KVM: add basic paravirt support
[deliverable/linux.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 *
8 * Authors:
9 * Avi Kivity <avi@qumranet.com>
10 * Yaniv Kamay <yaniv@qumranet.com>
11 *
12 * This work is licensed under the terms of the GNU GPL, version 2. See
13 * the COPYING file in the top-level directory.
14 *
15 */
16
17 #include <linux/kvm_host.h>
18 #include "irq.h"
19 #include "mmu.h"
20 #include "i8254.h"
21
22 #include <linux/clocksource.h>
23 #include <linux/kvm.h>
24 #include <linux/fs.h>
25 #include <linux/vmalloc.h>
26 #include <linux/module.h>
27 #include <linux/mman.h>
28 #include <linux/highmem.h>
29
30 #include <asm/uaccess.h>
31 #include <asm/msr.h>
32 #include <asm/desc.h>
33
34 #define MAX_IO_MSRS 256
35 #define CR0_RESERVED_BITS \
36 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
37 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
38 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
39 #define CR4_RESERVED_BITS \
40 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
41 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
42 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
43 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
44
45 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
46 /* EFER defaults:
47 * - enable syscall per default because its emulated by KVM
48 * - enable LME and LMA per default on 64 bit KVM
49 */
50 #ifdef CONFIG_X86_64
51 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
52 #else
53 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
54 #endif
55
56 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
57 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
58
59 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
60 struct kvm_cpuid_entry2 __user *entries);
61
62 struct kvm_x86_ops *kvm_x86_ops;
63
64 struct kvm_stats_debugfs_item debugfs_entries[] = {
65 { "pf_fixed", VCPU_STAT(pf_fixed) },
66 { "pf_guest", VCPU_STAT(pf_guest) },
67 { "tlb_flush", VCPU_STAT(tlb_flush) },
68 { "invlpg", VCPU_STAT(invlpg) },
69 { "exits", VCPU_STAT(exits) },
70 { "io_exits", VCPU_STAT(io_exits) },
71 { "mmio_exits", VCPU_STAT(mmio_exits) },
72 { "signal_exits", VCPU_STAT(signal_exits) },
73 { "irq_window", VCPU_STAT(irq_window_exits) },
74 { "halt_exits", VCPU_STAT(halt_exits) },
75 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
76 { "hypercalls", VCPU_STAT(hypercalls) },
77 { "request_irq", VCPU_STAT(request_irq_exits) },
78 { "irq_exits", VCPU_STAT(irq_exits) },
79 { "host_state_reload", VCPU_STAT(host_state_reload) },
80 { "efer_reload", VCPU_STAT(efer_reload) },
81 { "fpu_reload", VCPU_STAT(fpu_reload) },
82 { "insn_emulation", VCPU_STAT(insn_emulation) },
83 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
84 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
85 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
86 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
87 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
88 { "mmu_flooded", VM_STAT(mmu_flooded) },
89 { "mmu_recycled", VM_STAT(mmu_recycled) },
90 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
91 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
92 { "largepages", VM_STAT(lpages) },
93 { NULL }
94 };
95
96
97 unsigned long segment_base(u16 selector)
98 {
99 struct descriptor_table gdt;
100 struct desc_struct *d;
101 unsigned long table_base;
102 unsigned long v;
103
104 if (selector == 0)
105 return 0;
106
107 asm("sgdt %0" : "=m"(gdt));
108 table_base = gdt.base;
109
110 if (selector & 4) { /* from ldt */
111 u16 ldt_selector;
112
113 asm("sldt %0" : "=g"(ldt_selector));
114 table_base = segment_base(ldt_selector);
115 }
116 d = (struct desc_struct *)(table_base + (selector & ~7));
117 v = d->base0 | ((unsigned long)d->base1 << 16) |
118 ((unsigned long)d->base2 << 24);
119 #ifdef CONFIG_X86_64
120 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
121 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
122 #endif
123 return v;
124 }
125 EXPORT_SYMBOL_GPL(segment_base);
126
127 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
128 {
129 if (irqchip_in_kernel(vcpu->kvm))
130 return vcpu->arch.apic_base;
131 else
132 return vcpu->arch.apic_base;
133 }
134 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
135
136 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
137 {
138 /* TODO: reserve bits check */
139 if (irqchip_in_kernel(vcpu->kvm))
140 kvm_lapic_set_base(vcpu, data);
141 else
142 vcpu->arch.apic_base = data;
143 }
144 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
145
146 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
147 {
148 WARN_ON(vcpu->arch.exception.pending);
149 vcpu->arch.exception.pending = true;
150 vcpu->arch.exception.has_error_code = false;
151 vcpu->arch.exception.nr = nr;
152 }
153 EXPORT_SYMBOL_GPL(kvm_queue_exception);
154
155 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
156 u32 error_code)
157 {
158 ++vcpu->stat.pf_guest;
159 if (vcpu->arch.exception.pending) {
160 if (vcpu->arch.exception.nr == PF_VECTOR) {
161 printk(KERN_DEBUG "kvm: inject_page_fault:"
162 " double fault 0x%lx\n", addr);
163 vcpu->arch.exception.nr = DF_VECTOR;
164 vcpu->arch.exception.error_code = 0;
165 } else if (vcpu->arch.exception.nr == DF_VECTOR) {
166 /* triple fault -> shutdown */
167 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
168 }
169 return;
170 }
171 vcpu->arch.cr2 = addr;
172 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
173 }
174
175 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
176 {
177 WARN_ON(vcpu->arch.exception.pending);
178 vcpu->arch.exception.pending = true;
179 vcpu->arch.exception.has_error_code = true;
180 vcpu->arch.exception.nr = nr;
181 vcpu->arch.exception.error_code = error_code;
182 }
183 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
184
185 static void __queue_exception(struct kvm_vcpu *vcpu)
186 {
187 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
188 vcpu->arch.exception.has_error_code,
189 vcpu->arch.exception.error_code);
190 }
191
192 /*
193 * Load the pae pdptrs. Return true is they are all valid.
194 */
195 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
196 {
197 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
198 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
199 int i;
200 int ret;
201 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
202
203 down_read(&vcpu->kvm->slots_lock);
204 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
205 offset * sizeof(u64), sizeof(pdpte));
206 if (ret < 0) {
207 ret = 0;
208 goto out;
209 }
210 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
211 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
212 ret = 0;
213 goto out;
214 }
215 }
216 ret = 1;
217
218 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
219 out:
220 up_read(&vcpu->kvm->slots_lock);
221
222 return ret;
223 }
224 EXPORT_SYMBOL_GPL(load_pdptrs);
225
226 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
227 {
228 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
229 bool changed = true;
230 int r;
231
232 if (is_long_mode(vcpu) || !is_pae(vcpu))
233 return false;
234
235 down_read(&vcpu->kvm->slots_lock);
236 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
237 if (r < 0)
238 goto out;
239 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
240 out:
241 up_read(&vcpu->kvm->slots_lock);
242
243 return changed;
244 }
245
246 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
247 {
248 if (cr0 & CR0_RESERVED_BITS) {
249 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
250 cr0, vcpu->arch.cr0);
251 kvm_inject_gp(vcpu, 0);
252 return;
253 }
254
255 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
256 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
257 kvm_inject_gp(vcpu, 0);
258 return;
259 }
260
261 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
262 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
263 "and a clear PE flag\n");
264 kvm_inject_gp(vcpu, 0);
265 return;
266 }
267
268 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
269 #ifdef CONFIG_X86_64
270 if ((vcpu->arch.shadow_efer & EFER_LME)) {
271 int cs_db, cs_l;
272
273 if (!is_pae(vcpu)) {
274 printk(KERN_DEBUG "set_cr0: #GP, start paging "
275 "in long mode while PAE is disabled\n");
276 kvm_inject_gp(vcpu, 0);
277 return;
278 }
279 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
280 if (cs_l) {
281 printk(KERN_DEBUG "set_cr0: #GP, start paging "
282 "in long mode while CS.L == 1\n");
283 kvm_inject_gp(vcpu, 0);
284 return;
285
286 }
287 } else
288 #endif
289 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
290 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
291 "reserved bits\n");
292 kvm_inject_gp(vcpu, 0);
293 return;
294 }
295
296 }
297
298 kvm_x86_ops->set_cr0(vcpu, cr0);
299 vcpu->arch.cr0 = cr0;
300
301 kvm_mmu_reset_context(vcpu);
302 return;
303 }
304 EXPORT_SYMBOL_GPL(kvm_set_cr0);
305
306 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
307 {
308 kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
309 }
310 EXPORT_SYMBOL_GPL(kvm_lmsw);
311
312 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
313 {
314 if (cr4 & CR4_RESERVED_BITS) {
315 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
316 kvm_inject_gp(vcpu, 0);
317 return;
318 }
319
320 if (is_long_mode(vcpu)) {
321 if (!(cr4 & X86_CR4_PAE)) {
322 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
323 "in long mode\n");
324 kvm_inject_gp(vcpu, 0);
325 return;
326 }
327 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
328 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
329 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
330 kvm_inject_gp(vcpu, 0);
331 return;
332 }
333
334 if (cr4 & X86_CR4_VMXE) {
335 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
336 kvm_inject_gp(vcpu, 0);
337 return;
338 }
339 kvm_x86_ops->set_cr4(vcpu, cr4);
340 vcpu->arch.cr4 = cr4;
341 kvm_mmu_reset_context(vcpu);
342 }
343 EXPORT_SYMBOL_GPL(kvm_set_cr4);
344
345 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
346 {
347 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
348 kvm_mmu_flush_tlb(vcpu);
349 return;
350 }
351
352 if (is_long_mode(vcpu)) {
353 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
354 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
355 kvm_inject_gp(vcpu, 0);
356 return;
357 }
358 } else {
359 if (is_pae(vcpu)) {
360 if (cr3 & CR3_PAE_RESERVED_BITS) {
361 printk(KERN_DEBUG
362 "set_cr3: #GP, reserved bits\n");
363 kvm_inject_gp(vcpu, 0);
364 return;
365 }
366 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
367 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
368 "reserved bits\n");
369 kvm_inject_gp(vcpu, 0);
370 return;
371 }
372 }
373 /*
374 * We don't check reserved bits in nonpae mode, because
375 * this isn't enforced, and VMware depends on this.
376 */
377 }
378
379 down_read(&vcpu->kvm->slots_lock);
380 /*
381 * Does the new cr3 value map to physical memory? (Note, we
382 * catch an invalid cr3 even in real-mode, because it would
383 * cause trouble later on when we turn on paging anyway.)
384 *
385 * A real CPU would silently accept an invalid cr3 and would
386 * attempt to use it - with largely undefined (and often hard
387 * to debug) behavior on the guest side.
388 */
389 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
390 kvm_inject_gp(vcpu, 0);
391 else {
392 vcpu->arch.cr3 = cr3;
393 vcpu->arch.mmu.new_cr3(vcpu);
394 }
395 up_read(&vcpu->kvm->slots_lock);
396 }
397 EXPORT_SYMBOL_GPL(kvm_set_cr3);
398
399 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
400 {
401 if (cr8 & CR8_RESERVED_BITS) {
402 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
403 kvm_inject_gp(vcpu, 0);
404 return;
405 }
406 if (irqchip_in_kernel(vcpu->kvm))
407 kvm_lapic_set_tpr(vcpu, cr8);
408 else
409 vcpu->arch.cr8 = cr8;
410 }
411 EXPORT_SYMBOL_GPL(kvm_set_cr8);
412
413 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
414 {
415 if (irqchip_in_kernel(vcpu->kvm))
416 return kvm_lapic_get_cr8(vcpu);
417 else
418 return vcpu->arch.cr8;
419 }
420 EXPORT_SYMBOL_GPL(kvm_get_cr8);
421
422 /*
423 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
424 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
425 *
426 * This list is modified at module load time to reflect the
427 * capabilities of the host cpu.
428 */
429 static u32 msrs_to_save[] = {
430 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
431 MSR_K6_STAR,
432 #ifdef CONFIG_X86_64
433 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
434 #endif
435 MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
436 MSR_IA32_PERF_STATUS,
437 };
438
439 static unsigned num_msrs_to_save;
440
441 static u32 emulated_msrs[] = {
442 MSR_IA32_MISC_ENABLE,
443 };
444
445 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
446 {
447 if (efer & efer_reserved_bits) {
448 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
449 efer);
450 kvm_inject_gp(vcpu, 0);
451 return;
452 }
453
454 if (is_paging(vcpu)
455 && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
456 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
457 kvm_inject_gp(vcpu, 0);
458 return;
459 }
460
461 kvm_x86_ops->set_efer(vcpu, efer);
462
463 efer &= ~EFER_LMA;
464 efer |= vcpu->arch.shadow_efer & EFER_LMA;
465
466 vcpu->arch.shadow_efer = efer;
467 }
468
469 void kvm_enable_efer_bits(u64 mask)
470 {
471 efer_reserved_bits &= ~mask;
472 }
473 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
474
475
476 /*
477 * Writes msr value into into the appropriate "register".
