_lapic_set_tpr(vcpu, cr8);
437 else
438 vcpu->arch.cr8 = cr8;
439 }
440 EXPORT_SYMBOL_GPL(kvm_set_cr8);
441
442 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
443 {
444 if (irqchip_in_kernel(vcpu->kvm))
445 return kvm_lapic_get_cr8(vcpu);
446 else
447 return vcpu->arch.cr8;
448 }
449 EXPORT_SYMBOL_GPL(kvm_get_cr8);
450
451 static inline u32 bit(int bitno)
452 {
453 return 1 << (bitno & 31);
454 }
455
456 /*
457 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
458 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
459 *
460 * This list is modified at module load time to reflect the
461 * capabilities of the host cpu.
462 */
463 static u32 msrs_to_save[] = {
464 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
465 MSR_K6_STAR,
466 #ifdef CONFIG_X86_64
467 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
468 #endif
469 MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
470 MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
471 };
472
473 static unsigned num_msrs_to_save;
474
475 static u32 emulated_msrs[] = {
476 MSR_IA32_MISC_ENABLE,
477 };
478
479 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
480 {
481 if (efer & efer_reserved_bits) {
482 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
483 efer);
484 kvm_inject_gp(vcpu, 0);
485 return;
486 }
487
488 if (is_paging(vcpu)
489 && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
490 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
491 kvm_inject_gp(vcpu, 0);
492 return;
493 }
494
495 if (efer & EFER_FFXSR) {
496 struct kvm_cpuid_entry2 *feat;
497
498 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
499 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
500 printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
501 kvm_inject_gp(vcpu, 0);
502 return;
503 }
504 }
505
506 if (efer & EFER_SVME) {
507 struct kvm_cpuid_entry2 *feat;
508
509 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
510 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
511 printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
512 kvm_inject_gp(vcpu, 0);
513 return;
514 }
515 }
516
517 kvm_x86_ops->set_efer(vcpu, efer);
518
519 efer &= ~EFER_LMA;
520 efer |= vcpu->arch.shadow_efer & EFER_LMA;
521
522 vcpu->arch.shadow_efer = efer;
523
524 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
525 kvm_mmu_reset_context(vcpu);
526 }
527
528 void kvm_enable_efer_bits(u64 mask)
529 {
530 efer_reserved_bits &= ~mask;
531 }
532 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
533
534
535 /*
536 * Writes msr value into into the appropriate "register".
537 * Returns 0 on success, non-0 otherwise.
538 * Assumes vcpu_load() was already called.
539 */
540 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
541 {
542 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
543 }
544
545 /*
546 * Adapt set_msr() to msr_io()'s calling convention
547 */
548 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
549 {
550 return kvm_set_msr(vcpu, index, *data);
551 }
552
553 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
554 {
555 static int version;
556 struct pvclock_wall_clock wc;
557 struct timespec now, sys, boot;
558
559 if (!wall_clock)
560 return;
561
562 version++;
563
564 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
565
566 /*
567 * The guest calculates current wall clock time by adding
568 * system time (updated by kvm_write_guest_time below) to the
569 * wall clock specified here. guest system time equals host
570 * system time for us, thus we must fill in host boot time here.
571 */
572 now = current_kernel_time();
573 ktime_get_ts(&sys);
574 boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
575
576 wc.sec = boot.tv_sec;
577 wc.nsec = boot.tv_nsec;
578 wc.version = version;
579
580 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
581
582 version++;
583 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
584 }
585
586 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
587 {
588 uint32_t quotient, remainder;
589
590 /* Don't try to replace with do_div(), this one calculates
591 * "(dividend << 32) / divisor" */
592 __asm__ ( "divl %4"
593 : "=a" (quotient), "=d" (remainder)
594 : "0" (0), "1" (dividend), "r" (divisor) );
595 return quotient;
596 }
597
598 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
599 {
600 uint64_t nsecs = 1000000000LL;
601 int32_t shift = 0;
602 uint64_t tps64;
603 uint32_t tps32;
604
605 tps64 = tsc_khz * 1000LL;
606 while (tps64 > nsecs*2) {
607 tps64 >>= 1;
608 shift--;
609 }
610
611 tps32 = (uint32_t)tps64;
612 while (tps32 <= (uint32_t)nsecs) {
613 tps32 <<= 1;
614 shift++;
615 }
616
617 hv_clock->tsc_shift = shift;
618 hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
619
620 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
621 __func__, tsc_khz, hv_clock->tsc_shift,
622 hv_clock->tsc_to_system_mul);
623 }
624
625 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
626
627 static void kvm_write_guest_time(struct kvm_vcpu *v)
628 {
629 struct timespec ts;
630 unsigned long flags;
631 struct kvm_vcpu_arch *vcpu = &v->arch;
632 void *shared_kaddr;
633 unsigned long this_tsc_khz;
634
635 if ((!vcpu->time_page))
636 return;
637
638 this_tsc_khz = get_cpu_var(cpu_tsc_khz);
639 if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
640 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
641 vcpu->hv_clock_tsc_khz = this_tsc_khz;
642 }
643 put_cpu_var(cpu_tsc_khz);
644
645 /* Keep irq disabled to prevent changes to the clock */
646 local_irq_save(flags);
647 kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
648 &vcpu->hv_clock.tsc_timestamp);
649 ktime_get_ts(&ts);
650 local_irq_restore(flags);
651
652 /* With all the info we got, fill in the values */
653
654 vcpu->hv_clock.system_time = ts.tv_nsec +
655 (NSEC_PER_SEC * (u64)ts.tv_sec);
656 /*
657 * The interface expects us to write an even number signaling that the
658 * update is finished. Since the guest won't see the intermediate
659 * state, we just increase by 2 at the end.
660 */
661 vcpu->hv_clock.version += 2;
662
663 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
664
665 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
666 sizeof(vcpu->hv_clock));
667
668 kunmap_atomic(shared_kaddr, KM_USER0);
669
670 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
671 }
672
673 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
674 {
675 struct kvm_vcpu_arch *vcpu = &v->arch;
676
677 if (!vcpu->time_page)
678 return 0;
679 set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
680 return 1;
681 }
682
683 static bool msr_mtrr_valid(unsigned msr)
684 {
685 switch (msr) {
686 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
687 case MSR_MTRRfix64K_00000:
688 case MSR_MTRRfix16K_80000:
689 case MSR_MTRRfix16K_A0000:
690 case MSR_MTRRfix4K_C0000:
691 case MSR_MTRRfix4K_C8000:
692 case MSR_MTRRfix4K_D0000:
693 case MSR_MTRRfix4K_D8000:
694 case MSR_MTRRfix4K_E0000:
695 case MSR_MTRRfix4K_E8000:
696 case MSR_MTRRfix4K_F0000:
697 case MSR_MTRRfix4K_F8000:
698 case MSR_MTRRdefType:
699 case MSR_IA32_CR_PAT:
700 return true;
701 case 0x2f8:
702 return true;
703 }
704 return false;
705 }
706
707 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
708 {
709 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
710
711 if (!msr_mtrr_valid(msr))
712 return 1;
713
714 if (msr == MSR_MTRRdefType) {
715 vcpu->arch.mtrr_state.def_type = data;
716 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
717 } else if (msr == MSR_MTRRfix64K_00000)
718 p[0] = data;
719 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
720 p[1 + msr - MSR_MTRRfix16K_80000] = data;
721 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
722 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
723 else if (msr == MSR_IA32_CR_PAT)
724 vcpu->arch.pat = data;
725 else { /* Variable MTRRs */
726 int idx, is_mtrr_mask;
727 u64 *pt;
728
729 idx = (msr - 0x200) / 2;
730 is_mtrr_mask = msr - 0x200 - 2 * idx;
731 if (!is_mtrr_mask)
732 pt =
733 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
734 else
735 pt =
736 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
737 *pt = data;
738 }
739
740 kvm_mmu_reset_context(vcpu);
741 return 0;
742 }
743
744 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
745 {
746 switch (msr) {
747 case MSR_EFER:
748 set_efer(vcpu, data);
749 break;
750 case MSR_IA32_MC0_STATUS:
751 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
752 __func__, data);
753 break;
754 case MSR_IA32_MCG_STATUS:
755 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
756 __func__, data);
757 break;
758 case MSR_IA32_MCG_CTL:
759 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
760 __func__, data);
761 break;
762 case MSR_IA32_DEBUGCTLMSR:
763 if (!data) {
764 /* We support the non-activated case already */
765 break;
766 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
767 /* Values other than LBR and BTF are vendor-specific,
768 thus reserved and should throw a #GP */
769 return 1;
770 }
771 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
772 __func__, data);
773 break;
774 case MSR_IA32_UCODE_REV:
775 case MSR_IA32_UCODE_WRITE:
776 case MSR_VM_HSAVE_PA:
777 break;
778 case 0x200 ... 0x2ff:
779 return set_msr_mtrr(vcpu, msr, data);
780 case MSR_IA32_APICBASE:
781 kvm_set_apic_base(vcpu, data);
782 break;
783 case MSR_IA32_MISC_ENABLE:
784 vcpu->arch.ia32_misc_enable_msr = data;
785 break;
786 case MSR_KVM_WALL_CLOCK:
787 vcpu->kvm->arch.wall_clock = data;
788 kvm_write_wall_clock(vcpu->kvm, data);
789 break;
790 case MSR_KVM_SYSTEM_TIME: {
791 if (vcpu->arch.time_page) {
792 kvm_release_page_dirty(vcpu->arch.time_page);
793 vcpu->arch.time_page = NULL;
794 }
795
796 vcpu->arch.time = data;
797
798 /* we verify if the enable bit is set... */
799 if (!(data & 1))
800 break;
801
802 /* ...but clean it before doing the actual write */
803 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
804
805 vcpu->arch.time_page =
806 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
807
808 if (is_error_page(vcpu->arch.time_page)) {
809 kvm_release_page_clean(vcpu->arch.time_page);
810 vcpu->arch.time_page = NULL;
811 }
812
813 kvm_request_guest_time_update(vcpu);
814 break;
815 }
816 default:
817 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
818 return 1;
819 }
820 return 0;
821 }
822 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
823
824
825 /*
826 * Reads an msr value (of 'msr_index') into 'pdata'.
827 * Returns 0 on success, non-0 otherwise.
828 * Assumes vcpu_load() was already called.
829 */
830 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
831 {
832 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
833 }
834
835 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
836 {
837 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
838
839 if (!msr_mtrr_valid(msr))
840 return 1;
841
842 if (msr == MSR_MTRRdefType)
843 *pdata = vcpu->arch.mtrr_state.def_type +
844 (vcpu->arch.mtrr_state.enabled << 10);
845 else if (msr == MSR_MTRRfix64K_00000)
846 *pdata = p[0];
847 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
848 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
849 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
850 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
851 else if (msr == MSR_IA32_CR_PAT)
852 *pdata = vcpu->arch.pat;
853 else { /* Variable MTRRs */
854 int idx, is_mtrr_mask;
855 u64 *pt;
856
857 idx = (msr - 0x200) / 2;
858 is_mtrr_mask = msr - 0x200 - 2 * idx;
859 if (!is_mtrr_mask)
860 pt =
861 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
862 else
863 pt =
864 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
865 *pdata = *pt;
866 }
867
868 return 0;
869 }
870
871 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
872 {
873 u64 data;
874
875 switch (msr) {
876 case 0xc0010010: /* SYSCFG */
877 case 0xc0010015: /* HWCR */
878 case MSR_IA32_PLATFORM_ID:
879 case MSR_IA32_P5_MC_ADDR:
880 case MSR_IA32_P5_MC_TYPE:
881 case MSR_IA32_MC0_CTL:
882 case MSR_IA32_MCG_STATUS:
883 case MSR_IA32_MCG_CAP:
884 case MSR_IA32_MCG_CTL:
885 case MSR_IA32_MC0_MISC:
886 case MSR_IA32_MC0_MISC+4:
887 case MSR_IA32_MC0_MISC+8:
888 case MSR_IA32_MC0_MISC+12:
889 case MSR_IA32_MC0_MISC+16:
890 case MSR_IA32_MC0_MISC+20:
891 case MSR_IA32_UCODE_REV:
892 case MSR_IA32_EBL_CR_POWERON:
893 case MSR_IA32_DEBUGCTLMSR:
894 case MSR_IA32_LASTBRANCHFROMIP:
895 case MSR_IA32_LASTBRANCHTOIP:
896 case MSR_IA32_LASTINTFROMIP:
897 case MSR_IA32_LASTINTTOIP:
898 case MSR_VM_HSAVE_PA:
899 case MSR_P6_EVNTSEL0:
900 case MSR_P6_EVNTSEL1:
901 data = 0;
902 break;
903 case MSR_MTRRcap:
904 data = 0x500 | KVM_NR_VAR_MTRR;
905 break;
906 case 0x200 ... 0x2ff:
907 return get_msr_mtrr(vcpu, msr, pdata);
908 case 0xcd: /* fsb frequency */
909 data = 3;
910 break;
911 case MSR_IA32_APICBASE:
912 data = kvm_get_apic_base(vcpu);
913 break;
914 case MSR_IA32_MISC_ENABLE:
915 data = vcpu->arch.ia32_misc_enable_msr;
916 break;
917 case MSR_IA32_PERF_STATUS:
918 /* TSC increment by tick */
919 data = 1000ULL;
920 /* CPU multiplier */
921 data |= (((uint64_t)4ULL) << 40);
922 break;
923 case MSR_EFER:
924 data = vcpu->arch.shadow_efer;
925 break;
926 case MSR_KVM_WALL_CLOCK:
927 data = vcpu->kvm->arch.wall_clock;
928 break;
929 case MSR_KVM_SYSTEM_TIME:
930 data = vcpu->arch.time;
931 break;
932 default:
933 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
934 return 1;
935 }
936 *pdata = data;
937 return 0;
938 }
939 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
940
941 /*
942 * Read or write a bunch of msrs. All parameters are kernel addresses.
943 *
944 * @return number of msrs set successfully.
945 */
946 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
947 struct kvm_msr_entry *entries,
948 int (*do_msr)(struct kvm_vcpu *vcpu,
949 unsigned index, u64 *data))
950 {
951 int i;
952
953 vcpu_load(vcpu);
954
955 down_read(&vcpu->kvm->slots_lock);
956 for (i = 0; i < msrs->nmsrs; ++i)
957 if (do_msr(vcpu, entries[i].index, &entries[i].data))
958 break;
959 up_read(&vcpu->kvm->slots_lock);
960
961 vcpu_put(vcpu);
962
963 return i;
964 }
965
966 /*
967 * Read or write a bunch of msrs. Parameters are user addresses.
968 *
969 * @return number of msrs set successfully.
