Merge branch 'acpi_enable' into release
[deliverable/linux.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Amit Shah <amit.shah@qumranet.com>
14 * Ben-Ami Yassour <benami@il.ibm.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
28
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40 #include <linux/user-return-notifier.h>
41 #include <linux/srcu.h>
42 #include <linux/slab.h>
43 #include <trace/events/kvm.h>
44 #undef TRACE_INCLUDE_FILE
45 #define CREATE_TRACE_POINTS
46 #include "trace.h"
47
48 #include <asm/debugreg.h>
49 #include <asm/uaccess.h>
50 #include <asm/msr.h>
51 #include <asm/desc.h>
52 #include <asm/mtrr.h>
53 #include <asm/mce.h>
54
55 #define MAX_IO_MSRS 256
56 #define CR0_RESERVED_BITS \
57 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
58 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
59 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
60 #define CR4_RESERVED_BITS \
61 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
62 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
63 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
64 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
65
66 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
67
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
70
71 /* EFER defaults:
72 * - enable syscall per default because its emulated by KVM
73 * - enable LME and LMA per default on 64 bit KVM
74 */
75 #ifdef CONFIG_X86_64
76 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
77 #else
78 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
79 #endif
80
81 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
82 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
83
84 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
85 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
86 struct kvm_cpuid_entry2 __user *entries);
87
88 struct kvm_x86_ops *kvm_x86_ops;
89 EXPORT_SYMBOL_GPL(kvm_x86_ops);
90
91 int ignore_msrs = 0;
92 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
93
94 #define KVM_NR_SHARED_MSRS 16
95
96 struct kvm_shared_msrs_global {
97 int nr;
98 u32 msrs[KVM_NR_SHARED_MSRS];
99 };
100
101 struct kvm_shared_msrs {
102 struct user_return_notifier urn;
103 bool registered;
104 struct kvm_shared_msr_values {
105 u64 host;
106 u64 curr;
107 } values[KVM_NR_SHARED_MSRS];
108 };
109
110 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
111 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
112
113 struct kvm_stats_debugfs_item debugfs_entries[] = {
114 { "pf_fixed", VCPU_STAT(pf_fixed) },
115 { "pf_guest", VCPU_STAT(pf_guest) },
116 { "tlb_flush", VCPU_STAT(tlb_flush) },
117 { "invlpg", VCPU_STAT(invlpg) },
118 { "exits", VCPU_STAT(exits) },
119 { "io_exits", VCPU_STAT(io_exits) },
120 { "mmio_exits", VCPU_STAT(mmio_exits) },
121 { "signal_exits", VCPU_STAT(signal_exits) },
122 { "irq_window", VCPU_STAT(irq_window_exits) },
123 { "nmi_window", VCPU_STAT(nmi_window_exits) },
124 { "halt_exits", VCPU_STAT(halt_exits) },
125 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
126 { "hypercalls", VCPU_STAT(hypercalls) },
127 { "request_irq", VCPU_STAT(request_irq_exits) },
128 { "irq_exits", VCPU_STAT(irq_exits) },
129 { "host_state_reload", VCPU_STAT(host_state_reload) },
130 { "efer_reload", VCPU_STAT(efer_reload) },
131 { "fpu_reload", VCPU_STAT(fpu_reload) },
132 { "insn_emulation", VCPU_STAT(insn_emulation) },
133 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
134 { "irq_injections", VCPU_STAT(irq_injections) },
135 { "nmi_injections", VCPU_STAT(nmi_injections) },
136 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
137 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
138 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
139 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
140 { "mmu_flooded", VM_STAT(mmu_flooded) },
141 { "mmu_recycled", VM_STAT(mmu_recycled) },
142 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
143 { "mmu_unsync", VM_STAT(mmu_unsync) },
144 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
145 { "largepages", VM_STAT(lpages) },
146 { NULL }
147 };
148
149 static void kvm_on_user_return(struct user_return_notifier *urn)
150 {
151 unsigned slot;
152 struct kvm_shared_msrs *locals
153 = container_of(urn, struct kvm_shared_msrs, urn);
154 struct kvm_shared_msr_values *values;
155
156 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
157 values = &locals->values[slot];
158 if (values->host != values->curr) {
159 wrmsrl(shared_msrs_global.msrs[slot], values->host);
160 values->curr = values->host;
161 }
162 }
163 locals->registered = false;
164 user_return_notifier_unregister(urn);
165 }
166
167 static void shared_msr_update(unsigned slot, u32 msr)
168 {
169 struct kvm_shared_msrs *smsr;
170 u64 value;
171
172 smsr = &__get_cpu_var(shared_msrs);
173 /* only read, and nobody should modify it at this time,
174 * so don't need lock */
175 if (slot >= shared_msrs_global.nr) {
176 printk(KERN_ERR "kvm: invalid MSR slot!");
177 return;
178 }
179 rdmsrl_safe(msr, &value);
180 smsr->values[slot].host = value;
181 smsr->values[slot].curr = value;
182 }
183
184 void kvm_define_shared_msr(unsigned slot, u32 msr)
185 {
186 if (slot >= shared_msrs_global.nr)
187 shared_msrs_global.nr = slot + 1;
188 shared_msrs_global.msrs[slot] = msr;
189 /* we need ensured the shared_msr_global have been updated */
190 smp_wmb();
191 }
192 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
193
194 static void kvm_shared_msr_cpu_online(void)
195 {
196 unsigned i;
197
198 for (i = 0; i < shared_msrs_global.nr; ++i)
199 shared_msr_update(i, shared_msrs_global.msrs[i]);
200 }
201
202 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
203 {
204 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
205
206 if (((value ^ smsr->values[slot].curr) & mask) == 0)
207 return;
208 smsr->values[slot].curr = value;
209 wrmsrl(shared_msrs_global.msrs[slot], value);
210 if (!smsr->registered) {
211 smsr->urn.on_user_return = kvm_on_user_return;
212 user_return_notifier_register(&smsr->urn);
213 smsr->registered = true;
214 }
215 }
216 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
217
218 static void drop_user_return_notifiers(void *ignore)
219 {
220 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
221
222 if (smsr->registered)
223 kvm_on_user_return(&smsr->urn);
224 }
225
226 unsigned long segment_base(u16 selector)
227 {
228 struct descriptor_table gdt;
229 struct desc_struct *d;
230 unsigned long table_base;
231 unsigned long v;
232
233 if (selector == 0)
234 return 0;
235
236 kvm_get_gdt(&gdt);
237 table_base = gdt.base;
238
239 if (selector & 4) { /* from ldt */
240 u16 ldt_selector = kvm_read_ldt();
241
242 table_base = segment_base(ldt_selector);
243 }
244 d = (struct desc_struct *)(table_base + (selector & ~7));
245 v = get_desc_base(d);
246 #ifdef CONFIG_X86_64
247 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
248 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
249 #endif
250 return v;
251 }
252 EXPORT_SYMBOL_GPL(segment_base);
253
254 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
255 {
256 if (irqchip_in_kernel(vcpu->kvm))
257 return vcpu->arch.apic_base;
258 else
259 return vcpu->arch.apic_base;
260 }
261 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
262
263 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
264 {
265 /* TODO: reserve bits check */
266 if (irqchip_in_kernel(vcpu->kvm))
267 kvm_lapic_set_base(vcpu, data);
268 else
269 vcpu->arch.apic_base = data;
270 }
271 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
272
273 #define EXCPT_BENIGN 0
274 #define EXCPT_CONTRIBUTORY 1
275 #define EXCPT_PF 2
276
277 static int exception_class(int vector)
278 {
279 switch (vector) {
280 case PF_VECTOR:
281 return EXCPT_PF;
282 case DE_VECTOR:
283 case TS_VECTOR:
284 case NP_VECTOR:
285 case SS_VECTOR:
286 case GP_VECTOR:
287 return EXCPT_CONTRIBUTORY;
288 default:
289 break;
290 }
291 return EXCPT_BENIGN;
292 }
293
294 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
295 unsigned nr, bool has_error, u32 error_code)
296 {
297 u32 prev_nr;
298 int class1, class2;
299
300 if (!vcpu->arch.exception.pending) {
301 queue:
302 vcpu->arch.exception.pending = true;
303 vcpu->arch.exception.has_error_code = has_error;
304 vcpu->arch.exception.nr = nr;
305 vcpu->arch.exception.error_code = error_code;
306 return;
307 }
308
309 /* to check exception */
310 prev_nr = vcpu->arch.exception.nr;
311 if (prev_nr == DF_VECTOR) {
312 /* triple fault -> shutdown */
313 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
314 return;
315 }
316 class1 = exception_class(prev_nr);
317 class2 = exception_class(nr);
318 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
319 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
320 /* generate double fault per SDM Table 5-5 */
321 vcpu->arch.exception.pending = true;
322 vcpu->arch.exception.has_error_code = true;
323 vcpu->arch.exception.nr = DF_VECTOR;
324 vcpu->arch.exception.error_code = 0;
325 } else
326 /* replace previous exception with a new one in a hope
327 that instruction re-execution will regenerate lost
328 exception */
329 goto queue;
330 }
331
332 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
333 {
334 kvm_multiple_exception(vcpu, nr, false, 0);
335 }
336 EXPORT_SYMBOL_GPL(kvm_queue_exception);
337
338 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
339 u32 error_code)
340 {
341 ++vcpu->stat.pf_guest;
342 vcpu->arch.cr2 = addr;
343 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
344 }
345
346 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
347 {
348 vcpu->arch.nmi_pending = 1;
349 }
350 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
351
352 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
353 {
354 kvm_multiple_exception(vcpu, nr, true, error_code);
355 }
356 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
357
358 /*
359 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
360 * a #GP and return false.
361 */
362 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
363 {
364 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
365 return true;
366 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
367 return false;
368 }
369 EXPORT_SYMBOL_GPL(kvm_require_cpl);
370
371 /*
372 * Load the pae pdptrs. Return true is they are all valid.
373 */
374 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
375 {
376 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
377 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
378 int i;
379 int ret;
380 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
381
382 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
383 offset * sizeof(u64), sizeof(pdpte));
384 if (ret < 0) {
385 ret = 0;
386 goto out;
387 }
388 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
389 if (is_present_gpte(pdpte[i]) &&
390 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
391 ret = 0;
392 goto out;
393 }
394 }
395 ret = 1;
396
397 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
398 __set_bit(VCPU_EXREG_PDPTR,
399 (unsigned long *)&vcpu->arch.regs_avail);
400 __set_bit(VCPU_EXREG_PDPTR,
401 (unsigned long *)&vcpu->arch.regs_dirty);
402 out:
403
404 return ret;
405 }
406 EXPORT_SYMBOL_GPL(load_pdptrs);
407
408 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
409 {
410 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
411 bool changed = true;
412 int r;
413
414 if (is_long_mode(vcpu) || !is_pae(vcpu))
415 return false;
416
417 if (!test_bit(VCPU_EXREG_PDPTR,
418 (unsigned long *)&vcpu->arch.regs_avail))
419 return true;
420
421 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
422 if (r < 0)
423 goto out;
424 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
425 out:
426
427 return changed;
428 }
429
430 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
431 {
432 cr0 |= X86_CR0_ET;
433
434 #ifdef CONFIG_X86_64
435 if (cr0 & 0xffffffff00000000UL) {
436 kvm_inject_gp(vcpu, 0);
437 return;
438 }
439 #endif
440
441 cr0 &= ~CR0_RESERVED_BITS;
442
443 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
444 kvm_inject_gp(vcpu, 0);
445 return;
446 }
447
448 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
449 kvm_inject_gp(vcpu, 0);
450 return;
451 }
452
453 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
454 #ifdef CONFIG_X86_64
455 if ((vcpu->arch.efer & EFER_LME)) {
456 int cs_db, cs_l;
457
458 if (!is_pae(vcpu)) {
459 kvm_inject_gp(vcpu, 0);
460 return;
461 }
462 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
463 if (cs_l) {
464 kvm_inject_gp(vcpu, 0);
465 return;
466
467 }
468 } else
469 #endif
470 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
471 kvm_inject_gp(vcpu, 0);
472 return;
473 }
474
475 }
476
477 kvm_x86_ops->set_cr0(vcpu, cr0);
478 vcpu->arch.cr0 = cr0;
479
480 kvm_mmu_reset_context(vcpu);
481 return;
482 }
483 EXPORT_SYMBOL_GPL(kvm_set_cr0);
484
485 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
486 {
487 kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0ful) | (msw & 0x0f));
488 }
489 EXPORT_SYMBOL_GPL(kvm_lmsw);
490
491 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
492 {
493 unsigned long old_cr4 = kvm_read_cr4(vcpu);
494 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
495
496 if (cr4 & CR4_RESERVED_BITS) {
497 kvm_inject_gp(vcpu, 0);
498 return;
499 }
500
501 if (is_long_mode(vcpu)) {
502 if (!(cr4 & X86_CR4_PAE)) {
503 kvm_inject_gp(vcpu, 0);
504 return;
505 }
506 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
507 && ((cr4 ^ old_cr4) & pdptr_bits)
508 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
509 kvm_inject_gp(vcpu, 0);
510 return;
511 }
512
513 if (cr4 & X86_CR4_VMXE) {
514 kvm_inject_gp(vcpu, 0);
515 return;
516 }
517 kvm_x86_ops->set_cr4(vcpu, cr4);
518 vcpu->arch.cr4 = cr4;
519 vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
520 kvm_mmu_reset_context(vcpu);
521 }
522 EXPORT_SYMBOL_GPL(kvm_set_cr4);
523
524 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
525 {
526 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
527 kvm_mmu_sync_roots(vcpu);
528 kvm_mmu_flush_tlb(vcpu);
529 return;
530 }
531
532 if (is_long_mode(vcpu)) {
533 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
534 kvm_inject_gp(vcpu, 0);
535 return;
536 }
537 } else {
538 if (is_pae(vcpu)) {
539 if (cr3 & CR3_PAE_RESERVED_BITS) {
540 kvm_inject_gp(vcpu, 0);
541 return;
542 }
543 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
544 kvm_inject_gp(vcpu, 0);
545 return;
546 }
547 }
548 /*
549 * We don't check reserved bits in nonpae mode, because
550 * this isn't enforced, and VMware depends on this.
551 */
552 }
553
554 /*
555 * Does the new cr3 value map to physical memory? (Note, we
556 * catch an invalid cr3 even in real-mode, because it would
557 * cause trouble later on when we turn on paging anyway.)
558 *
559 * A real CPU would silently accept an invalid cr3 and would
560 * attempt to use it - with largely undefined (and often hard
561 * to debug) behavior on the guest side.
562 */
563 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
564 kvm_inject_gp(vcpu, 0);
565 else {
566 vcpu->arch.cr3 = cr3;
567 vcpu->arch.mmu.new_cr3(vcpu);
568 }
569 }
570 EXPORT_SYMBOL_GPL(kvm_set_cr3);
571
572 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
573 {
574 if (cr8 & CR8_RESERVED_BITS) {
575 kvm_inject_gp(vcpu, 0);
576 return;
577 }
578 if (irqchip_in_kernel(vcpu->kvm))
579 kvm_lapic_set_tpr(vcpu, cr8);
580 else
581 vcpu->arch.cr8 = cr8;
582 }
583 EXPORT_SYMBOL_GPL(kvm_set_cr8);
584
585 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
586 {
587 if (irqchip_in_kernel(vcpu->kvm))
588 return kvm_lapic_get_cr8(vcpu);
589 else
590 return vcpu->arch.cr8;
591 }
592 EXPORT_SYMBOL_GPL(kvm_get_cr8);
593
594 static inline u32 bit(int bitno)
595 {
596 return 1 << (bitno & 31);
597 }
598
599 /*
600 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
601 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
602 *
603 * This list is modified at module load time to reflect the
604 * capabilities of the host cpu. This capabilities test skips MSRs that are
605 * kvm-specific. Those are put in the beginning of the list.
606 */
607
608 #define KVM_SAVE_MSRS_BEGIN 5
609 static u32 msrs_to_save[] = {
610 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
611 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
612 HV_X64_MSR_APIC_ASSIST_PAGE,
613 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
614 MSR_K6_STAR,
615 #ifdef CONFIG_X86_64
616 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
617 #endif
618 MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
619 };
620
621 static unsigned num_msrs_to_save;
622
623 static u32 emulated_msrs[] = {
624 MSR_IA32_MISC_ENABLE,
625 };
626
627 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
628 {
629 if (efer & efer_reserved_bits) {
630 kvm_inject_gp(vcpu, 0);
631 return;
632 }
633
634 if (is_paging(vcpu)
635 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) {
636 kvm_inject_gp(vcpu, 0);
637 return;
638 }
639
640 if (efer & EFER_FFXSR) {
641 struct kvm_cpuid_entry2 *feat;
642
643 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
644 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
645 kvm_inject_gp(vcpu, 0);
646 return;
647 }
648 }
649
650 if (efer & EFER_SVME) {
651 struct kvm_cpuid_entry2 *feat;
652
653 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
654 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
655 kvm_inject_gp(vcpu, 0);
656 return;
657 }
658 }
659
660 kvm_x86_ops->set_efer(vcpu, efer);
661
662 efer &= ~EFER_LMA;
663 efer |= vcpu->arch.efer & EFER_LMA;
664
665 vcpu->arch.efer = efer;
666
667 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
668 kvm_mmu_reset_context(vcpu);
669 }
670
671 void kvm_enable_efer_bits(u64 mask)
672 {
673 efer_reserved_bits &= ~mask;
674 }
675 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
676
677
678 /*
679 * Writes msr value into into the appropriate "register".
680 * Returns 0 on success, non-0 otherwise.
681 * Assumes vcpu_load() was already called.
682 */
683 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
684 {
685 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
686 }
687
688 /*
689 * Adapt set_msr() to msr_io()'s calling convention
690 */
691 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
692 {
693 return kvm_set_msr(vcpu, index, *data);
694 }
695
696 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
697 {
698 static int version;
699 struct pvclock_wall_clock wc;
700 struct timespec boot;
701
702 if (!wall_clock)
703 return;
704
705 version++;
706
707 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
708
709 /*
710 * The guest calculates current wall clock time by adding
711 * system time (updated by kvm_write_guest_time below) to the
712 * wall clock specified here. guest system time equals host
713 * system time for us, thus we must fill in host boot time here.
714 */
715 getboottime(&boot);
716
717 wc.sec = boot.tv_sec;
718 wc.nsec = boot.tv_nsec;
719 wc.version = version;
720
721 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
722
723 version++;
724 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
725 }
726
727 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
728 {
729 uint32_t quotient, remainder;
730
731 /* Don't try to replace with do_div(), this one calculates
732 * "(dividend << 32) / divisor" */
733 __asm__ ( "divl %4"
734 : "=a" (quotient), "=d" (remainder)
735 : "0" (0), "1" (dividend), "r" (divisor) );
736 return quotient;
737 }
738
739 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
740 {
741 uint64_t nsecs = 1000000000LL;
742 int32_t shift = 0;
743 uint64_t tps64;
744 uint32_t tps32;
745
746 tps64 = tsc_khz * 1000LL;
747 while (tps64 > nsecs*2) {
748 tps64 >>= 1;
749 shift--;
750 }
751
752 tps32 = (uint32_t)tps64;
753 while (tps32 <= (uint32_t)nsecs) {
754 tps32 <<= 1;
755 shift++;
756 }
757
758 hv_clock->tsc_shift = shift;
759 hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
760
761 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
762 __func__, tsc_khz, hv_clock->tsc_shift,
763 hv_clock->tsc_to_system_mul);
764 }
765
766 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
767
768 static void kvm_write_guest_time(struct kvm_vcpu *v)
769 {
770 struct timespec ts;
771 unsigned long flags;
772 struct kvm_vcpu_arch *vcpu = &v->arch;
773 void *shared_kaddr;
774 unsigned long this_tsc_khz;
775
776 if ((!vcpu->time_page))
777 return;
778
779 this_tsc_khz = get_cpu_var(cpu_tsc_khz);
780 if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
781 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
782 vcpu->hv_clock_tsc_khz = this_tsc_khz;
783 }
784 put_cpu_var(cpu_tsc_khz);
785
786 /* Keep irq disabled to prevent changes to the clock */
787 local_irq_save(flags);
788 kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
789 ktime_get_ts(&ts);
790 monotonic_to_bootbased(&ts);
791 local_irq_restore(flags);
792
793 /* With all the info we got, fill in the values */
794
795 vcpu->hv_clock.system_time = ts.tv_nsec +
796 (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
797
798 /*
799 * The interface expects us to write an even number signaling that the
800 * update is finished. Since the guest won't see the intermediate
801 * state, we just increase by 2 at the end.