478 * Returns 0 on success, non-0 otherwise.
479 * Assumes vcpu_load() was already called.
480 */
481 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
482 {
483 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
484 }
485
486 /*
487 * Adapt set_msr() to msr_io()'s calling convention
488 */
489 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
490 {
491 return kvm_set_msr(vcpu, index, *data);
492 }
493
494 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
495 {
496 static int version;
497 struct kvm_wall_clock wc;
498 struct timespec wc_ts;
499
500 if (!wall_clock)
501 return;
502
503 version++;
504
505 down_read(&kvm->slots_lock);
506 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
507
508 wc_ts = current_kernel_time();
509 wc.wc_sec = wc_ts.tv_sec;
510 wc.wc_nsec = wc_ts.tv_nsec;
511 wc.wc_version = version;
512
513 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
514
515 version++;
516 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
517 up_read(&kvm->slots_lock);
518 }
519
520 static void kvm_write_guest_time(struct kvm_vcpu *v)
521 {
522 struct timespec ts;
523 unsigned long flags;
524 struct kvm_vcpu_arch *vcpu = &v->arch;
525 void *shared_kaddr;
526
527 if ((!vcpu->time_page))
528 return;
529
530 /* Keep irq disabled to prevent changes to the clock */
531 local_irq_save(flags);
532 kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
533 &vcpu->hv_clock.tsc_timestamp);
534 ktime_get_ts(&ts);
535 local_irq_restore(flags);
536
537 /* With all the info we got, fill in the values */
538
539 vcpu->hv_clock.system_time = ts.tv_nsec +
540 (NSEC_PER_SEC * (u64)ts.tv_sec);
541 /*
542 * The interface expects us to write an even number signaling that the
543 * update is finished. Since the guest won't see the intermediate
544 * state, we just write "2" at the end
545 */
546 vcpu->hv_clock.version = 2;
547
548 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
549
550 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
551 sizeof(vcpu->hv_clock));
552
553 kunmap_atomic(shared_kaddr, KM_USER0);
554
555 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
556 }
557
558
559 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
560 {
561 switch (msr) {
562 case MSR_EFER:
563 set_efer(vcpu, data);
564 break;
565 case MSR_IA32_MC0_STATUS:
566 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
567 __func__, data);
568 break;
569 case MSR_IA32_MCG_STATUS:
570 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
571 __func__, data);
572 break;
573 case MSR_IA32_MCG_CTL:
574 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
575 __func__, data);
576 break;
577 case MSR_IA32_UCODE_REV:
578 case MSR_IA32_UCODE_WRITE:
579 case 0x200 ... 0x2ff: /* MTRRs */
580 break;
581 case MSR_IA32_APICBASE:
582 kvm_set_apic_base(vcpu, data);
583 break;
584 case MSR_IA32_MISC_ENABLE:
585 vcpu->arch.ia32_misc_enable_msr = data;
586 break;
587 case MSR_KVM_WALL_CLOCK:
588 vcpu->kvm->arch.wall_clock = data;
589 kvm_write_wall_clock(vcpu->kvm, data);
590 break;
591 case MSR_KVM_SYSTEM_TIME: {
592 if (vcpu->arch.time_page) {
593 kvm_release_page_dirty(vcpu->arch.time_page);
594 vcpu->arch.time_page = NULL;
595 }
596
597 vcpu->arch.time = data;
598
599 /* we verify if the enable bit is set... */
600 if (!(data & 1))
601 break;
602
603 /* ...but clean it before doing the actual write */
604 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
605
606 vcpu->arch.hv_clock.tsc_to_system_mul =
607 clocksource_khz2mult(tsc_khz, 22);
608 vcpu->arch.hv_clock.tsc_shift = 22;
609
610 down_read(&current->mm->mmap_sem);
611 down_read(&vcpu->kvm->slots_lock);
612 vcpu->arch.time_page =
613 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
614 up_read(&vcpu->kvm->slots_lock);
615 up_read(&current->mm->mmap_sem);
616
617 if (is_error_page(vcpu->arch.time_page)) {
618 kvm_release_page_clean(vcpu->arch.time_page);
619 vcpu->arch.time_page = NULL;
620 }
621
622 kvm_write_guest_time(vcpu);
623 break;
624 }
625 default:
626 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
627 return 1;
628 }
629 return 0;
630 }
631 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
632
633
634 /*
635 * Reads an msr value (of 'msr_index') into 'pdata'.
636 * Returns 0 on success, non-0 otherwise.
637 * Assumes vcpu_load() was already called.
638 */
639 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
640 {
641 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
642 }
643
644 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
645 {
646 u64 data;
647
648 switch (msr) {
649 case 0xc0010010: /* SYSCFG */
650 case 0xc0010015: /* HWCR */
651 case MSR_IA32_PLATFORM_ID:
652 case MSR_IA32_P5_MC_ADDR:
653 case MSR_IA32_P5_MC_TYPE:
654 case MSR_IA32_MC0_CTL:
655 case MSR_IA32_MCG_STATUS:
656 case MSR_IA32_MCG_CAP:
657 case MSR_IA32_MCG_CTL:
658 case MSR_IA32_MC0_MISC:
659 case MSR_IA32_MC0_MISC+4:
660 case MSR_IA32_MC0_MISC+8:
661 case MSR_IA32_MC0_MISC+12:
662 case MSR_IA32_MC0_MISC+16:
663 case MSR_IA32_UCODE_REV:
664 case MSR_IA32_EBL_CR_POWERON:
665 /* MTRR registers */
666 case 0xfe:
667 case 0x200 ... 0x2ff:
668 data = 0;
669 break;
670 case 0xcd: /* fsb frequency */
671 data = 3;
672 break;
673 case MSR_IA32_APICBASE:
674 data = kvm_get_apic_base(vcpu);
675 break;
676 case MSR_IA32_MISC_ENABLE:
677 data = vcpu->arch.ia32_misc_enable_msr;
678 break;
679 case MSR_IA32_PERF_STATUS:
680 /* TSC increment by tick */
681 data = 1000ULL;
682 /* CPU multiplier */
683 data |= (((uint64_t)4ULL) << 40);
684 break;
685 case MSR_EFER:
686 data = vcpu->arch.shadow_efer;
687 break;
688 case MSR_KVM_WALL_CLOCK:
689 data = vcpu->kvm->arch.wall_clock;
690 break;
691 case MSR_KVM_SYSTEM_TIME:
692 data = vcpu->arch.time;
693 break;
694 default:
695 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
696 return 1;
697 }
698 *pdata = data;
699 return 0;
700 }
701 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
702
703 /*
704 * Read or write a bunch of msrs. All parameters are kernel addresses.
705 *
706 * @return number of msrs set successfully.
707 */
708 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
709 struct kvm_msr_entry *entries,
710 int (*do_msr)(struct kvm_vcpu *vcpu,
711 unsigned index, u64 *data))
712 {
713 int i;
714
715 vcpu_load(vcpu);
716
717 for (i = 0; i < msrs->nmsrs; ++i)
718 if (do_msr(vcpu, entries[i].index, &entries[i].data))
719 break;
720
721 vcpu_put(vcpu);
722
723 return i;
724 }
725
726 /*
727 * Read or write a bunch of msrs. Parameters are user addresses.
728 *
729 * @return number of msrs set successfully.
730 */
731 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
732 int (*do_msr)(struct kvm_vcpu *vcpu,
733 unsigned index, u64 *data),
734 int writeback)
735 {
736 struct kvm_msrs msrs;
737 struct kvm_msr_entry *entries;
738 int r, n;
739 unsigned size;
740
741 r = -EFAULT;
742 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
743 goto out;
744
745 r = -E2BIG;
746 if (msrs.nmsrs >= MAX_IO_MSRS)
747 goto out;
748
749 r = -ENOMEM;
750 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
751 entries = vmalloc(size);
752 if (!entries)
753 goto out;
754
755 r = -EFAULT;
756 if (copy_from_user(entries, user_msrs->entries, size))
757 goto out_free;
758
759 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
760 if (r < 0)
761 goto out_free;
762
763 r = -EFAULT;
764 if (writeback && copy_to_user(user_msrs->entries, entries, size))
765 goto out_free;
766
767 r = n;
768
769 out_free:
770 vfree(entries);
771 out:
772 return r;
773 }
774
775 /*
776 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
777 * cached on it.
778 */
779 void decache_vcpus_on_cpu(int cpu)
780 {
781 struct kvm *vm;
782 struct kvm_vcpu *vcpu;
783 int i;
784
785 spin_lock(&kvm_lock);
786 list_for_each_entry(vm, &vm_list, vm_list)
787 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
788 vcpu = vm->vcpus[i];
789 if (!vcpu)
790 continue;
791 /*
792 * If the vcpu is locked, then it is running on some
793 * other cpu and therefore it is not cached on the
794 * cpu in question.
795 *
796 * If it's not locked, check the last cpu it executed
797 * on.
798 */
799 if (mutex_trylock(&vcpu->mutex)) {
800 if (vcpu->cpu == cpu) {
801 kvm_x86_ops->vcpu_decache(vcpu);
802 vcpu->cpu = -1;
803 }
804 mutex_unlock(&vcpu->mutex);
805 }
806 }
807 spin_unlock(&kvm_lock);
808 }
809
810 int kvm_dev_ioctl_check_extension(long ext)
811 {
812 int r;
813
814 switch (ext) {
815 case KVM_CAP_IRQCHIP:
816 case KVM_CAP_HLT:
817 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
818 case KVM_CAP_USER_MEMORY:
819 case KVM_CAP_SET_TSS_ADDR:
820 case KVM_CAP_EXT_CPUID:
821 case KVM_CAP_CLOCKSOURCE:
822 case KVM_CAP_PIT:
823 case KVM_CAP_NOP_IO_DELAY:
824 r = 1;
825 break;
826 case KVM_CAP_VAPIC:
827 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
828 break;
829 case KVM_CAP_NR_VCPUS:
830 r = KVM_MAX_VCPUS;
831 break;
832 case KVM_CAP_NR_MEMSLOTS:
833 r = KVM_MEMORY_SLOTS;
834 break;
835 default:
836 r = 0;
837 break;
838 }
839 return r;
840
841 }
842
843 long kvm_arch_dev_ioctl(struct file *filp,
844 unsigned int ioctl, unsigned long arg)
845 {
846 void __user *argp = (void __user *)arg;
847 long r;
848
849 switch (ioctl) {
850 case KVM_GET_MSR_INDEX_LIST: {
851 struct kvm_msr_list __user *user_msr_list = argp;
852 struct kvm_msr_list msr_list;
853 unsigned n;
854
855 r = -EFAULT;
856 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
857 goto out;
858 n = msr_list.nmsrs;
859 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
860 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
861 goto out;
862 r = -E2BIG;
863 if (n < num_msrs_to_save)
864 goto out;
865 r = -EFAULT;
866 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
867 num_msrs_to_save * sizeof(u32)))
868 goto out;
869 if (copy_to_user(user_msr_list->indices
870 + num_msrs_to_save * sizeof(u32),
871 &emulated_msrs,
872 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
873 goto out;
874 r = 0;
875 break;
876 }
877 case KVM_GET_SUPPORTED_CPUID: {
878 struct kvm_cpuid2 __user *cpuid_arg = argp;
879 struct kvm_cpuid2 cpuid;
880
881 r = -EFAULT;
882 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
883 goto out;
884 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
885 cpuid_arg->entries);
886 if (r)
887 goto out;
888
889 r = -EFAULT;
890 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
891 goto out;
892 r = 0;
893 break;
894 }
895 default:
896 r = -EINVAL;
897 }
898 out:
899 return r;
900 }
901
902 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
903 {
904 kvm_x86_ops->vcpu_load(vcpu, cpu);
905 kvm_write_guest_time(vcpu);
906 }
907
908 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
909 {
910 kvm_x86_ops->vcpu_put(vcpu);
911 kvm_put_guest_fpu(vcpu);
912 }
913
914 static int is_efer_nx(void)
915 {
916 u64 efer;
917
918 rdmsrl(MSR_EFER, efer);
919 return efer & EFER_NX;
920 }
921
922 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
923 {
924 int i;
925 struct kvm_cpuid_entry2 *e, *entry;
926
927 entry = NULL;
928 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
929 e = &vcpu->arch.cpuid_entries[i];
930 if (e->function == 0x80000001) {
931 entry = e;
932 break;
933 }
934 }
935 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
936 entry->edx &= ~(1 << 20);
937 printk(KERN_INFO "kvm: guest NX capability removed\n");
938 }
939 }
940
941 /* when an old userspace process fills a new kernel module */
942 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
943 struct kvm_cpuid *cpuid,
944 struct kvm_cpuid_entry __user *entries)
945 {
946 int r, i;
947 struct kvm_cpuid_entry *cpuid_entries;
948
949 r = -E2BIG;
950 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
951 goto out;
952 r = -ENOMEM;
953 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
954 if (!cpuid_entries)
955 goto out;
956 r = -EFAULT;
957 if (copy_from_user(cpuid_entries, entries,
958 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
959 goto out_free;
960 for (i = 0; i < cpuid->nent; i++) {
961 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
962 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
963 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
964 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