970 */
971 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
972 int (*do_msr)(struct kvm_vcpu *vcpu,
973 unsigned index, u64 *data),
974 int writeback)
975 {
976 struct kvm_msrs msrs;
977 struct kvm_msr_entry *entries;
978 int r, n;
979 unsigned size;
980
981 r = -EFAULT;
982 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
983 goto out;
984
985 r = -E2BIG;
986 if (msrs.nmsrs >= MAX_IO_MSRS)
987 goto out;
988
989 r = -ENOMEM;
990 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
991 entries = vmalloc(size);
992 if (!entries)
993 goto out;
994
995 r = -EFAULT;
996 if (copy_from_user(entries, user_msrs->entries, size))
997 goto out_free;
998
999 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1000 if (r < 0)
1001 goto out_free;
1002
1003 r = -EFAULT;
1004 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1005 goto out_free;
1006
1007 r = n;
1008
1009 out_free:
1010 vfree(entries);
1011 out:
1012 return r;
1013 }
1014
1015 int kvm_dev_ioctl_check_extension(long ext)
1016 {
1017 int r;
1018
1019 switch (ext) {
1020 case KVM_CAP_IRQCHIP:
1021 case KVM_CAP_HLT:
1022 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1023 case KVM_CAP_SET_TSS_ADDR:
1024 case KVM_CAP_EXT_CPUID:
1025 case KVM_CAP_CLOCKSOURCE:
1026 case KVM_CAP_PIT:
1027 case KVM_CAP_NOP_IO_DELAY:
1028 case KVM_CAP_MP_STATE:
1029 case KVM_CAP_SYNC_MMU:
1030 case KVM_CAP_REINJECT_CONTROL:
1031 case KVM_CAP_IRQ_INJECT_STATUS:
1032 case KVM_CAP_ASSIGN_DEV_IRQ:
1033 r = 1;
1034 break;
1035 case KVM_CAP_COALESCED_MMIO:
1036 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1037 break;
1038 case KVM_CAP_VAPIC:
1039 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1040 break;
1041 case KVM_CAP_NR_VCPUS:
1042 r = KVM_MAX_VCPUS;
1043 break;
1044 case KVM_CAP_NR_MEMSLOTS:
1045 r = KVM_MEMORY_SLOTS;
1046 break;
1047 case KVM_CAP_PV_MMU:
1048 r = !tdp_enabled;
1049 break;
1050 case KVM_CAP_IOMMU:
1051 r = iommu_found();
1052 break;
1053 default:
1054 r = 0;
1055 break;
1056 }
1057 return r;
1058
1059 }
1060
1061 long kvm_arch_dev_ioctl(struct file *filp,
1062 unsigned int ioctl, unsigned long arg)
1063 {
1064 void __user *argp = (void __user *)arg;
1065 long r;
1066
1067 switch (ioctl) {
1068 case KVM_GET_MSR_INDEX_LIST: {
1069 struct kvm_msr_list __user *user_msr_list = argp;
1070 struct kvm_msr_list msr_list;
1071 unsigned n;
1072
1073 r = -EFAULT;
1074 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1075 goto out;
1076 n = msr_list.nmsrs;
1077 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1078 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1079 goto out;
1080 r = -E2BIG;
1081 if (n < num_msrs_to_save)
1082 goto out;
1083 r = -EFAULT;
1084 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1085 num_msrs_to_save * sizeof(u32)))
1086 goto out;
1087 if (copy_to_user(user_msr_list->indices
1088 + num_msrs_to_save * sizeof(u32),
1089 &emulated_msrs,
1090 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1091 goto out;
1092 r = 0;
1093 break;
1094 }
1095 case KVM_GET_SUPPORTED_CPUID: {
1096 struct kvm_cpuid2 __user *cpuid_arg = argp;
1097 struct kvm_cpuid2 cpuid;
1098
1099 r = -EFAULT;
1100 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1101 goto out;
1102 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1103 cpuid_arg->entries);
1104 if (r)
1105 goto out;
1106
1107 r = -EFAULT;
1108 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1109 goto out;
1110 r = 0;
1111 break;
1112 }
1113 default:
1114 r = -EINVAL;
1115 }
1116 out:
1117 return r;
1118 }
1119
1120 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1121 {
1122 kvm_x86_ops->vcpu_load(vcpu, cpu);
1123 kvm_request_guest_time_update(vcpu);
1124 }
1125
1126 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1127 {
1128 kvm_x86_ops->vcpu_put(vcpu);
1129 kvm_put_guest_fpu(vcpu);
1130 }
1131
1132 static int is_efer_nx(void)
1133 {
1134 unsigned long long efer = 0;
1135
1136 rdmsrl_safe(MSR_EFER, &efer);
1137 return efer & EFER_NX;
1138 }
1139
1140 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1141 {
1142 int i;
1143 struct kvm_cpuid_entry2 *e, *entry;
1144
1145 entry = NULL;
1146 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1147 e = &vcpu->arch.cpuid_entries[i];
1148 if (e->function == 0x80000001) {
1149 entry = e;
1150 break;
1151 }
1152 }
1153 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1154 entry->edx &= ~(1 << 20);
1155 printk(KERN_INFO "kvm: guest NX capability removed\n");
1156 }
1157 }
1158
1159 /* when an old userspace process fills a new kernel module */
1160 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1161 struct kvm_cpuid *cpuid,
1162 struct kvm_cpuid_entry __user *entries)
1163 {
1164 int r, i;
1165 struct kvm_cpuid_entry *cpuid_entries;
1166
1167 r = -E2BIG;
1168 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1169 goto out;
1170 r = -ENOMEM;
1171 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1172 if (!cpuid_entries)
1173 goto out;
1174 r = -EFAULT;
1175 if (copy_from_user(cpuid_entries, entries,
1176 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1177 goto out_free;
1178 for (i = 0; i < cpuid->nent; i++) {
1179 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1180 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1181 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1182 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1183 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1184 vcpu->arch.cpuid_entries[i].index = 0;
1185 vcpu->arch.cpuid_entries[i].flags = 0;
1186 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1187 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1188 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1189 }
1190 vcpu->arch.cpuid_nent = cpuid->nent;
1191 cpuid_fix_nx_cap(vcpu);
1192 r = 0;
1193
1194 out_free:
1195 vfree(cpuid_entries);
1196 out:
1197 return r;
1198 }
1199
1200 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1201 struct kvm_cpuid2 *cpuid,
1202 struct kvm_cpuid_entry2 __user *entries)
1203 {
1204 int r;
1205
1206 r = -E2BIG;
1207 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1208 goto out;
1209 r = -EFAULT;
1210 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1211 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1212 goto out;
1213 vcpu->arch.cpuid_nent = cpuid->nent;
1214 return 0;
1215
1216 out:
1217 return r;
1218 }
1219
1220 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1221 struct kvm_cpuid2 *cpuid,
1222 struct kvm_cpuid_entry2 __user *entries)
1223 {
1224 int r;
1225
1226 r = -E2BIG;
1227 if (cpuid->nent < vcpu->arch.cpuid_nent)
1228 goto out;
1229 r = -EFAULT;
1230 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1231 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1232 goto out;
1233 return 0;
1234
1235 out:
1236 cpuid->nent = vcpu->arch.cpuid_nent;
1237 return r;
1238 }
1239
1240 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1241 u32 index)
1242 {
1243 entry->function = function;
1244 entry->index = index;
1245 cpuid_count(entry->function, entry->index,
1246 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1247 entry->flags = 0;
1248 }
1249
1250 #define F(x) bit(X86_FEATURE_##x)
1251
1252 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1253 u32 index, int *nent, int maxnent)
1254 {
1255 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
1256 #ifdef CONFIG_X86_64
1257 unsigned f_lm = F(LM);
1258 #else
1259 unsigned f_lm = 0;
1260 #endif
1261
1262 /* cpuid 1.edx */
1263 const u32 kvm_supported_word0_x86_features =
1264 F(FPU) | F(VME) | F(DE) | F(PSE) |
1265 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1266 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
1267 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1268 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
1269 0 /* Reserved, DS, ACPI */ | F(MMX) |
1270 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
1271 0 /* HTT, TM, Reserved, PBE */;
1272 /* cpuid 0x80000001.edx */
1273 const u32 kvm_supported_word1_x86_features =
1274 F(FPU) | F(VME) | F(DE) | F(PSE) |
1275 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1276 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
1277 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1278 F(PAT) | F(PSE36) | 0 /* Reserved */ |
1279 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
1280 F(FXSR) | F(FXSR_OPT) | 0 /* GBPAGES */ | 0 /* RDTSCP */ |
1281 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
1282 /* cpuid 1.ecx */
1283 const u32 kvm_supported_word4_x86_features =
1284 F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
1285 0 /* DS-CPL, VMX, SMX, EST */ |
1286 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1287 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
1288 0 /* Reserved, DCA */ | F(XMM4_1) |
1289 F(XMM4_2) | 0 /* x2APIC */ | F(MOVBE) | F(POPCNT) |
1290 0 /* Reserved, XSAVE, OSXSAVE */;
1291 /* cpuid 0x80000001.ecx */
1292 const u32 kvm_supported_word6_x86_features =
1293 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
1294 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
1295 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
1296 0 /* SKINIT */ | 0 /* WDT */;
1297
1298 /* all calls to cpuid_count() should be made on the same cpu */
1299 get_cpu();
1300 do_cpuid_1_ent(entry, function, index);
1301 ++*nent;
1302
1303 switch (function) {
1304 case 0:
1305 entry->eax = min(entry->eax, (u32)0xb);
1306 break;
1307 case 1:
1308 entry->edx &= kvm_supported_word0_x86_features;
1309 entry->ecx &= kvm_supported_word4_x86_features;
1310 break;
1311 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1312 * may return different values. This forces us to get_cpu() before
1313 * issuing the first command, and also to emulate this annoying behavior
1314 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1315 case 2: {
1316 int t, times = entry->eax & 0xff;
1317
1318 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1319 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1320 for (t = 1; t < times && *nent < maxnent; ++t) {
1321 do_cpuid_1_ent(&entry[t], function, 0);
1322 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1323 ++*nent;
1324 }
1325 break;
1326 }
1327 /* function 4 and 0xb have additional index. */
1328 case 4: {
1329 int i, cache_type;
1330
1331 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1332 /* read more entries until cache_type is zero */
1333 for (i = 1; *nent < maxnent; ++i) {
1334 cache_type = entry[i - 1].eax & 0x1f;
1335 if (!cache_type)
1336 break;
1337 do_cpuid_1_ent(&entry[i], function, i);
1338 entry[i].flags |=
1339 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1340 ++*nent;
1341 }
1342 break;
1343 }
1344 case 0xb: {
1345 int i, level_type;
1346
1347 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1348 /* read more entries until level_type is zero */
1349 for (i = 1; *nent < maxnent; ++i) {
1350 level_type = entry[i - 1].ecx & 0xff00;
1351 if (!level_type)
1352 break;
1353 do_cpuid_1_ent(&entry[i], function, i);
1354 entry[i].flags |=
1355 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1356 ++*nent;
1357 }
1358 break;
1359 }
1360 case 0x80000000:
1361 entry->eax = min(entry->eax, 0x8000001a);
1362 break;
1363 case 0x80000001:
1364 entry->edx &= kvm_supported_word1_x86_features;
1365 entry->ecx &= kvm_supported_word6_x86_features;
1366 break;
1367 }
1368 put_cpu();
1369 }
1370
1371 #undef F
1372
1373 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1374 struct kvm_cpuid_entry2 __user *entries)
1375 {
1376 struct kvm_cpuid_entry2 *cpuid_entries;
1377 int limit, nent = 0, r = -E2BIG;
1378 u32 func;
1379
1380 if (cpuid->nent < 1)
1381 goto out;
1382 r = -ENOMEM;
1383 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1384 if (!cpuid_entries)
1385 goto out;
1386
1387 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1388 limit = cpuid_entries[0].eax;
1389 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1390 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1391 &nent, cpuid->nent);
1392 r = -E2BIG;
1393 if (nent >= cpuid->nent)
1394 goto out_free;
1395
1396 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1397 limit = cpuid_entries[nent - 1].eax;
1398 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1399 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1400 &nent, cpuid->nent);
1401 r = -EFAULT;
1402 if (copy_to_user(entries, cpuid_entries,
1403 nent * sizeof(struct kvm_cpuid_entry2)))
1404 goto out_free;
1405 cpuid->nent = nent;
1406 r = 0;
1407
1408 out_free:
1409 vfree(cpuid_entries);
1410 out:
1411 return r;
1412 }
1413
1414 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1415 struct kvm_lapic_state *s)
1416 {
1417 vcpu_load(vcpu);
1418 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1419 vcpu_put(vcpu);
1420
1421 return 0;
1422 }
1423
1424 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1425 struct kvm_lapic_state *s)
1426 {
1427 vcpu_load(vcpu);
1428 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1429 kvm_apic_post_state_restore(vcpu);
1430 vcpu_put(vcpu);
1431
1432 return 0;
1433 }
1434
1435 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1436 struct kvm_interrupt *irq)
1437 {
1438 if (irq->irq < 0 || irq->irq >= 256)
1439 return -EINVAL;
1440 if (irqchip_in_kernel(vcpu->kvm))
1441 return -ENXIO;
1442 vcpu_load(vcpu);
1443
1444 set_bit(irq->irq, vcpu->arch.irq_pending);
1445 set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1446
1447 vcpu_put(vcpu);
1448
1449 return 0;
1450 }
1451
1452 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
1453 {
1454 vcpu_load(vcpu);
1455 kvm_inject_nmi(vcpu);
1456 vcpu_put(vcpu);
1457
1458 return 0;
1459 }
1460
1461 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1462 struct kvm_tpr_access_ctl *tac)
1463 {
1464 if (tac->flags)
1465 return -EINVAL;
1466 vcpu->arch.tpr_access_reporting = !!tac->enabled;
1467 return 0;
1468 }
1469
1470 long kvm_arch_vcpu_ioctl(struct file *filp,
1471 unsigned int ioctl, unsigned long arg)
1472 {
1473 struct kvm_vcpu *vcpu = filp->private_data;
1474 void __user *argp = (void __user *)arg;
1475 int r;
1476 struct kvm_lapic_state *lapic = NULL;
1477
1478 switch (ioctl) {
1479 case KVM_GET_LAPIC: {
1480 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1481
1482 r = -ENOMEM;
1483 if (!lapic)
1484 goto out;
1485 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
1486 if (r)
1487 goto out;
1488 r = -EFAULT;
1489 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
1490 goto out;
1491 r = 0;
1492 break;
1493 }
1494 case KVM_SET_LAPIC: {
1495 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1496 r = -ENOMEM;
1497 if (!lapic)
1498 goto out;
1499 r = -EFAULT;
1500 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
1501 goto out;
1502 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
1503 if (r)
1504 goto out;
1505 r = 0;
1506 break;
1507 }
1508 case KVM_INTERRUPT: {
1509 struct kvm_interrupt irq;
1510
1511 r = -EFAULT;
1512 if (copy_from_user(&irq, argp, sizeof irq))
1513 goto out;
1514 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1515 if (r)
1516 goto out;
1517 r = 0;
1518 break;
1519 }
1520 case KVM_NMI: {
1521 r = kvm_vcpu_ioctl_nmi(vcpu);
1522 if (r)
1523 goto out;
1524 r = 0;
1525 break;
1526 }
1527 case KVM_SET_CPUID: {
1528 struct kvm_cpuid __user *cpuid_arg = argp;
1529 struct kvm_cpuid cpuid;
1530
1531 r = -EFAULT;
1532 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1533 goto out;
1534 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1535 if (r)
1536 goto out;
1537 break;
1538 }
1539 case KVM_SET_CPUID2: {
1540 struct kvm_cpuid2 __user *cpuid_arg = argp;
1541 struct kvm_cpuid2 cpuid;
1542
1543 r = -EFAULT;
1544 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1545 goto out;
1546 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1547 cpuid_arg->entries);
1548 if (r)
1549 goto out;
1550 break;
1551 }
1552 case KVM_GET_CPUID2: {
1553 struct kvm_cpuid2 __user *cpuid_arg = argp;
1554 struct kvm_cpuid2 cpuid;
1555
1556 r = -EFAULT;
1557 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1558 goto out;
1559 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1560 cpuid_arg->entries);
1561 if (r)
1562 goto out;
1563 r = -EFAULT;
1564 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1565 goto out;
1566 r = 0;
1567 break;
1568 }
1569 case KVM_GET_MSRS:
1570 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1571 break;
1572 case KVM_SET_MSRS:
1573 r = msr_io(vcpu, argp, do_set_msr, 0);
1574 break;
1575 case KVM_TPR_ACCESS_REPORTING: {
1576 struct kvm_tpr_access_ctl tac;
1577
1578 r = -EFAULT;
1579 if (copy_from_user(&tac, argp, sizeof tac))
1580 goto out;
1581 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1582 if (r)
1583 goto out;
1584 r = -EFAULT;
1585 if (copy_to_user(argp, &tac, sizeof tac))
1586 goto out;
1587 r = 0;
1588 break;
1589 };
1590 case KVM_SET_VAPIC_ADDR: {
1591 struct kvm_vapic_addr va;
1592
1593 r = -EINVAL;
1594 if (!irqchip_in_kernel(vcpu->kvm))
1595 goto out;
1596 r = -EFAULT;
1597 if (copy_from_user(&va, argp, sizeof va))
1598 goto out;
1599 r = 0;
1600 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1601 break;
1602 }
1603 default:
1604 r = -EINVAL;
1605 }
1606 out:
1607 kfree(lapic);
1608 return r;
1609 }
1610
1611 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1612 {
1613 int ret;
1614
1615 if (addr > (unsigned int)(-3 * PAGE_SIZE))
1616 return -1;
1617 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1618 return ret;
1619 }
1620
1621 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1622 u32 kvm_nr_mmu_pages)
1623 {
1624 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1625 return -EINVAL;
1626
1627 down_write(&kvm->slots_lock);
1628 spin_lock(&kvm->mmu_lock);
1629
1630 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1631 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1632
1633 spin_unlock(&kvm->mmu_lock);
1634 up_write(&kvm->slots_lock);
1635 return 0;
1636 }
1637
1638 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1639 {
1640 return kvm->arch.n_alloc_mmu_pages;
1641 }
1642
1643 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1644 {
1645 int i;
1646 struct kvm_mem_alias *alias;
1647
1648 for (i = 0; i < kvm->arch.naliases; ++i) {
1649 alias = &kvm->arch.aliases[i];
1650 if (gfn >= alias->base_gfn
1651 && gfn < alias->base_gfn + alias->npages)
1652 return alias->target_gfn + gfn - alias->base_gfn;
1653 }
1654 return gfn;
1655 }
1656
1657 /*
1658 * Set a new alias region. Aliases map a portion of physical memory into
1659 * another portion. This is useful for memory windows, for example the PC
1660 * VGA region.
