KVM: use the correct RCU API for PROVE_RCU=y
[deliverable/linux.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Amit Shah <amit.shah@qumranet.com>
14 * Ben-Ami Yassour <benami@il.ibm.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
28
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40 #include <linux/user-return-notifier.h>
41 #include <linux/srcu.h>
42 #include <linux/slab.h>
43 #include <linux/perf_event.h>
44 #include <trace/events/kvm.h>
45
46 #define CREATE_TRACE_POINTS
47 #include "trace.h"
48
49 #include <asm/debugreg.h>
50 #include <asm/uaccess.h>
51 #include <asm/msr.h>
52 #include <asm/desc.h>
53 #include <asm/mtrr.h>
54 #include <asm/mce.h>
55
56 #define MAX_IO_MSRS 256
57 #define CR0_RESERVED_BITS \
58 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
59 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
60 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
61 #define CR4_RESERVED_BITS \
62 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
63 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
64 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
65 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
66
67 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
68
69 #define KVM_MAX_MCE_BANKS 32
70 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
71
72 /* EFER defaults:
73 * - enable syscall per default because its emulated by KVM
74 * - enable LME and LMA per default on 64 bit KVM
75 */
76 #ifdef CONFIG_X86_64
77 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
78 #else
79 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
80 #endif
81
82 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
83 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
84
85 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
86 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
87 struct kvm_cpuid_entry2 __user *entries);
88
89 struct kvm_x86_ops *kvm_x86_ops;
90 EXPORT_SYMBOL_GPL(kvm_x86_ops);
91
92 int ignore_msrs = 0;
93 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
94
95 #define KVM_NR_SHARED_MSRS 16
96
97 struct kvm_shared_msrs_global {
98 int nr;
99 u32 msrs[KVM_NR_SHARED_MSRS];
100 };
101
102 struct kvm_shared_msrs {
103 struct user_return_notifier urn;
104 bool registered;
105 struct kvm_shared_msr_values {
106 u64 host;
107 u64 curr;
108 } values[KVM_NR_SHARED_MSRS];
109 };
110
111 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
112 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
113
114 struct kvm_stats_debugfs_item debugfs_entries[] = {
115 { "pf_fixed", VCPU_STAT(pf_fixed) },
116 { "pf_guest", VCPU_STAT(pf_guest) },
117 { "tlb_flush", VCPU_STAT(tlb_flush) },
118 { "invlpg", VCPU_STAT(invlpg) },
119 { "exits", VCPU_STAT(exits) },
120 { "io_exits", VCPU_STAT(io_exits) },
121 { "mmio_exits", VCPU_STAT(mmio_exits) },
122 { "signal_exits", VCPU_STAT(signal_exits) },
123 { "irq_window", VCPU_STAT(irq_window_exits) },
124 { "nmi_window", VCPU_STAT(nmi_window_exits) },
125 { "halt_exits", VCPU_STAT(halt_exits) },
126 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
127 { "hypercalls", VCPU_STAT(hypercalls) },
128 { "request_irq", VCPU_STAT(request_irq_exits) },
129 { "irq_exits", VCPU_STAT(irq_exits) },
130 { "host_state_reload", VCPU_STAT(host_state_reload) },
131 { "efer_reload", VCPU_STAT(efer_reload) },
132 { "fpu_reload", VCPU_STAT(fpu_reload) },
133 { "insn_emulation", VCPU_STAT(insn_emulation) },
134 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
135 { "irq_injections", VCPU_STAT(irq_injections) },
136 { "nmi_injections", VCPU_STAT(nmi_injections) },
137 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
138 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
139 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
140 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
141 { "mmu_flooded", VM_STAT(mmu_flooded) },
142 { "mmu_recycled", VM_STAT(mmu_recycled) },
143 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
144 { "mmu_unsync", VM_STAT(mmu_unsync) },
145 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
146 { "largepages", VM_STAT(lpages) },
147 { NULL }
148 };
149
150 static void kvm_on_user_return(struct user_return_notifier *urn)
151 {
152 unsigned slot;
153 struct kvm_shared_msrs *locals
154 = container_of(urn, struct kvm_shared_msrs, urn);
155 struct kvm_shared_msr_values *values;
156
157 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
158 values = &locals->values[slot];
159 if (values->host != values->curr) {
160 wrmsrl(shared_msrs_global.msrs[slot], values->host);
161 values->curr = values->host;
162 }
163 }
164 locals->registered = false;
165 user_return_notifier_unregister(urn);
166 }
167
168 static void shared_msr_update(unsigned slot, u32 msr)
169 {
170 struct kvm_shared_msrs *smsr;
171 u64 value;
172
173 smsr = &__get_cpu_var(shared_msrs);
174 /* only read, and nobody should modify it at this time,
175 * so don't need lock */
176 if (slot >= shared_msrs_global.nr) {
177 printk(KERN_ERR "kvm: invalid MSR slot!");
178 return;
179 }
180 rdmsrl_safe(msr, &value);
181 smsr->values[slot].host = value;
182 smsr->values[slot].curr = value;
183 }
184
185 void kvm_define_shared_msr(unsigned slot, u32 msr)
186 {
187 if (slot >= shared_msrs_global.nr)
188 shared_msrs_global.nr = slot + 1;
189 shared_msrs_global.msrs[slot] = msr;
190 /* we need ensured the shared_msr_global have been updated */
191 smp_wmb();
192 }
193 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
194
195 static void kvm_shared_msr_cpu_online(void)
196 {
197 unsigned i;
198
199 for (i = 0; i < shared_msrs_global.nr; ++i)
200 shared_msr_update(i, shared_msrs_global.msrs[i]);
201 }
202
203 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
204 {
205 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
206
207 if (((value ^ smsr->values[slot].curr) & mask) == 0)
208 return;
209 smsr->values[slot].curr = value;
210 wrmsrl(shared_msrs_global.msrs[slot], value);
211 if (!smsr->registered) {
212 smsr->urn.on_user_return = kvm_on_user_return;
213 user_return_notifier_register(&smsr->urn);
214 smsr->registered = true;
215 }
216 }
217 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
218
219 static void drop_user_return_notifiers(void *ignore)
220 {
221 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
222
223 if (smsr->registered)
224 kvm_on_user_return(&smsr->urn);
225 }
226
227 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
228 {
229 if (irqchip_in_kernel(vcpu->kvm))
230 return vcpu->arch.apic_base;
231 else
232 return vcpu->arch.apic_base;
233 }
234 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
235
236 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
237 {
238 /* TODO: reserve bits check */
239 if (irqchip_in_kernel(vcpu->kvm))
240 kvm_lapic_set_base(vcpu, data);
241 else
242 vcpu->arch.apic_base = data;
243 }
244 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
245
246 #define EXCPT_BENIGN 0
247 #define EXCPT_CONTRIBUTORY 1
248 #define EXCPT_PF 2
249
250 static int exception_class(int vector)
251 {
252 switch (vector) {
253 case PF_VECTOR:
254 return EXCPT_PF;
255 case DE_VECTOR:
256 case TS_VECTOR:
257 case NP_VECTOR:
258 case SS_VECTOR:
259 case GP_VECTOR:
260 return EXCPT_CONTRIBUTORY;
261 default:
262 break;
263 }
264 return EXCPT_BENIGN;
265 }
266
267 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
268 unsigned nr, bool has_error, u32 error_code)
269 {
270 u32 prev_nr;
271 int class1, class2;
272
273 if (!vcpu->arch.exception.pending) {
274 queue:
275 vcpu->arch.exception.pending = true;
276 vcpu->arch.exception.has_error_code = has_error;
277 vcpu->arch.exception.nr = nr;
278 vcpu->arch.exception.error_code = error_code;
279 return;
280 }
281
282 /* to check exception */
283 prev_nr = vcpu->arch.exception.nr;
284 if (prev_nr == DF_VECTOR) {
285 /* triple fault -> shutdown */
286 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
287 return;
288 }
289 class1 = exception_class(prev_nr);
290 class2 = exception_class(nr);
291 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
292 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
293 /* generate double fault per SDM Table 5-5 */
294 vcpu->arch.exception.pending = true;
295 vcpu->arch.exception.has_error_code = true;
296 vcpu->arch.exception.nr = DF_VECTOR;
297 vcpu->arch.exception.error_code = 0;
298 } else
299 /* replace previous exception with a new one in a hope
300 that instruction re-execution will regenerate lost
301 exception */
302 goto queue;
303 }
304
305 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
306 {
307 kvm_multiple_exception(vcpu, nr, false, 0);
308 }
309 EXPORT_SYMBOL_GPL(kvm_queue_exception);
310
311 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
312 u32 error_code)
313 {
314 ++vcpu->stat.pf_guest;
315 vcpu->arch.cr2 = addr;
316 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
317 }
318
319 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
320 {
321 vcpu->arch.nmi_pending = 1;
322 }
323 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
324
325 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
326 {
327 kvm_multiple_exception(vcpu, nr, true, error_code);
328 }
329 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
330
331 /*
332 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
333 * a #GP and return false.
334 */
335 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
336 {
337 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
338 return true;
339 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
340 return false;
341 }
342 EXPORT_SYMBOL_GPL(kvm_require_cpl);
343
344 /*
345 * Load the pae pdptrs. Return true is they are all valid.
346 */
347 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
348 {
349 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
350 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
351 int i;
352 int ret;
353 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
354
355 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
356 offset * sizeof(u64), sizeof(pdpte));
357 if (ret < 0) {
358 ret = 0;
359 goto out;
360 }
361 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
362 if (is_present_gpte(pdpte[i]) &&
363 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
364 ret = 0;
365 goto out;
366 }
367 }
368 ret = 1;
369
370 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
371 __set_bit(VCPU_EXREG_PDPTR,
372 (unsigned long *)&vcpu->arch.regs_avail);
373 __set_bit(VCPU_EXREG_PDPTR,
374 (unsigned long *)&vcpu->arch.regs_dirty);
375 out:
376
377 return ret;
378 }
379 EXPORT_SYMBOL_GPL(load_pdptrs);
380
381 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
382 {
383 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
384 bool changed = true;
385 int r;
386
387 if (is_long_mode(vcpu) || !is_pae(vcpu))
388 return false;
389
390 if (!test_bit(VCPU_EXREG_PDPTR,
391 (unsigned long *)&vcpu->arch.regs_avail))
392 return true;
393
394 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
395 if (r < 0)
396 goto out;
397 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
398 out:
399
400 return changed;
401 }
402
403 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
404 {
405 cr0 |= X86_CR0_ET;
406
407 #ifdef CONFIG_X86_64
408 if (cr0 & 0xffffffff00000000UL) {
409 kvm_inject_gp(vcpu, 0);
410 return;
411 }
412 #endif
413
414 cr0 &= ~CR0_RESERVED_BITS;
415
416 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
417 kvm_inject_gp(vcpu, 0);
418 return;
419 }
420
421 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
422 kvm_inject_gp(vcpu, 0);
423 return;
424 }
425
426 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
427 #ifdef CONFIG_X86_64
428 if ((vcpu->arch.efer & EFER_LME)) {
429 int cs_db, cs_l;
430
431 if (!is_pae(vcpu)) {
432 kvm_inject_gp(vcpu, 0);
433 return;
434 }
435 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
436 if (cs_l) {
437 kvm_inject_gp(vcpu, 0);
438 return;
439
440 }
441 } else
442 #endif
443 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
444 kvm_inject_gp(vcpu, 0);
445 return;
446 }
447
448 }
449
450 kvm_x86_ops->set_cr0(vcpu, cr0);
451
452 kvm_mmu_reset_context(vcpu);
453 return;
454 }
455 EXPORT_SYMBOL_GPL(kvm_set_cr0);
456
457 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
458 {
459 kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0ful) | (msw & 0x0f));
460 }
461 EXPORT_SYMBOL_GPL(kvm_lmsw);
462
463 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
464 {
465 unsigned long old_cr4 = kvm_read_cr4(vcpu);
466 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
467
468 if (cr4 & CR4_RESERVED_BITS) {
469 kvm_inject_gp(vcpu, 0);
470 return;
471 }
472
473 if (is_long_mode(vcpu)) {
474 if (!(cr4 & X86_CR4_PAE)) {
475 kvm_inject_gp(vcpu, 0);
476 return;
477 }
478 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
479 && ((cr4 ^ old_cr4) & pdptr_bits)
480 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
481 kvm_inject_gp(vcpu, 0);
482 return;
483 }
484
485 if (cr4 & X86_CR4_VMXE) {
486 kvm_inject_gp(vcpu, 0);
487 return;
488 }
489 kvm_x86_ops->set_cr4(vcpu, cr4);
490 vcpu->arch.cr4 = cr4;
491 vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
492 kvm_mmu_reset_context(vcpu);
493 }
494 EXPORT_SYMBOL_GPL(kvm_set_cr4);
495
496 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
497 {
498 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
499 kvm_mmu_sync_roots(vcpu);
500 kvm_mmu_flush_tlb(vcpu);
501 return;
502 }
503
504 if (is_long_mode(vcpu)) {
505 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
506 kvm_inject_gp(vcpu, 0);
507 return;
508 }
509 } else {
510 if (is_pae(vcpu)) {
511 if (cr3 & CR3_PAE_RESERVED_BITS) {
512 kvm_inject_gp(vcpu, 0);
513 return;
514 }
515 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
516 kvm_inject_gp(vcpu, 0);
517 return;
518 }
519 }
520 /*
521 * We don't check reserved bits in nonpae mode, because
522 * this isn't enforced, and VMware depends on this.
523 */
524 }
525
526 /*
527 * Does the new cr3 value map to physical memory? (Note, we
528 * catch an invalid cr3 even in real-mode, because it would
529 * cause trouble later on when we turn on paging anyway.)
530 *
531 * A real CPU would silently accept an invalid cr3 and would
532 * attempt to use it - with largely undefined (and often hard
533 * to debug) behavior on the guest side.
534 */
535 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
536 kvm_inject_gp(vcpu, 0);
537 else {
538 vcpu->arch.cr3 = cr3;
539 vcpu->arch.mmu.new_cr3(vcpu);
540 }
541 }
542 EXPORT_SYMBOL_GPL(kvm_set_cr3);
543
544 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
545 {
546 if (cr8 & CR8_RESERVED_BITS) {
547 kvm_inject_gp(vcpu, 0);
548 return;
549 }
550 if (irqchip_in_kernel(vcpu->kvm))
551 kvm_lapic_set_tpr(vcpu, cr8);
552 else
553 vcpu->arch.cr8 = cr8;
554 }
555 EXPORT_SYMBOL_GPL(kvm_set_cr8);
556
557 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
558 {
559 if (irqchip_in_kernel(vcpu->kvm))
560 return kvm_lapic_get_cr8(vcpu);
561 else
562 return vcpu->arch.cr8;
563 }
564 EXPORT_SYMBOL_GPL(kvm_get_cr8);
565
566 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
567 {
568 switch (dr) {
569 case 0 ... 3:
570 vcpu->arch.db[dr] = val;
571 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
572 vcpu->arch.eff_db[dr] = val;
573 break;
574 case 4:
575 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) {
576 kvm_queue_exception(vcpu, UD_VECTOR);
577 return 1;
578 }
579 /* fall through */
580 case 6:
581 if (val & 0xffffffff00000000ULL) {
582 kvm_inject_gp(vcpu, 0);
583 return 1;
584 }
585 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
586 break;
587 case 5:
588 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) {
589 kvm_queue_exception(vcpu, UD_VECTOR);
590 return 1;
591 }
592 /* fall through */
593 default: /* 7 */
594 if (val & 0xffffffff00000000ULL) {
595 kvm_inject_gp(vcpu, 0);
596 return 1;
597 }
598 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
599 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
600 kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
601 vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
602 }
603 break;
604 }
605
606 return 0;
607 }
608 EXPORT_SYMBOL_GPL(kvm_set_dr);
609
610 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
611 {
612 switch (dr) {
613 case 0 ... 3:
614 *val = vcpu->arch.db[dr];
615 break;
616 case 4:
617 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) {
618 kvm_queue_exception(vcpu, UD_VECTOR);
619 return 1;
620 }
621 /* fall through */
622 case 6:
623 *val = vcpu->arch.dr6;
624 break;
625 case 5:
626 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) {
627 kvm_queue_exception(vcpu, UD_VECTOR);
628 return 1;
629 }
630 /* fall through */
631 default: /* 7 */
632 *val = vcpu->arch.dr7;
633 break;
634 }
635
636 return 0;
637 }
638 EXPORT_SYMBOL_GPL(kvm_get_dr);
639
640 static inline u32 bit(int bitno)
641 {
642 return 1 << (bitno & 31);
643 }
644
645 /*
646 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
647 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
648 *
649 * This list is modified at module load time to reflect the
650 * capabilities of the host cpu. This capabilities test skips MSRs that are
651 * kvm-specific. Those are put in the beginning of the list.
652 */
653
654 #define KVM_SAVE_MSRS_BEGIN 5
655 static u32 msrs_to_save[] = {
656 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
657 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
658 HV_X64_MSR_APIC_ASSIST_PAGE,
659 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
660 MSR_K6_STAR,
661 #ifdef CONFIG_X86_64
662 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
663 #endif
664 MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
665 };
666
667 static unsigned num_msrs_to_save;
668
669 static u32 emulated_msrs[] = {
670 MSR_IA32_MISC_ENABLE,
671 };
672
673 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
674 {
675 if (efer & efer_reserved_bits) {
676 kvm_inject_gp(vcpu, 0);
677 return;
678 }
679
680 if (is_paging(vcpu)
681 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) {
682 kvm_inject_gp(vcpu, 0);
683 return;
684 }
685
686 if (efer & EFER_FFXSR) {
687 struct kvm_cpuid_entry2 *feat;
688
689 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
690 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
691 kvm_inject_gp(vcpu, 0);
692 return;
693 }
694 }
695
696 if (efer & EFER_SVME) {
697 struct kvm_cpuid_entry2 *feat;
698
699 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
700 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
701 kvm_inject_gp(vcpu, 0);
702 return;
703 }
704 }
705
706 kvm_x86_ops->set_efer(vcpu, efer);
707
708 efer &= ~EFER_LMA;
709 efer |= vcpu->arch.efer & EFER_LMA;
710
711 vcpu->arch.efer = efer;
712
713 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
714 kvm_mmu_reset_context(vcpu);
715 }
716
717 void kvm_enable_efer_bits(u64 mask)
718 {
719 efer_reserved_bits &= ~mask;
720 }
721 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
722
723
724 /*
725 * Writes msr value into into the appropriate "register".
726 * Returns 0 on success, non-0 otherwise.
727 * Assumes vcpu_load() was already called.
728 */
729 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
730 {
731 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
732 }
733
734 /*
735 * Adapt set_msr() to msr_io()'s calling convention
736 */
737 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
738 {
739 return kvm_set_msr(vcpu, index, *data);
740 }
741
742 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
743 {
744 static int version;
745 struct pvclock_wall_clock wc;
746 struct timespec boot;
747
748 if (!wall_clock)
749 return;
750
751 version++;
752
753 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
754
755 /*
756 * The guest calculates current wall clock time by adding
757 * system time (updated by kvm_write_guest_time below) to the
758 * wall clock specified here. guest system time equals host
759 * system time for us, thus we must fill in host boot time here.