965 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
966 vcpu->arch.cpuid_entries[i].index = 0;
967 vcpu->arch.cpuid_entries[i].flags = 0;
968 vcpu->arch.cpuid_entries[i].padding[0] = 0;
969 vcpu->arch.cpuid_entries[i].padding[1] = 0;
970 vcpu->arch.cpuid_entries[i].padding[2] = 0;
971 }
972 vcpu->arch.cpuid_nent = cpuid->nent;
973 cpuid_fix_nx_cap(vcpu);
974 r = 0;
975
976 out_free:
977 vfree(cpuid_entries);
978 out:
979 return r;
980 }
981
982 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
983 struct kvm_cpuid2 *cpuid,
984 struct kvm_cpuid_entry2 __user *entries)
985 {
986 int r;
987
988 r = -E2BIG;
989 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
990 goto out;
991 r = -EFAULT;
992 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
993 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
994 goto out;
995 vcpu->arch.cpuid_nent = cpuid->nent;
996 return 0;
997
998 out:
999 return r;
1000 }
1001
1002 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1003 struct kvm_cpuid2 *cpuid,
1004 struct kvm_cpuid_entry2 __user *entries)
1005 {
1006 int r;
1007
1008 r = -E2BIG;
1009 if (cpuid->nent < vcpu->arch.cpuid_nent)
1010 goto out;
1011 r = -EFAULT;
1012 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1013 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1014 goto out;
1015 return 0;
1016
1017 out:
1018 cpuid->nent = vcpu->arch.cpuid_nent;
1019 return r;
1020 }
1021
1022 static inline u32 bit(int bitno)
1023 {
1024 return 1 << (bitno & 31);
1025 }
1026
1027 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1028 u32 index)
1029 {
1030 entry->function = function;
1031 entry->index = index;
1032 cpuid_count(entry->function, entry->index,
1033 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1034 entry->flags = 0;
1035 }
1036
1037 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1038 u32 index, int *nent, int maxnent)
1039 {
1040 const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
1041 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1042 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1043 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1044 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1045 bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
1046 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1047 bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
1048 bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
1049 bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
1050 const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
1051 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1052 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1053 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1054 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1055 bit(X86_FEATURE_PGE) |
1056 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1057 bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
1058 bit(X86_FEATURE_SYSCALL) |
1059 (bit(X86_FEATURE_NX) && is_efer_nx()) |
1060 #ifdef CONFIG_X86_64
1061 bit(X86_FEATURE_LM) |
1062 #endif
1063 bit(X86_FEATURE_MMXEXT) |
1064 bit(X86_FEATURE_3DNOWEXT) |
1065 bit(X86_FEATURE_3DNOW);
1066 const u32 kvm_supported_word3_x86_features =
1067 bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
1068 const u32 kvm_supported_word6_x86_features =
1069 bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);
1070
1071 /* all func 2 cpuid_count() should be called on the same cpu */
1072 get_cpu();
1073 do_cpuid_1_ent(entry, function, index);
1074 ++*nent;
1075
1076 switch (function) {
1077 case 0:
1078 entry->eax = min(entry->eax, (u32)0xb);
1079 break;
1080 case 1:
1081 entry->edx &= kvm_supported_word0_x86_features;
1082 entry->ecx &= kvm_supported_word3_x86_features;
1083 break;
1084 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1085 * may return different values. This forces us to get_cpu() before
1086 * issuing the first command, and also to emulate this annoying behavior
1087 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1088 case 2: {
1089 int t, times = entry->eax & 0xff;
1090
1091 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1092 for (t = 1; t < times && *nent < maxnent; ++t) {
1093 do_cpuid_1_ent(&entry[t], function, 0);
1094 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1095 ++*nent;
1096 }
1097 break;
1098 }
1099 /* function 4 and 0xb have additional index. */
1100 case 4: {
1101 int i, cache_type;
1102
1103 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1104 /* read more entries until cache_type is zero */
1105 for (i = 1; *nent < maxnent; ++i) {
1106 cache_type = entry[i - 1].eax & 0x1f;
1107 if (!cache_type)
1108 break;
1109 do_cpuid_1_ent(&entry[i], function, i);
1110 entry[i].flags |=
1111 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1112 ++*nent;
1113 }
1114 break;
1115 }
1116 case 0xb: {
1117 int i, level_type;
1118
1119 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1120 /* read more entries until level_type is zero */
1121 for (i = 1; *nent < maxnent; ++i) {
1122 level_type = entry[i - 1].ecx & 0xff;
1123 if (!level_type)
1124 break;
1125 do_cpuid_1_ent(&entry[i], function, i);
1126 entry[i].flags |=
1127 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1128 ++*nent;
1129 }
1130 break;
1131 }
1132 case 0x80000000:
1133 entry->eax = min(entry->eax, 0x8000001a);
1134 break;
1135 case 0x80000001:
1136 entry->edx &= kvm_supported_word1_x86_features;
1137 entry->ecx &= kvm_supported_word6_x86_features;
1138 break;
1139 }
1140 put_cpu();
1141 }
1142
1143 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1144 struct kvm_cpuid_entry2 __user *entries)
1145 {
1146 struct kvm_cpuid_entry2 *cpuid_entries;
1147 int limit, nent = 0, r = -E2BIG;
1148 u32 func;
1149
1150 if (cpuid->nent < 1)
1151 goto out;
1152 r = -ENOMEM;
1153 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1154 if (!cpuid_entries)
1155 goto out;
1156
1157 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1158 limit = cpuid_entries[0].eax;
1159 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1160 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1161 &nent, cpuid->nent);
1162 r = -E2BIG;
1163 if (nent >= cpuid->nent)
1164 goto out_free;
1165
1166 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1167 limit = cpuid_entries[nent - 1].eax;
1168 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1169 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1170 &nent, cpuid->nent);
1171 r = -EFAULT;
1172 if (copy_to_user(entries, cpuid_entries,
1173 nent * sizeof(struct kvm_cpuid_entry2)))
1174 goto out_free;
1175 cpuid->nent = nent;
1176 r = 0;
1177
1178 out_free:
1179 vfree(cpuid_entries);
1180 out:
1181 return r;
1182 }
1183
1184 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1185 struct kvm_lapic_state *s)
1186 {
1187 vcpu_load(vcpu);
1188 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1189 vcpu_put(vcpu);
1190
1191 return 0;
1192 }
1193
1194 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1195 struct kvm_lapic_state *s)
1196 {
1197 vcpu_load(vcpu);
1198 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1199 kvm_apic_post_state_restore(vcpu);
1200 vcpu_put(vcpu);
1201
1202 return 0;
1203 }
1204
1205 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1206 struct kvm_interrupt *irq)
1207 {
1208 if (irq->irq < 0 || irq->irq >= 256)
1209 return -EINVAL;
1210 if (irqchip_in_kernel(vcpu->kvm))
1211 return -ENXIO;
1212 vcpu_load(vcpu);
1213
1214 set_bit(irq->irq, vcpu->arch.irq_pending);
1215 set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1216
1217 vcpu_put(vcpu);
1218
1219 return 0;
1220 }
1221
1222 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1223 struct kvm_tpr_access_ctl *tac)
1224 {
1225 if (tac->flags)
1226 return -EINVAL;
1227 vcpu->arch.tpr_access_reporting = !!tac->enabled;
1228 return 0;
1229 }
1230
1231 long kvm_arch_vcpu_ioctl(struct file *filp,
1232 unsigned int ioctl, unsigned long arg)
1233 {
1234 struct kvm_vcpu *vcpu = filp->private_data;
1235 void __user *argp = (void __user *)arg;
1236 int r;
1237
1238 switch (ioctl) {
1239 case KVM_GET_LAPIC: {
1240 struct kvm_lapic_state lapic;
1241
1242 memset(&lapic, 0, sizeof lapic);
1243 r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
1244 if (r)
1245 goto out;
1246 r = -EFAULT;
1247 if (copy_to_user(argp, &lapic, sizeof lapic))
1248 goto out;
1249 r = 0;
1250 break;
1251 }
1252 case KVM_SET_LAPIC: {
1253 struct kvm_lapic_state lapic;
1254
1255 r = -EFAULT;
1256 if (copy_from_user(&lapic, argp, sizeof lapic))
1257 goto out;
1258 r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
1259 if (r)
1260 goto out;
1261 r = 0;
1262 break;
1263 }
1264 case KVM_INTERRUPT: {
1265 struct kvm_interrupt irq;
1266
1267 r = -EFAULT;
1268 if (copy_from_user(&irq, argp, sizeof irq))
1269 goto out;
1270 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1271 if (r)
1272 goto out;
1273 r = 0;
1274 break;
1275 }
1276 case KVM_SET_CPUID: {
1277 struct kvm_cpuid __user *cpuid_arg = argp;
1278 struct kvm_cpuid cpuid;
1279
1280 r = -EFAULT;
1281 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1282 goto out;
1283 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1284 if (r)
1285 goto out;
1286 break;
1287 }
1288 case KVM_SET_CPUID2: {
1289 struct kvm_cpuid2 __user *cpuid_arg = argp;
1290 struct kvm_cpuid2 cpuid;
1291
1292 r = -EFAULT;
1293 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1294 goto out;
1295 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1296 cpuid_arg->entries);
1297 if (r)
1298 goto out;
1299 break;
1300 }
1301 case KVM_GET_CPUID2: {
1302 struct kvm_cpuid2 __user *cpuid_arg = argp;
1303 struct kvm_cpuid2 cpuid;
1304
1305 r = -EFAULT;
1306 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1307 goto out;
1308 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1309 cpuid_arg->entries);
1310 if (r)
1311 goto out;
1312 r = -EFAULT;
1313 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1314 goto out;
1315 r = 0;
1316 break;
1317 }
1318 case KVM_GET_MSRS:
1319 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1320 break;
1321 case KVM_SET_MSRS:
1322 r = msr_io(vcpu, argp, do_set_msr, 0);
1323 break;
1324 case KVM_TPR_ACCESS_REPORTING: {
1325 struct kvm_tpr_access_ctl tac;
1326
1327 r = -EFAULT;
1328 if (copy_from_user(&tac, argp, sizeof tac))
1329 goto out;
1330 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1331 if (r)
1332 goto out;
1333 r = -EFAULT;
1334 if (copy_to_user(argp, &tac, sizeof tac))
1335 goto out;
1336 r = 0;
1337 break;
1338 };
1339 case KVM_SET_VAPIC_ADDR: {
1340 struct kvm_vapic_addr va;
1341
1342 r = -EINVAL;
1343 if (!irqchip_in_kernel(vcpu->kvm))
1344 goto out;
1345 r = -EFAULT;
1346 if (copy_from_user(&va, argp, sizeof va))
1347 goto out;
1348 r = 0;
1349 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1350 break;
1351 }
1352 default:
1353 r = -EINVAL;
1354 }
1355 out:
1356 return r;
1357 }
1358
1359 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1360 {
1361 int ret;
1362
1363 if (addr > (unsigned int)(-3 * PAGE_SIZE))
1364 return -1;
1365 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1366 return ret;
1367 }
1368
1369 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1370 u32 kvm_nr_mmu_pages)
1371 {
1372 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1373 return -EINVAL;
1374
1375 down_write(&kvm->slots_lock);
1376
1377 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1378 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1379
1380 up_write(&kvm->slots_lock);
1381 return 0;
1382 }
1383
1384 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1385 {
1386 return kvm->arch.n_alloc_mmu_pages;
1387 }
1388
1389 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1390 {
1391 int i;
1392 struct kvm_mem_alias *alias;
1393
1394 for (i = 0; i < kvm->arch.naliases; ++i) {
1395 alias = &kvm->arch.aliases[i];
1396 if (gfn >= alias->base_gfn
1397 && gfn < alias->base_gfn + alias->npages)
1398 return alias->target_gfn + gfn - alias->base_gfn;
1399 }
1400 return gfn;
1401 }
1402
1403 /*
1404 * Set a new alias region. Aliases map a portion of physical memory into
1405 * another portion. This is useful for memory windows, for example the PC
1406 * VGA region.