1661 */
1662 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1663 struct kvm_memory_alias *alias)
1664 {
1665 int r, n;
1666 struct kvm_mem_alias *p;
1667
1668 r = -EINVAL;
1669 /* General sanity checks */
1670 if (alias->memory_size & (PAGE_SIZE - 1))
1671 goto out;
1672 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1673 goto out;
1674 if (alias->slot >= KVM_ALIAS_SLOTS)
1675 goto out;
1676 if (alias->guest_phys_addr + alias->memory_size
1677 < alias->guest_phys_addr)
1678 goto out;
1679 if (alias->target_phys_addr + alias->memory_size
1680 < alias->target_phys_addr)
1681 goto out;
1682
1683 down_write(&kvm->slots_lock);
1684 spin_lock(&kvm->mmu_lock);
1685
1686 p = &kvm->arch.aliases[alias->slot];
1687 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1688 p->npages = alias->memory_size >> PAGE_SHIFT;
1689 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1690
1691 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1692 if (kvm->arch.aliases[n - 1].npages)
1693 break;
1694 kvm->arch.naliases = n;
1695
1696 spin_unlock(&kvm->mmu_lock);
1697 kvm_mmu_zap_all(kvm);
1698
1699 up_write(&kvm->slots_lock);
1700
1701 return 0;
1702
1703 out:
1704 return r;
1705 }
1706
1707 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1708 {
1709 int r;
1710
1711 r = 0;
1712 switch (chip->chip_id) {
1713 case KVM_IRQCHIP_PIC_MASTER:
1714 memcpy(&chip->chip.pic,
1715 &pic_irqchip(kvm)->pics[0],
1716 sizeof(struct kvm_pic_state));
1717 break;
1718 case KVM_IRQCHIP_PIC_SLAVE:
1719 memcpy(&chip->chip.pic,
1720 &pic_irqchip(kvm)->pics[1],
1721 sizeof(struct kvm_pic_state));
1722 break;
1723 case KVM_IRQCHIP_IOAPIC:
1724 memcpy(&chip->chip.ioapic,
1725 ioapic_irqchip(kvm),
1726 sizeof(struct kvm_ioapic_state));
1727 break;
1728 default:
1729 r = -EINVAL;
1730 break;
1731 }
1732 return r;
1733 }
1734
1735 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1736 {
1737 int r;
1738
1739 r = 0;
1740 switch (chip->chip_id) {
1741 case KVM_IRQCHIP_PIC_MASTER:
1742 memcpy(&pic_irqchip(kvm)->pics[0],
1743 &chip->chip.pic,
1744 sizeof(struct kvm_pic_state));
1745 break;
1746 case KVM_IRQCHIP_PIC_SLAVE:
1747 memcpy(&pic_irqchip(kvm)->pics[1],
1748 &chip->chip.pic,
1749 sizeof(struct kvm_pic_state));
1750 break;
1751 case KVM_IRQCHIP_IOAPIC:
1752 memcpy(ioapic_irqchip(kvm),
1753 &chip->chip.ioapic,
1754 sizeof(struct kvm_ioapic_state));
1755 break;
1756 default:
1757 r = -EINVAL;
1758 break;
1759 }
1760 kvm_pic_update_irq(pic_irqchip(kvm));
1761 return r;
1762 }
1763
1764 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1765 {
1766 int r = 0;
1767
1768 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
1769 return r;
1770 }
1771
1772 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1773 {
1774 int r = 0;
1775
1776 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
1777 kvm_pit_load_count(kvm, 0, ps->channels[0].count);
1778 return r;
1779 }
1780
1781 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
1782 struct kvm_reinject_control *control)
1783 {
1784 if (!kvm->arch.vpit)
1785 return -ENXIO;
1786 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
1787 return 0;
1788 }
1789
1790 /*
1791 * Get (and clear) the dirty memory log for a memory slot.
1792 */
1793 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1794 struct kvm_dirty_log *log)
1795 {
1796 int r;
1797 int n;
1798 struct kvm_memory_slot *memslot;
1799 int is_dirty = 0;
1800
1801 down_write(&kvm->slots_lock);
1802
1803 r = kvm_get_dirty_log(kvm, log, &is_dirty);
1804 if (r)
1805 goto out;
1806
1807 /* If nothing is dirty, don't bother messing with page tables. */
1808 if (is_dirty) {
1809 spin_lock(&kvm->mmu_lock);
1810 kvm_mmu_slot_remove_write_access(kvm, log->slot);
1811 spin_unlock(&kvm->mmu_lock);
1812 kvm_flush_remote_tlbs(kvm);
1813 memslot = &kvm->memslots[log->slot];
1814 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1815 memset(memslot->dirty_bitmap, 0, n);
1816 }
1817 r = 0;
1818 out:
1819 up_write(&kvm->slots_lock);
1820 return r;
1821 }
1822
1823 long kvm_arch_vm_ioctl(struct file *filp,
1824 unsigned int ioctl, unsigned long arg)
1825 {
1826 struct kvm *kvm = filp->private_data;
1827 void __user *argp = (void __user *)arg;
1828 int r = -EINVAL;
1829 /*
1830 * This union makes it completely explicit to gcc-3.x
1831 * that these two variables' stack usage should be
1832 * combined, not added together.
1833 */
1834 union {
1835 struct kvm_pit_state ps;
1836 struct kvm_memory_alias alias;
1837 } u;
1838
1839 switch (ioctl) {
1840 case KVM_SET_TSS_ADDR:
1841 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
1842 if (r < 0)
1843 goto out;
1844 break;
1845 case KVM_SET_MEMORY_REGION: {
1846 struct kvm_memory_region kvm_mem;
1847 struct kvm_userspace_memory_region kvm_userspace_mem;
1848
1849 r = -EFAULT;
1850 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
1851 goto out;
1852 kvm_userspace_mem.slot = kvm_mem.slot;
1853 kvm_userspace_mem.flags = kvm_mem.flags;
1854 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
1855 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
1856 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
1857 if (r)
1858 goto out;
1859 break;
1860 }
1861 case KVM_SET_NR_MMU_PAGES:
1862 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
1863 if (r)
1864 goto out;
1865 break;
1866 case KVM_GET_NR_MMU_PAGES:
1867 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
1868 break;
1869 case KVM_SET_MEMORY_ALIAS:
1870 r = -EFAULT;
1871 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
1872 goto out;
1873 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
1874 if (r)
1875 goto out;
1876 break;
1877 case KVM_CREATE_IRQCHIP:
1878 r = -ENOMEM;
1879 kvm->arch.vpic = kvm_create_pic(kvm);
1880 if (kvm->arch.vpic) {
1881 r = kvm_ioapic_init(kvm);
1882 if (r) {
1883 kfree(kvm->arch.vpic);
1884 kvm->arch.vpic = NULL;
1885 goto out;
1886 }
1887 } else
1888 goto out;
1889 r = kvm_setup_default_irq_routing(kvm);
1890 if (r) {
1891 kfree(kvm->arch.vpic);
1892 kfree(kvm->arch.vioapic);
1893 goto out;
1894 }
1895 break;
1896 case KVM_CREATE_PIT:
1897 mutex_lock(&kvm->lock);
1898 r = -EEXIST;
1899 if (kvm->arch.vpit)
1900 goto create_pit_unlock;
1901 r = -ENOMEM;
1902 kvm->arch.vpit = kvm_create_pit(kvm);
1903 if (kvm->arch.vpit)
1904 r = 0;
1905 create_pit_unlock:
1906 mutex_unlock(&kvm->lock);
1907 break;
1908 case KVM_IRQ_LINE_STATUS:
1909 case KVM_IRQ_LINE: {
1910 struct kvm_irq_level irq_event;
1911
1912 r = -EFAULT;
1913 if (copy_from_user(&irq_event, argp, sizeof irq_event))
1914 goto out;
1915 if (irqchip_in_kernel(kvm)) {
1916 __s32 status;
1917 mutex_lock(&kvm->lock);
1918 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1919 irq_event.irq, irq_event.level);
1920 mutex_unlock(&kvm->lock);
1921 if (ioctl == KVM_IRQ_LINE_STATUS) {
1922 irq_event.status = status;
1923 if (copy_to_user(argp, &irq_event,
1924 sizeof irq_event))
1925 goto out;
1926 }
1927 r = 0;
1928 }
1929 break;
1930 }
1931 case KVM_GET_IRQCHIP: {
1932 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1933 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1934
1935 r = -ENOMEM;
1936 if (!chip)
1937 goto out;
1938 r = -EFAULT;
1939 if (copy_from_user(chip, argp, sizeof *chip))
1940 goto get_irqchip_out;
1941 r = -ENXIO;
1942 if (!irqchip_in_kernel(kvm))
1943 goto get_irqchip_out;
1944 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
1945 if (r)
1946 goto get_irqchip_out;
1947 r = -EFAULT;
1948 if (copy_to_user(argp, chip, sizeof *chip))
1949 goto get_irqchip_out;
1950 r = 0;
1951 get_irqchip_out:
1952 kfree(chip);
1953 if (r)
1954 goto out;
1955 break;
1956 }
1957 case KVM_SET_IRQCHIP: {
1958 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1959 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1960
1961 r = -ENOMEM;
1962 if (!chip)
1963 goto out;
1964 r = -EFAULT;
1965 if (copy_from_user(chip, argp, sizeof *chip))
1966 goto set_irqchip_out;
1967 r = -ENXIO;
1968 if (!irqchip_in_kernel(kvm))
1969 goto set_irqchip_out;
1970 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
1971 if (r)
1972 goto set_irqchip_out;
1973 r = 0;
1974 set_irqchip_out:
1975 kfree(chip);
1976 if (r)
1977 goto out;
1978 break;
1979 }
1980 case KVM_GET_PIT: {
1981 r = -EFAULT;
1982 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
1983 goto out;
1984 r = -ENXIO;
1985 if (!kvm->arch.vpit)
1986 goto out;
1987 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
1988 if (r)
1989 goto out;
1990 r = -EFAULT;
1991 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
1992 goto out;
1993 r = 0;
1994 break;
1995 }
1996 case KVM_SET_PIT: {
1997 r = -EFAULT;
1998 if (copy_from_user(&u.ps, argp, sizeof u.ps))
1999 goto out;
2000 r = -ENXIO;
2001 if (!kvm->arch.vpit)
2002 goto out;
2003 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
2004 if (r)
2005 goto out;
2006 r = 0;
2007 break;
2008 }
2009 case KVM_REINJECT_CONTROL: {
2010 struct kvm_reinject_control control;
2011 r = -EFAULT;
2012 if (copy_from_user(&control, argp, sizeof(control)))
2013 goto out;
2014 r = kvm_vm_ioctl_reinject(kvm, &control);
2015 if (r)
2016 goto out;
2017 r = 0;
2018 break;
2019 }
2020 default:
2021 ;
2022 }
2023 out:
2024 return r;
2025 }
2026
2027 static void kvm_init_msr_list(void)
2028 {
2029 u32 dummy[2];
2030 unsigned i, j;
2031
2032 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2033 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2034 continue;
2035 if (j < i)
2036 msrs_to_save[j] = msrs_to_save[i];
2037 j++;
2038 }
2039 num_msrs_to_save = j;
2040 }
2041
2042 /*
2043 * Only apic need an MMIO device hook, so shortcut now..