760 */
761 getboottime(&boot);
762
763 wc.sec = boot.tv_sec;
764 wc.nsec = boot.tv_nsec;
765 wc.version = version;
766
767 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
768
769 version++;
770 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
771 }
772
773 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
774 {
775 uint32_t quotient, remainder;
776
777 /* Don't try to replace with do_div(), this one calculates
778 * "(dividend << 32) / divisor" */
779 __asm__ ( "divl %4"
780 : "=a" (quotient), "=d" (remainder)
781 : "0" (0), "1" (dividend), "r" (divisor) );
782 return quotient;
783 }
784
785 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
786 {
787 uint64_t nsecs = 1000000000LL;
788 int32_t shift = 0;
789 uint64_t tps64;
790 uint32_t tps32;
791
792 tps64 = tsc_khz * 1000LL;
793 while (tps64 > nsecs*2) {
794 tps64 >>= 1;
795 shift--;
796 }
797
798 tps32 = (uint32_t)tps64;
799 while (tps32 <= (uint32_t)nsecs) {
800 tps32 <<= 1;
801 shift++;
802 }
803
804 hv_clock->tsc_shift = shift;
805 hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
806
807 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
808 __func__, tsc_khz, hv_clock->tsc_shift,
809 hv_clock->tsc_to_system_mul);
810 }
811
812 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
813
814 static void kvm_write_guest_time(struct kvm_vcpu *v)
815 {
816 struct timespec ts;
817 unsigned long flags;
818 struct kvm_vcpu_arch *vcpu = &v->arch;
819 void *shared_kaddr;
820 unsigned long this_tsc_khz;
821
822 if ((!vcpu->time_page))
823 return;
824
825 this_tsc_khz = get_cpu_var(cpu_tsc_khz);
826 if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
827 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
828 vcpu->hv_clock_tsc_khz = this_tsc_khz;
829 }
830 put_cpu_var(cpu_tsc_khz);
831
832 /* Keep irq disabled to prevent changes to the clock */
833 local_irq_save(flags);
834 kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
835 ktime_get_ts(&ts);
836 monotonic_to_bootbased(&ts);
837 local_irq_restore(flags);
838
839 /* With all the info we got, fill in the values */
840
841 vcpu->hv_clock.system_time = ts.tv_nsec +
842 (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
843
844 /*
845 * The interface expects us to write an even number signaling that the
846 * update is finished. Since the guest won't see the intermediate
847 * state, we just increase by 2 at the end.
848 */
849 vcpu->hv_clock.version += 2;
850
851 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
852
853 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
854 sizeof(vcpu->hv_clock));
855
856 kunmap_atomic(shared_kaddr, KM_USER0);
857
858 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
859 }
860
861 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
862 {
863 struct kvm_vcpu_arch *vcpu = &v->arch;
864
865 if (!vcpu->time_page)
866 return 0;
867 set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
868 return 1;
869 }
870
871 static bool msr_mtrr_valid(unsigned msr)
872 {
873 switch (msr) {
874 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
875 case MSR_MTRRfix64K_00000:
876 case MSR_MTRRfix16K_80000:
877 case MSR_MTRRfix16K_A0000:
878 case MSR_MTRRfix4K_C0000:
879 case MSR_MTRRfix4K_C8000:
880 case MSR_MTRRfix4K_D0000:
881 case MSR_MTRRfix4K_D8000:
882 case MSR_MTRRfix4K_E0000:
883 case MSR_MTRRfix4K_E8000:
884 case MSR_MTRRfix4K_F0000:
885 case MSR_MTRRfix4K_F8000:
886 case MSR_MTRRdefType:
887 case MSR_IA32_CR_PAT:
888 return true;
889 case 0x2f8:
890 return true;
891 }
892 return false;
893 }
894
895 static bool valid_pat_type(unsigned t)
896 {
897 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
898 }
899
900 static bool valid_mtrr_type(unsigned t)
901 {
902 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
903 }
904
905 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
906 {
907 int i;
908
909 if (!msr_mtrr_valid(msr))
910 return false;
911
912 if (msr == MSR_IA32_CR_PAT) {
913 for (i = 0; i < 8; i++)
914 if (!valid_pat_type((data >> (i * 8)) & 0xff))
915 return false;
916 return true;
917 } else if (msr == MSR_MTRRdefType) {
918 if (data & ~0xcff)
919 return false;
920 return valid_mtrr_type(data & 0xff);
921 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
922 for (i = 0; i < 8 ; i++)
923 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
924 return false;
925 return true;
926 }
927
928 /* variable MTRRs */
929 return valid_mtrr_type(data & 0xff);
930 }
931
932 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
933 {
934 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
935
936 if (!mtrr_valid(vcpu, msr, data))
937 return 1;
938
939 if (msr == MSR_MTRRdefType) {
940 vcpu->arch.mtrr_state.def_type = data;
941 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
942 } else if (msr == MSR_MTRRfix64K_00000)
943 p[0] = data;
944 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
945 p[1 + msr - MSR_MTRRfix16K_80000] = data;
946 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
947 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
948 else if (msr == MSR_IA32_CR_PAT)
949 vcpu->arch.pat = data;
950 else { /* Variable MTRRs */
951 int idx, is_mtrr_mask;
952 u64 *pt;
953
954 idx = (msr - 0x200) / 2;
955 is_mtrr_mask = msr - 0x200 - 2 * idx;
956 if (!is_mtrr_mask)
957 pt =
958 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
959 else
960 pt =
961 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
962 *pt = data;
963 }
964
965 kvm_mmu_reset_context(vcpu);
966 return 0;
967 }
968
969 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
970 {
971 u64 mcg_cap = vcpu->arch.mcg_cap;
972 unsigned bank_num = mcg_cap & 0xff;
973
974 switch (msr) {
975 case MSR_IA32_MCG_STATUS:
976 vcpu->arch.mcg_status = data;
977 break;
978 case MSR_IA32_MCG_CTL:
979 if (!(mcg_cap & MCG_CTL_P))
980 return 1;
981 if (data != 0 && data != ~(u64)0)
982 return -1;
983 vcpu->arch.mcg_ctl = data;
984 break;
985 default:
986 if (msr >= MSR_IA32_MC0_CTL &&
987 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
988 u32 offset = msr - MSR_IA32_MC0_CTL;
989 /* only 0 or all 1s can be written to IA32_MCi_CTL
990 * some Linux kernels though clear bit 10 in bank 4 to
991 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
992 * this to avoid an uncatched #GP in the guest
993 */
994 if ((offset & 0x3) == 0 &&
995 data != 0 && (data | (1 << 10)) != ~(u64)0)
996 return -1;
997 vcpu->arch.mce_banks[offset] = data;
998 break;
999 }
1000 return 1;
1001 }
1002 return 0;
1003 }
1004
1005 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1006 {
1007 struct kvm *kvm = vcpu->kvm;
1008 int lm = is_long_mode(vcpu);
1009 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1010 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1011 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1012 : kvm->arch.xen_hvm_config.blob_size_32;
1013 u32 page_num = data & ~PAGE_MASK;
1014 u64 page_addr = data & PAGE_MASK;
1015 u8 *page;
1016 int r;
1017
1018 r = -E2BIG;
1019 if (page_num >= blob_size)
1020 goto out;
1021 r = -ENOMEM;
1022 page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1023 if (!page)
1024 goto out;
1025 r = -EFAULT;
1026 if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1027 goto out_free;
1028 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1029 goto out_free;
1030 r = 0;
1031 out_free:
1032 kfree(page);
1033 out:
1034 return r;
1035 }
1036
1037 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1038 {
1039 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1040 }
1041
1042 static bool kvm_hv_msr_partition_wide(u32 msr)
1043 {
1044 bool r = false;
1045 switch (msr) {
1046 case HV_X64_MSR_GUEST_OS_ID:
1047 case HV_X64_MSR_HYPERCALL:
1048 r = true;
1049 break;
1050 }
1051
1052 return r;
1053 }
1054
1055 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1056 {
1057 struct kvm *kvm = vcpu->kvm;
1058
1059 switch (msr) {
1060 case HV_X64_MSR_GUEST_OS_ID:
1061 kvm->arch.hv_guest_os_id = data;
1062 /* setting guest os id to zero disables hypercall page */
1063 if (!kvm->arch.hv_guest_os_id)
1064 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1065 break;
1066 case HV_X64_MSR_HYPERCALL: {
1067 u64 gfn;
1068 unsigned long addr;
1069 u8 instructions[4];
1070
1071 /* if guest os id is not set hypercall should remain disabled */
1072 if (!kvm->arch.hv_guest_os_id)
1073 break;
1074 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1075 kvm->arch.hv_hypercall = data;
1076 break;
1077 }
1078 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1079 addr = gfn_to_hva(kvm, gfn);
1080 if (kvm_is_error_hva(addr))
1081 return 1;
1082 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1083 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1084 if (copy_to_user((void __user *)addr, instructions, 4))
1085 return 1;
1086 kvm->arch.hv_hypercall = data;
1087 break;
1088 }
1089 default:
1090 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1091 "data 0x%llx\n", msr, data);
1092 return 1;
1093 }
1094 return 0;
1095 }
1096
1097 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1098 {
1099 switch (msr) {
1100 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1101 unsigned long addr;
1102
1103 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1104 vcpu->arch.hv_vapic = data;
1105 break;
1106 }
1107 addr = gfn_to_hva(vcpu->kvm, data >>
1108 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1109 if (kvm_is_error_hva(addr))
1110 return 1;
1111 if (clear_user((void __user *)addr, PAGE_SIZE))
1112 return 1;
1113 vcpu->arch.hv_vapic = data;
1114 break;
1115 }
1116 case HV_X64_MSR_EOI:
1117 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1118 case HV_X64_MSR_ICR:
1119 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1120 case HV_X64_MSR_TPR:
1121 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1122 default:
1123 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1124 "data 0x%llx\n", msr, data);
1125 return 1;
1126 }
1127
1128 return 0;
1129 }
1130
1131 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1132 {
1133 switch (msr) {
1134 case MSR_EFER:
1135 set_efer(vcpu, data);
1136 break;
1137 case MSR_K7_HWCR:
1138 data &= ~(u64)0x40; /* ignore flush filter disable */
1139 data &= ~(u64)0x100; /* ignore ignne emulation enable */
1140 if (data != 0) {
1141 pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1142 data);
1143 return 1;
1144 }
1145 break;
1146 case MSR_FAM10H_MMIO_CONF_BASE:
1147 if (data != 0) {
1148 pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1149 "0x%llx\n", data);
1150 return 1;
1151 }
1152 break;
1153 case MSR_AMD64_NB_CFG:
1154 break;
1155 case MSR_IA32_DEBUGCTLMSR:
1156 if (!data) {
1157 /* We support the non-activated case already */
1158 break;
1159 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1160 /* Values other than LBR and BTF are vendor-specific,
1161 thus reserved and should throw a #GP */
1162 return 1;
1163 }
1164 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1165 __func__, data);
1166 break;
1167 case MSR_IA32_UCODE_REV:
1168 case MSR_IA32_UCODE_WRITE:
1169 case MSR_VM_HSAVE_PA:
1170 case MSR_AMD64_PATCH_LOADER:
1171 break;
1172 case 0x200 ... 0x2ff:
1173 return set_msr_mtrr(vcpu, msr, data);
1174 case MSR_IA32_APICBASE:
1175 kvm_set_apic_base(vcpu, data);
1176 break;
1177 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1178 return kvm_x2apic_msr_write(vcpu, msr, data);
1179 case MSR_IA32_MISC_ENABLE:
1180 vcpu->arch.ia32_misc_enable_msr = data;
1181 break;
1182 case MSR_KVM_WALL_CLOCK:
1183 vcpu->kvm->arch.wall_clock = data;
1184 kvm_write_wall_clock(vcpu->kvm, data);
1185 break;
1186 case MSR_KVM_SYSTEM_TIME: {
1187 if (vcpu->arch.time_page) {
1188 kvm_release_page_dirty(vcpu->arch.time_page);
1189 vcpu->arch.time_page = NULL;
1190 }
1191
1192 vcpu->arch.time = data;
1193
1194 /* we verify if the enable bit is set... */
1195 if (!(data & 1))
1196 break;
1197
1198 /* ...but clean it before doing the actual write */
1199 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1200
1201 vcpu->arch.time_page =
1202 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1203
1204 if (is_error_page(vcpu->arch.time_page)) {
1205 kvm_release_page_clean(vcpu->arch.time_page);
1206 vcpu->arch.time_page = NULL;
1207 }
1208
1209 kvm_request_guest_time_update(vcpu);
1210 break;
1211 }
1212 case MSR_IA32_MCG_CTL:
1213 case MSR_IA32_MCG_STATUS:
1214 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1215 return set_msr_mce(vcpu, msr, data);
1216
1217 /* Performance counters are not protected by a CPUID bit,
1218 * so we should check all of them in the generic path for the sake of
1219 * cross vendor migration.
1220 * Writing a zero into the event select MSRs disables them,
1221 * which we perfectly emulate ;-). Any other value should be at least
1222 * reported, some guests depend on them.
1223 */
1224 case MSR_P6_EVNTSEL0:
1225 case MSR_P6_EVNTSEL1:
1226 case MSR_K7_EVNTSEL0:
1227 case MSR_K7_EVNTSEL1:
1228 case MSR_K7_EVNTSEL2:
1229 case MSR_K7_EVNTSEL3:
1230 if (data != 0)
1231 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1232 "0x%x data 0x%llx\n", msr, data);
1233 break;
1234 /* at least RHEL 4 unconditionally writes to the perfctr registers,
1235 * so we ignore writes to make it happy.
1236 */
1237 case MSR_P6_PERFCTR0:
1238 case MSR_P6_PERFCTR1:
1239 case MSR_K7_PERFCTR0:
1240 case MSR_K7_PERFCTR1:
1241 case MSR_K7_PERFCTR2:
1242 case MSR_K7_PERFCTR3:
1243 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1244 "0x%x data 0x%llx\n", msr, data);
1245 break;
1246 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1247 if (kvm_hv_msr_partition_wide(msr)) {
1248 int r;
1249 mutex_lock(&vcpu->kvm->lock);
1250 r = set_msr_hyperv_pw(vcpu, msr, data);
1251 mutex_unlock(&vcpu->kvm->lock);
1252 return r;
1253 } else
1254 return set_msr_hyperv(vcpu, msr, data);
1255 break;
1256 default:
1257 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1258 return xen_hvm_config(vcpu, data);
1259 if (!ignore_msrs) {
1260 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1261 msr, data);
1262 return 1;
1263 } else {
1264 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1265 msr, data);
1266 break;
1267 }
1268 }
1269 return 0;
1270 }
1271 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1272
1273
1274 /*
1275 * Reads an msr value (of 'msr_index') into 'pdata'.
1276 * Returns 0 on success, non-0 otherwise.
1277 * Assumes vcpu_load() was already called.
1278 */
1279 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1280 {
1281 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1282 }
1283
1284 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1285 {
1286 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1287
1288 if (!msr_mtrr_valid(msr))
1289 return 1;
1290
1291 if (msr == MSR_MTRRdefType)
1292 *pdata = vcpu->arch.mtrr_state.def_type +
1293 (vcpu->arch.mtrr_state.enabled << 10);
1294 else if (msr == MSR_MTRRfix64K_00000)
1295 *pdata = p[0];
1296 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1297 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1298 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1299 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1300 else if (msr == MSR_IA32_CR_PAT)
1301 *pdata = vcpu->arch.pat;
1302 else { /* Variable MTRRs */
1303 int idx, is_mtrr_mask;
1304 u64 *pt;
1305
1306 idx = (msr - 0x200) / 2;
1307 is_mtrr_mask = msr - 0x200 - 2 * idx;
1308 if (!is_mtrr_mask)
1309 pt =
1310 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1311 else
1312 pt =
1313 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1314 *pdata = *pt;
1315 }
1316
1317 return 0;
1318 }
1319
1320 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1321 {
1322 u64 data;
1323 u64 mcg_cap = vcpu->arch.mcg_cap;
1324 unsigned bank_num = mcg_cap & 0xff;
1325
1326 switch (msr) {
1327 case MSR_IA32_P5_MC_ADDR:
1328 case MSR_IA32_P5_MC_TYPE:
1329 data = 0;
1330 break;
1331 case MSR_IA32_MCG_CAP:
1332 data = vcpu->arch.mcg_cap;
1333 break;
1334 case MSR_IA32_MCG_CTL:
1335 if (!(mcg_cap & MCG_CTL_P))
1336 return 1;
1337 data = vcpu->arch.mcg_ctl;
1338 break;
1339 case MSR_IA32_MCG_STATUS:
1340 data = vcpu->arch.mcg_status;
1341 break;
1342 default:
1343 if (msr >= MSR_IA32_MC0_CTL &&
1344 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1345 u32 offset = msr - MSR_IA32_MC0_CTL;
1346 data = vcpu->arch.mce_banks[offset];
1347 break;
1348 }
1349 return 1;
1350 }
1351 *pdata = data;
1352 return 0;
1353 }
1354
1355 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1356 {
1357 u64 data = 0;
1358 struct kvm *kvm = vcpu->kvm;
1359
1360 switch (msr) {
1361 case HV_X64_MSR_GUEST_OS_ID:
1362 data = kvm->arch.hv_guest_os_id;
1363 break;
1364 case HV_X64_MSR_HYPERCALL:
1365 data = kvm->arch.hv_hypercall;
1366 break;
1367 default:
1368 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1369 return 1;
1370 }
1371
1372 *pdata = data;
1373 return 0;
1374 }
1375
1376 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1377 {
1378 u64 data = 0;
1379
1380 switch (msr) {
1381 case HV_X64_MSR_VP_INDEX: {
1382 int r;
1383 struct kvm_vcpu *v;
1384 kvm_for_each_vcpu(r, v, vcpu->kvm)
1385 if (v == vcpu)
1386 data = r;
1387 break;
1388 }
1389 case HV_X64_MSR_EOI:
1390 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1391 case HV_X64_MSR_ICR:
1392 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1393 case HV_X64_MSR_TPR:
1394 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1395 default:
1396 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1397 return 1;
1398 }
1399 *pdata = data;
1400 return 0;
1401 }
1402
1403 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1404 {
1405 u64 data;
1406
1407 switch (msr) {
1408 case MSR_IA32_PLATFORM_ID:
1409 case MSR_IA32_UCODE_REV:
1410 case MSR_IA32_EBL_CR_POWERON:
1411 case MSR_IA32_DEBUGCTLMSR:
1412 case MSR_IA32_LASTBRANCHFROMIP:
1413 case MSR_IA32_LASTBRANCHTOIP:
1414 case MSR_IA32_LASTINTFROMIP:
1415 case MSR_IA32_LASTINTTOIP:
1416 case MSR_K8_SYSCFG:
1417 case MSR_K7_HWCR:
1418 case MSR_VM_HSAVE_PA:
1419 case MSR_P6_PERFCTR0:
1420 case MSR_P6_PERFCTR1:
1421 case MSR_P6_EVNTSEL0:
1422 case MSR_P6_EVNTSEL1:
1423 case MSR_K7_EVNTSEL0:
1424 case MSR_K7_PERFCTR0:
1425 case MSR_K8_INT_PENDING_MSG:
1426 case MSR_AMD64_NB_CFG:
1427 case MSR_FAM10H_MMIO_CONF_BASE:
1428 data = 0;
1429 break;
1430 case MSR_MTRRcap:
1431 data = 0x500 | KVM_NR_VAR_MTRR;
1432 break;
1433 case 0x200 ... 0x2ff:
1434 return get_msr_mtrr(vcpu, msr, pdata);
1435 case 0xcd: /* fsb frequency */
1436 data = 3;
1437 break;
1438 case MSR_IA32_APICBASE:
1439 data = kvm_get_apic_base(vcpu);
1440 break;
1441 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1442 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1443 break;
1444 case MSR_IA32_MISC_ENABLE:
1445 data = vcpu->arch.ia32_misc_enable_msr;
1446 break;
1447 case MSR_IA32_PERF_STATUS:
1448 /* TSC increment by tick */
1449 data = 1000ULL;
1450 /* CPU multiplier */
1451 data |= (((uint64_t)4ULL) << 40);
1452 break;
1453 case MSR_EFER:
1454 data = vcpu->arch.efer;
1455 break;
1456 case MSR_KVM_WALL_CLOCK:
1457 data = vcpu->kvm->arch.wall_clock;
1458 break;
1459 case MSR_KVM_SYSTEM_TIME:
1460 data = vcpu->arch.time;
1461 break;
1462 case MSR_IA32_P5_MC_ADDR:
1463 case MSR_IA32_P5_MC_TYPE:
1464 case MSR_IA32_MCG_CAP:
1465 case MSR_IA32_MCG_CTL:
1466 case MSR_IA32_MCG_STATUS:
1467 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1468 return get_msr_mce(vcpu, msr, pdata);
1469 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1470 if (kvm_hv_msr_partition_wide(msr)) {
1471 int r;
1472 mutex_lock(&vcpu->kvm->lock);
1473 r = get_msr_hyperv_pw(vcpu, msr, pdata);
1474 mutex_unlock(&vcpu->kvm->lock);
1475 return r;
1476 } else
1477 return get_msr_hyperv(vcpu, msr, pdata);
1478 break;
1479 default:
1480 if (!ignore_msrs) {
1481 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1482 return 1;
1483 } else {
1484 pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1485 data = 0;
1486 }
1487 break;
1488 }
1489 *pdata = data;
1490 return 0;
1491 }
1492 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1493
1494 /*
1495 * Read or write a bunch of msrs. All parameters are kernel addresses.
