KVM: Fix task switch back link handling.
[deliverable/linux.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Amit Shah <amit.shah@qumranet.com>
14 * Ben-Ami Yassour <benami@il.ibm.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
28
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40
41 #include <asm/uaccess.h>
42 #include <asm/msr.h>
43 #include <asm/desc.h>
44 #include <asm/mtrr.h>
45
46 #define MAX_IO_MSRS 256
47 #define CR0_RESERVED_BITS \
48 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
49 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
50 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
51 #define CR4_RESERVED_BITS \
52 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
53 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
54 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
55 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
56
57 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
58 /* EFER defaults:
59 * - enable syscall per default because its emulated by KVM
60 * - enable LME and LMA per default on 64 bit KVM
61 */
62 #ifdef CONFIG_X86_64
63 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
64 #else
65 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
66 #endif
67
68 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
69 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
70
71 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
72 struct kvm_cpuid_entry2 __user *entries);
73 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
74 u32 function, u32 index);
75
76 struct kvm_x86_ops *kvm_x86_ops;
77 EXPORT_SYMBOL_GPL(kvm_x86_ops);
78
79 struct kvm_stats_debugfs_item debugfs_entries[] = {
80 { "pf_fixed", VCPU_STAT(pf_fixed) },
81 { "pf_guest", VCPU_STAT(pf_guest) },
82 { "tlb_flush", VCPU_STAT(tlb_flush) },
83 { "invlpg", VCPU_STAT(invlpg) },
84 { "exits", VCPU_STAT(exits) },
85 { "io_exits", VCPU_STAT(io_exits) },
86 { "mmio_exits", VCPU_STAT(mmio_exits) },
87 { "signal_exits", VCPU_STAT(signal_exits) },
88 { "irq_window", VCPU_STAT(irq_window_exits) },
89 { "nmi_window", VCPU_STAT(nmi_window_exits) },
90 { "halt_exits", VCPU_STAT(halt_exits) },
91 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
92 { "hypercalls", VCPU_STAT(hypercalls) },
93 { "request_irq", VCPU_STAT(request_irq_exits) },
94 { "request_nmi", VCPU_STAT(request_nmi_exits) },
95 { "irq_exits", VCPU_STAT(irq_exits) },
96 { "host_state_reload", VCPU_STAT(host_state_reload) },
97 { "efer_reload", VCPU_STAT(efer_reload) },
98 { "fpu_reload", VCPU_STAT(fpu_reload) },
99 { "insn_emulation", VCPU_STAT(insn_emulation) },
100 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
101 { "irq_injections", VCPU_STAT(irq_injections) },
102 { "nmi_injections", VCPU_STAT(nmi_injections) },
103 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
104 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
105 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
106 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
107 { "mmu_flooded", VM_STAT(mmu_flooded) },
108 { "mmu_recycled", VM_STAT(mmu_recycled) },
109 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
110 { "mmu_unsync", VM_STAT(mmu_unsync) },
111 { "mmu_unsync_global", VM_STAT(mmu_unsync_global) },
112 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
113 { "largepages", VM_STAT(lpages) },
114 { NULL }
115 };
116
117 unsigned long segment_base(u16 selector)
118 {
119 struct descriptor_table gdt;
120 struct desc_struct *d;
121 unsigned long table_base;
122 unsigned long v;
123
124 if (selector == 0)
125 return 0;
126
127 asm("sgdt %0" : "=m"(gdt));
128 table_base = gdt.base;
129
130 if (selector & 4) { /* from ldt */
131 u16 ldt_selector;
132
133 asm("sldt %0" : "=g"(ldt_selector));
134 table_base = segment_base(ldt_selector);
135 }
136 d = (struct desc_struct *)(table_base + (selector & ~7));
137 v = d->base0 | ((unsigned long)d->base1 << 16) |
138 ((unsigned long)d->base2 << 24);
139 #ifdef CONFIG_X86_64
140 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
141 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
142 #endif
143 return v;
144 }
145 EXPORT_SYMBOL_GPL(segment_base);
146
147 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
148 {
149 if (irqchip_in_kernel(vcpu->kvm))
150 return vcpu->arch.apic_base;
151 else
152 return vcpu->arch.apic_base;
153 }
154 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
155
156 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
157 {
158 /* TODO: reserve bits check */
159 if (irqchip_in_kernel(vcpu->kvm))
160 kvm_lapic_set_base(vcpu, data);
161 else
162 vcpu->arch.apic_base = data;
163 }
164 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
165
166 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
167 {
168 WARN_ON(vcpu->arch.exception.pending);
169 vcpu->arch.exception.pending = true;
170 vcpu->arch.exception.has_error_code = false;
171 vcpu->arch.exception.nr = nr;
172 }
173 EXPORT_SYMBOL_GPL(kvm_queue_exception);
174
175 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
176 u32 error_code)
177 {
178 ++vcpu->stat.pf_guest;
179
180 if (vcpu->arch.exception.pending) {
181 if (vcpu->arch.exception.nr == PF_VECTOR) {
182 printk(KERN_DEBUG "kvm: inject_page_fault:"
183 " double fault 0x%lx\n", addr);
184 vcpu->arch.exception.nr = DF_VECTOR;
185 vcpu->arch.exception.error_code = 0;
186 } else if (vcpu->arch.exception.nr == DF_VECTOR) {
187 /* triple fault -> shutdown */
188 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
189 }
190 return;
191 }
192 vcpu->arch.cr2 = addr;
193 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
194 }
195
196 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
197 {
198 vcpu->arch.nmi_pending = 1;
199 }
200 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
201
202 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
203 {
204 WARN_ON(vcpu->arch.exception.pending);
205 vcpu->arch.exception.pending = true;
206 vcpu->arch.exception.has_error_code = true;
207 vcpu->arch.exception.nr = nr;
208 vcpu->arch.exception.error_code = error_code;
209 }
210 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
211
212 static void __queue_exception(struct kvm_vcpu *vcpu)
213 {
214 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
215 vcpu->arch.exception.has_error_code,
216 vcpu->arch.exception.error_code);
217 }
218
219 /*
220 * Load the pae pdptrs. Return true is they are all valid.
221 */
222 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
223 {
224 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
225 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
226 int i;
227 int ret;
228 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
229
230 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
231 offset * sizeof(u64), sizeof(pdpte));
232 if (ret < 0) {
233 ret = 0;
234 goto out;
235 }
236 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
237 if (is_present_pte(pdpte[i]) &&
238 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
239 ret = 0;
240 goto out;
241 }
242 }
243 ret = 1;
244
245 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
246 out:
247
248 return ret;
249 }
250 EXPORT_SYMBOL_GPL(load_pdptrs);
251
252 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
253 {
254 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
255 bool changed = true;
256 int r;
257
258 if (is_long_mode(vcpu) || !is_pae(vcpu))
259 return false;
260
261 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
262 if (r < 0)
263 goto out;
264 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
265 out:
266
267 return changed;
268 }
269
270 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
271 {
272 if (cr0 & CR0_RESERVED_BITS) {
273 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
274 cr0, vcpu->arch.cr0);
275 kvm_inject_gp(vcpu, 0);
276 return;
277 }
278
279 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
280 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
281 kvm_inject_gp(vcpu, 0);
282 return;
283 }
284
285 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
286 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
287 "and a clear PE flag\n");
288 kvm_inject_gp(vcpu, 0);
289 return;
290 }
291
292 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
293 #ifdef CONFIG_X86_64
294 if ((vcpu->arch.shadow_efer & EFER_LME)) {
295 int cs_db, cs_l;
296
297 if (!is_pae(vcpu)) {
298 printk(KERN_DEBUG "set_cr0: #GP, start paging "
299 "in long mode while PAE is disabled\n");
300 kvm_inject_gp(vcpu, 0);
301 return;
302 }
303 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
304 if (cs_l) {
305 printk(KERN_DEBUG "set_cr0: #GP, start paging "
306 "in long mode while CS.L == 1\n");
307 kvm_inject_gp(vcpu, 0);
308 return;
309
310 }
311 } else
312 #endif
313 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
314 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
315 "reserved bits\n");
316 kvm_inject_gp(vcpu, 0);
317 return;
318 }
319
320 }
321
322 kvm_x86_ops->set_cr0(vcpu, cr0);
323 vcpu->arch.cr0 = cr0;
324
325 kvm_mmu_sync_global(vcpu);
326 kvm_mmu_reset_context(vcpu);
327 return;
328 }
329 EXPORT_SYMBOL_GPL(kvm_set_cr0);
330
331 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
332 {
333 kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
334 KVMTRACE_1D(LMSW, vcpu,
335 (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
336 handler);
337 }
338 EXPORT_SYMBOL_GPL(kvm_lmsw);
339
340 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
341 {
342 unsigned long old_cr4 = vcpu->arch.cr4;
343 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
344
345 if (cr4 & CR4_RESERVED_BITS) {
346 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
347 kvm_inject_gp(vcpu, 0);
348 return;
349 }
350
351 if (is_long_mode(vcpu)) {
352 if (!(cr4 & X86_CR4_PAE)) {
353 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
354 "in long mode\n");
355 kvm_inject_gp(vcpu, 0);
356 return;
357 }
358 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
359 && ((cr4 ^ old_cr4) & pdptr_bits)
360 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
361 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
362 kvm_inject_gp(vcpu, 0);
363 return;
364 }
365
366 if (cr4 & X86_CR4_VMXE) {
367 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
368 kvm_inject_gp(vcpu, 0);
369 return;
370 }
371 kvm_x86_ops->set_cr4(vcpu, cr4);
372 vcpu->arch.cr4 = cr4;
373 vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
374 kvm_mmu_sync_global(vcpu);
375 kvm_mmu_reset_context(vcpu);
376 }
377 EXPORT_SYMBOL_GPL(kvm_set_cr4);
378
379 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
380 {
381 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
382 kvm_mmu_sync_roots(vcpu);
383 kvm_mmu_flush_tlb(vcpu);
384 return;
385 }
386
387 if (is_long_mode(vcpu)) {
388 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
389 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
390 kvm_inject_gp(vcpu, 0);
391 return;
392 }
393 } else {
394 if (is_pae(vcpu)) {
395 if (cr3 & CR3_PAE_RESERVED_BITS) {
396 printk(KERN_DEBUG
397 "set_cr3: #GP, reserved bits\n");
398 kvm_inject_gp(vcpu, 0);
399 return;
400 }
401 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
402 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
403 "reserved bits\n");
404 kvm_inject_gp(vcpu, 0);
405 return;
406 }
407 }
408 /*
409 * We don't check reserved bits in nonpae mode, because
410 * this isn't enforced, and VMware depends on this.
411 */
412 }
413
414 /*
415 * Does the new cr3 value map to physical memory? (Note, we
416 * catch an invalid cr3 even in real-mode, because it would
417 * cause trouble later on when we turn on paging anyway.)
418 *
419 * A real CPU would silently accept an invalid cr3 and would
420 * attempt to use it - with largely undefined (and often hard
421 * to debug) behavior on the guest side.
422 */
423 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
424 kvm_inject_gp(vcpu, 0);
425 else {
426 vcpu->arch.cr3 = cr3;
427 vcpu->arch.mmu.new_cr3(vcpu);
428 }
429 }
430 EXPORT_SYMBOL_GPL(kvm_set_cr3);
431
432 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
433 {
434 if (cr8 & CR8_RESERVED_BITS) {
435 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
436 kvm_inject_gp(vcpu, 0);
437 return;
438 }
439 if (irqchip_in_kernel(vcpu->kvm))
440 kvm_lapic_set_tpr(vcpu, cr8);
441 else
442 vcpu->arch.cr8 = cr8;
443 }
444 EXPORT_SYMBOL_GPL(kvm_set_cr8);
445
446 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
447 {
448 if (irqchip_in_kernel(vcpu->kvm))
449 return kvm_lapic_get_cr8(vcpu);
450 else
451 return vcpu->arch.cr8;
452 }
453 EXPORT_SYMBOL_GPL(kvm_get_cr8);
454
455 static inline u32 bit(int bitno)
456 {
457 return 1 << (bitno & 31);
458 }
459
460 /*
461 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
462 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
463 *
464 * This list is modified at module load time to reflect the
465 * capabilities of the host cpu.
466 */
467 static u32 msrs_to_save[] = {
468 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
469 MSR_K6_STAR,
470 #ifdef CONFIG_X86_64
471 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
472 #endif
473 MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
474 MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
475 };
476
477 static unsigned num_msrs_to_save;
478
479 static u32 emulated_msrs[] = {
480 MSR_IA32_MISC_ENABLE,
481 };
482
483 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
484 {
485 if (efer & efer_reserved_bits) {
486 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
487 efer);
488 kvm_inject_gp(vcpu, 0);
489 return;
490 }
491
492 if (is_paging(vcpu)
493 && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
494 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
495 kvm_inject_gp(vcpu, 0);
496 return;
497 }
498
499 if (efer & EFER_FFXSR) {
500 struct kvm_cpuid_entry2 *feat;
501
502 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
503 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
504 printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
505 kvm_inject_gp(vcpu, 0);
506 return;
507 }
508 }
509
510 if (efer & EFER_SVME) {
511 struct kvm_cpuid_entry2 *feat;
512
513 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
514 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
515 printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
516 kvm_inject_gp(vcpu, 0);
517 return;
518 }
519 }
520
521 kvm_x86_ops->set_efer(vcpu, efer);
522
523 efer &= ~EFER_LMA;
524 efer |= vcpu->arch.shadow_efer & EFER_LMA;
525
526 vcpu->arch.shadow_efer = efer;
527
528 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
529 kvm_mmu_reset_context(vcpu);
530 }
531
532 void kvm_enable_efer_bits(u64 mask)
533 {
534 efer_reserved_bits &= ~mask;
535 }
536 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
537
538
539 /*
540 * Writes msr value into into the appropriate "register".
541 * Returns 0 on success, non-0 otherwise.
542 * Assumes vcpu_load() was already called.
543 */
544 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
545 {
546 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
547 }
548
549 /*
550 * Adapt set_msr() to msr_io()'s calling convention
551 */
552 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
553 {
554 return kvm_set_msr(vcpu, index, *data);
555 }
556
557 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
558 {
559 static int version;
560 struct pvclock_wall_clock wc;
561 struct timespec now, sys, boot;
562
563 if (!wall_clock)
564 return;
565
566 version++;
567
568 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
569
570 /*
571 * The guest calculates current wall clock time by adding
572 * system time (updated by kvm_write_guest_time below) to the
573 * wall clock specified here. guest system time equals host
574 * system time for us, thus we must fill in host boot time here.
