Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph...
[deliverable/linux.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <trace/events/kvm.h>
52
53 #define CREATE_TRACE_POINTS
54 #include "trace.h"
55
56 #include <asm/debugreg.h>
57 #include <asm/msr.h>
58 #include <asm/desc.h>
59 #include <asm/mtrr.h>
60 #include <asm/mce.h>
61 #include <asm/i387.h>
62 #include <asm/fpu-internal.h> /* Ugh! */
63 #include <asm/xcr.h>
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
66
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
70
71 #define emul_to_vcpu(ctxt) \
72 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
73
74 /* EFER defaults:
75 * - enable syscall per default because its emulated by KVM
76 * - enable LME and LMA per default on 64 bit KVM
77 */
78 #ifdef CONFIG_X86_64
79 static
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
81 #else
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #endif
84
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
87
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
90
91 struct kvm_x86_ops *kvm_x86_ops;
92 EXPORT_SYMBOL_GPL(kvm_x86_ops);
93
94 static bool ignore_msrs = 0;
95 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
96
97 unsigned int min_timer_period_us = 500;
98 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
99
100 bool kvm_has_tsc_control;
101 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
102 u32 kvm_max_guest_tsc_khz;
103 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
104
105 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
106 static u32 tsc_tolerance_ppm = 250;
107 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
108
109 #define KVM_NR_SHARED_MSRS 16
110
111 struct kvm_shared_msrs_global {
112 int nr;
113 u32 msrs[KVM_NR_SHARED_MSRS];
114 };
115
116 struct kvm_shared_msrs {
117 struct user_return_notifier urn;
118 bool registered;
119 struct kvm_shared_msr_values {
120 u64 host;
121 u64 curr;
122 } values[KVM_NR_SHARED_MSRS];
123 };
124
125 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
126 static struct kvm_shared_msrs __percpu *shared_msrs;
127
128 struct kvm_stats_debugfs_item debugfs_entries[] = {
129 { "pf_fixed", VCPU_STAT(pf_fixed) },
130 { "pf_guest", VCPU_STAT(pf_guest) },
131 { "tlb_flush", VCPU_STAT(tlb_flush) },
132 { "invlpg", VCPU_STAT(invlpg) },
133 { "exits", VCPU_STAT(exits) },
134 { "io_exits", VCPU_STAT(io_exits) },
135 { "mmio_exits", VCPU_STAT(mmio_exits) },
136 { "signal_exits", VCPU_STAT(signal_exits) },
137 { "irq_window", VCPU_STAT(irq_window_exits) },
138 { "nmi_window", VCPU_STAT(nmi_window_exits) },
139 { "halt_exits", VCPU_STAT(halt_exits) },
140 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
141 { "hypercalls", VCPU_STAT(hypercalls) },
142 { "request_irq", VCPU_STAT(request_irq_exits) },
143 { "irq_exits", VCPU_STAT(irq_exits) },
144 { "host_state_reload", VCPU_STAT(host_state_reload) },
145 { "efer_reload", VCPU_STAT(efer_reload) },
146 { "fpu_reload", VCPU_STAT(fpu_reload) },
147 { "insn_emulation", VCPU_STAT(insn_emulation) },
148 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
149 { "irq_injections", VCPU_STAT(irq_injections) },
150 { "nmi_injections", VCPU_STAT(nmi_injections) },
151 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
152 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
153 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
154 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
155 { "mmu_flooded", VM_STAT(mmu_flooded) },
156 { "mmu_recycled", VM_STAT(mmu_recycled) },
157 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
158 { "mmu_unsync", VM_STAT(mmu_unsync) },
159 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
160 { "largepages", VM_STAT(lpages) },
161 { NULL }
162 };
163
164 u64 __read_mostly host_xcr0;
165
166 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
167
168 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
169 {
170 int i;
171 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
172 vcpu->arch.apf.gfns[i] = ~0;
173 }
174
175 static void kvm_on_user_return(struct user_return_notifier *urn)
176 {
177 unsigned slot;
178 struct kvm_shared_msrs *locals
179 = container_of(urn, struct kvm_shared_msrs, urn);
180 struct kvm_shared_msr_values *values;
181
182 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
183 values = &locals->values[slot];
184 if (values->host != values->curr) {
185 wrmsrl(shared_msrs_global.msrs[slot], values->host);
186 values->curr = values->host;
187 }
188 }
189 locals->registered = false;
190 user_return_notifier_unregister(urn);
191 }
192
193 static void shared_msr_update(unsigned slot, u32 msr)
194 {
195 u64 value;
196 unsigned int cpu = smp_processor_id();
197 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
198
199 /* only read, and nobody should modify it at this time,
200 * so don't need lock */
201 if (slot >= shared_msrs_global.nr) {
202 printk(KERN_ERR "kvm: invalid MSR slot!");
203 return;
204 }
205 rdmsrl_safe(msr, &value);
206 smsr->values[slot].host = value;
207 smsr->values[slot].curr = value;
208 }
209
210 void kvm_define_shared_msr(unsigned slot, u32 msr)
211 {
212 if (slot >= shared_msrs_global.nr)
213 shared_msrs_global.nr = slot + 1;
214 shared_msrs_global.msrs[slot] = msr;
215 /* we need ensured the shared_msr_global have been updated */
216 smp_wmb();
217 }
218 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
219
220 static void kvm_shared_msr_cpu_online(void)
221 {
222 unsigned i;
223
224 for (i = 0; i < shared_msrs_global.nr; ++i)
225 shared_msr_update(i, shared_msrs_global.msrs[i]);
226 }
227
228 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
229 {
230 unsigned int cpu = smp_processor_id();
231 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
232
233 if (((value ^ smsr->values[slot].curr) & mask) == 0)
234 return;
235 smsr->values[slot].curr = value;
236 wrmsrl(shared_msrs_global.msrs[slot], value);
237 if (!smsr->registered) {
238 smsr->urn.on_user_return = kvm_on_user_return;
239 user_return_notifier_register(&smsr->urn);
240 smsr->registered = true;
241 }
242 }
243 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
244
245 static void drop_user_return_notifiers(void *ignore)
246 {
247 unsigned int cpu = smp_processor_id();
248 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
249
250 if (smsr->registered)
251 kvm_on_user_return(&smsr->urn);
252 }
253
254 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
255 {
256 return vcpu->arch.apic_base;
257 }
258 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
259
260 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
261 {
262 /* TODO: reserve bits check */
263 kvm_lapic_set_base(vcpu, data);
264 }
265 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
266
267 asmlinkage void kvm_spurious_fault(void)
268 {
269 /* Fault while not rebooting. We want the trace. */
270 BUG();
271 }
272 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
273
274 #define EXCPT_BENIGN 0
275 #define EXCPT_CONTRIBUTORY 1
276 #define EXCPT_PF 2
277
278 static int exception_class(int vector)
279 {
280 switch (vector) {
281 case PF_VECTOR:
282 return EXCPT_PF;
283 case DE_VECTOR:
284 case TS_VECTOR:
285 case NP_VECTOR:
286 case SS_VECTOR:
287 case GP_VECTOR:
288 return EXCPT_CONTRIBUTORY;
289 default:
290 break;
291 }
292 return EXCPT_BENIGN;
293 }
294
295 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
296 unsigned nr, bool has_error, u32 error_code,
297 bool reinject)
298 {
299 u32 prev_nr;
300 int class1, class2;
301
302 kvm_make_request(KVM_REQ_EVENT, vcpu);
303
304 if (!vcpu->arch.exception.pending) {
305 queue:
306 vcpu->arch.exception.pending = true;
307 vcpu->arch.exception.has_error_code = has_error;
308 vcpu->arch.exception.nr = nr;
309 vcpu->arch.exception.error_code = error_code;
310 vcpu->arch.exception.reinject = reinject;
311 return;
312 }
313
314 /* to check exception */
315 prev_nr = vcpu->arch.exception.nr;
316 if (prev_nr == DF_VECTOR) {
317 /* triple fault -> shutdown */
318 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
319 return;
320 }
321 class1 = exception_class(prev_nr);
322 class2 = exception_class(nr);
323 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
324 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
325 /* generate double fault per SDM Table 5-5 */
326 vcpu->arch.exception.pending = true;
327 vcpu->arch.exception.has_error_code = true;
328 vcpu->arch.exception.nr = DF_VECTOR;
329 vcpu->arch.exception.error_code = 0;
330 } else
331 /* replace previous exception with a new one in a hope
332 that instruction re-execution will regenerate lost
333 exception */
334 goto queue;
335 }
336
337 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
338 {
339 kvm_multiple_exception(vcpu, nr, false, 0, false);
340 }
341 EXPORT_SYMBOL_GPL(kvm_queue_exception);
342
343 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
344 {
345 kvm_multiple_exception(vcpu, nr, false, 0, true);
346 }
347 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
348
349 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
350 {
351 if (err)
352 kvm_inject_gp(vcpu, 0);
353 else
354 kvm_x86_ops->skip_emulated_instruction(vcpu);
355 }
356 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
357
358 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
359 {
360 ++vcpu->stat.pf_guest;
361 vcpu->arch.cr2 = fault->address;
362 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
363 }
364 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
365
366 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
367 {
368 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
369 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
370 else
371 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
372 }
373
374 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
375 {
376 atomic_inc(&vcpu->arch.nmi_queued);
377 kvm_make_request(KVM_REQ_NMI, vcpu);
378 }
379 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
380
381 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
382 {
383 kvm_multiple_exception(vcpu, nr, true, error_code, false);
384 }
385 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
386
387 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
388 {
389 kvm_multiple_exception(vcpu, nr, true, error_code, true);
390 }
391 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
392
393 /*
394 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
395 * a #GP and return false.
396 */
397 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
398 {
399 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
400 return true;
401 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
402 return false;
403 }
404 EXPORT_SYMBOL_GPL(kvm_require_cpl);
405
406 /*
407 * This function will be used to read from the physical memory of the currently
408 * running guest. The difference to kvm_read_guest_page is that this function
409 * can read from guest physical or from the guest's guest physical memory.
410 */
411 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
412 gfn_t ngfn, void *data, int offset, int len,
413 u32 access)
414 {
415 gfn_t real_gfn;
416 gpa_t ngpa;
417
418 ngpa = gfn_to_gpa(ngfn);
419 real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
420 if (real_gfn == UNMAPPED_GVA)
421 return -EFAULT;
422
423 real_gfn = gpa_to_gfn(real_gfn);
424
425 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
426 }
427 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
428
429 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
430 void *data, int offset, int len, u32 access)
431 {
432 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
433 data, offset, len, access);
434 }
435
436 /*
437 * Load the pae pdptrs. Return true is they are all valid.
438 */
439 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
440 {
441 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
442 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
443 int i;
444 int ret;
445 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
446
447 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
448 offset * sizeof(u64), sizeof(pdpte),
449 PFERR_USER_MASK|PFERR_WRITE_MASK);
450 if (ret < 0) {
451 ret = 0;
452 goto out;
453 }
454 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
455 if (is_present_gpte(pdpte[i]) &&
456 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
457 ret = 0;
458 goto out;
459 }
460 }
461 ret = 1;
462
463 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
464 __set_bit(VCPU_EXREG_PDPTR,
465 (unsigned long *)&vcpu->arch.regs_avail);
466 __set_bit(VCPU_EXREG_PDPTR,
467 (unsigned long *)&vcpu->arch.regs_dirty);
468 out:
469
470 return ret;
471 }
472 EXPORT_SYMBOL_GPL(load_pdptrs);
473
474 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
475 {
476 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
477 bool changed = true;
478 int offset;
479 gfn_t gfn;
480 int r;
481
482 if (is_long_mode(vcpu) || !is_pae(vcpu))
483 return false;
484
485 if (!test_bit(VCPU_EXREG_PDPTR,
486 (unsigned long *)&vcpu->arch.regs_avail))
487 return true;
488
489 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
490 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
491 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
492 PFERR_USER_MASK | PFERR_WRITE_MASK);
493 if (r < 0)
494 goto out;
495 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
496 out:
497
498 return changed;
499 }
500
501 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
502 {
503 unsigned long old_cr0 = kvm_read_cr0(vcpu);
504 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
505 X86_CR0_CD | X86_CR0_NW;
506
507 cr0 |= X86_CR0_ET;
508
509 #ifdef CONFIG_X86_64
510 if (cr0 & 0xffffffff00000000UL)
511 return 1;
512 #endif
513
514 cr0 &= ~CR0_RESERVED_BITS;
515
516 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
517 return 1;
518
519 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
520 return 1;
521
522 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
523 #ifdef CONFIG_X86_64
524 if ((vcpu->arch.efer & EFER_LME)) {
525 int cs_db, cs_l;
526
527 if (!is_pae(vcpu))
528 return 1;
529 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
530 if (cs_l)
531 return 1;
532 } else
533 #endif
534 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
535 kvm_read_cr3(vcpu)))
536 return 1;
537 }
538
539 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
540 return 1;
541
542 kvm_x86_ops->set_cr0(vcpu, cr0);
543
544 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
545 kvm_clear_async_pf_completion_queue(vcpu);
546 kvm_async_pf_hash_reset(vcpu);
547 }
548
549 if ((cr0 ^ old_cr0) & update_bits)
550 kvm_mmu_reset_context(vcpu);
551 return 0;
552 }
553 EXPORT_SYMBOL_GPL(kvm_set_cr0);
554
555 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
556 {
557 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
558 }
559 EXPORT_SYMBOL_GPL(kvm_lmsw);
560
561 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
562 {
563 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
564 !vcpu->guest_xcr0_loaded) {
565 /* kvm_set_xcr() also depends on this */
566 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
567 vcpu->guest_xcr0_loaded = 1;
568 }
569 }
570
571 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
572 {
573 if (vcpu->guest_xcr0_loaded) {
574 if (vcpu->arch.xcr0 != host_xcr0)
575 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
576 vcpu->guest_xcr0_loaded = 0;
577 }
578 }
579
580 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
581 {
582 u64 xcr0;
583 u64 valid_bits;
584
585 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
586 if (index != XCR_XFEATURE_ENABLED_MASK)
587 return 1;
588 xcr0 = xcr;
589 if (!(xcr0 & XSTATE_FP))
590 return 1;
591 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
592 return 1;
593
594 /*
595 * Do not allow the guest to set bits that we do not support
596 * saving. However, xcr0 bit 0 is always set, even if the
597 * emulated CPU does not support XSAVE (see fx_init).