1496 *
1497 * @return number of msrs set successfully.
1498 */
1499 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1500 struct kvm_msr_entry *entries,
1501 int (*do_msr)(struct kvm_vcpu *vcpu,
1502 unsigned index, u64 *data))
1503 {
1504 int i, idx;
1505
1506 vcpu_load(vcpu);
1507
1508 idx = srcu_read_lock(&vcpu->kvm->srcu);
1509 for (i = 0; i < msrs->nmsrs; ++i)
1510 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1511 break;
1512 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1513
1514 vcpu_put(vcpu);
1515
1516 return i;
1517 }
1518
1519 /*
1520 * Read or write a bunch of msrs. Parameters are user addresses.
1521 *
1522 * @return number of msrs set successfully.
1523 */
1524 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1525 int (*do_msr)(struct kvm_vcpu *vcpu,
1526 unsigned index, u64 *data),
1527 int writeback)
1528 {
1529 struct kvm_msrs msrs;
1530 struct kvm_msr_entry *entries;
1531 int r, n;
1532 unsigned size;
1533
1534 r = -EFAULT;
1535 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1536 goto out;
1537
1538 r = -E2BIG;
1539 if (msrs.nmsrs >= MAX_IO_MSRS)
1540 goto out;
1541
1542 r = -ENOMEM;
1543 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1544 entries = vmalloc(size);
1545 if (!entries)
1546 goto out;
1547
1548 r = -EFAULT;
1549 if (copy_from_user(entries, user_msrs->entries, size))
1550 goto out_free;
1551
1552 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1553 if (r < 0)
1554 goto out_free;
1555
1556 r = -EFAULT;
1557 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1558 goto out_free;
1559
1560 r = n;
1561
1562 out_free:
1563 vfree(entries);
1564 out:
1565 return r;
1566 }
1567
1568 int kvm_dev_ioctl_check_extension(long ext)
1569 {
1570 int r;
1571
1572 switch (ext) {
1573 case KVM_CAP_IRQCHIP:
1574 case KVM_CAP_HLT:
1575 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1576 case KVM_CAP_SET_TSS_ADDR:
1577 case KVM_CAP_EXT_CPUID:
1578 case KVM_CAP_CLOCKSOURCE:
1579 case KVM_CAP_PIT:
1580 case KVM_CAP_NOP_IO_DELAY:
1581 case KVM_CAP_MP_STATE:
1582 case KVM_CAP_SYNC_MMU:
1583 case KVM_CAP_REINJECT_CONTROL:
1584 case KVM_CAP_IRQ_INJECT_STATUS:
1585 case KVM_CAP_ASSIGN_DEV_IRQ:
1586 case KVM_CAP_IRQFD:
1587 case KVM_CAP_IOEVENTFD:
1588 case KVM_CAP_PIT2:
1589 case KVM_CAP_PIT_STATE2:
1590 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1591 case KVM_CAP_XEN_HVM:
1592 case KVM_CAP_ADJUST_CLOCK:
1593 case KVM_CAP_VCPU_EVENTS:
1594 case KVM_CAP_HYPERV:
1595 case KVM_CAP_HYPERV_VAPIC:
1596 case KVM_CAP_HYPERV_SPIN:
1597 case KVM_CAP_PCI_SEGMENT:
1598 case KVM_CAP_DEBUGREGS:
1599 case KVM_CAP_X86_ROBUST_SINGLESTEP:
1600 r = 1;
1601 break;
1602 case KVM_CAP_COALESCED_MMIO:
1603 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1604 break;
1605 case KVM_CAP_VAPIC:
1606 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1607 break;
1608 case KVM_CAP_NR_VCPUS:
1609 r = KVM_MAX_VCPUS;
1610 break;
1611 case KVM_CAP_NR_MEMSLOTS:
1612 r = KVM_MEMORY_SLOTS;
1613 break;
1614 case KVM_CAP_PV_MMU: /* obsolete */
1615 r = 0;
1616 break;
1617 case KVM_CAP_IOMMU:
1618 r = iommu_found();
1619 break;
1620 case KVM_CAP_MCE:
1621 r = KVM_MAX_MCE_BANKS;
1622 break;
1623 default:
1624 r = 0;
1625 break;
1626 }
1627 return r;
1628
1629 }
1630
1631 long kvm_arch_dev_ioctl(struct file *filp,
1632 unsigned int ioctl, unsigned long arg)
1633 {
1634 void __user *argp = (void __user *)arg;
1635 long r;
1636
1637 switch (ioctl) {
1638 case KVM_GET_MSR_INDEX_LIST: {
1639 struct kvm_msr_list __user *user_msr_list = argp;
1640 struct kvm_msr_list msr_list;
1641 unsigned n;
1642
1643 r = -EFAULT;
1644 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1645 goto out;
1646 n = msr_list.nmsrs;
1647 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1648 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1649 goto out;
1650 r = -E2BIG;
1651 if (n < msr_list.nmsrs)
1652 goto out;
1653 r = -EFAULT;
1654 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1655 num_msrs_to_save * sizeof(u32)))
1656 goto out;
1657 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1658 &emulated_msrs,
1659 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1660 goto out;
1661 r = 0;
1662 break;
1663 }
1664 case KVM_GET_SUPPORTED_CPUID: {
1665 struct kvm_cpuid2 __user *cpuid_arg = argp;
1666 struct kvm_cpuid2 cpuid;
1667
1668 r = -EFAULT;
1669 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1670 goto out;
1671 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1672 cpuid_arg->entries);
1673 if (r)
1674 goto out;
1675
1676 r = -EFAULT;
1677 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1678 goto out;
1679 r = 0;
1680 break;
1681 }
1682 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1683 u64 mce_cap;
1684
1685 mce_cap = KVM_MCE_CAP_SUPPORTED;
1686 r = -EFAULT;
1687 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1688 goto out;
1689 r = 0;
1690 break;
1691 }
1692 default:
1693 r = -EINVAL;
1694 }
1695 out:
1696 return r;
1697 }
1698
1699 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1700 {
1701 kvm_x86_ops->vcpu_load(vcpu, cpu);
1702 if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) {
1703 unsigned long khz = cpufreq_quick_get(cpu);
1704 if (!khz)
1705 khz = tsc_khz;
1706 per_cpu(cpu_tsc_khz, cpu) = khz;
1707 }
1708 kvm_request_guest_time_update(vcpu);
1709 }
1710
1711 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1712 {
1713 kvm_put_guest_fpu(vcpu);
1714 kvm_x86_ops->vcpu_put(vcpu);
1715 }
1716
1717 static int is_efer_nx(void)
1718 {
1719 unsigned long long efer = 0;
1720
1721 rdmsrl_safe(MSR_EFER, &efer);
1722 return efer & EFER_NX;
1723 }
1724
1725 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1726 {
1727 int i;
1728 struct kvm_cpuid_entry2 *e, *entry;
1729
1730 entry = NULL;
1731 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1732 e = &vcpu->arch.cpuid_entries[i];
1733 if (e->function == 0x80000001) {
1734 entry = e;
1735 break;
1736 }
1737 }
1738 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1739 entry->edx &= ~(1 << 20);
1740 printk(KERN_INFO "kvm: guest NX capability removed\n");
1741 }
1742 }
1743
1744 /* when an old userspace process fills a new kernel module */
1745 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1746 struct kvm_cpuid *cpuid,
1747 struct kvm_cpuid_entry __user *entries)
1748 {
1749 int r, i;
1750 struct kvm_cpuid_entry *cpuid_entries;
1751
1752 r = -E2BIG;
1753 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1754 goto out;
1755 r = -ENOMEM;
1756 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1757 if (!cpuid_entries)
1758 goto out;
1759 r = -EFAULT;
1760 if (copy_from_user(cpuid_entries, entries,
1761 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1762 goto out_free;
1763 for (i = 0; i < cpuid->nent; i++) {
1764 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1765 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1766 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1767 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1768 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1769 vcpu->arch.cpuid_entries[i].index = 0;
1770 vcpu->arch.cpuid_entries[i].flags = 0;
1771 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1772 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1773 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1774 }
1775 vcpu->arch.cpuid_nent = cpuid->nent;
1776 cpuid_fix_nx_cap(vcpu);
1777 r = 0;
1778 kvm_apic_set_version(vcpu);
1779 kvm_x86_ops->cpuid_update(vcpu);
1780
1781 out_free:
1782 vfree(cpuid_entries);
1783 out:
1784 return r;
1785 }
1786
1787 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1788 struct kvm_cpuid2 *cpuid,
1789 struct kvm_cpuid_entry2 __user *entries)
1790 {
1791 int r;
1792
1793 r = -E2BIG;
1794 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1795 goto out;
1796 r = -EFAULT;
1797 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1798 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1799 goto out;
1800 vcpu->arch.cpuid_nent = cpuid->nent;
1801 kvm_apic_set_version(vcpu);
1802 kvm_x86_ops->cpuid_update(vcpu);
1803 return 0;
1804
1805 out:
1806 return r;
1807 }
1808
1809 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1810 struct kvm_cpuid2 *cpuid,
1811 struct kvm_cpuid_entry2 __user *entries)
1812 {
1813 int r;
1814
1815 r = -E2BIG;
1816 if (cpuid->nent < vcpu->arch.cpuid_nent)
1817 goto out;
1818 r = -EFAULT;
1819 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1820 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1821 goto out;
1822 return 0;
1823
1824 out:
1825 cpuid->nent = vcpu->arch.cpuid_nent;
1826 return r;
1827 }
1828
1829 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1830 u32 index)
1831 {
1832 entry->function = function;
1833 entry->index = index;
1834 cpuid_count(entry->function, entry->index,
1835 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1836 entry->flags = 0;
1837 }
1838
1839 #define F(x) bit(X86_FEATURE_##x)
1840
1841 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1842 u32 index, int *nent, int maxnent)
1843 {
1844 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
1845 #ifdef CONFIG_X86_64
1846 unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
1847 ? F(GBPAGES) : 0;
1848 unsigned f_lm = F(LM);
1849 #else
1850 unsigned f_gbpages = 0;
1851 unsigned f_lm = 0;
1852 #endif
1853 unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
1854
1855 /* cpuid 1.edx */
1856 const u32 kvm_supported_word0_x86_features =
1857 F(FPU) | F(VME) | F(DE) | F(PSE) |
1858 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1859 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
1860 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1861 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
1862 0 /* Reserved, DS, ACPI */ | F(MMX) |
1863 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
1864 0 /* HTT, TM, Reserved, PBE */;
1865 /* cpuid 0x80000001.edx */
1866 const u32 kvm_supported_word1_x86_features =
1867 F(FPU) | F(VME) | F(DE) | F(PSE) |
1868 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1869 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
1870 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1871 F(PAT) | F(PSE36) | 0 /* Reserved */ |
1872 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
1873 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
1874 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
1875 /* cpuid 1.ecx */
1876 const u32 kvm_supported_word4_x86_features =
1877 F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
1878 0 /* DS-CPL, VMX, SMX, EST */ |
1879 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1880 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
1881 0 /* Reserved, DCA */ | F(XMM4_1) |
1882 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
1883 0 /* Reserved, XSAVE, OSXSAVE */;
1884 /* cpuid 0x80000001.ecx */
1885 const u32 kvm_supported_word6_x86_features =
1886 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
1887 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
1888 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
1889 0 /* SKINIT */ | 0 /* WDT */;
1890
1891 /* all calls to cpuid_count() should be made on the same cpu */
1892 get_cpu();
1893 do_cpuid_1_ent(entry, function, index);
1894 ++*nent;
1895
1896 switch (function) {
1897 case 0:
1898 entry->eax = min(entry->eax, (u32)0xb);
1899 break;
1900 case 1:
1901 entry->edx &= kvm_supported_word0_x86_features;
1902 entry->ecx &= kvm_supported_word4_x86_features;
1903 /* we support x2apic emulation even if host does not support
1904 * it since we emulate x2apic in software */
1905 entry->ecx |= F(X2APIC);
1906 break;
1907 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1908 * may return different values. This forces us to get_cpu() before
1909 * issuing the first command, and also to emulate this annoying behavior
1910 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1911 case 2: {
1912 int t, times = entry->eax & 0xff;
1913
1914 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1915 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1916 for (t = 1; t < times && *nent < maxnent; ++t) {
1917 do_cpuid_1_ent(&entry[t], function, 0);
1918 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1919 ++*nent;
1920 }
1921 break;
1922 }
1923 /* function 4 and 0xb have additional index. */
1924 case 4: {
1925 int i, cache_type;
1926
1927 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1928 /* read more entries until cache_type is zero */
1929 for (i = 1; *nent < maxnent; ++i) {
1930 cache_type = entry[i - 1].eax & 0x1f;
1931 if (!cache_type)
1932 break;
1933 do_cpuid_1_ent(&entry[i], function, i);
1934 entry[i].flags |=
1935 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1936 ++*nent;
1937 }
1938 break;
1939 }
1940 case 0xb: {
1941 int i, level_type;
1942
1943 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1944 /* read more entries until level_type is zero */
1945 for (i = 1; *nent < maxnent; ++i) {
1946 level_type = entry[i - 1].ecx & 0xff00;
1947 if (!level_type)
1948 break;
1949 do_cpuid_1_ent(&entry[i], function, i);
1950 entry[i].flags |=
1951 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1952 ++*nent;
1953 }
1954 break;
1955 }
1956 case 0x80000000:
1957 entry->eax = min(entry->eax, 0x8000001a);
1958 break;
1959 case 0x80000001:
1960 entry->edx &= kvm_supported_word1_x86_features;
1961 entry->ecx &= kvm_supported_word6_x86_features;
1962 break;
1963 }
1964 put_cpu();
1965 }
1966
1967 #undef F
1968
1969 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1970 struct kvm_cpuid_entry2 __user *entries)
1971 {
1972 struct kvm_cpuid_entry2 *cpuid_entries;
1973 int limit, nent = 0, r = -E2BIG;
1974 u32 func;
1975
1976 if (cpuid->nent < 1)
1977 goto out;
1978 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1979 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1980 r = -ENOMEM;
1981 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1982 if (!cpuid_entries)
1983 goto out;
1984
1985 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1986 limit = cpuid_entries[0].eax;
1987 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1988 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1989 &nent, cpuid->nent);
1990 r = -E2BIG;
1991 if (nent >= cpuid->nent)
1992 goto out_free;
1993
1994 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1995 limit = cpuid_entries[nent - 1].eax;
1996 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1997 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1998 &nent, cpuid->nent);
1999 r = -E2BIG;
2000 if (nent >= cpuid->nent)
2001 goto out_free;
2002
2003 r = -EFAULT;
2004 if (copy_to_user(entries, cpuid_entries,
2005 nent * sizeof(struct kvm_cpuid_entry2)))
2006 goto out_free;
2007 cpuid->nent = nent;
2008 r = 0;
2009
2010 out_free:
2011 vfree(cpuid_entries);
2012 out:
2013 return r;
2014 }
2015
2016 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2017 struct kvm_lapic_state *s)
2018 {
2019 vcpu_load(vcpu);
2020 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2021 vcpu_put(vcpu);
2022
2023 return 0;
2024 }
2025
2026 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2027 struct kvm_lapic_state *s)
2028 {
2029 vcpu_load(vcpu);
2030 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2031 kvm_apic_post_state_restore(vcpu);
2032 update_cr8_intercept(vcpu);
2033 vcpu_put(vcpu);
2034
2035 return 0;
2036 }
2037
2038 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2039 struct kvm_interrupt *irq)
2040 {
2041 if (irq->irq < 0 || irq->irq >= 256)
2042 return -EINVAL;
2043 if (irqchip_in_kernel(vcpu->kvm))
2044 return -ENXIO;
2045 vcpu_load(vcpu);
2046
2047 kvm_queue_interrupt(vcpu, irq->irq, false);
2048
2049 vcpu_put(vcpu);
2050
2051 return 0;
2052 }
2053
2054 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2055 {
2056 vcpu_load(vcpu);
2057 kvm_inject_nmi(vcpu);
2058 vcpu_put(vcpu);
2059
2060 return 0;
2061 }
2062
2063 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2064 struct kvm_tpr_access_ctl *tac)
2065 {
2066 if (tac->flags)
2067 return -EINVAL;
2068 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2069 return 0;
2070 }
2071
2072 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2073 u64 mcg_cap)
2074 {
2075 int r;
2076 unsigned bank_num = mcg_cap & 0xff, bank;
2077
2078 r = -EINVAL;
2079 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2080 goto out;
2081 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2082 goto out;
2083 r = 0;
2084 vcpu->arch.mcg_cap = mcg_cap;
2085 /* Init IA32_MCG_CTL to all 1s */
2086 if (mcg_cap & MCG_CTL_P)
2087 vcpu->arch.mcg_ctl = ~(u64)0;
2088 /* Init IA32_MCi_CTL to all 1s */
2089 for (bank = 0; bank < bank_num; bank++)
2090 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2091 out:
2092 return r;
2093 }
2094
2095 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2096 struct kvm_x86_mce *mce)
2097 {
2098 u64 mcg_cap = vcpu->arch.mcg_cap;
2099 unsigned bank_num = mcg_cap & 0xff;
2100 u64 *banks = vcpu->arch.mce_banks;
2101
2102 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2103 return -EINVAL;
2104 /*
2105 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2106 * reporting is disabled
2107 */
2108 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2109 vcpu->arch.mcg_ctl != ~(u64)0)
2110 return 0;
2111 banks += 4 * mce->bank;
2112 /*
2113 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2114 * reporting is disabled for the bank
2115 */
2116 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2117 return 0;
2118 if (mce->status & MCI_STATUS_UC) {
2119 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2120 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2121 printk(KERN_DEBUG "kvm: set_mce: "
2122 "injects mce exception while "
2123 "previous one is in progress!\n");
2124 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
2125 return 0;
2126 }
2127 if (banks[1] & MCI_STATUS_VAL)
2128 mce->status |= MCI_STATUS_OVER;
2129 banks[2] = mce->addr;
2130 banks[3] = mce->misc;
2131 vcpu->arch.mcg_status = mce->mcg_status;
2132 banks[1] = mce->status;
2133 kvm_queue_exception(vcpu, MC_VECTOR);
2134 } else if (!(banks[1] & MCI_STATUS_VAL)