802 */
803 vcpu->hv_clock.version += 2;
804
805 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
806
807 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
808 sizeof(vcpu->hv_clock));
809
810 kunmap_atomic(shared_kaddr, KM_USER0);
811
812 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
813 }
814
815 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
816 {
817 struct kvm_vcpu_arch *vcpu = &v->arch;
818
819 if (!vcpu->time_page)
820 return 0;
821 set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
822 return 1;
823 }
824
825 static bool msr_mtrr_valid(unsigned msr)
826 {
827 switch (msr) {
828 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
829 case MSR_MTRRfix64K_00000:
830 case MSR_MTRRfix16K_80000:
831 case MSR_MTRRfix16K_A0000:
832 case MSR_MTRRfix4K_C0000:
833 case MSR_MTRRfix4K_C8000:
834 case MSR_MTRRfix4K_D0000:
835 case MSR_MTRRfix4K_D8000:
836 case MSR_MTRRfix4K_E0000:
837 case MSR_MTRRfix4K_E8000:
838 case MSR_MTRRfix4K_F0000:
839 case MSR_MTRRfix4K_F8000:
840 case MSR_MTRRdefType:
841 case MSR_IA32_CR_PAT:
842 return true;
843 case 0x2f8:
844 return true;
845 }
846 return false;
847 }
848
849 static bool valid_pat_type(unsigned t)
850 {
851 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
852 }
853
854 static bool valid_mtrr_type(unsigned t)
855 {
856 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
857 }
858
859 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
860 {
861 int i;
862
863 if (!msr_mtrr_valid(msr))
864 return false;
865
866 if (msr == MSR_IA32_CR_PAT) {
867 for (i = 0; i < 8; i++)
868 if (!valid_pat_type((data >> (i * 8)) & 0xff))
869 return false;
870 return true;
871 } else if (msr == MSR_MTRRdefType) {
872 if (data & ~0xcff)
873 return false;
874 return valid_mtrr_type(data & 0xff);
875 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
876 for (i = 0; i < 8 ; i++)
877 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
878 return false;
879 return true;
880 }
881
882 /* variable MTRRs */
883 return valid_mtrr_type(data & 0xff);
884 }
885
886 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
887 {
888 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
889
890 if (!mtrr_valid(vcpu, msr, data))
891 return 1;
892
893 if (msr == MSR_MTRRdefType) {
894 vcpu->arch.mtrr_state.def_type = data;
895 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
896 } else if (msr == MSR_MTRRfix64K_00000)
897 p[0] = data;
898 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
899 p[1 + msr - MSR_MTRRfix16K_80000] = data;
900 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
901 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
902 else if (msr == MSR_IA32_CR_PAT)
903 vcpu->arch.pat = data;
904 else { /* Variable MTRRs */
905 int idx, is_mtrr_mask;
906 u64 *pt;
907
908 idx = (msr - 0x200) / 2;
909 is_mtrr_mask = msr - 0x200 - 2 * idx;
910 if (!is_mtrr_mask)
911 pt =
912 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
913 else
914 pt =
915 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
916 *pt = data;
917 }
918
919 kvm_mmu_reset_context(vcpu);
920 return 0;
921 }
922
923 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
924 {
925 u64 mcg_cap = vcpu->arch.mcg_cap;
926 unsigned bank_num = mcg_cap & 0xff;
927
928 switch (msr) {
929 case MSR_IA32_MCG_STATUS:
930 vcpu->arch.mcg_status = data;
931 break;
932 case MSR_IA32_MCG_CTL:
933 if (!(mcg_cap & MCG_CTL_P))
934 return 1;
935 if (data != 0 && data != ~(u64)0)
936 return -1;
937 vcpu->arch.mcg_ctl = data;
938 break;
939 default:
940 if (msr >= MSR_IA32_MC0_CTL &&
941 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
942 u32 offset = msr - MSR_IA32_MC0_CTL;
943 /* only 0 or all 1s can be written to IA32_MCi_CTL
944 * some Linux kernels though clear bit 10 in bank 4 to
945 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
946 * this to avoid an uncatched #GP in the guest
947 */
948 if ((offset & 0x3) == 0 &&
949 data != 0 && (data | (1 << 10)) != ~(u64)0)
950 return -1;
951 vcpu->arch.mce_banks[offset] = data;
952 break;
953 }
954 return 1;
955 }
956 return 0;
957 }
958
959 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
960 {
961 struct kvm *kvm = vcpu->kvm;
962 int lm = is_long_mode(vcpu);
963 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
964 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
965 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
966 : kvm->arch.xen_hvm_config.blob_size_32;
967 u32 page_num = data & ~PAGE_MASK;
968 u64 page_addr = data & PAGE_MASK;
969 u8 *page;
970 int r;
971
972 r = -E2BIG;
973 if (page_num >= blob_size)
974 goto out;
975 r = -ENOMEM;
976 page = kzalloc(PAGE_SIZE, GFP_KERNEL);
977 if (!page)
978 goto out;
979 r = -EFAULT;
980 if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
981 goto out_free;
982 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
983 goto out_free;
984 r = 0;
985 out_free:
986 kfree(page);
987 out:
988 return r;
989 }
990
991 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
992 {
993 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
994 }
995
996 static bool kvm_hv_msr_partition_wide(u32 msr)
997 {
998 bool r = false;
999 switch (msr) {
1000 case HV_X64_MSR_GUEST_OS_ID:
1001 case HV_X64_MSR_HYPERCALL:
1002 r = true;
1003 break;
1004 }
1005
1006 return r;
1007 }
1008
1009 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1010 {
1011 struct kvm *kvm = vcpu->kvm;
1012
1013 switch (msr) {
1014 case HV_X64_MSR_GUEST_OS_ID:
1015 kvm->arch.hv_guest_os_id = data;
1016 /* setting guest os id to zero disables hypercall page */
1017 if (!kvm->arch.hv_guest_os_id)
1018 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1019 break;
1020 case HV_X64_MSR_HYPERCALL: {
1021 u64 gfn;
1022 unsigned long addr;
1023 u8 instructions[4];
1024
1025 /* if guest os id is not set hypercall should remain disabled */
1026 if (!kvm->arch.hv_guest_os_id)
1027 break;
1028 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1029 kvm->arch.hv_hypercall = data;
1030 break;
1031 }
1032 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1033 addr = gfn_to_hva(kvm, gfn);
1034 if (kvm_is_error_hva(addr))
1035 return 1;
1036 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1037 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1038 if (copy_to_user((void __user *)addr, instructions, 4))
1039 return 1;
1040 kvm->arch.hv_hypercall = data;
1041 break;
1042 }
1043 default:
1044 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1045 "data 0x%llx\n", msr, data);
1046 return 1;
1047 }
1048 return 0;
1049 }
1050
1051 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1052 {
1053 switch (msr) {
1054 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1055 unsigned long addr;
1056
1057 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1058 vcpu->arch.hv_vapic = data;
1059 break;
1060 }
1061 addr = gfn_to_hva(vcpu->kvm, data >>
1062 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1063 if (kvm_is_error_hva(addr))
1064 return 1;
1065 if (clear_user((void __user *)addr, PAGE_SIZE))
1066 return 1;
1067 vcpu->arch.hv_vapic = data;
1068 break;
1069 }
1070 case HV_X64_MSR_EOI:
1071 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1072 case HV_X64_MSR_ICR:
1073 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1074 case HV_X64_MSR_TPR:
1075 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1076 default:
1077 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1078 "data 0x%llx\n", msr, data);
1079 return 1;
1080 }
1081
1082 return 0;
1083 }
1084
1085 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1086 {
1087 switch (msr) {
1088 case MSR_EFER:
1089 set_efer(vcpu, data);
1090 break;
1091 case MSR_K7_HWCR:
1092 data &= ~(u64)0x40; /* ignore flush filter disable */
1093 if (data != 0) {
1094 pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1095 data);
1096 return 1;
1097 }
1098 break;
1099 case MSR_FAM10H_MMIO_CONF_BASE:
1100 if (data != 0) {
1101 pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1102 "0x%llx\n", data);
1103 return 1;
1104 }
1105 break;
1106 case MSR_AMD64_NB_CFG:
1107 break;
1108 case MSR_IA32_DEBUGCTLMSR:
1109 if (!data) {
1110 /* We support the non-activated case already */
1111 break;
1112 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1113 /* Values other than LBR and BTF are vendor-specific,
1114 thus reserved and should throw a #GP */
1115 return 1;
1116 }
1117 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1118 __func__, data);
1119 break;
1120 case MSR_IA32_UCODE_REV:
1121 case MSR_IA32_UCODE_WRITE:
1122 case MSR_VM_HSAVE_PA:
1123 case MSR_AMD64_PATCH_LOADER:
1124 break;
1125 case 0x200 ... 0x2ff:
1126 return set_msr_mtrr(vcpu, msr, data);
1127 case MSR_IA32_APICBASE:
1128 kvm_set_apic_base(vcpu, data);
1129 break;
1130 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1131 return kvm_x2apic_msr_write(vcpu, msr, data);
1132 case MSR_IA32_MISC_ENABLE:
1133 vcpu->arch.ia32_misc_enable_msr = data;
1134 break;
1135 case MSR_KVM_WALL_CLOCK:
1136 vcpu->kvm->arch.wall_clock = data;
1137 kvm_write_wall_clock(vcpu->kvm, data);
1138 break;
1139 case MSR_KVM_SYSTEM_TIME: {
1140 if (vcpu->arch.time_page) {
1141 kvm_release_page_dirty(vcpu->arch.time_page);
1142 vcpu->arch.time_page = NULL;
1143 }
1144
1145 vcpu->arch.time = data;
1146
1147 /* we verify if the enable bit is set... */
1148 if (!(data & 1))
1149 break;
1150
1151 /* ...but clean it before doing the actual write */
1152 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1153
1154 vcpu->arch.time_page =
1155 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1156
1157 if (is_error_page(vcpu->arch.time_page)) {
1158 kvm_release_page_clean(vcpu->arch.time_page);
1159 vcpu->arch.time_page = NULL;
1160 }
1161
1162 kvm_request_guest_time_update(vcpu);
1163 break;
1164 }
1165 case MSR_IA32_MCG_CTL:
1166 case MSR_IA32_MCG_STATUS:
1167 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1168 return set_msr_mce(vcpu, msr, data);
1169
1170 /* Performance counters are not protected by a CPUID bit,
1171 * so we should check all of them in the generic path for the sake of
1172 * cross vendor migration.
1173 * Writing a zero into the event select MSRs disables them,
1174 * which we perfectly emulate ;-). Any other value should be at least
1175 * reported, some guests depend on them.
1176 */
1177 case MSR_P6_EVNTSEL0:
1178 case MSR_P6_EVNTSEL1:
1179 case MSR_K7_EVNTSEL0:
1180 case MSR_K7_EVNTSEL1:
1181 case MSR_K7_EVNTSEL2:
1182 case MSR_K7_EVNTSEL3:
1183 if (data != 0)
1184 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1185 "0x%x data 0x%llx\n", msr, data);
1186 break;
1187 /* at least RHEL 4 unconditionally writes to the perfctr registers,
1188 * so we ignore writes to make it happy.
1189 */
1190 case MSR_P6_PERFCTR0:
1191 case MSR_P6_PERFCTR1:
1192 case MSR_K7_PERFCTR0:
1193 case MSR_K7_PERFCTR1:
1194 case MSR_K7_PERFCTR2:
1195 case MSR_K7_PERFCTR3:
1196 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1197 "0x%x data 0x%llx\n", msr, data);
1198 break;
1199 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1200 if (kvm_hv_msr_partition_wide(msr)) {
1201 int r;
1202 mutex_lock(&vcpu->kvm->lock);
1203 r = set_msr_hyperv_pw(vcpu, msr, data);
1204 mutex_unlock(&vcpu->kvm->lock);
1205 return r;
1206 } else
1207 return set_msr_hyperv(vcpu, msr, data);
1208 break;
1209 default:
1210 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1211 return xen_hvm_config(vcpu, data);
1212 if (!ignore_msrs) {
1213 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1214 msr, data);
1215 return 1;
1216 } else {
1217 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1218 msr, data);
1219 break;
1220 }
1221 }
1222 return 0;
1223 }
1224 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1225
1226
1227 /*
1228 * Reads an msr value (of 'msr_index') into 'pdata'.
1229 * Returns 0 on success, non-0 otherwise.
1230 * Assumes vcpu_load() was already called.
1231 */
1232 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1233 {
1234 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1235 }
1236
1237 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1238 {
1239 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1240
1241 if (!msr_mtrr_valid(msr))
1242 return 1;
1243
1244 if (msr == MSR_MTRRdefType)
1245 *pdata = vcpu->arch.mtrr_state.def_type +
1246 (vcpu->arch.mtrr_state.enabled << 10);
1247 else if (msr == MSR_MTRRfix64K_00000)
1248 *pdata = p[0];
1249 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1250 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1251 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1252 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1253 else if (msr == MSR_IA32_CR_PAT)
1254 *pdata = vcpu->arch.pat;
1255 else { /* Variable MTRRs */
1256 int idx, is_mtrr_mask;
1257 u64 *pt;
1258
1259 idx = (msr - 0x200) / 2;
1260 is_mtrr_mask = msr - 0x200 - 2 * idx;
1261 if (!is_mtrr_mask)
1262 pt =
1263 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1264 else
1265 pt =
1266 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1267 *pdata = *pt;
1268 }
1269
1270 return 0;
1271 }
1272
1273 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1274 {
1275 u64 data;
1276 u64 mcg_cap = vcpu->arch.mcg_cap;
1277 unsigned bank_num = mcg_cap & 0xff;
1278
1279 switch (msr) {
1280 case MSR_IA32_P5_MC_ADDR:
1281 case MSR_IA32_P5_MC_TYPE:
1282 data = 0;
1283 break;
1284 case MSR_IA32_MCG_CAP:
1285 data = vcpu->arch.mcg_cap;
1286 break;
1287 case MSR_IA32_MCG_CTL:
1288 if (!(mcg_cap & MCG_CTL_P))
1289 return 1;
1290 data = vcpu->arch.mcg_ctl;
1291 break;
1292 case MSR_IA32_MCG_STATUS:
1293 data = vcpu->arch.mcg_status;
1294 break;
1295 default:
1296 if (msr >= MSR_IA32_MC0_CTL &&
1297 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1298 u32 offset = msr - MSR_IA32_MC0_CTL;
1299 data = vcpu->arch.mce_banks[offset];
1300 break;
1301 }
1302 return 1;
1303 }
1304 *pdata = data;
1305 return 0;
1306 }
1307
1308 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1309 {
1310 u64 data = 0;
1311 struct kvm *kvm = vcpu->kvm;
1312
1313 switch (msr) {
1314 case HV_X64_MSR_GUEST_OS_ID:
1315 data = kvm->arch.hv_guest_os_id;
1316 break;
1317 case HV_X64_MSR_HYPERCALL:
1318 data = kvm->arch.hv_hypercall;
1319 break;
1320 default:
1321 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1322 return 1;
1323 }
1324
1325 *pdata = data;
1326 return 0;
1327 }
1328
1329 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1330 {
1331 u64 data = 0;
1332
1333 switch (msr) {
1334 case HV_X64_MSR_VP_INDEX: {
1335 int r;
1336 struct kvm_vcpu *v;
1337 kvm_for_each_vcpu(r, v, vcpu->kvm)
1338 if (v == vcpu)
1339 data = r;
1340 break;
1341 }
1342 case HV_X64_MSR_EOI:
1343 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1344 case HV_X64_MSR_ICR:
1345 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1346 case HV_X64_MSR_TPR:
1347 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1348 default:
1349 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1350 return 1;
1351 }
1352 *pdata = data;
1353 return 0;
1354 }
1355
1356 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1357 {
1358 u64 data;
1359
1360 switch (msr) {
1361 case MSR_IA32_PLATFORM_ID:
1362 case MSR_IA32_UCODE_REV:
1363 case MSR_IA32_EBL_CR_POWERON:
1364 case MSR_IA32_DEBUGCTLMSR:
1365 case MSR_IA32_LASTBRANCHFROMIP:
1366 case MSR_IA32_LASTBRANCHTOIP:
1367 case MSR_IA32_LASTINTFROMIP:
1368 case MSR_IA32_LASTINTTOIP:
1369 case MSR_K8_SYSCFG:
1370 case MSR_K7_HWCR:
1371 case MSR_VM_HSAVE_PA:
1372 case MSR_P6_PERFCTR0:
1373 case MSR_P6_PERFCTR1:
1374 case MSR_P6_EVNTSEL0:
1375 case MSR_P6_EVNTSEL1:
1376 case MSR_K7_EVNTSEL0:
1377 case MSR_K7_PERFCTR0:
1378 case MSR_K8_INT_PENDING_MSG:
1379 case MSR_AMD64_NB_CFG:
1380 case MSR_FAM10H_MMIO_CONF_BASE:
1381 data = 0;
1382 break;
1383 case MSR_MTRRcap:
1384 data = 0x500 | KVM_NR_VAR_MTRR;
1385 break;
1386 case 0x200 ... 0x2ff:
1387 return get_msr_mtrr(vcpu, msr, pdata);
1388 case 0xcd: /* fsb frequency */
1389 data = 3;
1390 break;
1391 case MSR_IA32_APICBASE:
1392 data = kvm_get_apic_base(vcpu);
1393 break;
1394 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1395 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1396 break;
1397 case MSR_IA32_MISC_ENABLE:
1398 data = vcpu->arch.ia32_misc_enable_msr;
1399 break;
1400 case MSR_IA32_PERF_STATUS:
1401 /* TSC increment by tick */
1402 data = 1000ULL;
1403 /* CPU multiplier */
1404 data |= (((uint64_t)4ULL) << 40);
1405 break;
1406 case MSR_EFER:
1407 data = vcpu->arch.efer;
1408 break;
1409 case MSR_KVM_WALL_CLOCK:
1410 data = vcpu->kvm->arch.wall_clock;
1411 break;
1412 case MSR_KVM_SYSTEM_TIME:
1413 data = vcpu->arch.time;
1414 break;
1415 case MSR_IA32_P5_MC_ADDR:
1416 case MSR_IA32_P5_MC_TYPE:
1417 case MSR_IA32_MCG_CAP:
1418 case MSR_IA32_MCG_CTL:
1419 case MSR_IA32_MCG_STATUS:
1420 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1421 return get_msr_mce(vcpu, msr, pdata);
1422 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1423 if (kvm_hv_msr_partition_wide(msr)) {
1424 int r;
1425 mutex_lock(&vcpu->kvm->lock);
1426 r = get_msr_hyperv_pw(vcpu, msr, pdata);
1427 mutex_unlock(&vcpu->kvm->lock);
1428 return r;
1429 } else
1430 return get_msr_hyperv(vcpu, msr, pdata);
1431 break;
1432 default:
1433 if (!ignore_msrs) {
1434 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1435 return 1;
1436 } else {
1437 pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1438 data = 0;
1439 }
1440 break;
1441 }
1442 *pdata = data;
1443 return 0;
1444 }
1445 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1446
1447 /*
1448 * Read or write a bunch of msrs. All parameters are kernel addresses.
1449 *
1450 * @return number of msrs set successfully.
1451 */
1452 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1453 struct kvm_msr_entry *entries,
1454 int (*do_msr)(struct kvm_vcpu *vcpu,
1455 unsigned index, u64 *data))
1456 {
1457 int i, idx;
1458
1459 vcpu_load(vcpu);
1460
1461 idx = srcu_read_lock(&vcpu->kvm->srcu);
1462 for (i = 0; i < msrs->nmsrs; ++i)
1463 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1464 break;
1465 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1466
1467 vcpu_put(vcpu);
1468
1469 return i;
1470 }
1471
1472 /*
1473 * Read or write a bunch of msrs. Parameters are user addresses.
1474 *
1475 * @return number of msrs set successfully.