2044 */
2045 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
2046 gpa_t addr, int len,
2047 int is_write)
2048 {
2049 struct kvm_io_device *dev;
2050
2051 if (vcpu->arch.apic) {
2052 dev = &vcpu->arch.apic->dev;
2053 if (dev->in_range(dev, addr, len, is_write))
2054 return dev;
2055 }
2056 return NULL;
2057 }
2058
2059
2060 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
2061 gpa_t addr, int len,
2062 int is_write)
2063 {
2064 struct kvm_io_device *dev;
2065
2066 dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
2067 if (dev == NULL)
2068 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
2069 is_write);
2070 return dev;
2071 }
2072
2073 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
2074 struct kvm_vcpu *vcpu)
2075 {
2076 void *data = val;
2077 int r = X86EMUL_CONTINUE;
2078
2079 while (bytes) {
2080 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2081 unsigned offset = addr & (PAGE_SIZE-1);
2082 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
2083 int ret;
2084
2085 if (gpa == UNMAPPED_GVA) {
2086 r = X86EMUL_PROPAGATE_FAULT;
2087 goto out;
2088 }
2089 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
2090 if (ret < 0) {
2091 r = X86EMUL_UNHANDLEABLE;
2092 goto out;
2093 }
2094
2095 bytes -= toread;
2096 data += toread;
2097 addr += toread;
2098 }
2099 out:
2100 return r;
2101 }
2102
2103 static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
2104 struct kvm_vcpu *vcpu)
2105 {
2106 void *data = val;
2107 int r = X86EMUL_CONTINUE;
2108
2109 while (bytes) {
2110 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2111 unsigned offset = addr & (PAGE_SIZE-1);
2112 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
2113 int ret;
2114
2115 if (gpa == UNMAPPED_GVA) {
2116 r = X86EMUL_PROPAGATE_FAULT;
2117 goto out;
2118 }
2119 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
2120 if (ret < 0) {
2121 r = X86EMUL_UNHANDLEABLE;
2122 goto out;
2123 }
2124
2125 bytes -= towrite;
2126 data += towrite;
2127 addr += towrite;
2128 }
2129 out:
2130 return r;
2131 }
2132
2133
2134 static int emulator_read_emulated(unsigned long addr,
2135 void *val,
2136 unsigned int bytes,
2137 struct kvm_vcpu *vcpu)
2138 {
2139 struct kvm_io_device *mmio_dev;
2140 gpa_t gpa;
2141
2142 if (vcpu->mmio_read_completed) {
2143 memcpy(val, vcpu->mmio_data, bytes);
2144 vcpu->mmio_read_completed = 0;
2145 return X86EMUL_CONTINUE;
2146 }
2147
2148 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2149
2150 /* For APIC access vmexit */
2151 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2152 goto mmio;
2153
2154 if (kvm_read_guest_virt(addr, val, bytes, vcpu)
2155 == X86EMUL_CONTINUE)
2156 return X86EMUL_CONTINUE;
2157 if (gpa == UNMAPPED_GVA)
2158 return X86EMUL_PROPAGATE_FAULT;
2159
2160 mmio:
2161 /*
2162 * Is this MMIO handled locally?
2163 */
2164 mutex_lock(&vcpu->kvm->lock);
2165 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
2166 if (mmio_dev) {
2167 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
2168 mutex_unlock(&vcpu->kvm->lock);
2169 return X86EMUL_CONTINUE;
2170 }
2171 mutex_unlock(&vcpu->kvm->lock);
2172
2173 vcpu->mmio_needed = 1;
2174 vcpu->mmio_phys_addr = gpa;
2175 vcpu->mmio_size = bytes;
2176 vcpu->mmio_is_write = 0;
2177
2178 return X86EMUL_UNHANDLEABLE;
2179 }
2180
2181 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2182 const void *val, int bytes)
2183 {
2184 int ret;
2185
2186 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
2187 if (ret < 0)
2188 return 0;
2189 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
2190 return 1;
2191 }
2192
2193 static int emulator_write_emulated_onepage(unsigned long addr,
2194 const void *val,
2195 unsigned int bytes,
2196 struct kvm_vcpu *vcpu)
2197 {
2198 struct kvm_io_device *mmio_dev;
2199 gpa_t gpa;
2200
2201 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2202
2203 if (gpa == UNMAPPED_GVA) {
2204 kvm_inject_page_fault(vcpu, addr, 2);
2205 return X86EMUL_PROPAGATE_FAULT;
2206 }
2207
2208 /* For APIC access vmexit */
2209 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2210 goto mmio;
2211
2212 if (emulator_write_phys(vcpu, gpa, val, bytes))
2213 return X86EMUL_CONTINUE;
2214
2215 mmio:
2216 /*
2217 * Is this MMIO handled locally?
2218 */
2219 mutex_lock(&vcpu->kvm->lock);
2220 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
2221 if (mmio_dev) {
2222 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
2223 mutex_unlock(&vcpu->kvm->lock);
2224 return X86EMUL_CONTINUE;
2225 }
2226 mutex_unlock(&vcpu->kvm->lock);
2227
2228 vcpu->mmio_needed = 1;
2229 vcpu->mmio_phys_addr = gpa;
2230 vcpu->mmio_size = bytes;
2231 vcpu->mmio_is_write = 1;
2232 memcpy(vcpu->mmio_data, val, bytes);
2233
2234 return X86EMUL_CONTINUE;
2235 }
2236
2237 int emulator_write_emulated(unsigned long addr,
2238 const void *val,
2239 unsigned int bytes,
2240 struct kvm_vcpu *vcpu)
2241 {
2242 /* Crossing a page boundary? */
2243 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
2244 int rc, now;
2245
2246 now = -addr & ~PAGE_MASK;
2247 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
2248 if (rc != X86EMUL_CONTINUE)
2249 return rc;
2250 addr += now;
2251 val += now;
2252 bytes -= now;
2253 }
2254 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
2255 }
2256 EXPORT_SYMBOL_GPL(emulator_write_emulated);
2257
2258 static int emulator_cmpxchg_emulated(unsigned long addr,
2259 const void *old,
2260 const void *new,
2261 unsigned int bytes,
2262 struct kvm_vcpu *vcpu)
2263 {
2264 static int reported;
2265
2266 if (!reported) {
2267 reported = 1;
2268 printk(KERN_WARNING "kvm: emulating exchange as write\n");
2269 }
2270 #ifndef CONFIG_X86_64
2271 /* guests cmpxchg8b have to be emulated atomically */
2272 if (bytes == 8) {
2273 gpa_t gpa;
2274 struct page *page;
2275 char *kaddr;
2276 u64 val;
2277
2278 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2279
2280 if (gpa == UNMAPPED_GVA ||
2281 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2282 goto emul_write;
2283
2284 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2285 goto emul_write;
2286
2287 val = *(u64 *)new;
2288
2289 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2290
2291 kaddr = kmap_atomic(page, KM_USER0);
2292 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2293 kunmap_atomic(kaddr, KM_USER0);
2294 kvm_release_page_dirty(page);
2295 }
2296 emul_write:
2297 #endif
2298
2299 return emulator_write_emulated(addr, new, bytes, vcpu);
2300 }
2301
2302 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2303 {
2304 return kvm_x86_ops->get_segment_base(vcpu, seg);
2305 }
2306
2307 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2308 {
2309 kvm_mmu_invlpg(vcpu, address);
2310 return X86EMUL_CONTINUE;
2311 }
2312
2313 int emulate_clts(struct kvm_vcpu *vcpu)
2314 {
2315 KVMTRACE_0D(CLTS, vcpu, handler);
2316 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2317 return X86EMUL_CONTINUE;
2318 }
2319
2320 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2321 {
2322 struct kvm_vcpu *vcpu = ctxt->vcpu;
2323
2324 switch (dr) {
2325 case 0 ... 3:
2326 *dest = kvm_x86_ops->get_dr(vcpu, dr);
2327 return X86EMUL_CONTINUE;
2328 default:
2329 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2330 return X86EMUL_UNHANDLEABLE;
2331 }
2332 }
2333
2334 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2335 {
2336 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2337 int exception;
2338
2339 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2340 if (exception) {
2341 /* FIXME: better handling */
2342 return X86EMUL_UNHANDLEABLE;
2343 }
2344 return X86EMUL_CONTINUE;
2345 }
2346
2347 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2348 {
2349 u8 opcodes[4];
2350 unsigned long rip = kvm_rip_read(vcpu);
2351 unsigned long rip_linear;
2352
2353 if (!printk_ratelimit())
2354 return;
2355
2356 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2357
2358 kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
2359
2360 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2361 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2362 }
2363 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2364
2365 static struct x86_emulate_ops emulate_ops = {
2366 .read_std = kvm_read_guest_virt,
2367 .read_emulated = emulator_read_emulated,
2368 .write_emulated = emulator_write_emulated,
2369 .cmpxchg_emulated = emulator_cmpxchg_emulated,
2370 };
2371
2372 static void cache_all_regs(struct kvm_vcpu *vcpu)
2373 {
2374 kvm_register_read(vcpu, VCPU_REGS_RAX);
2375 kvm_register_read(vcpu, VCPU_REGS_RSP);
2376 kvm_register_read(vcpu, VCPU_REGS_RIP);
2377 vcpu->arch.regs_dirty = ~0;
2378 }
2379
2380 int emulate_instruction(struct kvm_vcpu *vcpu,
2381 struct kvm_run *run,
2382 unsigned long cr2,
2383 u16 error_code,
2384 int emulation_type)
2385 {
2386 int r, shadow_mask;
2387 struct decode_cache *c;
2388
2389 kvm_clear_exception_queue(vcpu);
2390 vcpu->arch.mmio_fault_cr2 = cr2;
2391 /*
2392 * TODO: fix x86_emulate.c to use guest_read/write_register
2393 * instead of direct ->regs accesses, can save hundred cycles
2394 * on Intel for instructions that don't read/change RSP, for
2395 * for example.
2396 */
2397 cache_all_regs(vcpu);
2398
2399 vcpu->mmio_is_write = 0;
2400 vcpu->arch.pio.string = 0;
2401
2402 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2403 int cs_db, cs_l;
2404 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2405
2406 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2407 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2408 vcpu->arch.emulate_ctxt.mode =
2409 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2410 ? X86EMUL_MODE_REAL : cs_l
2411 ? X86EMUL_MODE_PROT64 : cs_db
2412 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2413
2414 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2415
2416 /* Reject the instructions other than VMCALL/VMMCALL when
2417 * try to emulate invalid opcode */
2418 c = &vcpu->arch.emulate_ctxt.decode;
2419 if ((emulation_type & EMULTYPE_TRAP_UD) &&
2420 (!(c->twobyte && c->b == 0x01 &&
2421 (c->modrm_reg == 0 || c->modrm_reg == 3) &&
2422 c->modrm_mod == 3 && c->modrm_rm == 1)))
2423 return EMULATE_FAIL;
2424
2425 ++vcpu->stat.insn_emulation;
2426 if (r) {
2427 ++vcpu->stat.insn_emulation_fail;
2428 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2429 return EMULATE_DONE;
2430 return EMULATE_FAIL;
2431 }
2432 }
2433
2434 if (emulation_type & EMULTYPE_SKIP) {
2435 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
2436 return EMULATE_DONE;
2437 }
2438
2439 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2440 shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
2441
2442 if (r == 0)
2443 kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
2444
2445 if (vcpu->arch.pio.string)
2446 return EMULATE_DO_MMIO;
2447
2448 if ((r || vcpu->mmio_is_write) && run) {
2449 run->exit_reason = KVM_EXIT_MMIO;
2450 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2451 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2452 run->mmio.len = vcpu->mmio_size;
2453 run->mmio.is_write = vcpu->mmio_is_write;
2454 }
2455
2456 if (r) {
2457 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2458 return EMULATE_DONE;
2459 if (!vcpu->mmio_needed) {
2460 kvm_report_emulation_failure(vcpu, "mmio");
2461 return EMULATE_FAIL;
2462 }
2463 return EMULATE_DO_MMIO;
2464 }
2465
2466 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2467
2468 if (vcpu->mmio_is_write) {
2469 vcpu->mmio_needed = 0;
2470 return EMULATE_DO_MMIO;
2471 }
2472
2473 return EMULATE_DONE;
2474 }
2475 EXPORT_SYMBOL_GPL(emulate_instruction);
2476
2477 static int pio_copy_data(struct kvm_vcpu *vcpu)
2478 {
2479 void *p = vcpu->arch.pio_data;
2480 gva_t q = vcpu->arch.pio.guest_gva;
2481 unsigned bytes;
2482 int ret;
2483
2484 bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2485 if (vcpu->arch.pio.in)
2486 ret = kvm_write_guest_virt(q, p, bytes, vcpu);
2487 else
2488 ret = kvm_read_guest_virt(q, p, bytes, vcpu);
2489 return ret;
2490 }
2491
2492 int complete_pio(struct kvm_vcpu *vcpu)
2493 {
2494 struct kvm_pio_request *io = &vcpu->arch.pio;
2495 long delta;
2496 int r;
2497 unsigned long val;
2498
2499 if (!io->string) {
2500 if (io->in) {
2501 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2502 memcpy(&val, vcpu->arch.pio_data, io->size);
2503 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
2504 }
2505 } else {
2506 if (io->in) {
2507 r = pio_copy_data(vcpu);
2508 if (r)
2509 return r;
2510 }
2511
2512 delta = 1;
2513 if (io->rep) {
2514 delta *= io->cur_count;
2515 /*
2516 * The size of the register should really depend on
2517 * current address size.