2135 || !(banks[1] & MCI_STATUS_UC)) {
2136 if (banks[1] & MCI_STATUS_VAL)
2137 mce->status |= MCI_STATUS_OVER;
2138 banks[2] = mce->addr;
2139 banks[3] = mce->misc;
2140 banks[1] = mce->status;
2141 } else
2142 banks[1] |= MCI_STATUS_OVER;
2143 return 0;
2144 }
2145
2146 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2147 struct kvm_vcpu_events *events)
2148 {
2149 vcpu_load(vcpu);
2150
2151 events->exception.injected =
2152 vcpu->arch.exception.pending &&
2153 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2154 events->exception.nr = vcpu->arch.exception.nr;
2155 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2156 events->exception.error_code = vcpu->arch.exception.error_code;
2157
2158 events->interrupt.injected =
2159 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2160 events->interrupt.nr = vcpu->arch.interrupt.nr;
2161 events->interrupt.soft = 0;
2162 events->interrupt.shadow =
2163 kvm_x86_ops->get_interrupt_shadow(vcpu,
2164 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2165
2166 events->nmi.injected = vcpu->arch.nmi_injected;
2167 events->nmi.pending = vcpu->arch.nmi_pending;
2168 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2169
2170 events->sipi_vector = vcpu->arch.sipi_vector;
2171
2172 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2173 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2174 | KVM_VCPUEVENT_VALID_SHADOW);
2175
2176 vcpu_put(vcpu);
2177 }
2178
2179 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2180 struct kvm_vcpu_events *events)
2181 {
2182 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2183 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2184 | KVM_VCPUEVENT_VALID_SHADOW))
2185 return -EINVAL;
2186
2187 vcpu_load(vcpu);
2188
2189 vcpu->arch.exception.pending = events->exception.injected;
2190 vcpu->arch.exception.nr = events->exception.nr;
2191 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2192 vcpu->arch.exception.error_code = events->exception.error_code;
2193
2194 vcpu->arch.interrupt.pending = events->interrupt.injected;
2195 vcpu->arch.interrupt.nr = events->interrupt.nr;
2196 vcpu->arch.interrupt.soft = events->interrupt.soft;
2197 if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
2198 kvm_pic_clear_isr_ack(vcpu->kvm);
2199 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2200 kvm_x86_ops->set_interrupt_shadow(vcpu,
2201 events->interrupt.shadow);
2202
2203 vcpu->arch.nmi_injected = events->nmi.injected;
2204 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2205 vcpu->arch.nmi_pending = events->nmi.pending;
2206 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2207
2208 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2209 vcpu->arch.sipi_vector = events->sipi_vector;
2210
2211 vcpu_put(vcpu);
2212
2213 return 0;
2214 }
2215
2216 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2217 struct kvm_debugregs *dbgregs)
2218 {
2219 vcpu_load(vcpu);
2220
2221 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2222 dbgregs->dr6 = vcpu->arch.dr6;
2223 dbgregs->dr7 = vcpu->arch.dr7;
2224 dbgregs->flags = 0;
2225
2226 vcpu_put(vcpu);
2227 }
2228
2229 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2230 struct kvm_debugregs *dbgregs)
2231 {
2232 if (dbgregs->flags)
2233 return -EINVAL;
2234
2235 vcpu_load(vcpu);
2236
2237 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2238 vcpu->arch.dr6 = dbgregs->dr6;
2239 vcpu->arch.dr7 = dbgregs->dr7;
2240
2241 vcpu_put(vcpu);
2242
2243 return 0;
2244 }
2245
2246 long kvm_arch_vcpu_ioctl(struct file *filp,
2247 unsigned int ioctl, unsigned long arg)
2248 {
2249 struct kvm_vcpu *vcpu = filp->private_data;
2250 void __user *argp = (void __user *)arg;
2251 int r;
2252 struct kvm_lapic_state *lapic = NULL;
2253
2254 switch (ioctl) {
2255 case KVM_GET_LAPIC: {
2256 r = -EINVAL;
2257 if (!vcpu->arch.apic)
2258 goto out;
2259 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2260
2261 r = -ENOMEM;
2262 if (!lapic)
2263 goto out;
2264 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
2265 if (r)
2266 goto out;
2267 r = -EFAULT;
2268 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
2269 goto out;
2270 r = 0;
2271 break;
2272 }
2273 case KVM_SET_LAPIC: {
2274 r = -EINVAL;
2275 if (!vcpu->arch.apic)
2276 goto out;
2277 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2278 r = -ENOMEM;
2279 if (!lapic)
2280 goto out;
2281 r = -EFAULT;
2282 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
2283 goto out;
2284 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
2285 if (r)
2286 goto out;
2287 r = 0;
2288 break;
2289 }
2290 case KVM_INTERRUPT: {
2291 struct kvm_interrupt irq;
2292
2293 r = -EFAULT;
2294 if (copy_from_user(&irq, argp, sizeof irq))
2295 goto out;
2296 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2297 if (r)
2298 goto out;
2299 r = 0;
2300 break;
2301 }
2302 case KVM_NMI: {
2303 r = kvm_vcpu_ioctl_nmi(vcpu);
2304 if (r)
2305 goto out;
2306 r = 0;
2307 break;
2308 }
2309 case KVM_SET_CPUID: {
2310 struct kvm_cpuid __user *cpuid_arg = argp;
2311 struct kvm_cpuid cpuid;
2312
2313 r = -EFAULT;
2314 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2315 goto out;
2316 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2317 if (r)
2318 goto out;
2319 break;
2320 }
2321 case KVM_SET_CPUID2: {
2322 struct kvm_cpuid2 __user *cpuid_arg = argp;
2323 struct kvm_cpuid2 cpuid;
2324
2325 r = -EFAULT;
2326 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2327 goto out;
2328 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2329 cpuid_arg->entries);
2330 if (r)
2331 goto out;
2332 break;
2333 }
2334 case KVM_GET_CPUID2: {
2335 struct kvm_cpuid2 __user *cpuid_arg = argp;
2336 struct kvm_cpuid2 cpuid;
2337
2338 r = -EFAULT;
2339 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2340 goto out;
2341 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2342 cpuid_arg->entries);
2343 if (r)
2344 goto out;
2345 r = -EFAULT;
2346 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2347 goto out;
2348 r = 0;
2349 break;
2350 }
2351 case KVM_GET_MSRS:
2352 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2353 break;
2354 case KVM_SET_MSRS:
2355 r = msr_io(vcpu, argp, do_set_msr, 0);
2356 break;
2357 case KVM_TPR_ACCESS_REPORTING: {
2358 struct kvm_tpr_access_ctl tac;
2359
2360 r = -EFAULT;
2361 if (copy_from_user(&tac, argp, sizeof tac))
2362 goto out;
2363 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2364 if (r)
2365 goto out;
2366 r = -EFAULT;
2367 if (copy_to_user(argp, &tac, sizeof tac))
2368 goto out;
2369 r = 0;
2370 break;
2371 };
2372 case KVM_SET_VAPIC_ADDR: {
2373 struct kvm_vapic_addr va;
2374
2375 r = -EINVAL;
2376 if (!irqchip_in_kernel(vcpu->kvm))
2377 goto out;
2378 r = -EFAULT;
2379 if (copy_from_user(&va, argp, sizeof va))
2380 goto out;
2381 r = 0;
2382 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2383 break;
2384 }
2385 case KVM_X86_SETUP_MCE: {
2386 u64 mcg_cap;
2387
2388 r = -EFAULT;
2389 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2390 goto out;
2391 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2392 break;
2393 }
2394 case KVM_X86_SET_MCE: {
2395 struct kvm_x86_mce mce;
2396
2397 r = -EFAULT;
2398 if (copy_from_user(&mce, argp, sizeof mce))
2399 goto out;
2400 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2401 break;
2402 }
2403 case KVM_GET_VCPU_EVENTS: {
2404 struct kvm_vcpu_events events;
2405
2406 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2407
2408 r = -EFAULT;
2409 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2410 break;
2411 r = 0;
2412 break;
2413 }
2414 case KVM_SET_VCPU_EVENTS: {
2415 struct kvm_vcpu_events events;
2416
2417 r = -EFAULT;
2418 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2419 break;
2420
2421 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2422 break;
2423 }
2424 case KVM_GET_DEBUGREGS: {
2425 struct kvm_debugregs dbgregs;
2426
2427 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2428
2429 r = -EFAULT;
2430 if (copy_to_user(argp, &dbgregs,
2431 sizeof(struct kvm_debugregs)))
2432 break;
2433 r = 0;
2434 break;
2435 }
2436 case KVM_SET_DEBUGREGS: {
2437 struct kvm_debugregs dbgregs;
2438
2439 r = -EFAULT;
2440 if (copy_from_user(&dbgregs, argp,
2441 sizeof(struct kvm_debugregs)))
2442 break;
2443
2444 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2445 break;
2446 }
2447 default:
2448 r = -EINVAL;
2449 }
2450 out:
2451 kfree(lapic);
2452 return r;
2453 }
2454
2455 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2456 {
2457 int ret;
2458
2459 if (addr > (unsigned int)(-3 * PAGE_SIZE))
2460 return -1;
2461 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2462 return ret;
2463 }
2464
2465 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2466 u64 ident_addr)
2467 {
2468 kvm->arch.ept_identity_map_addr = ident_addr;
2469 return 0;
2470 }
2471
2472 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2473 u32 kvm_nr_mmu_pages)
2474 {
2475 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2476 return -EINVAL;
2477
2478 mutex_lock(&kvm->slots_lock);
2479 spin_lock(&kvm->mmu_lock);
2480
2481 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2482 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2483
2484 spin_unlock(&kvm->mmu_lock);
2485 mutex_unlock(&kvm->slots_lock);
2486 return 0;
2487 }
2488
2489 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2490 {
2491 return kvm->arch.n_alloc_mmu_pages;
2492 }
2493
2494 gfn_t unalias_gfn_instantiation(struct kvm *kvm, gfn_t gfn)
2495 {
2496 int i;
2497 struct kvm_mem_alias *alias;
2498 struct kvm_mem_aliases *aliases;
2499
2500 aliases = kvm_aliases(kvm);
2501
2502 for (i = 0; i < aliases->naliases; ++i) {
2503 alias = &aliases->aliases[i];
2504 if (alias->flags & KVM_ALIAS_INVALID)
2505 continue;
2506 if (gfn >= alias->base_gfn
2507 && gfn < alias->base_gfn + alias->npages)
2508 return alias->target_gfn + gfn - alias->base_gfn;
2509 }
2510 return gfn;
2511 }
2512
2513 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
2514 {
2515 int i;
2516 struct kvm_mem_alias *alias;
2517 struct kvm_mem_aliases *aliases;
2518
2519 aliases = kvm_aliases(kvm);
2520
2521 for (i = 0; i < aliases->naliases; ++i) {
2522 alias = &aliases->aliases[i];
2523 if (gfn >= alias->base_gfn
2524 && gfn < alias->base_gfn + alias->npages)
2525 return alias->target_gfn + gfn - alias->base_gfn;
2526 }
2527 return gfn;
2528 }
2529
2530 /*
2531 * Set a new alias region. Aliases map a portion of physical memory into
2532 * another portion. This is useful for memory windows, for example the PC
2533 * VGA region.
2534 */
2535 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
2536 struct kvm_memory_alias *alias)
2537 {
2538 int r, n;
2539 struct kvm_mem_alias *p;
2540 struct kvm_mem_aliases *aliases, *old_aliases;
2541
2542 r = -EINVAL;
2543 /* General sanity checks */
2544 if (alias->memory_size & (PAGE_SIZE - 1))
2545 goto out;
2546 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
2547 goto out;
2548 if (alias->slot >= KVM_ALIAS_SLOTS)
2549 goto out;
2550 if (alias->guest_phys_addr + alias->memory_size
2551 < alias->guest_phys_addr)
2552 goto out;
2553 if (alias->target_phys_addr + alias->memory_size
2554 < alias->target_phys_addr)
2555 goto out;
2556
2557 r = -ENOMEM;
2558 aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
2559 if (!aliases)
2560 goto out;
2561
2562 mutex_lock(&kvm->slots_lock);
2563
2564 /* invalidate any gfn reference in case of deletion/shrinking */
2565 memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
2566 aliases->aliases[alias->slot].flags |= KVM_ALIAS_INVALID;
2567 old_aliases = kvm->arch.aliases;
2568 rcu_assign_pointer(kvm->arch.aliases, aliases);
2569 synchronize_srcu_expedited(&kvm->srcu);
2570 kvm_mmu_zap_all(kvm);
2571 kfree(old_aliases);
2572
2573 r = -ENOMEM;
2574 aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
2575 if (!aliases)
2576 goto out_unlock;
2577
2578 memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
2579
2580 p = &aliases->aliases[alias->slot];
2581 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
2582 p->npages = alias->memory_size >> PAGE_SHIFT;
2583 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
2584 p->flags &= ~(KVM_ALIAS_INVALID);
2585
2586 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
2587 if (aliases->aliases[n - 1].npages)
2588 break;
2589 aliases->naliases = n;
2590
2591 old_aliases = kvm->arch.aliases;
2592 rcu_assign_pointer(kvm->arch.aliases, aliases);
2593 synchronize_srcu_expedited(&kvm->srcu);
2594 kfree(old_aliases);
2595 r = 0;
2596
2597 out_unlock:
2598 mutex_unlock(&kvm->slots_lock);
2599 out:
2600 return r;
2601 }
2602
2603 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2604 {
2605 int r;
2606
2607 r = 0;
2608 switch (chip->chip_id) {
2609 case KVM_IRQCHIP_PIC_MASTER:
2610 memcpy(&chip->chip.pic,
2611 &pic_irqchip(kvm)->pics[0],
2612 sizeof(struct kvm_pic_state));
2613 break;
2614 case KVM_IRQCHIP_PIC_SLAVE:
2615 memcpy(&chip->chip.pic,
2616 &pic_irqchip(kvm)->pics[1],
2617 sizeof(struct kvm_pic_state));
2618 break;
2619 case KVM_IRQCHIP_IOAPIC:
2620 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2621 break;
2622 default:
2623 r = -EINVAL;
2624 break;
2625 }
2626 return r;
2627 }
2628
2629 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2630 {
2631 int r;
2632
2633 r = 0;
2634 switch (chip->chip_id) {
2635 case KVM_IRQCHIP_PIC_MASTER:
2636 raw_spin_lock(&pic_irqchip(kvm)->lock);
2637 memcpy(&pic_irqchip(kvm)->pics[0],
2638 &chip->chip.pic,
2639 sizeof(struct kvm_pic_state));
2640 raw_spin_unlock(&pic_irqchip(kvm)->lock);
2641 break;
2642 case KVM_IRQCHIP_PIC_SLAVE:
2643 raw_spin_lock(&pic_irqchip(kvm)->lock);
2644 memcpy(&pic_irqchip(kvm)->pics[1],
2645 &chip->chip.pic,
2646 sizeof(struct kvm_pic_state));
2647 raw_spin_unlock(&pic_irqchip(kvm)->lock);
2648 break;
2649 case KVM_IRQCHIP_IOAPIC:
2650 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
2651 break;
2652 default:
2653 r = -EINVAL;
2654 break;
2655 }
2656 kvm_pic_update_irq(pic_irqchip(kvm));
2657 return r;
2658 }
2659
2660 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2661 {
2662 int r = 0;
2663
2664 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2665 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2666 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2667 return r;
2668 }
2669
2670 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2671 {
2672 int r = 0;
2673
2674 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2675 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2676 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2677 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2678 return r;
2679 }
2680
2681 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2682 {
2683 int r = 0;
2684
2685 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2686 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2687 sizeof(ps->channels));
2688 ps->flags = kvm->arch.vpit->pit_state.flags;
2689 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2690 return r;
2691 }
2692
2693 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2694 {
2695 int r = 0, start = 0;
2696 u32 prev_legacy, cur_legacy;
2697 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2698 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2699 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2700 if (!prev_legacy && cur_legacy)
2701 start = 1;
2702 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2703 sizeof(kvm->arch.vpit->pit_state.channels));
2704 kvm->arch.vpit->pit_state.flags = ps->flags;
2705 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2706 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2707 return r;
2708 }
2709
2710 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2711 struct kvm_reinject_control *control)
2712 {
2713 if (!kvm->arch.vpit)
2714 return -ENXIO;
2715 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2716 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2717 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2718 return 0;
2719 }
2720
2721 /*
2722 * Get (and clear) the dirty memory log for a memory slot.
2723 */
2724 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2725 struct kvm_dirty_log *log)
2726 {
2727 int r, i;
2728 struct kvm_memory_slot *memslot;
2729 unsigned long n;
2730 unsigned long is_dirty = 0;
2731 unsigned long *dirty_bitmap = NULL;
2732
2733 mutex_lock(&kvm->slots_lock);
2734
2735 r = -EINVAL;
2736 if (log->slot >= KVM_MEMORY_SLOTS)
2737 goto out;
2738
2739 memslot = &kvm->memslots->memslots[log->slot];
2740 r = -ENOENT;
2741 if (!memslot->dirty_bitmap)
2742 goto out;
2743
2744 n = kvm_dirty_bitmap_bytes(memslot);
2745
2746 r = -ENOMEM;
2747 dirty_bitmap = vmalloc(n);
2748 if (!dirty_bitmap)
2749 goto out;
2750 memset(dirty_bitmap, 0, n);
2751
2752 for (i = 0; !is_dirty && i < n/sizeof(long); i++)
2753 is_dirty = memslot->dirty_bitmap[i];
2754
2755 /* If nothing is dirty, don't bother messing with page tables. */
2756 if (is_dirty) {
2757 struct kvm_memslots *slots, *old_slots;
2758
2759 spin_lock(&kvm->mmu_lock);
2760 kvm_mmu_slot_remove_write_access(kvm, log->slot);
2761 spin_unlock(&kvm->mmu_lock);
2762
2763 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
2764 if (!slots)
2765 goto out_free;
2766
2767 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
2768 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
2769
2770 old_slots = kvm->memslots;
2771 rcu_assign_pointer(kvm->memslots, slots);
2772 synchronize_srcu_expedited(&kvm->srcu);
2773 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
2774 kfree(old_slots);
2775 }
2776
2777 r = 0;
2778 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
2779 r = -EFAULT;
2780 out_free:
2781 vfree(dirty_bitmap);
2782 out:
2783 mutex_unlock(&kvm->slots_lock);
2784 return r;
2785 }
2786
2787 long kvm_arch_vm_ioctl(struct file *filp,
2788 unsigned int ioctl, unsigned long arg)
2789 {
2790 struct kvm *kvm = filp->private_data;
2791 void __user *argp = (void __user *)arg;
2792 int r = -ENOTTY;
2793 /*
2794 * This union makes it completely explicit to gcc-3.x
2795 * that these two variables' stack usage should be
2796 * combined, not added together.