1407 */
1408 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1409 struct kvm_memory_alias *alias)
1410 {
1411 int r, n;
1412 struct kvm_mem_alias *p;
1413
1414 r = -EINVAL;
1415 /* General sanity checks */
1416 if (alias->memory_size & (PAGE_SIZE - 1))
1417 goto out;
1418 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1419 goto out;
1420 if (alias->slot >= KVM_ALIAS_SLOTS)
1421 goto out;
1422 if (alias->guest_phys_addr + alias->memory_size
1423 < alias->guest_phys_addr)
1424 goto out;
1425 if (alias->target_phys_addr + alias->memory_size
1426 < alias->target_phys_addr)
1427 goto out;
1428
1429 down_write(&kvm->slots_lock);
1430
1431 p = &kvm->arch.aliases[alias->slot];
1432 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1433 p->npages = alias->memory_size >> PAGE_SHIFT;
1434 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1435
1436 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1437 if (kvm->arch.aliases[n - 1].npages)
1438 break;
1439 kvm->arch.naliases = n;
1440
1441 kvm_mmu_zap_all(kvm);
1442
1443 up_write(&kvm->slots_lock);
1444
1445 return 0;
1446
1447 out:
1448 return r;
1449 }
1450
1451 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1452 {
1453 int r;
1454
1455 r = 0;
1456 switch (chip->chip_id) {
1457 case KVM_IRQCHIP_PIC_MASTER:
1458 memcpy(&chip->chip.pic,
1459 &pic_irqchip(kvm)->pics[0],
1460 sizeof(struct kvm_pic_state));
1461 break;
1462 case KVM_IRQCHIP_PIC_SLAVE:
1463 memcpy(&chip->chip.pic,
1464 &pic_irqchip(kvm)->pics[1],
1465 sizeof(struct kvm_pic_state));
1466 break;
1467 case KVM_IRQCHIP_IOAPIC:
1468 memcpy(&chip->chip.ioapic,
1469 ioapic_irqchip(kvm),
1470 sizeof(struct kvm_ioapic_state));
1471 break;
1472 default:
1473 r = -EINVAL;
1474 break;
1475 }
1476 return r;
1477 }
1478
1479 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1480 {
1481 int r;
1482
1483 r = 0;
1484 switch (chip->chip_id) {
1485 case KVM_IRQCHIP_PIC_MASTER:
1486 memcpy(&pic_irqchip(kvm)->pics[0],
1487 &chip->chip.pic,
1488 sizeof(struct kvm_pic_state));
1489 break;
1490 case KVM_IRQCHIP_PIC_SLAVE:
1491 memcpy(&pic_irqchip(kvm)->pics[1],
1492 &chip->chip.pic,
1493 sizeof(struct kvm_pic_state));
1494 break;
1495 case KVM_IRQCHIP_IOAPIC:
1496 memcpy(ioapic_irqchip(kvm),
1497 &chip->chip.ioapic,
1498 sizeof(struct kvm_ioapic_state));
1499 break;
1500 default:
1501 r = -EINVAL;
1502 break;
1503 }
1504 kvm_pic_update_irq(pic_irqchip(kvm));
1505 return r;
1506 }
1507
1508 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1509 {
1510 int r = 0;
1511
1512 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
1513 return r;
1514 }
1515
1516 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1517 {
1518 int r = 0;
1519
1520 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
1521 kvm_pit_load_count(kvm, 0, ps->channels[0].count);
1522 return r;
1523 }
1524
1525 /*
1526 * Get (and clear) the dirty memory log for a memory slot.
1527 */
1528 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1529 struct kvm_dirty_log *log)
1530 {
1531 int r;
1532 int n;
1533 struct kvm_memory_slot *memslot;
1534 int is_dirty = 0;
1535
1536 down_write(&kvm->slots_lock);
1537
1538 r = kvm_get_dirty_log(kvm, log, &is_dirty);
1539 if (r)
1540 goto out;
1541
1542 /* If nothing is dirty, don't bother messing with page tables. */
1543 if (is_dirty) {
1544 kvm_mmu_slot_remove_write_access(kvm, log->slot);
1545 kvm_flush_remote_tlbs(kvm);
1546 memslot = &kvm->memslots[log->slot];
1547 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1548 memset(memslot->dirty_bitmap, 0, n);
1549 }
1550 r = 0;
1551 out:
1552 up_write(&kvm->slots_lock);
1553 return r;
1554 }
1555
1556 long kvm_arch_vm_ioctl(struct file *filp,
1557 unsigned int ioctl, unsigned long arg)
1558 {
1559 struct kvm *kvm = filp->private_data;
1560 void __user *argp = (void __user *)arg;
1561 int r = -EINVAL;
1562
1563 switch (ioctl) {
1564 case KVM_SET_TSS_ADDR:
1565 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
1566 if (r < 0)
1567 goto out;
1568 break;
1569 case KVM_SET_MEMORY_REGION: {
1570 struct kvm_memory_region kvm_mem;
1571 struct kvm_userspace_memory_region kvm_userspace_mem;
1572
1573 r = -EFAULT;
1574 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
1575 goto out;
1576 kvm_userspace_mem.slot = kvm_mem.slot;
1577 kvm_userspace_mem.flags = kvm_mem.flags;
1578 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
1579 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
1580 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
1581 if (r)
1582 goto out;
1583 break;
1584 }
1585 case KVM_SET_NR_MMU_PAGES:
1586 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
1587 if (r)
1588 goto out;
1589 break;
1590 case KVM_GET_NR_MMU_PAGES:
1591 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
1592 break;
1593 case KVM_SET_MEMORY_ALIAS: {
1594 struct kvm_memory_alias alias;
1595
1596 r = -EFAULT;
1597 if (copy_from_user(&alias, argp, sizeof alias))
1598 goto out;
1599 r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
1600 if (r)
1601 goto out;
1602 break;
1603 }
1604 case KVM_CREATE_IRQCHIP:
1605 r = -ENOMEM;
1606 kvm->arch.vpic = kvm_create_pic(kvm);
1607 if (kvm->arch.vpic) {
1608 r = kvm_ioapic_init(kvm);
1609 if (r) {
1610 kfree(kvm->arch.vpic);
1611 kvm->arch.vpic = NULL;
1612 goto out;
1613 }
1614 } else
1615 goto out;
1616 break;
1617 case KVM_CREATE_PIT:
1618 r = -ENOMEM;
1619 kvm->arch.vpit = kvm_create_pit(kvm);
1620 if (kvm->arch.vpit)
1621 r = 0;
1622 break;
1623 case KVM_IRQ_LINE: {
1624 struct kvm_irq_level irq_event;
1625
1626 r = -EFAULT;
1627 if (copy_from_user(&irq_event, argp, sizeof irq_event))
1628 goto out;
1629 if (irqchip_in_kernel(kvm)) {
1630 mutex_lock(&kvm->lock);
1631 if (irq_event.irq < 16)
1632 kvm_pic_set_irq(pic_irqchip(kvm),
1633 irq_event.irq,
1634 irq_event.level);
1635 kvm_ioapic_set_irq(kvm->arch.vioapic,
1636 irq_event.irq,
1637 irq_event.level);
1638 mutex_unlock(&kvm->lock);
1639 r = 0;
1640 }
1641 break;
1642 }
1643 case KVM_GET_IRQCHIP: {
1644 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1645 struct kvm_irqchip chip;
1646
1647 r = -EFAULT;
1648 if (copy_from_user(&chip, argp, sizeof chip))
1649 goto out;
1650 r = -ENXIO;
1651 if (!irqchip_in_kernel(kvm))
1652 goto out;
1653 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
1654 if (r)
1655 goto out;
1656 r = -EFAULT;
1657 if (copy_to_user(argp, &chip, sizeof chip))
1658 goto out;
1659 r = 0;
1660 break;
1661 }
1662 case KVM_SET_IRQCHIP: {
1663 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1664 struct kvm_irqchip chip;
1665
1666 r = -EFAULT;
1667 if (copy_from_user(&chip, argp, sizeof chip))
1668 goto out;
1669 r = -ENXIO;
1670 if (!irqchip_in_kernel(kvm))
1671 goto out;
1672 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
1673 if (r)
1674 goto out;
1675 r = 0;
1676 break;
1677 }
1678 case KVM_GET_PIT: {
1679 struct kvm_pit_state ps;
1680 r = -EFAULT;
1681 if (copy_from_user(&ps, argp, sizeof ps))
1682 goto out;
1683 r = -ENXIO;
1684 if (!kvm->arch.vpit)
1685 goto out;
1686 r = kvm_vm_ioctl_get_pit(kvm, &ps);
1687 if (r)
1688 goto out;
1689 r = -EFAULT;
1690 if (copy_to_user(argp, &ps, sizeof ps))
1691 goto out;
1692 r = 0;
1693 break;
1694 }
1695 case KVM_SET_PIT: {
1696 struct kvm_pit_state ps;
1697 r = -EFAULT;
1698 if (copy_from_user(&ps, argp, sizeof ps))
1699 goto out;
1700 r = -ENXIO;
1701 if (!kvm->arch.vpit)
1702 goto out;
1703 r = kvm_vm_ioctl_set_pit(kvm, &ps);
1704 if (r)
1705 goto out;
1706 r = 0;
1707 break;
1708 }
1709 default:
1710 ;
1711 }
1712 out:
1713 return r;
1714 }
1715
1716 static void kvm_init_msr_list(void)
1717 {
1718 u32 dummy[2];
1719 unsigned i, j;
1720
1721 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
1722 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
1723 continue;
1724 if (j < i)
1725 msrs_to_save[j] = msrs_to_save[i];
1726 j++;
1727 }
1728 num_msrs_to_save = j;
1729 }
1730
1731 /*
1732 * Only apic need an MMIO device hook, so shortcut now..
1733 */
1734 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
1735 gpa_t addr)
1736 {
1737 struct kvm_io_device *dev;
1738
1739 if (vcpu->arch.apic) {
1740 dev = &vcpu->arch.apic->dev;
1741 if (dev->in_range(dev, addr))
1742 return dev;
1743 }
1744 return NULL;
1745 }
1746
1747
1748 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1749 gpa_t addr)
1750 {
1751 struct kvm_io_device *dev;
1752
1753 dev = vcpu_find_pervcpu_dev(vcpu, addr);
1754 if (dev == NULL)
1755 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
1756 return dev;
1757 }
1758
1759 int emulator_read_std(unsigned long addr,
1760 void *val,
1761 unsigned int bytes,
1762 struct kvm_vcpu *vcpu)
1763 {
1764 void *data = val;
1765 int r = X86EMUL_CONTINUE;
1766
1767 down_read(&vcpu->kvm->slots_lock);
1768 while (bytes) {
1769 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1770 unsigned offset = addr & (PAGE_SIZE-1);
1771 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
1772 int ret;
1773
1774 if (gpa == UNMAPPED_GVA) {
1775 r = X86EMUL_PROPAGATE_FAULT;
1776 goto out;
1777 }
1778 ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
1779 if (ret < 0) {
1780 r = X86EMUL_UNHANDLEABLE;
1781 goto out;
1782 }
1783
1784 bytes -= tocopy;
1785 data += tocopy;
1786 addr += tocopy;
1787 }
1788 out:
1789 up_read(&vcpu->kvm->slots_lock);
1790 return r;
1791 }
1792 EXPORT_SYMBOL_GPL(emulator_read_std);
1793
1794 static int emulator_read_emulated(unsigned long addr,
1795 void *val,
1796 unsigned int bytes,
1797 struct kvm_vcpu *vcpu)
1798 {
1799 struct kvm_io_device *mmio_dev;
1800 gpa_t gpa;
1801
1802 if (vcpu->mmio_read_completed) {
1803 memcpy(val, vcpu->mmio_data, bytes);
1804 vcpu->mmio_read_completed = 0;
1805 return X86EMUL_CONTINUE;
1806 }
1807
1808 down_read(&vcpu->kvm->slots_lock);
1809 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1810 up_read(&vcpu->kvm->slots_lock);
1811
1812 /* For APIC access vmexit */
1813 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1814 goto mmio;
1815
1816 if (emulator_read_std(addr, val, bytes, vcpu)
1817 == X86EMUL_CONTINUE)
1818 return X86EMUL_CONTINUE;
1819 if (gpa == UNMAPPED_GVA)
1820 return X86EMUL_PROPAGATE_FAULT;
1821
1822 mmio:
1823 /*
1824 * Is this MMIO handled locally?
1825 */
1826 mutex_lock(&vcpu->kvm->lock);
1827 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1828 if (mmio_dev) {
1829 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1830 mutex_unlock(&vcpu->kvm->lock);
1831 return X86EMUL_CONTINUE;
1832 }
1833 mutex_unlock(&vcpu->kvm->lock);
1834
1835 vcpu->mmio_needed = 1;
1836 vcpu->mmio_phys_addr = gpa;
1837 vcpu->mmio_size = bytes;
1838 vcpu->mmio_is_write = 0;
1839
1840 return X86EMUL_UNHANDLEABLE;
1841 }
1842
1843 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1844 const void *val, int bytes)
1845 {
1846 int ret;
1847
1848 down_read(&vcpu->kvm->slots_lock);
1849 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
1850 if (ret < 0) {
1851 up_read(&vcpu->kvm->slots_lock);
1852 return 0;
1853 }
1854 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
1855 up_read(&vcpu->kvm->slots_lock);
1856 return 1;
1857 }
1858
1859 static int emulator_write_emulated_onepage(unsigned long addr,
1860 const void *val,
1861 unsigned int bytes,
1862 struct kvm_vcpu *vcpu)
1863 {
1864 struct kvm_io_device *mmio_dev;
1865 gpa_t gpa;
1866
1867 down_read(&vcpu->kvm->slots_lock);
1868 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1869 up_read(&vcpu->kvm->slots_lock);
1870
1871 if (gpa == UNMAPPED_GVA) {
1872 kvm_inject_page_fault(vcpu, addr, 2);
1873 return X86EMUL_PROPAGATE_FAULT;
1874 }
1875
1876 /* For APIC access vmexit */
1877 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1878 goto mmio;
1879
1880 if (emulator_write_phys(vcpu, gpa, val, bytes))
1881 return X86EMUL_CONTINUE;
1882
1883 mmio:
1884 /*
1885 * Is this MMIO handled locally?