1476 */
1477 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1478 int (*do_msr)(struct kvm_vcpu *vcpu,
1479 unsigned index, u64 *data),
1480 int writeback)
1481 {
1482 struct kvm_msrs msrs;
1483 struct kvm_msr_entry *entries;
1484 int r, n;
1485 unsigned size;
1486
1487 r = -EFAULT;
1488 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1489 goto out;
1490
1491 r = -E2BIG;
1492 if (msrs.nmsrs >= MAX_IO_MSRS)
1493 goto out;
1494
1495 r = -ENOMEM;
1496 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1497 entries = vmalloc(size);
1498 if (!entries)
1499 goto out;
1500
1501 r = -EFAULT;
1502 if (copy_from_user(entries, user_msrs->entries, size))
1503 goto out_free;
1504
1505 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1506 if (r < 0)
1507 goto out_free;
1508
1509 r = -EFAULT;
1510 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1511 goto out_free;
1512
1513 r = n;
1514
1515 out_free:
1516 vfree(entries);
1517 out:
1518 return r;
1519 }
1520
1521 int kvm_dev_ioctl_check_extension(long ext)
1522 {
1523 int r;
1524
1525 switch (ext) {
1526 case KVM_CAP_IRQCHIP:
1527 case KVM_CAP_HLT:
1528 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1529 case KVM_CAP_SET_TSS_ADDR:
1530 case KVM_CAP_EXT_CPUID:
1531 case KVM_CAP_CLOCKSOURCE:
1532 case KVM_CAP_PIT:
1533 case KVM_CAP_NOP_IO_DELAY:
1534 case KVM_CAP_MP_STATE:
1535 case KVM_CAP_SYNC_MMU:
1536 case KVM_CAP_REINJECT_CONTROL:
1537 case KVM_CAP_IRQ_INJECT_STATUS:
1538 case KVM_CAP_ASSIGN_DEV_IRQ:
1539 case KVM_CAP_IRQFD:
1540 case KVM_CAP_IOEVENTFD:
1541 case KVM_CAP_PIT2:
1542 case KVM_CAP_PIT_STATE2:
1543 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1544 case KVM_CAP_XEN_HVM:
1545 case KVM_CAP_ADJUST_CLOCK:
1546 case KVM_CAP_VCPU_EVENTS:
1547 case KVM_CAP_HYPERV:
1548 case KVM_CAP_HYPERV_VAPIC:
1549 case KVM_CAP_HYPERV_SPIN:
1550 case KVM_CAP_PCI_SEGMENT:
1551 case KVM_CAP_X86_ROBUST_SINGLESTEP:
1552 r = 1;
1553 break;
1554 case KVM_CAP_COALESCED_MMIO:
1555 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1556 break;
1557 case KVM_CAP_VAPIC:
1558 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1559 break;
1560 case KVM_CAP_NR_VCPUS:
1561 r = KVM_MAX_VCPUS;
1562 break;
1563 case KVM_CAP_NR_MEMSLOTS:
1564 r = KVM_MEMORY_SLOTS;
1565 break;
1566 case KVM_CAP_PV_MMU: /* obsolete */
1567 r = 0;
1568 break;
1569 case KVM_CAP_IOMMU:
1570 r = iommu_found();
1571 break;
1572 case KVM_CAP_MCE:
1573 r = KVM_MAX_MCE_BANKS;
1574 break;
1575 default:
1576 r = 0;
1577 break;
1578 }
1579 return r;
1580
1581 }
1582
1583 long kvm_arch_dev_ioctl(struct file *filp,
1584 unsigned int ioctl, unsigned long arg)
1585 {
1586 void __user *argp = (void __user *)arg;
1587 long r;
1588
1589 switch (ioctl) {
1590 case KVM_GET_MSR_INDEX_LIST: {
1591 struct kvm_msr_list __user *user_msr_list = argp;
1592 struct kvm_msr_list msr_list;
1593 unsigned n;
1594
1595 r = -EFAULT;
1596 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1597 goto out;
1598 n = msr_list.nmsrs;
1599 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1600 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1601 goto out;
1602 r = -E2BIG;
1603 if (n < msr_list.nmsrs)
1604 goto out;
1605 r = -EFAULT;
1606 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1607 num_msrs_to_save * sizeof(u32)))
1608 goto out;
1609 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1610 &emulated_msrs,
1611 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1612 goto out;
1613 r = 0;
1614 break;
1615 }
1616 case KVM_GET_SUPPORTED_CPUID: {
1617 struct kvm_cpuid2 __user *cpuid_arg = argp;
1618 struct kvm_cpuid2 cpuid;
1619
1620 r = -EFAULT;
1621 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1622 goto out;
1623 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1624 cpuid_arg->entries);
1625 if (r)
1626 goto out;
1627
1628 r = -EFAULT;
1629 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1630 goto out;
1631 r = 0;
1632 break;
1633 }
1634 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1635 u64 mce_cap;
1636
1637 mce_cap = KVM_MCE_CAP_SUPPORTED;
1638 r = -EFAULT;
1639 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1640 goto out;
1641 r = 0;
1642 break;
1643 }
1644 default:
1645 r = -EINVAL;
1646 }
1647 out:
1648 return r;
1649 }
1650
1651 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1652 {
1653 kvm_x86_ops->vcpu_load(vcpu, cpu);
1654 if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) {
1655 unsigned long khz = cpufreq_quick_get(cpu);
1656 if (!khz)
1657 khz = tsc_khz;
1658 per_cpu(cpu_tsc_khz, cpu) = khz;
1659 }
1660 kvm_request_guest_time_update(vcpu);
1661 }
1662
1663 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1664 {
1665 kvm_put_guest_fpu(vcpu);
1666 kvm_x86_ops->vcpu_put(vcpu);
1667 }
1668
1669 static int is_efer_nx(void)
1670 {
1671 unsigned long long efer = 0;
1672
1673 rdmsrl_safe(MSR_EFER, &efer);
1674 return efer & EFER_NX;
1675 }
1676
1677 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1678 {
1679 int i;
1680 struct kvm_cpuid_entry2 *e, *entry;
1681
1682 entry = NULL;
1683 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1684 e = &vcpu->arch.cpuid_entries[i];
1685 if (e->function == 0x80000001) {
1686 entry = e;
1687 break;
1688 }
1689 }
1690 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1691 entry->edx &= ~(1 << 20);
1692 printk(KERN_INFO "kvm: guest NX capability removed\n");
1693 }
1694 }
1695
1696 /* when an old userspace process fills a new kernel module */
1697 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1698 struct kvm_cpuid *cpuid,
1699 struct kvm_cpuid_entry __user *entries)
1700 {
1701 int r, i;
1702 struct kvm_cpuid_entry *cpuid_entries;
1703
1704 r = -E2BIG;
1705 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1706 goto out;
1707 r = -ENOMEM;
1708 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1709 if (!cpuid_entries)
1710 goto out;
1711 r = -EFAULT;
1712 if (copy_from_user(cpuid_entries, entries,
1713 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1714 goto out_free;
1715 vcpu_load(vcpu);
1716 for (i = 0; i < cpuid->nent; i++) {
1717 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1718 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1719 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1720 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1721 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1722 vcpu->arch.cpuid_entries[i].index = 0;
1723 vcpu->arch.cpuid_entries[i].flags = 0;
1724 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1725 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1726 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1727 }
1728 vcpu->arch.cpuid_nent = cpuid->nent;
1729 cpuid_fix_nx_cap(vcpu);
1730 r = 0;
1731 kvm_apic_set_version(vcpu);
1732 kvm_x86_ops->cpuid_update(vcpu);
1733 vcpu_put(vcpu);
1734
1735 out_free:
1736 vfree(cpuid_entries);
1737 out:
1738 return r;
1739 }
1740
1741 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1742 struct kvm_cpuid2 *cpuid,
1743 struct kvm_cpuid_entry2 __user *entries)
1744 {
1745 int r;
1746
1747 r = -E2BIG;
1748 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1749 goto out;
1750 r = -EFAULT;
1751 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1752 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1753 goto out;
1754 vcpu_load(vcpu);
1755 vcpu->arch.cpuid_nent = cpuid->nent;
1756 kvm_apic_set_version(vcpu);
1757 kvm_x86_ops->cpuid_update(vcpu);
1758 vcpu_put(vcpu);
1759 return 0;
1760
1761 out:
1762 return r;
1763 }
1764
1765 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1766 struct kvm_cpuid2 *cpuid,
1767 struct kvm_cpuid_entry2 __user *entries)
1768 {
1769 int r;
1770
1771 r = -E2BIG;
1772 if (cpuid->nent < vcpu->arch.cpuid_nent)
1773 goto out;
1774 r = -EFAULT;
1775 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1776 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1777 goto out;
1778 return 0;
1779
1780 out:
1781 cpuid->nent = vcpu->arch.cpuid_nent;
1782 return r;
1783 }
1784
1785 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1786 u32 index)
1787 {
1788 entry->function = function;
1789 entry->index = index;
1790 cpuid_count(entry->function, entry->index,
1791 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1792 entry->flags = 0;
1793 }
1794
1795 #define F(x) bit(X86_FEATURE_##x)
1796
1797 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1798 u32 index, int *nent, int maxnent)
1799 {
1800 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
1801 #ifdef CONFIG_X86_64
1802 unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
1803 ? F(GBPAGES) : 0;
1804 unsigned f_lm = F(LM);
1805 #else
1806 unsigned f_gbpages = 0;
1807 unsigned f_lm = 0;
1808 #endif
1809 unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
1810
1811 /* cpuid 1.edx */
1812 const u32 kvm_supported_word0_x86_features =
1813 F(FPU) | F(VME) | F(DE) | F(PSE) |
1814 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1815 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
1816 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1817 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
1818 0 /* Reserved, DS, ACPI */ | F(MMX) |
1819 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
1820 0 /* HTT, TM, Reserved, PBE */;
1821 /* cpuid 0x80000001.edx */
1822 const u32 kvm_supported_word1_x86_features =
1823 F(FPU) | F(VME) | F(DE) | F(PSE) |
1824 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1825 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
1826 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1827 F(PAT) | F(PSE36) | 0 /* Reserved */ |
1828 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
1829 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
1830 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
1831 /* cpuid 1.ecx */
1832 const u32 kvm_supported_word4_x86_features =
1833 F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
1834 0 /* DS-CPL, VMX, SMX, EST */ |
1835 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1836 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
1837 0 /* Reserved, DCA */ | F(XMM4_1) |
1838 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
1839 0 /* Reserved, XSAVE, OSXSAVE */;
1840 /* cpuid 0x80000001.ecx */
1841 const u32 kvm_supported_word6_x86_features =
1842 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
1843 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
1844 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
1845 0 /* SKINIT */ | 0 /* WDT */;
1846
1847 /* all calls to cpuid_count() should be made on the same cpu */
1848 get_cpu();
1849 do_cpuid_1_ent(entry, function, index);
1850 ++*nent;
1851
1852 switch (function) {
1853 case 0:
1854 entry->eax = min(entry->eax, (u32)0xb);
1855 break;
1856 case 1:
1857 entry->edx &= kvm_supported_word0_x86_features;
1858 entry->ecx &= kvm_supported_word4_x86_features;
1859 /* we support x2apic emulation even if host does not support
1860 * it since we emulate x2apic in software */
1861 entry->ecx |= F(X2APIC);
1862 break;
1863 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1864 * may return different values. This forces us to get_cpu() before
1865 * issuing the first command, and also to emulate this annoying behavior
1866 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1867 case 2: {
1868 int t, times = entry->eax & 0xff;
1869
1870 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1871 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1872 for (t = 1; t < times && *nent < maxnent; ++t) {
1873 do_cpuid_1_ent(&entry[t], function, 0);
1874 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1875 ++*nent;
1876 }
1877 break;
1878 }
1879 /* function 4 and 0xb have additional index. */
1880 case 4: {
1881 int i, cache_type;
1882
1883 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1884 /* read more entries until cache_type is zero */
1885 for (i = 1; *nent < maxnent; ++i) {
1886 cache_type = entry[i - 1].eax & 0x1f;
1887 if (!cache_type)
1888 break;
1889 do_cpuid_1_ent(&entry[i], function, i);
1890 entry[i].flags |=
1891 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1892 ++*nent;
1893 }
1894 break;
1895 }
1896 case 0xb: {
1897 int i, level_type;
1898
1899 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1900 /* read more entries until level_type is zero */
1901 for (i = 1; *nent < maxnent; ++i) {
1902 level_type = entry[i - 1].ecx & 0xff00;
1903 if (!level_type)
1904 break;
1905 do_cpuid_1_ent(&entry[i], function, i);
1906 entry[i].flags |=
1907 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1908 ++*nent;
1909 }
1910 break;
1911 }
1912 case 0x80000000:
1913 entry->eax = min(entry->eax, 0x8000001a);
1914 break;
1915 case 0x80000001:
1916 entry->edx &= kvm_supported_word1_x86_features;
1917 entry->ecx &= kvm_supported_word6_x86_features;
1918 break;
1919 }
1920 put_cpu();
1921 }
1922
1923 #undef F
1924
1925 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1926 struct kvm_cpuid_entry2 __user *entries)
1927 {
1928 struct kvm_cpuid_entry2 *cpuid_entries;
1929 int limit, nent = 0, r = -E2BIG;
1930 u32 func;
1931
1932 if (cpuid->nent < 1)
1933 goto out;
1934 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1935 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1936 r = -ENOMEM;
1937 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1938 if (!cpuid_entries)
1939 goto out;
1940
1941 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1942 limit = cpuid_entries[0].eax;
1943 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1944 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1945 &nent, cpuid->nent);
1946 r = -E2BIG;
1947 if (nent >= cpuid->nent)
1948 goto out_free;
1949
1950 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1951 limit = cpuid_entries[nent - 1].eax;
1952 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1953 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1954 &nent, cpuid->nent);
1955 r = -E2BIG;
1956 if (nent >= cpuid->nent)
1957 goto out_free;
1958
1959 r = -EFAULT;
1960 if (copy_to_user(entries, cpuid_entries,
1961 nent * sizeof(struct kvm_cpuid_entry2)))
1962 goto out_free;
1963 cpuid->nent = nent;
1964 r = 0;
1965
1966 out_free:
1967 vfree(cpuid_entries);
1968 out:
1969 return r;
1970 }
1971
1972 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1973 struct kvm_lapic_state *s)
1974 {
1975 vcpu_load(vcpu);
1976 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1977 vcpu_put(vcpu);
1978
1979 return 0;
1980 }
1981
1982 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1983 struct kvm_lapic_state *s)
1984 {
1985 vcpu_load(vcpu);
1986 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1987 kvm_apic_post_state_restore(vcpu);
1988 update_cr8_intercept(vcpu);
1989 vcpu_put(vcpu);
1990
1991 return 0;
1992 }
1993
1994 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1995 struct kvm_interrupt *irq)
1996 {
1997 if (irq->irq < 0 || irq->irq >= 256)
1998 return -EINVAL;
1999 if (irqchip_in_kernel(vcpu->kvm))
2000 return -ENXIO;
2001 vcpu_load(vcpu);
2002
2003 kvm_queue_interrupt(vcpu, irq->irq, false);
2004
2005 vcpu_put(vcpu);
2006
2007 return 0;
2008 }
2009
2010 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2011 {
2012 vcpu_load(vcpu);
2013 kvm_inject_nmi(vcpu);
2014 vcpu_put(vcpu);
2015
2016 return 0;
2017 }
2018
2019 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2020 struct kvm_tpr_access_ctl *tac)
2021 {
2022 if (tac->flags)
2023 return -EINVAL;
2024 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2025 return 0;
2026 }
2027
2028 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2029 u64 mcg_cap)
2030 {
2031 int r;
2032 unsigned bank_num = mcg_cap & 0xff, bank;
2033
2034 r = -EINVAL;
2035 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2036 goto out;
2037 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2038 goto out;
2039 r = 0;
2040 vcpu->arch.mcg_cap = mcg_cap;
2041 /* Init IA32_MCG_CTL to all 1s */
2042 if (mcg_cap & MCG_CTL_P)
2043 vcpu->arch.mcg_ctl = ~(u64)0;
2044 /* Init IA32_MCi_CTL to all 1s */
2045 for (bank = 0; bank < bank_num; bank++)
2046 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2047 out:
2048 return r;
2049 }
2050
2051 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2052 struct kvm_x86_mce *mce)
2053 {
2054 u64 mcg_cap = vcpu->arch.mcg_cap;
2055 unsigned bank_num = mcg_cap & 0xff;
2056 u64 *banks = vcpu->arch.mce_banks;
2057
2058 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2059 return -EINVAL;
2060 /*
2061 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2062 * reporting is disabled
2063 */
2064 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2065 vcpu->arch.mcg_ctl != ~(u64)0)
2066 return 0;
2067 banks += 4 * mce->bank;
2068 /*
2069 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2070 * reporting is disabled for the bank
2071 */
2072 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2073 return 0;
2074 if (mce->status & MCI_STATUS_UC) {
2075 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2076 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2077 printk(KERN_DEBUG "kvm: set_mce: "
2078 "injects mce exception while "
2079 "previous one is in progress!\n");
2080 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
2081 return 0;
2082 }
2083 if (banks[1] & MCI_STATUS_VAL)
2084 mce->status |= MCI_STATUS_OVER;
2085 banks[2] = mce->addr;
2086 banks[3] = mce->misc;
2087 vcpu->arch.mcg_status = mce->mcg_status;
2088 banks[1] = mce->status;
2089 kvm_queue_exception(vcpu, MC_VECTOR);
2090 } else if (!(banks[1] & MCI_STATUS_VAL)
2091 || !(banks[1] & MCI_STATUS_UC)) {
2092 if (banks[1] & MCI_STATUS_VAL)
2093 mce->status |= MCI_STATUS_OVER;
2094 banks[2] = mce->addr;
2095 banks[3] = mce->misc;
2096 banks[1] = mce->status;
2097 } else
2098 banks[1] |= MCI_STATUS_OVER;
2099 return 0;
2100 }
2101
2102 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2103 struct kvm_vcpu_events *events)
2104 {
2105 vcpu_load(vcpu);
2106
2107 events->exception.injected = vcpu->arch.exception.pending;
2108 events->exception.nr = vcpu->arch.exception.nr;
2109 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2110 events->exception.error_code = vcpu->arch.exception.error_code;
2111
2112 events->interrupt.injected = vcpu->arch.interrupt.pending;
2113 events->interrupt.nr = vcpu->arch.interrupt.nr;
2114 events->interrupt.soft = vcpu->arch.interrupt.soft;
2115
2116 events->nmi.injected = vcpu->arch.nmi_injected;
2117 events->nmi.pending = vcpu->arch.nmi_pending;
2118 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2119
2120 events->sipi_vector = vcpu->arch.sipi_vector;
2121
2122 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2123 | KVM_VCPUEVENT_VALID_SIPI_VECTOR);
2124
2125 vcpu_put(vcpu);
2126 }
2127
2128 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2129 struct kvm_vcpu_events *events)
2130 {
2131 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2132 | KVM_VCPUEVENT_VALID_SIPI_VECTOR))
2133 return -EINVAL;
2134
2135 vcpu_load(vcpu);
2136
2137 vcpu->arch.exception.pending = events->exception.injected;
2138 vcpu->arch.exception.nr = events->exception.nr;
2139 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2140 vcpu->arch.exception.error_code = events->exception.error_code;
2141
2142 vcpu->arch.interrupt.pending = events->interrupt.injected;
2143 vcpu->arch.interrupt.nr = events->interrupt.nr;
2144 vcpu->arch.interrupt.soft = events->interrupt.soft;
2145 if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
2146 kvm_pic_clear_isr_ack(vcpu->kvm);
2147
2148 vcpu->arch.nmi_injected = events->nmi.injected;
2149 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2150 vcpu->arch.nmi_pending = events->nmi.pending;
2151 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2152
2153 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2154 vcpu->arch.sipi_vector = events->sipi_vector;
2155
2156 vcpu_put(vcpu);
2157
2158 return 0;
2159 }
2160
2161 long kvm_arch_vcpu_ioctl(struct file *filp,
2162 unsigned int ioctl, unsigned long arg)
2163 {
2164 struct kvm_vcpu *vcpu = filp->private_data;
2165 void __user *argp = (void __user *)arg;
2166 int r;
2167 struct kvm_lapic_state *lapic = NULL;
2168
2169 switch (ioctl) {
2170 case KVM_GET_LAPIC: {
2171 r = -EINVAL;
2172 if (!vcpu->arch.apic)
2173 goto out;
2174 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2175
2176 r = -ENOMEM;
2177 if (!lapic)
2178 goto out;
2179 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
2180 if (r)
2181 goto out;
2182 r = -EFAULT;
2183 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
2184 goto out;
2185 r = 0;
2186 break;
2187 }
2188 case KVM_SET_LAPIC: {
2189 r = -EINVAL;
2190 if (!vcpu->arch.apic)
2191 goto out;
2192 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2193 r = -ENOMEM;
2194 if (!lapic)
2195 goto out;
2196 r = -EFAULT;
2197 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
2198 goto out;
2199 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
2200 if (r)
2201 goto out;
2202 r = 0;
2203 break;
2204 }
2205 case KVM_INTERRUPT: {
2206 struct kvm_interrupt irq;
2207
2208 r = -EFAULT;
2209 if (copy_from_user(&irq, argp, sizeof irq))
2210 goto out;
2211 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2212 if (r)
2213 goto out;
2214 r = 0;
2215 break;
2216 }
2217 case KVM_NMI: {
2218 r = kvm_vcpu_ioctl_nmi(vcpu);
2219 if (r)
2220 goto out;
2221 r = 0;
2222 break;
2223 }
2224 case KVM_SET_CPUID: {
2225 struct kvm_cpuid __user *cpuid_arg = argp;
2226 struct kvm_cpuid cpuid;
2227
2228 r = -EFAULT;
2229 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2230 goto out;
2231 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2232 if (r)
2233 goto out;
2234 break;
2235 }
2236 case KVM_SET_CPUID2: {
2237 struct kvm_cpuid2 __user *cpuid_arg = argp;
2238 struct kvm_cpuid2 cpuid;
2239
2240 r = -EFAULT;
2241 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2242 goto out;
2243 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2244 cpuid_arg->entries);
2245 if (r)
2246 goto out;
2247 break;
2248 }
2249 case KVM_GET_CPUID2: {
2250 struct kvm_cpuid2 __user *cpuid_arg = argp;
2251 struct kvm_cpuid2 cpuid;
2252
2253 r = -EFAULT;
2254 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2255 goto out;
2256 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2257 cpuid_arg->entries);
2258 if (r)
2259 goto out;
2260 r = -EFAULT;
2261 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2262 goto out;
2263 r = 0;
2264 break;
2265 }
2266 case KVM_GET_MSRS:
2267 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2268 break;
2269 case KVM_SET_MSRS:
2270 r = msr_io(vcpu, argp, do_set_msr, 0);
2271 break;
2272 case KVM_TPR_ACCESS_REPORTING: {
2273 struct kvm_tpr_access_ctl tac;
2274
2275 r = -EFAULT;
2276 if (copy_from_user(&tac, argp, sizeof tac))
2277 goto out;
2278 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2279 if (r)
2280 goto out;
2281 r = -EFAULT;
2282 if (copy_to_user(argp, &tac, sizeof tac))
2283 goto out;
2284 r = 0;
2285 break;
2286 };
2287 case KVM_SET_VAPIC_ADDR: {
2288 struct kvm_vapic_addr va;
2289
2290 r = -EINVAL;
2291 if (!irqchip_in_kernel(vcpu->kvm))
2292 goto out;
2293 r = -EFAULT;
2294 if (copy_from_user(&va, argp, sizeof va))
2295 goto out;
2296 r = 0;
2297 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2298 break;
2299 }
2300 case KVM_X86_SETUP_MCE: {
2301 u64 mcg_cap;
2302
2303 r = -EFAULT;
2304 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2305 goto out;
2306 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2307 break;
2308 }
2309 case KVM_X86_SET_MCE: {
2310 struct kvm_x86_mce mce;
2311
2312 r = -EFAULT;
2313 if (copy_from_user(&mce, argp, sizeof mce))
2314 goto out;
2315 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2316 break;
2317 }
2318 case KVM_GET_VCPU_EVENTS: {
2319 struct kvm_vcpu_events events;
2320
2321 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2322
2323 r = -EFAULT;
2324 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2325 break;
2326 r = 0;
2327 break;
2328 }
2329 case KVM_SET_VCPU_EVENTS: {
2330 struct kvm_vcpu_events events;
2331
2332 r = -EFAULT;
2333 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2334 break;
2335
2336 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2337 break;
2338 }
2339 default:
2340 r = -EINVAL;
2341 }
2342 out:
2343 kfree(lapic);
2344 return r;
2345 }
2346
2347 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2348 {
2349 int ret;
2350
2351 if (addr > (unsigned int)(-3 * PAGE_SIZE))
2352 return -1;
2353 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2354 return ret;
2355 }
2356
2357 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2358 u64 ident_addr)
2359 {
2360 kvm->arch.ept_identity_map_addr = ident_addr;
2361 return 0;
2362 }
2363
2364 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2365 u32 kvm_nr_mmu_pages)
2366 {
2367 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2368 return -EINVAL;
2369
2370 mutex_lock(&kvm->slots_lock);
2371 spin_lock(&kvm->mmu_lock);
2372
2373 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2374 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2375
2376 spin_unlock(&kvm->mmu_lock);
2377 mutex_unlock(&kvm->slots_lock);
2378 return 0;
2379 }
2380
2381 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2382 {
2383 return kvm->arch.n_alloc_mmu_pages;
2384 }
2385
2386 gfn_t unalias_gfn_instantiation(struct kvm *kvm, gfn_t gfn)
2387 {
2388 int i;
2389 struct kvm_mem_alias *alias;
2390 struct kvm_mem_aliases *aliases;
2391
2392 aliases = rcu_dereference(kvm->arch.aliases);
2393
2394 for (i = 0; i < aliases->naliases; ++i) {
2395 alias = &aliases->aliases[i];
2396 if (alias->flags & KVM_ALIAS_INVALID)
2397 continue;
2398 if (gfn >= alias->base_gfn
2399 && gfn < alias->base_gfn + alias->npages)
2400 return alias->target_gfn + gfn - alias->base_gfn;
2401 }
2402 return gfn;
2403 }
2404
2405 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
2406 {
2407 int i;
2408 struct kvm_mem_alias *alias;
2409 struct kvm_mem_aliases *aliases;
2410
2411 aliases = rcu_dereference(kvm->arch.aliases);
2412
2413 for (i = 0; i < aliases->naliases; ++i) {
2414 alias = &aliases->aliases[i];
2415 if (gfn >= alias->base_gfn
2416 && gfn < alias->base_gfn + alias->npages)
2417 return alias->target_gfn + gfn - alias->base_gfn;
2418 }
2419 return gfn;
2420 }
2421
2422 /*
2423 * Set a new alias region. Aliases map a portion of physical memory into
2424 * another portion. This is useful for memory windows, for example the PC
2425 * VGA region.