2797 */
2798 union {
2799 struct kvm_pit_state ps;
2800 struct kvm_pit_state2 ps2;
2801 struct kvm_memory_alias alias;
2802 struct kvm_pit_config pit_config;
2803 } u;
2804
2805 switch (ioctl) {
2806 case KVM_SET_TSS_ADDR:
2807 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
2808 if (r < 0)
2809 goto out;
2810 break;
2811 case KVM_SET_IDENTITY_MAP_ADDR: {
2812 u64 ident_addr;
2813
2814 r = -EFAULT;
2815 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
2816 goto out;
2817 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
2818 if (r < 0)
2819 goto out;
2820 break;
2821 }
2822 case KVM_SET_MEMORY_REGION: {
2823 struct kvm_memory_region kvm_mem;
2824 struct kvm_userspace_memory_region kvm_userspace_mem;
2825
2826 r = -EFAULT;
2827 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2828 goto out;
2829 kvm_userspace_mem.slot = kvm_mem.slot;
2830 kvm_userspace_mem.flags = kvm_mem.flags;
2831 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
2832 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
2833 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
2834 if (r)
2835 goto out;
2836 break;
2837 }
2838 case KVM_SET_NR_MMU_PAGES:
2839 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
2840 if (r)
2841 goto out;
2842 break;
2843 case KVM_GET_NR_MMU_PAGES:
2844 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
2845 break;
2846 case KVM_SET_MEMORY_ALIAS:
2847 r = -EFAULT;
2848 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
2849 goto out;
2850 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
2851 if (r)
2852 goto out;
2853 break;
2854 case KVM_CREATE_IRQCHIP: {
2855 struct kvm_pic *vpic;
2856
2857 mutex_lock(&kvm->lock);
2858 r = -EEXIST;
2859 if (kvm->arch.vpic)
2860 goto create_irqchip_unlock;
2861 r = -ENOMEM;
2862 vpic = kvm_create_pic(kvm);
2863 if (vpic) {
2864 r = kvm_ioapic_init(kvm);
2865 if (r) {
2866 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
2867 &vpic->dev);
2868 kfree(vpic);
2869 goto create_irqchip_unlock;
2870 }
2871 } else
2872 goto create_irqchip_unlock;
2873 smp_wmb();
2874 kvm->arch.vpic = vpic;
2875 smp_wmb();
2876 r = kvm_setup_default_irq_routing(kvm);
2877 if (r) {
2878 mutex_lock(&kvm->irq_lock);
2879 kvm_ioapic_destroy(kvm);
2880 kvm_destroy_pic(kvm);
2881 mutex_unlock(&kvm->irq_lock);
2882 }
2883 create_irqchip_unlock:
2884 mutex_unlock(&kvm->lock);
2885 break;
2886 }
2887 case KVM_CREATE_PIT:
2888 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
2889 goto create_pit;
2890 case KVM_CREATE_PIT2:
2891 r = -EFAULT;
2892 if (copy_from_user(&u.pit_config, argp,
2893 sizeof(struct kvm_pit_config)))
2894 goto out;
2895 create_pit:
2896 mutex_lock(&kvm->slots_lock);
2897 r = -EEXIST;
2898 if (kvm->arch.vpit)
2899 goto create_pit_unlock;
2900 r = -ENOMEM;
2901 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
2902 if (kvm->arch.vpit)
2903 r = 0;
2904 create_pit_unlock:
2905 mutex_unlock(&kvm->slots_lock);
2906 break;
2907 case KVM_IRQ_LINE_STATUS:
2908 case KVM_IRQ_LINE: {
2909 struct kvm_irq_level irq_event;
2910
2911 r = -EFAULT;
2912 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2913 goto out;
2914 r = -ENXIO;
2915 if (irqchip_in_kernel(kvm)) {
2916 __s32 status;
2917 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2918 irq_event.irq, irq_event.level);
2919 if (ioctl == KVM_IRQ_LINE_STATUS) {
2920 r = -EFAULT;
2921 irq_event.status = status;
2922 if (copy_to_user(argp, &irq_event,
2923 sizeof irq_event))
2924 goto out;
2925 }
2926 r = 0;
2927 }
2928 break;
2929 }
2930 case KVM_GET_IRQCHIP: {
2931 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2932 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2933
2934 r = -ENOMEM;
2935 if (!chip)
2936 goto out;
2937 r = -EFAULT;
2938 if (copy_from_user(chip, argp, sizeof *chip))
2939 goto get_irqchip_out;
2940 r = -ENXIO;
2941 if (!irqchip_in_kernel(kvm))
2942 goto get_irqchip_out;
2943 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
2944 if (r)
2945 goto get_irqchip_out;
2946 r = -EFAULT;
2947 if (copy_to_user(argp, chip, sizeof *chip))
2948 goto get_irqchip_out;
2949 r = 0;
2950 get_irqchip_out:
2951 kfree(chip);
2952 if (r)
2953 goto out;
2954 break;
2955 }
2956 case KVM_SET_IRQCHIP: {
2957 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2958 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2959
2960 r = -ENOMEM;
2961 if (!chip)
2962 goto out;
2963 r = -EFAULT;
2964 if (copy_from_user(chip, argp, sizeof *chip))
2965 goto set_irqchip_out;
2966 r = -ENXIO;
2967 if (!irqchip_in_kernel(kvm))
2968 goto set_irqchip_out;
2969 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
2970 if (r)
2971 goto set_irqchip_out;
2972 r = 0;
2973 set_irqchip_out:
2974 kfree(chip);
2975 if (r)
2976 goto out;
2977 break;
2978 }
2979 case KVM_GET_PIT: {
2980 r = -EFAULT;
2981 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
2982 goto out;
2983 r = -ENXIO;
2984 if (!kvm->arch.vpit)
2985 goto out;
2986 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
2987 if (r)
2988 goto out;
2989 r = -EFAULT;
2990 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
2991 goto out;
2992 r = 0;
2993 break;
2994 }
2995 case KVM_SET_PIT: {
2996 r = -EFAULT;
2997 if (copy_from_user(&u.ps, argp, sizeof u.ps))
2998 goto out;
2999 r = -ENXIO;
3000 if (!kvm->arch.vpit)
3001 goto out;
3002 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3003 if (r)
3004 goto out;
3005 r = 0;
3006 break;
3007 }
3008 case KVM_GET_PIT2: {
3009 r = -ENXIO;
3010 if (!kvm->arch.vpit)
3011 goto out;
3012 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3013 if (r)
3014 goto out;
3015 r = -EFAULT;
3016 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3017 goto out;
3018 r = 0;
3019 break;
3020 }
3021 case KVM_SET_PIT2: {
3022 r = -EFAULT;
3023 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3024 goto out;
3025 r = -ENXIO;
3026 if (!kvm->arch.vpit)
3027 goto out;
3028 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3029 if (r)
3030 goto out;
3031 r = 0;
3032 break;
3033 }
3034 case KVM_REINJECT_CONTROL: {
3035 struct kvm_reinject_control control;
3036 r = -EFAULT;
3037 if (copy_from_user(&control, argp, sizeof(control)))
3038 goto out;
3039 r = kvm_vm_ioctl_reinject(kvm, &control);
3040 if (r)
3041 goto out;
3042 r = 0;
3043 break;
3044 }
3045 case KVM_XEN_HVM_CONFIG: {
3046 r = -EFAULT;
3047 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3048 sizeof(struct kvm_xen_hvm_config)))
3049 goto out;
3050 r = -EINVAL;
3051 if (kvm->arch.xen_hvm_config.flags)
3052 goto out;
3053 r = 0;
3054 break;
3055 }
3056 case KVM_SET_CLOCK: {
3057 struct timespec now;
3058 struct kvm_clock_data user_ns;
3059 u64 now_ns;
3060 s64 delta;
3061
3062 r = -EFAULT;
3063 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3064 goto out;
3065
3066 r = -EINVAL;
3067 if (user_ns.flags)
3068 goto out;
3069
3070 r = 0;
3071 ktime_get_ts(&now);
3072 now_ns = timespec_to_ns(&now);
3073 delta = user_ns.clock - now_ns;
3074 kvm->arch.kvmclock_offset = delta;
3075 break;
3076 }
3077 case KVM_GET_CLOCK: {
3078 struct timespec now;
3079 struct kvm_clock_data user_ns;
3080 u64 now_ns;
3081
3082 ktime_get_ts(&now);
3083 now_ns = timespec_to_ns(&now);
3084 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3085 user_ns.flags = 0;
3086
3087 r = -EFAULT;
3088 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3089 goto out;
3090 r = 0;
3091 break;
3092 }
3093
3094 default:
3095 ;
3096 }
3097 out:
3098 return r;
3099 }
3100
3101 static void kvm_init_msr_list(void)
3102 {
3103 u32 dummy[2];
3104 unsigned i, j;
3105
3106 /* skip the first msrs in the list. KVM-specific */
3107 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3108 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3109 continue;
3110 if (j < i)
3111 msrs_to_save[j] = msrs_to_save[i];
3112 j++;
3113 }
3114 num_msrs_to_save = j;
3115 }
3116
3117 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3118 const void *v)
3119 {
3120 if (vcpu->arch.apic &&
3121 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
3122 return 0;
3123
3124 return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3125 }
3126
3127 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3128 {
3129 if (vcpu->arch.apic &&
3130 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
3131 return 0;
3132
3133 return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3134 }
3135
3136 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3137 struct kvm_segment *var, int seg)
3138 {
3139 kvm_x86_ops->set_segment(vcpu, var, seg);
3140 }
3141
3142 void kvm_get_segment(struct kvm_vcpu *vcpu,
3143 struct kvm_segment *var, int seg)
3144 {
3145 kvm_x86_ops->get_segment(vcpu, var, seg);
3146 }
3147
3148 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3149 {
3150 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3151 return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3152 }
3153
3154 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3155 {
3156 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3157 access |= PFERR_FETCH_MASK;
3158 return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3159 }
3160
3161 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3162 {
3163 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3164 access |= PFERR_WRITE_MASK;
3165 return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3166 }
3167
3168 /* uses this to access any guest's mapped memory without checking CPL */
3169 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3170 {
3171 return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, 0, error);
3172 }
3173
3174 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3175 struct kvm_vcpu *vcpu, u32 access,
3176 u32 *error)
3177 {
3178 void *data = val;
3179 int r = X86EMUL_CONTINUE;
3180
3181 while (bytes) {
3182 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr, access, error);
3183 unsigned offset = addr & (PAGE_SIZE-1);
3184 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3185 int ret;
3186
3187 if (gpa == UNMAPPED_GVA) {
3188 r = X86EMUL_PROPAGATE_FAULT;
3189 goto out;
3190 }
3191 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3192 if (ret < 0) {
3193 r = X86EMUL_UNHANDLEABLE;
3194 goto out;
3195 }
3196
3197 bytes -= toread;
3198 data += toread;
3199 addr += toread;
3200 }
3201 out:
3202 return r;
3203 }
3204
3205 /* used for instruction fetching */
3206 static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
3207 struct kvm_vcpu *vcpu, u32 *error)
3208 {
3209 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3210 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3211 access | PFERR_FETCH_MASK, error);
3212 }
3213
3214 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
3215 struct kvm_vcpu *vcpu, u32 *error)
3216 {
3217 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3218 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3219 error);
3220 }
3221
3222 static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
3223 struct kvm_vcpu *vcpu, u32 *error)
3224 {
3225 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
3226 }
3227
3228 static int kvm_write_guest_virt_system(gva_t addr, void *val,
3229 unsigned int bytes,
3230 struct kvm_vcpu *vcpu,
3231 u32 *error)
3232 {
3233 void *data = val;
3234 int r = X86EMUL_CONTINUE;
3235
3236 while (bytes) {
3237 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr,
3238 PFERR_WRITE_MASK, error);
3239 unsigned offset = addr & (PAGE_SIZE-1);
3240 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3241 int ret;
3242
3243 if (gpa == UNMAPPED_GVA) {
3244 r = X86EMUL_PROPAGATE_FAULT;
3245 goto out;
3246 }
3247 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3248 if (ret < 0) {
3249 r = X86EMUL_UNHANDLEABLE;
3250 goto out;
3251 }
3252
3253 bytes -= towrite;
3254 data += towrite;
3255 addr += towrite;
3256 }
3257 out:
3258 return r;
3259 }
3260
3261 static int emulator_read_emulated(unsigned long addr,
3262 void *val,
3263 unsigned int bytes,
3264 struct kvm_vcpu *vcpu)
3265 {
3266 gpa_t gpa;
3267 u32 error_code;
3268
3269 if (vcpu->mmio_read_completed) {
3270 memcpy(val, vcpu->mmio_data, bytes);
3271 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3272 vcpu->mmio_phys_addr, *(u64 *)val);
3273 vcpu->mmio_read_completed = 0;
3274 return X86EMUL_CONTINUE;
3275 }
3276
3277 gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, &error_code);
3278
3279 if (gpa == UNMAPPED_GVA) {
3280 kvm_inject_page_fault(vcpu, addr, error_code);
3281 return X86EMUL_PROPAGATE_FAULT;
3282 }
3283
3284 /* For APIC access vmexit */
3285 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3286 goto mmio;
3287
3288 if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
3289 == X86EMUL_CONTINUE)
3290 return X86EMUL_CONTINUE;
3291
3292 mmio:
3293 /*
3294 * Is this MMIO handled locally?
3295 */
3296 if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
3297 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
3298 return X86EMUL_CONTINUE;
3299 }
3300
3301 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3302
3303 vcpu->mmio_needed = 1;
3304 vcpu->mmio_phys_addr = gpa;
3305 vcpu->mmio_size = bytes;
3306 vcpu->mmio_is_write = 0;
3307
3308 return X86EMUL_UNHANDLEABLE;
3309 }
3310
3311 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3312 const void *val, int bytes)
3313 {
3314 int ret;
3315
3316 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3317 if (ret < 0)
3318 return 0;
3319 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3320 return 1;
3321 }
3322
3323 static int emulator_write_emulated_onepage(unsigned long addr,
3324 const void *val,
3325 unsigned int bytes,
3326 struct kvm_vcpu *vcpu)
3327 {
3328 gpa_t gpa;
3329 u32 error_code;
3330
3331 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, &error_code);
3332
3333 if (gpa == UNMAPPED_GVA) {
3334 kvm_inject_page_fault(vcpu, addr, error_code);
3335 return X86EMUL_PROPAGATE_FAULT;
3336 }
3337
3338 /* For APIC access vmexit */
3339 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3340 goto mmio;
3341
3342 if (emulator_write_phys(vcpu, gpa, val, bytes))
3343 return X86EMUL_CONTINUE;
3344
3345 mmio:
3346 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3347 /*
3348 * Is this MMIO handled locally?