598 */
599 valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
600 if (xcr0 & ~valid_bits)
601 return 1;
602
603 kvm_put_guest_xcr0(vcpu);
604 vcpu->arch.xcr0 = xcr0;
605 return 0;
606 }
607
608 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
609 {
610 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
611 __kvm_set_xcr(vcpu, index, xcr)) {
612 kvm_inject_gp(vcpu, 0);
613 return 1;
614 }
615 return 0;
616 }
617 EXPORT_SYMBOL_GPL(kvm_set_xcr);
618
619 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
620 {
621 unsigned long old_cr4 = kvm_read_cr4(vcpu);
622 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
623 X86_CR4_PAE | X86_CR4_SMEP;
624 if (cr4 & CR4_RESERVED_BITS)
625 return 1;
626
627 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
628 return 1;
629
630 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
631 return 1;
632
633 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
634 return 1;
635
636 if (is_long_mode(vcpu)) {
637 if (!(cr4 & X86_CR4_PAE))
638 return 1;
639 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
640 && ((cr4 ^ old_cr4) & pdptr_bits)
641 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
642 kvm_read_cr3(vcpu)))
643 return 1;
644
645 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
646 if (!guest_cpuid_has_pcid(vcpu))
647 return 1;
648
649 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
650 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
651 return 1;
652 }
653
654 if (kvm_x86_ops->set_cr4(vcpu, cr4))
655 return 1;
656
657 if (((cr4 ^ old_cr4) & pdptr_bits) ||
658 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
659 kvm_mmu_reset_context(vcpu);
660
661 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
662 kvm_update_cpuid(vcpu);
663
664 return 0;
665 }
666 EXPORT_SYMBOL_GPL(kvm_set_cr4);
667
668 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
669 {
670 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
671 kvm_mmu_sync_roots(vcpu);
672 kvm_mmu_flush_tlb(vcpu);
673 return 0;
674 }
675
676 if (is_long_mode(vcpu)) {
677 if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) {
678 if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
679 return 1;
680 } else
681 if (cr3 & CR3_L_MODE_RESERVED_BITS)
682 return 1;
683 } else {
684 if (is_pae(vcpu)) {
685 if (cr3 & CR3_PAE_RESERVED_BITS)
686 return 1;
687 if (is_paging(vcpu) &&
688 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
689 return 1;
690 }
691 /*
692 * We don't check reserved bits in nonpae mode, because
693 * this isn't enforced, and VMware depends on this.
694 */
695 }
696
697 vcpu->arch.cr3 = cr3;
698 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
699 kvm_mmu_new_cr3(vcpu);
700 return 0;
701 }
702 EXPORT_SYMBOL_GPL(kvm_set_cr3);
703
704 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
705 {
706 if (cr8 & CR8_RESERVED_BITS)
707 return 1;
708 if (irqchip_in_kernel(vcpu->kvm))
709 kvm_lapic_set_tpr(vcpu, cr8);
710 else
711 vcpu->arch.cr8 = cr8;
712 return 0;
713 }
714 EXPORT_SYMBOL_GPL(kvm_set_cr8);
715
716 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
717 {
718 if (irqchip_in_kernel(vcpu->kvm))
719 return kvm_lapic_get_cr8(vcpu);
720 else
721 return vcpu->arch.cr8;
722 }
723 EXPORT_SYMBOL_GPL(kvm_get_cr8);
724
725 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
726 {
727 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
728 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
729 }
730
731 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
732 {
733 unsigned long dr7;
734
735 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
736 dr7 = vcpu->arch.guest_debug_dr7;
737 else
738 dr7 = vcpu->arch.dr7;
739 kvm_x86_ops->set_dr7(vcpu, dr7);
740 vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK);
741 }
742
743 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
744 {
745 switch (dr) {
746 case 0 ... 3:
747 vcpu->arch.db[dr] = val;
748 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
749 vcpu->arch.eff_db[dr] = val;
750 break;
751 case 4:
752 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
753 return 1; /* #UD */
754 /* fall through */
755 case 6:
756 if (val & 0xffffffff00000000ULL)
757 return -1; /* #GP */
758 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
759 kvm_update_dr6(vcpu);
760 break;
761 case 5:
762 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
763 return 1; /* #UD */
764 /* fall through */
765 default: /* 7 */
766 if (val & 0xffffffff00000000ULL)
767 return -1; /* #GP */
768 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
769 kvm_update_dr7(vcpu);
770 break;
771 }
772
773 return 0;
774 }
775
776 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
777 {
778 int res;
779
780 res = __kvm_set_dr(vcpu, dr, val);
781 if (res > 0)
782 kvm_queue_exception(vcpu, UD_VECTOR);
783 else if (res < 0)
784 kvm_inject_gp(vcpu, 0);
785
786 return res;
787 }
788 EXPORT_SYMBOL_GPL(kvm_set_dr);
789
790 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
791 {
792 switch (dr) {
793 case 0 ... 3:
794 *val = vcpu->arch.db[dr];
795 break;
796 case 4:
797 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
798 return 1;
799 /* fall through */
800 case 6:
801 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
802 *val = vcpu->arch.dr6;
803 else
804 *val = kvm_x86_ops->get_dr6(vcpu);
805 break;
806 case 5:
807 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
808 return 1;
809 /* fall through */
810 default: /* 7 */
811 *val = vcpu->arch.dr7;
812 break;
813 }
814
815 return 0;
816 }
817
818 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
819 {
820 if (_kvm_get_dr(vcpu, dr, val)) {
821 kvm_queue_exception(vcpu, UD_VECTOR);
822 return 1;
823 }
824 return 0;
825 }
826 EXPORT_SYMBOL_GPL(kvm_get_dr);
827
828 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
829 {
830 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
831 u64 data;
832 int err;
833
834 err = kvm_pmu_read_pmc(vcpu, ecx, &data);
835 if (err)
836 return err;
837 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
838 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
839 return err;
840 }
841 EXPORT_SYMBOL_GPL(kvm_rdpmc);
842
843 /*
844 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
845 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
846 *
847 * This list is modified at module load time to reflect the
848 * capabilities of the host cpu. This capabilities test skips MSRs that are
849 * kvm-specific. Those are put in the beginning of the list.
850 */
851
852 #define KVM_SAVE_MSRS_BEGIN 12
853 static u32 msrs_to_save[] = {
854 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
855 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
856 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
857 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
858 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
859 MSR_KVM_PV_EOI_EN,
860 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
861 MSR_STAR,
862 #ifdef CONFIG_X86_64
863 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
864 #endif
865 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
866 MSR_IA32_FEATURE_CONTROL
867 };
868
869 static unsigned num_msrs_to_save;
870
871 static const u32 emulated_msrs[] = {
872 MSR_IA32_TSC_ADJUST,
873 MSR_IA32_TSCDEADLINE,
874 MSR_IA32_MISC_ENABLE,
875 MSR_IA32_MCG_STATUS,
876 MSR_IA32_MCG_CTL,
877 };
878
879 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
880 {
881 if (efer & efer_reserved_bits)
882 return false;
883
884 if (efer & EFER_FFXSR) {
885 struct kvm_cpuid_entry2 *feat;
886
887 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
888 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
889 return false;
890 }
891
892 if (efer & EFER_SVME) {
893 struct kvm_cpuid_entry2 *feat;
894
895 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
896 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
897 return false;
898 }
899
900 return true;
901 }
902 EXPORT_SYMBOL_GPL(kvm_valid_efer);
903
904 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
905 {
906 u64 old_efer = vcpu->arch.efer;
907
908 if (!kvm_valid_efer(vcpu, efer))
909 return 1;
910
911 if (is_paging(vcpu)
912 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
913 return 1;
914
915 efer &= ~EFER_LMA;
916 efer |= vcpu->arch.efer & EFER_LMA;
917
918 kvm_x86_ops->set_efer(vcpu, efer);
919
920 /* Update reserved bits */
921 if ((efer ^ old_efer) & EFER_NX)
922 kvm_mmu_reset_context(vcpu);
923
924 return 0;
925 }
926
927 void kvm_enable_efer_bits(u64 mask)
928 {
929 efer_reserved_bits &= ~mask;
930 }
931 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
932
933
934 /*
935 * Writes msr value into into the appropriate "register".
936 * Returns 0 on success, non-0 otherwise.
937 * Assumes vcpu_load() was already called.
938 */
939 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
940 {
941 return kvm_x86_ops->set_msr(vcpu, msr);
942 }
943
944 /*
945 * Adapt set_msr() to msr_io()'s calling convention
946 */
947 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
948 {
949 struct msr_data msr;
950
951 msr.data = *data;
952 msr.index = index;
953 msr.host_initiated = true;
954 return kvm_set_msr(vcpu, &msr);
955 }
956
957 #ifdef CONFIG_X86_64
958 struct pvclock_gtod_data {
959 seqcount_t seq;
960
961 struct { /* extract of a clocksource struct */
962 int vclock_mode;
963 cycle_t cycle_last;
964 cycle_t mask;
965 u32 mult;
966 u32 shift;
967 } clock;
968
969 /* open coded 'struct timespec' */
970 u64 monotonic_time_snsec;
971 time_t monotonic_time_sec;
972 };
973
974 static struct pvclock_gtod_data pvclock_gtod_data;
975
976 static void update_pvclock_gtod(struct timekeeper *tk)
977 {
978 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
979
980 write_seqcount_begin(&vdata->seq);
981
982 /* copy pvclock gtod data */
983 vdata->clock.vclock_mode = tk->clock->archdata.vclock_mode;
984 vdata->clock.cycle_last = tk->clock->cycle_last;
985 vdata->clock.mask = tk->clock->mask;
986 vdata->clock.mult = tk->mult;
987 vdata->clock.shift = tk->shift;
988
989 vdata->monotonic_time_sec = tk->xtime_sec
990 + tk->wall_to_monotonic.tv_sec;
991 vdata->monotonic_time_snsec = tk->xtime_nsec
992 + (tk->wall_to_monotonic.tv_nsec
993 << tk->shift);
994 while (vdata->monotonic_time_snsec >=
995 (((u64)NSEC_PER_SEC) << tk->shift)) {
996 vdata->monotonic_time_snsec -=
997 ((u64)NSEC_PER_SEC) << tk->shift;
998 vdata->monotonic_time_sec++;
999 }
1000
1001 write_seqcount_end(&vdata->seq);
1002 }
1003 #endif
1004
1005
1006 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1007 {
1008 int version;
1009 int r;
1010 struct pvclock_wall_clock wc;
1011 struct timespec boot;
1012
1013 if (!wall_clock)
1014 return;
1015
1016 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1017 if (r)
1018 return;
1019
1020 if (version & 1)
1021 ++version; /* first time write, random junk */
1022
1023 ++version;
1024
1025 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1026
1027 /*
1028 * The guest calculates current wall clock time by adding
1029 * system time (updated by kvm_guest_time_update below) to the
1030 * wall clock specified here. guest system time equals host
1031 * system time for us, thus we must fill in host boot time here.
1032 */
1033 getboottime(&boot);
1034
1035 if (kvm->arch.kvmclock_offset) {
1036 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1037 boot = timespec_sub(boot, ts);
1038 }
1039 wc.sec = boot.tv_sec;
1040 wc.nsec = boot.tv_nsec;
1041 wc.version = version;
1042
1043 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1044
1045 version++;
1046 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1047 }
1048
1049 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1050 {
1051 uint32_t quotient, remainder;
1052
1053 /* Don't try to replace with do_div(), this one calculates
1054 * "(dividend << 32) / divisor" */
1055 __asm__ ( "divl %4"
1056 : "=a" (quotient), "=d" (remainder)
1057 : "0" (0), "1" (dividend), "r" (divisor) );
1058 return quotient;
1059 }
1060
1061 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1062 s8 *pshift, u32 *pmultiplier)
1063 {
1064 uint64_t scaled64;
1065 int32_t shift = 0;
1066 uint64_t tps64;
1067 uint32_t tps32;
1068
1069 tps64 = base_khz * 1000LL;
1070 scaled64 = scaled_khz * 1000LL;
1071 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1072 tps64 >>= 1;
1073 shift--;
1074 }
1075
1076 tps32 = (uint32_t)tps64;
1077 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1078 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1079 scaled64 >>= 1;
1080 else
1081 tps32 <<= 1;
1082 shift++;
1083 }
1084
1085 *pshift = shift;
1086 *pmultiplier = div_frac(scaled64, tps32);
1087
1088 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1089 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1090 }
1091
1092 static inline u64 get_kernel_ns(void)
1093 {
1094 struct timespec ts;
1095
1096 WARN_ON(preemptible());
1097 ktime_get_ts(&ts);
1098 monotonic_to_bootbased(&ts);
1099 return timespec_to_ns(&ts);
1100 }
1101
1102 #ifdef CONFIG_X86_64
1103 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1104 #endif
1105
1106 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1107 unsigned long max_tsc_khz;
1108
1109 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1110 {
1111 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1112 vcpu->arch.virtual_tsc_shift);
1113 }
1114
1115 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1116 {
1117 u64 v = (u64)khz * (1000000 + ppm);
1118 do_div(v, 1000000);
1119 return v;
1120 }
1121
1122 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1123 {
1124 u32 thresh_lo, thresh_hi;
1125 int use_scaling = 0;
1126
1127 /* tsc_khz can be zero if TSC calibration fails */
1128 if (this_tsc_khz == 0)
1129 return;
1130
1131 /* Compute a scale to convert nanoseconds in TSC cycles */
1132 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1133 &vcpu->arch.virtual_tsc_shift,
1134 &vcpu->arch.virtual_tsc_mult);
1135 vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1136
1137 /*
1138 * Compute the variation in TSC rate which is acceptable
1139 * within the range of tolerance and decide if the
1140 * rate being applied is within that bounds of the hardware
1141 * rate. If so, no scaling or compensation need be done.
1142 */
1143 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1144 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1145 if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1146 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1147 use_scaling = 1;
1148 }
1149 kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1150 }
1151
1152 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1153 {
1154 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1155 vcpu->arch.virtual_tsc_mult,
1156 vcpu->arch.virtual_tsc_shift);
1157 tsc += vcpu->arch.this_tsc_write;
1158 return tsc;
1159 }
1160
1161 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1162 {
1163 #ifdef CONFIG_X86_64
1164 bool vcpus_matched;
1165 bool do_request = false;
1166 struct kvm_arch *ka = &vcpu->kvm->arch;
1167 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1168
1169 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1170 atomic_read(&vcpu->kvm->online_vcpus));
1171
1172 if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
1173 if (!ka->use_master_clock)
1174 do_request = 1;
1175
1176 if (!vcpus_matched && ka->use_master_clock)
1177 do_request = 1;
1178
1179 if (do_request)
1180 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1181
1182 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1183 atomic_read(&vcpu->kvm->online_vcpus),
1184 ka->use_master_clock, gtod->clock.vclock_mode);
1185 #endif
1186 }
1187
1188 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1189 {
1190 u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1191 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1192 }
1193
1194 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1195 {
1196 struct kvm *kvm = vcpu->kvm;
1197 u64 offset, ns, elapsed;
1198 unsigned long flags;
1199 s64 usdiff;
1200 bool matched;
1201 u64 data = msr->data;
1202
1203 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1204 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1205 ns = get_kernel_ns();
1206 elapsed = ns - kvm->arch.last_tsc_nsec;
1207
1208 if (vcpu->arch.virtual_tsc_khz) {
1209 int faulted = 0;
1210
1211 /* n.b - signed multiplication and division required */
1212 usdiff = data - kvm->arch.last_tsc_write;
1213 #ifdef CONFIG_X86_64
1214 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1215 #else
1216 /* do_div() only does unsigned */
1217 asm("1: idivl %[divisor]\n"
1218 "2: xor %%edx, %%edx\n"
1219 " movl $0, %[faulted]\n"
1220 "3:\n"
1221 ".section .fixup,\"ax\"\n"
1222 "4: movl $1, %[faulted]\n"
1223 " jmp 3b\n"
1224 ".previous\n"
1225
1226 _ASM_EXTABLE(1b, 4b)
1227
1228 : "=A"(usdiff), [faulted] "=r" (faulted)
1229 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1230
1231 #endif
1232 do_div(elapsed, 1000);
1233 usdiff -= elapsed;
1234 if (usdiff < 0)
1235 usdiff = -usdiff;
1236
1237 /* idivl overflow => difference is larger than USEC_PER_SEC */
1238 if (faulted)
1239 usdiff = USEC_PER_SEC;
1240 } else
1241 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1242
1243 /*
1244 * Special case: TSC write with a small delta (1 second) of virtual
1245 * cycle time against real time is interpreted as an attempt to
1246 * synchronize the CPU.