575 */
576 now = current_kernel_time();
577 ktime_get_ts(&sys);
578 boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
579
580 wc.sec = boot.tv_sec;
581 wc.nsec = boot.tv_nsec;
582 wc.version = version;
583
584 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
585
586 version++;
587 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
588 }
589
590 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
591 {
592 uint32_t quotient, remainder;
593
594 /* Don't try to replace with do_div(), this one calculates
595 * "(dividend << 32) / divisor" */
596 __asm__ ( "divl %4"
597 : "=a" (quotient), "=d" (remainder)
598 : "0" (0), "1" (dividend), "r" (divisor) );
599 return quotient;
600 }
601
602 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
603 {
604 uint64_t nsecs = 1000000000LL;
605 int32_t shift = 0;
606 uint64_t tps64;
607 uint32_t tps32;
608
609 tps64 = tsc_khz * 1000LL;
610 while (tps64 > nsecs*2) {
611 tps64 >>= 1;
612 shift--;
613 }
614
615 tps32 = (uint32_t)tps64;
616 while (tps32 <= (uint32_t)nsecs) {
617 tps32 <<= 1;
618 shift++;
619 }
620
621 hv_clock->tsc_shift = shift;
622 hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
623
624 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
625 __func__, tsc_khz, hv_clock->tsc_shift,
626 hv_clock->tsc_to_system_mul);
627 }
628
629 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
630
631 static void kvm_write_guest_time(struct kvm_vcpu *v)
632 {
633 struct timespec ts;
634 unsigned long flags;
635 struct kvm_vcpu_arch *vcpu = &v->arch;
636 void *shared_kaddr;
637
638 if ((!vcpu->time_page))
639 return;
640
641 preempt_disable();
642 if (unlikely(vcpu->hv_clock_tsc_khz != __get_cpu_var(cpu_tsc_khz))) {
643 kvm_set_time_scale(__get_cpu_var(cpu_tsc_khz), &vcpu->hv_clock);
644 vcpu->hv_clock_tsc_khz = __get_cpu_var(cpu_tsc_khz);
645 }
646 preempt_enable();
647
648 /* Keep irq disabled to prevent changes to the clock */
649 local_irq_save(flags);
650 kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
651 &vcpu->hv_clock.tsc_timestamp);
652 ktime_get_ts(&ts);
653 local_irq_restore(flags);
654
655 /* With all the info we got, fill in the values */
656
657 vcpu->hv_clock.system_time = ts.tv_nsec +
658 (NSEC_PER_SEC * (u64)ts.tv_sec);
659 /*
660 * The interface expects us to write an even number signaling that the
661 * update is finished. Since the guest won't see the intermediate
662 * state, we just increase by 2 at the end.
663 */
664 vcpu->hv_clock.version += 2;
665
666 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
667
668 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
669 sizeof(vcpu->hv_clock));
670
671 kunmap_atomic(shared_kaddr, KM_USER0);
672
673 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
674 }
675
676 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
677 {
678 struct kvm_vcpu_arch *vcpu = &v->arch;
679
680 if (!vcpu->time_page)
681 return 0;
682 set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
683 return 1;
684 }
685
686 static bool msr_mtrr_valid(unsigned msr)
687 {
688 switch (msr) {
689 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
690 case MSR_MTRRfix64K_00000:
691 case MSR_MTRRfix16K_80000:
692 case MSR_MTRRfix16K_A0000:
693 case MSR_MTRRfix4K_C0000:
694 case MSR_MTRRfix4K_C8000:
695 case MSR_MTRRfix4K_D0000:
696 case MSR_MTRRfix4K_D8000:
697 case MSR_MTRRfix4K_E0000:
698 case MSR_MTRRfix4K_E8000:
699 case MSR_MTRRfix4K_F0000:
700 case MSR_MTRRfix4K_F8000:
701 case MSR_MTRRdefType:
702 case MSR_IA32_CR_PAT:
703 return true;
704 case 0x2f8:
705 return true;
706 }
707 return false;
708 }
709
710 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
711 {
712 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
713
714 if (!msr_mtrr_valid(msr))
715 return 1;
716
717 if (msr == MSR_MTRRdefType) {
718 vcpu->arch.mtrr_state.def_type = data;
719 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
720 } else if (msr == MSR_MTRRfix64K_00000)
721 p[0] = data;
722 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
723 p[1 + msr - MSR_MTRRfix16K_80000] = data;
724 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
725 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
726 else if (msr == MSR_IA32_CR_PAT)
727 vcpu->arch.pat = data;
728 else { /* Variable MTRRs */
729 int idx, is_mtrr_mask;
730 u64 *pt;
731
732 idx = (msr - 0x200) / 2;
733 is_mtrr_mask = msr - 0x200 - 2 * idx;
734 if (!is_mtrr_mask)
735 pt =
736 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
737 else
738 pt =
739 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
740 *pt = data;
741 }
742
743 kvm_mmu_reset_context(vcpu);
744 return 0;
745 }
746
747 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
748 {
749 switch (msr) {
750 case MSR_EFER:
751 set_efer(vcpu, data);
752 break;
753 case MSR_IA32_MC0_STATUS:
754 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
755 __func__, data);
756 break;
757 case MSR_IA32_MCG_STATUS:
758 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
759 __func__, data);
760 break;
761 case MSR_IA32_MCG_CTL:
762 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
763 __func__, data);
764 break;
765 case MSR_IA32_DEBUGCTLMSR:
766 if (!data) {
767 /* We support the non-activated case already */
768 break;
769 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
770 /* Values other than LBR and BTF are vendor-specific,
771 thus reserved and should throw a #GP */
772 return 1;
773 }
774 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
775 __func__, data);
776 break;
777 case MSR_IA32_UCODE_REV:
778 case MSR_IA32_UCODE_WRITE:
779 case MSR_VM_HSAVE_PA:
780 break;
781 case 0x200 ... 0x2ff:
782 return set_msr_mtrr(vcpu, msr, data);
783 case MSR_IA32_APICBASE:
784 kvm_set_apic_base(vcpu, data);
785 break;
786 case MSR_IA32_MISC_ENABLE:
787 vcpu->arch.ia32_misc_enable_msr = data;
788 break;
789 case MSR_KVM_WALL_CLOCK:
790 vcpu->kvm->arch.wall_clock = data;
791 kvm_write_wall_clock(vcpu->kvm, data);
792 break;
793 case MSR_KVM_SYSTEM_TIME: {
794 if (vcpu->arch.time_page) {
795 kvm_release_page_dirty(vcpu->arch.time_page);
796 vcpu->arch.time_page = NULL;
797 }
798
799 vcpu->arch.time = data;
800
801 /* we verify if the enable bit is set... */
802 if (!(data & 1))
803 break;
804
805 /* ...but clean it before doing the actual write */
806 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
807
808 vcpu->arch.time_page =
809 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
810
811 if (is_error_page(vcpu->arch.time_page)) {
812 kvm_release_page_clean(vcpu->arch.time_page);
813 vcpu->arch.time_page = NULL;
814 }
815
816 kvm_request_guest_time_update(vcpu);
817 break;
818 }
819 default:
820 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
821 return 1;
822 }
823 return 0;
824 }
825 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
826
827
828 /*
829 * Reads an msr value (of 'msr_index') into 'pdata'.
830 * Returns 0 on success, non-0 otherwise.
831 * Assumes vcpu_load() was already called.
832 */
833 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
834 {
835 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
836 }
837
838 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
839 {
840 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
841
842 if (!msr_mtrr_valid(msr))
843 return 1;
844
845 if (msr == MSR_MTRRdefType)
846 *pdata = vcpu->arch.mtrr_state.def_type +
847 (vcpu->arch.mtrr_state.enabled << 10);
848 else if (msr == MSR_MTRRfix64K_00000)
849 *pdata = p[0];
850 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
851 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
852 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
853 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
854 else if (msr == MSR_IA32_CR_PAT)
855 *pdata = vcpu->arch.pat;
856 else { /* Variable MTRRs */
857 int idx, is_mtrr_mask;
858 u64 *pt;
859
860 idx = (msr - 0x200) / 2;
861 is_mtrr_mask = msr - 0x200 - 2 * idx;
862 if (!is_mtrr_mask)
863 pt =
864 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
865 else
866 pt =
867 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
868 *pdata = *pt;
869 }
870
871 return 0;
872 }
873
874 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
875 {
876 u64 data;
877
878 switch (msr) {
879 case 0xc0010010: /* SYSCFG */
880 case 0xc0010015: /* HWCR */
881 case MSR_IA32_PLATFORM_ID:
882 case MSR_IA32_P5_MC_ADDR:
883 case MSR_IA32_P5_MC_TYPE:
884 case MSR_IA32_MC0_CTL:
885 case MSR_IA32_MCG_STATUS:
886 case MSR_IA32_MCG_CAP:
887 case MSR_IA32_MCG_CTL:
888 case MSR_IA32_MC0_MISC:
889 case MSR_IA32_MC0_MISC+4:
890 case MSR_IA32_MC0_MISC+8:
891 case MSR_IA32_MC0_MISC+12:
892 case MSR_IA32_MC0_MISC+16:
893 case MSR_IA32_MC0_MISC+20:
894 case MSR_IA32_UCODE_REV:
895 case MSR_IA32_EBL_CR_POWERON:
896 case MSR_IA32_DEBUGCTLMSR:
897 case MSR_IA32_LASTBRANCHFROMIP:
898 case MSR_IA32_LASTBRANCHTOIP:
899 case MSR_IA32_LASTINTFROMIP:
900 case MSR_IA32_LASTINTTOIP:
901 case MSR_VM_HSAVE_PA:
902 case MSR_P6_EVNTSEL0:
903 case MSR_P6_EVNTSEL1:
904 data = 0;
905 break;
906 case MSR_MTRRcap:
907 data = 0x500 | KVM_NR_VAR_MTRR;
908 break;
909 case 0x200 ... 0x2ff:
910 return get_msr_mtrr(vcpu, msr, pdata);
911 case 0xcd: /* fsb frequency */
912 data = 3;
913 break;
914 case MSR_IA32_APICBASE:
915 data = kvm_get_apic_base(vcpu);
916 break;
917 case MSR_IA32_MISC_ENABLE:
918 data = vcpu->arch.ia32_misc_enable_msr;
919 break;
920 case MSR_IA32_PERF_STATUS:
921 /* TSC increment by tick */
922 data = 1000ULL;
923 /* CPU multiplier */
924 data |= (((uint64_t)4ULL) << 40);
925 break;
926 case MSR_EFER:
927 data = vcpu->arch.shadow_efer;
928 break;
929 case MSR_KVM_WALL_CLOCK:
930 data = vcpu->kvm->arch.wall_clock;
931 break;
932 case MSR_KVM_SYSTEM_TIME:
933 data = vcpu->arch.time;
934 break;
935 default:
936 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
937 return 1;
938 }
939 *pdata = data;
940 return 0;
941 }
942 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
943
944 /*
945 * Read or write a bunch of msrs. All parameters are kernel addresses.
946 *
947 * @return number of msrs set successfully.
948 */
949 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
950 struct kvm_msr_entry *entries,
951 int (*do_msr)(struct kvm_vcpu *vcpu,
952 unsigned index, u64 *data))
953 {
954 int i;
955
956 vcpu_load(vcpu);
957
958 down_read(&vcpu->kvm->slots_lock);
959 for (i = 0; i < msrs->nmsrs; ++i)
960 if (do_msr(vcpu, entries[i].index, &entries[i].data))
961 break;
962 up_read(&vcpu->kvm->slots_lock);
963
964 vcpu_put(vcpu);
965
966 return i;
967 }
968
969 /*
970 * Read or write a bunch of msrs. Parameters are user addresses.
971 *
972 * @return number of msrs set successfully.
973 */
974 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
975 int (*do_msr)(struct kvm_vcpu *vcpu,
976 unsigned index, u64 *data),
977 int writeback)
978 {
979 struct kvm_msrs msrs;
980 struct kvm_msr_entry *entries;
981 int r, n;
982 unsigned size;
983
984 r = -EFAULT;
985 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
986 goto out;
987
988 r = -E2BIG;
989 if (msrs.nmsrs >= MAX_IO_MSRS)
990 goto out;
991
992 r = -ENOMEM;
993 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
994 entries = vmalloc(size);
995 if (!entries)
996 goto out;
997
998 r = -EFAULT;
999 if (copy_from_user(entries, user_msrs->entries, size))
1000 goto out_free;
1001
1002 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1003 if (r < 0)
1004 goto out_free;
1005
1006 r = -EFAULT;
1007 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1008 goto out_free;
1009
1010 r = n;
1011
1012 out_free:
1013 vfree(entries);
1014 out:
1015 return r;
1016 }
1017
1018 int kvm_dev_ioctl_check_extension(long ext)
1019 {
1020 int r;
1021
1022 switch (ext) {
1023 case KVM_CAP_IRQCHIP:
1024 case KVM_CAP_HLT:
1025 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1026 case KVM_CAP_SET_TSS_ADDR:
1027 case KVM_CAP_EXT_CPUID:
1028 case KVM_CAP_CLOCKSOURCE:
1029 case KVM_CAP_PIT:
1030 case KVM_CAP_NOP_IO_DELAY:
1031 case KVM_CAP_MP_STATE:
1032 case KVM_CAP_SYNC_MMU:
1033 case KVM_CAP_REINJECT_CONTROL:
1034 case KVM_CAP_IRQ_INJECT_STATUS:
1035 case KVM_CAP_ASSIGN_DEV_IRQ:
1036 r = 1;
1037 break;
1038 case KVM_CAP_COALESCED_MMIO:
1039 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1040 break;
1041 case KVM_CAP_VAPIC:
1042 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1043 break;
1044 case KVM_CAP_NR_VCPUS:
1045 r = KVM_MAX_VCPUS;
1046 break;
1047 case KVM_CAP_NR_MEMSLOTS:
1048 r = KVM_MEMORY_SLOTS;
1049 break;
1050 case KVM_CAP_PV_MMU:
1051 r = !tdp_enabled;
1052 break;
1053 case KVM_CAP_IOMMU:
1054 r = iommu_found();
1055 break;
1056 default:
1057 r = 0;
1058 break;
1059 }
1060 return r;
1061
1062 }
1063
1064 long kvm_arch_dev_ioctl(struct file *filp,
1065 unsigned int ioctl, unsigned long arg)
1066 {
1067 void __user *argp = (void __user *)arg;
1068 long r;
1069
1070 switch (ioctl) {
1071 case KVM_GET_MSR_INDEX_LIST: {
1072 struct kvm_msr_list __user *user_msr_list = argp;
1073 struct kvm_msr_list msr_list;
1074 unsigned n;
1075
1076 r = -EFAULT;
1077 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1078 goto out;
1079 n = msr_list.nmsrs;
1080 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1081 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1082 goto out;
1083 r = -E2BIG;
1084 if (n < num_msrs_to_save)
1085 goto out;
1086 r = -EFAULT;
1087 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1088 num_msrs_to_save * sizeof(u32)))
1089 goto out;
1090 if (copy_to_user(user_msr_list->indices
1091 + num_msrs_to_save * sizeof(u32),
1092 &emulated_msrs,
1093 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1094 goto out;
1095 r = 0;
1096 break;
1097 }
1098 case KVM_GET_SUPPORTED_CPUID: {
1099 struct kvm_cpuid2 __user *cpuid_arg = argp;
1100 struct kvm_cpuid2 cpuid;
1101
1102 r = -EFAULT;
1103 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1104 goto out;
1105 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1106 cpuid_arg->entries);
1107 if (r)
1108 goto out;
1109
1110 r = -EFAULT;
1111 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1112 goto out;
1113 r = 0;
1114 break;
1115 }
1116 default:
1117 r = -EINVAL;
1118 }
1119 out:
1120 return r;
1121 }
1122
1123 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1124 {
1125 kvm_x86_ops->vcpu_load(vcpu, cpu);
1126 kvm_request_guest_time_update(vcpu);
1127 }
1128
1129 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1130 {
1131 kvm_x86_ops->vcpu_put(vcpu);
1132 kvm_put_guest_fpu(vcpu);
1133 }
1134
1135 static int is_efer_nx(void)
1136 {
1137 unsigned long long efer = 0;
1138
1139 rdmsrl_safe(MSR_EFER, &efer);
1140 return efer & EFER_NX;
1141 }
1142
1143 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1144 {
1145 int i;
1146 struct kvm_cpuid_entry2 *e, *entry;
1147
1148 entry = NULL;
1149 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1150 e = &vcpu->arch.cpuid_entries[i];
1151 if (e->function == 0x80000001) {
1152 entry = e;
1153 break;
1154 }
1155 }
1156 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1157 entry->edx &= ~(1 << 20);
1158 printk(KERN_INFO "kvm: guest NX capability removed\n");
1159 }
1160 }
1161
1162 /* when an old userspace process fills a new kernel module */
1163 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1164 struct kvm_cpuid *cpuid,
1165 struct kvm_cpuid_entry __user *entries)
1166 {
1167 int r, i;
1168 struct kvm_cpuid_entry *cpuid_entries;
1169
1170 r = -E2BIG;
1171 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1172 goto out;
1173 r = -ENOMEM;
1174 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1175 if (!cpuid_entries)
1176 goto out;
1177 r = -EFAULT;
1178 if (copy_from_user(cpuid_entries, entries,
1179 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1180 goto out_free;
1181 for (i = 0; i < cpuid->nent; i++) {
1182 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1183 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1184 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1185 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1186 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1187 vcpu->arch.cpuid_entries[i].index = 0;