3349 */
3350 if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
3351 return X86EMUL_CONTINUE;
3352
3353 vcpu->mmio_needed = 1;
3354 vcpu->mmio_phys_addr = gpa;
3355 vcpu->mmio_size = bytes;
3356 vcpu->mmio_is_write = 1;
3357 memcpy(vcpu->mmio_data, val, bytes);
3358
3359 return X86EMUL_CONTINUE;
3360 }
3361
3362 int emulator_write_emulated(unsigned long addr,
3363 const void *val,
3364 unsigned int bytes,
3365 struct kvm_vcpu *vcpu)
3366 {
3367 /* Crossing a page boundary? */
3368 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3369 int rc, now;
3370
3371 now = -addr & ~PAGE_MASK;
3372 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
3373 if (rc != X86EMUL_CONTINUE)
3374 return rc;
3375 addr += now;
3376 val += now;
3377 bytes -= now;
3378 }
3379 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
3380 }
3381 EXPORT_SYMBOL_GPL(emulator_write_emulated);
3382
3383 #define CMPXCHG_TYPE(t, ptr, old, new) \
3384 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3385
3386 #ifdef CONFIG_X86_64
3387 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3388 #else
3389 # define CMPXCHG64(ptr, old, new) \
3390 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3391 #endif
3392
3393 static int emulator_cmpxchg_emulated(unsigned long addr,
3394 const void *old,
3395 const void *new,
3396 unsigned int bytes,
3397 struct kvm_vcpu *vcpu)
3398 {
3399 gpa_t gpa;
3400 struct page *page;
3401 char *kaddr;
3402 bool exchanged;
3403
3404 /* guests cmpxchg8b have to be emulated atomically */
3405 if (bytes > 8 || (bytes & (bytes - 1)))
3406 goto emul_write;
3407
3408 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3409
3410 if (gpa == UNMAPPED_GVA ||
3411 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3412 goto emul_write;
3413
3414 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3415 goto emul_write;
3416
3417 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3418
3419 kaddr = kmap_atomic(page, KM_USER0);
3420 kaddr += offset_in_page(gpa);
3421 switch (bytes) {
3422 case 1:
3423 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3424 break;
3425 case 2:
3426 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3427 break;
3428 case 4:
3429 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3430 break;
3431 case 8:
3432 exchanged = CMPXCHG64(kaddr, old, new);
3433 break;
3434 default:
3435 BUG();
3436 }
3437 kunmap_atomic(kaddr, KM_USER0);
3438 kvm_release_page_dirty(page);
3439
3440 if (!exchanged)
3441 return X86EMUL_CMPXCHG_FAILED;
3442
3443 kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
3444
3445 return X86EMUL_CONTINUE;
3446
3447 emul_write:
3448 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3449
3450 return emulator_write_emulated(addr, new, bytes, vcpu);
3451 }
3452
3453 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3454 {
3455 /* TODO: String I/O for in kernel device */
3456 int r;
3457
3458 if (vcpu->arch.pio.in)
3459 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3460 vcpu->arch.pio.size, pd);
3461 else
3462 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3463 vcpu->arch.pio.port, vcpu->arch.pio.size,
3464 pd);
3465 return r;
3466 }
3467
3468
3469 static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
3470 unsigned int count, struct kvm_vcpu *vcpu)
3471 {
3472 if (vcpu->arch.pio.count)
3473 goto data_avail;
3474
3475 trace_kvm_pio(1, port, size, 1);
3476
3477 vcpu->arch.pio.port = port;
3478 vcpu->arch.pio.in = 1;
3479 vcpu->arch.pio.count = count;
3480 vcpu->arch.pio.size = size;
3481
3482 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3483 data_avail:
3484 memcpy(val, vcpu->arch.pio_data, size * count);
3485 vcpu->arch.pio.count = 0;
3486 return 1;
3487 }
3488
3489 vcpu->run->exit_reason = KVM_EXIT_IO;
3490 vcpu->run->io.direction = KVM_EXIT_IO_IN;
3491 vcpu->run->io.size = size;
3492 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3493 vcpu->run->io.count = count;
3494 vcpu->run->io.port = port;
3495
3496 return 0;
3497 }
3498
3499 static int emulator_pio_out_emulated(int size, unsigned short port,
3500 const void *val, unsigned int count,
3501 struct kvm_vcpu *vcpu)
3502 {
3503 trace_kvm_pio(0, port, size, 1);
3504
3505 vcpu->arch.pio.port = port;
3506 vcpu->arch.pio.in = 0;
3507 vcpu->arch.pio.count = count;
3508 vcpu->arch.pio.size = size;
3509
3510 memcpy(vcpu->arch.pio_data, val, size * count);
3511
3512 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3513 vcpu->arch.pio.count = 0;
3514 return 1;
3515 }
3516
3517 vcpu->run->exit_reason = KVM_EXIT_IO;
3518 vcpu->run->io.direction = KVM_EXIT_IO_OUT;
3519 vcpu->run->io.size = size;
3520 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3521 vcpu->run->io.count = count;
3522 vcpu->run->io.port = port;
3523
3524 return 0;
3525 }
3526
3527 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
3528 {
3529 return kvm_x86_ops->get_segment_base(vcpu, seg);
3530 }
3531
3532 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
3533 {
3534 kvm_mmu_invlpg(vcpu, address);
3535 return X86EMUL_CONTINUE;
3536 }
3537
3538 int emulate_clts(struct kvm_vcpu *vcpu)
3539 {
3540 kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3541 kvm_x86_ops->fpu_activate(vcpu);
3542 return X86EMUL_CONTINUE;
3543 }
3544
3545 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
3546 {
3547 return kvm_get_dr(ctxt->vcpu, dr, dest);
3548 }
3549
3550 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
3551 {
3552 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
3553
3554 return kvm_set_dr(ctxt->vcpu, dr, value & mask);
3555 }
3556
3557 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
3558 {
3559 u8 opcodes[4];
3560 unsigned long rip = kvm_rip_read(vcpu);
3561 unsigned long rip_linear;
3562
3563 if (!printk_ratelimit())
3564 return;
3565
3566 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
3567
3568 kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu, NULL);
3569
3570 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
3571 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
3572 }
3573 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
3574
3575 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3576 {
3577 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3578 }
3579
3580 static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
3581 {
3582 unsigned long value;
3583
3584 switch (cr) {
3585 case 0:
3586 value = kvm_read_cr0(vcpu);
3587 break;
3588 case 2:
3589 value = vcpu->arch.cr2;
3590 break;
3591 case 3:
3592 value = vcpu->arch.cr3;
3593 break;
3594 case 4:
3595 value = kvm_read_cr4(vcpu);
3596 break;
3597 case 8:
3598 value = kvm_get_cr8(vcpu);
3599 break;
3600 default:
3601 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3602 return 0;
3603 }
3604
3605 return value;
3606 }
3607
3608 static void emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
3609 {
3610 switch (cr) {
3611 case 0:
3612 kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
3613 break;
3614 case 2:
3615 vcpu->arch.cr2 = val;
3616 break;
3617 case 3:
3618 kvm_set_cr3(vcpu, val);
3619 break;
3620 case 4:
3621 kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
3622 break;
3623 case 8:
3624 kvm_set_cr8(vcpu, val & 0xfUL);
3625 break;
3626 default:
3627 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3628 }
3629 }
3630
3631 static int emulator_get_cpl(struct kvm_vcpu *vcpu)
3632 {
3633 return kvm_x86_ops->get_cpl(vcpu);
3634 }
3635
3636 static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
3637 {
3638 kvm_x86_ops->get_gdt(vcpu, dt);
3639 }
3640
3641 static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
3642 struct kvm_vcpu *vcpu)
3643 {
3644 struct kvm_segment var;
3645
3646 kvm_get_segment(vcpu, &var, seg);
3647
3648 if (var.unusable)
3649 return false;
3650
3651 if (var.g)
3652 var.limit >>= 12;
3653 set_desc_limit(desc, var.limit);
3654 set_desc_base(desc, (unsigned long)var.base);
3655 desc->type = var.type;
3656 desc->s = var.s;
3657 desc->dpl = var.dpl;
3658 desc->p = var.present;
3659 desc->avl = var.avl;
3660 desc->l = var.l;
3661 desc->d = var.db;
3662 desc->g = var.g;
3663
3664 return true;
3665 }
3666
3667 static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
3668 struct kvm_vcpu *vcpu)
3669 {
3670 struct kvm_segment var;
3671
3672 /* needed to preserve selector */
3673 kvm_get_segment(vcpu, &var, seg);
3674
3675 var.base = get_desc_base(desc);
3676 var.limit = get_desc_limit(desc);
3677 if (desc->g)
3678 var.limit = (var.limit << 12) | 0xfff;
3679 var.type = desc->type;
3680 var.present = desc->p;
3681 var.dpl = desc->dpl;
3682 var.db = desc->d;
3683 var.s = desc->s;
3684 var.l = desc->l;
3685 var.g = desc->g;
3686 var.avl = desc->avl;
3687 var.present = desc->p;
3688 var.unusable = !var.present;
3689 var.padding = 0;
3690
3691 kvm_set_segment(vcpu, &var, seg);
3692 return;
3693 }
3694
3695 static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
3696 {
3697 struct kvm_segment kvm_seg;
3698
3699 kvm_get_segment(vcpu, &kvm_seg, seg);
3700 return kvm_seg.selector;
3701 }
3702
3703 static void emulator_set_segment_selector(u16 sel, int seg,
3704 struct kvm_vcpu *vcpu)
3705 {
3706 struct kvm_segment kvm_seg;
3707
3708 kvm_get_segment(vcpu, &kvm_seg, seg);
3709 kvm_seg.selector = sel;
3710 kvm_set_segment(vcpu, &kvm_seg, seg);
3711 }
3712
3713 static void emulator_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
3714 {
3715 kvm_x86_ops->set_rflags(vcpu, rflags);
3716 }
3717
3718 static struct x86_emulate_ops emulate_ops = {
3719 .read_std = kvm_read_guest_virt_system,
3720 .write_std = kvm_write_guest_virt_system,
3721 .fetch = kvm_fetch_guest_virt,
3722 .read_emulated = emulator_read_emulated,
3723 .write_emulated = emulator_write_emulated,
3724 .cmpxchg_emulated = emulator_cmpxchg_emulated,
3725 .pio_in_emulated = emulator_pio_in_emulated,
3726 .pio_out_emulated = emulator_pio_out_emulated,
3727 .get_cached_descriptor = emulator_get_cached_descriptor,
3728 .set_cached_descriptor = emulator_set_cached_descriptor,
3729 .get_segment_selector = emulator_get_segment_selector,
3730 .set_segment_selector = emulator_set_segment_selector,
3731 .get_gdt = emulator_get_gdt,
3732 .get_cr = emulator_get_cr,
3733 .set_cr = emulator_set_cr,
3734 .cpl = emulator_get_cpl,
3735 .set_rflags = emulator_set_rflags,
3736 };
3737
3738 static void cache_all_regs(struct kvm_vcpu *vcpu)
3739 {
3740 kvm_register_read(vcpu, VCPU_REGS_RAX);
3741 kvm_register_read(vcpu, VCPU_REGS_RSP);
3742 kvm_register_read(vcpu, VCPU_REGS_RIP);
3743 vcpu->arch.regs_dirty = ~0;
3744 }
3745
3746 int emulate_instruction(struct kvm_vcpu *vcpu,
3747 unsigned long cr2,
3748 u16 error_code,
3749 int emulation_type)
3750 {
3751 int r, shadow_mask;
3752 struct decode_cache *c;
3753 struct kvm_run *run = vcpu->run;
3754
3755 kvm_clear_exception_queue(vcpu);
3756 vcpu->arch.mmio_fault_cr2 = cr2;
3757 /*
3758 * TODO: fix emulate.c to use guest_read/write_register
3759 * instead of direct ->regs accesses, can save hundred cycles
3760 * on Intel for instructions that don't read/change RSP, for
3761 * for example.
3762 */
3763 cache_all_regs(vcpu);
3764
3765 vcpu->mmio_is_write = 0;
3766
3767 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
3768 int cs_db, cs_l;
3769 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
3770
3771 vcpu->arch.emulate_ctxt.vcpu = vcpu;
3772 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
3773 vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
3774 vcpu->arch.emulate_ctxt.mode =
3775 (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
3776 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
3777 ? X86EMUL_MODE_VM86 : cs_l
3778 ? X86EMUL_MODE_PROT64 : cs_db
3779 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
3780
3781 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
3782 trace_kvm_emulate_insn_start(vcpu);
3783
3784 /* Only allow emulation of specific instructions on #UD
3785 * (namely VMMCALL, sysenter, sysexit, syscall)*/
3786 c = &vcpu->arch.emulate_ctxt.decode;
3787 if (emulation_type & EMULTYPE_TRAP_UD) {
3788 if (!c->twobyte)
3789 return EMULATE_FAIL;
3790 switch (c->b) {
3791 case 0x01: /* VMMCALL */
3792 if (c->modrm_mod != 3 || c->modrm_rm != 1)
3793 return EMULATE_FAIL;
3794 break;
3795 case 0x34: /* sysenter */
3796 case 0x35: /* sysexit */
3797 if (c->modrm_mod != 0 || c->modrm_rm != 0)
3798 return EMULATE_FAIL;
3799 break;
3800 case 0x05: /* syscall */
3801 if (c->modrm_mod != 0 || c->modrm_rm != 0)
3802 return EMULATE_FAIL;
3803 break;
3804 default:
3805 return EMULATE_FAIL;
3806 }
3807
3808 if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
3809 return EMULATE_FAIL;
3810 }
3811
3812 ++vcpu->stat.insn_emulation;
3813 if (r) {
3814 ++vcpu->stat.insn_emulation_fail;
3815 trace_kvm_emulate_insn_failed(vcpu);
3816 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
3817 return EMULATE_DONE;
3818 return EMULATE_FAIL;
3819 }
3820 }
3821
3822 if (emulation_type & EMULTYPE_SKIP) {
3823 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
3824 return EMULATE_DONE;
3825 }
3826
3827 restart:
3828 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
3829 shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
3830
3831 if (r == 0)
3832 kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
3833
3834 if (vcpu->arch.pio.count) {
3835 if (!vcpu->arch.pio.in)
3836 vcpu->arch.pio.count = 0;
3837 return EMULATE_DO_MMIO;
3838 }
3839
3840 if (r || vcpu->mmio_is_write) {
3841 run->exit_reason = KVM_EXIT_MMIO;
3842 run->mmio.phys_addr = vcpu->mmio_phys_addr;
3843 memcpy(run->mmio.data, vcpu->mmio_data, 8);
3844 run->mmio.len = vcpu->mmio_size;
3845 run->mmio.is_write = vcpu->mmio_is_write;
3846 }
3847
3848 if (r) {
3849 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
3850 goto done;
3851 if (!vcpu->mmio_needed) {
3852 ++vcpu->stat.insn_emulation_fail;
3853 trace_kvm_emulate_insn_failed(vcpu);
3854 kvm_report_emulation_failure(vcpu, "mmio");
3855 return EMULATE_FAIL;
3856 }
3857 return EMULATE_DO_MMIO;
3858 }
3859
3860 if (vcpu->mmio_is_write) {
3861 vcpu->mmio_needed = 0;
3862 return EMULATE_DO_MMIO;
3863 }
3864
3865 done:
3866 if (vcpu->arch.exception.pending)
3867 vcpu->arch.emulate_ctxt.restart = false;
3868
3869 if (vcpu->arch.emulate_ctxt.restart)
3870 goto restart;
3871
3872 return EMULATE_DONE;
3873 }
3874 EXPORT_SYMBOL_GPL(emulate_instruction);
3875
3876 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
3877 {
3878 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
3879 int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
3880 /* do not return to emulator after return from userspace */
3881 vcpu->arch.pio.count = 0;
3882 return ret;
3883 }
3884 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
3885
3886 static void bounce_off(void *info)
3887 {
3888 /* nothing */
3889 }
3890
3891 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
3892 void *data)
3893 {
3894 struct cpufreq_freqs *freq = data;
3895 struct kvm *kvm;
3896 struct kvm_vcpu *vcpu;
3897 int i, send_ipi = 0;
3898
3899 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
3900 return 0;
3901 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
3902 return 0;
3903 per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
3904
3905 spin_lock(&kvm_lock);
3906 list_for_each_entry(kvm, &vm_list, vm_list) {
3907 kvm_for_each_vcpu(i, vcpu, kvm) {
3908 if (vcpu->cpu != freq->cpu)
3909 continue;
3910 if (!kvm_request_guest_time_update(vcpu))
3911 continue;
3912 if (vcpu->cpu != smp_processor_id())
3913 send_ipi++;
3914 }
3915 }
3916 spin_unlock(&kvm_lock);
3917
3918 if (freq->old < freq->new && send_ipi) {
3919 /*
3920 * We upscale the frequency. Must make the guest
3921 * doesn't see old kvmclock values while running with
3922 * the new frequency, otherwise we risk the guest sees
3923 * time go backwards.
3924 *
3925 * In case we update the frequency for another cpu
3926 * (which might be in guest context) send an interrupt
3927 * to kick the cpu out of guest context. Next time
3928 * guest context is entered kvmclock will be updated,
3929 * so the guest will not see stale values.
3930 */
3931 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
3932 }
3933 return 0;
3934 }
3935
3936 static struct notifier_block kvmclock_cpufreq_notifier_block = {
3937 .notifier_call = kvmclock_cpufreq_notifier
3938 };
3939
3940 static void kvm_timer_init(void)
3941 {
3942 int cpu;
3943
3944 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
3945 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
3946 CPUFREQ_TRANSITION_NOTIFIER);
3947 for_each_online_cpu(cpu) {
3948 unsigned long khz = cpufreq_get(cpu);
3949 if (!khz)
3950 khz = tsc_khz;
3951 per_cpu(cpu_tsc_khz, cpu) = khz;
3952 }
3953 } else {
3954 for_each_possible_cpu(cpu)
3955 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
3956 }
3957 }
3958
3959 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
3960
3961 static int kvm_is_in_guest(void)
3962 {
3963 return percpu_read(current_vcpu) != NULL;
3964 }
3965
3966 static int kvm_is_user_mode(void)
3967 {
3968 int user_mode = 3;
3969 if (percpu_read(current_vcpu))
3970 user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
3971 return user_mode != 0;
3972 }
3973
3974 static unsigned long kvm_get_guest_ip(void)
3975 {
3976 unsigned long ip = 0;
3977 if (percpu_read(current_vcpu))
3978 ip = kvm_rip_read(percpu_read(current_vcpu));
3979 return ip;
3980 }
3981
3982 static struct perf_guest_info_callbacks kvm_guest_cbs = {
3983 .is_in_guest = kvm_is_in_guest,
3984 .is_user_mode = kvm_is_user_mode,
3985 .get_guest_ip = kvm_get_guest_ip,
3986 };
3987
3988 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
3989 {
3990 percpu_write(current_vcpu, vcpu);
3991 }
3992 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
3993
3994 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
3995 {
3996 percpu_write(current_vcpu, NULL);
3997 }
3998 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
3999
4000 int kvm_arch_init(void *opaque)
4001 {
4002 int r;
4003 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4004
4005 if (kvm_x86_ops) {
4006 printk(KERN_ERR "kvm: already loaded the other module\n");
4007 r = -EEXIST;
4008 goto out;
4009 }
4010
4011 if (!ops->cpu_has_kvm_support()) {
4012 printk(KERN_ERR "kvm: no hardware support\n");
4013 r = -EOPNOTSUPP;
4014 goto out;
4015 }
4016 if (ops->disabled_by_bios()) {
4017 printk(KERN_ERR "kvm: disabled by bios\n");
4018 r = -EOPNOTSUPP;
4019 goto out;
4020 }
4021
4022 r = kvm_mmu_module_init();
4023 if (r)
4024 goto out;
4025
4026 kvm_init_msr_list();
4027
4028 kvm_x86_ops = ops;
4029 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
4030 kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
4031 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4032 PT_DIRTY_MASK, PT64_NX_MASK, 0);
4033
4034 kvm_timer_init();
4035
4036 perf_register_guest_info_callbacks(&kvm_guest_cbs);
4037
4038 return 0;
4039
4040 out:
4041 return r;
4042 }
4043
4044 void kvm_arch_exit(void)
4045 {
4046 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4047
4048 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4049 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4050 CPUFREQ_TRANSITION_NOTIFIER);
4051 kvm_x86_ops = NULL;
4052 kvm_mmu_module_exit();
4053 }
4054
4055 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4056 {
4057 ++vcpu->stat.halt_exits;
4058 if (irqchip_in_kernel(vcpu->kvm)) {
4059 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4060 return 1;
4061 } else {
4062 vcpu->run->exit_reason = KVM_EXIT_HLT;
4063 return 0;
4064 }
4065 }
4066 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4067
4068 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
4069 unsigned long a1)
4070 {
4071 if (is_long_mode(vcpu))
4072 return a0;
4073 else
4074 return a0 | ((gpa_t)a1 << 32);
4075 }
4076
4077 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4078 {
4079 u64 param, ingpa, outgpa, ret;
4080 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4081 bool fast, longmode;
4082 int cs_db, cs_l;
4083
4084 /*
4085 * hypercall generates UD from non zero cpl and real mode
4086 * per HYPER-V spec
4087 */
4088 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4089 kvm_queue_exception(vcpu, UD_VECTOR);
4090 return 0;
4091 }
4092
4093 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4094 longmode = is_long_mode(vcpu) && cs_l == 1;
4095
4096 if (!longmode) {
4097 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4098 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4099 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4100 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4101 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4102 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4103 }
4104 #ifdef CONFIG_X86_64
4105 else {
4106 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4107 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4108 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4109 }
4110 #endif
4111
4112 code = param & 0xffff;
4113 fast = (param >> 16) & 0x1;
4114 rep_cnt = (param >> 32) & 0xfff;
4115 rep_idx = (param >> 48) & 0xfff;
4116
4117 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4118
4119 switch (code) {
4120 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4121 kvm_vcpu_on_spin(vcpu);
4122 break;
4123 default:
4124 res = HV_STATUS_INVALID_HYPERCALL_CODE;
4125 break;
4126 }
4127
4128 ret = res | (((u64)rep_done & 0xfff) << 32);
4129 if (longmode) {
4130 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4131 } else {
4132 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
4133 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
4134 }
4135
4136 return 1;
4137 }
4138
4139 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
4140 {
4141 unsigned long nr, a0, a1, a2, a3, ret;
4142 int r = 1;
4143
4144 if (kvm_hv_hypercall_enabled(vcpu->kvm))
4145 return kvm_hv_hypercall(vcpu);
4146
4147 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
4148 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
4149 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
4150 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
4151 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
4152
4153 trace_kvm_hypercall(nr, a0, a1, a2, a3);
4154
4155 if (!is_long_mode(vcpu)) {
4156 nr &= 0xFFFFFFFF;
4157 a0 &= 0xFFFFFFFF;
4158 a1 &= 0xFFFFFFFF;
4159 a2 &= 0xFFFFFFFF;
4160 a3 &= 0xFFFFFFFF;
4161 }
4162
4163 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
4164 ret = -KVM_EPERM;
4165 goto out;
4166 }
4167
4168 switch (nr) {
4169 case KVM_HC_VAPIC_POLL_IRQ:
4170 ret = 0;
4171 break;
4172 case KVM_HC_MMU_OP:
4173 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
4174 break;
4175 default:
4176 ret = -KVM_ENOSYS;
4177 break;
4178 }
4179 out:
4180 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4181 ++vcpu->stat.hypercalls;
4182 return r;
4183 }
4184 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
4185
4186 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
4187 {
4188 char instruction[3];
4189 unsigned long rip = kvm_rip_read(vcpu);
4190
4191 /*
4192 * Blow out the MMU to ensure that no other VCPU has an active mapping
4193 * to ensure that the updated hypercall appears atomically across all
4194 * VCPUs.