2426 */
2427 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
2428 struct kvm_memory_alias *alias)
2429 {
2430 int r, n;
2431 struct kvm_mem_alias *p;
2432 struct kvm_mem_aliases *aliases, *old_aliases;
2433
2434 r = -EINVAL;
2435 /* General sanity checks */
2436 if (alias->memory_size & (PAGE_SIZE - 1))
2437 goto out;
2438 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
2439 goto out;
2440 if (alias->slot >= KVM_ALIAS_SLOTS)
2441 goto out;
2442 if (alias->guest_phys_addr + alias->memory_size
2443 < alias->guest_phys_addr)
2444 goto out;
2445 if (alias->target_phys_addr + alias->memory_size
2446 < alias->target_phys_addr)
2447 goto out;
2448
2449 r = -ENOMEM;
2450 aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
2451 if (!aliases)
2452 goto out;
2453
2454 mutex_lock(&kvm->slots_lock);
2455
2456 /* invalidate any gfn reference in case of deletion/shrinking */
2457 memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
2458 aliases->aliases[alias->slot].flags |= KVM_ALIAS_INVALID;
2459 old_aliases = kvm->arch.aliases;
2460 rcu_assign_pointer(kvm->arch.aliases, aliases);
2461 synchronize_srcu_expedited(&kvm->srcu);
2462 kvm_mmu_zap_all(kvm);
2463 kfree(old_aliases);
2464
2465 r = -ENOMEM;
2466 aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
2467 if (!aliases)
2468 goto out_unlock;
2469
2470 memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
2471
2472 p = &aliases->aliases[alias->slot];
2473 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
2474 p->npages = alias->memory_size >> PAGE_SHIFT;
2475 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
2476 p->flags &= ~(KVM_ALIAS_INVALID);
2477
2478 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
2479 if (aliases->aliases[n - 1].npages)
2480 break;
2481 aliases->naliases = n;
2482
2483 old_aliases = kvm->arch.aliases;
2484 rcu_assign_pointer(kvm->arch.aliases, aliases);
2485 synchronize_srcu_expedited(&kvm->srcu);
2486 kfree(old_aliases);
2487 r = 0;
2488
2489 out_unlock:
2490 mutex_unlock(&kvm->slots_lock);
2491 out:
2492 return r;
2493 }
2494
2495 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2496 {
2497 int r;
2498
2499 r = 0;
2500 switch (chip->chip_id) {
2501 case KVM_IRQCHIP_PIC_MASTER:
2502 memcpy(&chip->chip.pic,
2503 &pic_irqchip(kvm)->pics[0],
2504 sizeof(struct kvm_pic_state));
2505 break;
2506 case KVM_IRQCHIP_PIC_SLAVE:
2507 memcpy(&chip->chip.pic,
2508 &pic_irqchip(kvm)->pics[1],
2509 sizeof(struct kvm_pic_state));
2510 break;
2511 case KVM_IRQCHIP_IOAPIC:
2512 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2513 break;
2514 default:
2515 r = -EINVAL;
2516 break;
2517 }
2518 return r;
2519 }
2520
2521 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2522 {
2523 int r;
2524
2525 r = 0;
2526 switch (chip->chip_id) {
2527 case KVM_IRQCHIP_PIC_MASTER:
2528 raw_spin_lock(&pic_irqchip(kvm)->lock);
2529 memcpy(&pic_irqchip(kvm)->pics[0],
2530 &chip->chip.pic,
2531 sizeof(struct kvm_pic_state));
2532 raw_spin_unlock(&pic_irqchip(kvm)->lock);
2533 break;
2534 case KVM_IRQCHIP_PIC_SLAVE:
2535 raw_spin_lock(&pic_irqchip(kvm)->lock);
2536 memcpy(&pic_irqchip(kvm)->pics[1],
2537 &chip->chip.pic,
2538 sizeof(struct kvm_pic_state));
2539 raw_spin_unlock(&pic_irqchip(kvm)->lock);
2540 break;
2541 case KVM_IRQCHIP_IOAPIC:
2542 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
2543 break;
2544 default:
2545 r = -EINVAL;
2546 break;
2547 }
2548 kvm_pic_update_irq(pic_irqchip(kvm));
2549 return r;
2550 }
2551
2552 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2553 {
2554 int r = 0;
2555
2556 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2557 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2558 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2559 return r;
2560 }
2561
2562 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2563 {
2564 int r = 0;
2565
2566 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2567 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2568 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2569 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2570 return r;
2571 }
2572
2573 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2574 {
2575 int r = 0;
2576
2577 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2578 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2579 sizeof(ps->channels));
2580 ps->flags = kvm->arch.vpit->pit_state.flags;
2581 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2582 return r;
2583 }
2584
2585 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2586 {
2587 int r = 0, start = 0;
2588 u32 prev_legacy, cur_legacy;
2589 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2590 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2591 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2592 if (!prev_legacy && cur_legacy)
2593 start = 1;
2594 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2595 sizeof(kvm->arch.vpit->pit_state.channels));
2596 kvm->arch.vpit->pit_state.flags = ps->flags;
2597 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2598 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2599 return r;
2600 }
2601
2602 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2603 struct kvm_reinject_control *control)
2604 {
2605 if (!kvm->arch.vpit)
2606 return -ENXIO;
2607 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2608 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2609 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2610 return 0;
2611 }
2612
2613 /*
2614 * Get (and clear) the dirty memory log for a memory slot.
2615 */
2616 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2617 struct kvm_dirty_log *log)
2618 {
2619 int r, i;
2620 struct kvm_memory_slot *memslot;
2621 unsigned long n;
2622 unsigned long is_dirty = 0;
2623 unsigned long *dirty_bitmap = NULL;
2624
2625 mutex_lock(&kvm->slots_lock);
2626
2627 r = -EINVAL;
2628 if (log->slot >= KVM_MEMORY_SLOTS)
2629 goto out;
2630
2631 memslot = &kvm->memslots->memslots[log->slot];
2632 r = -ENOENT;
2633 if (!memslot->dirty_bitmap)
2634 goto out;
2635
2636 n = kvm_dirty_bitmap_bytes(memslot);
2637
2638 r = -ENOMEM;
2639 dirty_bitmap = vmalloc(n);
2640 if (!dirty_bitmap)
2641 goto out;
2642 memset(dirty_bitmap, 0, n);
2643
2644 for (i = 0; !is_dirty && i < n/sizeof(long); i++)
2645 is_dirty = memslot->dirty_bitmap[i];
2646
2647 /* If nothing is dirty, don't bother messing with page tables. */
2648 if (is_dirty) {
2649 struct kvm_memslots *slots, *old_slots;
2650
2651 spin_lock(&kvm->mmu_lock);
2652 kvm_mmu_slot_remove_write_access(kvm, log->slot);
2653 spin_unlock(&kvm->mmu_lock);
2654
2655 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
2656 if (!slots)
2657 goto out_free;
2658
2659 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
2660 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
2661
2662 old_slots = kvm->memslots;
2663 rcu_assign_pointer(kvm->memslots, slots);
2664 synchronize_srcu_expedited(&kvm->srcu);
2665 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
2666 kfree(old_slots);
2667 }
2668
2669 r = 0;
2670 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
2671 r = -EFAULT;
2672 out_free:
2673 vfree(dirty_bitmap);
2674 out:
2675 mutex_unlock(&kvm->slots_lock);
2676 return r;
2677 }
2678
2679 long kvm_arch_vm_ioctl(struct file *filp,
2680 unsigned int ioctl, unsigned long arg)
2681 {
2682 struct kvm *kvm = filp->private_data;
2683 void __user *argp = (void __user *)arg;
2684 int r = -ENOTTY;
2685 /*
2686 * This union makes it completely explicit to gcc-3.x
2687 * that these two variables' stack usage should be
2688 * combined, not added together.
2689 */
2690 union {
2691 struct kvm_pit_state ps;
2692 struct kvm_pit_state2 ps2;
2693 struct kvm_memory_alias alias;
2694 struct kvm_pit_config pit_config;
2695 } u;
2696
2697 switch (ioctl) {
2698 case KVM_SET_TSS_ADDR:
2699 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
2700 if (r < 0)
2701 goto out;
2702 break;
2703 case KVM_SET_IDENTITY_MAP_ADDR: {
2704 u64 ident_addr;
2705
2706 r = -EFAULT;
2707 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
2708 goto out;
2709 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
2710 if (r < 0)
2711 goto out;
2712 break;
2713 }
2714 case KVM_SET_MEMORY_REGION: {
2715 struct kvm_memory_region kvm_mem;
2716 struct kvm_userspace_memory_region kvm_userspace_mem;
2717
2718 r = -EFAULT;
2719 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2720 goto out;
2721 kvm_userspace_mem.slot = kvm_mem.slot;
2722 kvm_userspace_mem.flags = kvm_mem.flags;
2723 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
2724 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
2725 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
2726 if (r)
2727 goto out;
2728 break;
2729 }
2730 case KVM_SET_NR_MMU_PAGES:
2731 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
2732 if (r)
2733 goto out;
2734 break;
2735 case KVM_GET_NR_MMU_PAGES:
2736 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
2737 break;
2738 case KVM_SET_MEMORY_ALIAS:
2739 r = -EFAULT;
2740 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
2741 goto out;
2742 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
2743 if (r)
2744 goto out;
2745 break;
2746 case KVM_CREATE_IRQCHIP: {
2747 struct kvm_pic *vpic;
2748
2749 mutex_lock(&kvm->lock);
2750 r = -EEXIST;
2751 if (kvm->arch.vpic)
2752 goto create_irqchip_unlock;
2753 r = -ENOMEM;
2754 vpic = kvm_create_pic(kvm);
2755 if (vpic) {
2756 r = kvm_ioapic_init(kvm);
2757 if (r) {
2758 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
2759 &vpic->dev);
2760 kfree(vpic);
2761 goto create_irqchip_unlock;
2762 }
2763 } else
2764 goto create_irqchip_unlock;
2765 smp_wmb();
2766 kvm->arch.vpic = vpic;
2767 smp_wmb();
2768 r = kvm_setup_default_irq_routing(kvm);
2769 if (r) {
2770 mutex_lock(&kvm->irq_lock);
2771 kvm_ioapic_destroy(kvm);
2772 kvm_destroy_pic(kvm);
2773 mutex_unlock(&kvm->irq_lock);
2774 }
2775 create_irqchip_unlock:
2776 mutex_unlock(&kvm->lock);
2777 break;
2778 }
2779 case KVM_CREATE_PIT:
2780 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
2781 goto create_pit;
2782 case KVM_CREATE_PIT2:
2783 r = -EFAULT;
2784 if (copy_from_user(&u.pit_config, argp,
2785 sizeof(struct kvm_pit_config)))
2786 goto out;
2787 create_pit:
2788 mutex_lock(&kvm->slots_lock);
2789 r = -EEXIST;
2790 if (kvm->arch.vpit)
2791 goto create_pit_unlock;
2792 r = -ENOMEM;
2793 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
2794 if (kvm->arch.vpit)
2795 r = 0;
2796 create_pit_unlock:
2797 mutex_unlock(&kvm->slots_lock);
2798 break;
2799 case KVM_IRQ_LINE_STATUS:
2800 case KVM_IRQ_LINE: {
2801 struct kvm_irq_level irq_event;
2802
2803 r = -EFAULT;
2804 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2805 goto out;
2806 if (irqchip_in_kernel(kvm)) {
2807 __s32 status;
2808 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2809 irq_event.irq, irq_event.level);
2810 if (ioctl == KVM_IRQ_LINE_STATUS) {
2811 irq_event.status = status;
2812 if (copy_to_user(argp, &irq_event,
2813 sizeof irq_event))
2814 goto out;
2815 }
2816 r = 0;
2817 }
2818 break;
2819 }
2820 case KVM_GET_IRQCHIP: {
2821 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2822 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2823
2824 r = -ENOMEM;
2825 if (!chip)
2826 goto out;
2827 r = -EFAULT;
2828 if (copy_from_user(chip, argp, sizeof *chip))
2829 goto get_irqchip_out;
2830 r = -ENXIO;
2831 if (!irqchip_in_kernel(kvm))
2832 goto get_irqchip_out;
2833 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
2834 if (r)
2835 goto get_irqchip_out;
2836 r = -EFAULT;
2837 if (copy_to_user(argp, chip, sizeof *chip))
2838 goto get_irqchip_out;
2839 r = 0;
2840 get_irqchip_out:
2841 kfree(chip);
2842 if (r)
2843 goto out;
2844 break;
2845 }
2846 case KVM_SET_IRQCHIP: {
2847 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2848 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2849
2850 r = -ENOMEM;
2851 if (!chip)
2852 goto out;
2853 r = -EFAULT;
2854 if (copy_from_user(chip, argp, sizeof *chip))
2855 goto set_irqchip_out;
2856 r = -ENXIO;
2857 if (!irqchip_in_kernel(kvm))
2858 goto set_irqchip_out;
2859 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
2860 if (r)
2861 goto set_irqchip_out;
2862 r = 0;
2863 set_irqchip_out:
2864 kfree(chip);
2865 if (r)
2866 goto out;
2867 break;
2868 }
2869 case KVM_GET_PIT: {
2870 r = -EFAULT;
2871 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
2872 goto out;
2873 r = -ENXIO;
2874 if (!kvm->arch.vpit)
2875 goto out;
2876 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
2877 if (r)
2878 goto out;
2879 r = -EFAULT;
2880 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
2881 goto out;
2882 r = 0;
2883 break;
2884 }
2885 case KVM_SET_PIT: {
2886 r = -EFAULT;
2887 if (copy_from_user(&u.ps, argp, sizeof u.ps))
2888 goto out;
2889 r = -ENXIO;
2890 if (!kvm->arch.vpit)
2891 goto out;
2892 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
2893 if (r)
2894 goto out;
2895 r = 0;
2896 break;
2897 }
2898 case KVM_GET_PIT2: {
2899 r = -ENXIO;
2900 if (!kvm->arch.vpit)
2901 goto out;
2902 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
2903 if (r)
2904 goto out;
2905 r = -EFAULT;
2906 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
2907 goto out;
2908 r = 0;
2909 break;
2910 }
2911 case KVM_SET_PIT2: {
2912 r = -EFAULT;
2913 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
2914 goto out;
2915 r = -ENXIO;
2916 if (!kvm->arch.vpit)
2917 goto out;
2918 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
2919 if (r)
2920 goto out;
2921 r = 0;
2922 break;
2923 }
2924 case KVM_REINJECT_CONTROL: {
2925 struct kvm_reinject_control control;
2926 r = -EFAULT;
2927 if (copy_from_user(&control, argp, sizeof(control)))
2928 goto out;
2929 r = kvm_vm_ioctl_reinject(kvm, &control);
2930 if (r)
2931 goto out;
2932 r = 0;
2933 break;
2934 }
2935 case KVM_XEN_HVM_CONFIG: {
2936 r = -EFAULT;
2937 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
2938 sizeof(struct kvm_xen_hvm_config)))
2939 goto out;
2940 r = -EINVAL;
2941 if (kvm->arch.xen_hvm_config.flags)
2942 goto out;
2943 r = 0;
2944 break;
2945 }
2946 case KVM_SET_CLOCK: {
2947 struct timespec now;
2948 struct kvm_clock_data user_ns;
2949 u64 now_ns;
2950 s64 delta;
2951
2952 r = -EFAULT;
2953 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
2954 goto out;
2955
2956 r = -EINVAL;
2957 if (user_ns.flags)
2958 goto out;
2959
2960 r = 0;
2961 ktime_get_ts(&now);
2962 now_ns = timespec_to_ns(&now);
2963 delta = user_ns.clock - now_ns;
2964 kvm->arch.kvmclock_offset = delta;
2965 break;
2966 }
2967 case KVM_GET_CLOCK: {
2968 struct timespec now;
2969 struct kvm_clock_data user_ns;
2970 u64 now_ns;
2971
2972 ktime_get_ts(&now);
2973 now_ns = timespec_to_ns(&now);
2974 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
2975 user_ns.flags = 0;
2976
2977 r = -EFAULT;
2978 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
2979 goto out;
2980 r = 0;
2981 break;
2982 }
2983
2984 default:
2985 ;
2986 }
2987 out:
2988 return r;
2989 }
2990
2991 static void kvm_init_msr_list(void)
2992 {
2993 u32 dummy[2];
2994 unsigned i, j;
2995
2996 /* skip the first msrs in the list. KVM-specific */
2997 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
2998 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2999 continue;
3000 if (j < i)
3001 msrs_to_save[j] = msrs_to_save[i];
3002 j++;
3003 }
3004 num_msrs_to_save = j;
3005 }
3006
3007 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3008 const void *v)
3009 {
3010 if (vcpu->arch.apic &&
3011 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
3012 return 0;
3013
3014 return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3015 }
3016
3017 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3018 {
3019 if (vcpu->arch.apic &&
3020 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
3021 return 0;
3022
3023 return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3024 }
3025
3026 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3027 {
3028 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3029 return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3030 }
3031
3032 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3033 {
3034 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3035 access |= PFERR_FETCH_MASK;
3036 return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3037 }
3038
3039 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3040 {
3041 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3042 access |= PFERR_WRITE_MASK;
3043 return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3044 }
3045
3046 /* uses this to access any guest's mapped memory without checking CPL */
3047 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3048 {
3049 return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, 0, error);
3050 }
3051
3052 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3053 struct kvm_vcpu *vcpu, u32 access,
3054 u32 *error)
3055 {
3056 void *data = val;
3057 int r = X86EMUL_CONTINUE;
3058
3059 while (bytes) {
3060 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr, access, error);
3061 unsigned offset = addr & (PAGE_SIZE-1);
3062 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3063 int ret;
3064
3065 if (gpa == UNMAPPED_GVA) {
3066 r = X86EMUL_PROPAGATE_FAULT;
3067 goto out;
3068 }
3069 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3070 if (ret < 0) {
3071 r = X86EMUL_UNHANDLEABLE;
3072 goto out;
3073 }
3074
3075 bytes -= toread;
3076 data += toread;
3077 addr += toread;
3078 }
3079 out:
3080 return r;
3081 }
3082
3083 /* used for instruction fetching */
3084 static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
3085 struct kvm_vcpu *vcpu, u32 *error)
3086 {
3087 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3088 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3089 access | PFERR_FETCH_MASK, error);
3090 }
3091
3092 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
3093 struct kvm_vcpu *vcpu, u32 *error)
3094 {
3095 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3096 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3097 error);
3098 }
3099
3100 static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
3101 struct kvm_vcpu *vcpu, u32 *error)
3102 {
3103 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
3104 }
3105
3106 static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
3107 struct kvm_vcpu *vcpu, u32 *error)
3108 {
3109 void *data = val;
3110 int r = X86EMUL_CONTINUE;
3111
3112 while (bytes) {
3113 gpa_t gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, error);
3114 unsigned offset = addr & (PAGE_SIZE-1);
3115 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3116 int ret;
3117
3118 if (gpa == UNMAPPED_GVA) {
3119 r = X86EMUL_PROPAGATE_FAULT;
3120 goto out;
3121 }
3122 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3123 if (ret < 0) {
3124 r = X86EMUL_UNHANDLEABLE;
3125 goto out;
3126 }
3127
3128 bytes -= towrite;
3129 data += towrite;
3130 addr += towrite;
3131 }
3132 out:
3133 return r;
3134 }
3135
3136
3137 static int emulator_read_emulated(unsigned long addr,
3138 void *val,
3139 unsigned int bytes,
3140 struct kvm_vcpu *vcpu)
3141 {
3142 gpa_t gpa;
3143 u32 error_code;
3144
3145 if (vcpu->mmio_read_completed) {
3146 memcpy(val, vcpu->mmio_data, bytes);
3147 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3148 vcpu->mmio_phys_addr, *(u64 *)val);
3149 vcpu->mmio_read_completed = 0;
3150 return X86EMUL_CONTINUE;
3151 }
3152
3153 gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, &error_code);
3154
3155 if (gpa == UNMAPPED_GVA) {
3156 kvm_inject_page_fault(vcpu, addr, error_code);
3157 return X86EMUL_PROPAGATE_FAULT;
3158 }
3159
3160 /* For APIC access vmexit */
3161 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3162 goto mmio;
3163
3164 if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
3165 == X86EMUL_CONTINUE)
3166 return X86EMUL_CONTINUE;
3167
3168 mmio:
3169 /*
3170 * Is this MMIO handled locally?