1188 vcpu->arch.cpuid_entries[i].flags = 0;
1189 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1190 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1191 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1192 }
1193 vcpu->arch.cpuid_nent = cpuid->nent;
1194 cpuid_fix_nx_cap(vcpu);
1195 r = 0;
1196
1197 out_free:
1198 vfree(cpuid_entries);
1199 out:
1200 return r;
1201 }
1202
1203 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1204 struct kvm_cpuid2 *cpuid,
1205 struct kvm_cpuid_entry2 __user *entries)
1206 {
1207 int r;
1208
1209 r = -E2BIG;
1210 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1211 goto out;
1212 r = -EFAULT;
1213 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1214 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1215 goto out;
1216 vcpu->arch.cpuid_nent = cpuid->nent;
1217 return 0;
1218
1219 out:
1220 return r;
1221 }
1222
1223 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1224 struct kvm_cpuid2 *cpuid,
1225 struct kvm_cpuid_entry2 __user *entries)
1226 {
1227 int r;
1228
1229 r = -E2BIG;
1230 if (cpuid->nent < vcpu->arch.cpuid_nent)
1231 goto out;
1232 r = -EFAULT;
1233 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1234 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1235 goto out;
1236 return 0;
1237
1238 out:
1239 cpuid->nent = vcpu->arch.cpuid_nent;
1240 return r;
1241 }
1242
1243 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1244 u32 index)
1245 {
1246 entry->function = function;
1247 entry->index = index;
1248 cpuid_count(entry->function, entry->index,
1249 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1250 entry->flags = 0;
1251 }
1252
1253 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1254 u32 index, int *nent, int maxnent)
1255 {
1256 const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
1257 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1258 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1259 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1260 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1261 bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
1262 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1263 bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
1264 bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
1265 bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
1266 const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
1267 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1268 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1269 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1270 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1271 bit(X86_FEATURE_PGE) |
1272 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1273 bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
1274 bit(X86_FEATURE_SYSCALL) |
1275 (is_efer_nx() ? bit(X86_FEATURE_NX) : 0) |
1276 #ifdef CONFIG_X86_64
1277 bit(X86_FEATURE_LM) |
1278 #endif
1279 bit(X86_FEATURE_FXSR_OPT) |
1280 bit(X86_FEATURE_MMXEXT) |
1281 bit(X86_FEATURE_3DNOWEXT) |
1282 bit(X86_FEATURE_3DNOW);
1283 const u32 kvm_supported_word3_x86_features =
1284 bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
1285 const u32 kvm_supported_word6_x86_features =
1286 bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY) |
1287 bit(X86_FEATURE_SVM);
1288
1289 /* all calls to cpuid_count() should be made on the same cpu */
1290 get_cpu();
1291 do_cpuid_1_ent(entry, function, index);
1292 ++*nent;
1293
1294 switch (function) {
1295 case 0:
1296 entry->eax = min(entry->eax, (u32)0xb);
1297 break;
1298 case 1:
1299 entry->edx &= kvm_supported_word0_x86_features;
1300 entry->ecx &= kvm_supported_word3_x86_features;
1301 break;
1302 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1303 * may return different values. This forces us to get_cpu() before
1304 * issuing the first command, and also to emulate this annoying behavior
1305 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1306 case 2: {
1307 int t, times = entry->eax & 0xff;
1308
1309 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1310 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1311 for (t = 1; t < times && *nent < maxnent; ++t) {
1312 do_cpuid_1_ent(&entry[t], function, 0);
1313 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1314 ++*nent;
1315 }
1316 break;
1317 }
1318 /* function 4 and 0xb have additional index. */
1319 case 4: {
1320 int i, cache_type;
1321
1322 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1323 /* read more entries until cache_type is zero */
1324 for (i = 1; *nent < maxnent; ++i) {
1325 cache_type = entry[i - 1].eax & 0x1f;
1326 if (!cache_type)
1327 break;
1328 do_cpuid_1_ent(&entry[i], function, i);
1329 entry[i].flags |=
1330 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1331 ++*nent;
1332 }
1333 break;
1334 }
1335 case 0xb: {
1336 int i, level_type;
1337
1338 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1339 /* read more entries until level_type is zero */
1340 for (i = 1; *nent < maxnent; ++i) {
1341 level_type = entry[i - 1].ecx & 0xff00;
1342 if (!level_type)
1343 break;
1344 do_cpuid_1_ent(&entry[i], function, i);
1345 entry[i].flags |=
1346 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1347 ++*nent;
1348 }
1349 break;
1350 }
1351 case 0x80000000:
1352 entry->eax = min(entry->eax, 0x8000001a);
1353 break;
1354 case 0x80000001:
1355 entry->edx &= kvm_supported_word1_x86_features;
1356 entry->ecx &= kvm_supported_word6_x86_features;
1357 break;
1358 }
1359 put_cpu();
1360 }
1361
1362 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1363 struct kvm_cpuid_entry2 __user *entries)
1364 {
1365 struct kvm_cpuid_entry2 *cpuid_entries;
1366 int limit, nent = 0, r = -E2BIG;
1367 u32 func;
1368
1369 if (cpuid->nent < 1)
1370 goto out;
1371 r = -ENOMEM;
1372 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1373 if (!cpuid_entries)
1374 goto out;
1375
1376 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1377 limit = cpuid_entries[0].eax;
1378 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1379 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1380 &nent, cpuid->nent);
1381 r = -E2BIG;
1382 if (nent >= cpuid->nent)
1383 goto out_free;
1384
1385 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1386 limit = cpuid_entries[nent - 1].eax;
1387 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1388 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1389 &nent, cpuid->nent);
1390 r = -EFAULT;
1391 if (copy_to_user(entries, cpuid_entries,
1392 nent * sizeof(struct kvm_cpuid_entry2)))
1393 goto out_free;
1394 cpuid->nent = nent;
1395 r = 0;
1396
1397 out_free:
1398 vfree(cpuid_entries);
1399 out:
1400 return r;
1401 }
1402
1403 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1404 struct kvm_lapic_state *s)
1405 {
1406 vcpu_load(vcpu);
1407 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1408 vcpu_put(vcpu);
1409
1410 return 0;
1411 }
1412
1413 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1414 struct kvm_lapic_state *s)
1415 {
1416 vcpu_load(vcpu);
1417 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1418 kvm_apic_post_state_restore(vcpu);
1419 vcpu_put(vcpu);
1420
1421 return 0;
1422 }
1423
1424 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1425 struct kvm_interrupt *irq)
1426 {
1427 if (irq->irq < 0 || irq->irq >= 256)
1428 return -EINVAL;
1429 if (irqchip_in_kernel(vcpu->kvm))
1430 return -ENXIO;
1431 vcpu_load(vcpu);
1432
1433 set_bit(irq->irq, vcpu->arch.irq_pending);
1434 set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1435
1436 vcpu_put(vcpu);
1437
1438 return 0;
1439 }
1440
1441 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
1442 {
1443 vcpu_load(vcpu);
1444 kvm_inject_nmi(vcpu);
1445 vcpu_put(vcpu);
1446
1447 return 0;
1448 }
1449
1450 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1451 struct kvm_tpr_access_ctl *tac)
1452 {
1453 if (tac->flags)
1454 return -EINVAL;
1455 vcpu->arch.tpr_access_reporting = !!tac->enabled;
1456 return 0;
1457 }
1458
1459 long kvm_arch_vcpu_ioctl(struct file *filp,
1460 unsigned int ioctl, unsigned long arg)
1461 {
1462 struct kvm_vcpu *vcpu = filp->private_data;
1463 void __user *argp = (void __user *)arg;
1464 int r;
1465 struct kvm_lapic_state *lapic = NULL;
1466
1467 switch (ioctl) {
1468 case KVM_GET_LAPIC: {
1469 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1470
1471 r = -ENOMEM;
1472 if (!lapic)
1473 goto out;
1474 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
1475 if (r)
1476 goto out;
1477 r = -EFAULT;
1478 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
1479 goto out;
1480 r = 0;
1481 break;
1482 }
1483 case KVM_SET_LAPIC: {
1484 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1485 r = -ENOMEM;
1486 if (!lapic)
1487 goto out;
1488 r = -EFAULT;
1489 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
1490 goto out;
1491 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
1492 if (r)
1493 goto out;
1494 r = 0;
1495 break;
1496 }
1497 case KVM_INTERRUPT: {
1498 struct kvm_interrupt irq;
1499
1500 r = -EFAULT;
1501 if (copy_from_user(&irq, argp, sizeof irq))
1502 goto out;
1503 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1504 if (r)
1505 goto out;
1506 r = 0;
1507 break;
1508 }
1509 case KVM_NMI: {
1510 r = kvm_vcpu_ioctl_nmi(vcpu);
1511 if (r)
1512 goto out;
1513 r = 0;
1514 break;
1515 }
1516 case KVM_SET_CPUID: {
1517 struct kvm_cpuid __user *cpuid_arg = argp;
1518 struct kvm_cpuid cpuid;
1519
1520 r = -EFAULT;
1521 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1522 goto out;
1523 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1524 if (r)
1525 goto out;
1526 break;
1527 }
1528 case KVM_SET_CPUID2: {
1529 struct kvm_cpuid2 __user *cpuid_arg = argp;
1530 struct kvm_cpuid2 cpuid;
1531
1532 r = -EFAULT;
1533 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1534 goto out;
1535 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1536 cpuid_arg->entries);
1537 if (r)
1538 goto out;
1539 break;
1540 }
1541 case KVM_GET_CPUID2: {
1542 struct kvm_cpuid2 __user *cpuid_arg = argp;
1543 struct kvm_cpuid2 cpuid;
1544
1545 r = -EFAULT;
1546 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1547 goto out;
1548 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1549 cpuid_arg->entries);
1550 if (r)
1551 goto out;
1552 r = -EFAULT;
1553 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1554 goto out;
1555 r = 0;
1556 break;
1557 }
1558 case KVM_GET_MSRS:
1559 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1560 break;
1561 case KVM_SET_MSRS:
1562 r = msr_io(vcpu, argp, do_set_msr, 0);
1563 break;
1564 case KVM_TPR_ACCESS_REPORTING: {
1565 struct kvm_tpr_access_ctl tac;
1566
1567 r = -EFAULT;
1568 if (copy_from_user(&tac, argp, sizeof tac))
1569 goto out;
1570 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1571 if (r)
1572 goto out;
1573 r = -EFAULT;
1574 if (copy_to_user(argp, &tac, sizeof tac))
1575 goto out;
1576 r = 0;
1577 break;
1578 };
1579 case KVM_SET_VAPIC_ADDR: {
1580 struct kvm_vapic_addr va;
1581
1582 r = -EINVAL;
1583 if (!irqchip_in_kernel(vcpu->kvm))
1584 goto out;
1585 r = -EFAULT;
1586 if (copy_from_user(&va, argp, sizeof va))
1587 goto out;
1588 r = 0;
1589 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1590 break;
1591 }
1592 default:
1593 r = -EINVAL;
1594 }
1595 out:
1596 kfree(lapic);
1597 return r;
1598 }
1599
1600 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1601 {
1602 int ret;
1603
1604 if (addr > (unsigned int)(-3 * PAGE_SIZE))
1605 return -1;
1606 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1607 return ret;
1608 }
1609
1610 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1611 u32 kvm_nr_mmu_pages)
1612 {
1613 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1614 return -EINVAL;
1615
1616 down_write(&kvm->slots_lock);
1617
1618 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1619 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1620
1621 up_write(&kvm->slots_lock);
1622 return 0;
1623 }
1624
1625 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1626 {
1627 return kvm->arch.n_alloc_mmu_pages;
1628 }
1629
1630 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1631 {
1632 int i;
1633 struct kvm_mem_alias *alias;
1634
1635 for (i = 0; i < kvm->arch.naliases; ++i) {
1636 alias = &kvm->arch.aliases[i];
1637 if (gfn >= alias->base_gfn
1638 && gfn < alias->base_gfn + alias->npages)
1639 return alias->target_gfn + gfn - alias->base_gfn;
1640 }
1641 return gfn;
1642 }
1643
1644 /*
1645 * Set a new alias region. Aliases map a portion of physical memory into
1646 * another portion. This is useful for memory windows, for example the PC
1647 * VGA region.
1648 */
1649 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1650 struct kvm_memory_alias *alias)
1651 {
1652 int r, n;
1653 struct kvm_mem_alias *p;
1654
1655 r = -EINVAL;
1656 /* General sanity checks */
1657 if (alias->memory_size & (PAGE_SIZE - 1))
1658 goto out;
1659 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1660 goto out;
1661 if (alias->slot >= KVM_ALIAS_SLOTS)
1662 goto out;
1663 if (alias->guest_phys_addr + alias->memory_size
1664 < alias->guest_phys_addr)
1665 goto out;
1666 if (alias->target_phys_addr + alias->memory_size
1667 < alias->target_phys_addr)
1668 goto out;
1669
1670 down_write(&kvm->slots_lock);
1671 spin_lock(&kvm->mmu_lock);
1672
1673 p = &kvm->arch.aliases[alias->slot];
1674 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1675 p->npages = alias->memory_size >> PAGE_SHIFT;
1676 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1677
1678 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1679 if (kvm->arch.aliases[n - 1].npages)
1680 break;
1681 kvm->arch.naliases = n;
1682
1683 spin_unlock(&kvm->mmu_lock);
1684 kvm_mmu_zap_all(kvm);
1685
1686 up_write(&kvm->slots_lock);
1687
1688 return 0;
1689
1690 out:
1691 return r;
1692 }
1693
1694 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1695 {
1696 int r;
1697
1698 r = 0;
1699 switch (chip->chip_id) {
1700 case KVM_IRQCHIP_PIC_MASTER:
1701 memcpy(&chip->chip.pic,
1702 &pic_irqchip(kvm)->pics[0],
1703 sizeof(struct kvm_pic_state));
1704 break;
1705 case KVM_IRQCHIP_PIC_SLAVE:
1706 memcpy(&chip->chip.pic,
1707 &pic_irqchip(kvm)->pics[1],
1708 sizeof(struct kvm_pic_state));
1709 break;
1710 case KVM_IRQCHIP_IOAPIC:
1711 memcpy(&chip->chip.ioapic,
1712 ioapic_irqchip(kvm),
1713 sizeof(struct kvm_ioapic_state));
1714 break;
1715 default:
1716 r = -EINVAL;
1717 break;
1718 }
1719 return r;
1720 }
1721
1722 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1723 {
1724 int r;
1725
1726 r = 0;
1727 switch (chip->chip_id) {
1728 case KVM_IRQCHIP_PIC_MASTER:
1729 memcpy(&pic_irqchip(kvm)->pics[0],
1730 &chip->chip.pic,
1731 sizeof(struct kvm_pic_state));
1732 break;
1733 case KVM_IRQCHIP_PIC_SLAVE:
1734 memcpy(&pic_irqchip(kvm)->pics[1],
1735 &chip->chip.pic,
1736 sizeof(struct kvm_pic_state));
1737 break;
1738 case KVM_IRQCHIP_IOAPIC:
1739 memcpy(ioapic_irqchip(kvm),
1740 &chip->chip.ioapic,
1741 sizeof(struct kvm_ioapic_state));
1742 break;
1743 default:
1744 r = -EINVAL;
1745 break;
1746 }
1747 kvm_pic_update_irq(pic_irqchip(kvm));
1748 return r;
1749 }
1750
1751 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1752 {
1753 int r = 0;
1754
1755 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
1756 return r;
1757 }
1758
1759 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1760 {
1761 int r = 0;
1762
1763 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
1764 kvm_pit_load_count(kvm, 0, ps->channels[0].count);
1765 return r;
1766 }
1767
1768 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
1769 struct kvm_reinject_control *control)
1770 {
1771 if (!kvm->arch.vpit)
1772 return -ENXIO;
1773 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
1774 return 0;
1775 }
1776
1777 /*
1778 * Get (and clear) the dirty memory log for a memory slot.