4195 */
4196 kvm_mmu_zap_all(vcpu->kvm);
4197
4198 kvm_x86_ops->patch_hypercall(vcpu, instruction);
4199
4200 return emulator_write_emulated(rip, instruction, 3, vcpu);
4201 }
4202
4203 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4204 {
4205 struct desc_ptr dt = { limit, base };
4206
4207 kvm_x86_ops->set_gdt(vcpu, &dt);
4208 }
4209
4210 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4211 {
4212 struct desc_ptr dt = { limit, base };
4213
4214 kvm_x86_ops->set_idt(vcpu, &dt);
4215 }
4216
4217 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
4218 {
4219 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
4220 int j, nent = vcpu->arch.cpuid_nent;
4221
4222 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
4223 /* when no next entry is found, the current entry[i] is reselected */
4224 for (j = i + 1; ; j = (j + 1) % nent) {
4225 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
4226 if (ej->function == e->function) {
4227 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
4228 return j;
4229 }
4230 }
4231 return 0; /* silence gcc, even though control never reaches here */
4232 }
4233
4234 /* find an entry with matching function, matching index (if needed), and that
4235 * should be read next (if it's stateful) */
4236 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
4237 u32 function, u32 index)
4238 {
4239 if (e->function != function)
4240 return 0;
4241 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
4242 return 0;
4243 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
4244 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
4245 return 0;
4246 return 1;
4247 }
4248
4249 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
4250 u32 function, u32 index)
4251 {
4252 int i;
4253 struct kvm_cpuid_entry2 *best = NULL;
4254
4255 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
4256 struct kvm_cpuid_entry2 *e;
4257
4258 e = &vcpu->arch.cpuid_entries[i];
4259 if (is_matching_cpuid_entry(e, function, index)) {
4260 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
4261 move_to_next_stateful_cpuid_entry(vcpu, i);
4262 best = e;
4263 break;
4264 }
4265 /*
4266 * Both basic or both extended?
4267 */
4268 if (((e->function ^ function) & 0x80000000) == 0)
4269 if (!best || e->function > best->function)
4270 best = e;
4271 }
4272 return best;
4273 }
4274 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
4275
4276 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
4277 {
4278 struct kvm_cpuid_entry2 *best;
4279
4280 best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
4281 if (!best || best->eax < 0x80000008)
4282 goto not_found;
4283 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
4284 if (best)
4285 return best->eax & 0xff;
4286 not_found:
4287 return 36;
4288 }
4289
4290 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
4291 {
4292 u32 function, index;
4293 struct kvm_cpuid_entry2 *best;
4294
4295 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
4296 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4297 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
4298 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
4299 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
4300 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
4301 best = kvm_find_cpuid_entry(vcpu, function, index);
4302 if (best) {
4303 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
4304 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
4305 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
4306 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
4307 }
4308 kvm_x86_ops->skip_emulated_instruction(vcpu);
4309 trace_kvm_cpuid(function,
4310 kvm_register_read(vcpu, VCPU_REGS_RAX),
4311 kvm_register_read(vcpu, VCPU_REGS_RBX),
4312 kvm_register_read(vcpu, VCPU_REGS_RCX),
4313 kvm_register_read(vcpu, VCPU_REGS_RDX));
4314 }
4315 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
4316
4317 /*
4318 * Check if userspace requested an interrupt window, and that the
4319 * interrupt window is open.
4320 *
4321 * No need to exit to userspace if we already have an interrupt queued.
4322 */
4323 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
4324 {
4325 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
4326 vcpu->run->request_interrupt_window &&
4327 kvm_arch_interrupt_allowed(vcpu));
4328 }
4329
4330 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
4331 {
4332 struct kvm_run *kvm_run = vcpu->run;
4333
4334 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
4335 kvm_run->cr8 = kvm_get_cr8(vcpu);
4336 kvm_run->apic_base = kvm_get_apic_base(vcpu);
4337 if (irqchip_in_kernel(vcpu->kvm))
4338 kvm_run->ready_for_interrupt_injection = 1;
4339 else
4340 kvm_run->ready_for_interrupt_injection =
4341 kvm_arch_interrupt_allowed(vcpu) &&
4342 !kvm_cpu_has_interrupt(vcpu) &&
4343 !kvm_event_needs_reinjection(vcpu);
4344 }
4345
4346 static void vapic_enter(struct kvm_vcpu *vcpu)
4347 {
4348 struct kvm_lapic *apic = vcpu->arch.apic;
4349 struct page *page;
4350
4351 if (!apic || !apic->vapic_addr)
4352 return;
4353
4354 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4355
4356 vcpu->arch.apic->vapic_page = page;
4357 }
4358
4359 static void vapic_exit(struct kvm_vcpu *vcpu)
4360 {
4361 struct kvm_lapic *apic = vcpu->arch.apic;
4362 int idx;
4363
4364 if (!apic || !apic->vapic_addr)
4365 return;
4366
4367 idx = srcu_read_lock(&vcpu->kvm->srcu);
4368 kvm_release_page_dirty(apic->vapic_page);
4369 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4370 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4371 }
4372
4373 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
4374 {
4375 int max_irr, tpr;
4376
4377 if (!kvm_x86_ops->update_cr8_intercept)
4378 return;
4379
4380 if (!vcpu->arch.apic)
4381 return;
4382
4383 if (!vcpu->arch.apic->vapic_addr)
4384 max_irr = kvm_lapic_find_highest_irr(vcpu);
4385 else
4386 max_irr = -1;
4387
4388 if (max_irr != -1)
4389 max_irr >>= 4;
4390
4391 tpr = kvm_lapic_get_cr8(vcpu);
4392
4393 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
4394 }
4395
4396 static void inject_pending_event(struct kvm_vcpu *vcpu)
4397 {
4398 /* try to reinject previous events if any */
4399 if (vcpu->arch.exception.pending) {
4400 trace_kvm_inj_exception(vcpu->arch.exception.nr,
4401 vcpu->arch.exception.has_error_code,
4402 vcpu->arch.exception.error_code);
4403 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
4404 vcpu->arch.exception.has_error_code,
4405 vcpu->arch.exception.error_code);
4406 return;
4407 }
4408
4409 if (vcpu->arch.nmi_injected) {
4410 kvm_x86_ops->set_nmi(vcpu);
4411 return;
4412 }
4413
4414 if (vcpu->arch.interrupt.pending) {
4415 kvm_x86_ops->set_irq(vcpu);
4416 return;
4417 }
4418
4419 /* try to inject new event if pending */
4420 if (vcpu->arch.nmi_pending) {
4421 if (kvm_x86_ops->nmi_allowed(vcpu)) {
4422 vcpu->arch.nmi_pending = false;
4423 vcpu->arch.nmi_injected = true;
4424 kvm_x86_ops->set_nmi(vcpu);
4425 }
4426 } else if (kvm_cpu_has_interrupt(vcpu)) {
4427 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
4428 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
4429 false);
4430 kvm_x86_ops->set_irq(vcpu);
4431 }
4432 }
4433 }
4434
4435 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
4436 {
4437 int r;
4438 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
4439 vcpu->run->request_interrupt_window;
4440
4441 if (vcpu->requests)
4442 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
4443 kvm_mmu_unload(vcpu);
4444
4445 r = kvm_mmu_reload(vcpu);
4446 if (unlikely(r))
4447 goto out;
4448
4449 if (vcpu->requests) {
4450 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
4451 __kvm_migrate_timers(vcpu);
4452 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
4453 kvm_write_guest_time(vcpu);
4454 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
4455 kvm_mmu_sync_roots(vcpu);
4456 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
4457 kvm_x86_ops->tlb_flush(vcpu);
4458 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
4459 &vcpu->requests)) {
4460 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
4461 r = 0;
4462 goto out;
4463 }
4464 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
4465 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4466 r = 0;
4467 goto out;
4468 }
4469 if (test_and_clear_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests)) {
4470 vcpu->fpu_active = 0;
4471 kvm_x86_ops->fpu_deactivate(vcpu);
4472 }
4473 }
4474
4475 preempt_disable();
4476
4477 kvm_x86_ops->prepare_guest_switch(vcpu);
4478 if (vcpu->fpu_active)
4479 kvm_load_guest_fpu(vcpu);
4480
4481 local_irq_disable();
4482
4483 clear_bit(KVM_REQ_KICK, &vcpu->requests);
4484 smp_mb__after_clear_bit();
4485
4486 if (vcpu->requests || need_resched() || signal_pending(current)) {
4487 set_bit(KVM_REQ_KICK, &vcpu->requests);
4488 local_irq_enable();
4489 preempt_enable();
4490 r = 1;
4491 goto out;
4492 }
4493
4494 inject_pending_event(vcpu);
4495
4496 /* enable NMI/IRQ window open exits if needed */
4497 if (vcpu->arch.nmi_pending)
4498 kvm_x86_ops->enable_nmi_window(vcpu);
4499 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
4500 kvm_x86_ops->enable_irq_window(vcpu);
4501
4502 if (kvm_lapic_enabled(vcpu)) {
4503 update_cr8_intercept(vcpu);
4504 kvm_lapic_sync_to_vapic(vcpu);
4505 }
4506
4507 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4508
4509 kvm_guest_enter();
4510
4511 if (unlikely(vcpu->arch.switch_db_regs)) {
4512 set_debugreg(0, 7);
4513 set_debugreg(vcpu->arch.eff_db[0], 0);
4514 set_debugreg(vcpu->arch.eff_db[1], 1);
4515 set_debugreg(vcpu->arch.eff_db[2], 2);
4516 set_debugreg(vcpu->arch.eff_db[3], 3);
4517 }
4518
4519 trace_kvm_entry(vcpu->vcpu_id);
4520 kvm_x86_ops->run(vcpu);
4521
4522 /*
4523 * If the guest has used debug registers, at least dr7
4524 * will be disabled while returning to the host.
4525 * If we don't have active breakpoints in the host, we don't
4526 * care about the messed up debug address registers. But if
4527 * we have some of them active, restore the old state.
4528 */
4529 if (hw_breakpoint_active())
4530 hw_breakpoint_restore();
4531
4532 set_bit(KVM_REQ_KICK, &vcpu->requests);
4533 local_irq_enable();
4534
4535 ++vcpu->stat.exits;
4536
4537 /*
4538 * We must have an instruction between local_irq_enable() and
4539 * kvm_guest_exit(), so the timer interrupt isn't delayed by
4540 * the interrupt shadow. The stat.exits increment will do nicely.
4541 * But we need to prevent reordering, hence this barrier():
4542 */
4543 barrier();
4544
4545 kvm_guest_exit();
4546
4547 preempt_enable();
4548
4549 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4550
4551 /*
4552 * Profile KVM exit RIPs:
4553 */
4554 if (unlikely(prof_on == KVM_PROFILING)) {
4555 unsigned long rip = kvm_rip_read(vcpu);
4556 profile_hit(KVM_PROFILING, (void *)rip);
4557 }
4558
4559
4560 kvm_lapic_sync_from_vapic(vcpu);
4561
4562 r = kvm_x86_ops->handle_exit(vcpu);
4563 out:
4564 return r;
4565 }
4566
4567
4568 static int __vcpu_run(struct kvm_vcpu *vcpu)
4569 {
4570 int r;
4571 struct kvm *kvm = vcpu->kvm;
4572
4573 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
4574 pr_debug("vcpu %d received sipi with vector # %x\n",
4575 vcpu->vcpu_id, vcpu->arch.sipi_vector);
4576 kvm_lapic_reset(vcpu);
4577 r = kvm_arch_vcpu_reset(vcpu);
4578 if (r)
4579 return r;
4580 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4581 }
4582
4583 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4584 vapic_enter(vcpu);
4585
4586 r = 1;
4587 while (r > 0) {
4588 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
4589 r = vcpu_enter_guest(vcpu);
4590 else {
4591 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4592 kvm_vcpu_block(vcpu);
4593 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4594 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
4595 {
4596 switch(vcpu->arch.mp_state) {
4597 case KVM_MP_STATE_HALTED:
4598 vcpu->arch.mp_state =
4599 KVM_MP_STATE_RUNNABLE;
4600 case KVM_MP_STATE_RUNNABLE:
4601 break;
4602 case KVM_MP_STATE_SIPI_RECEIVED:
4603 default:
4604 r = -EINTR;
4605 break;
4606 }
4607 }
4608 }
4609
4610 if (r <= 0)
4611 break;
4612
4613 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
4614 if (kvm_cpu_has_pending_timer(vcpu))
4615 kvm_inject_pending_timer_irqs(vcpu);
4616
4617 if (dm_request_for_irq_injection(vcpu)) {
4618 r = -EINTR;
4619 vcpu->run->exit_reason = KVM_EXIT_INTR;
4620 ++vcpu->stat.request_irq_exits;
4621 }
4622 if (signal_pending(current)) {
4623 r = -EINTR;
4624 vcpu->run->exit_reason = KVM_EXIT_INTR;
4625 ++vcpu->stat.signal_exits;
4626 }
4627 if (need_resched()) {
4628 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4629 kvm_resched(vcpu);
4630 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4631 }
4632 }
4633
4634 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4635 post_kvm_run_save(vcpu);
4636
4637 vapic_exit(vcpu);
4638
4639 return r;
4640 }
4641
4642 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
4643 {
4644 int r;
4645 sigset_t sigsaved;
4646
4647 vcpu_load(vcpu);
4648
4649 if (vcpu->sigset_active)
4650 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
4651
4652 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
4653 kvm_vcpu_block(vcpu);
4654 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
4655 r = -EAGAIN;
4656 goto out;
4657 }
4658
4659 /* re-sync apic's tpr */
4660 if (!irqchip_in_kernel(vcpu->kvm))
4661 kvm_set_cr8(vcpu, kvm_run->cr8);
4662
4663 if (vcpu->arch.pio.count || vcpu->mmio_needed ||
4664 vcpu->arch.emulate_ctxt.restart) {
4665 if (vcpu->mmio_needed) {
4666 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
4667 vcpu->mmio_read_completed = 1;
4668 vcpu->mmio_needed = 0;
4669 }
4670 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4671 r = emulate_instruction(vcpu, 0, 0, EMULTYPE_NO_DECODE);
4672 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4673 if (r == EMULATE_DO_MMIO) {
4674 r = 0;
4675 goto out;
4676 }
4677 }
4678 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
4679 kvm_register_write(vcpu, VCPU_REGS_RAX,
4680 kvm_run->hypercall.ret);
4681
4682 r = __vcpu_run(vcpu);
4683
4684 out:
4685 if (vcpu->sigset_active)
4686 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
4687
4688 vcpu_put(vcpu);
4689 return r;
4690 }
4691
4692 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4693 {
4694 vcpu_load(vcpu);
4695
4696 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4697 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4698 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4699 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4700 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4701 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4702 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4703 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4704 #ifdef CONFIG_X86_64
4705 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
4706 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
4707 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
4708 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
4709 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
4710 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
4711 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
4712 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
4713 #endif
4714
4715 regs->rip = kvm_rip_read(vcpu);
4716 regs->rflags = kvm_get_rflags(vcpu);
4717
4718 vcpu_put(vcpu);
4719
4720 return 0;
4721 }
4722
4723 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4724 {
4725 vcpu_load(vcpu);
4726
4727 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
4728 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
4729 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
4730 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
4731 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
4732 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
4733 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
4734 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
4735 #ifdef CONFIG_X86_64
4736 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
4737 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
4738 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
4739 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
4740 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
4741 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
4742 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
4743 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
4744 #endif
4745
4746 kvm_rip_write(vcpu, regs->rip);
4747 kvm_set_rflags(vcpu, regs->rflags);
4748
4749 vcpu->arch.exception.pending = false;
4750
4751 vcpu_put(vcpu);
4752
4753 return 0;
4754 }
4755
4756 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4757 {
4758 struct kvm_segment cs;
4759
4760 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
4761 *db = cs.db;
4762 *l = cs.l;
4763 }
4764 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
4765
4766 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
4767 struct kvm_sregs *sregs)
4768 {
4769 struct desc_ptr dt;
4770
4771 vcpu_load(vcpu);
4772
4773 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4774 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4775 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4776 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4777 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4778 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4779
4780 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4781 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4782
4783 kvm_x86_ops->get_idt(vcpu, &dt);
4784 sregs->idt.limit = dt.size;
4785 sregs->idt.base = dt.address;
4786 kvm_x86_ops->get_gdt(vcpu, &dt);
4787 sregs->gdt.limit = dt.size;
4788 sregs->gdt.base = dt.address;
4789
4790 sregs->cr0 = kvm_read_cr0(vcpu);
4791 sregs->cr2 = vcpu->arch.cr2;
4792 sregs->cr3 = vcpu->arch.cr3;
4793 sregs->cr4 = kvm_read_cr4(vcpu);
4794 sregs->cr8 = kvm_get_cr8(vcpu);
4795 sregs->efer = vcpu->arch.efer;
4796 sregs->apic_base = kvm_get_apic_base(vcpu);
4797
4798 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
4799
4800 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
4801 set_bit(vcpu->arch.interrupt.nr,
4802 (unsigned long *)sregs->interrupt_bitmap);
4803
4804 vcpu_put(vcpu);
4805
4806 return 0;
4807 }
4808
4809 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
4810 struct kvm_mp_state *mp_state)
4811 {
4812 vcpu_load(vcpu);
4813 mp_state->mp_state = vcpu->arch.mp_state;
4814 vcpu_put(vcpu);
4815 return 0;
4816 }
4817
4818 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
4819 struct kvm_mp_state *mp_state)
4820 {
4821 vcpu_load(vcpu);
4822 vcpu->arch.mp_state = mp_state->mp_state;
4823 vcpu_put(vcpu);
4824 return 0;
4825 }
4826
4827 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
4828 bool has_error_code, u32 error_code)
4829 {
4830 int cs_db, cs_l, ret;
4831 cache_all_regs(vcpu);
4832
4833 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4834
4835 vcpu->arch.emulate_ctxt.vcpu = vcpu;
4836 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
4837 vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
4838 vcpu->arch.emulate_ctxt.mode =
4839 (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4840 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
4841 ? X86EMUL_MODE_VM86 : cs_l
4842 ? X86EMUL_MODE_PROT64 : cs_db
4843 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
4844
4845 ret = emulator_task_switch(&vcpu->arch.emulate_ctxt, &emulate_ops,
4846 tss_selector, reason, has_error_code,
4847 error_code);
4848
4849 if (ret)
4850 return EMULATE_FAIL;
4851
4852 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4853 return EMULATE_DONE;
4854 }
4855 EXPORT_SYMBOL_GPL(kvm_task_switch);
4856
4857 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
4858 struct kvm_sregs *sregs)
4859 {
4860 int mmu_reset_needed = 0;
4861 int pending_vec, max_bits;
4862 struct desc_ptr dt;
4863
4864 vcpu_load(vcpu);
4865
4866 dt.size = sregs->idt.limit;
4867 dt.address = sregs->idt.base;
4868 kvm_x86_ops->set_idt(vcpu, &dt);
4869 dt.size = sregs->gdt.limit;
4870 dt.address = sregs->gdt.base;
4871 kvm_x86_ops->set_gdt(vcpu, &dt);
4872
4873 vcpu->arch.cr2 = sregs->cr2;
4874 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
4875 vcpu->arch.cr3 = sregs->cr3;
4876
4877 kvm_set_cr8(vcpu, sregs->cr8);
4878
4879 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
4880 kvm_x86_ops->set_efer(vcpu, sregs->efer);
4881 kvm_set_apic_base(vcpu, sregs->apic_base);
4882
4883 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
4884 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
4885 vcpu->arch.cr0 = sregs->cr0;
4886
4887 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
4888 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
4889 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
4890 load_pdptrs(vcpu, vcpu->arch.cr3);
4891 mmu_reset_needed = 1;
4892 }
4893
4894 if (mmu_reset_needed)
4895 kvm_mmu_reset_context(vcpu);
4896
4897 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
4898 pending_vec = find_first_bit(
4899 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
4900 if (pending_vec < max_bits) {
4901 kvm_queue_interrupt(vcpu, pending_vec, false);
4902 pr_debug("Set back pending irq %d\n", pending_vec);
4903 if (irqchip_in_kernel(vcpu->kvm))
4904 kvm_pic_clear_isr_ack(vcpu->kvm);
4905 }
4906
4907 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4908 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4909 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4910 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4911 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4912 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4913
4914 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4915 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4916
4917 update_cr8_intercept(vcpu);
4918
4919 /* Older userspace won't unhalt the vcpu on reset. */
4920 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
4921 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
4922 !is_protmode(vcpu))
4923 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4924
4925 vcpu_put(vcpu);
4926
4927 return 0;
4928 }
4929
4930 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
4931 struct kvm_guest_debug *dbg)
4932 {
4933 unsigned long rflags;
4934 int i, r;
4935
4936 vcpu_load(vcpu);
4937
4938 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
4939 r = -EBUSY;
4940 if (vcpu->arch.exception.pending)
4941 goto unlock_out;
4942 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
4943 kvm_queue_exception(vcpu, DB_VECTOR);
4944 else
4945 kvm_queue_exception(vcpu, BP_VECTOR);
4946 }
4947
4948 /*
4949 * Read rflags as long as potentially injected trace flags are still
4950 * filtered out.