1247 *
1248 * For a reliable TSC, we can match TSC offsets, and for an unstable
1249 * TSC, we add elapsed time in this computation. We could let the
1250 * compensation code attempt to catch up if we fall behind, but
1251 * it's better to try to match offsets from the beginning.
1252 */
1253 if (usdiff < USEC_PER_SEC &&
1254 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1255 if (!check_tsc_unstable()) {
1256 offset = kvm->arch.cur_tsc_offset;
1257 pr_debug("kvm: matched tsc offset for %llu\n", data);
1258 } else {
1259 u64 delta = nsec_to_cycles(vcpu, elapsed);
1260 data += delta;
1261 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1262 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1263 }
1264 matched = true;
1265 } else {
1266 /*
1267 * We split periods of matched TSC writes into generations.
1268 * For each generation, we track the original measured
1269 * nanosecond time, offset, and write, so if TSCs are in
1270 * sync, we can match exact offset, and if not, we can match
1271 * exact software computation in compute_guest_tsc()
1272 *
1273 * These values are tracked in kvm->arch.cur_xxx variables.
1274 */
1275 kvm->arch.cur_tsc_generation++;
1276 kvm->arch.cur_tsc_nsec = ns;
1277 kvm->arch.cur_tsc_write = data;
1278 kvm->arch.cur_tsc_offset = offset;
1279 matched = false;
1280 pr_debug("kvm: new tsc generation %u, clock %llu\n",
1281 kvm->arch.cur_tsc_generation, data);
1282 }
1283
1284 /*
1285 * We also track th most recent recorded KHZ, write and time to
1286 * allow the matching interval to be extended at each write.
1287 */
1288 kvm->arch.last_tsc_nsec = ns;
1289 kvm->arch.last_tsc_write = data;
1290 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1291
1292 vcpu->arch.last_guest_tsc = data;
1293
1294 /* Keep track of which generation this VCPU has synchronized to */
1295 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1296 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1297 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1298
1299 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1300 update_ia32_tsc_adjust_msr(vcpu, offset);
1301 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1302 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1303
1304 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1305 if (matched)
1306 kvm->arch.nr_vcpus_matched_tsc++;
1307 else
1308 kvm->arch.nr_vcpus_matched_tsc = 0;
1309
1310 kvm_track_tsc_matching(vcpu);
1311 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1312 }
1313
1314 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1315
1316 #ifdef CONFIG_X86_64
1317
1318 static cycle_t read_tsc(void)
1319 {
1320 cycle_t ret;
1321 u64 last;
1322
1323 /*
1324 * Empirically, a fence (of type that depends on the CPU)
1325 * before rdtsc is enough to ensure that rdtsc is ordered
1326 * with respect to loads. The various CPU manuals are unclear
1327 * as to whether rdtsc can be reordered with later loads,
1328 * but no one has ever seen it happen.
1329 */
1330 rdtsc_barrier();
1331 ret = (cycle_t)vget_cycles();
1332
1333 last = pvclock_gtod_data.clock.cycle_last;
1334
1335 if (likely(ret >= last))
1336 return ret;
1337
1338 /*
1339 * GCC likes to generate cmov here, but this branch is extremely
1340 * predictable (it's just a funciton of time and the likely is
1341 * very likely) and there's a data dependence, so force GCC
1342 * to generate a branch instead. I don't barrier() because
1343 * we don't actually need a barrier, and if this function
1344 * ever gets inlined it will generate worse code.
1345 */
1346 asm volatile ("");
1347 return last;
1348 }
1349
1350 static inline u64 vgettsc(cycle_t *cycle_now)
1351 {
1352 long v;
1353 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1354
1355 *cycle_now = read_tsc();
1356
1357 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1358 return v * gtod->clock.mult;
1359 }
1360
1361 static int do_monotonic(struct timespec *ts, cycle_t *cycle_now)
1362 {
1363 unsigned long seq;
1364 u64 ns;
1365 int mode;
1366 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1367
1368 ts->tv_nsec = 0;
1369 do {
1370 seq = read_seqcount_begin(&gtod->seq);
1371 mode = gtod->clock.vclock_mode;
1372 ts->tv_sec = gtod->monotonic_time_sec;
1373 ns = gtod->monotonic_time_snsec;
1374 ns += vgettsc(cycle_now);
1375 ns >>= gtod->clock.shift;
1376 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1377 timespec_add_ns(ts, ns);
1378
1379 return mode;
1380 }
1381
1382 /* returns true if host is using tsc clocksource */
1383 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1384 {
1385 struct timespec ts;
1386
1387 /* checked again under seqlock below */
1388 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1389 return false;
1390
1391 if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC)
1392 return false;
1393
1394 monotonic_to_bootbased(&ts);
1395 *kernel_ns = timespec_to_ns(&ts);
1396
1397 return true;
1398 }
1399 #endif
1400
1401 /*
1402 *
1403 * Assuming a stable TSC across physical CPUS, and a stable TSC
1404 * across virtual CPUs, the following condition is possible.
1405 * Each numbered line represents an event visible to both
1406 * CPUs at the next numbered event.
1407 *
1408 * "timespecX" represents host monotonic time. "tscX" represents
1409 * RDTSC value.
1410 *
1411 * VCPU0 on CPU0 | VCPU1 on CPU1
1412 *
1413 * 1. read timespec0,tsc0
1414 * 2. | timespec1 = timespec0 + N
1415 * | tsc1 = tsc0 + M
1416 * 3. transition to guest | transition to guest
1417 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1418 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1419 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1420 *
1421 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1422 *
1423 * - ret0 < ret1
1424 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1425 * ...
1426 * - 0 < N - M => M < N
1427 *
1428 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1429 * always the case (the difference between two distinct xtime instances
1430 * might be smaller then the difference between corresponding TSC reads,
1431 * when updating guest vcpus pvclock areas).
1432 *
1433 * To avoid that problem, do not allow visibility of distinct
1434 * system_timestamp/tsc_timestamp values simultaneously: use a master
1435 * copy of host monotonic time values. Update that master copy
1436 * in lockstep.
1437 *
1438 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1439 *
1440 */
1441
1442 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1443 {
1444 #ifdef CONFIG_X86_64
1445 struct kvm_arch *ka = &kvm->arch;
1446 int vclock_mode;
1447 bool host_tsc_clocksource, vcpus_matched;
1448
1449 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1450 atomic_read(&kvm->online_vcpus));
1451
1452 /*
1453 * If the host uses TSC clock, then passthrough TSC as stable
1454 * to the guest.
1455 */
1456 host_tsc_clocksource = kvm_get_time_and_clockread(
1457 &ka->master_kernel_ns,
1458 &ka->master_cycle_now);
1459
1460 ka->use_master_clock = host_tsc_clocksource & vcpus_matched;
1461
1462 if (ka->use_master_clock)
1463 atomic_set(&kvm_guest_has_master_clock, 1);
1464
1465 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1466 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1467 vcpus_matched);
1468 #endif
1469 }
1470
1471 static void kvm_gen_update_masterclock(struct kvm *kvm)
1472 {
1473 #ifdef CONFIG_X86_64
1474 int i;
1475 struct kvm_vcpu *vcpu;
1476 struct kvm_arch *ka = &kvm->arch;
1477
1478 spin_lock(&ka->pvclock_gtod_sync_lock);
1479 kvm_make_mclock_inprogress_request(kvm);
1480 /* no guest entries from this point */
1481 pvclock_update_vm_gtod_copy(kvm);
1482
1483 kvm_for_each_vcpu(i, vcpu, kvm)
1484 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
1485
1486 /* guest entries allowed */
1487 kvm_for_each_vcpu(i, vcpu, kvm)
1488 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1489
1490 spin_unlock(&ka->pvclock_gtod_sync_lock);
1491 #endif
1492 }
1493
1494 static int kvm_guest_time_update(struct kvm_vcpu *v)
1495 {
1496 unsigned long flags, this_tsc_khz;
1497 struct kvm_vcpu_arch *vcpu = &v->arch;
1498 struct kvm_arch *ka = &v->kvm->arch;
1499 s64 kernel_ns;
1500 u64 tsc_timestamp, host_tsc;
1501 struct pvclock_vcpu_time_info guest_hv_clock;
1502 u8 pvclock_flags;
1503 bool use_master_clock;
1504
1505 kernel_ns = 0;
1506 host_tsc = 0;
1507
1508 /*
1509 * If the host uses TSC clock, then passthrough TSC as stable
1510 * to the guest.
1511 */
1512 spin_lock(&ka->pvclock_gtod_sync_lock);
1513 use_master_clock = ka->use_master_clock;
1514 if (use_master_clock) {
1515 host_tsc = ka->master_cycle_now;
1516 kernel_ns = ka->master_kernel_ns;
1517 }
1518 spin_unlock(&ka->pvclock_gtod_sync_lock);
1519
1520 /* Keep irq disabled to prevent changes to the clock */
1521 local_irq_save(flags);
1522 this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1523 if (unlikely(this_tsc_khz == 0)) {
1524 local_irq_restore(flags);
1525 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1526 return 1;
1527 }
1528 if (!use_master_clock) {
1529 host_tsc = native_read_tsc();
1530 kernel_ns = get_kernel_ns();
1531 }
1532
1533 tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1534
1535 /*
1536 * We may have to catch up the TSC to match elapsed wall clock
1537 * time for two reasons, even if kvmclock is used.
1538 * 1) CPU could have been running below the maximum TSC rate
1539 * 2) Broken TSC compensation resets the base at each VCPU
1540 * entry to avoid unknown leaps of TSC even when running
1541 * again on the same CPU. This may cause apparent elapsed
1542 * time to disappear, and the guest to stand still or run
1543 * very slowly.
1544 */
1545 if (vcpu->tsc_catchup) {
1546 u64 tsc = compute_guest_tsc(v, kernel_ns);
1547 if (tsc > tsc_timestamp) {
1548 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1549 tsc_timestamp = tsc;
1550 }
1551 }
1552
1553 local_irq_restore(flags);
1554
1555 if (!vcpu->pv_time_enabled)
1556 return 0;
1557
1558 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1559 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1560 &vcpu->hv_clock.tsc_shift,
1561 &vcpu->hv_clock.tsc_to_system_mul);
1562 vcpu->hw_tsc_khz = this_tsc_khz;
1563 }
1564
1565 /* With all the info we got, fill in the values */
1566 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1567 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1568 vcpu->last_kernel_ns = kernel_ns;
1569 vcpu->last_guest_tsc = tsc_timestamp;
1570
1571 /*
1572 * The interface expects us to write an even number signaling that the
1573 * update is finished. Since the guest won't see the intermediate
1574 * state, we just increase by 2 at the end.
1575 */
1576 vcpu->hv_clock.version += 2;
1577
1578 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1579 &guest_hv_clock, sizeof(guest_hv_clock))))
1580 return 0;
1581
1582 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1583 pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1584
1585 if (vcpu->pvclock_set_guest_stopped_request) {
1586 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1587 vcpu->pvclock_set_guest_stopped_request = false;
1588 }
1589
1590 /* If the host uses TSC clocksource, then it is stable */
1591 if (use_master_clock)
1592 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1593
1594 vcpu->hv_clock.flags = pvclock_flags;
1595
1596 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1597 &vcpu->hv_clock,
1598 sizeof(vcpu->hv_clock));
1599 return 0;
1600 }
1601
1602 /*
1603 * kvmclock updates which are isolated to a given vcpu, such as
1604 * vcpu->cpu migration, should not allow system_timestamp from
1605 * the rest of the vcpus to remain static. Otherwise ntp frequency
1606 * correction applies to one vcpu's system_timestamp but not
1607 * the others.
1608 *
1609 * So in those cases, request a kvmclock update for all vcpus.
1610 * The worst case for a remote vcpu to update its kvmclock
1611 * is then bounded by maximum nohz sleep latency.