3171 */
3172 if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
3173 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
3174 return X86EMUL_CONTINUE;
3175 }
3176
3177 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3178
3179 vcpu->mmio_needed = 1;
3180 vcpu->mmio_phys_addr = gpa;
3181 vcpu->mmio_size = bytes;
3182 vcpu->mmio_is_write = 0;
3183
3184 return X86EMUL_UNHANDLEABLE;
3185 }
3186
3187 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3188 const void *val, int bytes)
3189 {
3190 int ret;
3191
3192 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3193 if (ret < 0)
3194 return 0;
3195 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3196 return 1;
3197 }
3198
3199 static int emulator_write_emulated_onepage(unsigned long addr,
3200 const void *val,
3201 unsigned int bytes,
3202 struct kvm_vcpu *vcpu)
3203 {
3204 gpa_t gpa;
3205 u32 error_code;
3206
3207 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, &error_code);
3208
3209 if (gpa == UNMAPPED_GVA) {
3210 kvm_inject_page_fault(vcpu, addr, error_code);
3211 return X86EMUL_PROPAGATE_FAULT;
3212 }
3213
3214 /* For APIC access vmexit */
3215 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3216 goto mmio;
3217
3218 if (emulator_write_phys(vcpu, gpa, val, bytes))
3219 return X86EMUL_CONTINUE;
3220
3221 mmio:
3222 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3223 /*
3224 * Is this MMIO handled locally?
3225 */
3226 if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
3227 return X86EMUL_CONTINUE;
3228
3229 vcpu->mmio_needed = 1;
3230 vcpu->mmio_phys_addr = gpa;
3231 vcpu->mmio_size = bytes;
3232 vcpu->mmio_is_write = 1;
3233 memcpy(vcpu->mmio_data, val, bytes);
3234
3235 return X86EMUL_CONTINUE;
3236 }
3237
3238 int emulator_write_emulated(unsigned long addr,
3239 const void *val,
3240 unsigned int bytes,
3241 struct kvm_vcpu *vcpu)
3242 {
3243 /* Crossing a page boundary? */
3244 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3245 int rc, now;
3246
3247 now = -addr & ~PAGE_MASK;
3248 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
3249 if (rc != X86EMUL_CONTINUE)
3250 return rc;
3251 addr += now;
3252 val += now;
3253 bytes -= now;
3254 }
3255 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
3256 }
3257 EXPORT_SYMBOL_GPL(emulator_write_emulated);
3258
3259 static int emulator_cmpxchg_emulated(unsigned long addr,
3260 const void *old,
3261 const void *new,
3262 unsigned int bytes,
3263 struct kvm_vcpu *vcpu)
3264 {
3265 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3266 #ifndef CONFIG_X86_64
3267 /* guests cmpxchg8b have to be emulated atomically */
3268 if (bytes == 8) {
3269 gpa_t gpa;
3270 struct page *page;
3271 char *kaddr;
3272 u64 val;
3273
3274 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3275
3276 if (gpa == UNMAPPED_GVA ||
3277 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3278 goto emul_write;
3279
3280 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3281 goto emul_write;
3282
3283 val = *(u64 *)new;
3284
3285 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3286
3287 kaddr = kmap_atomic(page, KM_USER0);
3288 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
3289 kunmap_atomic(kaddr, KM_USER0);
3290 kvm_release_page_dirty(page);
3291 }
3292 emul_write:
3293 #endif
3294
3295 return emulator_write_emulated(addr, new, bytes, vcpu);
3296 }
3297
3298 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
3299 {
3300 return kvm_x86_ops->get_segment_base(vcpu, seg);
3301 }
3302
3303 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
3304 {
3305 kvm_mmu_invlpg(vcpu, address);
3306 return X86EMUL_CONTINUE;
3307 }
3308
3309 int emulate_clts(struct kvm_vcpu *vcpu)
3310 {
3311 kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3312 kvm_x86_ops->fpu_activate(vcpu);
3313 return X86EMUL_CONTINUE;
3314 }
3315
3316 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
3317 {
3318 return kvm_x86_ops->get_dr(ctxt->vcpu, dr, dest);
3319 }
3320
3321 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
3322 {
3323 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
3324
3325 return kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask);
3326 }
3327
3328 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
3329 {
3330 u8 opcodes[4];
3331 unsigned long rip = kvm_rip_read(vcpu);
3332 unsigned long rip_linear;
3333
3334 if (!printk_ratelimit())
3335 return;
3336
3337 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
3338
3339 kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu, NULL);
3340
3341 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
3342 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
3343 }
3344 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
3345
3346 static struct x86_emulate_ops emulate_ops = {
3347 .read_std = kvm_read_guest_virt_system,
3348 .fetch = kvm_fetch_guest_virt,
3349 .read_emulated = emulator_read_emulated,
3350 .write_emulated = emulator_write_emulated,
3351 .cmpxchg_emulated = emulator_cmpxchg_emulated,
3352 };
3353
3354 static void cache_all_regs(struct kvm_vcpu *vcpu)
3355 {
3356 kvm_register_read(vcpu, VCPU_REGS_RAX);
3357 kvm_register_read(vcpu, VCPU_REGS_RSP);
3358 kvm_register_read(vcpu, VCPU_REGS_RIP);
3359 vcpu->arch.regs_dirty = ~0;
3360 }
3361
3362 int emulate_instruction(struct kvm_vcpu *vcpu,
3363 unsigned long cr2,
3364 u16 error_code,
3365 int emulation_type)
3366 {
3367 int r, shadow_mask;
3368 struct decode_cache *c;
3369 struct kvm_run *run = vcpu->run;
3370
3371 kvm_clear_exception_queue(vcpu);
3372 vcpu->arch.mmio_fault_cr2 = cr2;
3373 /*
3374 * TODO: fix emulate.c to use guest_read/write_register
3375 * instead of direct ->regs accesses, can save hundred cycles
3376 * on Intel for instructions that don't read/change RSP, for
3377 * for example.
3378 */
3379 cache_all_regs(vcpu);
3380
3381 vcpu->mmio_is_write = 0;
3382 vcpu->arch.pio.string = 0;
3383
3384 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
3385 int cs_db, cs_l;
3386 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
3387
3388 vcpu->arch.emulate_ctxt.vcpu = vcpu;
3389 vcpu->arch.emulate_ctxt.eflags = kvm_get_rflags(vcpu);
3390 vcpu->arch.emulate_ctxt.mode =
3391 (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
3392 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
3393 ? X86EMUL_MODE_VM86 : cs_l
3394 ? X86EMUL_MODE_PROT64 : cs_db
3395 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
3396
3397 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
3398
3399 /* Only allow emulation of specific instructions on #UD
3400 * (namely VMMCALL, sysenter, sysexit, syscall)*/
3401 c = &vcpu->arch.emulate_ctxt.decode;
3402 if (emulation_type & EMULTYPE_TRAP_UD) {
3403 if (!c->twobyte)
3404 return EMULATE_FAIL;
3405 switch (c->b) {
3406 case 0x01: /* VMMCALL */
3407 if (c->modrm_mod != 3 || c->modrm_rm != 1)
3408 return EMULATE_FAIL;
3409 break;
3410 case 0x34: /* sysenter */
3411 case 0x35: /* sysexit */
3412 if (c->modrm_mod != 0 || c->modrm_rm != 0)
3413 return EMULATE_FAIL;
3414 break;
3415 case 0x05: /* syscall */
3416 if (c->modrm_mod != 0 || c->modrm_rm != 0)
3417 return EMULATE_FAIL;
3418 break;
3419 default:
3420 return EMULATE_FAIL;
3421 }
3422
3423 if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
3424 return EMULATE_FAIL;
3425 }
3426
3427 ++vcpu->stat.insn_emulation;
3428 if (r) {
3429 ++vcpu->stat.insn_emulation_fail;
3430 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
3431 return EMULATE_DONE;
3432 return EMULATE_FAIL;
3433 }
3434 }
3435
3436 if (emulation_type & EMULTYPE_SKIP) {
3437 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
3438 return EMULATE_DONE;
3439 }
3440
3441 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
3442 shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
3443
3444 if (r == 0)
3445 kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
3446
3447 if (vcpu->arch.pio.string)
3448 return EMULATE_DO_MMIO;
3449
3450 if ((r || vcpu->mmio_is_write) && run) {
3451 run->exit_reason = KVM_EXIT_MMIO;
3452 run->mmio.phys_addr = vcpu->mmio_phys_addr;
3453 memcpy(run->mmio.data, vcpu->mmio_data, 8);
3454 run->mmio.len = vcpu->mmio_size;
3455 run->mmio.is_write = vcpu->mmio_is_write;
3456 }
3457
3458 if (r) {
3459 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
3460 return EMULATE_DONE;
3461 if (!vcpu->mmio_needed) {
3462 kvm_report_emulation_failure(vcpu, "mmio");
3463 return EMULATE_FAIL;
3464 }
3465 return EMULATE_DO_MMIO;
3466 }
3467
3468 kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
3469
3470 if (vcpu->mmio_is_write) {
3471 vcpu->mmio_needed = 0;
3472 return EMULATE_DO_MMIO;
3473 }
3474
3475 return EMULATE_DONE;
3476 }
3477 EXPORT_SYMBOL_GPL(emulate_instruction);
3478
3479 static int pio_copy_data(struct kvm_vcpu *vcpu)
3480 {
3481 void *p = vcpu->arch.pio_data;
3482 gva_t q = vcpu->arch.pio.guest_gva;
3483 unsigned bytes;
3484 int ret;
3485 u32 error_code;
3486
3487 bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
3488 if (vcpu->arch.pio.in)
3489 ret = kvm_write_guest_virt(q, p, bytes, vcpu, &error_code);
3490 else
3491 ret = kvm_read_guest_virt(q, p, bytes, vcpu, &error_code);
3492
3493 if (ret == X86EMUL_PROPAGATE_FAULT)
3494 kvm_inject_page_fault(vcpu, q, error_code);
3495
3496 return ret;
3497 }
3498
3499 int complete_pio(struct kvm_vcpu *vcpu)
3500 {
3501 struct kvm_pio_request *io = &vcpu->arch.pio;
3502 long delta;
3503 int r;
3504 unsigned long val;
3505
3506 if (!io->string) {
3507 if (io->in) {
3508 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
3509 memcpy(&val, vcpu->arch.pio_data, io->size);
3510 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
3511 }
3512 } else {
3513 if (io->in) {
3514 r = pio_copy_data(vcpu);
3515 if (r)
3516 goto out;
3517 }
3518
3519 delta = 1;
3520 if (io->rep) {
3521 delta *= io->cur_count;
3522 /*
3523 * The size of the register should really depend on
3524 * current address size.
3525 */
3526 val = kvm_register_read(vcpu, VCPU_REGS_RCX);
3527 val -= delta;
3528 kvm_register_write(vcpu, VCPU_REGS_RCX, val);
3529 }
3530 if (io->down)
3531 delta = -delta;
3532 delta *= io->size;
3533 if (io->in) {
3534 val = kvm_register_read(vcpu, VCPU_REGS_RDI);
3535 val += delta;
3536 kvm_register_write(vcpu, VCPU_REGS_RDI, val);
3537 } else {
3538 val = kvm_register_read(vcpu, VCPU_REGS_RSI);
3539 val += delta;
3540 kvm_register_write(vcpu, VCPU_REGS_RSI, val);
3541 }
3542 }
3543 out:
3544 io->count -= io->cur_count;
3545 io->cur_count = 0;
3546
3547 return 0;
3548 }
3549
3550 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3551 {
3552 /* TODO: String I/O for in kernel device */
3553 int r;
3554
3555 if (vcpu->arch.pio.in)
3556 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3557 vcpu->arch.pio.size, pd);
3558 else
3559 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3560 vcpu->arch.pio.port, vcpu->arch.pio.size,
3561 pd);
3562 return r;
3563 }
3564
3565 static int pio_string_write(struct kvm_vcpu *vcpu)
3566 {
3567 struct kvm_pio_request *io = &vcpu->arch.pio;
3568 void *pd = vcpu->arch.pio_data;
3569 int i, r = 0;
3570
3571 for (i = 0; i < io->cur_count; i++) {
3572 if (kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3573 io->port, io->size, pd)) {
3574 r = -EOPNOTSUPP;
3575 break;
3576 }
3577 pd += io->size;
3578 }
3579 return r;
3580 }
3581
3582 int kvm_emulate_pio(struct kvm_vcpu *vcpu, int in, int size, unsigned port)
3583 {
3584 unsigned long val;
3585
3586 trace_kvm_pio(!in, port, size, 1);
3587
3588 vcpu->run->exit_reason = KVM_EXIT_IO;
3589 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3590 vcpu->run->io.size = vcpu->arch.pio.size = size;
3591 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3592 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
3593 vcpu->run->io.port = vcpu->arch.pio.port = port;
3594 vcpu->arch.pio.in = in;
3595 vcpu->arch.pio.string = 0;
3596 vcpu->arch.pio.down = 0;
3597 vcpu->arch.pio.rep = 0;
3598
3599 if (!vcpu->arch.pio.in) {
3600 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
3601 memcpy(vcpu->arch.pio_data, &val, 4);
3602 }
3603
3604 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3605 complete_pio(vcpu);
3606 return 1;
3607 }
3608 return 0;
3609 }
3610 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
3611
3612 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, int in,
3613 int size, unsigned long count, int down,
3614 gva_t address, int rep, unsigned port)
3615 {
3616 unsigned now, in_page;
3617 int ret = 0;
3618
3619 trace_kvm_pio(!in, port, size, count);
3620
3621 vcpu->run->exit_reason = KVM_EXIT_IO;
3622 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3623 vcpu->run->io.size = vcpu->arch.pio.size = size;
3624 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3625 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
3626 vcpu->run->io.port = vcpu->arch.pio.port = port;
3627 vcpu->arch.pio.in = in;
3628 vcpu->arch.pio.string = 1;
3629 vcpu->arch.pio.down = down;
3630 vcpu->arch.pio.rep = rep;
3631
3632 if (!count) {
3633 kvm_x86_ops->skip_emulated_instruction(vcpu);
3634 return 1;
3635 }
3636
3637 if (!down)
3638 in_page = PAGE_SIZE - offset_in_page(address);
3639 else
3640 in_page = offset_in_page(address) + size;
3641 now = min(count, (unsigned long)in_page / size);
3642 if (!now)
3643 now = 1;
3644 if (down) {
3645 /*
3646 * String I/O in reverse. Yuck. Kill the guest, fix later.
3647 */
3648 pr_unimpl(vcpu, "guest string pio down\n");
3649 kvm_inject_gp(vcpu, 0);
3650 return 1;
3651 }
3652 vcpu->run->io.count = now;
3653 vcpu->arch.pio.cur_count = now;
3654
3655 if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
3656 kvm_x86_ops->skip_emulated_instruction(vcpu);
3657
3658 vcpu->arch.pio.guest_gva = address;
3659
3660 if (!vcpu->arch.pio.in) {
3661 /* string PIO write */
3662 ret = pio_copy_data(vcpu);
3663 if (ret == X86EMUL_PROPAGATE_FAULT)
3664 return 1;
3665 if (ret == 0 && !pio_string_write(vcpu)) {
3666 complete_pio(vcpu);
3667 if (vcpu->arch.pio.count == 0)
3668 ret = 1;
3669 }
3670 }
3671 /* no string PIO read support yet */
3672
3673 return ret;
3674 }
3675 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
3676
3677 static void bounce_off(void *info)
3678 {
3679 /* nothing */
3680 }
3681
3682 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
3683 void *data)
3684 {
3685 struct cpufreq_freqs *freq = data;
3686 struct kvm *kvm;
3687 struct kvm_vcpu *vcpu;
3688 int i, send_ipi = 0;
3689
3690 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
3691 return 0;
3692 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
3693 return 0;
3694 per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
3695
3696 spin_lock(&kvm_lock);
3697 list_for_each_entry(kvm, &vm_list, vm_list) {
3698 kvm_for_each_vcpu(i, vcpu, kvm) {
3699 if (vcpu->cpu != freq->cpu)
3700 continue;
3701 if (!kvm_request_guest_time_update(vcpu))
3702 continue;
3703 if (vcpu->cpu != smp_processor_id())
3704 send_ipi++;
3705 }
3706 }
3707 spin_unlock(&kvm_lock);
3708
3709 if (freq->old < freq->new && send_ipi) {
3710 /*
3711 * We upscale the frequency. Must make the guest
3712 * doesn't see old kvmclock values while running with
3713 * the new frequency, otherwise we risk the guest sees
3714 * time go backwards.