4951 */
4952 rflags = kvm_get_rflags(vcpu);
4953
4954 vcpu->guest_debug = dbg->control;
4955 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
4956 vcpu->guest_debug = 0;
4957
4958 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4959 for (i = 0; i < KVM_NR_DB_REGS; ++i)
4960 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
4961 vcpu->arch.switch_db_regs =
4962 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
4963 } else {
4964 for (i = 0; i < KVM_NR_DB_REGS; i++)
4965 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
4966 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
4967 }
4968
4969 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
4970 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
4971 get_segment_base(vcpu, VCPU_SREG_CS);
4972
4973 /*
4974 * Trigger an rflags update that will inject or remove the trace
4975 * flags.
4976 */
4977 kvm_set_rflags(vcpu, rflags);
4978
4979 kvm_x86_ops->set_guest_debug(vcpu, dbg);
4980
4981 r = 0;
4982
4983 unlock_out:
4984 vcpu_put(vcpu);
4985
4986 return r;
4987 }
4988
4989 /*
4990 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
4991 * we have asm/x86/processor.h
4992 */
4993 struct fxsave {
4994 u16 cwd;
4995 u16 swd;
4996 u16 twd;
4997 u16 fop;
4998 u64 rip;
4999 u64 rdp;
5000 u32 mxcsr;
5001 u32 mxcsr_mask;
5002 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
5003 #ifdef CONFIG_X86_64
5004 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
5005 #else
5006 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
5007 #endif
5008 };
5009
5010 /*
5011 * Translate a guest virtual address to a guest physical address.
5012 */
5013 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5014 struct kvm_translation *tr)
5015 {
5016 unsigned long vaddr = tr->linear_address;
5017 gpa_t gpa;
5018 int idx;
5019
5020 vcpu_load(vcpu);
5021 idx = srcu_read_lock(&vcpu->kvm->srcu);
5022 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5023 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5024 tr->physical_address = gpa;
5025 tr->valid = gpa != UNMAPPED_GVA;
5026 tr->writeable = 1;
5027 tr->usermode = 0;
5028 vcpu_put(vcpu);
5029
5030 return 0;
5031 }
5032
5033 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5034 {
5035 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
5036
5037 vcpu_load(vcpu);
5038
5039 memcpy(fpu->fpr, fxsave->st_space, 128);
5040 fpu->fcw = fxsave->cwd;
5041 fpu->fsw = fxsave->swd;
5042 fpu->ftwx = fxsave->twd;
5043 fpu->last_opcode = fxsave->fop;
5044 fpu->last_ip = fxsave->rip;
5045 fpu->last_dp = fxsave->rdp;
5046 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5047
5048 vcpu_put(vcpu);
5049
5050 return 0;
5051 }
5052
5053 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5054 {
5055 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
5056
5057 vcpu_load(vcpu);
5058
5059 memcpy(fxsave->st_space, fpu->fpr, 128);
5060 fxsave->cwd = fpu->fcw;
5061 fxsave->swd = fpu->fsw;
5062 fxsave->twd = fpu->ftwx;
5063 fxsave->fop = fpu->last_opcode;
5064 fxsave->rip = fpu->last_ip;
5065 fxsave->rdp = fpu->last_dp;
5066 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5067
5068 vcpu_put(vcpu);
5069
5070 return 0;
5071 }
5072
5073 void fx_init(struct kvm_vcpu *vcpu)
5074 {
5075 unsigned after_mxcsr_mask;
5076
5077 /*
5078 * Touch the fpu the first time in non atomic context as if
5079 * this is the first fpu instruction the exception handler
5080 * will fire before the instruction returns and it'll have to
5081 * allocate ram with GFP_KERNEL.
5082 */
5083 if (!used_math())
5084 kvm_fx_save(&vcpu->arch.host_fx_image);
5085
5086 /* Initialize guest FPU by resetting ours and saving into guest's */
5087 preempt_disable();
5088 kvm_fx_save(&vcpu->arch.host_fx_image);
5089 kvm_fx_finit();
5090 kvm_fx_save(&vcpu->arch.guest_fx_image);
5091 kvm_fx_restore(&vcpu->arch.host_fx_image);
5092 preempt_enable();
5093
5094 vcpu->arch.cr0 |= X86_CR0_ET;
5095 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
5096 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
5097 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
5098 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
5099 }
5100 EXPORT_SYMBOL_GPL(fx_init);
5101
5102 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5103 {
5104 if (vcpu->guest_fpu_loaded)
5105 return;
5106
5107 vcpu->guest_fpu_loaded = 1;
5108 kvm_fx_save(&vcpu->arch.host_fx_image);
5109 kvm_fx_restore(&vcpu->arch.guest_fx_image);
5110 trace_kvm_fpu(1);
5111 }
5112
5113 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5114 {
5115 if (!vcpu->guest_fpu_loaded)
5116 return;
5117
5118 vcpu->guest_fpu_loaded = 0;
5119 kvm_fx_save(&vcpu->arch.guest_fx_image);
5120 kvm_fx_restore(&vcpu->arch.host_fx_image);
5121 ++vcpu->stat.fpu_reload;
5122 set_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests);
5123 trace_kvm_fpu(0);
5124 }
5125
5126 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5127 {
5128 if (vcpu->arch.time_page) {
5129 kvm_release_page_dirty(vcpu->arch.time_page);
5130 vcpu->arch.time_page = NULL;
5131 }
5132
5133 kvm_x86_ops->vcpu_free(vcpu);
5134 }
5135
5136 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5137 unsigned int id)
5138 {
5139 return kvm_x86_ops->vcpu_create(kvm, id);
5140 }
5141
5142 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5143 {
5144 int r;
5145
5146 /* We do fxsave: this must be aligned. */
5147 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
5148
5149 vcpu->arch.mtrr_state.have_fixed = 1;
5150 vcpu_load(vcpu);
5151 r = kvm_arch_vcpu_reset(vcpu);
5152 if (r == 0)
5153 r = kvm_mmu_setup(vcpu);
5154 vcpu_put(vcpu);
5155 if (r < 0)
5156 goto free_vcpu;
5157
5158 return 0;
5159 free_vcpu:
5160 kvm_x86_ops->vcpu_free(vcpu);
5161 return r;
5162 }
5163
5164 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5165 {
5166 vcpu_load(vcpu);
5167 kvm_mmu_unload(vcpu);
5168 vcpu_put(vcpu);
5169
5170 kvm_x86_ops->vcpu_free(vcpu);
5171 }
5172
5173 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5174 {
5175 vcpu->arch.nmi_pending = false;
5176 vcpu->arch.nmi_injected = false;
5177
5178 vcpu->arch.switch_db_regs = 0;
5179 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5180 vcpu->arch.dr6 = DR6_FIXED_1;
5181 vcpu->arch.dr7 = DR7_FIXED_1;
5182
5183 return kvm_x86_ops->vcpu_reset(vcpu);
5184 }
5185
5186 int kvm_arch_hardware_enable(void *garbage)
5187 {
5188 /*
5189 * Since this may be called from a hotplug notifcation,
5190 * we can't get the CPU frequency directly.
5191 */
5192 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5193 int cpu = raw_smp_processor_id();
5194 per_cpu(cpu_tsc_khz, cpu) = 0;
5195 }
5196
5197 kvm_shared_msr_cpu_online();
5198
5199 return kvm_x86_ops->hardware_enable(garbage);
5200 }
5201
5202 void kvm_arch_hardware_disable(void *garbage)
5203 {
5204 kvm_x86_ops->hardware_disable(garbage);
5205 drop_user_return_notifiers(garbage);
5206 }
5207
5208 int kvm_arch_hardware_setup(void)
5209 {
5210 return kvm_x86_ops->hardware_setup();
5211 }
5212
5213 void kvm_arch_hardware_unsetup(void)
5214 {
5215 kvm_x86_ops->hardware_unsetup();
5216 }
5217
5218 void kvm_arch_check_processor_compat(void *rtn)
5219 {
5220 kvm_x86_ops->check_processor_compatibility(rtn);
5221 }
5222
5223 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5224 {
5225 struct page *page;
5226 struct kvm *kvm;
5227 int r;
5228
5229 BUG_ON(vcpu->kvm == NULL);
5230 kvm = vcpu->kvm;
5231
5232 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5233 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5234 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5235 else
5236 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5237
5238 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5239 if (!page) {
5240 r = -ENOMEM;
5241 goto fail;
5242 }
5243 vcpu->arch.pio_data = page_address(page);
5244
5245 r = kvm_mmu_create(vcpu);
5246 if (r < 0)
5247 goto fail_free_pio_data;
5248
5249 if (irqchip_in_kernel(kvm)) {
5250 r = kvm_create_lapic(vcpu);
5251 if (r < 0)
5252 goto fail_mmu_destroy;
5253 }
5254
5255 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5256 GFP_KERNEL);
5257 if (!vcpu->arch.mce_banks) {
5258 r = -ENOMEM;
5259 goto fail_free_lapic;
5260 }
5261 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5262
5263 return 0;
5264 fail_free_lapic:
5265 kvm_free_lapic(vcpu);
5266 fail_mmu_destroy:
5267 kvm_mmu_destroy(vcpu);
5268 fail_free_pio_data:
5269 free_page((unsigned long)vcpu->arch.pio_data);
5270 fail:
5271 return r;
5272 }
5273
5274 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
5275 {
5276 int idx;
5277
5278 kfree(vcpu->arch.mce_banks);
5279 kvm_free_lapic(vcpu);
5280 idx = srcu_read_lock(&vcpu->kvm->srcu);
5281 kvm_mmu_destroy(vcpu);
5282 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5283 free_page((unsigned long)vcpu->arch.pio_data);
5284 }
5285
5286 struct kvm *kvm_arch_create_vm(void)
5287 {
5288 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
5289
5290 if (!kvm)
5291 return ERR_PTR(-ENOMEM);
5292
5293 kvm->arch.aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
5294 if (!kvm->arch.aliases) {
5295 kfree(kvm);
5296 return ERR_PTR(-ENOMEM);
5297 }
5298
5299 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5300 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
5301
5302 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5303 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
5304
5305 rdtscll(kvm->arch.vm_init_tsc);
5306
5307 return kvm;
5308 }
5309
5310 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
5311 {
5312 vcpu_load(vcpu);
5313 kvm_mmu_unload(vcpu);
5314 vcpu_put(vcpu);
5315 }
5316
5317 static void kvm_free_vcpus(struct kvm *kvm)
5318 {
5319 unsigned int i;
5320 struct kvm_vcpu *vcpu;
5321
5322 /*
5323 * Unpin any mmu pages first.
5324 */
5325 kvm_for_each_vcpu(i, vcpu, kvm)
5326 kvm_unload_vcpu_mmu(vcpu);
5327 kvm_for_each_vcpu(i, vcpu, kvm)
5328 kvm_arch_vcpu_free(vcpu);
5329
5330 mutex_lock(&kvm->lock);
5331 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
5332 kvm->vcpus[i] = NULL;
5333
5334 atomic_set(&kvm->online_vcpus, 0);
5335 mutex_unlock(&kvm->lock);
5336 }
5337
5338 void kvm_arch_sync_events(struct kvm *kvm)
5339 {
5340 kvm_free_all_assigned_devices(kvm);
5341 }
5342
5343 void kvm_arch_destroy_vm(struct kvm *kvm)
5344 {
5345 kvm_iommu_unmap_guest(kvm);
5346 kvm_free_pit(kvm);
5347 kfree(kvm->arch.vpic);
5348 kfree(kvm->arch.vioapic);
5349 kvm_free_vcpus(kvm);
5350 kvm_free_physmem(kvm);
5351 if (kvm->arch.apic_access_page)
5352 put_page(kvm->arch.apic_access_page);
5353 if (kvm->arch.ept_identity_pagetable)
5354 put_page(kvm->arch.ept_identity_pagetable);
5355 cleanup_srcu_struct(&kvm->srcu);
5356 kfree(kvm->arch.aliases);
5357 kfree(kvm);
5358 }
5359
5360 int kvm_arch_prepare_memory_region(struct kvm *kvm,
5361 struct kvm_memory_slot *memslot,
5362 struct kvm_memory_slot old,
5363 struct kvm_userspace_memory_region *mem,
5364 int user_alloc)
5365 {
5366 int npages = memslot->npages;
5367
5368 /*To keep backward compatibility with older userspace,
5369 *x86 needs to hanlde !user_alloc case.
5370 */
5371 if (!user_alloc) {
5372 if (npages && !old.rmap) {
5373 unsigned long userspace_addr;
5374
5375 down_write(&current->mm->mmap_sem);
5376 userspace_addr = do_mmap(NULL, 0,
5377 npages * PAGE_SIZE,
5378 PROT_READ | PROT_WRITE,
5379 MAP_PRIVATE | MAP_ANONYMOUS,
5380 0);
5381 up_write(&current->mm->mmap_sem);
5382
5383 if (IS_ERR((void *)userspace_addr))
5384 return PTR_ERR((void *)userspace_addr);
5385
5386 memslot->userspace_addr = userspace_addr;
5387 }
5388 }
5389
5390
5391 return 0;
5392 }
5393
5394 void kvm_arch_commit_memory_region(struct kvm *kvm,
5395 struct kvm_userspace_memory_region *mem,
5396 struct kvm_memory_slot old,
5397 int user_alloc)
5398 {
5399
5400 int npages = mem->memory_size >> PAGE_SHIFT;
5401
5402 if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
5403 int ret;
5404
5405 down_write(&current->mm->mmap_sem);
5406 ret = do_munmap(current->mm, old.userspace_addr,
5407 old.npages * PAGE_SIZE);
5408 up_write(&current->mm->mmap_sem);
5409 if (ret < 0)
5410 printk(KERN_WARNING
5411 "kvm_vm_ioctl_set_memory_region: "
5412 "failed to munmap memory\n");
5413 }
5414
5415 spin_lock(&kvm->mmu_lock);
5416 if (!kvm->arch.n_requested_mmu_pages) {
5417 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
5418 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
5419 }
5420
5421 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
5422 spin_unlock(&kvm->mmu_lock);
5423 }
5424
5425 void kvm_arch_flush_shadow(struct kvm *kvm)
5426 {
5427 kvm_mmu_zap_all(kvm);
5428 kvm_reload_remote_mmus(kvm);
5429 }
5430
5431 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
5432 {
5433 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
5434 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
5435 || vcpu->arch.nmi_pending ||
5436 (kvm_arch_interrupt_allowed(vcpu) &&
5437 kvm_cpu_has_interrupt(vcpu));
5438 }
5439
5440 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
5441 {
5442 int me;
5443 int cpu = vcpu->cpu;
5444
5445 if (waitqueue_active(&vcpu->wq)) {
5446 wake_up_interruptible(&vcpu->wq);
5447 ++vcpu->stat.halt_wakeup;
5448 }
5449
5450 me = get_cpu();
5451 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
5452 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
5453 smp_send_reschedule(cpu);
5454 put_cpu();
5455 }
5456
5457 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
5458 {
5459 return kvm_x86_ops->interrupt_allowed(vcpu);
5460 }
5461
5462 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
5463 {
5464 unsigned long current_rip = kvm_rip_read(vcpu) +
5465 get_segment_base(vcpu, VCPU_SREG_CS);
5466
5467 return current_rip == linear_rip;
5468 }
5469 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
5470
5471 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
5472 {
5473 unsigned long rflags;
5474
5475 rflags = kvm_x86_ops->get_rflags(vcpu);
5476 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5477 rflags &= ~X86_EFLAGS_TF;
5478 return rflags;
5479 }
5480 EXPORT_SYMBOL_GPL(kvm_get_rflags);
5481
5482 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
5483 {
5484 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
5485 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
5486 rflags |= X86_EFLAGS_TF;
5487 kvm_x86_ops->set_rflags(vcpu, rflags);
5488 }
5489 EXPORT_SYMBOL_GPL(kvm_set_rflags);
5490
5491 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
5492 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
5493 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
5494 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
5495 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
5496 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
5497 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
5498 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
5499 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
5500 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
5501 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
5502 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
This page took 0.206735 seconds and 6 git commands to generate.