1779 */
1780 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1781 struct kvm_dirty_log *log)
1782 {
1783 int r;
1784 int n;
1785 struct kvm_memory_slot *memslot;
1786 int is_dirty = 0;
1787
1788 down_write(&kvm->slots_lock);
1789
1790 r = kvm_get_dirty_log(kvm, log, &is_dirty);
1791 if (r)
1792 goto out;
1793
1794 /* If nothing is dirty, don't bother messing with page tables. */
1795 if (is_dirty) {
1796 kvm_mmu_slot_remove_write_access(kvm, log->slot);
1797 kvm_flush_remote_tlbs(kvm);
1798 memslot = &kvm->memslots[log->slot];
1799 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1800 memset(memslot->dirty_bitmap, 0, n);
1801 }
1802 r = 0;
1803 out:
1804 up_write(&kvm->slots_lock);
1805 return r;
1806 }
1807
1808 long kvm_arch_vm_ioctl(struct file *filp,
1809 unsigned int ioctl, unsigned long arg)
1810 {
1811 struct kvm *kvm = filp->private_data;
1812 void __user *argp = (void __user *)arg;
1813 int r = -EINVAL;
1814 /*
1815 * This union makes it completely explicit to gcc-3.x
1816 * that these two variables' stack usage should be
1817 * combined, not added together.
1818 */
1819 union {
1820 struct kvm_pit_state ps;
1821 struct kvm_memory_alias alias;
1822 } u;
1823
1824 switch (ioctl) {
1825 case KVM_SET_TSS_ADDR:
1826 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
1827 if (r < 0)
1828 goto out;
1829 break;
1830 case KVM_SET_MEMORY_REGION: {
1831 struct kvm_memory_region kvm_mem;
1832 struct kvm_userspace_memory_region kvm_userspace_mem;
1833
1834 r = -EFAULT;
1835 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
1836 goto out;
1837 kvm_userspace_mem.slot = kvm_mem.slot;
1838 kvm_userspace_mem.flags = kvm_mem.flags;
1839 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
1840 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
1841 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
1842 if (r)
1843 goto out;
1844 break;
1845 }
1846 case KVM_SET_NR_MMU_PAGES:
1847 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
1848 if (r)
1849 goto out;
1850 break;
1851 case KVM_GET_NR_MMU_PAGES:
1852 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
1853 break;
1854 case KVM_SET_MEMORY_ALIAS:
1855 r = -EFAULT;
1856 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
1857 goto out;
1858 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
1859 if (r)
1860 goto out;
1861 break;
1862 case KVM_CREATE_IRQCHIP:
1863 r = -ENOMEM;
1864 kvm->arch.vpic = kvm_create_pic(kvm);
1865 if (kvm->arch.vpic) {
1866 r = kvm_ioapic_init(kvm);
1867 if (r) {
1868 kfree(kvm->arch.vpic);
1869 kvm->arch.vpic = NULL;
1870 goto out;
1871 }
1872 } else
1873 goto out;
1874 r = kvm_setup_default_irq_routing(kvm);
1875 if (r) {
1876 kfree(kvm->arch.vpic);
1877 kfree(kvm->arch.vioapic);
1878 goto out;
1879 }
1880 break;
1881 case KVM_CREATE_PIT:
1882 mutex_lock(&kvm->lock);
1883 r = -EEXIST;
1884 if (kvm->arch.vpit)
1885 goto create_pit_unlock;
1886 r = -ENOMEM;
1887 kvm->arch.vpit = kvm_create_pit(kvm);
1888 if (kvm->arch.vpit)
1889 r = 0;
1890 create_pit_unlock:
1891 mutex_unlock(&kvm->lock);
1892 break;
1893 case KVM_IRQ_LINE_STATUS:
1894 case KVM_IRQ_LINE: {
1895 struct kvm_irq_level irq_event;
1896
1897 r = -EFAULT;
1898 if (copy_from_user(&irq_event, argp, sizeof irq_event))
1899 goto out;
1900 if (irqchip_in_kernel(kvm)) {
1901 __s32 status;
1902 mutex_lock(&kvm->lock);
1903 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1904 irq_event.irq, irq_event.level);
1905 mutex_unlock(&kvm->lock);
1906 if (ioctl == KVM_IRQ_LINE_STATUS) {
1907 irq_event.status = status;
1908 if (copy_to_user(argp, &irq_event,
1909 sizeof irq_event))
1910 goto out;
1911 }
1912 r = 0;
1913 }
1914 break;
1915 }
1916 case KVM_GET_IRQCHIP: {
1917 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1918 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1919
1920 r = -ENOMEM;
1921 if (!chip)
1922 goto out;
1923 r = -EFAULT;
1924 if (copy_from_user(chip, argp, sizeof *chip))
1925 goto get_irqchip_out;
1926 r = -ENXIO;
1927 if (!irqchip_in_kernel(kvm))
1928 goto get_irqchip_out;
1929 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
1930 if (r)
1931 goto get_irqchip_out;
1932 r = -EFAULT;
1933 if (copy_to_user(argp, chip, sizeof *chip))
1934 goto get_irqchip_out;
1935 r = 0;
1936 get_irqchip_out:
1937 kfree(chip);
1938 if (r)
1939 goto out;
1940 break;
1941 }
1942 case KVM_SET_IRQCHIP: {
1943 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1944 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1945
1946 r = -ENOMEM;
1947 if (!chip)
1948 goto out;
1949 r = -EFAULT;
1950 if (copy_from_user(chip, argp, sizeof *chip))
1951 goto set_irqchip_out;
1952 r = -ENXIO;
1953 if (!irqchip_in_kernel(kvm))
1954 goto set_irqchip_out;
1955 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
1956 if (r)
1957 goto set_irqchip_out;
1958 r = 0;
1959 set_irqchip_out:
1960 kfree(chip);
1961 if (r)
1962 goto out;
1963 break;
1964 }
1965 case KVM_GET_PIT: {
1966 r = -EFAULT;
1967 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
1968 goto out;
1969 r = -ENXIO;
1970 if (!kvm->arch.vpit)
1971 goto out;
1972 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
1973 if (r)
1974 goto out;
1975 r = -EFAULT;
1976 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
1977 goto out;
1978 r = 0;
1979 break;
1980 }
1981 case KVM_SET_PIT: {
1982 r = -EFAULT;
1983 if (copy_from_user(&u.ps, argp, sizeof u.ps))
1984 goto out;
1985 r = -ENXIO;
1986 if (!kvm->arch.vpit)
1987 goto out;
1988 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
1989 if (r)
1990 goto out;
1991 r = 0;
1992 break;
1993 }
1994 case KVM_REINJECT_CONTROL: {
1995 struct kvm_reinject_control control;
1996 r = -EFAULT;
1997 if (copy_from_user(&control, argp, sizeof(control)))
1998 goto out;
1999 r = kvm_vm_ioctl_reinject(kvm, &control);
2000 if (r)
2001 goto out;
2002 r = 0;
2003 break;
2004 }
2005 default:
2006 ;
2007 }
2008 out:
2009 return r;
2010 }
2011
2012 static void kvm_init_msr_list(void)
2013 {
2014 u32 dummy[2];
2015 unsigned i, j;
2016
2017 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2018 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2019 continue;
2020 if (j < i)
2021 msrs_to_save[j] = msrs_to_save[i];
2022 j++;
2023 }
2024 num_msrs_to_save = j;
2025 }
2026
2027 /*
2028 * Only apic need an MMIO device hook, so shortcut now..
2029 */
2030 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
2031 gpa_t addr, int len,
2032 int is_write)
2033 {
2034 struct kvm_io_device *dev;
2035
2036 if (vcpu->arch.apic) {
2037 dev = &vcpu->arch.apic->dev;
2038 if (dev->in_range(dev, addr, len, is_write))
2039 return dev;
2040 }
2041 return NULL;
2042 }
2043
2044
2045 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
2046 gpa_t addr, int len,
2047 int is_write)
2048 {
2049 struct kvm_io_device *dev;
2050
2051 dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
2052 if (dev == NULL)
2053 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
2054 is_write);
2055 return dev;
2056 }
2057
2058 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
2059 struct kvm_vcpu *vcpu)
2060 {
2061 void *data = val;
2062 int r = X86EMUL_CONTINUE;
2063
2064 while (bytes) {
2065 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2066 unsigned offset = addr & (PAGE_SIZE-1);
2067 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
2068 int ret;
2069
2070 if (gpa == UNMAPPED_GVA) {
2071 r = X86EMUL_PROPAGATE_FAULT;
2072 goto out;
2073 }
2074 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
2075 if (ret < 0) {
2076 r = X86EMUL_UNHANDLEABLE;
2077 goto out;
2078 }
2079
2080 bytes -= toread;
2081 data += toread;
2082 addr += toread;
2083 }
2084 out:
2085 return r;
2086 }
2087
2088 static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
2089 struct kvm_vcpu *vcpu)
2090 {
2091 void *data = val;
2092 int r = X86EMUL_CONTINUE;
2093
2094 while (bytes) {
2095 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2096 unsigned offset = addr & (PAGE_SIZE-1);
2097 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
2098 int ret;
2099
2100 if (gpa == UNMAPPED_GVA) {
2101 r = X86EMUL_PROPAGATE_FAULT;
2102 goto out;
2103 }
2104 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
2105 if (ret < 0) {
2106 r = X86EMUL_UNHANDLEABLE;
2107 goto out;
2108 }
2109
2110 bytes -= towrite;
2111 data += towrite;
2112 addr += towrite;
2113 }
2114 out:
2115 return r;
2116 }
2117
2118
2119 static int emulator_read_emulated(unsigned long addr,
2120 void *val,
2121 unsigned int bytes,
2122 struct kvm_vcpu *vcpu)
2123 {
2124 struct kvm_io_device *mmio_dev;
2125 gpa_t gpa;
2126
2127 if (vcpu->mmio_read_completed) {
2128 memcpy(val, vcpu->mmio_data, bytes);
2129 vcpu->mmio_read_completed = 0;
2130 return X86EMUL_CONTINUE;
2131 }
2132
2133 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2134
2135 /* For APIC access vmexit */
2136 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2137 goto mmio;
2138
2139 if (kvm_read_guest_virt(addr, val, bytes, vcpu)
2140 == X86EMUL_CONTINUE)
2141 return X86EMUL_CONTINUE;
2142 if (gpa == UNMAPPED_GVA)
2143 return X86EMUL_PROPAGATE_FAULT;
2144
2145 mmio:
2146 /*
2147 * Is this MMIO handled locally?
2148 */
2149 mutex_lock(&vcpu->kvm->lock);
2150 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
2151 if (mmio_dev) {
2152 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
2153 mutex_unlock(&vcpu->kvm->lock);
2154 return X86EMUL_CONTINUE;
2155 }
2156 mutex_unlock(&vcpu->kvm->lock);
2157
2158 vcpu->mmio_needed = 1;
2159 vcpu->mmio_phys_addr = gpa;
2160 vcpu->mmio_size = bytes;
2161 vcpu->mmio_is_write = 0;
2162
2163 return X86EMUL_UNHANDLEABLE;
2164 }
2165
2166 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2167 const void *val, int bytes)
2168 {
2169 int ret;
2170
2171 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
2172 if (ret < 0)
2173 return 0;
2174 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
2175 return 1;
2176 }
2177
2178 static int emulator_write_emulated_onepage(unsigned long addr,
2179 const void *val,
2180 unsigned int bytes,
2181 struct kvm_vcpu *vcpu)
2182 {
2183 struct kvm_io_device *mmio_dev;
2184 gpa_t gpa;
2185
2186 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2187
2188 if (gpa == UNMAPPED_GVA) {
2189 kvm_inject_page_fault(vcpu, addr, 2);
2190 return X86EMUL_PROPAGATE_FAULT;
2191 }
2192
2193 /* For APIC access vmexit */
2194 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2195 goto mmio;
2196
2197 if (emulator_write_phys(vcpu, gpa, val, bytes))
2198 return X86EMUL_CONTINUE;
2199
2200 mmio:
2201 /*
2202 * Is this MMIO handled locally?
2203 */
2204 mutex_lock(&vcpu->kvm->lock);
2205 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
2206 if (mmio_dev) {
2207 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
2208 mutex_unlock(&vcpu->kvm->lock);
2209 return X86EMUL_CONTINUE;
2210 }
2211 mutex_unlock(&vcpu->kvm->lock);
2212
2213 vcpu->mmio_needed = 1;
2214 vcpu->mmio_phys_addr = gpa;
2215 vcpu->mmio_size = bytes;
2216 vcpu->mmio_is_write = 1;
2217 memcpy(vcpu->mmio_data, val, bytes);
2218
2219 return X86EMUL_CONTINUE;
2220 }
2221
2222 int emulator_write_emulated(unsigned long addr,
2223 const void *val,
2224 unsigned int bytes,
2225 struct kvm_vcpu *vcpu)
2226 {
2227 /* Crossing a page boundary? */
2228 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
2229 int rc, now;
2230
2231 now = -addr & ~PAGE_MASK;
2232 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
2233 if (rc != X86EMUL_CONTINUE)
2234 return rc;
2235 addr += now;
2236 val += now;
2237 bytes -= now;
2238 }
2239 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
2240 }
2241 EXPORT_SYMBOL_GPL(emulator_write_emulated);
2242
2243 static int emulator_cmpxchg_emulated(unsigned long addr,
2244 const void *old,
2245 const void *new,
2246 unsigned int bytes,
2247 struct kvm_vcpu *vcpu)
2248 {
2249 static int reported;
2250
2251 if (!reported) {
2252 reported = 1;
2253 printk(KERN_WARNING "kvm: emulating exchange as write\n");
2254 }
2255 #ifndef CONFIG_X86_64
2256 /* guests cmpxchg8b have to be emulated atomically */
2257 if (bytes == 8) {
2258 gpa_t gpa;
2259 struct page *page;
2260 char *kaddr;
2261 u64 val;
2262
2263 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2264
2265 if (gpa == UNMAPPED_GVA ||
2266 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2267 goto emul_write;
2268
2269 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2270 goto emul_write;
2271
2272 val = *(u64 *)new;
2273
2274 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2275
2276 kaddr = kmap_atomic(page, KM_USER0);
2277 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2278 kunmap_atomic(kaddr, KM_USER0);
2279 kvm_release_page_dirty(page);
2280 }
2281 emul_write:
2282 #endif
2283
2284 return emulator_write_emulated(addr, new, bytes, vcpu);
2285 }
2286
2287 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2288 {
2289 return kvm_x86_ops->get_segment_base(vcpu, seg);
2290 }
2291
2292 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2293 {
2294 kvm_mmu_invlpg(vcpu, address);
2295 return X86EMUL_CONTINUE;
2296 }
2297
2298 int emulate_clts(struct kvm_vcpu *vcpu)
2299 {
2300 KVMTRACE_0D(CLTS, vcpu, handler);
2301 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2302 return X86EMUL_CONTINUE;
2303 }
2304
2305 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2306 {
2307 struct kvm_vcpu *vcpu = ctxt->vcpu;
2308
2309 switch (dr) {
2310 case 0 ... 3:
2311 *dest = kvm_x86_ops->get_dr(vcpu, dr);
2312 return X86EMUL_CONTINUE;
2313 default:
2314 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2315 return X86EMUL_UNHANDLEABLE;
2316 }
2317 }
2318
2319 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2320 {
2321 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2322 int exception;
2323
2324 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2325 if (exception) {
2326 /* FIXME: better handling */
2327 return X86EMUL_UNHANDLEABLE;
2328 }
2329 return X86EMUL_CONTINUE;
2330 }
2331
2332 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2333 {
2334 u8 opcodes[4];
2335 unsigned long rip = kvm_rip_read(vcpu);
2336 unsigned long rip_linear;
2337
2338 if (!printk_ratelimit())
2339 return;
2340
2341 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2342
2343 kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
2344
2345 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2346 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2347 }
2348 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2349
2350 static struct x86_emulate_ops emulate_ops = {
2351 .read_std = kvm_read_guest_virt,
2352 .read_emulated = emulator_read_emulated,
2353 .write_emulated = emulator_write_emulated,
2354 .cmpxchg_emulated = emulator_cmpxchg_emulated,
2355 };
2356
2357 static void cache_all_regs(struct kvm_vcpu *vcpu)
2358 {
2359 kvm_register_read(vcpu, VCPU_REGS_RAX);
2360 kvm_register_read(vcpu, VCPU_REGS_RSP);
2361 kvm_register_read(vcpu, VCPU_REGS_RIP);
2362 vcpu->arch.regs_dirty = ~0;
2363 }
2364
2365 int emulate_instruction(struct kvm_vcpu *vcpu,
2366 struct kvm_run *run,
2367 unsigned long cr2,
2368 u16 error_code,
2369 int emulation_type)
2370 {
2371 int r;
2372 struct decode_cache *c;
2373
2374 kvm_clear_exception_queue(vcpu);
2375 vcpu->arch.mmio_fault_cr2 = cr2;
2376 /*
2377 * TODO: fix x86_emulate.c to use guest_read/write_register
2378 * instead of direct ->regs accesses, can save hundred cycles
2379 * on Intel for instructions that don't read/change RSP, for
2380 * for example.