3715 *
3716 * In case we update the frequency for another cpu
3717 * (which might be in guest context) send an interrupt
3718 * to kick the cpu out of guest context. Next time
3719 * guest context is entered kvmclock will be updated,
3720 * so the guest will not see stale values.
3721 */
3722 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
3723 }
3724 return 0;
3725 }
3726
3727 static struct notifier_block kvmclock_cpufreq_notifier_block = {
3728 .notifier_call = kvmclock_cpufreq_notifier
3729 };
3730
3731 static void kvm_timer_init(void)
3732 {
3733 int cpu;
3734
3735 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
3736 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
3737 CPUFREQ_TRANSITION_NOTIFIER);
3738 for_each_online_cpu(cpu) {
3739 unsigned long khz = cpufreq_get(cpu);
3740 if (!khz)
3741 khz = tsc_khz;
3742 per_cpu(cpu_tsc_khz, cpu) = khz;
3743 }
3744 } else {
3745 for_each_possible_cpu(cpu)
3746 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
3747 }
3748 }
3749
3750 int kvm_arch_init(void *opaque)
3751 {
3752 int r;
3753 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
3754
3755 if (kvm_x86_ops) {
3756 printk(KERN_ERR "kvm: already loaded the other module\n");
3757 r = -EEXIST;
3758 goto out;
3759 }
3760
3761 if (!ops->cpu_has_kvm_support()) {
3762 printk(KERN_ERR "kvm: no hardware support\n");
3763 r = -EOPNOTSUPP;
3764 goto out;
3765 }
3766 if (ops->disabled_by_bios()) {
3767 printk(KERN_ERR "kvm: disabled by bios\n");
3768 r = -EOPNOTSUPP;
3769 goto out;
3770 }
3771
3772 r = kvm_mmu_module_init();
3773 if (r)
3774 goto out;
3775
3776 kvm_init_msr_list();
3777
3778 kvm_x86_ops = ops;
3779 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
3780 kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
3781 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
3782 PT_DIRTY_MASK, PT64_NX_MASK, 0);
3783
3784 kvm_timer_init();
3785
3786 return 0;
3787
3788 out:
3789 return r;
3790 }
3791
3792 void kvm_arch_exit(void)
3793 {
3794 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
3795 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
3796 CPUFREQ_TRANSITION_NOTIFIER);
3797 kvm_x86_ops = NULL;
3798 kvm_mmu_module_exit();
3799 }
3800
3801 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
3802 {
3803 ++vcpu->stat.halt_exits;
3804 if (irqchip_in_kernel(vcpu->kvm)) {
3805 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
3806 return 1;
3807 } else {
3808 vcpu->run->exit_reason = KVM_EXIT_HLT;
3809 return 0;
3810 }
3811 }
3812 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
3813
3814 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
3815 unsigned long a1)
3816 {
3817 if (is_long_mode(vcpu))
3818 return a0;
3819 else
3820 return a0 | ((gpa_t)a1 << 32);
3821 }
3822
3823 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
3824 {
3825 u64 param, ingpa, outgpa, ret;
3826 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
3827 bool fast, longmode;
3828 int cs_db, cs_l;
3829
3830 /*
3831 * hypercall generates UD from non zero cpl and real mode
3832 * per HYPER-V spec
3833 */
3834 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
3835 kvm_queue_exception(vcpu, UD_VECTOR);
3836 return 0;
3837 }
3838
3839 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
3840 longmode = is_long_mode(vcpu) && cs_l == 1;
3841
3842 if (!longmode) {
3843 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
3844 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
3845 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
3846 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
3847 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
3848 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
3849 }
3850 #ifdef CONFIG_X86_64
3851 else {
3852 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
3853 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
3854 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
3855 }
3856 #endif
3857
3858 code = param & 0xffff;
3859 fast = (param >> 16) & 0x1;
3860 rep_cnt = (param >> 32) & 0xfff;
3861 rep_idx = (param >> 48) & 0xfff;
3862
3863 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
3864
3865 switch (code) {
3866 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
3867 kvm_vcpu_on_spin(vcpu);
3868 break;
3869 default:
3870 res = HV_STATUS_INVALID_HYPERCALL_CODE;
3871 break;
3872 }
3873
3874 ret = res | (((u64)rep_done & 0xfff) << 32);
3875 if (longmode) {
3876 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
3877 } else {
3878 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
3879 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
3880 }
3881
3882 return 1;
3883 }
3884
3885 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
3886 {
3887 unsigned long nr, a0, a1, a2, a3, ret;
3888 int r = 1;
3889
3890 if (kvm_hv_hypercall_enabled(vcpu->kvm))
3891 return kvm_hv_hypercall(vcpu);
3892
3893 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
3894 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
3895 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
3896 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
3897 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
3898
3899 trace_kvm_hypercall(nr, a0, a1, a2, a3);
3900
3901 if (!is_long_mode(vcpu)) {
3902 nr &= 0xFFFFFFFF;
3903 a0 &= 0xFFFFFFFF;
3904 a1 &= 0xFFFFFFFF;
3905 a2 &= 0xFFFFFFFF;
3906 a3 &= 0xFFFFFFFF;
3907 }
3908
3909 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
3910 ret = -KVM_EPERM;
3911 goto out;
3912 }
3913
3914 switch (nr) {
3915 case KVM_HC_VAPIC_POLL_IRQ:
3916 ret = 0;
3917 break;
3918 case KVM_HC_MMU_OP:
3919 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
3920 break;
3921 default:
3922 ret = -KVM_ENOSYS;
3923 break;
3924 }
3925 out:
3926 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
3927 ++vcpu->stat.hypercalls;
3928 return r;
3929 }
3930 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
3931
3932 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
3933 {
3934 char instruction[3];
3935 unsigned long rip = kvm_rip_read(vcpu);
3936
3937 /*
3938 * Blow out the MMU to ensure that no other VCPU has an active mapping
3939 * to ensure that the updated hypercall appears atomically across all
3940 * VCPUs.
3941 */
3942 kvm_mmu_zap_all(vcpu->kvm);
3943
3944 kvm_x86_ops->patch_hypercall(vcpu, instruction);
3945
3946 return emulator_write_emulated(rip, instruction, 3, vcpu);
3947 }
3948
3949 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3950 {
3951 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3952 }
3953
3954 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3955 {
3956 struct descriptor_table dt = { limit, base };
3957
3958 kvm_x86_ops->set_gdt(vcpu, &dt);
3959 }
3960
3961 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3962 {
3963 struct descriptor_table dt = { limit, base };
3964
3965 kvm_x86_ops->set_idt(vcpu, &dt);
3966 }
3967
3968 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
3969 unsigned long *rflags)
3970 {
3971 kvm_lmsw(vcpu, msw);
3972 *rflags = kvm_get_rflags(vcpu);
3973 }
3974
3975 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
3976 {
3977 unsigned long value;
3978
3979 switch (cr) {
3980 case 0:
3981 value = kvm_read_cr0(vcpu);
3982 break;
3983 case 2:
3984 value = vcpu->arch.cr2;
3985 break;
3986 case 3:
3987 value = vcpu->arch.cr3;
3988 break;
3989 case 4:
3990 value = kvm_read_cr4(vcpu);
3991 break;
3992 case 8:
3993 value = kvm_get_cr8(vcpu);
3994 break;
3995 default:
3996 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3997 return 0;
3998 }
3999
4000 return value;
4001 }
4002
4003 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
4004 unsigned long *rflags)
4005 {
4006 switch (cr) {
4007 case 0:
4008 kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4009 *rflags = kvm_get_rflags(vcpu);
4010 break;
4011 case 2:
4012 vcpu->arch.cr2 = val;
4013 break;
4014 case 3:
4015 kvm_set_cr3(vcpu, val);
4016 break;
4017 case 4:
4018 kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4019 break;
4020 case 8:
4021 kvm_set_cr8(vcpu, val & 0xfUL);
4022 break;
4023 default:
4024 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4025 }
4026 }
4027
4028 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
4029 {
4030 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
4031 int j, nent = vcpu->arch.cpuid_nent;
4032
4033 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
4034 /* when no next entry is found, the current entry[i] is reselected */
4035 for (j = i + 1; ; j = (j + 1) % nent) {
4036 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
4037 if (ej->function == e->function) {
4038 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
4039 return j;
4040 }
4041 }
4042 return 0; /* silence gcc, even though control never reaches here */
4043 }
4044
4045 /* find an entry with matching function, matching index (if needed), and that
4046 * should be read next (if it's stateful) */
4047 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
4048 u32 function, u32 index)
4049 {
4050 if (e->function != function)
4051 return 0;
4052 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
4053 return 0;
4054 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
4055 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
4056 return 0;
4057 return 1;
4058 }
4059
4060 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
4061 u32 function, u32 index)
4062 {
4063 int i;
4064 struct kvm_cpuid_entry2 *best = NULL;
4065
4066 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
4067 struct kvm_cpuid_entry2 *e;
4068
4069 e = &vcpu->arch.cpuid_entries[i];
4070 if (is_matching_cpuid_entry(e, function, index)) {
4071 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
4072 move_to_next_stateful_cpuid_entry(vcpu, i);
4073 best = e;
4074 break;
4075 }
4076 /*
4077 * Both basic or both extended?
4078 */
4079 if (((e->function ^ function) & 0x80000000) == 0)
4080 if (!best || e->function > best->function)
4081 best = e;
4082 }
4083 return best;
4084 }
4085 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
4086
4087 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
4088 {
4089 struct kvm_cpuid_entry2 *best;
4090
4091 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
4092 if (best)
4093 return best->eax & 0xff;
4094 return 36;
4095 }
4096
4097 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
4098 {
4099 u32 function, index;
4100 struct kvm_cpuid_entry2 *best;
4101
4102 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
4103 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4104 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
4105 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
4106 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
4107 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
4108 best = kvm_find_cpuid_entry(vcpu, function, index);
4109 if (best) {
4110 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
4111 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
4112 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
4113 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
4114 }
4115 kvm_x86_ops->skip_emulated_instruction(vcpu);
4116 trace_kvm_cpuid(function,
4117 kvm_register_read(vcpu, VCPU_REGS_RAX),
4118 kvm_register_read(vcpu, VCPU_REGS_RBX),
4119 kvm_register_read(vcpu, VCPU_REGS_RCX),
4120 kvm_register_read(vcpu, VCPU_REGS_RDX));
4121 }
4122 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
4123
4124 /*
4125 * Check if userspace requested an interrupt window, and that the
4126 * interrupt window is open.
4127 *
4128 * No need to exit to userspace if we already have an interrupt queued.
4129 */
4130 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
4131 {
4132 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
4133 vcpu->run->request_interrupt_window &&
4134 kvm_arch_interrupt_allowed(vcpu));
4135 }
4136
4137 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
4138 {
4139 struct kvm_run *kvm_run = vcpu->run;
4140
4141 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
4142 kvm_run->cr8 = kvm_get_cr8(vcpu);
4143 kvm_run->apic_base = kvm_get_apic_base(vcpu);
4144 if (irqchip_in_kernel(vcpu->kvm))
4145 kvm_run->ready_for_interrupt_injection = 1;
4146 else
4147 kvm_run->ready_for_interrupt_injection =
4148 kvm_arch_interrupt_allowed(vcpu) &&
4149 !kvm_cpu_has_interrupt(vcpu) &&
4150 !kvm_event_needs_reinjection(vcpu);
4151 }
4152
4153 static void vapic_enter(struct kvm_vcpu *vcpu)
4154 {
4155 struct kvm_lapic *apic = vcpu->arch.apic;
4156 struct page *page;
4157
4158 if (!apic || !apic->vapic_addr)
4159 return;
4160
4161 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4162
4163 vcpu->arch.apic->vapic_page = page;
4164 }
4165
4166 static void vapic_exit(struct kvm_vcpu *vcpu)
4167 {
4168 struct kvm_lapic *apic = vcpu->arch.apic;
4169 int idx;
4170
4171 if (!apic || !apic->vapic_addr)
4172 return;
4173
4174 idx = srcu_read_lock(&vcpu->kvm->srcu);
4175 kvm_release_page_dirty(apic->vapic_page);
4176 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4177 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4178 }
4179
4180 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
4181 {
4182 int max_irr, tpr;
4183
4184 if (!kvm_x86_ops->update_cr8_intercept)
4185 return;
4186
4187 if (!vcpu->arch.apic)
4188 return;
4189
4190 if (!vcpu->arch.apic->vapic_addr)
4191 max_irr = kvm_lapic_find_highest_irr(vcpu);
4192 else
4193 max_irr = -1;
4194
4195 if (max_irr != -1)
4196 max_irr >>= 4;
4197
4198 tpr = kvm_lapic_get_cr8(vcpu);
4199
4200 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
4201 }
4202
4203 static void inject_pending_event(struct kvm_vcpu *vcpu)
4204 {
4205 /* try to reinject previous events if any */
4206 if (vcpu->arch.exception.pending) {
4207 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
4208 vcpu->arch.exception.has_error_code,
4209 vcpu->arch.exception.error_code);
4210 return;
4211 }
4212
4213 if (vcpu->arch.nmi_injected) {
4214 kvm_x86_ops->set_nmi(vcpu);
4215 return;
4216 }
4217
4218 if (vcpu->arch.interrupt.pending) {
4219 kvm_x86_ops->set_irq(vcpu);
4220 return;
4221 }
4222
4223 /* try to inject new event if pending */
4224 if (vcpu->arch.nmi_pending) {
4225 if (kvm_x86_ops->nmi_allowed(vcpu)) {
4226 vcpu->arch.nmi_pending = false;
4227 vcpu->arch.nmi_injected = true;
4228 kvm_x86_ops->set_nmi(vcpu);
4229 }
4230 } else if (kvm_cpu_has_interrupt(vcpu)) {
4231 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
4232 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
4233 false);
4234 kvm_x86_ops->set_irq(vcpu);
4235 }
4236 }
4237 }
4238
4239 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
4240 {
4241 int r;
4242 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
4243 vcpu->run->request_interrupt_window;
4244
4245 if (vcpu->requests)
4246 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
4247 kvm_mmu_unload(vcpu);
4248
4249 r = kvm_mmu_reload(vcpu);
4250 if (unlikely(r))
4251 goto out;
4252
4253 if (vcpu->requests) {
4254 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
4255 __kvm_migrate_timers(vcpu);
4256 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
4257 kvm_write_guest_time(vcpu);
4258 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
4259 kvm_mmu_sync_roots(vcpu);
4260 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
4261 kvm_x86_ops->tlb_flush(vcpu);
4262 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
4263 &vcpu->requests)) {
4264 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
4265 r = 0;
4266 goto out;
4267 }
4268 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
4269 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4270 r = 0;
4271 goto out;
4272 }
4273 if (test_and_clear_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests)) {
4274 vcpu->fpu_active = 0;
4275 kvm_x86_ops->fpu_deactivate(vcpu);
4276 }
4277 }
4278
4279 preempt_disable();
4280
4281 kvm_x86_ops->prepare_guest_switch(vcpu);
4282 if (vcpu->fpu_active)
4283 kvm_load_guest_fpu(vcpu);
4284
4285 local_irq_disable();
4286
4287 clear_bit(KVM_REQ_KICK, &vcpu->requests);
4288 smp_mb__after_clear_bit();
4289
4290 if (vcpu->requests || need_resched() || signal_pending(current)) {
4291 set_bit(KVM_REQ_KICK, &vcpu->requests);
4292 local_irq_enable();
4293 preempt_enable();
4294 r = 1;
4295 goto out;
4296 }
4297
4298 inject_pending_event(vcpu);
4299
4300 /* enable NMI/IRQ window open exits if needed */
4301 if (vcpu->arch.nmi_pending)
4302 kvm_x86_ops->enable_nmi_window(vcpu);
4303 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
4304 kvm_x86_ops->enable_irq_window(vcpu);
4305
4306 if (kvm_lapic_enabled(vcpu)) {
4307 update_cr8_intercept(vcpu);
4308 kvm_lapic_sync_to_vapic(vcpu);
4309 }
4310
4311 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4312
4313 kvm_guest_enter();
4314
4315 if (unlikely(vcpu->arch.switch_db_regs)) {
4316 set_debugreg(0, 7);
4317 set_debugreg(vcpu->arch.eff_db[0], 0);
4318 set_debugreg(vcpu->arch.eff_db[1], 1);
4319 set_debugreg(vcpu->arch.eff_db[2], 2);
4320 set_debugreg(vcpu->arch.eff_db[3], 3);
4321 }
4322
4323 trace_kvm_entry(vcpu->vcpu_id);
4324 kvm_x86_ops->run(vcpu);
4325
4326 /*
4327 * If the guest has used debug registers, at least dr7
4328 * will be disabled while returning to the host.
4329 * If we don't have active breakpoints in the host, we don't
4330 * care about the messed up debug address registers. But if
4331 * we have some of them active, restore the old state.
4332 */
4333 if (hw_breakpoint_active())
4334 hw_breakpoint_restore();
4335
4336 set_bit(KVM_REQ_KICK, &vcpu->requests);
4337 local_irq_enable();
4338
4339 ++vcpu->stat.exits;
4340
4341 /*
4342 * We must have an instruction between local_irq_enable() and
4343 * kvm_guest_exit(), so the timer interrupt isn't delayed by
4344 * the interrupt shadow. The stat.exits increment will do nicely.
4345 * But we need to prevent reordering, hence this barrier():
4346 */
4347 barrier();
4348
4349 kvm_guest_exit();
4350
4351 preempt_enable();
4352
4353 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4354
4355 /*
4356 * Profile KVM exit RIPs:
4357 */
4358 if (unlikely(prof_on == KVM_PROFILING)) {
4359 unsigned long rip = kvm_rip_read(vcpu);
4360 profile_hit(KVM_PROFILING, (void *)rip);
4361 }
4362
4363
4364 kvm_lapic_sync_from_vapic(vcpu);
4365
4366 r = kvm_x86_ops->handle_exit(vcpu);
4367 out:
4368 return r;
4369 }
4370
4371
4372 static int __vcpu_run(struct kvm_vcpu *vcpu)
4373 {
4374 int r;
4375 struct kvm *kvm = vcpu->kvm;
4376
4377 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
4378 pr_debug("vcpu %d received sipi with vector # %x\n",
4379 vcpu->vcpu_id, vcpu->arch.sipi_vector);
4380 kvm_lapic_reset(vcpu);
4381 r = kvm_arch_vcpu_reset(vcpu);
4382 if (r)
4383 return r;
4384 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4385 }
4386
4387 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4388 vapic_enter(vcpu);
4389
4390 r = 1;
4391 while (r > 0) {
4392 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
4393 r = vcpu_enter_guest(vcpu);
4394 else {
4395 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4396 kvm_vcpu_block(vcpu);
4397 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4398 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
4399 {
4400 switch(vcpu->arch.mp_state) {
4401 case KVM_MP_STATE_HALTED:
4402 vcpu->arch.mp_state =
4403 KVM_MP_STATE_RUNNABLE;
4404 case KVM_MP_STATE_RUNNABLE:
4405 break;
4406 case KVM_MP_STATE_SIPI_RECEIVED:
4407 default:
4408 r = -EINTR;
4409 break;
4410 }
4411 }
4412 }
4413
4414 if (r <= 0)
4415 break;
4416
4417 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
4418 if (kvm_cpu_has_pending_timer(vcpu))
4419 kvm_inject_pending_timer_irqs(vcpu);
4420
4421 if (dm_request_for_irq_injection(vcpu)) {
4422 r = -EINTR;
4423 vcpu->run->exit_reason = KVM_EXIT_INTR;
4424 ++vcpu->stat.request_irq_exits;
4425 }
4426 if (signal_pending(current)) {
4427 r = -EINTR;
4428 vcpu->run->exit_reason = KVM_EXIT_INTR;
4429 ++vcpu->stat.signal_exits;
4430 }
4431 if (need_resched()) {
4432 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4433 kvm_resched(vcpu);
4434 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4435 }
4436 }
4437
4438 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4439 post_kvm_run_save(vcpu);
4440
4441 vapic_exit(vcpu);
4442
4443 return r;
4444 }
4445
4446 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
4447 {
4448 int r;
4449 sigset_t sigsaved;
4450
4451 vcpu_load(vcpu);
4452
4453 if (vcpu->sigset_active)
4454 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
4455
4456 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
4457 kvm_vcpu_block(vcpu);
4458 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
4459 r = -EAGAIN;
4460 goto out;
4461 }
4462
4463 /* re-sync apic's tpr */
4464 if (!irqchip_in_kernel(vcpu->kvm))
4465 kvm_set_cr8(vcpu, kvm_run->cr8);
4466
4467 if (vcpu->arch.pio.cur_count) {
4468 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4469 r = complete_pio(vcpu);
4470 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4471 if (r)
4472 goto out;
4473 }
4474 if (vcpu->mmio_needed) {
4475 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
4476 vcpu->mmio_read_completed = 1;
4477 vcpu->mmio_needed = 0;
4478
4479 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4480 r = emulate_instruction(vcpu, vcpu->arch.mmio_fault_cr2, 0,
4481 EMULTYPE_NO_DECODE);
4482 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4483 if (r == EMULATE_DO_MMIO) {
4484 /*
4485 * Read-modify-write. Back to userspace.