2518 */
2519 val = kvm_register_read(vcpu, VCPU_REGS_RCX);
2520 val -= delta;
2521 kvm_register_write(vcpu, VCPU_REGS_RCX, val);
2522 }
2523 if (io->down)
2524 delta = -delta;
2525 delta *= io->size;
2526 if (io->in) {
2527 val = kvm_register_read(vcpu, VCPU_REGS_RDI);
2528 val += delta;
2529 kvm_register_write(vcpu, VCPU_REGS_RDI, val);
2530 } else {
2531 val = kvm_register_read(vcpu, VCPU_REGS_RSI);
2532 val += delta;
2533 kvm_register_write(vcpu, VCPU_REGS_RSI, val);
2534 }
2535 }
2536
2537 io->count -= io->cur_count;
2538 io->cur_count = 0;
2539
2540 return 0;
2541 }
2542
2543 static void kernel_pio(struct kvm_io_device *pio_dev,
2544 struct kvm_vcpu *vcpu,
2545 void *pd)
2546 {
2547 /* TODO: String I/O for in kernel device */
2548
2549 mutex_lock(&vcpu->kvm->lock);
2550 if (vcpu->arch.pio.in)
2551 kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
2552 vcpu->arch.pio.size,
2553 pd);
2554 else
2555 kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
2556 vcpu->arch.pio.size,
2557 pd);
2558 mutex_unlock(&vcpu->kvm->lock);
2559 }
2560
2561 static void pio_string_write(struct kvm_io_device *pio_dev,
2562 struct kvm_vcpu *vcpu)
2563 {
2564 struct kvm_pio_request *io = &vcpu->arch.pio;
2565 void *pd = vcpu->arch.pio_data;
2566 int i;
2567
2568 mutex_lock(&vcpu->kvm->lock);
2569 for (i = 0; i < io->cur_count; i++) {
2570 kvm_iodevice_write(pio_dev, io->port,
2571 io->size,
2572 pd);
2573 pd += io->size;
2574 }
2575 mutex_unlock(&vcpu->kvm->lock);
2576 }
2577
2578 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2579 gpa_t addr, int len,
2580 int is_write)
2581 {
2582 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
2583 }
2584
2585 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2586 int size, unsigned port)
2587 {
2588 struct kvm_io_device *pio_dev;
2589 unsigned long val;
2590
2591 vcpu->run->exit_reason = KVM_EXIT_IO;
2592 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2593 vcpu->run->io.size = vcpu->arch.pio.size = size;
2594 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2595 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2596 vcpu->run->io.port = vcpu->arch.pio.port = port;
2597 vcpu->arch.pio.in = in;
2598 vcpu->arch.pio.string = 0;
2599 vcpu->arch.pio.down = 0;
2600 vcpu->arch.pio.rep = 0;
2601
2602 if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2603 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2604 handler);
2605 else
2606 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2607 handler);
2608
2609 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2610 memcpy(vcpu->arch.pio_data, &val, 4);
2611
2612 pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
2613 if (pio_dev) {
2614 kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2615 complete_pio(vcpu);
2616 return 1;
2617 }
2618 return 0;
2619 }
2620 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2621
2622 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2623 int size, unsigned long count, int down,
2624 gva_t address, int rep, unsigned port)
2625 {
2626 unsigned now, in_page;
2627 int ret = 0;
2628 struct kvm_io_device *pio_dev;
2629
2630 vcpu->run->exit_reason = KVM_EXIT_IO;
2631 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2632 vcpu->run->io.size = vcpu->arch.pio.size = size;
2633 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2634 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2635 vcpu->run->io.port = vcpu->arch.pio.port = port;
2636 vcpu->arch.pio.in = in;
2637 vcpu->arch.pio.string = 1;
2638 vcpu->arch.pio.down = down;
2639 vcpu->arch.pio.rep = rep;
2640
2641 if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2642 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2643 handler);
2644 else
2645 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2646 handler);
2647
2648 if (!count) {
2649 kvm_x86_ops->skip_emulated_instruction(vcpu);
2650 return 1;
2651 }
2652
2653 if (!down)
2654 in_page = PAGE_SIZE - offset_in_page(address);
2655 else
2656 in_page = offset_in_page(address) + size;
2657 now = min(count, (unsigned long)in_page / size);
2658 if (!now)
2659 now = 1;
2660 if (down) {
2661 /*
2662 * String I/O in reverse. Yuck. Kill the guest, fix later.
2663 */
2664 pr_unimpl(vcpu, "guest string pio down\n");
2665 kvm_inject_gp(vcpu, 0);
2666 return 1;
2667 }
2668 vcpu->run->io.count = now;
2669 vcpu->arch.pio.cur_count = now;
2670
2671 if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2672 kvm_x86_ops->skip_emulated_instruction(vcpu);
2673
2674 vcpu->arch.pio.guest_gva = address;
2675
2676 pio_dev = vcpu_find_pio_dev(vcpu, port,
2677 vcpu->arch.pio.cur_count,
2678 !vcpu->arch.pio.in);
2679 if (!vcpu->arch.pio.in) {
2680 /* string PIO write */
2681 ret = pio_copy_data(vcpu);
2682 if (ret == X86EMUL_PROPAGATE_FAULT) {
2683 kvm_inject_gp(vcpu, 0);
2684 return 1;
2685 }
2686 if (ret == 0 && pio_dev) {
2687 pio_string_write(pio_dev, vcpu);
2688 complete_pio(vcpu);
2689 if (vcpu->arch.pio.count == 0)
2690 ret = 1;
2691 }
2692 } else if (pio_dev)
2693 pr_unimpl(vcpu, "no string pio read support yet, "
2694 "port %x size %d count %ld\n",
2695 port, size, count);
2696
2697 return ret;
2698 }
2699 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2700
2701 static void bounce_off(void *info)
2702 {
2703 /* nothing */
2704 }
2705
2706 static unsigned int ref_freq;
2707 static unsigned long tsc_khz_ref;
2708
2709 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
2710 void *data)
2711 {
2712 struct cpufreq_freqs *freq = data;
2713 struct kvm *kvm;
2714 struct kvm_vcpu *vcpu;
2715 int i, send_ipi = 0;
2716
2717 if (!ref_freq)
2718 ref_freq = freq->old;
2719
2720 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
2721 return 0;
2722 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
2723 return 0;
2724 per_cpu(cpu_tsc_khz, freq->cpu) = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
2725
2726 spin_lock(&kvm_lock);
2727 list_for_each_entry(kvm, &vm_list, vm_list) {
2728 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2729 vcpu = kvm->vcpus[i];
2730 if (!vcpu)
2731 continue;
2732 if (vcpu->cpu != freq->cpu)
2733 continue;
2734 if (!kvm_request_guest_time_update(vcpu))
2735 continue;
2736 if (vcpu->cpu != smp_processor_id())
2737 send_ipi++;
2738 }
2739 }
2740 spin_unlock(&kvm_lock);
2741
2742 if (freq->old < freq->new && send_ipi) {
2743 /*
2744 * We upscale the frequency. Must make the guest
2745 * doesn't see old kvmclock values while running with
2746 * the new frequency, otherwise we risk the guest sees
2747 * time go backwards.
2748 *
2749 * In case we update the frequency for another cpu
2750 * (which might be in guest context) send an interrupt
2751 * to kick the cpu out of guest context. Next time
2752 * guest context is entered kvmclock will be updated,
2753 * so the guest will not see stale values.
2754 */
2755 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
2756 }
2757 return 0;
2758 }
2759
2760 static struct notifier_block kvmclock_cpufreq_notifier_block = {
2761 .notifier_call = kvmclock_cpufreq_notifier
2762 };
2763
2764 int kvm_arch_init(void *opaque)
2765 {
2766 int r, cpu;
2767 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
2768
2769 if (kvm_x86_ops) {
2770 printk(KERN_ERR "kvm: already loaded the other module\n");
2771 r = -EEXIST;
2772 goto out;
2773 }
2774
2775 if (!ops->cpu_has_kvm_support()) {
2776 printk(KERN_ERR "kvm: no hardware support\n");
2777 r = -EOPNOTSUPP;
2778 goto out;
2779 }
2780 if (ops->disabled_by_bios()) {
2781 printk(KERN_ERR "kvm: disabled by bios\n");
2782 r = -EOPNOTSUPP;
2783 goto out;
2784 }
2785
2786 r = kvm_mmu_module_init();
2787 if (r)
2788 goto out;
2789
2790 kvm_init_msr_list();
2791
2792 kvm_x86_ops = ops;
2793 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2794 kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
2795 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
2796 PT_DIRTY_MASK, PT64_NX_MASK, 0);
2797
2798 for_each_possible_cpu(cpu)
2799 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
2800 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
2801 tsc_khz_ref = tsc_khz;
2802 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
2803 CPUFREQ_TRANSITION_NOTIFIER);
2804 }
2805
2806 return 0;
2807
2808 out:
2809 return r;
2810 }
2811
2812 void kvm_arch_exit(void)
2813 {
2814 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
2815 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
2816 CPUFREQ_TRANSITION_NOTIFIER);
2817 kvm_x86_ops = NULL;
2818 kvm_mmu_module_exit();
2819 }
2820
2821 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
2822 {
2823 ++vcpu->stat.halt_exits;
2824 KVMTRACE_0D(HLT, vcpu, handler);
2825 if (irqchip_in_kernel(vcpu->kvm)) {
2826 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
2827 return 1;
2828 } else {
2829 vcpu->run->exit_reason = KVM_EXIT_HLT;
2830 return 0;
2831 }
2832 }
2833 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
2834
2835 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
2836 unsigned long a1)
2837 {
2838 if (is_long_mode(vcpu))
2839 return a0;
2840 else
2841 return a0 | ((gpa_t)a1 << 32);
2842 }
2843
2844 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
2845 {
2846 unsigned long nr, a0, a1, a2, a3, ret;
2847 int r = 1;
2848
2849 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
2850 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
2851 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
2852 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
2853 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
2854
2855 KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
2856
2857 if (!is_long_mode(vcpu)) {
2858 nr &= 0xFFFFFFFF;
2859 a0 &= 0xFFFFFFFF;
2860 a1 &= 0xFFFFFFFF;
2861 a2 &= 0xFFFFFFFF;
2862 a3 &= 0xFFFFFFFF;
2863 }
2864
2865 switch (nr) {
2866 case KVM_HC_VAPIC_POLL_IRQ:
2867 ret = 0;
2868 break;
2869 case KVM_HC_MMU_OP:
2870 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
2871 break;
2872 default:
2873 ret = -KVM_ENOSYS;
2874 break;
2875 }
2876 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
2877 ++vcpu->stat.hypercalls;
2878 return r;
2879 }
2880 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
2881
2882 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
2883 {
2884 char instruction[3];
2885 int ret = 0;
2886 unsigned long rip = kvm_rip_read(vcpu);
2887
2888
2889 /*
2890 * Blow out the MMU to ensure that no other VCPU has an active mapping
2891 * to ensure that the updated hypercall appears atomically across all
2892 * VCPUs.
2893 */
2894 kvm_mmu_zap_all(vcpu->kvm);
2895
2896 kvm_x86_ops->patch_hypercall(vcpu, instruction);
2897 if (emulator_write_emulated(rip, instruction, 3, vcpu)
2898 != X86EMUL_CONTINUE)
2899 ret = -EFAULT;
2900
2901 return ret;
2902 }
2903
2904 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
2905 {
2906 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
2907 }
2908
2909 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2910 {
2911 struct descriptor_table dt = { limit, base };
2912
2913 kvm_x86_ops->set_gdt(vcpu, &dt);
2914 }
2915
2916 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2917 {
2918 struct descriptor_table dt = { limit, base };
2919
2920 kvm_x86_ops->set_idt(vcpu, &dt);
2921 }
2922
2923 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
2924 unsigned long *rflags)
2925 {
2926 kvm_lmsw(vcpu, msw);
2927 *rflags = kvm_x86_ops->get_rflags(vcpu);
2928 }
2929
2930 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
2931 {
2932 unsigned long value;
2933
2934 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2935 switch (cr) {
2936 case 0:
2937 value = vcpu->arch.cr0;
2938 break;
2939 case 2:
2940 value = vcpu->arch.cr2;
2941 break;
2942 case 3:
2943 value = vcpu->arch.cr3;
2944 break;
2945 case 4:
2946 value = vcpu->arch.cr4;
2947 break;
2948 case 8:
2949 value = kvm_get_cr8(vcpu);
2950 break;
2951 default:
2952 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2953 return 0;
2954 }
2955 KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
2956 (u32)((u64)value >> 32), handler);
2957
2958 return value;
2959 }
2960
2961 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
2962 unsigned long *rflags)
2963 {
2964 KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
2965 (u32)((u64)val >> 32), handler);
2966
2967 switch (cr) {
2968 case 0:
2969 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2970 *rflags = kvm_x86_ops->get_rflags(vcpu);
2971 break;
2972 case 2:
2973 vcpu->arch.cr2 = val;
2974 break;
2975 case 3:
2976 kvm_set_cr3(vcpu, val);
2977 break;
2978 case 4:
2979 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2980 break;
2981 case 8:
2982 kvm_set_cr8(vcpu, val & 0xfUL);
2983 break;
2984 default:
2985 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2986 }
2987 }
2988
2989 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
2990 {
2991 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
2992 int j, nent = vcpu->arch.cpuid_nent;
2993
2994 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
2995 /* when no next entry is found, the current entry[i] is reselected */
2996 for (j = i + 1; ; j = (j + 1) % nent) {
2997 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2998 if (ej->function == e->function) {
2999 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
3000 return j;
3001 }
3002 }
3003 return 0; /* silence gcc, even though control never reaches here */
3004 }
3005
3006 /* find an entry with matching function, matching index (if needed), and that
3007 * should be read next (if it's stateful) */
3008 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
3009 u32 function, u32 index)
3010 {
3011 if (e->function != function)
3012 return 0;
3013 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
3014 return 0;
3015 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
3016 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
3017 return 0;
3018 return 1;
3019 }
3020
3021 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
3022 u32 function, u32 index)
3023 {
3024 int i;
3025 struct kvm_cpuid_entry2 *best = NULL;
3026
3027 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
3028 struct kvm_cpuid_entry2 *e;
3029
3030 e = &vcpu->arch.cpuid_entries[i];
3031 if (is_matching_cpuid_entry(e, function, index)) {
3032 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
3033 move_to_next_stateful_cpuid_entry(vcpu, i);
3034 best = e;
3035 break;
3036 }
3037 /*
3038 * Both basic or both extended?