2381 */
2382 cache_all_regs(vcpu);
2383
2384 vcpu->mmio_is_write = 0;
2385 vcpu->arch.pio.string = 0;
2386
2387 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2388 int cs_db, cs_l;
2389 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2390
2391 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2392 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2393 vcpu->arch.emulate_ctxt.mode =
2394 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2395 ? X86EMUL_MODE_REAL : cs_l
2396 ? X86EMUL_MODE_PROT64 : cs_db
2397 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2398
2399 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2400
2401 /* Reject the instructions other than VMCALL/VMMCALL when
2402 * try to emulate invalid opcode */
2403 c = &vcpu->arch.emulate_ctxt.decode;
2404 if ((emulation_type & EMULTYPE_TRAP_UD) &&
2405 (!(c->twobyte && c->b == 0x01 &&
2406 (c->modrm_reg == 0 || c->modrm_reg == 3) &&
2407 c->modrm_mod == 3 && c->modrm_rm == 1)))
2408 return EMULATE_FAIL;
2409
2410 ++vcpu->stat.insn_emulation;
2411 if (r) {
2412 ++vcpu->stat.insn_emulation_fail;
2413 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2414 return EMULATE_DONE;
2415 return EMULATE_FAIL;
2416 }
2417 }
2418
2419 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2420
2421 if (vcpu->arch.pio.string)
2422 return EMULATE_DO_MMIO;
2423
2424 if ((r || vcpu->mmio_is_write) && run) {
2425 run->exit_reason = KVM_EXIT_MMIO;
2426 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2427 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2428 run->mmio.len = vcpu->mmio_size;
2429 run->mmio.is_write = vcpu->mmio_is_write;
2430 }
2431
2432 if (r) {
2433 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2434 return EMULATE_DONE;
2435 if (!vcpu->mmio_needed) {
2436 kvm_report_emulation_failure(vcpu, "mmio");
2437 return EMULATE_FAIL;
2438 }
2439 return EMULATE_DO_MMIO;
2440 }
2441
2442 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2443
2444 if (vcpu->mmio_is_write) {
2445 vcpu->mmio_needed = 0;
2446 return EMULATE_DO_MMIO;
2447 }
2448
2449 return EMULATE_DONE;
2450 }
2451 EXPORT_SYMBOL_GPL(emulate_instruction);
2452
2453 static int pio_copy_data(struct kvm_vcpu *vcpu)
2454 {
2455 void *p = vcpu->arch.pio_data;
2456 gva_t q = vcpu->arch.pio.guest_gva;
2457 unsigned bytes;
2458 int ret;
2459
2460 bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2461 if (vcpu->arch.pio.in)
2462 ret = kvm_write_guest_virt(q, p, bytes, vcpu);
2463 else
2464 ret = kvm_read_guest_virt(q, p, bytes, vcpu);
2465 return ret;
2466 }
2467
2468 int complete_pio(struct kvm_vcpu *vcpu)
2469 {
2470 struct kvm_pio_request *io = &vcpu->arch.pio;
2471 long delta;
2472 int r;
2473 unsigned long val;
2474
2475 if (!io->string) {
2476 if (io->in) {
2477 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2478 memcpy(&val, vcpu->arch.pio_data, io->size);
2479 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
2480 }
2481 } else {
2482 if (io->in) {
2483 r = pio_copy_data(vcpu);
2484 if (r)
2485 return r;
2486 }
2487
2488 delta = 1;
2489 if (io->rep) {
2490 delta *= io->cur_count;
2491 /*
2492 * The size of the register should really depend on
2493 * current address size.
2494 */
2495 val = kvm_register_read(vcpu, VCPU_REGS_RCX);
2496 val -= delta;
2497 kvm_register_write(vcpu, VCPU_REGS_RCX, val);
2498 }
2499 if (io->down)
2500 delta = -delta;
2501 delta *= io->size;
2502 if (io->in) {
2503 val = kvm_register_read(vcpu, VCPU_REGS_RDI);
2504 val += delta;
2505 kvm_register_write(vcpu, VCPU_REGS_RDI, val);
2506 } else {
2507 val = kvm_register_read(vcpu, VCPU_REGS_RSI);
2508 val += delta;
2509 kvm_register_write(vcpu, VCPU_REGS_RSI, val);
2510 }
2511 }
2512
2513 io->count -= io->cur_count;
2514 io->cur_count = 0;
2515
2516 return 0;
2517 }
2518
2519 static void kernel_pio(struct kvm_io_device *pio_dev,
2520 struct kvm_vcpu *vcpu,
2521 void *pd)
2522 {
2523 /* TODO: String I/O for in kernel device */
2524
2525 mutex_lock(&vcpu->kvm->lock);
2526 if (vcpu->arch.pio.in)
2527 kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
2528 vcpu->arch.pio.size,
2529 pd);
2530 else
2531 kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
2532 vcpu->arch.pio.size,
2533 pd);
2534 mutex_unlock(&vcpu->kvm->lock);
2535 }
2536
2537 static void pio_string_write(struct kvm_io_device *pio_dev,
2538 struct kvm_vcpu *vcpu)
2539 {
2540 struct kvm_pio_request *io = &vcpu->arch.pio;
2541 void *pd = vcpu->arch.pio_data;
2542 int i;
2543
2544 mutex_lock(&vcpu->kvm->lock);
2545 for (i = 0; i < io->cur_count; i++) {
2546 kvm_iodevice_write(pio_dev, io->port,
2547 io->size,
2548 pd);
2549 pd += io->size;
2550 }
2551 mutex_unlock(&vcpu->kvm->lock);
2552 }
2553
2554 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2555 gpa_t addr, int len,
2556 int is_write)
2557 {
2558 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
2559 }
2560
2561 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2562 int size, unsigned port)
2563 {
2564 struct kvm_io_device *pio_dev;
2565 unsigned long val;
2566
2567 vcpu->run->exit_reason = KVM_EXIT_IO;
2568 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2569 vcpu->run->io.size = vcpu->arch.pio.size = size;
2570 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2571 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2572 vcpu->run->io.port = vcpu->arch.pio.port = port;
2573 vcpu->arch.pio.in = in;
2574 vcpu->arch.pio.string = 0;
2575 vcpu->arch.pio.down = 0;
2576 vcpu->arch.pio.rep = 0;
2577
2578 if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2579 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2580 handler);
2581 else
2582 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2583 handler);
2584
2585 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2586 memcpy(vcpu->arch.pio_data, &val, 4);
2587
2588 pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
2589 if (pio_dev) {
2590 kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2591 complete_pio(vcpu);
2592 return 1;
2593 }
2594 return 0;
2595 }
2596 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2597
2598 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2599 int size, unsigned long count, int down,
2600 gva_t address, int rep, unsigned port)
2601 {
2602 unsigned now, in_page;
2603 int ret = 0;
2604 struct kvm_io_device *pio_dev;
2605
2606 vcpu->run->exit_reason = KVM_EXIT_IO;
2607 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2608 vcpu->run->io.size = vcpu->arch.pio.size = size;
2609 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2610 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2611 vcpu->run->io.port = vcpu->arch.pio.port = port;
2612 vcpu->arch.pio.in = in;
2613 vcpu->arch.pio.string = 1;
2614 vcpu->arch.pio.down = down;
2615 vcpu->arch.pio.rep = rep;
2616
2617 if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2618 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2619 handler);
2620 else
2621 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2622 handler);
2623
2624 if (!count) {
2625 kvm_x86_ops->skip_emulated_instruction(vcpu);
2626 return 1;
2627 }
2628
2629 if (!down)
2630 in_page = PAGE_SIZE - offset_in_page(address);
2631 else
2632 in_page = offset_in_page(address) + size;
2633 now = min(count, (unsigned long)in_page / size);
2634 if (!now)
2635 now = 1;
2636 if (down) {
2637 /*
2638 * String I/O in reverse. Yuck. Kill the guest, fix later.
2639 */
2640 pr_unimpl(vcpu, "guest string pio down\n");
2641 kvm_inject_gp(vcpu, 0);
2642 return 1;
2643 }
2644 vcpu->run->io.count = now;
2645 vcpu->arch.pio.cur_count = now;
2646
2647 if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2648 kvm_x86_ops->skip_emulated_instruction(vcpu);
2649
2650 vcpu->arch.pio.guest_gva = address;
2651
2652 pio_dev = vcpu_find_pio_dev(vcpu, port,
2653 vcpu->arch.pio.cur_count,
2654 !vcpu->arch.pio.in);
2655 if (!vcpu->arch.pio.in) {
2656 /* string PIO write */
2657 ret = pio_copy_data(vcpu);
2658 if (ret == X86EMUL_PROPAGATE_FAULT) {
2659 kvm_inject_gp(vcpu, 0);
2660 return 1;
2661 }
2662 if (ret == 0 && pio_dev) {
2663 pio_string_write(pio_dev, vcpu);
2664 complete_pio(vcpu);
2665 if (vcpu->arch.pio.count == 0)
2666 ret = 1;
2667 }
2668 } else if (pio_dev)
2669 pr_unimpl(vcpu, "no string pio read support yet, "
2670 "port %x size %d count %ld\n",
2671 port, size, count);
2672
2673 return ret;
2674 }
2675 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2676
2677 static void bounce_off(void *info)
2678 {
2679 /* nothing */
2680 }
2681
2682 static unsigned int ref_freq;
2683 static unsigned long tsc_khz_ref;
2684
2685 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
2686 void *data)
2687 {
2688 struct cpufreq_freqs *freq = data;
2689 struct kvm *kvm;
2690 struct kvm_vcpu *vcpu;
2691 int i, send_ipi = 0;
2692
2693 if (!ref_freq)
2694 ref_freq = freq->old;
2695
2696 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
2697 return 0;
2698 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
2699 return 0;
2700 per_cpu(cpu_tsc_khz, freq->cpu) = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
2701
2702 spin_lock(&kvm_lock);
2703 list_for_each_entry(kvm, &vm_list, vm_list) {
2704 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2705 vcpu = kvm->vcpus[i];
2706 if (!vcpu)
2707 continue;
2708 if (vcpu->cpu != freq->cpu)
2709 continue;
2710 if (!kvm_request_guest_time_update(vcpu))
2711 continue;
2712 if (vcpu->cpu != smp_processor_id())
2713 send_ipi++;
2714 }
2715 }
2716 spin_unlock(&kvm_lock);
2717
2718 if (freq->old < freq->new && send_ipi) {
2719 /*
2720 * We upscale the frequency. Must make the guest
2721 * doesn't see old kvmclock values while running with
2722 * the new frequency, otherwise we risk the guest sees
2723 * time go backwards.
2724 *
2725 * In case we update the frequency for another cpu
2726 * (which might be in guest context) send an interrupt
2727 * to kick the cpu out of guest context. Next time
2728 * guest context is entered kvmclock will be updated,
2729 * so the guest will not see stale values.
2730 */
2731 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
2732 }
2733 return 0;
2734 }
2735
2736 static struct notifier_block kvmclock_cpufreq_notifier_block = {
2737 .notifier_call = kvmclock_cpufreq_notifier
2738 };
2739
2740 int kvm_arch_init(void *opaque)
2741 {
2742 int r, cpu;
2743 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
2744
2745 if (kvm_x86_ops) {
2746 printk(KERN_ERR "kvm: already loaded the other module\n");
2747 r = -EEXIST;
2748 goto out;
2749 }
2750
2751 if (!ops->cpu_has_kvm_support()) {
2752 printk(KERN_ERR "kvm: no hardware support\n");
2753 r = -EOPNOTSUPP;
2754 goto out;
2755 }
2756 if (ops->disabled_by_bios()) {
2757 printk(KERN_ERR "kvm: disabled by bios\n");
2758 r = -EOPNOTSUPP;
2759 goto out;
2760 }
2761
2762 r = kvm_mmu_module_init();
2763 if (r)
2764 goto out;
2765
2766 kvm_init_msr_list();
2767
2768 kvm_x86_ops = ops;
2769 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2770 kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
2771 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
2772 PT_DIRTY_MASK, PT64_NX_MASK, 0, 0);
2773
2774 for_each_possible_cpu(cpu)
2775 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
2776 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
2777 tsc_khz_ref = tsc_khz;
2778 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
2779 CPUFREQ_TRANSITION_NOTIFIER);
2780 }
2781
2782 return 0;
2783
2784 out:
2785 return r;
2786 }
2787
2788 void kvm_arch_exit(void)
2789 {
2790 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
2791 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
2792 CPUFREQ_TRANSITION_NOTIFIER);
2793 kvm_x86_ops = NULL;
2794 kvm_mmu_module_exit();
2795 }
2796
2797 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
2798 {
2799 ++vcpu->stat.halt_exits;
2800 KVMTRACE_0D(HLT, vcpu, handler);
2801 if (irqchip_in_kernel(vcpu->kvm)) {
2802 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
2803 return 1;
2804 } else {
2805 vcpu->run->exit_reason = KVM_EXIT_HLT;
2806 return 0;
2807 }
2808 }
2809 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
2810
2811 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
2812 unsigned long a1)
2813 {
2814 if (is_long_mode(vcpu))
2815 return a0;
2816 else
2817 return a0 | ((gpa_t)a1 << 32);
2818 }
2819
2820 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
2821 {
2822 unsigned long nr, a0, a1, a2, a3, ret;
2823 int r = 1;
2824
2825 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
2826 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
2827 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
2828 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
2829 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
2830
2831 KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
2832
2833 if (!is_long_mode(vcpu)) {
2834 nr &= 0xFFFFFFFF;
2835 a0 &= 0xFFFFFFFF;
2836 a1 &= 0xFFFFFFFF;
2837 a2 &= 0xFFFFFFFF;
2838 a3 &= 0xFFFFFFFF;
2839 }
2840
2841 switch (nr) {
2842 case KVM_HC_VAPIC_POLL_IRQ:
2843 ret = 0;
2844 break;
2845 case KVM_HC_MMU_OP:
2846 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
2847 break;
2848 default:
2849 ret = -KVM_ENOSYS;
2850 break;
2851 }
2852 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
2853 ++vcpu->stat.hypercalls;
2854 return r;
2855 }
2856 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
2857
2858 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
2859 {
2860 char instruction[3];
2861 int ret = 0;
2862 unsigned long rip = kvm_rip_read(vcpu);
2863
2864
2865 /*
2866 * Blow out the MMU to ensure that no other VCPU has an active mapping
2867 * to ensure that the updated hypercall appears atomically across all
2868 * VCPUs.