1612 */
1613
1614 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1615 {
1616 int i;
1617 struct kvm *kvm = v->kvm;
1618 struct kvm_vcpu *vcpu;
1619
1620 kvm_for_each_vcpu(i, vcpu, kvm) {
1621 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
1622 kvm_vcpu_kick(vcpu);
1623 }
1624 }
1625
1626 static bool msr_mtrr_valid(unsigned msr)
1627 {
1628 switch (msr) {
1629 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1630 case MSR_MTRRfix64K_00000:
1631 case MSR_MTRRfix16K_80000:
1632 case MSR_MTRRfix16K_A0000:
1633 case MSR_MTRRfix4K_C0000:
1634 case MSR_MTRRfix4K_C8000:
1635 case MSR_MTRRfix4K_D0000:
1636 case MSR_MTRRfix4K_D8000:
1637 case MSR_MTRRfix4K_E0000:
1638 case MSR_MTRRfix4K_E8000:
1639 case MSR_MTRRfix4K_F0000:
1640 case MSR_MTRRfix4K_F8000:
1641 case MSR_MTRRdefType:
1642 case MSR_IA32_CR_PAT:
1643 return true;
1644 case 0x2f8:
1645 return true;
1646 }
1647 return false;
1648 }
1649
1650 static bool valid_pat_type(unsigned t)
1651 {
1652 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1653 }
1654
1655 static bool valid_mtrr_type(unsigned t)
1656 {
1657 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1658 }
1659
1660 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1661 {
1662 int i;
1663
1664 if (!msr_mtrr_valid(msr))
1665 return false;
1666
1667 if (msr == MSR_IA32_CR_PAT) {
1668 for (i = 0; i < 8; i++)
1669 if (!valid_pat_type((data >> (i * 8)) & 0xff))
1670 return false;
1671 return true;
1672 } else if (msr == MSR_MTRRdefType) {
1673 if (data & ~0xcff)
1674 return false;
1675 return valid_mtrr_type(data & 0xff);
1676 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1677 for (i = 0; i < 8 ; i++)
1678 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1679 return false;
1680 return true;
1681 }
1682
1683 /* variable MTRRs */
1684 return valid_mtrr_type(data & 0xff);
1685 }
1686
1687 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1688 {
1689 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1690
1691 if (!mtrr_valid(vcpu, msr, data))
1692 return 1;
1693
1694 if (msr == MSR_MTRRdefType) {
1695 vcpu->arch.mtrr_state.def_type = data;
1696 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1697 } else if (msr == MSR_MTRRfix64K_00000)
1698 p[0] = data;
1699 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1700 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1701 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1702 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1703 else if (msr == MSR_IA32_CR_PAT)
1704 vcpu->arch.pat = data;
1705 else { /* Variable MTRRs */
1706 int idx, is_mtrr_mask;
1707 u64 *pt;
1708
1709 idx = (msr - 0x200) / 2;
1710 is_mtrr_mask = msr - 0x200 - 2 * idx;
1711 if (!is_mtrr_mask)
1712 pt =
1713 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1714 else
1715 pt =
1716 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1717 *pt = data;
1718 }
1719
1720 kvm_mmu_reset_context(vcpu);
1721 return 0;
1722 }
1723
1724 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1725 {
1726 u64 mcg_cap = vcpu->arch.mcg_cap;
1727 unsigned bank_num = mcg_cap & 0xff;
1728
1729 switch (msr) {
1730 case MSR_IA32_MCG_STATUS:
1731 vcpu->arch.mcg_status = data;
1732 break;
1733 case MSR_IA32_MCG_CTL:
1734 if (!(mcg_cap & MCG_CTL_P))
1735 return 1;
1736 if (data != 0 && data != ~(u64)0)
1737 return -1;
1738 vcpu->arch.mcg_ctl = data;
1739 break;
1740 default:
1741 if (msr >= MSR_IA32_MC0_CTL &&
1742 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1743 u32 offset = msr - MSR_IA32_MC0_CTL;
1744 /* only 0 or all 1s can be written to IA32_MCi_CTL
1745 * some Linux kernels though clear bit 10 in bank 4 to
1746 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1747 * this to avoid an uncatched #GP in the guest
1748 */
1749 if ((offset & 0x3) == 0 &&
1750 data != 0 && (data | (1 << 10)) != ~(u64)0)
1751 return -1;
1752 vcpu->arch.mce_banks[offset] = data;
1753 break;
1754 }
1755 return 1;
1756 }
1757 return 0;
1758 }
1759
1760 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1761 {
1762 struct kvm *kvm = vcpu->kvm;
1763 int lm = is_long_mode(vcpu);
1764 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1765 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1766 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1767 : kvm->arch.xen_hvm_config.blob_size_32;
1768 u32 page_num = data & ~PAGE_MASK;
1769 u64 page_addr = data & PAGE_MASK;
1770 u8 *page;
1771 int r;
1772
1773 r = -E2BIG;
1774 if (page_num >= blob_size)
1775 goto out;
1776 r = -ENOMEM;
1777 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1778 if (IS_ERR(page)) {
1779 r = PTR_ERR(page);
1780 goto out;
1781 }
1782 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1783 goto out_free;
1784 r = 0;
1785 out_free:
1786 kfree(page);
1787 out:
1788 return r;
1789 }
1790
1791 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1792 {
1793 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1794 }
1795
1796 static bool kvm_hv_msr_partition_wide(u32 msr)
1797 {
1798 bool r = false;
1799 switch (msr) {
1800 case HV_X64_MSR_GUEST_OS_ID:
1801 case HV_X64_MSR_HYPERCALL:
1802 case HV_X64_MSR_REFERENCE_TSC:
1803 case HV_X64_MSR_TIME_REF_COUNT:
1804 r = true;
1805 break;
1806 }
1807
1808 return r;
1809 }
1810
1811 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1812 {
1813 struct kvm *kvm = vcpu->kvm;
1814
1815 switch (msr) {
1816 case HV_X64_MSR_GUEST_OS_ID:
1817 kvm->arch.hv_guest_os_id = data;
1818 /* setting guest os id to zero disables hypercall page */
1819 if (!kvm->arch.hv_guest_os_id)
1820 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1821 break;
1822 case HV_X64_MSR_HYPERCALL: {
1823 u64 gfn;
1824 unsigned long addr;
1825 u8 instructions[4];
1826
1827 /* if guest os id is not set hypercall should remain disabled */
1828 if (!kvm->arch.hv_guest_os_id)
1829 break;
1830 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1831 kvm->arch.hv_hypercall = data;
1832 break;
1833 }
1834 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1835 addr = gfn_to_hva(kvm, gfn);
1836 if (kvm_is_error_hva(addr))
1837 return 1;
1838 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1839 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1840 if (__copy_to_user((void __user *)addr, instructions, 4))
1841 return 1;
1842 kvm->arch.hv_hypercall = data;
1843 break;
1844 }
1845 case HV_X64_MSR_REFERENCE_TSC: {
1846 u64 gfn;
1847 HV_REFERENCE_TSC_PAGE tsc_ref;
1848 memset(&tsc_ref, 0, sizeof(tsc_ref));
1849 kvm->arch.hv_tsc_page = data;
1850 if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1851 break;
1852 gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1853 if (kvm_write_guest(kvm, data,
1854 &tsc_ref, sizeof(tsc_ref)))
1855 return 1;
1856 mark_page_dirty(kvm, gfn);
1857 break;
1858 }
1859 default:
1860 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1861 "data 0x%llx\n", msr, data);
1862 return 1;
1863 }
1864 return 0;
1865 }
1866
1867 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1868 {
1869 switch (msr) {
1870 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1871 unsigned long addr;
1872
1873 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1874 vcpu->arch.hv_vapic = data;
1875 break;
1876 }
1877 addr = gfn_to_hva(vcpu->kvm, data >>
1878 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1879 if (kvm_is_error_hva(addr))
1880 return 1;
1881 if (__clear_user((void __user *)addr, PAGE_SIZE))
1882 return 1;
1883 vcpu->arch.hv_vapic = data;
1884 break;
1885 }
1886 case HV_X64_MSR_EOI:
1887 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1888 case HV_X64_MSR_ICR:
1889 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1890 case HV_X64_MSR_TPR:
1891 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1892 default:
1893 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1894 "data 0x%llx\n", msr, data);
1895 return 1;
1896 }
1897
1898 return 0;
1899 }
1900
1901 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1902 {
1903 gpa_t gpa = data & ~0x3f;
1904
1905 /* Bits 2:5 are reserved, Should be zero */
1906 if (data & 0x3c)
1907 return 1;
1908
1909 vcpu->arch.apf.msr_val = data;
1910
1911 if (!(data & KVM_ASYNC_PF_ENABLED)) {
1912 kvm_clear_async_pf_completion_queue(vcpu);
1913 kvm_async_pf_hash_reset(vcpu);
1914 return 0;
1915 }
1916
1917 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1918 sizeof(u32)))
1919 return 1;
1920
1921 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1922 kvm_async_pf_wakeup_all(vcpu);
1923 return 0;
1924 }
1925
1926 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1927 {
1928 vcpu->arch.pv_time_enabled = false;
1929 }
1930
1931 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1932 {
1933 u64 delta;
1934
1935 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1936 return;
1937
1938 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1939 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1940 vcpu->arch.st.accum_steal = delta;
1941 }
1942
1943 static void record_steal_time(struct kvm_vcpu *vcpu)
1944 {
1945 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1946 return;
1947
1948 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1949 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1950 return;
1951
1952 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1953 vcpu->arch.st.steal.version += 2;
1954 vcpu->arch.st.accum_steal = 0;
1955
1956 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1957 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1958 }
1959
1960 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1961 {
1962 bool pr = false;
1963 u32 msr = msr_info->index;
1964 u64 data = msr_info->data;
1965
1966 switch (msr) {
1967 case MSR_AMD64_NB_CFG:
1968 case MSR_IA32_UCODE_REV:
1969 case MSR_IA32_UCODE_WRITE:
1970 case MSR_VM_HSAVE_PA:
1971 case MSR_AMD64_PATCH_LOADER:
1972 case MSR_AMD64_BU_CFG2:
1973 break;
1974
1975 case MSR_EFER:
1976 return set_efer(vcpu, data);
1977 case MSR_K7_HWCR:
1978 data &= ~(u64)0x40; /* ignore flush filter disable */
1979 data &= ~(u64)0x100; /* ignore ignne emulation enable */
1980 data &= ~(u64)0x8; /* ignore TLB cache disable */
1981 if (data != 0) {
1982 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1983 data);
1984 return 1;
1985 }
1986 break;
1987 case MSR_FAM10H_MMIO_CONF_BASE:
1988 if (data != 0) {
1989 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1990 "0x%llx\n", data);
1991 return 1;
1992 }
1993 break;
1994 case MSR_IA32_DEBUGCTLMSR:
1995 if (!data) {
1996 /* We support the non-activated case already */
1997 break;
1998 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1999 /* Values other than LBR and BTF are vendor-specific,
2000 thus reserved and should throw a #GP */
2001 return 1;
2002 }
2003 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2004 __func__, data);
2005 break;
2006 case 0x200 ... 0x2ff:
2007 return set_msr_mtrr(vcpu, msr, data);
2008 case MSR_IA32_APICBASE:
2009 kvm_set_apic_base(vcpu, data);
2010 break;
2011 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2012 return kvm_x2apic_msr_write(vcpu, msr, data);
2013 case MSR_IA32_TSCDEADLINE:
2014 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2015 break;
2016 case MSR_IA32_TSC_ADJUST:
2017 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2018 if (!msr_info->host_initiated) {
2019 u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2020 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2021 }
2022 vcpu->arch.ia32_tsc_adjust_msr = data;
2023 }
2024 break;
2025 case MSR_IA32_MISC_ENABLE:
2026 vcpu->arch.ia32_misc_enable_msr = data;
2027 break;
2028 case MSR_KVM_WALL_CLOCK_NEW:
2029 case MSR_KVM_WALL_CLOCK:
2030 vcpu->kvm->arch.wall_clock = data;
2031 kvm_write_wall_clock(vcpu->kvm, data);
2032 break;
2033 case MSR_KVM_SYSTEM_TIME_NEW:
2034 case MSR_KVM_SYSTEM_TIME: {
2035 u64 gpa_offset;
2036 kvmclock_reset(vcpu);
2037
2038 vcpu->arch.time = data;
2039 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2040
2041 /* we verify if the enable bit is set... */
2042 if (!(data & 1))
2043 break;
2044
2045 gpa_offset = data & ~(PAGE_MASK | 1);
2046
2047 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2048 &vcpu->arch.pv_time, data & ~1ULL,
2049 sizeof(struct pvclock_vcpu_time_info)))
2050 vcpu->arch.pv_time_enabled = false;
2051 else
2052 vcpu->arch.pv_time_enabled = true;
2053
2054 break;
2055 }
2056 case MSR_KVM_ASYNC_PF_EN:
2057 if (kvm_pv_enable_async_pf(vcpu, data))
2058 return 1;
2059 break;
2060 case MSR_KVM_STEAL_TIME:
2061
2062 if (unlikely(!sched_info_on()))
2063 return 1;
2064
2065 if (data & KVM_STEAL_RESERVED_MASK)
2066 return 1;
2067
2068 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2069 data & KVM_STEAL_VALID_BITS,
2070 sizeof(struct kvm_steal_time)))
2071 return 1;
2072
2073 vcpu->arch.st.msr_val = data;
2074
2075 if (!(data & KVM_MSR_ENABLED))
2076 break;
2077
2078 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2079
2080 preempt_disable();
2081 accumulate_steal_time(vcpu);
2082 preempt_enable();
2083
2084 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2085
2086 break;
2087 case MSR_KVM_PV_EOI_EN:
2088 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2089 return 1;
2090 break;
2091
2092 case MSR_IA32_MCG_CTL:
2093 case MSR_IA32_MCG_STATUS:
2094 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2095 return set_msr_mce(vcpu, msr, data);
2096
2097 /* Performance counters are not protected by a CPUID bit,
2098 * so we should check all of them in the generic path for the sake of
2099 * cross vendor migration.
2100 * Writing a zero into the event select MSRs disables them,
2101 * which we perfectly emulate ;-). Any other value should be at least
2102 * reported, some guests depend on them.
2103 */
2104 case MSR_K7_EVNTSEL0:
2105 case MSR_K7_EVNTSEL1:
2106 case MSR_K7_EVNTSEL2:
2107 case MSR_K7_EVNTSEL3:
2108 if (data != 0)
2109 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2110 "0x%x data 0x%llx\n", msr, data);
2111 break;
2112 /* at least RHEL 4 unconditionally writes to the perfctr registers,
2113 * so we ignore writes to make it happy.
2114 */
2115 case MSR_K7_PERFCTR0:
2116 case MSR_K7_PERFCTR1:
2117 case MSR_K7_PERFCTR2:
2118 case MSR_K7_PERFCTR3:
2119 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2120 "0x%x data 0x%llx\n", msr, data);
2121 break;
2122 case MSR_P6_PERFCTR0:
2123 case MSR_P6_PERFCTR1:
2124 pr = true;
2125 case MSR_P6_EVNTSEL0:
2126 case MSR_P6_EVNTSEL1:
2127 if (kvm_pmu_msr(vcpu, msr))
2128 return kvm_pmu_set_msr(vcpu, msr_info);
2129
2130 if (pr || data != 0)
2131 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2132 "0x%x data 0x%llx\n", msr, data);
2133 break;
2134 case MSR_K7_CLK_CTL:
2135 /*
2136 * Ignore all writes to this no longer documented MSR.
2137 * Writes are only relevant for old K7 processors,
2138 * all pre-dating SVM, but a recommended workaround from
2139 * AMD for these chips. It is possible to specify the
2140 * affected processor models on the command line, hence
2141 * the need to ignore the workaround.
2142 */
2143 break;
2144 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2145 if (kvm_hv_msr_partition_wide(msr)) {
2146 int r;
2147 mutex_lock(&vcpu->kvm->lock);
2148 r = set_msr_hyperv_pw(vcpu, msr, data);
2149 mutex_unlock(&vcpu->kvm->lock);
2150 return r;
2151 } else
2152 return set_msr_hyperv(vcpu, msr, data);
2153 break;
2154 case MSR_IA32_BBL_CR_CTL3:
2155 /* Drop writes to this legacy MSR -- see rdmsr
2156 * counterpart for further detail.
2157 */
2158 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2159 break;
2160 case MSR_AMD64_OSVW_ID_LENGTH:
2161 if (!guest_cpuid_has_osvw(vcpu))
2162 return 1;
2163 vcpu->arch.osvw.length = data;
2164 break;
2165 case MSR_AMD64_OSVW_STATUS:
2166 if (!guest_cpuid_has_osvw(vcpu))
2167 return 1;
2168 vcpu->arch.osvw.status = data;
2169 break;
2170 default:
2171 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2172 return xen_hvm_config(vcpu, data);
2173 if (kvm_pmu_msr(vcpu, msr))
2174 return kvm_pmu_set_msr(vcpu, msr_info);
2175 if (!ignore_msrs) {
2176 vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2177 msr, data);
2178 return 1;
2179 } else {
2180 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2181 msr, data);
2182 break;
2183 }
2184 }
2185 return 0;
2186 }
2187 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2188
2189
2190 /*
2191 * Reads an msr value (of 'msr_index') into 'pdata'.
2192 * Returns 0 on success, non-0 otherwise.
2193 * Assumes vcpu_load() was already called.