3039 */
3040 if (((e->function ^ function) & 0x80000000) == 0)
3041 if (!best || e->function > best->function)
3042 best = e;
3043 }
3044 return best;
3045 }
3046
3047 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
3048 {
3049 struct kvm_cpuid_entry2 *best;
3050
3051 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
3052 if (best)
3053 return best->eax & 0xff;
3054 return 36;
3055 }
3056
3057 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
3058 {
3059 u32 function, index;
3060 struct kvm_cpuid_entry2 *best;
3061
3062 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
3063 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3064 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
3065 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
3066 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
3067 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
3068 best = kvm_find_cpuid_entry(vcpu, function, index);
3069 if (best) {
3070 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
3071 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
3072 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
3073 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
3074 }
3075 kvm_x86_ops->skip_emulated_instruction(vcpu);
3076 KVMTRACE_5D(CPUID, vcpu, function,
3077 (u32)kvm_register_read(vcpu, VCPU_REGS_RAX),
3078 (u32)kvm_register_read(vcpu, VCPU_REGS_RBX),
3079 (u32)kvm_register_read(vcpu, VCPU_REGS_RCX),
3080 (u32)kvm_register_read(vcpu, VCPU_REGS_RDX), handler);
3081 }
3082 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
3083
3084 /*
3085 * Check if userspace requested an interrupt window, and that the
3086 * interrupt window is open.
3087 *
3088 * No need to exit to userspace if we already have an interrupt queued.
3089 */
3090 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
3091 struct kvm_run *kvm_run)
3092 {
3093 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
3094 kvm_run->request_interrupt_window &&
3095 kvm_arch_interrupt_allowed(vcpu));
3096 }
3097
3098 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
3099 struct kvm_run *kvm_run)
3100 {
3101 kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
3102 kvm_run->cr8 = kvm_get_cr8(vcpu);
3103 kvm_run->apic_base = kvm_get_apic_base(vcpu);
3104 if (irqchip_in_kernel(vcpu->kvm))
3105 kvm_run->ready_for_interrupt_injection = 1;
3106 else
3107 kvm_run->ready_for_interrupt_injection =
3108 (kvm_arch_interrupt_allowed(vcpu) &&
3109 !kvm_cpu_has_interrupt(vcpu));
3110 }
3111
3112 static void vapic_enter(struct kvm_vcpu *vcpu)
3113 {
3114 struct kvm_lapic *apic = vcpu->arch.apic;
3115 struct page *page;
3116
3117 if (!apic || !apic->vapic_addr)
3118 return;
3119
3120 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3121
3122 vcpu->arch.apic->vapic_page = page;
3123 }
3124
3125 static void vapic_exit(struct kvm_vcpu *vcpu)
3126 {
3127 struct kvm_lapic *apic = vcpu->arch.apic;
3128
3129 if (!apic || !apic->vapic_addr)
3130 return;
3131
3132 down_read(&vcpu->kvm->slots_lock);
3133 kvm_release_page_dirty(apic->vapic_page);
3134 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3135 up_read(&vcpu->kvm->slots_lock);
3136 }
3137
3138 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
3139 {
3140 int max_irr, tpr;
3141
3142 if (!kvm_x86_ops->update_cr8_intercept)
3143 return;
3144
3145 max_irr = kvm_lapic_find_highest_irr(vcpu);
3146
3147 if (max_irr != -1)
3148 max_irr >>= 4;
3149
3150 tpr = kvm_lapic_get_cr8(vcpu);
3151
3152 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
3153 }
3154
3155 static void inject_irq(struct kvm_vcpu *vcpu)
3156 {
3157 /* try to reinject previous events if any */
3158 if (vcpu->arch.nmi_injected) {
3159 kvm_x86_ops->set_nmi(vcpu);
3160 return;
3161 }
3162
3163 if (vcpu->arch.interrupt.pending) {
3164 kvm_x86_ops->set_irq(vcpu, vcpu->arch.interrupt.nr);
3165 return;
3166 }
3167
3168 /* try to inject new event if pending */
3169 if (vcpu->arch.nmi_pending) {
3170 if (kvm_x86_ops->nmi_allowed(vcpu)) {
3171 vcpu->arch.nmi_pending = false;
3172 vcpu->arch.nmi_injected = true;
3173 kvm_x86_ops->set_nmi(vcpu);
3174 }
3175 } else if (kvm_cpu_has_interrupt(vcpu)) {
3176 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
3177 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu));
3178 kvm_x86_ops->set_irq(vcpu, vcpu->arch.interrupt.nr);
3179 }
3180 }
3181 }
3182
3183 static void inject_pending_irq(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3184 {
3185 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
3186 kvm_run->request_interrupt_window;
3187
3188 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3189 kvm_x86_ops->set_interrupt_shadow(vcpu, 0);
3190
3191 inject_irq(vcpu);
3192
3193 /* enable NMI/IRQ window open exits if needed */
3194 if (vcpu->arch.nmi_pending)
3195 kvm_x86_ops->enable_nmi_window(vcpu);
3196 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
3197 kvm_x86_ops->enable_irq_window(vcpu);
3198 }
3199
3200 static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3201 {
3202 int r;
3203
3204 if (vcpu->requests)
3205 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
3206 kvm_mmu_unload(vcpu);
3207
3208 r = kvm_mmu_reload(vcpu);
3209 if (unlikely(r))
3210 goto out;
3211
3212 if (vcpu->requests) {
3213 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
3214 __kvm_migrate_timers(vcpu);
3215 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
3216 kvm_write_guest_time(vcpu);
3217 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
3218 kvm_mmu_sync_roots(vcpu);
3219 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
3220 kvm_x86_ops->tlb_flush(vcpu);
3221 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
3222 &vcpu->requests)) {
3223 kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
3224 r = 0;
3225 goto out;
3226 }
3227 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
3228 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
3229 r = 0;
3230 goto out;
3231 }
3232 }
3233
3234 preempt_disable();
3235
3236 kvm_x86_ops->prepare_guest_switch(vcpu);
3237 kvm_load_guest_fpu(vcpu);
3238
3239 local_irq_disable();
3240
3241 clear_bit(KVM_REQ_KICK, &vcpu->requests);
3242 smp_mb__after_clear_bit();
3243
3244 if (vcpu->requests || need_resched() || signal_pending(current)) {
3245 local_irq_enable();
3246 preempt_enable();
3247 r = 1;
3248 goto out;
3249 }
3250
3251 if (vcpu->arch.exception.pending)
3252 __queue_exception(vcpu);
3253 else
3254 inject_pending_irq(vcpu, kvm_run);
3255
3256 if (kvm_lapic_enabled(vcpu)) {
3257 if (!vcpu->arch.apic->vapic_addr)
3258 update_cr8_intercept(vcpu);
3259 else
3260 kvm_lapic_sync_to_vapic(vcpu);
3261 }
3262
3263 up_read(&vcpu->kvm->slots_lock);
3264
3265 kvm_guest_enter();
3266
3267 get_debugreg(vcpu->arch.host_dr6, 6);
3268 get_debugreg(vcpu->arch.host_dr7, 7);
3269 if (unlikely(vcpu->arch.switch_db_regs)) {
3270 get_debugreg(vcpu->arch.host_db[0], 0);
3271 get_debugreg(vcpu->arch.host_db[1], 1);
3272 get_debugreg(vcpu->arch.host_db[2], 2);
3273 get_debugreg(vcpu->arch.host_db[3], 3);
3274
3275 set_debugreg(0, 7);
3276 set_debugreg(vcpu->arch.eff_db[0], 0);
3277 set_debugreg(vcpu->arch.eff_db[1], 1);
3278 set_debugreg(vcpu->arch.eff_db[2], 2);
3279 set_debugreg(vcpu->arch.eff_db[3], 3);
3280 }
3281
3282 KVMTRACE_0D(VMENTRY, vcpu, entryexit);
3283 kvm_x86_ops->run(vcpu, kvm_run);
3284
3285 if (unlikely(vcpu->arch.switch_db_regs)) {
3286 set_debugreg(0, 7);
3287 set_debugreg(vcpu->arch.host_db[0], 0);
3288 set_debugreg(vcpu->arch.host_db[1], 1);
3289 set_debugreg(vcpu->arch.host_db[2], 2);
3290 set_debugreg(vcpu->arch.host_db[3], 3);
3291 }
3292 set_debugreg(vcpu->arch.host_dr6, 6);
3293 set_debugreg(vcpu->arch.host_dr7, 7);
3294
3295 set_bit(KVM_REQ_KICK, &vcpu->requests);
3296 local_irq_enable();
3297
3298 ++vcpu->stat.exits;
3299
3300 /*
3301 * We must have an instruction between local_irq_enable() and
3302 * kvm_guest_exit(), so the timer interrupt isn't delayed by
3303 * the interrupt shadow. The stat.exits increment will do nicely.
3304 * But we need to prevent reordering, hence this barrier():
3305 */
3306 barrier();
3307
3308 kvm_guest_exit();
3309
3310 preempt_enable();
3311
3312 down_read(&vcpu->kvm->slots_lock);
3313
3314 /*
3315 * Profile KVM exit RIPs:
3316 */
3317 if (unlikely(prof_on == KVM_PROFILING)) {
3318 unsigned long rip = kvm_rip_read(vcpu);
3319 profile_hit(KVM_PROFILING, (void *)rip);
3320 }
3321
3322
3323 kvm_lapic_sync_from_vapic(vcpu);
3324
3325 r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
3326 out:
3327 return r;
3328 }
3329
3330
3331 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3332 {
3333 int r;
3334
3335 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
3336 pr_debug("vcpu %d received sipi with vector # %x\n",
3337 vcpu->vcpu_id, vcpu->arch.sipi_vector);
3338 kvm_lapic_reset(vcpu);
3339 r = kvm_arch_vcpu_reset(vcpu);
3340 if (r)
3341 return r;
3342 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3343 }
3344
3345 down_read(&vcpu->kvm->slots_lock);
3346 vapic_enter(vcpu);
3347
3348 r = 1;
3349 while (r > 0) {
3350 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
3351 r = vcpu_enter_guest(vcpu, kvm_run);
3352 else {
3353 up_read(&vcpu->kvm->slots_lock);
3354 kvm_vcpu_block(vcpu);
3355 down_read(&vcpu->kvm->slots_lock);
3356 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
3357 {
3358 switch(vcpu->arch.mp_state) {
3359 case KVM_MP_STATE_HALTED:
3360 vcpu->arch.mp_state =
3361 KVM_MP_STATE_RUNNABLE;
3362 case KVM_MP_STATE_RUNNABLE:
3363 break;
3364 case KVM_MP_STATE_SIPI_RECEIVED:
3365 default:
3366 r = -EINTR;
3367 break;
3368 }
3369 }
3370 }
3371
3372 if (r <= 0)
3373 break;
3374
3375 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
3376 if (kvm_cpu_has_pending_timer(vcpu))
3377 kvm_inject_pending_timer_irqs(vcpu);
3378
3379 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
3380 r = -EINTR;
3381 kvm_run->exit_reason = KVM_EXIT_INTR;
3382 ++vcpu->stat.request_irq_exits;
3383 }
3384 if (signal_pending(current)) {
3385 r = -EINTR;
3386 kvm_run->exit_reason = KVM_EXIT_INTR;
3387 ++vcpu->stat.signal_exits;
3388 }
3389 if (need_resched()) {
3390 up_read(&vcpu->kvm->slots_lock);
3391 kvm_resched(vcpu);
3392 down_read(&vcpu->kvm->slots_lock);
3393 }
3394 }
3395
3396 up_read(&vcpu->kvm->slots_lock);
3397 post_kvm_run_save(vcpu, kvm_run);
3398
3399 vapic_exit(vcpu);
3400
3401 return r;
3402 }
3403
3404 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3405 {
3406 int r;
3407 sigset_t sigsaved;
3408
3409 vcpu_load(vcpu);
3410
3411 if (vcpu->sigset_active)
3412 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
3413
3414 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
3415 kvm_vcpu_block(vcpu);
3416 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
3417 r = -EAGAIN;
3418 goto out;
3419 }
3420
3421 /* re-sync apic's tpr */
3422 if (!irqchip_in_kernel(vcpu->kvm))
3423 kvm_set_cr8(vcpu, kvm_run->cr8);
3424
3425 if (vcpu->arch.pio.cur_count) {
3426 r = complete_pio(vcpu);
3427 if (r)
3428 goto out;
3429 }
3430 #if CONFIG_HAS_IOMEM
3431 if (vcpu->mmio_needed) {
3432 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
3433 vcpu->mmio_read_completed = 1;
3434 vcpu->mmio_needed = 0;
3435
3436 down_read(&vcpu->kvm->slots_lock);
3437 r = emulate_instruction(vcpu, kvm_run,
3438 vcpu->arch.mmio_fault_cr2, 0,
3439 EMULTYPE_NO_DECODE);
3440 up_read(&vcpu->kvm->slots_lock);
3441 if (r == EMULATE_DO_MMIO) {
3442 /*
3443 * Read-modify-write. Back to userspace.