4486 */
4487 r = 0;
4488 goto out;
4489 }
4490 }
4491 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
4492 kvm_register_write(vcpu, VCPU_REGS_RAX,
4493 kvm_run->hypercall.ret);
4494
4495 r = __vcpu_run(vcpu);
4496
4497 out:
4498 if (vcpu->sigset_active)
4499 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
4500
4501 vcpu_put(vcpu);
4502 return r;
4503 }
4504
4505 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4506 {
4507 vcpu_load(vcpu);
4508
4509 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4510 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4511 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4512 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4513 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4514 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4515 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4516 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4517 #ifdef CONFIG_X86_64
4518 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
4519 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
4520 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
4521 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
4522 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
4523 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
4524 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
4525 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
4526 #endif
4527
4528 regs->rip = kvm_rip_read(vcpu);
4529 regs->rflags = kvm_get_rflags(vcpu);
4530
4531 vcpu_put(vcpu);
4532
4533 return 0;
4534 }
4535
4536 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4537 {
4538 vcpu_load(vcpu);
4539
4540 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
4541 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
4542 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
4543 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
4544 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
4545 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
4546 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
4547 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
4548 #ifdef CONFIG_X86_64
4549 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
4550 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
4551 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
4552 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
4553 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
4554 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
4555 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
4556 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
4557 #endif
4558
4559 kvm_rip_write(vcpu, regs->rip);
4560 kvm_set_rflags(vcpu, regs->rflags);
4561
4562 vcpu->arch.exception.pending = false;
4563
4564 vcpu_put(vcpu);
4565
4566 return 0;
4567 }
4568
4569 void kvm_get_segment(struct kvm_vcpu *vcpu,
4570 struct kvm_segment *var, int seg)
4571 {
4572 kvm_x86_ops->get_segment(vcpu, var, seg);
4573 }
4574
4575 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4576 {
4577 struct kvm_segment cs;
4578
4579 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
4580 *db = cs.db;
4581 *l = cs.l;
4582 }
4583 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
4584
4585 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
4586 struct kvm_sregs *sregs)
4587 {
4588 struct descriptor_table dt;
4589
4590 vcpu_load(vcpu);
4591
4592 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4593 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4594 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4595 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4596 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4597 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4598
4599 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4600 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4601
4602 kvm_x86_ops->get_idt(vcpu, &dt);
4603 sregs->idt.limit = dt.limit;
4604 sregs->idt.base = dt.base;
4605 kvm_x86_ops->get_gdt(vcpu, &dt);
4606 sregs->gdt.limit = dt.limit;
4607 sregs->gdt.base = dt.base;
4608
4609 sregs->cr0 = kvm_read_cr0(vcpu);
4610 sregs->cr2 = vcpu->arch.cr2;
4611 sregs->cr3 = vcpu->arch.cr3;
4612 sregs->cr4 = kvm_read_cr4(vcpu);
4613 sregs->cr8 = kvm_get_cr8(vcpu);
4614 sregs->efer = vcpu->arch.efer;
4615 sregs->apic_base = kvm_get_apic_base(vcpu);
4616
4617 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
4618
4619 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
4620 set_bit(vcpu->arch.interrupt.nr,
4621 (unsigned long *)sregs->interrupt_bitmap);
4622
4623 vcpu_put(vcpu);
4624
4625 return 0;
4626 }
4627
4628 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
4629 struct kvm_mp_state *mp_state)
4630 {
4631 vcpu_load(vcpu);
4632 mp_state->mp_state = vcpu->arch.mp_state;
4633 vcpu_put(vcpu);
4634 return 0;
4635 }
4636
4637 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
4638 struct kvm_mp_state *mp_state)
4639 {
4640 vcpu_load(vcpu);
4641 vcpu->arch.mp_state = mp_state->mp_state;
4642 vcpu_put(vcpu);
4643 return 0;
4644 }
4645
4646 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4647 struct kvm_segment *var, int seg)
4648 {
4649 kvm_x86_ops->set_segment(vcpu, var, seg);
4650 }
4651
4652 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
4653 struct kvm_segment *kvm_desct)
4654 {
4655 kvm_desct->base = get_desc_base(seg_desc);
4656 kvm_desct->limit = get_desc_limit(seg_desc);
4657 if (seg_desc->g) {
4658 kvm_desct->limit <<= 12;
4659 kvm_desct->limit |= 0xfff;
4660 }
4661 kvm_desct->selector = selector;
4662 kvm_desct->type = seg_desc->type;
4663 kvm_desct->present = seg_desc->p;
4664 kvm_desct->dpl = seg_desc->dpl;
4665 kvm_desct->db = seg_desc->d;
4666 kvm_desct->s = seg_desc->s;
4667 kvm_desct->l = seg_desc->l;
4668 kvm_desct->g = seg_desc->g;
4669 kvm_desct->avl = seg_desc->avl;
4670 if (!selector)
4671 kvm_desct->unusable = 1;
4672 else
4673 kvm_desct->unusable = 0;
4674 kvm_desct->padding = 0;
4675 }
4676
4677 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
4678 u16 selector,
4679 struct descriptor_table *dtable)
4680 {
4681 if (selector & 1 << 2) {
4682 struct kvm_segment kvm_seg;
4683
4684 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
4685
4686 if (kvm_seg.unusable)
4687 dtable->limit = 0;
4688 else
4689 dtable->limit = kvm_seg.limit;
4690 dtable->base = kvm_seg.base;
4691 }
4692 else
4693 kvm_x86_ops->get_gdt(vcpu, dtable);
4694 }
4695
4696 /* allowed just for 8 bytes segments */
4697 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4698 struct desc_struct *seg_desc)
4699 {
4700 struct descriptor_table dtable;
4701 u16 index = selector >> 3;
4702 int ret;
4703 u32 err;
4704 gva_t addr;
4705
4706 get_segment_descriptor_dtable(vcpu, selector, &dtable);
4707
4708 if (dtable.limit < index * 8 + 7) {
4709 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
4710 return X86EMUL_PROPAGATE_FAULT;
4711 }
4712 addr = dtable.base + index * 8;
4713 ret = kvm_read_guest_virt_system(addr, seg_desc, sizeof(*seg_desc),
4714 vcpu, &err);
4715 if (ret == X86EMUL_PROPAGATE_FAULT)
4716 kvm_inject_page_fault(vcpu, addr, err);
4717
4718 return ret;
4719 }
4720
4721 /* allowed just for 8 bytes segments */
4722 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4723 struct desc_struct *seg_desc)
4724 {
4725 struct descriptor_table dtable;
4726 u16 index = selector >> 3;
4727
4728 get_segment_descriptor_dtable(vcpu, selector, &dtable);
4729
4730 if (dtable.limit < index * 8 + 7)
4731 return 1;
4732 return kvm_write_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu, NULL);
4733 }
4734
4735 static gpa_t get_tss_base_addr_write(struct kvm_vcpu *vcpu,
4736 struct desc_struct *seg_desc)
4737 {
4738 u32 base_addr = get_desc_base(seg_desc);
4739
4740 return kvm_mmu_gva_to_gpa_write(vcpu, base_addr, NULL);
4741 }
4742
4743 static gpa_t get_tss_base_addr_read(struct kvm_vcpu *vcpu,
4744 struct desc_struct *seg_desc)
4745 {
4746 u32 base_addr = get_desc_base(seg_desc);
4747
4748 return kvm_mmu_gva_to_gpa_read(vcpu, base_addr, NULL);
4749 }
4750
4751 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
4752 {
4753 struct kvm_segment kvm_seg;
4754
4755 kvm_get_segment(vcpu, &kvm_seg, seg);
4756 return kvm_seg.selector;
4757 }
4758
4759 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
4760 {
4761 struct kvm_segment segvar = {
4762 .base = selector << 4,
4763 .limit = 0xffff,
4764 .selector = selector,
4765 .type = 3,
4766 .present = 1,
4767 .dpl = 3,
4768 .db = 0,
4769 .s = 1,
4770 .l = 0,
4771 .g = 0,
4772 .avl = 0,
4773 .unusable = 0,
4774 };
4775 kvm_x86_ops->set_segment(vcpu, &segvar, seg);
4776 return X86EMUL_CONTINUE;
4777 }
4778
4779 static int is_vm86_segment(struct kvm_vcpu *vcpu, int seg)
4780 {
4781 return (seg != VCPU_SREG_LDTR) &&
4782 (seg != VCPU_SREG_TR) &&
4783 (kvm_get_rflags(vcpu) & X86_EFLAGS_VM);
4784 }
4785
4786 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg)
4787 {
4788 struct kvm_segment kvm_seg;
4789 struct desc_struct seg_desc;
4790 u8 dpl, rpl, cpl;
4791 unsigned err_vec = GP_VECTOR;
4792 u32 err_code = 0;
4793 bool null_selector = !(selector & ~0x3); /* 0000-0003 are null */
4794 int ret;
4795
4796 if (is_vm86_segment(vcpu, seg) || !is_protmode(vcpu))
4797 return kvm_load_realmode_segment(vcpu, selector, seg);
4798
4799 /* NULL selector is not valid for TR, CS and SS */
4800 if ((seg == VCPU_SREG_CS || seg == VCPU_SREG_SS || seg == VCPU_SREG_TR)
4801 && null_selector)
4802 goto exception;
4803
4804 /* TR should be in GDT only */
4805 if (seg == VCPU_SREG_TR && (selector & (1 << 2)))
4806 goto exception;
4807
4808 ret = load_guest_segment_descriptor(vcpu, selector, &seg_desc);
4809 if (ret)
4810 return ret;
4811
4812 seg_desct_to_kvm_desct(&seg_desc, selector, &kvm_seg);
4813
4814 if (null_selector) { /* for NULL selector skip all following checks */
4815 kvm_seg.unusable = 1;
4816 goto load;
4817 }
4818
4819 err_code = selector & 0xfffc;
4820 err_vec = GP_VECTOR;
4821
4822 /* can't load system descriptor into segment selecor */
4823 if (seg <= VCPU_SREG_GS && !kvm_seg.s)
4824 goto exception;
4825
4826 if (!kvm_seg.present) {
4827 err_vec = (seg == VCPU_SREG_SS) ? SS_VECTOR : NP_VECTOR;
4828 goto exception;
4829 }
4830
4831 rpl = selector & 3;
4832 dpl = kvm_seg.dpl;
4833 cpl = kvm_x86_ops->get_cpl(vcpu);
4834
4835 switch (seg) {
4836 case VCPU_SREG_SS:
4837 /*
4838 * segment is not a writable data segment or segment
4839 * selector's RPL != CPL or segment selector's RPL != CPL
4840 */
4841 if (rpl != cpl || (kvm_seg.type & 0xa) != 0x2 || dpl != cpl)
4842 goto exception;
4843 break;
4844 case VCPU_SREG_CS:
4845 if (!(kvm_seg.type & 8))
4846 goto exception;
4847
4848 if (kvm_seg.type & 4) {
4849 /* conforming */
4850 if (dpl > cpl)
4851 goto exception;
4852 } else {
4853 /* nonconforming */
4854 if (rpl > cpl || dpl != cpl)
4855 goto exception;
4856 }
4857 /* CS(RPL) <- CPL */
4858 selector = (selector & 0xfffc) | cpl;
4859 break;
4860 case VCPU_SREG_TR:
4861 if (kvm_seg.s || (kvm_seg.type != 1 && kvm_seg.type != 9))
4862 goto exception;
4863 break;
4864 case VCPU_SREG_LDTR:
4865 if (kvm_seg.s || kvm_seg.type != 2)
4866 goto exception;
4867 break;
4868 default: /* DS, ES, FS, or GS */
4869 /*
4870 * segment is not a data or readable code segment or
4871 * ((segment is a data or nonconforming code segment)
4872 * and (both RPL and CPL > DPL))
4873 */
4874 if ((kvm_seg.type & 0xa) == 0x8 ||
4875 (((kvm_seg.type & 0xc) != 0xc) && (rpl > dpl && cpl > dpl)))
4876 goto exception;
4877 break;
4878 }
4879
4880 if (!kvm_seg.unusable && kvm_seg.s) {
4881 /* mark segment as accessed */
4882 kvm_seg.type |= 1;
4883 seg_desc.type |= 1;
4884 save_guest_segment_descriptor(vcpu, selector, &seg_desc);
4885 }
4886 load:
4887 kvm_set_segment(vcpu, &kvm_seg, seg);
4888 return X86EMUL_CONTINUE;
4889 exception:
4890 kvm_queue_exception_e(vcpu, err_vec, err_code);
4891 return X86EMUL_PROPAGATE_FAULT;
4892 }
4893
4894 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
4895 struct tss_segment_32 *tss)
4896 {
4897 tss->cr3 = vcpu->arch.cr3;
4898 tss->eip = kvm_rip_read(vcpu);
4899 tss->eflags = kvm_get_rflags(vcpu);
4900 tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4901 tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4902 tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4903 tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4904 tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4905 tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4906 tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4907 tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4908 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4909 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4910 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4911 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4912 tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
4913 tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
4914 tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4915 }
4916
4917 static void kvm_load_segment_selector(struct kvm_vcpu *vcpu, u16 sel, int seg)
4918 {
4919 struct kvm_segment kvm_seg;
4920 kvm_get_segment(vcpu, &kvm_seg, seg);
4921 kvm_seg.selector = sel;
4922 kvm_set_segment(vcpu, &kvm_seg, seg);
4923 }
4924
4925 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
4926 struct tss_segment_32 *tss)
4927 {
4928 kvm_set_cr3(vcpu, tss->cr3);
4929
4930 kvm_rip_write(vcpu, tss->eip);
4931 kvm_set_rflags(vcpu, tss->eflags | 2);
4932
4933 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
4934 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
4935 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
4936 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
4937 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
4938 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
4939 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
4940 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
4941
4942 /*
4943 * SDM says that segment selectors are loaded before segment
4944 * descriptors
4945 */
4946 kvm_load_segment_selector(vcpu, tss->ldt_selector, VCPU_SREG_LDTR);
4947 kvm_load_segment_selector(vcpu, tss->es, VCPU_SREG_ES);
4948 kvm_load_segment_selector(vcpu, tss->cs, VCPU_SREG_CS);
4949 kvm_load_segment_selector(vcpu, tss->ss, VCPU_SREG_SS);
4950 kvm_load_segment_selector(vcpu, tss->ds, VCPU_SREG_DS);
4951 kvm_load_segment_selector(vcpu, tss->fs, VCPU_SREG_FS);
4952 kvm_load_segment_selector(vcpu, tss->gs, VCPU_SREG_GS);
4953
4954 /*
4955 * Now load segment descriptors. If fault happenes at this stage
4956 * it is handled in a context of new task
4957 */
4958 if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, VCPU_SREG_LDTR))
4959 return 1;
4960
4961 if (kvm_load_segment_descriptor(vcpu, tss->es, VCPU_SREG_ES))
4962 return 1;
4963
4964 if (kvm_load_segment_descriptor(vcpu, tss->cs, VCPU_SREG_CS))
4965 return 1;
4966
4967 if (kvm_load_segment_descriptor(vcpu, tss->ss, VCPU_SREG_SS))
4968 return 1;
4969
4970 if (kvm_load_segment_descriptor(vcpu, tss->ds, VCPU_SREG_DS))
4971 return 1;
4972
4973 if (kvm_load_segment_descriptor(vcpu, tss->fs, VCPU_SREG_FS))
4974 return 1;
4975
4976 if (kvm_load_segment_descriptor(vcpu, tss->gs, VCPU_SREG_GS))
4977 return 1;
4978 return 0;
4979 }
4980
4981 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
4982 struct tss_segment_16 *tss)
4983 {
4984 tss->ip = kvm_rip_read(vcpu);
4985 tss->flag = kvm_get_rflags(vcpu);
4986 tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4987 tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4988 tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4989 tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4990 tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4991 tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4992 tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
4993 tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
4994
4995 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4996 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4997 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4998 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4999 tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
5000 }
5001
5002 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
5003 struct tss_segment_16 *tss)
5004 {
5005 kvm_rip_write(vcpu, tss->ip);
5006 kvm_set_rflags(vcpu, tss->flag | 2);
5007 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
5008 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
5009 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
5010 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
5011 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
5012 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
5013 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
5014 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
5015
5016 /*
5017 * SDM says that segment selectors are loaded before segment
5018 * descriptors
5019 */
5020 kvm_load_segment_selector(vcpu, tss->ldt, VCPU_SREG_LDTR);
5021 kvm_load_segment_selector(vcpu, tss->es, VCPU_SREG_ES);
5022 kvm_load_segment_selector(vcpu, tss->cs, VCPU_SREG_CS);
5023 kvm_load_segment_selector(vcpu, tss->ss, VCPU_SREG_SS);
5024 kvm_load_segment_selector(vcpu, tss->ds, VCPU_SREG_DS);
5025
5026 /*
5027 * Now load segment descriptors. If fault happenes at this stage
5028 * it is handled in a context of new task
5029 */
5030 if (kvm_load_segment_descriptor(vcpu, tss->ldt, VCPU_SREG_LDTR))
5031 return 1;
5032
5033 if (kvm_load_segment_descriptor(vcpu, tss->es, VCPU_SREG_ES))
5034 return 1;
5035
5036 if (kvm_load_segment_descriptor(vcpu, tss->cs, VCPU_SREG_CS))
5037 return 1;
5038
5039 if (kvm_load_segment_descriptor(vcpu, tss->ss, VCPU_SREG_SS))
5040 return 1;
5041
5042 if (kvm_load_segment_descriptor(vcpu, tss->ds, VCPU_SREG_DS))
5043 return 1;
5044 return 0;
5045 }
5046
5047 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
5048 u16 old_tss_sel, u32 old_tss_base,
5049 struct desc_struct *nseg_desc)
5050 {
5051 struct tss_segment_16 tss_segment_16;
5052 int ret = 0;
5053
5054 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
5055 sizeof tss_segment_16))
5056 goto out;
5057
5058 save_state_to_tss16(vcpu, &tss_segment_16);
5059
5060 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
5061 sizeof tss_segment_16))
5062 goto out;
5063
5064 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr_read(vcpu, nseg_desc),
5065 &tss_segment_16, sizeof tss_segment_16))
5066 goto out;
5067
5068 if (old_tss_sel != 0xffff) {
5069 tss_segment_16.prev_task_link = old_tss_sel;
5070
5071 if (kvm_write_guest(vcpu->kvm,
5072 get_tss_base_addr_write(vcpu, nseg_desc),
5073 &tss_segment_16.prev_task_link,
5074 sizeof tss_segment_16.prev_task_link))
5075 goto out;
5076 }
5077
5078 if (load_state_from_tss16(vcpu, &tss_segment_16))
5079 goto out;
5080
5081 ret = 1;
5082 out:
5083 return ret;
5084 }
5085
5086 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
5087 u16 old_tss_sel, u32 old_tss_base,
5088 struct desc_struct *nseg_desc)
5089 {
5090 struct tss_segment_32 tss_segment_32;
5091 int ret = 0;
5092
5093 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
5094 sizeof tss_segment_32))
5095 goto out;
5096
5097 save_state_to_tss32(vcpu, &tss_segment_32);
5098
5099 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
5100 sizeof tss_segment_32))
5101 goto out;
5102
5103 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr_read(vcpu, nseg_desc),
5104 &tss_segment_32, sizeof tss_segment_32))
5105 goto out;
5106
5107 if (old_tss_sel != 0xffff) {
5108 tss_segment_32.prev_task_link = old_tss_sel;
5109
5110 if (kvm_write_guest(vcpu->kvm,
5111 get_tss_base_addr_write(vcpu, nseg_desc),
5112 &tss_segment_32.prev_task_link,
5113 sizeof tss_segment_32.prev_task_link))
5114 goto out;
5115 }
5116
5117 if (load_state_from_tss32(vcpu, &tss_segment_32))
5118 goto out;
5119
5120 ret = 1;
5121 out:
5122 return ret;
5123 }
5124
5125 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
5126 {
5127 struct kvm_segment tr_seg;
5128 struct desc_struct cseg_desc;
5129 struct desc_struct nseg_desc;
5130 int ret = 0;
5131 u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
5132 u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
5133 u32 desc_limit;
5134
5135 old_tss_base = kvm_mmu_gva_to_gpa_write(vcpu, old_tss_base, NULL);
5136
5137 /* FIXME: Handle errors. Failure to read either TSS or their
5138 * descriptors should generate a pagefault.