2194 */
2195 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2196 {
2197 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2198 }
2199
2200 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2201 {
2202 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2203
2204 if (!msr_mtrr_valid(msr))
2205 return 1;
2206
2207 if (msr == MSR_MTRRdefType)
2208 *pdata = vcpu->arch.mtrr_state.def_type +
2209 (vcpu->arch.mtrr_state.enabled << 10);
2210 else if (msr == MSR_MTRRfix64K_00000)
2211 *pdata = p[0];
2212 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2213 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2214 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2215 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2216 else if (msr == MSR_IA32_CR_PAT)
2217 *pdata = vcpu->arch.pat;
2218 else { /* Variable MTRRs */
2219 int idx, is_mtrr_mask;
2220 u64 *pt;
2221
2222 idx = (msr - 0x200) / 2;
2223 is_mtrr_mask = msr - 0x200 - 2 * idx;
2224 if (!is_mtrr_mask)
2225 pt =
2226 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2227 else
2228 pt =
2229 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2230 *pdata = *pt;
2231 }
2232
2233 return 0;
2234 }
2235
2236 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2237 {
2238 u64 data;
2239 u64 mcg_cap = vcpu->arch.mcg_cap;
2240 unsigned bank_num = mcg_cap & 0xff;
2241
2242 switch (msr) {
2243 case MSR_IA32_P5_MC_ADDR:
2244 case MSR_IA32_P5_MC_TYPE:
2245 data = 0;
2246 break;
2247 case MSR_IA32_MCG_CAP:
2248 data = vcpu->arch.mcg_cap;
2249 break;
2250 case MSR_IA32_MCG_CTL:
2251 if (!(mcg_cap & MCG_CTL_P))
2252 return 1;
2253 data = vcpu->arch.mcg_ctl;
2254 break;
2255 case MSR_IA32_MCG_STATUS:
2256 data = vcpu->arch.mcg_status;
2257 break;
2258 default:
2259 if (msr >= MSR_IA32_MC0_CTL &&
2260 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
2261 u32 offset = msr - MSR_IA32_MC0_CTL;
2262 data = vcpu->arch.mce_banks[offset];
2263 break;
2264 }
2265 return 1;
2266 }
2267 *pdata = data;
2268 return 0;
2269 }
2270
2271 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2272 {
2273 u64 data = 0;
2274 struct kvm *kvm = vcpu->kvm;
2275
2276 switch (msr) {
2277 case HV_X64_MSR_GUEST_OS_ID:
2278 data = kvm->arch.hv_guest_os_id;
2279 break;
2280 case HV_X64_MSR_HYPERCALL:
2281 data = kvm->arch.hv_hypercall;
2282 break;
2283 case HV_X64_MSR_TIME_REF_COUNT: {
2284 data =
2285 div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100);
2286 break;
2287 }
2288 case HV_X64_MSR_REFERENCE_TSC:
2289 data = kvm->arch.hv_tsc_page;
2290 break;
2291 default:
2292 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2293 return 1;
2294 }
2295
2296 *pdata = data;
2297 return 0;
2298 }
2299
2300 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2301 {
2302 u64 data = 0;
2303
2304 switch (msr) {
2305 case HV_X64_MSR_VP_INDEX: {
2306 int r;
2307 struct kvm_vcpu *v;
2308 kvm_for_each_vcpu(r, v, vcpu->kvm)
2309 if (v == vcpu)
2310 data = r;
2311 break;
2312 }
2313 case HV_X64_MSR_EOI:
2314 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2315 case HV_X64_MSR_ICR:
2316 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2317 case HV_X64_MSR_TPR:
2318 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2319 case HV_X64_MSR_APIC_ASSIST_PAGE:
2320 data = vcpu->arch.hv_vapic;
2321 break;
2322 default:
2323 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2324 return 1;
2325 }
2326 *pdata = data;
2327 return 0;
2328 }
2329
2330 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2331 {
2332 u64 data;
2333
2334 switch (msr) {
2335 case MSR_IA32_PLATFORM_ID:
2336 case MSR_IA32_EBL_CR_POWERON:
2337 case MSR_IA32_DEBUGCTLMSR:
2338 case MSR_IA32_LASTBRANCHFROMIP:
2339 case MSR_IA32_LASTBRANCHTOIP:
2340 case MSR_IA32_LASTINTFROMIP:
2341 case MSR_IA32_LASTINTTOIP:
2342 case MSR_K8_SYSCFG:
2343 case MSR_K7_HWCR:
2344 case MSR_VM_HSAVE_PA:
2345 case MSR_K7_EVNTSEL0:
2346 case MSR_K7_PERFCTR0:
2347 case MSR_K8_INT_PENDING_MSG:
2348 case MSR_AMD64_NB_CFG:
2349 case MSR_FAM10H_MMIO_CONF_BASE:
2350 case MSR_AMD64_BU_CFG2:
2351 data = 0;
2352 break;
2353 case MSR_P6_PERFCTR0:
2354 case MSR_P6_PERFCTR1:
2355 case MSR_P6_EVNTSEL0:
2356 case MSR_P6_EVNTSEL1:
2357 if (kvm_pmu_msr(vcpu, msr))
2358 return kvm_pmu_get_msr(vcpu, msr, pdata);
2359 data = 0;
2360 break;
2361 case MSR_IA32_UCODE_REV:
2362 data = 0x100000000ULL;
2363 break;
2364 case MSR_MTRRcap:
2365 data = 0x500 | KVM_NR_VAR_MTRR;
2366 break;
2367 case 0x200 ... 0x2ff:
2368 return get_msr_mtrr(vcpu, msr, pdata);
2369 case 0xcd: /* fsb frequency */
2370 data = 3;
2371 break;
2372 /*
2373 * MSR_EBC_FREQUENCY_ID
2374 * Conservative value valid for even the basic CPU models.
2375 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2376 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2377 * and 266MHz for model 3, or 4. Set Core Clock
2378 * Frequency to System Bus Frequency Ratio to 1 (bits
2379 * 31:24) even though these are only valid for CPU
2380 * models > 2, however guests may end up dividing or
2381 * multiplying by zero otherwise.
2382 */
2383 case MSR_EBC_FREQUENCY_ID:
2384 data = 1 << 24;
2385 break;
2386 case MSR_IA32_APICBASE:
2387 data = kvm_get_apic_base(vcpu);
2388 break;
2389 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2390 return kvm_x2apic_msr_read(vcpu, msr, pdata);
2391 break;
2392 case MSR_IA32_TSCDEADLINE:
2393 data = kvm_get_lapic_tscdeadline_msr(vcpu);
2394 break;
2395 case MSR_IA32_TSC_ADJUST:
2396 data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2397 break;
2398 case MSR_IA32_MISC_ENABLE:
2399 data = vcpu->arch.ia32_misc_enable_msr;
2400 break;
2401 case MSR_IA32_PERF_STATUS:
2402 /* TSC increment by tick */
2403 data = 1000ULL;
2404 /* CPU multiplier */
2405 data |= (((uint64_t)4ULL) << 40);
2406 break;
2407 case MSR_EFER:
2408 data = vcpu->arch.efer;
2409 break;
2410 case MSR_KVM_WALL_CLOCK:
2411 case MSR_KVM_WALL_CLOCK_NEW:
2412 data = vcpu->kvm->arch.wall_clock;
2413 break;
2414 case MSR_KVM_SYSTEM_TIME:
2415 case MSR_KVM_SYSTEM_TIME_NEW:
2416 data = vcpu->arch.time;
2417 break;
2418 case MSR_KVM_ASYNC_PF_EN:
2419 data = vcpu->arch.apf.msr_val;
2420 break;
2421 case MSR_KVM_STEAL_TIME:
2422 data = vcpu->arch.st.msr_val;
2423 break;
2424 case MSR_KVM_PV_EOI_EN:
2425 data = vcpu->arch.pv_eoi.msr_val;
2426 break;
2427 case MSR_IA32_P5_MC_ADDR:
2428 case MSR_IA32_P5_MC_TYPE:
2429 case MSR_IA32_MCG_CAP:
2430 case MSR_IA32_MCG_CTL:
2431 case MSR_IA32_MCG_STATUS:
2432 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2433 return get_msr_mce(vcpu, msr, pdata);
2434 case MSR_K7_CLK_CTL:
2435 /*
2436 * Provide expected ramp-up count for K7. All other
2437 * are set to zero, indicating minimum divisors for
2438 * every field.
2439 *
2440 * This prevents guest kernels on AMD host with CPU
2441 * type 6, model 8 and higher from exploding due to
2442 * the rdmsr failing.
2443 */
2444 data = 0x20000000;
2445 break;
2446 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2447 if (kvm_hv_msr_partition_wide(msr)) {
2448 int r;
2449 mutex_lock(&vcpu->kvm->lock);
2450 r = get_msr_hyperv_pw(vcpu, msr, pdata);
2451 mutex_unlock(&vcpu->kvm->lock);
2452 return r;
2453 } else
2454 return get_msr_hyperv(vcpu, msr, pdata);
2455 break;
2456 case MSR_IA32_BBL_CR_CTL3:
2457 /* This legacy MSR exists but isn't fully documented in current
2458 * silicon. It is however accessed by winxp in very narrow
2459 * scenarios where it sets bit #19, itself documented as
2460 * a "reserved" bit. Best effort attempt to source coherent
2461 * read data here should the balance of the register be
2462 * interpreted by the guest:
2463 *
2464 * L2 cache control register 3: 64GB range, 256KB size,
2465 * enabled, latency 0x1, configured
2466 */
2467 data = 0xbe702111;
2468 break;
2469 case MSR_AMD64_OSVW_ID_LENGTH:
2470 if (!guest_cpuid_has_osvw(vcpu))
2471 return 1;
2472 data = vcpu->arch.osvw.length;
2473 break;
2474 case MSR_AMD64_OSVW_STATUS:
2475 if (!guest_cpuid_has_osvw(vcpu))
2476 return 1;
2477 data = vcpu->arch.osvw.status;
2478 break;
2479 default:
2480 if (kvm_pmu_msr(vcpu, msr))
2481 return kvm_pmu_get_msr(vcpu, msr, pdata);
2482 if (!ignore_msrs) {
2483 vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2484 return 1;
2485 } else {
2486 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2487 data = 0;
2488 }
2489 break;
2490 }
2491 *pdata = data;
2492 return 0;
2493 }
2494 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2495
2496 /*
2497 * Read or write a bunch of msrs. All parameters are kernel addresses.
2498 *
2499 * @return number of msrs set successfully.
2500 */
2501 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2502 struct kvm_msr_entry *entries,
2503 int (*do_msr)(struct kvm_vcpu *vcpu,
2504 unsigned index, u64 *data))
2505 {
2506 int i, idx;
2507
2508 idx = srcu_read_lock(&vcpu->kvm->srcu);
2509 for (i = 0; i < msrs->nmsrs; ++i)
2510 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2511 break;
2512 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2513
2514 return i;
2515 }
2516
2517 /*
2518 * Read or write a bunch of msrs. Parameters are user addresses.
2519 *
2520 * @return number of msrs set successfully.
2521 */
2522 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2523 int (*do_msr)(struct kvm_vcpu *vcpu,
2524 unsigned index, u64 *data),
2525 int writeback)
2526 {
2527 struct kvm_msrs msrs;
2528 struct kvm_msr_entry *entries;
2529 int r, n;
2530 unsigned size;
2531
2532 r = -EFAULT;
2533 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2534 goto out;
2535
2536 r = -E2BIG;
2537 if (msrs.nmsrs >= MAX_IO_MSRS)
2538 goto out;
2539
2540 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2541 entries = memdup_user(user_msrs->entries, size);
2542 if (IS_ERR(entries)) {
2543 r = PTR_ERR(entries);
2544 goto out;
2545 }
2546
2547 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2548 if (r < 0)
2549 goto out_free;
2550
2551 r = -EFAULT;
2552 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2553 goto out_free;
2554
2555 r = n;
2556
2557 out_free:
2558 kfree(entries);
2559 out:
2560 return r;
2561 }
2562
2563 int kvm_dev_ioctl_check_extension(long ext)
2564 {
2565 int r;
2566
2567 switch (ext) {
2568 case KVM_CAP_IRQCHIP:
2569 case KVM_CAP_HLT:
2570 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2571 case KVM_CAP_SET_TSS_ADDR:
2572 case KVM_CAP_EXT_CPUID:
2573 case KVM_CAP_EXT_EMUL_CPUID:
2574 case KVM_CAP_CLOCKSOURCE:
2575 case KVM_CAP_PIT:
2576 case KVM_CAP_NOP_IO_DELAY:
2577 case KVM_CAP_MP_STATE:
2578 case KVM_CAP_SYNC_MMU:
2579 case KVM_CAP_USER_NMI:
2580 case KVM_CAP_REINJECT_CONTROL:
2581 case KVM_CAP_IRQ_INJECT_STATUS:
2582 case KVM_CAP_IRQFD:
2583 case KVM_CAP_IOEVENTFD:
2584 case KVM_CAP_PIT2:
2585 case KVM_CAP_PIT_STATE2:
2586 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2587 case KVM_CAP_XEN_HVM:
2588 case KVM_CAP_ADJUST_CLOCK:
2589 case KVM_CAP_VCPU_EVENTS:
2590 case KVM_CAP_HYPERV:
2591 case KVM_CAP_HYPERV_VAPIC:
2592 case KVM_CAP_HYPERV_SPIN:
2593 case KVM_CAP_PCI_SEGMENT:
2594 case KVM_CAP_DEBUGREGS:
2595 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2596 case KVM_CAP_XSAVE:
2597 case KVM_CAP_ASYNC_PF:
2598 case KVM_CAP_GET_TSC_KHZ:
2599 case KVM_CAP_KVMCLOCK_CTRL:
2600 case KVM_CAP_READONLY_MEM:
2601 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2602 case KVM_CAP_ASSIGN_DEV_IRQ:
2603 case KVM_CAP_PCI_2_3:
2604 case KVM_CAP_HYPERV_TIME:
2605 #endif
2606 r = 1;
2607 break;
2608 case KVM_CAP_COALESCED_MMIO:
2609 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2610 break;
2611 case KVM_CAP_VAPIC:
2612 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2613 break;
2614 case KVM_CAP_NR_VCPUS:
2615 r = KVM_SOFT_MAX_VCPUS;
2616 break;
2617 case KVM_CAP_MAX_VCPUS:
2618 r = KVM_MAX_VCPUS;
2619 break;
2620 case KVM_CAP_NR_MEMSLOTS:
2621 r = KVM_USER_MEM_SLOTS;
2622 break;
2623 case KVM_CAP_PV_MMU: /* obsolete */
2624 r = 0;
2625 break;
2626 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2627 case KVM_CAP_IOMMU:
2628 r = iommu_present(&pci_bus_type);
2629 break;
2630 #endif
2631 case KVM_CAP_MCE:
2632 r = KVM_MAX_MCE_BANKS;
2633 break;
2634 case KVM_CAP_XCRS:
2635 r = cpu_has_xsave;
2636 break;
2637 case KVM_CAP_TSC_CONTROL:
2638 r = kvm_has_tsc_control;
2639 break;
2640 case KVM_CAP_TSC_DEADLINE_TIMER:
2641 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2642 break;
2643 default:
2644 r = 0;
2645 break;
2646 }
2647 return r;
2648
2649 }
2650
2651 long kvm_arch_dev_ioctl(struct file *filp,
2652 unsigned int ioctl, unsigned long arg)
2653 {
2654 void __user *argp = (void __user *)arg;
2655 long r;
2656
2657 switch (ioctl) {
2658 case KVM_GET_MSR_INDEX_LIST: {
2659 struct kvm_msr_list __user *user_msr_list = argp;
2660 struct kvm_msr_list msr_list;