3444 */
3445 r = 0;
3446 goto out;
3447 }
3448 }
3449 #endif
3450 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
3451 kvm_register_write(vcpu, VCPU_REGS_RAX,
3452 kvm_run->hypercall.ret);
3453
3454 r = __vcpu_run(vcpu, kvm_run);
3455
3456 out:
3457 if (vcpu->sigset_active)
3458 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
3459
3460 vcpu_put(vcpu);
3461 return r;
3462 }
3463
3464 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3465 {
3466 vcpu_load(vcpu);
3467
3468 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3469 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3470 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3471 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3472 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3473 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3474 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3475 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3476 #ifdef CONFIG_X86_64
3477 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
3478 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
3479 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
3480 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
3481 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
3482 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
3483 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
3484 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
3485 #endif
3486
3487 regs->rip = kvm_rip_read(vcpu);
3488 regs->rflags = kvm_x86_ops->get_rflags(vcpu);
3489
3490 /*
3491 * Don't leak debug flags in case they were set for guest debugging
3492 */
3493 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3494 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
3495
3496 vcpu_put(vcpu);
3497
3498 return 0;
3499 }
3500
3501 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3502 {
3503 vcpu_load(vcpu);
3504
3505 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
3506 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
3507 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
3508 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
3509 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
3510 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
3511 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
3512 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
3513 #ifdef CONFIG_X86_64
3514 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
3515 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
3516 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
3517 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
3518 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
3519 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
3520 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
3521 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
3522
3523 #endif
3524
3525 kvm_rip_write(vcpu, regs->rip);
3526 kvm_x86_ops->set_rflags(vcpu, regs->rflags);
3527
3528
3529 vcpu->arch.exception.pending = false;
3530
3531 vcpu_put(vcpu);
3532
3533 return 0;
3534 }
3535
3536 void kvm_get_segment(struct kvm_vcpu *vcpu,
3537 struct kvm_segment *var, int seg)
3538 {
3539 kvm_x86_ops->get_segment(vcpu, var, seg);
3540 }
3541
3542 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3543 {
3544 struct kvm_segment cs;
3545
3546 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3547 *db = cs.db;
3548 *l = cs.l;
3549 }
3550 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3551
3552 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3553 struct kvm_sregs *sregs)
3554 {
3555 struct descriptor_table dt;
3556
3557 vcpu_load(vcpu);
3558
3559 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3560 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3561 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3562 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3563 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3564 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3565
3566 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3567 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3568
3569 kvm_x86_ops->get_idt(vcpu, &dt);
3570 sregs->idt.limit = dt.limit;
3571 sregs->idt.base = dt.base;
3572 kvm_x86_ops->get_gdt(vcpu, &dt);
3573 sregs->gdt.limit = dt.limit;
3574 sregs->gdt.base = dt.base;
3575
3576 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3577 sregs->cr0 = vcpu->arch.cr0;
3578 sregs->cr2 = vcpu->arch.cr2;
3579 sregs->cr3 = vcpu->arch.cr3;
3580 sregs->cr4 = vcpu->arch.cr4;
3581 sregs->cr8 = kvm_get_cr8(vcpu);
3582 sregs->efer = vcpu->arch.shadow_efer;
3583 sregs->apic_base = kvm_get_apic_base(vcpu);
3584
3585 if (irqchip_in_kernel(vcpu->kvm))
3586 memset(sregs->interrupt_bitmap, 0,
3587 sizeof sregs->interrupt_bitmap);
3588 else
3589 memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
3590 sizeof sregs->interrupt_bitmap);
3591
3592 if (vcpu->arch.interrupt.pending)
3593 set_bit(vcpu->arch.interrupt.nr,
3594 (unsigned long *)sregs->interrupt_bitmap);
3595
3596 vcpu_put(vcpu);
3597
3598 return 0;
3599 }
3600
3601 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3602 struct kvm_mp_state *mp_state)
3603 {
3604 vcpu_load(vcpu);
3605 mp_state->mp_state = vcpu->arch.mp_state;
3606 vcpu_put(vcpu);
3607 return 0;
3608 }
3609
3610 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3611 struct kvm_mp_state *mp_state)
3612 {
3613 vcpu_load(vcpu);
3614 vcpu->arch.mp_state = mp_state->mp_state;
3615 vcpu_put(vcpu);
3616 return 0;
3617 }
3618
3619 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3620 struct kvm_segment *var, int seg)
3621 {
3622 kvm_x86_ops->set_segment(vcpu, var, seg);
3623 }
3624
3625 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
3626 struct kvm_segment *kvm_desct)
3627 {
3628 kvm_desct->base = seg_desc->base0;
3629 kvm_desct->base |= seg_desc->base1 << 16;
3630 kvm_desct->base |= seg_desc->base2 << 24;
3631 kvm_desct->limit = seg_desc->limit0;
3632 kvm_desct->limit |= seg_desc->limit << 16;
3633 if (seg_desc->g) {
3634 kvm_desct->limit <<= 12;
3635 kvm_desct->limit |= 0xfff;
3636 }
3637 kvm_desct->selector = selector;
3638 kvm_desct->type = seg_desc->type;
3639 kvm_desct->present = seg_desc->p;
3640 kvm_desct->dpl = seg_desc->dpl;
3641 kvm_desct->db = seg_desc->d;
3642 kvm_desct->s = seg_desc->s;
3643 kvm_desct->l = seg_desc->l;
3644 kvm_desct->g = seg_desc->g;
3645 kvm_desct->avl = seg_desc->avl;
3646 if (!selector)
3647 kvm_desct->unusable = 1;
3648 else
3649 kvm_desct->unusable = 0;
3650 kvm_desct->padding = 0;
3651 }
3652
3653 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
3654 u16 selector,
3655 struct descriptor_table *dtable)
3656 {
3657 if (selector & 1 << 2) {
3658 struct kvm_segment kvm_seg;
3659
3660 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
3661
3662 if (kvm_seg.unusable)
3663 dtable->limit = 0;
3664 else
3665 dtable->limit = kvm_seg.limit;
3666 dtable->base = kvm_seg.base;
3667 }
3668 else
3669 kvm_x86_ops->get_gdt(vcpu, dtable);
3670 }
3671
3672 /* allowed just for 8 bytes segments */
3673 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3674 struct desc_struct *seg_desc)
3675 {
3676 gpa_t gpa;
3677 struct descriptor_table dtable;
3678 u16 index = selector >> 3;
3679
3680 get_segment_descriptor_dtable(vcpu, selector, &dtable);
3681
3682 if (dtable.limit < index * 8 + 7) {
3683 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
3684 return 1;
3685 }
3686 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3687 gpa += index * 8;
3688 return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
3689 }
3690
3691 /* allowed just for 8 bytes segments */
3692 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3693 struct desc_struct *seg_desc)
3694 {
3695 gpa_t gpa;
3696 struct descriptor_table dtable;
3697 u16 index = selector >> 3;
3698
3699 get_segment_descriptor_dtable(vcpu, selector, &dtable);
3700
3701 if (dtable.limit < index * 8 + 7)
3702 return 1;
3703 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3704 gpa += index * 8;
3705 return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
3706 }
3707
3708 static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
3709 struct desc_struct *seg_desc)
3710 {
3711 u32 base_addr;
3712
3713 base_addr = seg_desc->base0;
3714 base_addr |= (seg_desc->base1 << 16);
3715 base_addr |= (seg_desc->base2 << 24);
3716
3717 return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
3718 }
3719
3720 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
3721 {
3722 struct kvm_segment kvm_seg;
3723
3724 kvm_get_segment(vcpu, &kvm_seg, seg);
3725 return kvm_seg.selector;
3726 }
3727
3728 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
3729 u16 selector,
3730 struct kvm_segment *kvm_seg)
3731 {
3732 struct desc_struct seg_desc;
3733
3734 if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
3735 return 1;
3736 seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
3737 return 0;
3738 }
3739
3740 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
3741 {
3742 struct kvm_segment segvar = {
3743 .base = selector << 4,
3744 .limit = 0xffff,
3745 .selector = selector,
3746 .type = 3,
3747 .present = 1,
3748 .dpl = 3,
3749 .db = 0,
3750 .s = 1,
3751 .l = 0,
3752 .g = 0,
3753 .avl = 0,
3754 .unusable = 0,
3755 };
3756 kvm_x86_ops->set_segment(vcpu, &segvar, seg);
3757 return 0;
3758 }
3759
3760 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3761 int type_bits, int seg)
3762 {
3763 struct kvm_segment kvm_seg;
3764
3765 if (!(vcpu->arch.cr0 & X86_CR0_PE))
3766 return kvm_load_realmode_segment(vcpu, selector, seg);
3767 if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
3768 return 1;
3769 kvm_seg.type |= type_bits;
3770
3771 if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
3772 seg != VCPU_SREG_LDTR)
3773 if (!kvm_seg.s)
3774 kvm_seg.unusable = 1;
3775
3776 kvm_set_segment(vcpu, &kvm_seg, seg);
3777 return 0;
3778 }
3779
3780 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
3781 struct tss_segment_32 *tss)
3782 {
3783 tss->cr3 = vcpu->arch.cr3;
3784 tss->eip = kvm_rip_read(vcpu);
3785 tss->eflags = kvm_x86_ops->get_rflags(vcpu);
3786 tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3787 tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3788 tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3789 tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3790 tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3791 tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3792 tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3793 tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3794 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3795 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3796 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3797 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3798 tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
3799 tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
3800 tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3801 }
3802
3803 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
3804 struct tss_segment_32 *tss)
3805 {
3806 kvm_set_cr3(vcpu, tss->cr3);
3807
3808 kvm_rip_write(vcpu, tss->eip);
3809 kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
3810
3811 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
3812 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
3813 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
3814 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
3815 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
3816 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
3817 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
3818 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
3819
3820 if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
3821 return 1;
3822
3823 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3824 return 1;
3825
3826 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3827 return 1;
3828
3829 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3830 return 1;
3831
3832 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3833 return 1;
3834
3835 if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
3836 return 1;
3837
3838 if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
3839 return 1;
3840 return 0;
3841 }
3842
3843 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
3844 struct tss_segment_16 *tss)
3845 {
3846 tss->ip = kvm_rip_read(vcpu);
3847 tss->flag = kvm_x86_ops->get_rflags(vcpu);
3848 tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3849 tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3850 tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3851 tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3852 tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3853 tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3854 tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
3855 tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
3856
3857 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3858 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3859 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3860 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3861 tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3862 tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3863 }
3864
3865 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
3866 struct tss_segment_16 *tss)
3867 {
3868 kvm_rip_write(vcpu, tss->ip);
3869 kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
3870 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
3871 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
3872 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
3873 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
3874 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
3875 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
3876 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
3877 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
3878
3879 if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
3880 return 1;
3881
3882 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3883 return 1;
3884
3885 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3886 return 1;
3887
3888 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3889 return 1;
3890
3891 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3892 return 1;
3893 return 0;
3894 }
3895
3896 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
3897 u16 old_tss_sel, u32 old_tss_base,
3898 struct desc_struct *nseg_desc)
3899 {
3900 struct tss_segment_16 tss_segment_16;
3901 int ret = 0;
3902
3903 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3904 sizeof tss_segment_16))
3905 goto out;
3906
3907 save_state_to_tss16(vcpu, &tss_segment_16);
3908
3909 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3910 sizeof tss_segment_16))
3911 goto out;
3912
3913 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3914 &tss_segment_16, sizeof tss_segment_16))
3915 goto out;
3916
3917 if (old_tss_sel != 0xffff) {
3918 tss_segment_16.prev_task_link = old_tss_sel;
3919
3920 if (kvm_write_guest(vcpu->kvm,
3921 get_tss_base_addr(vcpu, nseg_desc),
3922 &tss_segment_16.prev_task_link,
3923 sizeof tss_segment_16.prev_task_link))
3924 goto out;
3925 }
3926
3927 if (load_state_from_tss16(vcpu, &tss_segment_16))
3928 goto out;
3929
3930 ret = 1;
3931 out:
3932 return ret;
3933 }
3934
3935 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
3936 u16 old_tss_sel, u32 old_tss_base,
3937 struct desc_struct *nseg_desc)
3938 {
3939 struct tss_segment_32 tss_segment_32;
3940 int ret = 0;
3941
3942 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3943 sizeof tss_segment_32))
3944 goto out;
3945
3946 save_state_to_tss32(vcpu, &tss_segment_32);
3947
3948 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3949 sizeof tss_segment_32))
3950 goto out;
3951
3952 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3953 &tss_segment_32, sizeof tss_segment_32))
3954 goto out;
3955
3956 if (old_tss_sel != 0xffff) {
3957 tss_segment_32.prev_task_link = old_tss_sel;
3958
3959 if (kvm_write_guest(vcpu->kvm,
3960 get_tss_base_addr(vcpu, nseg_desc),
3961 &tss_segment_32.prev_task_link,
3962 sizeof tss_segment_32.prev_task_link))
3963 goto out;
3964 }
3965
3966 if (load_state_from_tss32(vcpu, &tss_segment_32))
3967 goto out;
3968
3969 ret = 1;
3970 out:
3971 return ret;
3972 }
3973
3974 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
3975 {
3976 struct kvm_segment tr_seg;
3977 struct desc_struct cseg_desc;
3978 struct desc_struct nseg_desc;
3979 int ret = 0;
3980 u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
3981 u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
3982
3983 old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
3984
3985 /* FIXME: Handle errors. Failure to read either TSS or their
3986 * descriptors should generate a pagefault.
3987 */
3988 if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
3989 goto out;
3990
3991 if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
3992 goto out;
3993
3994 if (reason != TASK_SWITCH_IRET) {
3995 int cpl;
3996
3997 cpl = kvm_x86_ops->get_cpl(vcpu);
3998 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
3999 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4000 return 1;
4001 }
4002 }
4003
4004 if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
4005 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
4006 return 1;
4007 }
4008
4009 if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
4010 cseg_desc.type &= ~(1 << 1); //clear the B flag
4011 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
4012 }
4013
4014 if (reason == TASK_SWITCH_IRET) {
4015 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
4016 kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
4017 }
4018
4019 /* set back link to prev task only if NT bit is set in eflags
4020 note that old_tss_sel is not used afetr this point */
4021 if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4022 old_tss_sel = 0xffff;
4023
4024 /* set back link to prev task only if NT bit is set in eflags
4025 note that old_tss_sel is not used afetr this point */
4026 if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4027 old_tss_sel = 0xffff;
4028
4029 if (nseg_desc.type & 8)
4030 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
4031 old_tss_base, &nseg_desc);
4032 else
4033 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
4034 old_tss_base, &nseg_desc);
4035
4036 if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
4037 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
4038 kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
4039 }
4040
4041 if (reason != TASK_SWITCH_IRET) {
4042 nseg_desc.type |= (1 << 1);
4043 save_guest_segment_descriptor(vcpu, tss_selector,
4044 &nseg_desc);
4045 }
4046
4047 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
4048 seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
4049 tr_seg.type = 11;
4050 kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
4051 out:
4052 return ret;
4053 }
4054 EXPORT_SYMBOL_GPL(kvm_task_switch);
4055
4056 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
4057 struct kvm_sregs *sregs)
4058 {
4059 int mmu_reset_needed = 0;
4060 int i, pending_vec, max_bits;
4061 struct descriptor_table dt;
4062
4063 vcpu_load(vcpu);
4064
4065 dt.limit = sregs->idt.limit;
4066 dt.base = sregs->idt.base;
4067 kvm_x86_ops->set_idt(vcpu, &dt);
4068 dt.limit = sregs->gdt.limit;
4069 dt.base = sregs->gdt.base;
4070 kvm_x86_ops->set_gdt(vcpu, &dt);
4071
4072 vcpu->arch.cr2 = sregs->cr2;
4073 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
4074
4075 down_read(&vcpu->kvm->slots_lock);
4076 if (gfn_to_memslot(vcpu->kvm, sregs->cr3 >> PAGE_SHIFT))
4077 vcpu->arch.cr3 = sregs->cr3;
4078 else
4079 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
4080 up_read(&vcpu->kvm->slots_lock);
4081
4082 kvm_set_cr8(vcpu, sregs->cr8);
4083
4084 mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
4085 kvm_x86_ops->set_efer(vcpu, sregs->efer);
4086 kvm_set_apic_base(vcpu, sregs->apic_base);
4087
4088 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
4089
4090 mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
4091 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
4092 vcpu->arch.cr0 = sregs->cr0;
4093
4094 mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
4095 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
4096 if (!is_long_mode(vcpu) && is_pae(vcpu))
4097 load_pdptrs(vcpu, vcpu->arch.cr3);
4098
4099 if (mmu_reset_needed)
4100 kvm_mmu_reset_context(vcpu);
4101
4102 if (!irqchip_in_kernel(vcpu->kvm)) {
4103 memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
4104 sizeof vcpu->arch.irq_pending);
4105 vcpu->arch.irq_summary = 0;
4106 for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
4107 if (vcpu->arch.irq_pending[i])
4108 __set_bit(i, &vcpu->arch.irq_summary);
4109 } else {
4110 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
4111 pending_vec = find_first_bit(
4112 (const unsigned long *)sregs->interrupt_bitmap,
4113 max_bits);
4114 /* Only pending external irq is handled here */
4115 if (pending_vec < max_bits) {
4116 kvm_queue_interrupt(vcpu, pending_vec);
4117 pr_debug("Set back pending irq %d\n", pending_vec);
4118 }
4119 kvm_pic_clear_isr_ack(vcpu->kvm);
4120 }
4121
4122 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4123 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4124 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4125 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4126 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4127 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4128
4129 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4130 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4131
4132 /* Older userspace won't unhalt the vcpu on reset. */
4133 if (vcpu->vcpu_id == 0 && kvm_rip_read(vcpu) == 0xfff0 &&
4134 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
4135 !(vcpu->arch.cr0 & X86_CR0_PE))
4136 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4137
4138 vcpu_put(vcpu);
4139
4140 return 0;
4141 }
4142
4143 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
4144 struct kvm_guest_debug *dbg)
4145 {
4146 int i, r;
4147
4148 vcpu_load(vcpu);
4149
4150 if ((dbg->control & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) ==
4151 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) {
4152 for (i = 0; i < KVM_NR_DB_REGS; ++i)
4153 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
4154 vcpu->arch.switch_db_regs =
4155 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
4156 } else {
4157 for (i = 0; i < KVM_NR_DB_REGS; i++)
4158 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
4159 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
4160 }
4161
4162 r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
4163
4164 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
4165 kvm_queue_exception(vcpu, DB_VECTOR);
4166 else if (dbg->control & KVM_GUESTDBG_INJECT_BP)
4167 kvm_queue_exception(vcpu, BP_VECTOR);
4168
4169 vcpu_put(vcpu);
4170
4171 return r;
4172 }
4173
4174 /*
4175 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
4176 * we have asm/x86/processor.h
4177 */
4178 struct fxsave {
4179 u16 cwd;
4180 u16 swd;
4181 u16 twd;
4182 u16 fop;
4183 u64 rip;
4184 u64 rdp;
4185 u32 mxcsr;
4186 u32 mxcsr_mask;
4187 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
4188 #ifdef CONFIG_X86_64
4189 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
4190 #else
4191 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
4192 #endif
4193 };
4194
4195 /*
4196 * Translate a guest virtual address to a guest physical address.