2869 */
2870 kvm_mmu_zap_all(vcpu->kvm);
2871
2872 kvm_x86_ops->patch_hypercall(vcpu, instruction);
2873 if (emulator_write_emulated(rip, instruction, 3, vcpu)
2874 != X86EMUL_CONTINUE)
2875 ret = -EFAULT;
2876
2877 return ret;
2878 }
2879
2880 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
2881 {
2882 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
2883 }
2884
2885 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2886 {
2887 struct descriptor_table dt = { limit, base };
2888
2889 kvm_x86_ops->set_gdt(vcpu, &dt);
2890 }
2891
2892 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2893 {
2894 struct descriptor_table dt = { limit, base };
2895
2896 kvm_x86_ops->set_idt(vcpu, &dt);
2897 }
2898
2899 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
2900 unsigned long *rflags)
2901 {
2902 kvm_lmsw(vcpu, msw);
2903 *rflags = kvm_x86_ops->get_rflags(vcpu);
2904 }
2905
2906 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
2907 {
2908 unsigned long value;
2909
2910 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2911 switch (cr) {
2912 case 0:
2913 value = vcpu->arch.cr0;
2914 break;
2915 case 2:
2916 value = vcpu->arch.cr2;
2917 break;
2918 case 3:
2919 value = vcpu->arch.cr3;
2920 break;
2921 case 4:
2922 value = vcpu->arch.cr4;
2923 break;
2924 case 8:
2925 value = kvm_get_cr8(vcpu);
2926 break;
2927 default:
2928 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2929 return 0;
2930 }
2931 KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
2932 (u32)((u64)value >> 32), handler);
2933
2934 return value;
2935 }
2936
2937 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
2938 unsigned long *rflags)
2939 {
2940 KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
2941 (u32)((u64)val >> 32), handler);
2942
2943 switch (cr) {
2944 case 0:
2945 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2946 *rflags = kvm_x86_ops->get_rflags(vcpu);
2947 break;
2948 case 2:
2949 vcpu->arch.cr2 = val;
2950 break;
2951 case 3:
2952 kvm_set_cr3(vcpu, val);
2953 break;
2954 case 4:
2955 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2956 break;
2957 case 8:
2958 kvm_set_cr8(vcpu, val & 0xfUL);
2959 break;
2960 default:
2961 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2962 }
2963 }
2964
2965 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
2966 {
2967 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
2968 int j, nent = vcpu->arch.cpuid_nent;
2969
2970 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
2971 /* when no next entry is found, the current entry[i] is reselected */
2972 for (j = i + 1; ; j = (j + 1) % nent) {
2973 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2974 if (ej->function == e->function) {
2975 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2976 return j;
2977 }
2978 }
2979 return 0; /* silence gcc, even though control never reaches here */
2980 }
2981
2982 /* find an entry with matching function, matching index (if needed), and that
2983 * should be read next (if it's stateful) */
2984 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
2985 u32 function, u32 index)
2986 {
2987 if (e->function != function)
2988 return 0;
2989 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
2990 return 0;
2991 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
2992 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
2993 return 0;
2994 return 1;
2995 }
2996
2997 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
2998 u32 function, u32 index)
2999 {
3000 int i;
3001 struct kvm_cpuid_entry2 *best = NULL;
3002
3003 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
3004 struct kvm_cpuid_entry2 *e;
3005
3006 e = &vcpu->arch.cpuid_entries[i];
3007 if (is_matching_cpuid_entry(e, function, index)) {
3008 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
3009 move_to_next_stateful_cpuid_entry(vcpu, i);
3010 best = e;
3011 break;
3012 }
3013 /*
3014 * Both basic or both extended?
3015 */
3016 if (((e->function ^ function) & 0x80000000) == 0)
3017 if (!best || e->function > best->function)
3018 best = e;
3019 }
3020 return best;
3021 }
3022
3023 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
3024 {
3025 struct kvm_cpuid_entry2 *best;
3026
3027 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
3028 if (best)
3029 return best->eax & 0xff;
3030 return 36;
3031 }
3032
3033 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
3034 {
3035 u32 function, index;
3036 struct kvm_cpuid_entry2 *best;
3037
3038 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
3039 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3040 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
3041 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
3042 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
3043 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
3044 best = kvm_find_cpuid_entry(vcpu, function, index);
3045 if (best) {
3046 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
3047 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
3048 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
3049 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
3050 }
3051 kvm_x86_ops->skip_emulated_instruction(vcpu);
3052 KVMTRACE_5D(CPUID, vcpu, function,
3053 (u32)kvm_register_read(vcpu, VCPU_REGS_RAX),
3054 (u32)kvm_register_read(vcpu, VCPU_REGS_RBX),
3055 (u32)kvm_register_read(vcpu, VCPU_REGS_RCX),
3056 (u32)kvm_register_read(vcpu, VCPU_REGS_RDX), handler);
3057 }
3058 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
3059
3060 /*
3061 * Check if userspace requested an interrupt window, and that the
3062 * interrupt window is open.
3063 *
3064 * No need to exit to userspace if we already have an interrupt queued.
3065 */
3066 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
3067 struct kvm_run *kvm_run)
3068 {
3069 return (!vcpu->arch.irq_summary &&
3070 kvm_run->request_interrupt_window &&
3071 vcpu->arch.interrupt_window_open &&
3072 (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
3073 }
3074
3075 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
3076 struct kvm_run *kvm_run)
3077 {
3078 kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
3079 kvm_run->cr8 = kvm_get_cr8(vcpu);
3080 kvm_run->apic_base = kvm_get_apic_base(vcpu);
3081 if (irqchip_in_kernel(vcpu->kvm))
3082 kvm_run->ready_for_interrupt_injection = 1;
3083 else
3084 kvm_run->ready_for_interrupt_injection =
3085 (vcpu->arch.interrupt_window_open &&
3086 vcpu->arch.irq_summary == 0);
3087 }
3088
3089 static void vapic_enter(struct kvm_vcpu *vcpu)
3090 {
3091 struct kvm_lapic *apic = vcpu->arch.apic;
3092 struct page *page;
3093
3094 if (!apic || !apic->vapic_addr)
3095 return;
3096
3097 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3098
3099 vcpu->arch.apic->vapic_page = page;
3100 }
3101
3102 static void vapic_exit(struct kvm_vcpu *vcpu)
3103 {
3104 struct kvm_lapic *apic = vcpu->arch.apic;
3105
3106 if (!apic || !apic->vapic_addr)
3107 return;
3108
3109 down_read(&vcpu->kvm->slots_lock);
3110 kvm_release_page_dirty(apic->vapic_page);
3111 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3112 up_read(&vcpu->kvm->slots_lock);
3113 }
3114
3115 static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3116 {
3117 int r;
3118
3119 if (vcpu->requests)
3120 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
3121 kvm_mmu_unload(vcpu);
3122
3123 r = kvm_mmu_reload(vcpu);
3124 if (unlikely(r))
3125 goto out;
3126
3127 if (vcpu->requests) {
3128 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
3129 __kvm_migrate_timers(vcpu);
3130 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
3131 kvm_write_guest_time(vcpu);
3132 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
3133 kvm_mmu_sync_roots(vcpu);
3134 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
3135 kvm_x86_ops->tlb_flush(vcpu);
3136 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
3137 &vcpu->requests)) {
3138 kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
3139 r = 0;
3140 goto out;
3141 }
3142 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
3143 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
3144 r = 0;
3145 goto out;
3146 }
3147 }
3148
3149 preempt_disable();
3150
3151 kvm_x86_ops->prepare_guest_switch(vcpu);
3152 kvm_load_guest_fpu(vcpu);
3153
3154 local_irq_disable();
3155
3156 if (vcpu->requests || need_resched() || signal_pending(current)) {
3157 local_irq_enable();
3158 preempt_enable();
3159 r = 1;
3160 goto out;
3161 }
3162
3163 vcpu->guest_mode = 1;
3164 /*
3165 * Make sure that guest_mode assignment won't happen after
3166 * testing the pending IRQ vector bitmap.
3167 */
3168 smp_wmb();
3169
3170 if (vcpu->arch.exception.pending)
3171 __queue_exception(vcpu);
3172 else if (irqchip_in_kernel(vcpu->kvm))
3173 kvm_x86_ops->inject_pending_irq(vcpu);
3174 else
3175 kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
3176
3177 kvm_lapic_sync_to_vapic(vcpu);
3178
3179 up_read(&vcpu->kvm->slots_lock);
3180
3181 kvm_guest_enter();
3182
3183 get_debugreg(vcpu->arch.host_dr6, 6);
3184 get_debugreg(vcpu->arch.host_dr7, 7);
3185 if (unlikely(vcpu->arch.switch_db_regs)) {
3186 get_debugreg(vcpu->arch.host_db[0], 0);
3187 get_debugreg(vcpu->arch.host_db[1], 1);
3188 get_debugreg(vcpu->arch.host_db[2], 2);
3189 get_debugreg(vcpu->arch.host_db[3], 3);
3190
3191 set_debugreg(0, 7);
3192 set_debugreg(vcpu->arch.eff_db[0], 0);
3193 set_debugreg(vcpu->arch.eff_db[1], 1);
3194 set_debugreg(vcpu->arch.eff_db[2], 2);
3195 set_debugreg(vcpu->arch.eff_db[3], 3);
3196 }
3197
3198 KVMTRACE_0D(VMENTRY, vcpu, entryexit);
3199 kvm_x86_ops->run(vcpu, kvm_run);
3200
3201 if (unlikely(vcpu->arch.switch_db_regs)) {
3202 set_debugreg(0, 7);
3203 set_debugreg(vcpu->arch.host_db[0], 0);
3204 set_debugreg(vcpu->arch.host_db[1], 1);
3205 set_debugreg(vcpu->arch.host_db[2], 2);
3206 set_debugreg(vcpu->arch.host_db[3], 3);
3207 }
3208 set_debugreg(vcpu->arch.host_dr6, 6);
3209 set_debugreg(vcpu->arch.host_dr7, 7);
3210
3211 vcpu->guest_mode = 0;
3212 local_irq_enable();
3213
3214 ++vcpu->stat.exits;
3215
3216 /*
3217 * We must have an instruction between local_irq_enable() and
3218 * kvm_guest_exit(), so the timer interrupt isn't delayed by
3219 * the interrupt shadow. The stat.exits increment will do nicely.
3220 * But we need to prevent reordering, hence this barrier():
3221 */
3222 barrier();
3223
3224 kvm_guest_exit();
3225
3226 preempt_enable();
3227
3228 down_read(&vcpu->kvm->slots_lock);
3229
3230 /*
3231 * Profile KVM exit RIPs:
3232 */
3233 if (unlikely(prof_on == KVM_PROFILING)) {
3234 unsigned long rip = kvm_rip_read(vcpu);
3235 profile_hit(KVM_PROFILING, (void *)rip);
3236 }
3237
3238 if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
3239 vcpu->arch.exception.pending = false;
3240
3241 kvm_lapic_sync_from_vapic(vcpu);
3242
3243 r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
3244 out:
3245 return r;
3246 }
3247
3248
3249 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3250 {
3251 int r;
3252
3253 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
3254 pr_debug("vcpu %d received sipi with vector # %x\n",
3255 vcpu->vcpu_id, vcpu->arch.sipi_vector);
3256 kvm_lapic_reset(vcpu);
3257 r = kvm_arch_vcpu_reset(vcpu);
3258 if (r)
3259 return r;
3260 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3261 }
3262
3263 down_read(&vcpu->kvm->slots_lock);
3264 vapic_enter(vcpu);
3265
3266 r = 1;
3267 while (r > 0) {
3268 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
3269 r = vcpu_enter_guest(vcpu, kvm_run);
3270 else {
3271 up_read(&vcpu->kvm->slots_lock);
3272 kvm_vcpu_block(vcpu);
3273 down_read(&vcpu->kvm->slots_lock);
3274 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
3275 {
3276 switch(vcpu->arch.mp_state) {
3277 case KVM_MP_STATE_HALTED:
3278 vcpu->arch.mp_state =
3279 KVM_MP_STATE_RUNNABLE;
3280 case KVM_MP_STATE_RUNNABLE:
3281 break;
3282 case KVM_MP_STATE_SIPI_RECEIVED:
3283 default:
3284 r = -EINTR;
3285 break;
3286 }
3287 }
3288 }
3289
3290 if (r <= 0)
3291 break;
3292
3293 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
3294 if (kvm_cpu_has_pending_timer(vcpu))
3295 kvm_inject_pending_timer_irqs(vcpu);
3296
3297 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
3298 r = -EINTR;
3299 kvm_run->exit_reason = KVM_EXIT_INTR;
3300 ++vcpu->stat.request_irq_exits;
3301 }
3302 if (signal_pending(current)) {
3303 r = -EINTR;
3304 kvm_run->exit_reason = KVM_EXIT_INTR;
3305 ++vcpu->stat.signal_exits;
3306 }
3307 if (need_resched()) {
3308 up_read(&vcpu->kvm->slots_lock);
3309 kvm_resched(vcpu);
3310 down_read(&vcpu->kvm->slots_lock);
3311 }
3312 }
3313
3314 up_read(&vcpu->kvm->slots_lock);
3315 post_kvm_run_save(vcpu, kvm_run);
3316
3317 vapic_exit(vcpu);
3318
3319 return r;
3320 }
3321
3322 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3323 {
3324 int r;
3325 sigset_t sigsaved;
3326
3327 vcpu_load(vcpu);
3328
3329 if (vcpu->sigset_active)
3330 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
3331
3332 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
3333 kvm_vcpu_block(vcpu);
3334 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
3335 r = -EAGAIN;
3336 goto out;
3337 }
3338
3339 /* re-sync apic's tpr */
3340 if (!irqchip_in_kernel(vcpu->kvm))
3341 kvm_set_cr8(vcpu, kvm_run->cr8);
3342
3343 if (vcpu->arch.pio.cur_count) {
3344 r = complete_pio(vcpu);
3345 if (r)
3346 goto out;
3347 }
3348 #if CONFIG_HAS_IOMEM
3349 if (vcpu->mmio_needed) {
3350 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
3351 vcpu->mmio_read_completed = 1;
3352 vcpu->mmio_needed = 0;
3353
3354 down_read(&vcpu->kvm->slots_lock);
3355 r = emulate_instruction(vcpu, kvm_run,
3356 vcpu->arch.mmio_fault_cr2, 0,
3357 EMULTYPE_NO_DECODE);
3358 up_read(&vcpu->kvm->slots_lock);
3359 if (r == EMULATE_DO_MMIO) {
3360 /*
3361 * Read-modify-write. Back to userspace.