2661 unsigned n;
2662
2663 r = -EFAULT;
2664 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2665 goto out;
2666 n = msr_list.nmsrs;
2667 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2668 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2669 goto out;
2670 r = -E2BIG;
2671 if (n < msr_list.nmsrs)
2672 goto out;
2673 r = -EFAULT;
2674 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2675 num_msrs_to_save * sizeof(u32)))
2676 goto out;
2677 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2678 &emulated_msrs,
2679 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2680 goto out;
2681 r = 0;
2682 break;
2683 }
2684 case KVM_GET_SUPPORTED_CPUID:
2685 case KVM_GET_EMULATED_CPUID: {
2686 struct kvm_cpuid2 __user *cpuid_arg = argp;
2687 struct kvm_cpuid2 cpuid;
2688
2689 r = -EFAULT;
2690 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2691 goto out;
2692
2693 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2694 ioctl);
2695 if (r)
2696 goto out;
2697
2698 r = -EFAULT;
2699 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2700 goto out;
2701 r = 0;
2702 break;
2703 }
2704 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2705 u64 mce_cap;
2706
2707 mce_cap = KVM_MCE_CAP_SUPPORTED;
2708 r = -EFAULT;
2709 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2710 goto out;
2711 r = 0;
2712 break;
2713 }
2714 default:
2715 r = -EINVAL;
2716 }
2717 out:
2718 return r;
2719 }
2720
2721 static void wbinvd_ipi(void *garbage)
2722 {
2723 wbinvd();
2724 }
2725
2726 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2727 {
2728 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2729 }
2730
2731 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2732 {
2733 /* Address WBINVD may be executed by guest */
2734 if (need_emulate_wbinvd(vcpu)) {
2735 if (kvm_x86_ops->has_wbinvd_exit())
2736 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2737 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2738 smp_call_function_single(vcpu->cpu,
2739 wbinvd_ipi, NULL, 1);
2740 }
2741
2742 kvm_x86_ops->vcpu_load(vcpu, cpu);
2743
2744 /* Apply any externally detected TSC adjustments (due to suspend) */
2745 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2746 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2747 vcpu->arch.tsc_offset_adjustment = 0;
2748 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2749 }
2750
2751 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2752 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2753 native_read_tsc() - vcpu->arch.last_host_tsc;
2754 if (tsc_delta < 0)
2755 mark_tsc_unstable("KVM discovered backwards TSC");
2756 if (check_tsc_unstable()) {
2757 u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2758 vcpu->arch.last_guest_tsc);
2759 kvm_x86_ops->write_tsc_offset(vcpu, offset);
2760 vcpu->arch.tsc_catchup = 1;
2761 }
2762 /*
2763 * On a host with synchronized TSC, there is no need to update
2764 * kvmclock on vcpu->cpu migration
2765 */
2766 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2767 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2768 if (vcpu->cpu != cpu)
2769 kvm_migrate_timers(vcpu);
2770 vcpu->cpu = cpu;
2771 }
2772
2773 accumulate_steal_time(vcpu);
2774 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2775 }
2776
2777 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2778 {
2779 kvm_x86_ops->vcpu_put(vcpu);
2780 kvm_put_guest_fpu(vcpu);
2781 vcpu->arch.last_host_tsc = native_read_tsc();
2782 }
2783
2784 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2785 struct kvm_lapic_state *s)
2786 {
2787 kvm_x86_ops->sync_pir_to_irr(vcpu);
2788 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2789
2790 return 0;
2791 }
2792
2793 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2794 struct kvm_lapic_state *s)
2795 {
2796 kvm_apic_post_state_restore(vcpu, s);
2797 update_cr8_intercept(vcpu);
2798
2799 return 0;
2800 }
2801
2802 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2803 struct kvm_interrupt *irq)
2804 {
2805 if (irq->irq >= KVM_NR_INTERRUPTS)
2806 return -EINVAL;
2807 if (irqchip_in_kernel(vcpu->kvm))
2808 return -ENXIO;
2809
2810 kvm_queue_interrupt(vcpu, irq->irq, false);
2811 kvm_make_request(KVM_REQ_EVENT, vcpu);
2812
2813 return 0;
2814 }
2815
2816 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2817 {
2818 kvm_inject_nmi(vcpu);
2819
2820 return 0;
2821 }
2822
2823 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2824 struct kvm_tpr_access_ctl *tac)
2825 {
2826 if (tac->flags)
2827 return -EINVAL;
2828 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2829 return 0;
2830 }
2831
2832 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2833 u64 mcg_cap)
2834 {
2835 int r;
2836 unsigned bank_num = mcg_cap & 0xff, bank;
2837
2838 r = -EINVAL;
2839 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2840 goto out;
2841 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2842 goto out;
2843 r = 0;
2844 vcpu->arch.mcg_cap = mcg_cap;
2845 /* Init IA32_MCG_CTL to all 1s */
2846 if (mcg_cap & MCG_CTL_P)
2847 vcpu->arch.mcg_ctl = ~(u64)0;
2848 /* Init IA32_MCi_CTL to all 1s */
2849 for (bank = 0; bank < bank_num; bank++)
2850 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2851 out:
2852 return r;
2853 }
2854
2855 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2856 struct kvm_x86_mce *mce)
2857 {
2858 u64 mcg_cap = vcpu->arch.mcg_cap;
2859 unsigned bank_num = mcg_cap & 0xff;
2860 u64 *banks = vcpu->arch.mce_banks;
2861
2862 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2863 return -EINVAL;
2864 /*
2865 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2866 * reporting is disabled
2867 */
2868 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2869 vcpu->arch.mcg_ctl != ~(u64)0)
2870 return 0;
2871 banks += 4 * mce->bank;
2872 /*
2873 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2874 * reporting is disabled for the bank
2875 */
2876 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2877 return 0;
2878 if (mce->status & MCI_STATUS_UC) {
2879 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2880 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2881 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2882 return 0;
2883 }
2884 if (banks[1] & MCI_STATUS_VAL)
2885 mce->status |= MCI_STATUS_OVER;
2886 banks[2] = mce->addr;
2887 banks[3] = mce->misc;
2888 vcpu->arch.mcg_status = mce->mcg_status;
2889 banks[1] = mce->status;
2890 kvm_queue_exception(vcpu, MC_VECTOR);
2891 } else if (!(banks[1] & MCI_STATUS_VAL)
2892 || !(banks[1] & MCI_STATUS_UC)) {
2893 if (banks[1] & MCI_STATUS_VAL)
2894 mce->status |= MCI_STATUS_OVER;
2895 banks[2] = mce->addr;
2896 banks[3] = mce->misc;
2897 banks[1] = mce->status;
2898 } else
2899 banks[1] |= MCI_STATUS_OVER;
2900 return 0;
2901 }
2902
2903 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2904 struct kvm_vcpu_events *events)
2905 {
2906 process_nmi(vcpu);
2907 events->exception.injected =
2908 vcpu->arch.exception.pending &&
2909 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2910 events->exception.nr = vcpu->arch.exception.nr;
2911 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2912 events->exception.pad = 0;
2913 events->exception.error_code = vcpu->arch.exception.error_code;
2914
2915 events->interrupt.injected =
2916 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2917 events->interrupt.nr = vcpu->arch.interrupt.nr;
2918 events->interrupt.soft = 0;
2919 events->interrupt.shadow =
2920 kvm_x86_ops->get_interrupt_shadow(vcpu,
2921 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2922
2923 events->nmi.injected = vcpu->arch.nmi_injected;
2924 events->nmi.pending = vcpu->arch.nmi_pending != 0;
2925 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2926 events->nmi.pad = 0;
2927
2928 events->sipi_vector = 0; /* never valid when reporting to user space */
2929
2930 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2931 | KVM_VCPUEVENT_VALID_SHADOW);
2932 memset(&events->reserved, 0, sizeof(events->reserved));
2933 }
2934
2935 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2936 struct kvm_vcpu_events *events)
2937 {
2938 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2939 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2940 | KVM_VCPUEVENT_VALID_SHADOW))
2941 return -EINVAL;
2942
2943 process_nmi(vcpu);
2944 vcpu->arch.exception.pending = events->exception.injected;
2945 vcpu->arch.exception.nr = events->exception.nr;
2946 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2947 vcpu->arch.exception.error_code = events->exception.error_code;
2948
2949 vcpu->arch.interrupt.pending = events->interrupt.injected;
2950 vcpu->arch.interrupt.nr = events->interrupt.nr;
2951 vcpu->arch.interrupt.soft = events->interrupt.soft;
2952 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2953 kvm_x86_ops->set_interrupt_shadow(vcpu,
2954 events->interrupt.shadow);
2955
2956 vcpu->arch.nmi_injected = events->nmi.injected;
2957 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2958 vcpu->arch.nmi_pending = events->nmi.pending;
2959 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2960
2961 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2962 kvm_vcpu_has_lapic(vcpu))
2963 vcpu->arch.apic->sipi_vector = events->sipi_vector;
2964
2965 kvm_make_request(KVM_REQ_EVENT, vcpu);
2966
2967 return 0;
2968 }
2969
2970 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2971 struct kvm_debugregs *dbgregs)
2972 {
2973 unsigned long val;
2974
2975 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2976 _kvm_get_dr(vcpu, 6, &val);
2977 dbgregs->dr6 = val;
2978 dbgregs->dr7 = vcpu->arch.dr7;
2979 dbgregs->flags = 0;
2980 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2981 }
2982
2983 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2984 struct kvm_debugregs *dbgregs)
2985 {
2986 if (dbgregs->flags)
2987 return -EINVAL;
2988
2989 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2990 vcpu->arch.dr6 = dbgregs->dr6;
2991 kvm_update_dr6(vcpu);
2992 vcpu->arch.dr7 = dbgregs->dr7;
2993 kvm_update_dr7(vcpu);
2994
2995 return 0;
2996 }
2997
2998 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2999 struct kvm_xsave *guest_xsave)
3000 {
3001 if (cpu_has_xsave) {
3002 memcpy(guest_xsave->region,
3003 &vcpu->arch.guest_fpu.state->xsave,
3004 vcpu->arch.guest_xstate_size);
3005 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] &=
3006 vcpu->arch.guest_supported_xcr0 | XSTATE_FPSSE;
3007 } else {
3008 memcpy(guest_xsave->region,
3009 &vcpu->arch.guest_fpu.state->fxsave,
3010 sizeof(struct i387_fxsave_struct));
3011 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3012 XSTATE_FPSSE;
3013 }
3014 }
3015
3016 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3017 struct kvm_xsave *guest_xsave)
3018 {
3019 u64 xstate_bv =
3020 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3021
3022 if (cpu_has_xsave) {
3023 /*
3024 * Here we allow setting states that are not present in
3025 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3026 * with old userspace.
3027 */
3028 if (xstate_bv & ~KVM_SUPPORTED_XCR0)
3029 return -EINVAL;
3030 if (xstate_bv & ~host_xcr0)
3031 return -EINVAL;
3032 memcpy(&vcpu->arch.guest_fpu.state->xsave,
3033 guest_xsave->region, vcpu->arch.guest_xstate_size);
3034 } else {
3035 if (xstate_bv & ~XSTATE_FPSSE)
3036 return -EINVAL;
3037 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
3038 guest_xsave->region, sizeof(struct i387_fxsave_struct));
3039 }
3040 return 0;
3041 }
3042
3043 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3044 struct kvm_xcrs *guest_xcrs)
3045 {
3046 if (!cpu_has_xsave) {
3047 guest_xcrs->nr_xcrs = 0;
3048 return;
3049 }
3050
3051 guest_xcrs->nr_xcrs = 1;
3052 guest_xcrs->flags = 0;
3053 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3054 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3055 }
3056
3057 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3058 struct kvm_xcrs *guest_xcrs)
3059 {
3060 int i, r = 0;
3061
3062 if (!cpu_has_xsave)
3063 return -EINVAL;
3064
3065 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3066 return -EINVAL;
3067
3068 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3069 /* Only support XCR0 currently */
3070 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3071 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3072 guest_xcrs->xcrs[i].value);
3073 break;
3074 }
3075 if (r)
3076 r = -EINVAL;
3077 return r;
3078 }
3079
3080 /*
3081 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3082 * stopped by the hypervisor. This function will be called from the host only.
3083 * EINVAL is returned when the host attempts to set the flag for a guest that
3084 * does not support pv clocks.