1886 */
1887 mutex_lock(&vcpu->kvm->lock);
1888 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1889 if (mmio_dev) {
1890 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1891 mutex_unlock(&vcpu->kvm->lock);
1892 return X86EMUL_CONTINUE;
1893 }
1894 mutex_unlock(&vcpu->kvm->lock);
1895
1896 vcpu->mmio_needed = 1;
1897 vcpu->mmio_phys_addr = gpa;
1898 vcpu->mmio_size = bytes;
1899 vcpu->mmio_is_write = 1;
1900 memcpy(vcpu->mmio_data, val, bytes);
1901
1902 return X86EMUL_CONTINUE;
1903 }
1904
1905 int emulator_write_emulated(unsigned long addr,
1906 const void *val,
1907 unsigned int bytes,
1908 struct kvm_vcpu *vcpu)
1909 {
1910 /* Crossing a page boundary? */
1911 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
1912 int rc, now;
1913
1914 now = -addr & ~PAGE_MASK;
1915 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
1916 if (rc != X86EMUL_CONTINUE)
1917 return rc;
1918 addr += now;
1919 val += now;
1920 bytes -= now;
1921 }
1922 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
1923 }
1924 EXPORT_SYMBOL_GPL(emulator_write_emulated);
1925
1926 static int emulator_cmpxchg_emulated(unsigned long addr,
1927 const void *old,
1928 const void *new,
1929 unsigned int bytes,
1930 struct kvm_vcpu *vcpu)
1931 {
1932 static int reported;
1933
1934 if (!reported) {
1935 reported = 1;
1936 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1937 }
1938 #ifndef CONFIG_X86_64
1939 /* guests cmpxchg8b have to be emulated atomically */
1940 if (bytes == 8) {
1941 gpa_t gpa;
1942 struct page *page;
1943 char *kaddr;
1944 u64 val;
1945
1946 down_read(&vcpu->kvm->slots_lock);
1947 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1948
1949 if (gpa == UNMAPPED_GVA ||
1950 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1951 goto emul_write;
1952
1953 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
1954 goto emul_write;
1955
1956 val = *(u64 *)new;
1957
1958 down_read(&current->mm->mmap_sem);
1959 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1960 up_read(&current->mm->mmap_sem);
1961
1962 kaddr = kmap_atomic(page, KM_USER0);
1963 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
1964 kunmap_atomic(kaddr, KM_USER0);
1965 kvm_release_page_dirty(page);
1966 emul_write:
1967 up_read(&vcpu->kvm->slots_lock);
1968 }
1969 #endif
1970
1971 return emulator_write_emulated(addr, new, bytes, vcpu);
1972 }
1973
1974 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
1975 {
1976 return kvm_x86_ops->get_segment_base(vcpu, seg);
1977 }
1978
1979 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1980 {
1981 return X86EMUL_CONTINUE;
1982 }
1983
1984 int emulate_clts(struct kvm_vcpu *vcpu)
1985 {
1986 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
1987 return X86EMUL_CONTINUE;
1988 }
1989
1990 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
1991 {
1992 struct kvm_vcpu *vcpu = ctxt->vcpu;
1993
1994 switch (dr) {
1995 case 0 ... 3:
1996 *dest = kvm_x86_ops->get_dr(vcpu, dr);
1997 return X86EMUL_CONTINUE;
1998 default:
1999 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2000 return X86EMUL_UNHANDLEABLE;
2001 }
2002 }
2003
2004 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2005 {
2006 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2007 int exception;
2008
2009 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2010 if (exception) {
2011 /* FIXME: better handling */
2012 return X86EMUL_UNHANDLEABLE;
2013 }
2014 return X86EMUL_CONTINUE;
2015 }
2016
2017 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2018 {
2019 static int reported;
2020 u8 opcodes[4];
2021 unsigned long rip = vcpu->arch.rip;
2022 unsigned long rip_linear;
2023
2024 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2025
2026 if (reported)
2027 return;
2028
2029 emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
2030
2031 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2032 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2033 reported = 1;
2034 }
2035 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2036
2037 static struct x86_emulate_ops emulate_ops = {
2038 .read_std = emulator_read_std,
2039 .read_emulated = emulator_read_emulated,
2040 .write_emulated = emulator_write_emulated,
2041 .cmpxchg_emulated = emulator_cmpxchg_emulated,
2042 };
2043
2044 int emulate_instruction(struct kvm_vcpu *vcpu,
2045 struct kvm_run *run,
2046 unsigned long cr2,
2047 u16 error_code,
2048 int emulation_type)
2049 {
2050 int r;
2051 struct decode_cache *c;
2052
2053 vcpu->arch.mmio_fault_cr2 = cr2;
2054 kvm_x86_ops->cache_regs(vcpu);
2055
2056 vcpu->mmio_is_write = 0;
2057 vcpu->arch.pio.string = 0;
2058
2059 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2060 int cs_db, cs_l;
2061 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2062
2063 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2064 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2065 vcpu->arch.emulate_ctxt.mode =
2066 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2067 ? X86EMUL_MODE_REAL : cs_l
2068 ? X86EMUL_MODE_PROT64 : cs_db
2069 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2070
2071 if (vcpu->arch.emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
2072 vcpu->arch.emulate_ctxt.cs_base = 0;
2073 vcpu->arch.emulate_ctxt.ds_base = 0;
2074 vcpu->arch.emulate_ctxt.es_base = 0;
2075 vcpu->arch.emulate_ctxt.ss_base = 0;
2076 } else {
2077 vcpu->arch.emulate_ctxt.cs_base =
2078 get_segment_base(vcpu, VCPU_SREG_CS);
2079 vcpu->arch.emulate_ctxt.ds_base =
2080 get_segment_base(vcpu, VCPU_SREG_DS);
2081 vcpu->arch.emulate_ctxt.es_base =
2082 get_segment_base(vcpu, VCPU_SREG_ES);
2083 vcpu->arch.emulate_ctxt.ss_base =
2084 get_segment_base(vcpu, VCPU_SREG_SS);
2085 }
2086
2087 vcpu->arch.emulate_ctxt.gs_base =
2088 get_segment_base(vcpu, VCPU_SREG_GS);
2089 vcpu->arch.emulate_ctxt.fs_base =
2090 get_segment_base(vcpu, VCPU_SREG_FS);
2091
2092 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2093
2094 /* Reject the instructions other than VMCALL/VMMCALL when
2095 * try to emulate invalid opcode */
2096 c = &vcpu->arch.emulate_ctxt.decode;
2097 if ((emulation_type & EMULTYPE_TRAP_UD) &&
2098 (!(c->twobyte && c->b == 0x01 &&
2099 (c->modrm_reg == 0 || c->modrm_reg == 3) &&
2100 c->modrm_mod == 3 && c->modrm_rm == 1)))
2101 return EMULATE_FAIL;
2102
2103 ++vcpu->stat.insn_emulation;
2104 if (r) {
2105 ++vcpu->stat.insn_emulation_fail;
2106 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2107 return EMULATE_DONE;
2108 return EMULATE_FAIL;
2109 }
2110 }
2111
2112 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2113
2114 if (vcpu->arch.pio.string)
2115 return EMULATE_DO_MMIO;
2116
2117 if ((r || vcpu->mmio_is_write) && run) {
2118 run->exit_reason = KVM_EXIT_MMIO;
2119 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2120 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2121 run->mmio.len = vcpu->mmio_size;
2122 run->mmio.is_write = vcpu->mmio_is_write;
2123 }
2124
2125 if (r) {
2126 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2127 return EMULATE_DONE;
2128 if (!vcpu->mmio_needed) {
2129 kvm_report_emulation_failure(vcpu, "mmio");
2130 return EMULATE_FAIL;
2131 }
2132 return EMULATE_DO_MMIO;
2133 }
2134
2135 kvm_x86_ops->decache_regs(vcpu);
2136 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2137
2138 if (vcpu->mmio_is_write) {
2139 vcpu->mmio_needed = 0;
2140 return EMULATE_DO_MMIO;
2141 }
2142
2143 return EMULATE_DONE;
2144 }
2145 EXPORT_SYMBOL_GPL(emulate_instruction);
2146
2147 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
2148 {
2149 int i;
2150
2151 for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
2152 if (vcpu->arch.pio.guest_pages[i]) {
2153 kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
2154 vcpu->arch.pio.guest_pages[i] = NULL;
2155 }
2156 }
2157
2158 static int pio_copy_data(struct kvm_vcpu *vcpu)
2159 {
2160 void *p = vcpu->arch.pio_data;
2161 void *q;
2162 unsigned bytes;
2163 int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
2164
2165 q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
2166 PAGE_KERNEL);
2167 if (!q) {
2168 free_pio_guest_pages(vcpu);
2169 return -ENOMEM;
2170 }
2171 q += vcpu->arch.pio.guest_page_offset;
2172 bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2173 if (vcpu->arch.pio.in)
2174 memcpy(q, p, bytes);
2175 else
2176 memcpy(p, q, bytes);
2177 q -= vcpu->arch.pio.guest_page_offset;
2178 vunmap(q);
2179 free_pio_guest_pages(vcpu);
2180 return 0;
2181 }
2182
2183 int complete_pio(struct kvm_vcpu *vcpu)
2184 {
2185 struct kvm_pio_request *io = &vcpu->arch.pio;
2186 long delta;
2187 int r;
2188
2189 kvm_x86_ops->cache_regs(vcpu);
2190
2191 if (!io->string) {
2192 if (io->in)
2193 memcpy(&vcpu->arch.regs[VCPU_REGS_RAX], vcpu->arch.pio_data,
2194 io->size);
2195 } else {
2196 if (io->in) {
2197 r = pio_copy_data(vcpu);
2198 if (r) {
2199 kvm_x86_ops->cache_regs(vcpu);
2200 return r;
2201 }
2202 }
2203
2204 delta = 1;
2205 if (io->rep) {
2206 delta *= io->cur_count;
2207 /*
2208 * The size of the register should really depend on
2209 * current address size.
2210 */
2211 vcpu->arch.regs[VCPU_REGS_RCX] -= delta;
2212 }
2213 if (io->down)
2214 delta = -delta;
2215 delta *= io->size;
2216 if (io->in)
2217 vcpu->arch.regs[VCPU_REGS_RDI] += delta;
2218 else
2219 vcpu->arch.regs[VCPU_REGS_RSI] += delta;
2220 }
2221
2222 kvm_x86_ops->decache_regs(vcpu);
2223
2224 io->count -= io->cur_count;
2225 io->cur_count = 0;
2226
2227 return 0;
2228 }
2229
2230 static void kernel_pio(struct kvm_io_device *pio_dev,
2231 struct kvm_vcpu *vcpu,
2232 void *pd)
2233 {
2234 /* TODO: String I/O for in kernel device */
2235
2236 mutex_lock(&vcpu->kvm->lock);
2237 if (vcpu->arch.pio.in)
2238 kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
2239 vcpu->arch.pio.size,
2240 pd);
2241 else
2242 kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
2243 vcpu->arch.pio.size,
2244 pd);
2245 mutex_unlock(&vcpu->kvm->lock);
2246 }
2247
2248 static void pio_string_write(struct kvm_io_device *pio_dev,
2249 struct kvm_vcpu *vcpu)
2250 {
2251 struct kvm_pio_request *io = &vcpu->arch.pio;
2252 void *pd = vcpu->arch.pio_data;
2253 int i;
2254
2255 mutex_lock(&vcpu->kvm->lock);
2256 for (i = 0; i < io->cur_count; i++) {
2257 kvm_iodevice_write(pio_dev, io->port,
2258 io->size,
2259 pd);
2260 pd += io->size;
2261 }
2262 mutex_unlock(&vcpu->kvm->lock);
2263 }
2264
2265 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2266 gpa_t addr)
2267 {
2268 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
2269 }
2270
2271 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2272 int size, unsigned port)
2273 {
2274 struct kvm_io_device *pio_dev;
2275
2276 vcpu->run->exit_reason = KVM_EXIT_IO;
2277 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2278 vcpu->run->io.size = vcpu->arch.pio.size = size;
2279 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2280 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2281 vcpu->run->io.port = vcpu->arch.pio.port = port;
2282 vcpu->arch.pio.in = in;
2283 vcpu->arch.pio.string = 0;
2284 vcpu->arch.pio.down = 0;
2285 vcpu->arch.pio.guest_page_offset = 0;
2286 vcpu->arch.pio.rep = 0;
2287
2288 kvm_x86_ops->cache_regs(vcpu);
2289 memcpy(vcpu->arch.pio_data, &vcpu->arch.regs[VCPU_REGS_RAX], 4);
2290 kvm_x86_ops->decache_regs(vcpu);
2291
2292 kvm_x86_ops->skip_emulated_instruction(vcpu);
2293
2294 pio_dev = vcpu_find_pio_dev(vcpu, port);
2295 if (pio_dev) {
2296 kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2297 complete_pio(vcpu);
2298 return 1;
2299 }
2300 return 0;
2301 }
2302 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2303
2304 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2305 int size, unsigned long count, int down,
2306 gva_t address, int rep, unsigned port)
2307 {
2308 unsigned now, in_page;
2309 int i, ret = 0;
2310 int nr_pages = 1;
2311 struct page *page;
2312 struct kvm_io_device *pio_dev;
2313
2314 vcpu->run->exit_reason = KVM_EXIT_IO;
2315 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2316 vcpu->run->io.size = vcpu->arch.pio.size = size;
2317 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2318 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2319 vcpu->run->io.port = vcpu->arch.pio.port = port;
2320 vcpu->arch.pio.in = in;
2321 vcpu->arch.pio.string = 1;
2322 vcpu->arch.pio.down = down;
2323 vcpu->arch.pio.guest_page_offset = offset_in_page(address);
2324 vcpu->arch.pio.rep = rep;
2325
2326 if (!count) {
2327 kvm_x86_ops->skip_emulated_instruction(vcpu);
2328 return 1;
2329 }
2330
2331 if (!down)
2332 in_page = PAGE_SIZE - offset_in_page(address);
2333 else
2334 in_page = offset_in_page(address) + size;
2335 now = min(count, (unsigned long)in_page / size);
2336 if (!now) {
2337 /*
2338 * String I/O straddles page boundary. Pin two guest pages
2339 * so that we satisfy atomicity constraints. Do just one
2340 * transaction to avoid complexity.