4197 */
4198 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
4199 struct kvm_translation *tr)
4200 {
4201 unsigned long vaddr = tr->linear_address;
4202 gpa_t gpa;
4203
4204 vcpu_load(vcpu);
4205 down_read(&vcpu->kvm->slots_lock);
4206 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
4207 up_read(&vcpu->kvm->slots_lock);
4208 tr->physical_address = gpa;
4209 tr->valid = gpa != UNMAPPED_GVA;
4210 tr->writeable = 1;
4211 tr->usermode = 0;
4212 vcpu_put(vcpu);
4213
4214 return 0;
4215 }
4216
4217 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4218 {
4219 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4220
4221 vcpu_load(vcpu);
4222
4223 memcpy(fpu->fpr, fxsave->st_space, 128);
4224 fpu->fcw = fxsave->cwd;
4225 fpu->fsw = fxsave->swd;
4226 fpu->ftwx = fxsave->twd;
4227 fpu->last_opcode = fxsave->fop;
4228 fpu->last_ip = fxsave->rip;
4229 fpu->last_dp = fxsave->rdp;
4230 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
4231
4232 vcpu_put(vcpu);
4233
4234 return 0;
4235 }
4236
4237 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4238 {
4239 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4240
4241 vcpu_load(vcpu);
4242
4243 memcpy(fxsave->st_space, fpu->fpr, 128);
4244 fxsave->cwd = fpu->fcw;
4245 fxsave->swd = fpu->fsw;
4246 fxsave->twd = fpu->ftwx;
4247 fxsave->fop = fpu->last_opcode;
4248 fxsave->rip = fpu->last_ip;
4249 fxsave->rdp = fpu->last_dp;
4250 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
4251
4252 vcpu_put(vcpu);
4253
4254 return 0;
4255 }
4256
4257 void fx_init(struct kvm_vcpu *vcpu)
4258 {
4259 unsigned after_mxcsr_mask;
4260
4261 /*
4262 * Touch the fpu the first time in non atomic context as if
4263 * this is the first fpu instruction the exception handler
4264 * will fire before the instruction returns and it'll have to
4265 * allocate ram with GFP_KERNEL.
4266 */
4267 if (!used_math())
4268 kvm_fx_save(&vcpu->arch.host_fx_image);
4269
4270 /* Initialize guest FPU by resetting ours and saving into guest's */
4271 preempt_disable();
4272 kvm_fx_save(&vcpu->arch.host_fx_image);
4273 kvm_fx_finit();
4274 kvm_fx_save(&vcpu->arch.guest_fx_image);
4275 kvm_fx_restore(&vcpu->arch.host_fx_image);
4276 preempt_enable();
4277
4278 vcpu->arch.cr0 |= X86_CR0_ET;
4279 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
4280 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
4281 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
4282 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
4283 }
4284 EXPORT_SYMBOL_GPL(fx_init);
4285
4286 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
4287 {
4288 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
4289 return;
4290
4291 vcpu->guest_fpu_loaded = 1;
4292 kvm_fx_save(&vcpu->arch.host_fx_image);
4293 kvm_fx_restore(&vcpu->arch.guest_fx_image);
4294 }
4295 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
4296
4297 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
4298 {
4299 if (!vcpu->guest_fpu_loaded)
4300 return;
4301
4302 vcpu->guest_fpu_loaded = 0;
4303 kvm_fx_save(&vcpu->arch.guest_fx_image);
4304 kvm_fx_restore(&vcpu->arch.host_fx_image);
4305 ++vcpu->stat.fpu_reload;
4306 }
4307 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
4308
4309 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
4310 {
4311 if (vcpu->arch.time_page) {
4312 kvm_release_page_dirty(vcpu->arch.time_page);
4313 vcpu->arch.time_page = NULL;
4314 }
4315
4316 kvm_x86_ops->vcpu_free(vcpu);
4317 }
4318
4319 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
4320 unsigned int id)
4321 {
4322 return kvm_x86_ops->vcpu_create(kvm, id);
4323 }
4324
4325 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
4326 {
4327 int r;
4328
4329 /* We do fxsave: this must be aligned. */
4330 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
4331
4332 vcpu->arch.mtrr_state.have_fixed = 1;
4333 vcpu_load(vcpu);
4334 r = kvm_arch_vcpu_reset(vcpu);
4335 if (r == 0)
4336 r = kvm_mmu_setup(vcpu);
4337 vcpu_put(vcpu);
4338 if (r < 0)
4339 goto free_vcpu;
4340
4341 return 0;
4342 free_vcpu:
4343 kvm_x86_ops->vcpu_free(vcpu);
4344 return r;
4345 }
4346
4347 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
4348 {
4349 vcpu_load(vcpu);
4350 kvm_mmu_unload(vcpu);
4351 vcpu_put(vcpu);
4352
4353 kvm_x86_ops->vcpu_free(vcpu);
4354 }
4355
4356 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
4357 {
4358 vcpu->arch.nmi_pending = false;
4359 vcpu->arch.nmi_injected = false;
4360
4361 vcpu->arch.switch_db_regs = 0;
4362 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
4363 vcpu->arch.dr6 = DR6_FIXED_1;
4364 vcpu->arch.dr7 = DR7_FIXED_1;
4365
4366 return kvm_x86_ops->vcpu_reset(vcpu);
4367 }
4368
4369 void kvm_arch_hardware_enable(void *garbage)
4370 {
4371 kvm_x86_ops->hardware_enable(garbage);
4372 }
4373
4374 void kvm_arch_hardware_disable(void *garbage)
4375 {
4376 kvm_x86_ops->hardware_disable(garbage);
4377 }
4378
4379 int kvm_arch_hardware_setup(void)
4380 {
4381 return kvm_x86_ops->hardware_setup();
4382 }
4383
4384 void kvm_arch_hardware_unsetup(void)
4385 {
4386 kvm_x86_ops->hardware_unsetup();
4387 }
4388
4389 void kvm_arch_check_processor_compat(void *rtn)
4390 {
4391 kvm_x86_ops->check_processor_compatibility(rtn);
4392 }
4393
4394 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
4395 {
4396 struct page *page;
4397 struct kvm *kvm;
4398 int r;
4399
4400 BUG_ON(vcpu->kvm == NULL);
4401 kvm = vcpu->kvm;
4402
4403 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4404 if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
4405 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4406 else
4407 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
4408
4409 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
4410 if (!page) {
4411 r = -ENOMEM;
4412 goto fail;
4413 }
4414 vcpu->arch.pio_data = page_address(page);
4415
4416 r = kvm_mmu_create(vcpu);
4417 if (r < 0)
4418 goto fail_free_pio_data;
4419
4420 if (irqchip_in_kernel(kvm)) {
4421 r = kvm_create_lapic(vcpu);
4422 if (r < 0)
4423 goto fail_mmu_destroy;
4424 }
4425
4426 return 0;
4427
4428 fail_mmu_destroy:
4429 kvm_mmu_destroy(vcpu);
4430 fail_free_pio_data:
4431 free_page((unsigned long)vcpu->arch.pio_data);
4432 fail:
4433 return r;
4434 }
4435
4436 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
4437 {
4438 kvm_free_lapic(vcpu);
4439 down_read(&vcpu->kvm->slots_lock);
4440 kvm_mmu_destroy(vcpu);
4441 up_read(&vcpu->kvm->slots_lock);
4442 free_page((unsigned long)vcpu->arch.pio_data);
4443 }
4444
4445 struct kvm *kvm_arch_create_vm(void)
4446 {
4447 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
4448
4449 if (!kvm)
4450 return ERR_PTR(-ENOMEM);
4451
4452 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
4453 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
4454
4455 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
4456 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
4457
4458 rdtscll(kvm->arch.vm_init_tsc);
4459
4460 return kvm;
4461 }
4462
4463 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
4464 {
4465 vcpu_load(vcpu);
4466 kvm_mmu_unload(vcpu);
4467 vcpu_put(vcpu);
4468 }
4469
4470 static void kvm_free_vcpus(struct kvm *kvm)
4471 {
4472 unsigned int i;
4473
4474 /*
4475 * Unpin any mmu pages first.
4476 */
4477 for (i = 0; i < KVM_MAX_VCPUS; ++i)
4478 if (kvm->vcpus[i])
4479 kvm_unload_vcpu_mmu(kvm->vcpus[i]);
4480 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
4481 if (kvm->vcpus[i]) {
4482 kvm_arch_vcpu_free(kvm->vcpus[i]);
4483 kvm->vcpus[i] = NULL;
4484 }
4485 }
4486
4487 }
4488
4489 void kvm_arch_sync_events(struct kvm *kvm)
4490 {
4491 kvm_free_all_assigned_devices(kvm);
4492 }
4493
4494 void kvm_arch_destroy_vm(struct kvm *kvm)
4495 {
4496 kvm_iommu_unmap_guest(kvm);
4497 kvm_free_pit(kvm);
4498 kfree(kvm->arch.vpic);
4499 kfree(kvm->arch.vioapic);
4500 kvm_free_vcpus(kvm);
4501 kvm_free_physmem(kvm);
4502 if (kvm->arch.apic_access_page)
4503 put_page(kvm->arch.apic_access_page);
4504 if (kvm->arch.ept_identity_pagetable)
4505 put_page(kvm->arch.ept_identity_pagetable);
4506 kfree(kvm);
4507 }
4508
4509 int kvm_arch_set_memory_region(struct kvm *kvm,
4510 struct kvm_userspace_memory_region *mem,
4511 struct kvm_memory_slot old,
4512 int user_alloc)
4513 {
4514 int npages = mem->memory_size >> PAGE_SHIFT;
4515 struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
4516
4517 /*To keep backward compatibility with older userspace,
4518 *x86 needs to hanlde !user_alloc case.
4519 */
4520 if (!user_alloc) {
4521 if (npages && !old.rmap) {
4522 unsigned long userspace_addr;
4523
4524 down_write(&current->mm->mmap_sem);
4525 userspace_addr = do_mmap(NULL, 0,
4526 npages * PAGE_SIZE,
4527 PROT_READ | PROT_WRITE,
4528 MAP_PRIVATE | MAP_ANONYMOUS,
4529 0);
4530 up_write(&current->mm->mmap_sem);
4531
4532 if (IS_ERR((void *)userspace_addr))
4533 return PTR_ERR((void *)userspace_addr);
4534
4535 /* set userspace_addr atomically for kvm_hva_to_rmapp */
4536 spin_lock(&kvm->mmu_lock);
4537 memslot->userspace_addr = userspace_addr;
4538 spin_unlock(&kvm->mmu_lock);
4539 } else {
4540 if (!old.user_alloc && old.rmap) {
4541 int ret;
4542
4543 down_write(&current->mm->mmap_sem);
4544 ret = do_munmap(current->mm, old.userspace_addr,
4545 old.npages * PAGE_SIZE);
4546 up_write(&current->mm->mmap_sem);
4547 if (ret < 0)
4548 printk(KERN_WARNING
4549 "kvm_vm_ioctl_set_memory_region: "
4550 "failed to munmap memory\n");
4551 }
4552 }
4553 }
4554
4555 spin_lock(&kvm->mmu_lock);
4556 if (!kvm->arch.n_requested_mmu_pages) {
4557 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
4558 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
4559 }
4560
4561 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
4562 spin_unlock(&kvm->mmu_lock);
4563 kvm_flush_remote_tlbs(kvm);
4564
4565 return 0;
4566 }
4567
4568 void kvm_arch_flush_shadow(struct kvm *kvm)
4569 {
4570 kvm_mmu_zap_all(kvm);
4571 }
4572
4573 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
4574 {
4575 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
4576 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
4577 || vcpu->arch.nmi_pending;
4578 }
4579
4580 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
4581 {
4582 int me;
4583 int cpu = vcpu->cpu;
4584
4585 if (waitqueue_active(&vcpu->wq)) {
4586 wake_up_interruptible(&vcpu->wq);
4587 ++vcpu->stat.halt_wakeup;
4588 }
4589
4590 me = get_cpu();
4591 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
4592 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
4593 smp_send_reschedule(cpu);
4594 put_cpu();
4595 }
4596
4597 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
4598 {
4599 return kvm_x86_ops->interrupt_allowed(vcpu);
4600 }
This page took 0.223652 seconds and 6 git commands to generate.