3085 */
3086 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3087 {
3088 if (!vcpu->arch.pv_time_enabled)
3089 return -EINVAL;
3090 vcpu->arch.pvclock_set_guest_stopped_request = true;
3091 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3092 return 0;
3093 }
3094
3095 long kvm_arch_vcpu_ioctl(struct file *filp,
3096 unsigned int ioctl, unsigned long arg)
3097 {
3098 struct kvm_vcpu *vcpu = filp->private_data;
3099 void __user *argp = (void __user *)arg;
3100 int r;
3101 union {
3102 struct kvm_lapic_state *lapic;
3103 struct kvm_xsave *xsave;
3104 struct kvm_xcrs *xcrs;
3105 void *buffer;
3106 } u;
3107
3108 u.buffer = NULL;
3109 switch (ioctl) {
3110 case KVM_GET_LAPIC: {
3111 r = -EINVAL;
3112 if (!vcpu->arch.apic)
3113 goto out;
3114 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3115
3116 r = -ENOMEM;
3117 if (!u.lapic)
3118 goto out;
3119 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3120 if (r)
3121 goto out;
3122 r = -EFAULT;
3123 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3124 goto out;
3125 r = 0;
3126 break;
3127 }
3128 case KVM_SET_LAPIC: {
3129 r = -EINVAL;
3130 if (!vcpu->arch.apic)
3131 goto out;
3132 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3133 if (IS_ERR(u.lapic))
3134 return PTR_ERR(u.lapic);
3135
3136 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3137 break;
3138 }
3139 case KVM_INTERRUPT: {
3140 struct kvm_interrupt irq;
3141
3142 r = -EFAULT;
3143 if (copy_from_user(&irq, argp, sizeof irq))
3144 goto out;
3145 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3146 break;
3147 }
3148 case KVM_NMI: {
3149 r = kvm_vcpu_ioctl_nmi(vcpu);
3150 break;
3151 }
3152 case KVM_SET_CPUID: {
3153 struct kvm_cpuid __user *cpuid_arg = argp;
3154 struct kvm_cpuid cpuid;
3155
3156 r = -EFAULT;
3157 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3158 goto out;
3159 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3160 break;
3161 }
3162 case KVM_SET_CPUID2: {
3163 struct kvm_cpuid2 __user *cpuid_arg = argp;
3164 struct kvm_cpuid2 cpuid;
3165
3166 r = -EFAULT;
3167 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3168 goto out;
3169 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3170 cpuid_arg->entries);
3171 break;
3172 }
3173 case KVM_GET_CPUID2: {
3174 struct kvm_cpuid2 __user *cpuid_arg = argp;
3175 struct kvm_cpuid2 cpuid;
3176
3177 r = -EFAULT;
3178 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3179 goto out;
3180 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3181 cpuid_arg->entries);
3182 if (r)
3183 goto out;
3184 r = -EFAULT;
3185 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3186 goto out;
3187 r = 0;
3188 break;
3189 }
3190 case KVM_GET_MSRS:
3191 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3192 break;
3193 case KVM_SET_MSRS:
3194 r = msr_io(vcpu, argp, do_set_msr, 0);
3195 break;
3196 case KVM_TPR_ACCESS_REPORTING: {
3197 struct kvm_tpr_access_ctl tac;
3198
3199 r = -EFAULT;
3200 if (copy_from_user(&tac, argp, sizeof tac))
3201 goto out;
3202 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3203 if (r)
3204 goto out;
3205 r = -EFAULT;
3206 if (copy_to_user(argp, &tac, sizeof tac))
3207 goto out;
3208 r = 0;
3209 break;
3210 };
3211 case KVM_SET_VAPIC_ADDR: {
3212 struct kvm_vapic_addr va;
3213
3214 r = -EINVAL;
3215 if (!irqchip_in_kernel(vcpu->kvm))
3216 goto out;
3217 r = -EFAULT;
3218 if (copy_from_user(&va, argp, sizeof va))
3219 goto out;
3220 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3221 break;
3222 }
3223 case KVM_X86_SETUP_MCE: {
3224 u64 mcg_cap;
3225
3226 r = -EFAULT;
3227 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3228 goto out;
3229 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3230 break;
3231 }
3232 case KVM_X86_SET_MCE: {
3233 struct kvm_x86_mce mce;
3234
3235 r = -EFAULT;
3236 if (copy_from_user(&mce, argp, sizeof mce))
3237 goto out;
3238 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3239 break;
3240 }
3241 case KVM_GET_VCPU_EVENTS: {
3242 struct kvm_vcpu_events events;
3243
3244 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3245
3246 r = -EFAULT;
3247 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3248 break;
3249 r = 0;
3250 break;
3251 }
3252 case KVM_SET_VCPU_EVENTS: {
3253 struct kvm_vcpu_events events;
3254
3255 r = -EFAULT;
3256 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3257 break;
3258
3259 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3260 break;
3261 }
3262 case KVM_GET_DEBUGREGS: {
3263 struct kvm_debugregs dbgregs;
3264
3265 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3266
3267 r = -EFAULT;
3268 if (copy_to_user(argp, &dbgregs,
3269 sizeof(struct kvm_debugregs)))
3270 break;
3271 r = 0;
3272 break;
3273 }
3274 case KVM_SET_DEBUGREGS: {
3275 struct kvm_debugregs dbgregs;
3276
3277 r = -EFAULT;
3278 if (copy_from_user(&dbgregs, argp,
3279 sizeof(struct kvm_debugregs)))
3280 break;
3281
3282 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3283 break;
3284 }
3285 case KVM_GET_XSAVE: {
3286 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3287 r = -ENOMEM;
3288 if (!u.xsave)
3289 break;
3290
3291 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3292
3293 r = -EFAULT;
3294 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3295 break;
3296 r = 0;
3297 break;
3298 }
3299 case KVM_SET_XSAVE: {
3300 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3301 if (IS_ERR(u.xsave))
3302 return PTR_ERR(u.xsave);
3303
3304 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3305 break;
3306 }
3307 case KVM_GET_XCRS: {
3308 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3309 r = -ENOMEM;
3310 if (!u.xcrs)
3311 break;
3312
3313 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3314
3315 r = -EFAULT;
3316 if (copy_to_user(argp, u.xcrs,
3317 sizeof(struct kvm_xcrs)))
3318 break;
3319 r = 0;
3320 break;
3321 }
3322 case KVM_SET_XCRS: {
3323 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3324 if (IS_ERR(u.xcrs))
3325 return PTR_ERR(u.xcrs);
3326
3327 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3328 break;
3329 }
3330 case KVM_SET_TSC_KHZ: {
3331 u32 user_tsc_khz;
3332
3333 r = -EINVAL;
3334 user_tsc_khz = (u32)arg;
3335
3336 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3337 goto out;
3338
3339 if (user_tsc_khz == 0)
3340 user_tsc_khz = tsc_khz;
3341
3342 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3343
3344 r = 0;
3345 goto out;
3346 }
3347 case KVM_GET_TSC_KHZ: {
3348 r = vcpu->arch.virtual_tsc_khz;
3349 goto out;
3350 }
3351 case KVM_KVMCLOCK_CTRL: {
3352 r = kvm_set_guest_paused(vcpu);
3353 goto out;
3354 }
3355 default:
3356 r = -EINVAL;
3357 }
3358 out:
3359 kfree(u.buffer);
3360 return r;
3361 }
3362
3363 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3364 {
3365 return VM_FAULT_SIGBUS;
3366 }
3367
3368 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3369 {
3370 int ret;
3371
3372 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3373 return -EINVAL;
3374 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3375 return ret;
3376 }
3377
3378 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3379 u64 ident_addr)
3380 {
3381 kvm->arch.ept_identity_map_addr = ident_addr;
3382 return 0;
3383 }
3384
3385 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3386 u32 kvm_nr_mmu_pages)
3387 {
3388 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3389 return -EINVAL;
3390
3391 mutex_lock(&kvm->slots_lock);
3392
3393 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3394 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3395
3396 mutex_unlock(&kvm->slots_lock);
3397 return 0;
3398 }
3399
3400 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3401 {
3402 return kvm->arch.n_max_mmu_pages;
3403 }
3404
3405 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3406 {
3407 int r;
3408
3409 r = 0;
3410 switch (chip->chip_id) {
3411 case KVM_IRQCHIP_PIC_MASTER:
3412 memcpy(&chip->chip.pic,
3413 &pic_irqchip(kvm)->pics[0],
3414 sizeof(struct kvm_pic_state));
3415 break;
3416 case KVM_IRQCHIP_PIC_SLAVE:
3417 memcpy(&chip->chip.pic,
3418 &pic_irqchip(kvm)->pics[1],
3419 sizeof(struct kvm_pic_state));
3420 break;
3421 case KVM_IRQCHIP_IOAPIC:
3422 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3423 break;
3424 default:
3425 r = -EINVAL;
3426 break;
3427 }
3428 return r;
3429 }
3430
3431 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3432 {
3433 int r;
3434
3435 r = 0;
3436 switch (chip->chip_id) {
3437 case KVM_IRQCHIP_PIC_MASTER:
3438 spin_lock(&pic_irqchip(kvm)->lock);
3439 memcpy(&pic_irqchip(kvm)->pics[0],
3440 &chip->chip.pic,
3441 sizeof(struct kvm_pic_state));
3442 spin_unlock(&pic_irqchip(kvm)->lock);
3443 break;
3444 case KVM_IRQCHIP_PIC_SLAVE:
3445 spin_lock(&pic_irqchip(kvm)->lock);
3446 memcpy(&pic_irqchip(kvm)->pics[1],
3447 &chip->chip.pic,
3448 sizeof(struct kvm_pic_state));
3449 spin_unlock(&pic_irqchip(kvm)->lock);
3450 break;
3451 case KVM_IRQCHIP_IOAPIC:
3452 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3453 break;
3454 default:
3455 r = -EINVAL;
3456 break;
3457 }
3458 kvm_pic_update_irq(pic_irqchip(kvm));
3459 return r;
3460 }
3461
3462 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3463 {
3464 int r = 0;
3465
3466 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3467 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3468 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3469 return r;
3470 }
3471
3472 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3473 {
3474 int r = 0;
3475
3476 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3477 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3478 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3479 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3480 return r;
3481 }
3482
3483 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3484 {
3485 int r = 0;
3486
3487 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3488 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3489 sizeof(ps->channels));
3490 ps->flags = kvm->arch.vpit->pit_state.flags;
3491 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3492 memset(&ps->reserved, 0, sizeof(ps->reserved));
3493 return r;
3494 }
3495
3496 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3497 {
3498 int r = 0, start = 0;
3499 u32 prev_legacy, cur_legacy;
3500 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3501 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3502 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3503 if (!prev_legacy && cur_legacy)
3504 start = 1;
3505 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3506 sizeof(kvm->arch.vpit->pit_state.channels));
3507 kvm->arch.vpit->pit_state.flags = ps->flags;
3508 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3509 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3510 return r;
3511 }
3512
3513 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3514 struct kvm_reinject_control *control)
3515 {
3516 if (!kvm->arch.vpit)
3517 return -ENXIO;
3518 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3519 kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3520 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3521 return 0;
3522 }
3523
3524 /**
3525 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3526 * @kvm: kvm instance
3527 * @log: slot id and address to which we copy the log
3528 *
3529 * We need to keep it in mind that VCPU threads can write to the bitmap
3530 * concurrently. So, to avoid losing data, we keep the following order for
3531 * each bit:
3532 *
3533 * 1. Take a snapshot of the bit and clear it if needed.
3534 * 2. Write protect the corresponding page.
3535 * 3. Flush TLB's if needed.
3536 * 4. Copy the snapshot to the userspace.
3537 *
3538 * Between 2 and 3, the guest may write to the page using the remaining TLB
3539 * entry. This is not a problem because the page will be reported dirty at
3540 * step 4 using the snapshot taken before and step 3 ensures that successive
3541 * writes will be logged for the next call.
3542 */
3543 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3544 {
3545 int r;
3546 struct kvm_memory_slot *memslot;
3547 unsigned long n, i;
3548 unsigned long *dirty_bitmap;
3549 unsigned long *dirty_bitmap_buffer;
3550 bool is_dirty = false;
3551
3552 mutex_lock(&kvm->slots_lock);
3553
3554 r = -EINVAL;
3555 if (log->slot >= KVM_USER_MEM_SLOTS)
3556 goto out;
3557
3558 memslot = id_to_memslot(kvm->memslots, log->slot);
3559
3560 dirty_bitmap = memslot->dirty_bitmap;
3561 r = -ENOENT;
3562 if (!dirty_bitmap)
3563 goto out;
3564
3565 n = kvm_dirty_bitmap_bytes(memslot);
3566
3567 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3568 memset(dirty_bitmap_buffer, 0, n);
3569
3570 spin_lock(&kvm->mmu_lock);
3571
3572 for (i = 0; i < n / sizeof(long); i++) {
3573 unsigned long mask;
3574 gfn_t offset;
3575
3576 if (!dirty_bitmap[i])
3577 continue;
3578
3579 is_dirty = true;
3580
3581 mask = xchg(&dirty_bitmap[i], 0);
3582 dirty_bitmap_buffer[i] = mask;
3583
3584 offset = i * BITS_PER_LONG;
3585 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3586 }
3587 if (is_dirty)
3588 kvm_flush_remote_tlbs(kvm);
3589
3590 spin_unlock(&kvm->mmu_lock);
3591
3592 r = -EFAULT;
3593 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3594 goto out;
3595
3596 r = 0;
3597 out:
3598 mutex_unlock(&kvm->slots_lock);
3599 return r;
3600 }
3601
3602 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3603 bool line_status)
3604 {
3605 if (!irqchip_in_kernel(kvm))
3606 return -ENXIO;
3607
3608 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3609 irq_event->irq, irq_event->level,
3610 line_status);
3611 return 0;
3612 }
3613
3614 long kvm_arch_vm_ioctl(struct file *filp,
3615 unsigned int ioctl, unsigned long arg)
3616 {
3617 struct kvm *kvm = filp->private_data;
3618 void __user *argp = (void __user *)arg;
3619 int r = -ENOTTY;
3620 /*
3621 * This union makes it completely explicit to gcc-3.x
3622 * that these two variables' stack usage should be
3623 * combined, not added together.