2341 */
2342 nr_pages = 2;
2343 now = 1;
2344 }
2345 if (down) {
2346 /*
2347 * String I/O in reverse. Yuck. Kill the guest, fix later.
2348 */
2349 pr_unimpl(vcpu, "guest string pio down\n");
2350 kvm_inject_gp(vcpu, 0);
2351 return 1;
2352 }
2353 vcpu->run->io.count = now;
2354 vcpu->arch.pio.cur_count = now;
2355
2356 if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2357 kvm_x86_ops->skip_emulated_instruction(vcpu);
2358
2359 for (i = 0; i < nr_pages; ++i) {
2360 down_read(&vcpu->kvm->slots_lock);
2361 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
2362 vcpu->arch.pio.guest_pages[i] = page;
2363 up_read(&vcpu->kvm->slots_lock);
2364 if (!page) {
2365 kvm_inject_gp(vcpu, 0);
2366 free_pio_guest_pages(vcpu);
2367 return 1;
2368 }
2369 }
2370
2371 pio_dev = vcpu_find_pio_dev(vcpu, port);
2372 if (!vcpu->arch.pio.in) {
2373 /* string PIO write */
2374 ret = pio_copy_data(vcpu);
2375 if (ret >= 0 && pio_dev) {
2376 pio_string_write(pio_dev, vcpu);
2377 complete_pio(vcpu);
2378 if (vcpu->arch.pio.count == 0)
2379 ret = 1;
2380 }
2381 } else if (pio_dev)
2382 pr_unimpl(vcpu, "no string pio read support yet, "
2383 "port %x size %d count %ld\n",
2384 port, size, count);
2385
2386 return ret;
2387 }
2388 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2389
2390 int kvm_arch_init(void *opaque)
2391 {
2392 int r;
2393 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
2394
2395 if (kvm_x86_ops) {
2396 printk(KERN_ERR "kvm: already loaded the other module\n");
2397 r = -EEXIST;
2398 goto out;
2399 }
2400
2401 if (!ops->cpu_has_kvm_support()) {
2402 printk(KERN_ERR "kvm: no hardware support\n");
2403 r = -EOPNOTSUPP;
2404 goto out;
2405 }
2406 if (ops->disabled_by_bios()) {
2407 printk(KERN_ERR "kvm: disabled by bios\n");
2408 r = -EOPNOTSUPP;
2409 goto out;
2410 }
2411
2412 r = kvm_mmu_module_init();
2413 if (r)
2414 goto out;
2415
2416 kvm_init_msr_list();
2417
2418 kvm_x86_ops = ops;
2419 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2420 return 0;
2421
2422 out:
2423 return r;
2424 }
2425
2426 void kvm_arch_exit(void)
2427 {
2428 kvm_x86_ops = NULL;
2429 kvm_mmu_module_exit();
2430 }
2431
2432 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
2433 {
2434 ++vcpu->stat.halt_exits;
2435 if (irqchip_in_kernel(vcpu->kvm)) {
2436 vcpu->arch.mp_state = VCPU_MP_STATE_HALTED;
2437 kvm_vcpu_block(vcpu);
2438 if (vcpu->arch.mp_state != VCPU_MP_STATE_RUNNABLE)
2439 return -EINTR;
2440 return 1;
2441 } else {
2442 vcpu->run->exit_reason = KVM_EXIT_HLT;
2443 return 0;
2444 }
2445 }
2446 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
2447
2448 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
2449 {
2450 unsigned long nr, a0, a1, a2, a3, ret;
2451
2452 kvm_x86_ops->cache_regs(vcpu);
2453
2454 nr = vcpu->arch.regs[VCPU_REGS_RAX];
2455 a0 = vcpu->arch.regs[VCPU_REGS_RBX];
2456 a1 = vcpu->arch.regs[VCPU_REGS_RCX];
2457 a2 = vcpu->arch.regs[VCPU_REGS_RDX];
2458 a3 = vcpu->arch.regs[VCPU_REGS_RSI];
2459
2460 if (!is_long_mode(vcpu)) {
2461 nr &= 0xFFFFFFFF;
2462 a0 &= 0xFFFFFFFF;
2463 a1 &= 0xFFFFFFFF;
2464 a2 &= 0xFFFFFFFF;
2465 a3 &= 0xFFFFFFFF;
2466 }
2467
2468 switch (nr) {
2469 case KVM_HC_VAPIC_POLL_IRQ:
2470 ret = 0;
2471 break;
2472 default:
2473 ret = -KVM_ENOSYS;
2474 break;
2475 }
2476 vcpu->arch.regs[VCPU_REGS_RAX] = ret;
2477 kvm_x86_ops->decache_regs(vcpu);
2478 ++vcpu->stat.hypercalls;
2479 return 0;
2480 }
2481 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
2482
2483 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
2484 {
2485 char instruction[3];
2486 int ret = 0;
2487
2488
2489 /*
2490 * Blow out the MMU to ensure that no other VCPU has an active mapping
2491 * to ensure that the updated hypercall appears atomically across all
2492 * VCPUs.
2493 */
2494 kvm_mmu_zap_all(vcpu->kvm);
2495
2496 kvm_x86_ops->cache_regs(vcpu);
2497 kvm_x86_ops->patch_hypercall(vcpu, instruction);
2498 if (emulator_write_emulated(vcpu->arch.rip, instruction, 3, vcpu)
2499 != X86EMUL_CONTINUE)
2500 ret = -EFAULT;
2501
2502 return ret;
2503 }
2504
2505 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
2506 {
2507 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
2508 }
2509
2510 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2511 {
2512 struct descriptor_table dt = { limit, base };
2513
2514 kvm_x86_ops->set_gdt(vcpu, &dt);
2515 }
2516
2517 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2518 {
2519 struct descriptor_table dt = { limit, base };
2520
2521 kvm_x86_ops->set_idt(vcpu, &dt);
2522 }
2523
2524 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
2525 unsigned long *rflags)
2526 {
2527 kvm_lmsw(vcpu, msw);
2528 *rflags = kvm_x86_ops->get_rflags(vcpu);
2529 }
2530
2531 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
2532 {
2533 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2534 switch (cr) {
2535 case 0:
2536 return vcpu->arch.cr0;
2537 case 2:
2538 return vcpu->arch.cr2;
2539 case 3:
2540 return vcpu->arch.cr3;
2541 case 4:
2542 return vcpu->arch.cr4;
2543 case 8:
2544 return kvm_get_cr8(vcpu);
2545 default:
2546 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2547 return 0;
2548 }
2549 }
2550
2551 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
2552 unsigned long *rflags)
2553 {
2554 switch (cr) {
2555 case 0:
2556 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2557 *rflags = kvm_x86_ops->get_rflags(vcpu);
2558 break;
2559 case 2:
2560 vcpu->arch.cr2 = val;
2561 break;
2562 case 3:
2563 kvm_set_cr3(vcpu, val);
2564 break;
2565 case 4:
2566 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2567 break;
2568 case 8:
2569 kvm_set_cr8(vcpu, val & 0xfUL);
2570 break;
2571 default:
2572 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2573 }
2574 }
2575
2576 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
2577 {
2578 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
2579 int j, nent = vcpu->arch.cpuid_nent;
2580
2581 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
2582 /* when no next entry is found, the current entry[i] is reselected */
2583 for (j = i + 1; j == i; j = (j + 1) % nent) {
2584 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2585 if (ej->function == e->function) {
2586 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2587 return j;
2588 }
2589 }
2590 return 0; /* silence gcc, even though control never reaches here */
2591 }
2592
2593 /* find an entry with matching function, matching index (if needed), and that
2594 * should be read next (if it's stateful) */
2595 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
2596 u32 function, u32 index)
2597 {
2598 if (e->function != function)
2599 return 0;
2600 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
2601 return 0;
2602 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
2603 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
2604 return 0;
2605 return 1;
2606 }
2607
2608 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
2609 {
2610 int i;
2611 u32 function, index;
2612 struct kvm_cpuid_entry2 *e, *best;
2613
2614 kvm_x86_ops->cache_regs(vcpu);
2615 function = vcpu->arch.regs[VCPU_REGS_RAX];
2616 index = vcpu->arch.regs[VCPU_REGS_RCX];
2617 vcpu->arch.regs[VCPU_REGS_RAX] = 0;
2618 vcpu->arch.regs[VCPU_REGS_RBX] = 0;
2619 vcpu->arch.regs[VCPU_REGS_RCX] = 0;
2620 vcpu->arch.regs[VCPU_REGS_RDX] = 0;
2621 best = NULL;
2622 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2623 e = &vcpu->arch.cpuid_entries[i];
2624 if (is_matching_cpuid_entry(e, function, index)) {
2625 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
2626 move_to_next_stateful_cpuid_entry(vcpu, i);
2627 best = e;
2628 break;
2629 }
2630 /*
2631 * Both basic or both extended?
2632 */
2633 if (((e->function ^ function) & 0x80000000) == 0)
2634 if (!best || e->function > best->function)
2635 best = e;
2636 }
2637 if (best) {
2638 vcpu->arch.regs[VCPU_REGS_RAX] = best->eax;
2639 vcpu->arch.regs[VCPU_REGS_RBX] = best->ebx;
2640 vcpu->arch.regs[VCPU_REGS_RCX] = best->ecx;
2641 vcpu->arch.regs[VCPU_REGS_RDX] = best->edx;
2642 }
2643 kvm_x86_ops->decache_regs(vcpu);
2644 kvm_x86_ops->skip_emulated_instruction(vcpu);
2645 }
2646 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
2647
2648 /*
2649 * Check if userspace requested an interrupt window, and that the
2650 * interrupt window is open.
2651 *
2652 * No need to exit to userspace if we already have an interrupt queued.