5139 */
5140 if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
5141 goto out;
5142
5143 if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
5144 goto out;
5145
5146 if (reason != TASK_SWITCH_IRET) {
5147 int cpl;
5148
5149 cpl = kvm_x86_ops->get_cpl(vcpu);
5150 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
5151 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
5152 return 1;
5153 }
5154 }
5155
5156 desc_limit = get_desc_limit(&nseg_desc);
5157 if (!nseg_desc.p ||
5158 ((desc_limit < 0x67 && (nseg_desc.type & 8)) ||
5159 desc_limit < 0x2b)) {
5160 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
5161 return 1;
5162 }
5163
5164 if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
5165 cseg_desc.type &= ~(1 << 1); //clear the B flag
5166 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
5167 }
5168
5169 if (reason == TASK_SWITCH_IRET) {
5170 u32 eflags = kvm_get_rflags(vcpu);
5171 kvm_set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
5172 }
5173
5174 /* set back link to prev task only if NT bit is set in eflags
5175 note that old_tss_sel is not used afetr this point */
5176 if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
5177 old_tss_sel = 0xffff;
5178
5179 if (nseg_desc.type & 8)
5180 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
5181 old_tss_base, &nseg_desc);
5182 else
5183 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
5184 old_tss_base, &nseg_desc);
5185
5186 if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
5187 u32 eflags = kvm_get_rflags(vcpu);
5188 kvm_set_rflags(vcpu, eflags | X86_EFLAGS_NT);
5189 }
5190
5191 if (reason != TASK_SWITCH_IRET) {
5192 nseg_desc.type |= (1 << 1);
5193 save_guest_segment_descriptor(vcpu, tss_selector,
5194 &nseg_desc);
5195 }
5196
5197 kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0(vcpu) | X86_CR0_TS);
5198 seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
5199 tr_seg.type = 11;
5200 kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
5201 out:
5202 return ret;
5203 }
5204 EXPORT_SYMBOL_GPL(kvm_task_switch);
5205
5206 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5207 struct kvm_sregs *sregs)
5208 {
5209 int mmu_reset_needed = 0;
5210 int pending_vec, max_bits;
5211 struct descriptor_table dt;
5212
5213 vcpu_load(vcpu);
5214
5215 dt.limit = sregs->idt.limit;
5216 dt.base = sregs->idt.base;
5217 kvm_x86_ops->set_idt(vcpu, &dt);
5218 dt.limit = sregs->gdt.limit;
5219 dt.base = sregs->gdt.base;
5220 kvm_x86_ops->set_gdt(vcpu, &dt);
5221
5222 vcpu->arch.cr2 = sregs->cr2;
5223 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
5224 vcpu->arch.cr3 = sregs->cr3;
5225
5226 kvm_set_cr8(vcpu, sregs->cr8);
5227
5228 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5229 kvm_x86_ops->set_efer(vcpu, sregs->efer);
5230 kvm_set_apic_base(vcpu, sregs->apic_base);
5231
5232 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5233 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5234 vcpu->arch.cr0 = sregs->cr0;
5235
5236 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5237 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5238 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5239 load_pdptrs(vcpu, vcpu->arch.cr3);
5240 mmu_reset_needed = 1;
5241 }
5242
5243 if (mmu_reset_needed)
5244 kvm_mmu_reset_context(vcpu);
5245
5246 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5247 pending_vec = find_first_bit(
5248 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5249 if (pending_vec < max_bits) {
5250 kvm_queue_interrupt(vcpu, pending_vec, false);
5251 pr_debug("Set back pending irq %d\n", pending_vec);
5252 if (irqchip_in_kernel(vcpu->kvm))
5253 kvm_pic_clear_isr_ack(vcpu->kvm);
5254 }
5255
5256 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5257 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5258 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5259 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5260 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5261 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5262
5263 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5264 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5265
5266 update_cr8_intercept(vcpu);
5267
5268 /* Older userspace won't unhalt the vcpu on reset. */
5269 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5270 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5271 !is_protmode(vcpu))
5272 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5273
5274 vcpu_put(vcpu);
5275
5276 return 0;
5277 }
5278
5279 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5280 struct kvm_guest_debug *dbg)
5281 {
5282 unsigned long rflags;
5283 int i, r;
5284
5285 vcpu_load(vcpu);
5286
5287 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5288 r = -EBUSY;
5289 if (vcpu->arch.exception.pending)
5290 goto unlock_out;
5291 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5292 kvm_queue_exception(vcpu, DB_VECTOR);
5293 else
5294 kvm_queue_exception(vcpu, BP_VECTOR);
5295 }
5296
5297 /*
5298 * Read rflags as long as potentially injected trace flags are still
5299 * filtered out.
5300 */
5301 rflags = kvm_get_rflags(vcpu);
5302
5303 vcpu->guest_debug = dbg->control;
5304 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5305 vcpu->guest_debug = 0;
5306
5307 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5308 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5309 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5310 vcpu->arch.switch_db_regs =
5311 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5312 } else {
5313 for (i = 0; i < KVM_NR_DB_REGS; i++)
5314 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5315 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5316 }
5317
5318 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5319 vcpu->arch.singlestep_cs =
5320 get_segment_selector(vcpu, VCPU_SREG_CS);
5321 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu);
5322 }
5323
5324 /*
5325 * Trigger an rflags update that will inject or remove the trace
5326 * flags.
5327 */
5328 kvm_set_rflags(vcpu, rflags);
5329
5330 kvm_x86_ops->set_guest_debug(vcpu, dbg);
5331
5332 r = 0;
5333
5334 unlock_out:
5335 vcpu_put(vcpu);
5336
5337 return r;
5338 }
5339
5340 /*
5341 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
5342 * we have asm/x86/processor.h
5343 */
5344 struct fxsave {
5345 u16 cwd;
5346 u16 swd;
5347 u16 twd;
5348 u16 fop;
5349 u64 rip;
5350 u64 rdp;
5351 u32 mxcsr;
5352 u32 mxcsr_mask;
5353 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
5354 #ifdef CONFIG_X86_64
5355 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
5356 #else
5357 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
5358 #endif
5359 };
5360
5361 /*
5362 * Translate a guest virtual address to a guest physical address.
5363 */
5364 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5365 struct kvm_translation *tr)
5366 {
5367 unsigned long vaddr = tr->linear_address;
5368 gpa_t gpa;
5369 int idx;
5370
5371 vcpu_load(vcpu);
5372 idx = srcu_read_lock(&vcpu->kvm->srcu);
5373 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5374 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5375 tr->physical_address = gpa;
5376 tr->valid = gpa != UNMAPPED_GVA;
5377 tr->writeable = 1;
5378 tr->usermode = 0;
5379 vcpu_put(vcpu);
5380
5381 return 0;
5382 }
5383
5384 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5385 {
5386 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
5387
5388 vcpu_load(vcpu);
5389
5390 memcpy(fpu->fpr, fxsave->st_space, 128);
5391 fpu->fcw = fxsave->cwd;
5392 fpu->fsw = fxsave->swd;
5393 fpu->ftwx = fxsave->twd;
5394 fpu->last_opcode = fxsave->fop;
5395 fpu->last_ip = fxsave->rip;
5396 fpu->last_dp = fxsave->rdp;
5397 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5398
5399 vcpu_put(vcpu);
5400
5401 return 0;
5402 }
5403
5404 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5405 {
5406 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
5407
5408 vcpu_load(vcpu);
5409
5410 memcpy(fxsave->st_space, fpu->fpr, 128);
5411 fxsave->cwd = fpu->fcw;
5412 fxsave->swd = fpu->fsw;
5413 fxsave->twd = fpu->ftwx;
5414 fxsave->fop = fpu->last_opcode;
5415 fxsave->rip = fpu->last_ip;
5416 fxsave->rdp = fpu->last_dp;
5417 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5418
5419 vcpu_put(vcpu);
5420
5421 return 0;
5422 }
5423
5424 void fx_init(struct kvm_vcpu *vcpu)
5425 {
5426 unsigned after_mxcsr_mask;
5427
5428 /*
5429 * Touch the fpu the first time in non atomic context as if
5430 * this is the first fpu instruction the exception handler
5431 * will fire before the instruction returns and it'll have to
5432 * allocate ram with GFP_KERNEL.
5433 */
5434 if (!used_math())
5435 kvm_fx_save(&vcpu->arch.host_fx_image);
5436
5437 /* Initialize guest FPU by resetting ours and saving into guest's */
5438 preempt_disable();
5439 kvm_fx_save(&vcpu->arch.host_fx_image);
5440 kvm_fx_finit();
5441 kvm_fx_save(&vcpu->arch.guest_fx_image);
5442 kvm_fx_restore(&vcpu->arch.host_fx_image);
5443 preempt_enable();
5444
5445 vcpu->arch.cr0 |= X86_CR0_ET;
5446 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
5447 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
5448 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
5449 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
5450 }
5451 EXPORT_SYMBOL_GPL(fx_init);
5452
5453 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5454 {
5455 if (vcpu->guest_fpu_loaded)
5456 return;
5457
5458 vcpu->guest_fpu_loaded = 1;
5459 kvm_fx_save(&vcpu->arch.host_fx_image);
5460 kvm_fx_restore(&vcpu->arch.guest_fx_image);
5461 trace_kvm_fpu(1);
5462 }
5463
5464 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5465 {
5466 if (!vcpu->guest_fpu_loaded)
5467 return;
5468
5469 vcpu->guest_fpu_loaded = 0;
5470 kvm_fx_save(&vcpu->arch.guest_fx_image);
5471 kvm_fx_restore(&vcpu->arch.host_fx_image);
5472 ++vcpu->stat.fpu_reload;
5473 set_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests);
5474 trace_kvm_fpu(0);
5475 }
5476
5477 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5478 {
5479 if (vcpu->arch.time_page) {
5480 kvm_release_page_dirty(vcpu->arch.time_page);
5481 vcpu->arch.time_page = NULL;
5482 }
5483
5484 kvm_x86_ops->vcpu_free(vcpu);
5485 }
5486
5487 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5488 unsigned int id)
5489 {
5490 return kvm_x86_ops->vcpu_create(kvm, id);
5491 }
5492
5493 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5494 {
5495 int r;
5496
5497 /* We do fxsave: this must be aligned. */
5498 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
5499
5500 vcpu->arch.mtrr_state.have_fixed = 1;
5501 vcpu_load(vcpu);
5502 r = kvm_arch_vcpu_reset(vcpu);
5503 if (r == 0)
5504 r = kvm_mmu_setup(vcpu);
5505 vcpu_put(vcpu);
5506 if (r < 0)
5507 goto free_vcpu;
5508
5509 return 0;
5510 free_vcpu:
5511 kvm_x86_ops->vcpu_free(vcpu);
5512 return r;
5513 }
5514
5515 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5516 {
5517 vcpu_load(vcpu);
5518 kvm_mmu_unload(vcpu);
5519 vcpu_put(vcpu);
5520
5521 kvm_x86_ops->vcpu_free(vcpu);
5522 }
5523
5524 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5525 {
5526 vcpu->arch.nmi_pending = false;
5527 vcpu->arch.nmi_injected = false;
5528
5529 vcpu->arch.switch_db_regs = 0;
5530 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5531 vcpu->arch.dr6 = DR6_FIXED_1;
5532 vcpu->arch.dr7 = DR7_FIXED_1;
5533
5534 return kvm_x86_ops->vcpu_reset(vcpu);
5535 }
5536
5537 int kvm_arch_hardware_enable(void *garbage)
5538 {
5539 /*
5540 * Since this may be called from a hotplug notifcation,
5541 * we can't get the CPU frequency directly.
5542 */
5543 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5544 int cpu = raw_smp_processor_id();
5545 per_cpu(cpu_tsc_khz, cpu) = 0;
5546 }
5547
5548 kvm_shared_msr_cpu_online();
5549
5550 return kvm_x86_ops->hardware_enable(garbage);
5551 }
5552
5553 void kvm_arch_hardware_disable(void *garbage)
5554 {
5555 kvm_x86_ops->hardware_disable(garbage);
5556 drop_user_return_notifiers(garbage);
5557 }
5558
5559 int kvm_arch_hardware_setup(void)
5560 {
5561 return kvm_x86_ops->hardware_setup();
5562 }
5563
5564 void kvm_arch_hardware_unsetup(void)
5565 {
5566 kvm_x86_ops->hardware_unsetup();
5567 }
5568
5569 void kvm_arch_check_processor_compat(void *rtn)
5570 {
5571 kvm_x86_ops->check_processor_compatibility(rtn);
5572 }
5573
5574 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5575 {
5576 struct page *page;
5577 struct kvm *kvm;
5578 int r;
5579
5580 BUG_ON(vcpu->kvm == NULL);
5581 kvm = vcpu->kvm;
5582
5583 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5584 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5585 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5586 else
5587 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5588
5589 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5590 if (!page) {
5591 r = -ENOMEM;
5592 goto fail;
5593 }
5594 vcpu->arch.pio_data = page_address(page);
5595
5596 r = kvm_mmu_create(vcpu);
5597 if (r < 0)
5598 goto fail_free_pio_data;
5599
5600 if (irqchip_in_kernel(kvm)) {
5601 r = kvm_create_lapic(vcpu);
5602 if (r < 0)
5603 goto fail_mmu_destroy;
5604 }
5605
5606 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5607 GFP_KERNEL);
5608 if (!vcpu->arch.mce_banks) {
5609 r = -ENOMEM;
5610 goto fail_free_lapic;
5611 }
5612 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5613
5614 return 0;
5615 fail_free_lapic:
5616 kvm_free_lapic(vcpu);
5617 fail_mmu_destroy:
5618 kvm_mmu_destroy(vcpu);
5619 fail_free_pio_data:
5620 free_page((unsigned long)vcpu->arch.pio_data);
5621 fail:
5622 return r;
5623 }
5624
5625 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
5626 {
5627 int idx;
5628
5629 kfree(vcpu->arch.mce_banks);
5630 kvm_free_lapic(vcpu);
5631 idx = srcu_read_lock(&vcpu->kvm->srcu);
5632 kvm_mmu_destroy(vcpu);
5633 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5634 free_page((unsigned long)vcpu->arch.pio_data);
5635 }
5636
5637 struct kvm *kvm_arch_create_vm(void)
5638 {
5639 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
5640
5641 if (!kvm)
5642 return ERR_PTR(-ENOMEM);
5643
5644 kvm->arch.aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
5645 if (!kvm->arch.aliases) {
5646 kfree(kvm);
5647 return ERR_PTR(-ENOMEM);
5648 }
5649
5650 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5651 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
5652
5653 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5654 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
5655
5656 rdtscll(kvm->arch.vm_init_tsc);
5657
5658 return kvm;
5659 }
5660
5661 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
5662 {
5663 vcpu_load(vcpu);
5664 kvm_mmu_unload(vcpu);
5665 vcpu_put(vcpu);
5666 }
5667
5668 static void kvm_free_vcpus(struct kvm *kvm)
5669 {
5670 unsigned int i;
5671 struct kvm_vcpu *vcpu;
5672
5673 /*
5674 * Unpin any mmu pages first.
5675 */
5676 kvm_for_each_vcpu(i, vcpu, kvm)
5677 kvm_unload_vcpu_mmu(vcpu);
5678 kvm_for_each_vcpu(i, vcpu, kvm)
5679 kvm_arch_vcpu_free(vcpu);
5680
5681 mutex_lock(&kvm->lock);
5682 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
5683 kvm->vcpus[i] = NULL;
5684
5685 atomic_set(&kvm->online_vcpus, 0);
5686 mutex_unlock(&kvm->lock);
5687 }
5688
5689 void kvm_arch_sync_events(struct kvm *kvm)
5690 {
5691 kvm_free_all_assigned_devices(kvm);
5692 }
5693
5694 void kvm_arch_destroy_vm(struct kvm *kvm)
5695 {
5696 kvm_iommu_unmap_guest(kvm);
5697 kvm_free_pit(kvm);
5698 kfree(kvm->arch.vpic);
5699 kfree(kvm->arch.vioapic);
5700 kvm_free_vcpus(kvm);
5701 kvm_free_physmem(kvm);
5702 if (kvm->arch.apic_access_page)
5703 put_page(kvm->arch.apic_access_page);
5704 if (kvm->arch.ept_identity_pagetable)
5705 put_page(kvm->arch.ept_identity_pagetable);
5706 cleanup_srcu_struct(&kvm->srcu);
5707 kfree(kvm->arch.aliases);
5708 kfree(kvm);
5709 }
5710
5711 int kvm_arch_prepare_memory_region(struct kvm *kvm,
5712 struct kvm_memory_slot *memslot,
5713 struct kvm_memory_slot old,
5714 struct kvm_userspace_memory_region *mem,
5715 int user_alloc)
5716 {
5717 int npages = memslot->npages;
5718
5719 /*To keep backward compatibility with older userspace,
5720 *x86 needs to hanlde !user_alloc case.
5721 */
5722 if (!user_alloc) {
5723 if (npages && !old.rmap) {
5724 unsigned long userspace_addr;
5725
5726 down_write(&current->mm->mmap_sem);
5727 userspace_addr = do_mmap(NULL, 0,
5728 npages * PAGE_SIZE,
5729 PROT_READ | PROT_WRITE,
5730 MAP_PRIVATE | MAP_ANONYMOUS,
5731 0);
5732 up_write(&current->mm->mmap_sem);
5733
5734 if (IS_ERR((void *)userspace_addr))
5735 return PTR_ERR((void *)userspace_addr);
5736
5737 memslot->userspace_addr = userspace_addr;
5738 }
5739 }
5740
5741
5742 return 0;
5743 }
5744
5745 void kvm_arch_commit_memory_region(struct kvm *kvm,
5746 struct kvm_userspace_memory_region *mem,
5747 struct kvm_memory_slot old,
5748 int user_alloc)
5749 {
5750
5751 int npages = mem->memory_size >> PAGE_SHIFT;
5752
5753 if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
5754 int ret;
5755
5756 down_write(&current->mm->mmap_sem);
5757 ret = do_munmap(current->mm, old.userspace_addr,
5758 old.npages * PAGE_SIZE);
5759 up_write(&current->mm->mmap_sem);
5760 if (ret < 0)
5761 printk(KERN_WARNING
5762 "kvm_vm_ioctl_set_memory_region: "
5763 "failed to munmap memory\n");
5764 }
5765
5766 spin_lock(&kvm->mmu_lock);
5767 if (!kvm->arch.n_requested_mmu_pages) {
5768 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
5769 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
5770 }
5771
5772 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
5773 spin_unlock(&kvm->mmu_lock);
5774 }
5775
5776 void kvm_arch_flush_shadow(struct kvm *kvm)
5777 {
5778 kvm_mmu_zap_all(kvm);
5779 kvm_reload_remote_mmus(kvm);
5780 }
5781
5782 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
5783 {
5784 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
5785 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
5786 || vcpu->arch.nmi_pending ||
5787 (kvm_arch_interrupt_allowed(vcpu) &&
5788 kvm_cpu_has_interrupt(vcpu));
5789 }
5790
5791 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
5792 {
5793 int me;
5794 int cpu = vcpu->cpu;
5795
5796 if (waitqueue_active(&vcpu->wq)) {
5797 wake_up_interruptible(&vcpu->wq);
5798 ++vcpu->stat.halt_wakeup;
5799 }
5800
5801 me = get_cpu();
5802 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
5803 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
5804 smp_send_reschedule(cpu);
5805 put_cpu();
5806 }
5807
5808 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
5809 {
5810 return kvm_x86_ops->interrupt_allowed(vcpu);
5811 }
5812
5813 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
5814 {
5815 unsigned long rflags;
5816
5817 rflags = kvm_x86_ops->get_rflags(vcpu);
5818 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5819 rflags &= ~(unsigned long)(X86_EFLAGS_TF | X86_EFLAGS_RF);
5820 return rflags;
5821 }
5822 EXPORT_SYMBOL_GPL(kvm_get_rflags);
5823
5824 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
5825 {
5826 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
5827 vcpu->arch.singlestep_cs ==
5828 get_segment_selector(vcpu, VCPU_SREG_CS) &&
5829 vcpu->arch.singlestep_rip == kvm_rip_read(vcpu))
5830 rflags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
5831 kvm_x86_ops->set_rflags(vcpu, rflags);
5832 }
5833 EXPORT_SYMBOL_GPL(kvm_set_rflags);
5834
5835 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
5836 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
5837 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
5838 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
5839 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
5840 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
5841 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
5842 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
5843 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
5844 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
5845 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
This page took 0.185847 seconds and 6 git commands to generate.