3362 */
3363 r = 0;
3364 goto out;
3365 }
3366 }
3367 #endif
3368 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
3369 kvm_register_write(vcpu, VCPU_REGS_RAX,
3370 kvm_run->hypercall.ret);
3371
3372 r = __vcpu_run(vcpu, kvm_run);
3373
3374 out:
3375 if (vcpu->sigset_active)
3376 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
3377
3378 vcpu_put(vcpu);
3379 return r;
3380 }
3381
3382 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3383 {
3384 vcpu_load(vcpu);
3385
3386 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3387 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3388 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3389 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3390 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3391 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3392 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3393 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3394 #ifdef CONFIG_X86_64
3395 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
3396 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
3397 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
3398 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
3399 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
3400 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
3401 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
3402 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
3403 #endif
3404
3405 regs->rip = kvm_rip_read(vcpu);
3406 regs->rflags = kvm_x86_ops->get_rflags(vcpu);
3407
3408 /*
3409 * Don't leak debug flags in case they were set for guest debugging
3410 */
3411 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3412 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
3413
3414 vcpu_put(vcpu);
3415
3416 return 0;
3417 }
3418
3419 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3420 {
3421 vcpu_load(vcpu);
3422
3423 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
3424 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
3425 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
3426 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
3427 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
3428 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
3429 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
3430 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
3431 #ifdef CONFIG_X86_64
3432 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
3433 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
3434 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
3435 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
3436 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
3437 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
3438 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
3439 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
3440
3441 #endif
3442
3443 kvm_rip_write(vcpu, regs->rip);
3444 kvm_x86_ops->set_rflags(vcpu, regs->rflags);
3445
3446
3447 vcpu->arch.exception.pending = false;
3448
3449 vcpu_put(vcpu);
3450
3451 return 0;
3452 }
3453
3454 void kvm_get_segment(struct kvm_vcpu *vcpu,
3455 struct kvm_segment *var, int seg)
3456 {
3457 kvm_x86_ops->get_segment(vcpu, var, seg);
3458 }
3459
3460 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3461 {
3462 struct kvm_segment cs;
3463
3464 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3465 *db = cs.db;
3466 *l = cs.l;
3467 }
3468 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3469
3470 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3471 struct kvm_sregs *sregs)
3472 {
3473 struct descriptor_table dt;
3474 int pending_vec;
3475
3476 vcpu_load(vcpu);
3477
3478 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3479 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3480 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3481 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3482 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3483 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3484
3485 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3486 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3487
3488 kvm_x86_ops->get_idt(vcpu, &dt);
3489 sregs->idt.limit = dt.limit;
3490 sregs->idt.base = dt.base;
3491 kvm_x86_ops->get_gdt(vcpu, &dt);
3492 sregs->gdt.limit = dt.limit;
3493 sregs->gdt.base = dt.base;
3494
3495 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3496 sregs->cr0 = vcpu->arch.cr0;
3497 sregs->cr2 = vcpu->arch.cr2;
3498 sregs->cr3 = vcpu->arch.cr3;
3499 sregs->cr4 = vcpu->arch.cr4;
3500 sregs->cr8 = kvm_get_cr8(vcpu);
3501 sregs->efer = vcpu->arch.shadow_efer;
3502 sregs->apic_base = kvm_get_apic_base(vcpu);
3503
3504 if (irqchip_in_kernel(vcpu->kvm)) {
3505 memset(sregs->interrupt_bitmap, 0,
3506 sizeof sregs->interrupt_bitmap);
3507 pending_vec = kvm_x86_ops->get_irq(vcpu);
3508 if (pending_vec >= 0)
3509 set_bit(pending_vec,
3510 (unsigned long *)sregs->interrupt_bitmap);
3511 } else
3512 memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
3513 sizeof sregs->interrupt_bitmap);
3514
3515 vcpu_put(vcpu);
3516
3517 return 0;
3518 }
3519
3520 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3521 struct kvm_mp_state *mp_state)
3522 {
3523 vcpu_load(vcpu);
3524 mp_state->mp_state = vcpu->arch.mp_state;
3525 vcpu_put(vcpu);
3526 return 0;
3527 }
3528
3529 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3530 struct kvm_mp_state *mp_state)
3531 {
3532 vcpu_load(vcpu);
3533 vcpu->arch.mp_state = mp_state->mp_state;
3534 vcpu_put(vcpu);
3535 return 0;
3536 }
3537
3538 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3539 struct kvm_segment *var, int seg)
3540 {
3541 kvm_x86_ops->set_segment(vcpu, var, seg);
3542 }
3543
3544 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
3545 struct kvm_segment *kvm_desct)
3546 {
3547 kvm_desct->base = seg_desc->base0;
3548 kvm_desct->base |= seg_desc->base1 << 16;
3549 kvm_desct->base |= seg_desc->base2 << 24;
3550 kvm_desct->limit = seg_desc->limit0;
3551 kvm_desct->limit |= seg_desc->limit << 16;
3552 if (seg_desc->g) {
3553 kvm_desct->limit <<= 12;
3554 kvm_desct->limit |= 0xfff;
3555 }
3556 kvm_desct->selector = selector;
3557 kvm_desct->type = seg_desc->type;
3558 kvm_desct->present = seg_desc->p;
3559 kvm_desct->dpl = seg_desc->dpl;
3560 kvm_desct->db = seg_desc->d;
3561 kvm_desct->s = seg_desc->s;
3562 kvm_desct->l = seg_desc->l;
3563 kvm_desct->g = seg_desc->g;
3564 kvm_desct->avl = seg_desc->avl;
3565 if (!selector)
3566 kvm_desct->unusable = 1;
3567 else
3568 kvm_desct->unusable = 0;
3569 kvm_desct->padding = 0;
3570 }
3571
3572 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
3573 u16 selector,
3574 struct descriptor_table *dtable)
3575 {
3576 if (selector & 1 << 2) {
3577 struct kvm_segment kvm_seg;
3578
3579 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
3580
3581 if (kvm_seg.unusable)
3582 dtable->limit = 0;
3583 else
3584 dtable->limit = kvm_seg.limit;
3585 dtable->base = kvm_seg.base;
3586 }
3587 else
3588 kvm_x86_ops->get_gdt(vcpu, dtable);
3589 }
3590
3591 /* allowed just for 8 bytes segments */
3592 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3593 struct desc_struct *seg_desc)
3594 {
3595 gpa_t gpa;
3596 struct descriptor_table dtable;
3597 u16 index = selector >> 3;
3598
3599 get_segment_descriptor_dtable(vcpu, selector, &dtable);
3600
3601 if (dtable.limit < index * 8 + 7) {
3602 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
3603 return 1;
3604 }
3605 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3606 gpa += index * 8;
3607 return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
3608 }
3609
3610 /* allowed just for 8 bytes segments */
3611 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3612 struct desc_struct *seg_desc)
3613 {
3614 gpa_t gpa;
3615 struct descriptor_table dtable;
3616 u16 index = selector >> 3;
3617
3618 get_segment_descriptor_dtable(vcpu, selector, &dtable);
3619
3620 if (dtable.limit < index * 8 + 7)
3621 return 1;
3622 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3623 gpa += index * 8;
3624 return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
3625 }
3626
3627 static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
3628 struct desc_struct *seg_desc)
3629 {
3630 u32 base_addr;
3631
3632 base_addr = seg_desc->base0;
3633 base_addr |= (seg_desc->base1 << 16);
3634 base_addr |= (seg_desc->base2 << 24);
3635
3636 return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
3637 }
3638
3639 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
3640 {
3641 struct kvm_segment kvm_seg;
3642
3643 kvm_get_segment(vcpu, &kvm_seg, seg);
3644 return kvm_seg.selector;
3645 }
3646
3647 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
3648 u16 selector,
3649 struct kvm_segment *kvm_seg)
3650 {
3651 struct desc_struct seg_desc;
3652
3653 if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
3654 return 1;
3655 seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
3656 return 0;
3657 }
3658
3659 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
3660 {
3661 struct kvm_segment segvar = {
3662 .base = selector << 4,
3663 .limit = 0xffff,
3664 .selector = selector,
3665 .type = 3,
3666 .present = 1,
3667 .dpl = 3,
3668 .db = 0,
3669 .s = 1,
3670 .l = 0,
3671 .g = 0,
3672 .avl = 0,
3673 .unusable = 0,
3674 };
3675 kvm_x86_ops->set_segment(vcpu, &segvar, seg);
3676 return 0;
3677 }
3678
3679 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3680 int type_bits, int seg)
3681 {
3682 struct kvm_segment kvm_seg;
3683
3684 if (!(vcpu->arch.cr0 & X86_CR0_PE))
3685 return kvm_load_realmode_segment(vcpu, selector, seg);
3686 if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
3687 return 1;
3688 kvm_seg.type |= type_bits;
3689
3690 if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
3691 seg != VCPU_SREG_LDTR)
3692 if (!kvm_seg.s)
3693 kvm_seg.unusable = 1;
3694
3695 kvm_set_segment(vcpu, &kvm_seg, seg);
3696 return 0;
3697 }
3698
3699 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
3700 struct tss_segment_32 *tss)
3701 {
3702 tss->cr3 = vcpu->arch.cr3;
3703 tss->eip = kvm_rip_read(vcpu);
3704 tss->eflags = kvm_x86_ops->get_rflags(vcpu);
3705 tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3706 tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3707 tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3708 tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3709 tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3710 tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3711 tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3712 tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3713 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3714 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3715 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3716 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3717 tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
3718 tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
3719 tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3720 }
3721
3722 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
3723 struct tss_segment_32 *tss)
3724 {
3725 kvm_set_cr3(vcpu, tss->cr3);
3726
3727 kvm_rip_write(vcpu, tss->eip);
3728 kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
3729
3730 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
3731 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
3732 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
3733 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
3734 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
3735 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
3736 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
3737 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
3738
3739 if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
3740 return 1;
3741
3742 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3743 return 1;
3744
3745 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3746 return 1;
3747
3748 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3749 return 1;
3750
3751 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3752 return 1;
3753
3754 if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
3755 return 1;
3756
3757 if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
3758 return 1;
3759 return 0;
3760 }
3761
3762 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
3763 struct tss_segment_16 *tss)
3764 {
3765 tss->ip = kvm_rip_read(vcpu);
3766 tss->flag = kvm_x86_ops->get_rflags(vcpu);
3767 tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3768 tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3769 tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3770 tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3771 tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3772 tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3773 tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
3774 tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
3775
3776 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3777 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3778 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3779 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3780 tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3781 tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3782 }
3783
3784 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
3785 struct tss_segment_16 *tss)
3786 {
3787 kvm_rip_write(vcpu, tss->ip);
3788 kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
3789 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
3790 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
3791 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
3792 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
3793 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
3794 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
3795 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
3796 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
3797
3798 if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
3799 return 1;
3800
3801 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3802 return 1;
3803
3804 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3805 return 1;
3806
3807 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3808 return 1;
3809
3810 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3811 return 1;
3812 return 0;
3813 }
3814
3815 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
3816 u16 old_tss_sel, u32 old_tss_base,
3817 struct desc_struct *nseg_desc)
3818 {
3819 struct tss_segment_16 tss_segment_16;
3820 int ret = 0;
3821
3822 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3823 sizeof tss_segment_16))
3824 goto out;
3825
3826 save_state_to_tss16(vcpu, &tss_segment_16);
3827
3828 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3829 sizeof tss_segment_16))
3830 goto out;
3831
3832 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3833 &tss_segment_16, sizeof tss_segment_16))
3834 goto out;
3835
3836 if (old_tss_sel != 0xffff) {
3837 tss_segment_16.prev_task_link = old_tss_sel;
3838
3839 if (kvm_write_guest(vcpu->kvm,
3840 get_tss_base_addr(vcpu, nseg_desc),
3841 &tss_segment_16.prev_task_link,
3842 sizeof tss_segment_16.prev_task_link))
3843 goto out;
3844 }
3845
3846 if (load_state_from_tss16(vcpu, &tss_segment_16))
3847 goto out;
3848
3849 ret = 1;
3850 out:
3851 return ret;
3852 }
3853
3854 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
3855 u16 old_tss_sel, u32 old_tss_base,
3856 struct desc_struct *nseg_desc)
3857 {
3858 struct tss_segment_32 tss_segment_32;
3859 int ret = 0;
3860
3861 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3862 sizeof tss_segment_32))
3863 goto out;
3864
3865 save_state_to_tss32(vcpu, &tss_segment_32);
3866
3867 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3868 sizeof tss_segment_32))
3869 goto out;
3870
3871 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3872 &tss_segment_32, sizeof tss_segment_32))
3873 goto out;
3874
3875 if (old_tss_sel != 0xffff) {
3876 tss_segment_32.prev_task_link = old_tss_sel;
3877
3878 if (kvm_write_guest(vcpu->kvm,
3879 get_tss_base_addr(vcpu, nseg_desc),
3880 &tss_segment_32.prev_task_link,
3881 sizeof tss_segment_32.prev_task_link))
3882 goto out;
3883 }
3884
3885 if (load_state_from_tss32(vcpu, &tss_segment_32))
3886 goto out;
3887
3888 ret = 1;
3889 out:
3890 return ret;
3891 }
3892
3893 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
3894 {
3895 struct kvm_segment tr_seg;
3896 struct desc_struct cseg_desc;
3897 struct desc_struct nseg_desc;
3898 int ret = 0;
3899 u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
3900 u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
3901
3902 old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
3903
3904 /* FIXME: Handle errors. Failure to read either TSS or their
3905 * descriptors should generate a pagefault.