2653 */
2654 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
2655 struct kvm_run *kvm_run)
2656 {
2657 return (!vcpu->arch.irq_summary &&
2658 kvm_run->request_interrupt_window &&
2659 vcpu->arch.interrupt_window_open &&
2660 (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
2661 }
2662
2663 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
2664 struct kvm_run *kvm_run)
2665 {
2666 kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
2667 kvm_run->cr8 = kvm_get_cr8(vcpu);
2668 kvm_run->apic_base = kvm_get_apic_base(vcpu);
2669 if (irqchip_in_kernel(vcpu->kvm))
2670 kvm_run->ready_for_interrupt_injection = 1;
2671 else
2672 kvm_run->ready_for_interrupt_injection =
2673 (vcpu->arch.interrupt_window_open &&
2674 vcpu->arch.irq_summary == 0);
2675 }
2676
2677 static void vapic_enter(struct kvm_vcpu *vcpu)
2678 {
2679 struct kvm_lapic *apic = vcpu->arch.apic;
2680 struct page *page;
2681
2682 if (!apic || !apic->vapic_addr)
2683 return;
2684
2685 down_read(&current->mm->mmap_sem);
2686 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2687 up_read(&current->mm->mmap_sem);
2688
2689 vcpu->arch.apic->vapic_page = page;
2690 }
2691
2692 static void vapic_exit(struct kvm_vcpu *vcpu)
2693 {
2694 struct kvm_lapic *apic = vcpu->arch.apic;
2695
2696 if (!apic || !apic->vapic_addr)
2697 return;
2698
2699 kvm_release_page_dirty(apic->vapic_page);
2700 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2701 }
2702
2703 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2704 {
2705 int r;
2706
2707 if (unlikely(vcpu->arch.mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
2708 pr_debug("vcpu %d received sipi with vector # %x\n",
2709 vcpu->vcpu_id, vcpu->arch.sipi_vector);
2710 kvm_lapic_reset(vcpu);
2711 r = kvm_x86_ops->vcpu_reset(vcpu);
2712 if (r)
2713 return r;
2714 vcpu->arch.mp_state = VCPU_MP_STATE_RUNNABLE;
2715 }
2716
2717 vapic_enter(vcpu);
2718
2719 preempted:
2720 if (vcpu->guest_debug.enabled)
2721 kvm_x86_ops->guest_debug_pre(vcpu);
2722
2723 again:
2724 if (vcpu->requests)
2725 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
2726 kvm_mmu_unload(vcpu);
2727
2728 r = kvm_mmu_reload(vcpu);
2729 if (unlikely(r))
2730 goto out;
2731
2732 if (vcpu->requests) {
2733 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
2734 __kvm_migrate_apic_timer(vcpu);
2735 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
2736 &vcpu->requests)) {
2737 kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
2738 r = 0;
2739 goto out;
2740 }
2741 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
2742 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2743 r = 0;
2744 goto out;
2745 }
2746 }
2747
2748 kvm_inject_pending_timer_irqs(vcpu);
2749
2750 preempt_disable();
2751
2752 kvm_x86_ops->prepare_guest_switch(vcpu);
2753 kvm_load_guest_fpu(vcpu);
2754
2755 local_irq_disable();
2756
2757 if (need_resched()) {
2758 local_irq_enable();
2759 preempt_enable();
2760 r = 1;
2761 goto out;
2762 }
2763
2764 if (vcpu->requests)
2765 if (test_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests)) {
2766 local_irq_enable();
2767 preempt_enable();
2768 r = 1;
2769 goto out;
2770 }
2771
2772 if (signal_pending(current)) {
2773 local_irq_enable();
2774 preempt_enable();
2775 r = -EINTR;
2776 kvm_run->exit_reason = KVM_EXIT_INTR;
2777 ++vcpu->stat.signal_exits;
2778 goto out;
2779 }
2780
2781 if (vcpu->arch.exception.pending)
2782 __queue_exception(vcpu);
2783 else if (irqchip_in_kernel(vcpu->kvm))
2784 kvm_x86_ops->inject_pending_irq(vcpu);
2785 else
2786 kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
2787
2788 kvm_lapic_sync_to_vapic(vcpu);
2789
2790 vcpu->guest_mode = 1;
2791 kvm_guest_enter();
2792
2793 if (vcpu->requests)
2794 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
2795 kvm_x86_ops->tlb_flush(vcpu);
2796
2797 kvm_x86_ops->run(vcpu, kvm_run);
2798
2799 vcpu->guest_mode = 0;
2800 local_irq_enable();
2801
2802 ++vcpu->stat.exits;
2803
2804 /*
2805 * We must have an instruction between local_irq_enable() and
2806 * kvm_guest_exit(), so the timer interrupt isn't delayed by
2807 * the interrupt shadow. The stat.exits increment will do nicely.
2808 * But we need to prevent reordering, hence this barrier():
2809 */
2810 barrier();
2811
2812 kvm_guest_exit();
2813
2814 preempt_enable();
2815
2816 /*
2817 * Profile KVM exit RIPs:
2818 */
2819 if (unlikely(prof_on == KVM_PROFILING)) {
2820 kvm_x86_ops->cache_regs(vcpu);
2821 profile_hit(KVM_PROFILING, (void *)vcpu->arch.rip);
2822 }
2823
2824 if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
2825 vcpu->arch.exception.pending = false;
2826
2827 kvm_lapic_sync_from_vapic(vcpu);
2828
2829 r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
2830
2831 if (r > 0) {
2832 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
2833 r = -EINTR;
2834 kvm_run->exit_reason = KVM_EXIT_INTR;
2835 ++vcpu->stat.request_irq_exits;
2836 goto out;
2837 }
2838 if (!need_resched())
2839 goto again;
2840 }
2841
2842 out:
2843 if (r > 0) {
2844 kvm_resched(vcpu);
2845 goto preempted;
2846 }
2847
2848 post_kvm_run_save(vcpu, kvm_run);
2849
2850 vapic_exit(vcpu);
2851
2852 return r;
2853 }
2854
2855 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2856 {
2857 int r;
2858 sigset_t sigsaved;
2859
2860 vcpu_load(vcpu);
2861
2862 if (unlikely(vcpu->arch.mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
2863 kvm_vcpu_block(vcpu);
2864 vcpu_put(vcpu);
2865 return -EAGAIN;
2866 }
2867
2868 if (vcpu->sigset_active)
2869 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
2870
2871 /* re-sync apic's tpr */
2872 if (!irqchip_in_kernel(vcpu->kvm))
2873 kvm_set_cr8(vcpu, kvm_run->cr8);
2874
2875 if (vcpu->arch.pio.cur_count) {
2876 r = complete_pio(vcpu);
2877 if (r)
2878 goto out;
2879 }
2880 #if CONFIG_HAS_IOMEM
2881 if (vcpu->mmio_needed) {
2882 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
2883 vcpu->mmio_read_completed = 1;
2884 vcpu->mmio_needed = 0;
2885 r = emulate_instruction(vcpu, kvm_run,
2886 vcpu->arch.mmio_fault_cr2, 0,
2887 EMULTYPE_NO_DECODE);
2888 if (r == EMULATE_DO_MMIO) {
2889 /*
2890 * Read-modify-write. Back to userspace.
2891 */
2892 r = 0;
2893 goto out;
2894 }
2895 }
2896 #endif
2897 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
2898 kvm_x86_ops->cache_regs(vcpu);
2899 vcpu->arch.regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
2900 kvm_x86_ops->decache_regs(vcpu);
2901 }
2902
2903 r = __vcpu_run(vcpu, kvm_run);
2904
2905 out:
2906 if (vcpu->sigset_active)
2907 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2908
2909 vcpu_put(vcpu);
2910 return r;
2911 }
2912
2913 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
2914 {
2915 vcpu_load(vcpu);
2916
2917 kvm_x86_ops->cache_regs(vcpu);
2918
2919 regs->rax = vcpu->arch.regs[VCPU_REGS_RAX];
2920 regs->rbx = vcpu->arch.regs[VCPU_REGS_RBX];
2921 regs->rcx = vcpu->arch.regs[VCPU_REGS_RCX];
2922 regs->rdx = vcpu->arch.regs[VCPU_REGS_RDX];
2923 regs->rsi = vcpu->arch.regs[VCPU_REGS_RSI];
2924 regs->rdi = vcpu->arch.regs[VCPU_REGS_RDI];
2925 regs->rsp = vcpu->arch.regs[VCPU_REGS_RSP];
2926 regs->rbp = vcpu->arch.regs[VCPU_REGS_RBP];
2927 #ifdef CONFIG_X86_64
2928 regs->r8 = vcpu->arch.regs[VCPU_REGS_R8];
2929 regs->r9 = vcpu->arch.regs[VCPU_REGS_R9];
2930 regs->r10 = vcpu->arch.regs[VCPU_REGS_R10];
2931 regs->r11 = vcpu->arch.regs[VCPU_REGS_R11];
2932 regs->r12 = vcpu->arch.regs[VCPU_REGS_R12];
2933 regs->r13 = vcpu->arch.regs[VCPU_REGS_R13];
2934 regs->r14 = vcpu->arch.regs[VCPU_REGS_R14];
2935 regs->r15 = vcpu->arch.regs[VCPU_REGS_R15];
2936 #endif
2937
2938 regs->rip = vcpu->arch.rip;
2939 regs->rflags = kvm_x86_ops->get_rflags(vcpu);
2940
2941 /*
2942 * Don't leak debug flags in case they were set for guest debugging
2943 */
2944 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
2945 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
2946
2947 vcpu_put(vcpu);
2948
2949 return 0;
2950 }
2951
2952 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
2953 {
2954 vcpu_load(vcpu);
2955
2956 vcpu->arch.regs[VCPU_REGS_RAX] = regs->rax;
2957 vcpu->arch.regs[VCPU_REGS_RBX] = regs->rbx;
2958 vcpu->arch.regs[VCPU_REGS_RCX] = regs->rcx;
2959 vcpu->arch.regs[VCPU_REGS_RDX] = regs->rdx;
2960 vcpu->arch.regs[VCPU_REGS_RSI] = regs->rsi;
2961 vcpu->arch.regs[VCPU_REGS_RDI] = regs->rdi;
2962 vcpu->arch.regs[VCPU_REGS_RSP] = regs->rsp;
2963 vcpu->arch.regs[VCPU_REGS_RBP] = regs->rbp;
2964 #ifdef CONFIG_X86_64
2965 vcpu->arch.regs[VCPU_REGS_R8] = regs->r8;
2966 vcpu->arch.regs[VCPU_REGS_R9] = regs->r9;
2967 vcpu->arch.regs[VCPU_REGS_R10] = regs->r10;
2968 vcpu->arch.regs[VCPU_REGS_R11] = regs->r11;
2969 vcpu->arch.regs[VCPU_REGS_R12] = regs->r12;
2970 vcpu->arch.regs[VCPU_REGS_R13] = regs->r13;
2971 vcpu->arch.regs[VCPU_REGS_R14] = regs->r14;
2972 vcpu->arch.regs[VCPU_REGS_R15] = regs->r15;
2973 #endif
2974
2975 vcpu->arch.rip = regs->rip;
2976 kvm_x86_ops->set_rflags(vcpu, regs->rflags);
2977
2978 kvm_x86_ops->decache_regs(vcpu);
2979
2980 vcpu_put(vcpu);
2981
2982 return 0;
2983 }
2984
2985 static void get_segment(struct kvm_vcpu *vcpu,
2986 struct kvm_segment *var, int seg)
2987 {
2988 kvm_x86_ops->get_segment(vcpu, var, seg);
2989 }
2990
2991 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
2992 {
2993 struct kvm_segment cs;
2994
2995 get_segment(vcpu, &cs, VCPU_SREG_CS);
2996 *db = cs.db;
2997 *l = cs.l;
2998 }
2999 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3000
3001 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3002 struct kvm_sregs *sregs)
3003 {
3004 struct descriptor_table dt;
3005 int pending_vec;
3006
3007 vcpu_load(vcpu);
3008
3009 get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3010 get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3011 get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3012 get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3013 get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3014 get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3015
3016 get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3017 get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3018
3019 kvm_x86_ops->get_idt(vcpu, &dt);
3020 sregs->idt.limit = dt.limit;
3021 sregs->idt.base = dt.base;
3022 kvm_x86_ops->get_gdt(vcpu, &dt);
3023 sregs->gdt.limit = dt.limit;
3024 sregs->gdt.base = dt.base;
3025
3026 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3027 sregs->cr0 = vcpu->arch.cr0;
3028 sregs->cr2 = vcpu->arch.cr2;
3029 sregs->cr3 = vcpu->arch.cr3;
3030 sregs->cr4 = vcpu->arch.cr4;
3031 sregs->cr8 = kvm_get_cr8(vcpu);
3032 sregs->efer = vcpu->arch.shadow_efer;
3033 sregs->apic_base = kvm_get_apic_base(vcpu);
3034
3035 if (irqchip_in_kernel(vcpu->kvm)) {
3036 memset(sregs->interrupt_bitmap, 0,
3037 sizeof sregs->interrupt_bitmap);
3038 pending_vec = kvm_x86_ops->get_irq(vcpu);
3039 if (pending_vec >= 0)
3040 set_bit(pending_vec,
3041 (unsigned long *)sregs->interrupt_bitmap);
3042 } else
3043 memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
3044 sizeof sregs->interrupt_bitmap);
3045
3046 vcpu_put(vcpu);
3047
3048 return 0;
3049 }
3050
3051 static void set_segment(struct kvm_vcpu *vcpu,
3052 struct kvm_segment *var, int seg)
3053 {
3054 kvm_x86_ops->set_segment(vcpu, var, seg);
3055 }
3056
3057 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
3058 struct kvm_sregs *sregs)
3059 {
3060 int mmu_reset_needed = 0;
3061 int i, pending_vec, max_bits;
3062 struct descriptor_table dt;
3063
3064 vcpu_load(vcpu);
3065
3066 dt.limit = sregs->idt.limit;
3067 dt.base = sregs->idt.base;
3068 kvm_x86_ops->set_idt(vcpu, &dt);
3069 dt.limit = sregs->gdt.limit;
3070 dt.base = sregs->gdt.base;
3071 kvm_x86_ops->set_gdt(vcpu, &dt);
3072
3073 vcpu->arch.cr2 = sregs->cr2;
3074 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
3075 vcpu->arch.cr3 = sregs->cr3;
3076
3077 kvm_set_cr8(vcpu, sregs->cr8);
3078
3079 mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
3080 kvm_x86_ops->set_efer(vcpu, sregs->efer);
3081 kvm_set_apic_base(vcpu, sregs->apic_base);
3082
3083 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3084
3085 mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
3086 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
3087 vcpu->arch.cr0 = sregs->cr0;
3088
3089 mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
3090 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
3091 if (!is_long_mode(vcpu) && is_pae(vcpu))
3092 load_pdptrs(vcpu, vcpu->arch.cr3);
3093
3094 if (mmu_reset_needed)
3095 kvm_mmu_reset_context(vcpu);
3096
3097 if (!irqchip_in_kernel(vcpu->kvm)) {
3098 memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
3099 sizeof vcpu->arch.irq_pending);
3100 vcpu->arch.irq_summary = 0;
3101 for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
3102 if (vcpu->arch.irq_pending[i])
3103 __set_bit(i, &vcpu->arch.irq_summary);
3104 } else {
3105 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
3106 pending_vec = find_first_bit(
3107 (const unsigned long *)sregs->interrupt_bitmap,
3108 max_bits);
3109 /* Only pending external irq is handled here */
3110 if (pending_vec < max_bits) {
3111 kvm_x86_ops->set_irq(vcpu, pending_vec);
3112 pr_debug("Set back pending irq %d\n",
3113 pending_vec);
3114 }
3115 }
3116
3117 set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3118 set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3119 set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3120 set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3121 set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3122 set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3123
3124 set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3125 set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3126
3127 vcpu_put(vcpu);
3128
3129 return 0;
3130 }
3131
3132 int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
3133 struct kvm_debug_guest *dbg)
3134 {
3135 int r;
3136
3137 vcpu_load(vcpu);
3138
3139 r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
3140
3141 vcpu_put(vcpu);
3142
3143 return r;
3144 }
3145
3146 /*
3147 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
3148 * we have asm/x86/processor.h
3149 */
3150 struct fxsave {
3151 u16 cwd;
3152 u16 swd;
3153 u16 twd;
3154 u16 fop;
3155 u64 rip;
3156 u64 rdp;
3157 u32 mxcsr;
3158 u32 mxcsr_mask;
3159 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
3160 #ifdef CONFIG_X86_64
3161 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
3162 #else
3163 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
3164 #endif
3165 };
3166
3167 /*
3168 * Translate a guest virtual address to a guest physical address.
3169 */
3170 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
3171 struct kvm_translation *tr)
3172 {
3173 unsigned long vaddr = tr->linear_address;
3174 gpa_t gpa;
3175
3176 vcpu_load(vcpu);
3177 down_read(&vcpu->kvm->slots_lock);
3178 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
3179 up_read(&vcpu->kvm->slots_lock);
3180 tr->physical_address = gpa;
3181 tr->valid = gpa != UNMAPPED_GVA;
3182 tr->writeable = 1;
3183 tr->usermode = 0;
3184 vcpu_put(vcpu);
3185
3186 return 0;
3187 }
3188
3189 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
3190 {
3191 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3192
3193 vcpu_load(vcpu);
3194
3195 memcpy(fpu->fpr, fxsave->st_space, 128);
3196 fpu->fcw = fxsave->cwd;
3197 fpu->fsw = fxsave->swd;
3198 fpu->ftwx = fxsave->twd;
3199 fpu->last_opcode = fxsave->fop;
3200 fpu->last_ip = fxsave->rip;
3201 fpu->last_dp = fxsave->rdp;
3202 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
3203
3204 vcpu_put(vcpu);
3205
3206 return 0;
3207 }
3208
3209 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
3210 {
3211 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3212
3213 vcpu_load(vcpu);
3214
3215 memcpy(fxsave->st_space, fpu->fpr, 128);
3216 fxsave->cwd = fpu->fcw;
3217 fxsave->swd = fpu->fsw;
3218 fxsave->twd = fpu->ftwx;
3219 fxsave->fop = fpu->last_opcode;
3220 fxsave->rip = fpu->last_ip;
3221 fxsave->rdp = fpu->last_dp;
3222 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
3223
3224 vcpu_put(vcpu);
3225
3226 return 0;
3227 }
3228
3229 void fx_init(struct kvm_vcpu *vcpu)
3230 {
3231 unsigned after_mxcsr_mask;
3232
3233 /* Initialize guest FPU by resetting ours and saving into guest's */
3234 preempt_disable();
3235 fx_save(&vcpu->arch.host_fx_image);
3236 fpu_init();
3237 fx_save(&vcpu->arch.guest_fx_image);
3238 fx_restore(&vcpu->arch.host_fx_image);
3239 preempt_enable();
3240
3241 vcpu->arch.cr0 |= X86_CR0_ET;
3242 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
3243 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
3244 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
3245 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
3246 }
3247 EXPORT_SYMBOL_GPL(fx_init);
3248
3249 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
3250 {
3251 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
3252 return;
3253
3254 vcpu->guest_fpu_loaded = 1;
3255 fx_save(&vcpu->arch.host_fx_image);
3256 fx_restore(&vcpu->arch.guest_fx_image);
3257 }
3258 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
3259
3260 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
3261 {
3262 if (!vcpu->guest_fpu_loaded)
3263 return;
3264
3265 vcpu->guest_fpu_loaded = 0;
3266 fx_save(&vcpu->arch.guest_fx_image);
3267 fx_restore(&vcpu->arch.host_fx_image);
3268 ++vcpu->stat.fpu_reload;
3269 }
3270 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
3271
3272 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
3273 {
3274 kvm_x86_ops->vcpu_free(vcpu);
3275 }
3276
3277 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
3278 unsigned int id)
3279 {
3280 return kvm_x86_ops->vcpu_create(kvm, id);
3281 }
3282
3283 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
3284 {
3285 int r;
3286
3287 /* We do fxsave: this must be aligned. */
3288 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
3289
3290 vcpu_load(vcpu);
3291 r = kvm_arch_vcpu_reset(vcpu);
3292 if (r == 0)
3293 r = kvm_mmu_setup(vcpu);
3294 vcpu_put(vcpu);
3295 if (r < 0)
3296 goto free_vcpu;
3297
3298 return 0;
3299 free_vcpu:
3300 kvm_x86_ops->vcpu_free(vcpu);
3301 return r;
3302 }
3303
3304 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
3305 {
3306 vcpu_load(vcpu);
3307 kvm_mmu_unload(vcpu);
3308 vcpu_put(vcpu);
3309
3310 kvm_x86_ops->vcpu_free(vcpu);
3311 }
3312
3313 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
3314 {
3315 return kvm_x86_ops->vcpu_reset(vcpu);
3316 }
3317
3318 void kvm_arch_hardware_enable(void *garbage)
3319 {
3320 kvm_x86_ops->hardware_enable(garbage);
3321 }
3322
3323 void kvm_arch_hardware_disable(void *garbage)
3324 {
3325 kvm_x86_ops->hardware_disable(garbage);
3326 }
3327
3328 int kvm_arch_hardware_setup(void)
3329 {
3330 return kvm_x86_ops->hardware_setup();
3331 }
3332
3333 void kvm_arch_hardware_unsetup(void)
3334 {
3335 kvm_x86_ops->hardware_unsetup();
3336 }
3337
3338 void kvm_arch_check_processor_compat(void *rtn)
3339 {
3340 kvm_x86_ops->check_processor_compatibility(rtn);
3341 }
3342
3343 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
3344 {
3345 struct page *page;
3346 struct kvm *kvm;
3347 int r;
3348
3349 BUG_ON(vcpu->kvm == NULL);
3350 kvm = vcpu->kvm;
3351
3352 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3353 if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
3354 vcpu->arch.mp_state = VCPU_MP_STATE_RUNNABLE;
3355 else
3356 vcpu->arch.mp_state = VCPU_MP_STATE_UNINITIALIZED;
3357
3358 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3359 if (!page) {
3360 r = -ENOMEM;
3361 goto fail;
3362 }
3363 vcpu->arch.pio_data = page_address(page);
3364
3365 r = kvm_mmu_create(vcpu);
3366 if (r < 0)
3367 goto fail_free_pio_data;
3368
3369 if (irqchip_in_kernel(kvm)) {
3370 r = kvm_create_lapic(vcpu);
3371 if (r < 0)
3372 goto fail_mmu_destroy;
3373 }
3374
3375 return 0;
3376
3377 fail_mmu_destroy:
3378 kvm_mmu_destroy(vcpu);
3379 fail_free_pio_data:
3380 free_page((unsigned long)vcpu->arch.pio_data);
3381 fail:
3382 return r;
3383 }
3384
3385 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
3386 {
3387 kvm_free_lapic(vcpu);
3388 kvm_mmu_destroy(vcpu);
3389 free_page((unsigned long)vcpu->arch.pio_data);
3390 }
3391
3392 struct kvm *kvm_arch_create_vm(void)
3393 {
3394 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
3395
3396 if (!kvm)
3397 return ERR_PTR(-ENOMEM);
3398
3399 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
3400
3401 return kvm;
3402 }
3403
3404 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
3405 {
3406 vcpu_load(vcpu);
3407 kvm_mmu_unload(vcpu);
3408 vcpu_put(vcpu);
3409 }
3410
3411 static void kvm_free_vcpus(struct kvm *kvm)
3412 {
3413 unsigned int i;
3414
3415 /*
3416 * Unpin any mmu pages first.
3417 */
3418 for (i = 0; i < KVM_MAX_VCPUS; ++i)
3419 if (kvm->vcpus[i])
3420 kvm_unload_vcpu_mmu(kvm->vcpus[i]);
3421 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3422 if (kvm->vcpus[i]) {
3423 kvm_arch_vcpu_free(kvm->vcpus[i]);
3424 kvm->vcpus[i] = NULL;
3425 }
3426 }
3427
3428 }
3429
3430 void kvm_arch_destroy_vm(struct kvm *kvm)
3431 {
3432 kvm_free_pit(kvm);
3433 kfree(kvm->arch.vpic);
3434 kfree(kvm->arch.vioapic);
3435 kvm_free_vcpus(kvm);
3436 kvm_free_physmem(kvm);
3437 kfree(kvm);
3438 }
3439
3440 int kvm_arch_set_memory_region(struct kvm *kvm,
3441 struct kvm_userspace_memory_region *mem,
3442 struct kvm_memory_slot old,
3443 int user_alloc)
3444 {
3445 int npages = mem->memory_size >> PAGE_SHIFT;
3446 struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
3447
3448 /*To keep backward compatibility with older userspace,
3449 *x86 needs to hanlde !user_alloc case.
3450 */
3451 if (!user_alloc) {
3452 if (npages && !old.rmap) {
3453 down_write(&current->mm->mmap_sem);
3454 memslot->userspace_addr = do_mmap(NULL, 0,
3455 npages * PAGE_SIZE,
3456 PROT_READ | PROT_WRITE,
3457 MAP_SHARED | MAP_ANONYMOUS,
3458 0);
3459 up_write(&current->mm->mmap_sem);
3460
3461 if (IS_ERR((void *)memslot->userspace_addr))
3462 return PTR_ERR((void *)memslot->userspace_addr);
3463 } else {
3464 if (!old.user_alloc && old.rmap) {
3465 int ret;
3466
3467 down_write(&current->mm->mmap_sem);
3468 ret = do_munmap(current->mm, old.userspace_addr,
3469 old.npages * PAGE_SIZE);
3470 up_write(&current->mm->mmap_sem);
3471 if (ret < 0)
3472 printk(KERN_WARNING
3473 "kvm_vm_ioctl_set_memory_region: "
3474 "failed to munmap memory\n");
3475 }
3476 }
3477 }
3478
3479 if (!kvm->arch.n_requested_mmu_pages) {
3480 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
3481 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
3482 }
3483
3484 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
3485 kvm_flush_remote_tlbs(kvm);
3486
3487 return 0;
3488 }
3489
3490 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
3491 {
3492 return vcpu->arch.mp_state == VCPU_MP_STATE_RUNNABLE
3493 || vcpu->arch.mp_state == VCPU_MP_STATE_SIPI_RECEIVED;
3494 }
3495
3496 static void vcpu_kick_intr(void *info)
3497 {
3498 #ifdef DEBUG
3499 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
3500 printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
3501 #endif
3502 }
3503
3504 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3505 {
3506 int ipi_pcpu = vcpu->cpu;
3507
3508 if (waitqueue_active(&vcpu->wq)) {
3509 wake_up_interruptible(&vcpu->wq);
3510 ++vcpu->stat.halt_wakeup;
3511 }
3512 if (vcpu->guest_mode)
3513 smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0, 0);
3514 }
This page took 0.146458 seconds and 6 git commands to generate.