3906 */
3907 if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
3908 goto out;
3909
3910 if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
3911 goto out;
3912
3913 if (reason != TASK_SWITCH_IRET) {
3914 int cpl;
3915
3916 cpl = kvm_x86_ops->get_cpl(vcpu);
3917 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
3918 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
3919 return 1;
3920 }
3921 }
3922
3923 if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
3924 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
3925 return 1;
3926 }
3927
3928 if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
3929 cseg_desc.type &= ~(1 << 1); //clear the B flag
3930 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
3931 }
3932
3933 if (reason == TASK_SWITCH_IRET) {
3934 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3935 kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
3936 }
3937
3938 kvm_x86_ops->skip_emulated_instruction(vcpu);
3939
3940 /* set back link to prev task only if NT bit is set in eflags
3941 note that old_tss_sel is not used afetr this point */
3942 if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
3943 old_tss_sel = 0xffff;
3944
3945 if (nseg_desc.type & 8)
3946 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
3947 old_tss_base, &nseg_desc);
3948 else
3949 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
3950 old_tss_base, &nseg_desc);
3951
3952 if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
3953 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3954 kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
3955 }
3956
3957 if (reason != TASK_SWITCH_IRET) {
3958 nseg_desc.type |= (1 << 1);
3959 save_guest_segment_descriptor(vcpu, tss_selector,
3960 &nseg_desc);
3961 }
3962
3963 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
3964 seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
3965 tr_seg.type = 11;
3966 kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
3967 out:
3968 return ret;
3969 }
3970 EXPORT_SYMBOL_GPL(kvm_task_switch);
3971
3972 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
3973 struct kvm_sregs *sregs)
3974 {
3975 int mmu_reset_needed = 0;
3976 int i, pending_vec, max_bits;
3977 struct descriptor_table dt;
3978
3979 vcpu_load(vcpu);
3980
3981 dt.limit = sregs->idt.limit;
3982 dt.base = sregs->idt.base;
3983 kvm_x86_ops->set_idt(vcpu, &dt);
3984 dt.limit = sregs->gdt.limit;
3985 dt.base = sregs->gdt.base;
3986 kvm_x86_ops->set_gdt(vcpu, &dt);
3987
3988 vcpu->arch.cr2 = sregs->cr2;
3989 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
3990 vcpu->arch.cr3 = sregs->cr3;
3991
3992 kvm_set_cr8(vcpu, sregs->cr8);
3993
3994 mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
3995 kvm_x86_ops->set_efer(vcpu, sregs->efer);
3996 kvm_set_apic_base(vcpu, sregs->apic_base);
3997
3998 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3999
4000 mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
4001 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
4002 vcpu->arch.cr0 = sregs->cr0;
4003
4004 mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
4005 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
4006 if (!is_long_mode(vcpu) && is_pae(vcpu))
4007 load_pdptrs(vcpu, vcpu->arch.cr3);
4008
4009 if (mmu_reset_needed)
4010 kvm_mmu_reset_context(vcpu);
4011
4012 if (!irqchip_in_kernel(vcpu->kvm)) {
4013 memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
4014 sizeof vcpu->arch.irq_pending);
4015 vcpu->arch.irq_summary = 0;
4016 for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
4017 if (vcpu->arch.irq_pending[i])
4018 __set_bit(i, &vcpu->arch.irq_summary);
4019 } else {
4020 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
4021 pending_vec = find_first_bit(
4022 (const unsigned long *)sregs->interrupt_bitmap,
4023 max_bits);
4024 /* Only pending external irq is handled here */
4025 if (pending_vec < max_bits) {
4026 kvm_x86_ops->set_irq(vcpu, pending_vec);
4027 pr_debug("Set back pending irq %d\n",
4028 pending_vec);
4029 }
4030 kvm_pic_clear_isr_ack(vcpu->kvm);
4031 }
4032
4033 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4034 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4035 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4036 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4037 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4038 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4039
4040 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4041 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4042
4043 /* Older userspace won't unhalt the vcpu on reset. */
4044 if (vcpu->vcpu_id == 0 && kvm_rip_read(vcpu) == 0xfff0 &&
4045 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
4046 !(vcpu->arch.cr0 & X86_CR0_PE))
4047 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4048
4049 vcpu_put(vcpu);
4050
4051 return 0;
4052 }
4053
4054 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
4055 struct kvm_guest_debug *dbg)
4056 {
4057 int i, r;
4058
4059 vcpu_load(vcpu);
4060
4061 if ((dbg->control & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) ==
4062 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) {
4063 for (i = 0; i < KVM_NR_DB_REGS; ++i)
4064 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
4065 vcpu->arch.switch_db_regs =
4066 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
4067 } else {
4068 for (i = 0; i < KVM_NR_DB_REGS; i++)
4069 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
4070 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
4071 }
4072
4073 r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
4074
4075 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
4076 kvm_queue_exception(vcpu, DB_VECTOR);
4077 else if (dbg->control & KVM_GUESTDBG_INJECT_BP)
4078 kvm_queue_exception(vcpu, BP_VECTOR);
4079
4080 vcpu_put(vcpu);
4081
4082 return r;
4083 }
4084
4085 /*
4086 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
4087 * we have asm/x86/processor.h
4088 */
4089 struct fxsave {
4090 u16 cwd;
4091 u16 swd;
4092 u16 twd;
4093 u16 fop;
4094 u64 rip;
4095 u64 rdp;
4096 u32 mxcsr;
4097 u32 mxcsr_mask;
4098 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
4099 #ifdef CONFIG_X86_64
4100 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
4101 #else
4102 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
4103 #endif
4104 };
4105
4106 /*
4107 * Translate a guest virtual address to a guest physical address.
4108 */
4109 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
4110 struct kvm_translation *tr)
4111 {
4112 unsigned long vaddr = tr->linear_address;
4113 gpa_t gpa;
4114
4115 vcpu_load(vcpu);
4116 down_read(&vcpu->kvm->slots_lock);
4117 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
4118 up_read(&vcpu->kvm->slots_lock);
4119 tr->physical_address = gpa;
4120 tr->valid = gpa != UNMAPPED_GVA;
4121 tr->writeable = 1;
4122 tr->usermode = 0;
4123 vcpu_put(vcpu);
4124
4125 return 0;
4126 }
4127
4128 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4129 {
4130 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4131
4132 vcpu_load(vcpu);
4133
4134 memcpy(fpu->fpr, fxsave->st_space, 128);
4135 fpu->fcw = fxsave->cwd;
4136 fpu->fsw = fxsave->swd;
4137 fpu->ftwx = fxsave->twd;
4138 fpu->last_opcode = fxsave->fop;
4139 fpu->last_ip = fxsave->rip;
4140 fpu->last_dp = fxsave->rdp;
4141 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
4142
4143 vcpu_put(vcpu);
4144
4145 return 0;
4146 }
4147
4148 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4149 {
4150 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4151
4152 vcpu_load(vcpu);
4153
4154 memcpy(fxsave->st_space, fpu->fpr, 128);
4155 fxsave->cwd = fpu->fcw;
4156 fxsave->swd = fpu->fsw;
4157 fxsave->twd = fpu->ftwx;
4158 fxsave->fop = fpu->last_opcode;
4159 fxsave->rip = fpu->last_ip;
4160 fxsave->rdp = fpu->last_dp;
4161 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
4162
4163 vcpu_put(vcpu);
4164
4165 return 0;
4166 }
4167
4168 void fx_init(struct kvm_vcpu *vcpu)
4169 {
4170 unsigned after_mxcsr_mask;
4171
4172 /*
4173 * Touch the fpu the first time in non atomic context as if
4174 * this is the first fpu instruction the exception handler
4175 * will fire before the instruction returns and it'll have to
4176 * allocate ram with GFP_KERNEL.
4177 */
4178 if (!used_math())
4179 kvm_fx_save(&vcpu->arch.host_fx_image);
4180
4181 /* Initialize guest FPU by resetting ours and saving into guest's */
4182 preempt_disable();
4183 kvm_fx_save(&vcpu->arch.host_fx_image);
4184 kvm_fx_finit();
4185 kvm_fx_save(&vcpu->arch.guest_fx_image);
4186 kvm_fx_restore(&vcpu->arch.host_fx_image);
4187 preempt_enable();
4188
4189 vcpu->arch.cr0 |= X86_CR0_ET;
4190 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
4191 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
4192 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
4193 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
4194 }
4195 EXPORT_SYMBOL_GPL(fx_init);
4196
4197 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
4198 {
4199 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
4200 return;
4201
4202 vcpu->guest_fpu_loaded = 1;
4203 kvm_fx_save(&vcpu->arch.host_fx_image);
4204 kvm_fx_restore(&vcpu->arch.guest_fx_image);
4205 }
4206 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
4207
4208 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
4209 {
4210 if (!vcpu->guest_fpu_loaded)
4211 return;
4212
4213 vcpu->guest_fpu_loaded = 0;
4214 kvm_fx_save(&vcpu->arch.guest_fx_image);
4215 kvm_fx_restore(&vcpu->arch.host_fx_image);
4216 ++vcpu->stat.fpu_reload;
4217 }
4218 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
4219
4220 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
4221 {
4222 if (vcpu->arch.time_page) {
4223 kvm_release_page_dirty(vcpu->arch.time_page);
4224 vcpu->arch.time_page = NULL;
4225 }
4226
4227 kvm_x86_ops->vcpu_free(vcpu);
4228 }
4229
4230 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
4231 unsigned int id)
4232 {
4233 return kvm_x86_ops->vcpu_create(kvm, id);
4234 }
4235
4236 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
4237 {
4238 int r;
4239
4240 /* We do fxsave: this must be aligned. */
4241 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
4242
4243 vcpu->arch.mtrr_state.have_fixed = 1;
4244 vcpu_load(vcpu);
4245 r = kvm_arch_vcpu_reset(vcpu);
4246 if (r == 0)
4247 r = kvm_mmu_setup(vcpu);
4248 vcpu_put(vcpu);
4249 if (r < 0)
4250 goto free_vcpu;
4251
4252 return 0;
4253 free_vcpu:
4254 kvm_x86_ops->vcpu_free(vcpu);
4255 return r;
4256 }
4257
4258 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
4259 {
4260 vcpu_load(vcpu);
4261 kvm_mmu_unload(vcpu);
4262 vcpu_put(vcpu);
4263
4264 kvm_x86_ops->vcpu_free(vcpu);
4265 }
4266
4267 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
4268 {
4269 vcpu->arch.nmi_pending = false;
4270 vcpu->arch.nmi_injected = false;
4271
4272 vcpu->arch.switch_db_regs = 0;
4273 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
4274 vcpu->arch.dr6 = DR6_FIXED_1;
4275 vcpu->arch.dr7 = DR7_FIXED_1;
4276
4277 return kvm_x86_ops->vcpu_reset(vcpu);
4278 }
4279
4280 void kvm_arch_hardware_enable(void *garbage)
4281 {
4282 kvm_x86_ops->hardware_enable(garbage);
4283 }
4284
4285 void kvm_arch_hardware_disable(void *garbage)
4286 {
4287 kvm_x86_ops->hardware_disable(garbage);
4288 }
4289
4290 int kvm_arch_hardware_setup(void)
4291 {
4292 return kvm_x86_ops->hardware_setup();
4293 }
4294
4295 void kvm_arch_hardware_unsetup(void)
4296 {
4297 kvm_x86_ops->hardware_unsetup();
4298 }
4299
4300 void kvm_arch_check_processor_compat(void *rtn)
4301 {
4302 kvm_x86_ops->check_processor_compatibility(rtn);
4303 }
4304
4305 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
4306 {
4307 struct page *page;
4308 struct kvm *kvm;
4309 int r;
4310
4311 BUG_ON(vcpu->kvm == NULL);
4312 kvm = vcpu->kvm;
4313
4314 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4315 if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
4316 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4317 else
4318 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
4319
4320 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
4321 if (!page) {
4322 r = -ENOMEM;
4323 goto fail;
4324 }
4325 vcpu->arch.pio_data = page_address(page);
4326
4327 r = kvm_mmu_create(vcpu);
4328 if (r < 0)
4329 goto fail_free_pio_data;
4330
4331 if (irqchip_in_kernel(kvm)) {
4332 r = kvm_create_lapic(vcpu);
4333 if (r < 0)
4334 goto fail_mmu_destroy;
4335 }
4336
4337 return 0;
4338
4339 fail_mmu_destroy:
4340 kvm_mmu_destroy(vcpu);
4341 fail_free_pio_data:
4342 free_page((unsigned long)vcpu->arch.pio_data);
4343 fail:
4344 return r;
4345 }
4346
4347 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
4348 {
4349 kvm_free_lapic(vcpu);
4350 down_read(&vcpu->kvm->slots_lock);
4351 kvm_mmu_destroy(vcpu);
4352 up_read(&vcpu->kvm->slots_lock);
4353 free_page((unsigned long)vcpu->arch.pio_data);
4354 }
4355
4356 struct kvm *kvm_arch_create_vm(void)
4357 {
4358 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
4359
4360 if (!kvm)
4361 return ERR_PTR(-ENOMEM);
4362
4363 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
4364 INIT_LIST_HEAD(&kvm->arch.oos_global_pages);
4365 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
4366
4367 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
4368 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
4369
4370 rdtscll(kvm->arch.vm_init_tsc);
4371
4372 return kvm;
4373 }
4374
4375 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
4376 {
4377 vcpu_load(vcpu);
4378 kvm_mmu_unload(vcpu);
4379 vcpu_put(vcpu);
4380 }
4381
4382 static void kvm_free_vcpus(struct kvm *kvm)
4383 {
4384 unsigned int i;
4385
4386 /*
4387 * Unpin any mmu pages first.
4388 */
4389 for (i = 0; i < KVM_MAX_VCPUS; ++i)
4390 if (kvm->vcpus[i])
4391 kvm_unload_vcpu_mmu(kvm->vcpus[i]);
4392 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
4393 if (kvm->vcpus[i]) {
4394 kvm_arch_vcpu_free(kvm->vcpus[i]);
4395 kvm->vcpus[i] = NULL;
4396 }
4397 }
4398
4399 }
4400
4401 void kvm_arch_sync_events(struct kvm *kvm)
4402 {
4403 kvm_free_all_assigned_devices(kvm);
4404 }
4405
4406 void kvm_arch_destroy_vm(struct kvm *kvm)
4407 {
4408 kvm_iommu_unmap_guest(kvm);
4409 kvm_free_pit(kvm);
4410 kfree(kvm->arch.vpic);
4411 kfree(kvm->arch.vioapic);
4412 kvm_free_vcpus(kvm);
4413 kvm_free_physmem(kvm);
4414 if (kvm->arch.apic_access_page)
4415 put_page(kvm->arch.apic_access_page);
4416 if (kvm->arch.ept_identity_pagetable)
4417 put_page(kvm->arch.ept_identity_pagetable);
4418 kfree(kvm);
4419 }
4420
4421 int kvm_arch_set_memory_region(struct kvm *kvm,
4422 struct kvm_userspace_memory_region *mem,
4423 struct kvm_memory_slot old,
4424 int user_alloc)
4425 {
4426 int npages = mem->memory_size >> PAGE_SHIFT;
4427 struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
4428
4429 /*To keep backward compatibility with older userspace,
4430 *x86 needs to hanlde !user_alloc case.
4431 */
4432 if (!user_alloc) {
4433 if (npages && !old.rmap) {
4434 unsigned long userspace_addr;
4435
4436 down_write(&current->mm->mmap_sem);
4437 userspace_addr = do_mmap(NULL, 0,
4438 npages * PAGE_SIZE,
4439 PROT_READ | PROT_WRITE,
4440 MAP_PRIVATE | MAP_ANONYMOUS,
4441 0);
4442 up_write(&current->mm->mmap_sem);
4443
4444 if (IS_ERR((void *)userspace_addr))
4445 return PTR_ERR((void *)userspace_addr);
4446
4447 /* set userspace_addr atomically for kvm_hva_to_rmapp */
4448 spin_lock(&kvm->mmu_lock);
4449 memslot->userspace_addr = userspace_addr;
4450 spin_unlock(&kvm->mmu_lock);
4451 } else {
4452 if (!old.user_alloc && old.rmap) {
4453 int ret;
4454
4455 down_write(&current->mm->mmap_sem);
4456 ret = do_munmap(current->mm, old.userspace_addr,
4457 old.npages * PAGE_SIZE);
4458 up_write(&current->mm->mmap_sem);
4459 if (ret < 0)
4460 printk(KERN_WARNING
4461 "kvm_vm_ioctl_set_memory_region: "
4462 "failed to munmap memory\n");
4463 }
4464 }
4465 }
4466
4467 if (!kvm->arch.n_requested_mmu_pages) {
4468 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
4469 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
4470 }
4471
4472 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
4473 kvm_flush_remote_tlbs(kvm);
4474
4475 return 0;
4476 }
4477
4478 void kvm_arch_flush_shadow(struct kvm *kvm)
4479 {
4480 kvm_mmu_zap_all(kvm);
4481 }
4482
4483 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
4484 {
4485 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
4486 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
4487 || vcpu->arch.nmi_pending;
4488 }
4489
4490 static void vcpu_kick_intr(void *info)
4491 {
4492 #ifdef DEBUG
4493 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
4494 printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
4495 #endif
4496 }
4497
4498 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
4499 {
4500 int ipi_pcpu = vcpu->cpu;
4501 int cpu = get_cpu();
4502
4503 if (waitqueue_active(&vcpu->wq)) {
4504 wake_up_interruptible(&vcpu->wq);
4505 ++vcpu->stat.halt_wakeup;
4506 }
4507 /*
4508 * We may be called synchronously with irqs disabled in guest mode,
4509 * So need not to call smp_call_function_single() in that case.
4510 */
4511 if (vcpu->guest_mode && vcpu->cpu != cpu)
4512 smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
4513 put_cpu();
4514 }
4515
4516 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
4517 {
4518 return kvm_x86_ops->interrupt_allowed(vcpu);
4519 }
This page took 0.127819 seconds and 6 git commands to generate.