3624 */
3625 union {
3626 struct kvm_pit_state ps;
3627 struct kvm_pit_state2 ps2;
3628 struct kvm_pit_config pit_config;
3629 } u;
3630
3631 switch (ioctl) {
3632 case KVM_SET_TSS_ADDR:
3633 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3634 break;
3635 case KVM_SET_IDENTITY_MAP_ADDR: {
3636 u64 ident_addr;
3637
3638 r = -EFAULT;
3639 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3640 goto out;
3641 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3642 break;
3643 }
3644 case KVM_SET_NR_MMU_PAGES:
3645 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3646 break;
3647 case KVM_GET_NR_MMU_PAGES:
3648 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3649 break;
3650 case KVM_CREATE_IRQCHIP: {
3651 struct kvm_pic *vpic;
3652
3653 mutex_lock(&kvm->lock);
3654 r = -EEXIST;
3655 if (kvm->arch.vpic)
3656 goto create_irqchip_unlock;
3657 r = -EINVAL;
3658 if (atomic_read(&kvm->online_vcpus))
3659 goto create_irqchip_unlock;
3660 r = -ENOMEM;
3661 vpic = kvm_create_pic(kvm);
3662 if (vpic) {
3663 r = kvm_ioapic_init(kvm);
3664 if (r) {
3665 mutex_lock(&kvm->slots_lock);
3666 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3667 &vpic->dev_master);
3668 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3669 &vpic->dev_slave);
3670 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3671 &vpic->dev_eclr);
3672 mutex_unlock(&kvm->slots_lock);
3673 kfree(vpic);
3674 goto create_irqchip_unlock;
3675 }
3676 } else
3677 goto create_irqchip_unlock;
3678 smp_wmb();
3679 kvm->arch.vpic = vpic;
3680 smp_wmb();
3681 r = kvm_setup_default_irq_routing(kvm);
3682 if (r) {
3683 mutex_lock(&kvm->slots_lock);
3684 mutex_lock(&kvm->irq_lock);
3685 kvm_ioapic_destroy(kvm);
3686 kvm_destroy_pic(kvm);
3687 mutex_unlock(&kvm->irq_lock);
3688 mutex_unlock(&kvm->slots_lock);
3689 }
3690 create_irqchip_unlock:
3691 mutex_unlock(&kvm->lock);
3692 break;
3693 }
3694 case KVM_CREATE_PIT:
3695 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3696 goto create_pit;
3697 case KVM_CREATE_PIT2:
3698 r = -EFAULT;
3699 if (copy_from_user(&u.pit_config, argp,
3700 sizeof(struct kvm_pit_config)))
3701 goto out;
3702 create_pit:
3703 mutex_lock(&kvm->slots_lock);
3704 r = -EEXIST;
3705 if (kvm->arch.vpit)
3706 goto create_pit_unlock;
3707 r = -ENOMEM;
3708 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3709 if (kvm->arch.vpit)
3710 r = 0;
3711 create_pit_unlock:
3712 mutex_unlock(&kvm->slots_lock);
3713 break;
3714 case KVM_GET_IRQCHIP: {
3715 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3716 struct kvm_irqchip *chip;
3717
3718 chip = memdup_user(argp, sizeof(*chip));
3719 if (IS_ERR(chip)) {
3720 r = PTR_ERR(chip);
3721 goto out;
3722 }
3723
3724 r = -ENXIO;
3725 if (!irqchip_in_kernel(kvm))
3726 goto get_irqchip_out;
3727 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3728 if (r)
3729 goto get_irqchip_out;
3730 r = -EFAULT;
3731 if (copy_to_user(argp, chip, sizeof *chip))
3732 goto get_irqchip_out;
3733 r = 0;
3734 get_irqchip_out:
3735 kfree(chip);
3736 break;
3737 }
3738 case KVM_SET_IRQCHIP: {
3739 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3740 struct kvm_irqchip *chip;
3741
3742 chip = memdup_user(argp, sizeof(*chip));
3743 if (IS_ERR(chip)) {
3744 r = PTR_ERR(chip);
3745 goto out;
3746 }
3747
3748 r = -ENXIO;
3749 if (!irqchip_in_kernel(kvm))
3750 goto set_irqchip_out;
3751 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3752 if (r)
3753 goto set_irqchip_out;
3754 r = 0;
3755 set_irqchip_out:
3756 kfree(chip);
3757 break;
3758 }
3759 case KVM_GET_PIT: {
3760 r = -EFAULT;
3761 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3762 goto out;
3763 r = -ENXIO;
3764 if (!kvm->arch.vpit)
3765 goto out;
3766 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3767 if (r)
3768 goto out;
3769 r = -EFAULT;
3770 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3771 goto out;
3772 r = 0;
3773 break;
3774 }
3775 case KVM_SET_PIT: {
3776 r = -EFAULT;
3777 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3778 goto out;
3779 r = -ENXIO;
3780 if (!kvm->arch.vpit)
3781 goto out;
3782 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3783 break;
3784 }
3785 case KVM_GET_PIT2: {
3786 r = -ENXIO;
3787 if (!kvm->arch.vpit)
3788 goto out;
3789 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3790 if (r)
3791 goto out;
3792 r = -EFAULT;
3793 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3794 goto out;
3795 r = 0;
3796 break;
3797 }
3798 case KVM_SET_PIT2: {
3799 r = -EFAULT;
3800 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3801 goto out;
3802 r = -ENXIO;
3803 if (!kvm->arch.vpit)
3804 goto out;
3805 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3806 break;
3807 }
3808 case KVM_REINJECT_CONTROL: {
3809 struct kvm_reinject_control control;
3810 r = -EFAULT;
3811 if (copy_from_user(&control, argp, sizeof(control)))
3812 goto out;
3813 r = kvm_vm_ioctl_reinject(kvm, &control);
3814 break;
3815 }
3816 case KVM_XEN_HVM_CONFIG: {
3817 r = -EFAULT;
3818 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3819 sizeof(struct kvm_xen_hvm_config)))
3820 goto out;
3821 r = -EINVAL;
3822 if (kvm->arch.xen_hvm_config.flags)
3823 goto out;
3824 r = 0;
3825 break;
3826 }
3827 case KVM_SET_CLOCK: {
3828 struct kvm_clock_data user_ns;
3829 u64 now_ns;
3830 s64 delta;
3831
3832 r = -EFAULT;
3833 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3834 goto out;
3835
3836 r = -EINVAL;
3837 if (user_ns.flags)
3838 goto out;
3839
3840 r = 0;
3841 local_irq_disable();
3842 now_ns = get_kernel_ns();
3843 delta = user_ns.clock - now_ns;
3844 local_irq_enable();
3845 kvm->arch.kvmclock_offset = delta;
3846 kvm_gen_update_masterclock(kvm);
3847 break;
3848 }
3849 case KVM_GET_CLOCK: {
3850 struct kvm_clock_data user_ns;
3851 u64 now_ns;
3852
3853 local_irq_disable();
3854 now_ns = get_kernel_ns();
3855 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3856 local_irq_enable();
3857 user_ns.flags = 0;
3858 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3859
3860 r = -EFAULT;
3861 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3862 goto out;
3863 r = 0;
3864 break;
3865 }
3866
3867 default:
3868 ;
3869 }
3870 out:
3871 return r;
3872 }
3873
3874 static void kvm_init_msr_list(void)
3875 {
3876 u32 dummy[2];
3877 unsigned i, j;
3878
3879 /* skip the first msrs in the list. KVM-specific */
3880 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3881 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3882 continue;
3883 if (j < i)
3884 msrs_to_save[j] = msrs_to_save[i];
3885 j++;
3886 }
3887 num_msrs_to_save = j;
3888 }
3889
3890 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3891 const void *v)
3892 {
3893 int handled = 0;
3894 int n;
3895
3896 do {
3897 n = min(len, 8);
3898 if (!(vcpu->arch.apic &&
3899 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3900 && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3901 break;
3902 handled += n;
3903 addr += n;
3904 len -= n;
3905 v += n;
3906 } while (len);
3907
3908 return handled;
3909 }
3910
3911 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3912 {
3913 int handled = 0;
3914 int n;
3915
3916 do {
3917 n = min(len, 8);
3918 if (!(vcpu->arch.apic &&
3919 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3920 && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3921 break;
3922 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3923 handled += n;
3924 addr += n;
3925 len -= n;
3926 v += n;
3927 } while (len);
3928
3929 return handled;
3930 }
3931
3932 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3933 struct kvm_segment *var, int seg)
3934 {
3935 kvm_x86_ops->set_segment(vcpu, var, seg);
3936 }
3937
3938 void kvm_get_segment(struct kvm_vcpu *vcpu,
3939 struct kvm_segment *var, int seg)
3940 {
3941 kvm_x86_ops->get_segment(vcpu, var, seg);
3942 }
3943
3944 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3945 {
3946 gpa_t t_gpa;
3947 struct x86_exception exception;
3948
3949 BUG_ON(!mmu_is_nested(vcpu));
3950
3951 /* NPT walks are always user-walks */
3952 access |= PFERR_USER_MASK;
3953 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3954
3955 return t_gpa;
3956 }
3957
3958 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3959 struct x86_exception *exception)
3960 {
3961 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3962 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3963 }
3964
3965 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3966 struct x86_exception *exception)
3967 {
3968 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3969 access |= PFERR_FETCH_MASK;
3970 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3971 }
3972
3973 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3974 struct x86_exception *exception)
3975 {
3976 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3977 access |= PFERR_WRITE_MASK;
3978 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3979 }
3980
3981 /* uses this to access any guest's mapped memory without checking CPL */
3982 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3983 struct x86_exception *exception)
3984 {
3985 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3986 }
3987
3988 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3989 struct kvm_vcpu *vcpu, u32 access,
3990 struct x86_exception *exception)
3991 {
3992 void *data = val;
3993 int r = X86EMUL_CONTINUE;
3994
3995 while (bytes) {
3996 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3997 exception);
3998 unsigned offset = addr & (PAGE_SIZE-1);
3999 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4000 int ret;
4001
4002 if (gpa == UNMAPPED_GVA)
4003 return X86EMUL_PROPAGATE_FAULT;
4004 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
4005 if (ret < 0) {
4006 r = X86EMUL_IO_NEEDED;
4007 goto out;
4008 }
4009
4010 bytes -= toread;
4011 data += toread;
4012 addr += toread;
4013 }
4014 out:
4015 return r;
4016 }
4017
4018 /* used for instruction fetching */
4019 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4020 gva_t addr, void *val, unsigned int bytes,
4021 struct x86_exception *exception)
4022 {
4023 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4024 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4025
4026 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
4027 access | PFERR_FETCH_MASK,
4028 exception);
4029 }
4030
4031 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4032 gva_t addr, void *val, unsigned int bytes,
4033 struct x86_exception *exception)
4034 {
4035 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4036 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4037
4038 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4039 exception);
4040 }
4041 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4042
4043 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4044 gva_t addr, void *val, unsigned int bytes,
4045 struct x86_exception *exception)
4046 {
4047 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4048 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4049 }
4050
4051 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4052 gva_t addr, void *val,
4053 unsigned int bytes,
4054 struct x86_exception *exception)
4055 {
4056 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4057 void *data = val;
4058 int r = X86EMUL_CONTINUE;
4059
4060 while (bytes) {
4061 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4062 PFERR_WRITE_MASK,
4063 exception);
4064 unsigned offset = addr & (PAGE_SIZE-1);
4065 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4066 int ret;
4067
4068 if (gpa == UNMAPPED_GVA)
4069 return X86EMUL_PROPAGATE_FAULT;
4070 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
4071 if (ret < 0) {
4072 r = X86EMUL_IO_NEEDED;
4073 goto out;
4074 }
4075
4076 bytes -= towrite;
4077 data += towrite;
4078 addr += towrite;
4079 }
4080 out:
4081 return r;
4082 }
4083 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4084
4085 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4086 gpa_t *gpa, struct x86_exception *exception,
4087 bool write)
4088 {
4089 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4090 | (write ? PFERR_WRITE_MASK : 0);
4091
4092 if (vcpu_match_mmio_gva(vcpu, gva)
4093 && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) {
4094 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4095 (gva & (PAGE_SIZE - 1));
4096 trace_vcpu_match_mmio(gva, *gpa, write, false);
4097 return 1;
4098 }
4099
4100 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4101
4102 if (*gpa == UNMAPPED_GVA)
4103 return -1;
4104
4105 /* For APIC access vmexit */
4106 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4107 return 1;
4108
4109 if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4110 trace_vcpu_match_mmio(gva, *gpa, write, true);
4111 return 1;
4112 }
4113
4114 return 0;
4115 }
4116
4117 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4118 const void *val, int bytes)
4119 {
4120 int ret;
4121
4122 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4123 if (ret < 0)
4124 return 0;
4125 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4126 return 1;
4127 }
4128
4129 struct read_write_emulator_ops {
4130 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4131 int bytes);
4132 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4133 void *val, int bytes);
4134 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4135 int bytes, void *val);
4136 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4137 void *val, int bytes);
4138 bool write;
4139 };
4140
4141 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4142 {
4143 if (vcpu->mmio_read_completed) {
4144 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4145 vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4146 vcpu->mmio_read_completed = 0;
4147 return 1;
4148 }
4149
4150 return 0;
4151 }
4152
4153 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4154 void *val, int bytes)
4155 {
4156 return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4157 }
4158
4159 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4160 void *val, int bytes)
4161 {
4162 return emulator_write_phys(vcpu, gpa, val, bytes);
4163 }
4164
4165 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4166 {
4167 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4168 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4169 }
4170
4171 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4172 void *val, int bytes)
4173 {
4174 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4175 return X86EMUL_IO_NEEDED;
4176 }
4177
4178 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4179 void *val, int bytes)
4180 {
4181 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4182
4183 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4184 return X86EMUL_CONTINUE;
4185 }
4186
4187 static const struct read_write_emulator_ops read_emultor = {
4188 .read_write_prepare = read_prepare,
4189 .read_write_emulate = read_emulate,
4190 .read_write_mmio = vcpu_mmio_read,
4191 .read_write_exit_mmio = read_exit_mmio,
4192 };
4193
4194 static const struct read_write_emulator_ops write_emultor = {
4195 .read_write_emulate = write_emulate,
4196 .read_write_mmio = write_mmio,
4197 .read_write_exit_mmio = write_exit_mmio,
4198 .write = true,
4199 };
4200
4201 static int emulator_read_write_onepage(unsigned long addr, void *val,
4202 unsigned int bytes,
4203 struct x86_exception *exception,
4204 struct kvm_vcpu *vcpu,
4205 const struct read_write_emulator_ops *ops)
4206 {
4207 gpa_t gpa;
4208 int handled, ret;
4209 bool write = ops->write;
4210 struct kvm_mmio_fragment *frag;
4211
4212 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4213
4214 if (ret < 0)
4215 return X86EMUL_PROPAGATE_FAULT;
4216
4217 /* For APIC access vmexit */
4218 if (ret)
4219 goto mmio;
4220
4221 if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4222 return X86EMUL_CONTINUE;
4223
4224 mmio:
4225 /*
4226 * Is this MMIO handled locally?
4227 */
4228 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4229 if (handled == bytes)
4230 return X86EMUL_CONTINUE;
4231
4232 gpa += handled;
4233 bytes -= handled;
4234 val += handled;
4235
4236 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4237 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4238 frag->gpa = gpa;
4239 frag->data = val;
4240 frag->len = bytes;
4241 return X86EMUL_CONTINUE;
4242 }
4243
4244 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4245 void *val, unsigned int bytes,
4246 struct x86_exception *exception,
4247 const struct read_write_emulator_ops *ops)
4248 {
4249 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4250 gpa_t gpa;
4251 int rc;
4252
4253 if (ops->read_write_prepare &&
4254 ops->read_write_prepare(vcpu, val, bytes))
4255 return X86EMUL_CONTINUE;
4256
4257 vcpu->mmio_nr_fragments = 0;
4258
4259 /* Crossing a page boundary? */
4260 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4261 int now;
4262
4263 now = -addr & ~PAGE_MASK;
4264 rc = emulator_read_write_onepage(addr, val, now, exception,
4265 vcpu, ops);
4266
4267 if (rc != X86EMUL_CONTINUE)
4268 return rc;
4269 addr += now;
4270 val += now;
4271 bytes -= now;
4272 }
4273
4274 rc = emulator_read_write_onepage(addr, val, bytes, exception,
4275 vcpu, ops);
4276 if (rc != X86EMUL_CONTINUE)
4277 return rc;
4278
4279 if (!vcpu->mmio_nr_fragments)
4280 return rc;
4281
4282 gpa = vcpu->mmio_fragments[0].gpa;
4283
4284 vcpu->mmio_needed = 1;
4285 vcpu->mmio_cur_fragment = 0;
4286
4287 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4288 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4289 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4290 vcpu->run->mmio.phys_addr = gpa;
4291
4292 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4293 }
4294
4295 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4296 unsigned long addr,
4297 void *val,
4298 unsigned int bytes,
4299 struct x86_exception *exception)
4300 {
4301 return emulator_read_write(ctxt, addr, val, bytes,
4302 exception, &read_emultor);
4303 }
4304
4305 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4306 unsigned long addr,
4307 const void *val,
4308 unsigned int bytes,
4309 struct x86_exception *exception)
4310 {
4311 return emulator_read_write(ctxt, addr, (void *)val, bytes,
4312 exception, &write_emultor);
4313 }
4314
4315 #define CMPXCHG_TYPE(t, ptr, old, new) \
4316 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4317
4318 #ifdef CONFIG_X86_64
4319 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4320 #else
4321 # define CMPXCHG64(ptr, old, new) \
4322 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4323 #endif
4324
4325 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4326 unsigned long addr,
4327 const void *old,
4328 const void *new,
4329 unsigned int bytes,
4330 struct x86_exception *exception)
4331 {
4332 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4333 gpa_t gpa;
4334 struct page *page;
4335 char *kaddr;
4336 bool exchanged;
4337
4338 /* guests cmpxchg8b have to be emulated atomically */
4339 if (bytes > 8 || (bytes & (bytes - 1)))
4340 goto emul_write;
4341
4342 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4343
4344 if (gpa == UNMAPPED_GVA ||
4345 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4346 goto emul_write;
4347
4348 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4349 goto emul_write;
4350
4351 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4352 if (is_error_page(page))
4353 goto emul_write;
4354
4355 kaddr = kmap_atomic(page);
4356 kaddr += offset_in_page(gpa);
4357 switch (bytes) {
4358 case 1:
4359 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4360 break;
4361 case 2:
4362 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4363 break;
4364 case 4:
4365 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4366 break;
4367 case 8:
4368 exchanged = CMPXCHG64(kaddr, old, new);
4369 break;
4370 default:
4371 BUG();
4372 }
4373 kunmap_atomic(kaddr);
4374 kvm_release_page_dirty(page);
4375
4376 if (!exchanged)
4377 return X86EMUL_CMPXCHG_FAILED;
4378
4379 kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4380
4381 return X86EMUL_CONTINUE;
4382
4383 emul_write:
4384 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4385
4386 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4387 }
4388
4389 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4390 {
4391 /* TODO: String I/O for in kernel device */
4392 int r;
4393
4394 if (vcpu->arch.pio.in)
4395 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4396 vcpu->arch.pio.size, pd);
4397 else
4398 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4399 vcpu->arch.pio.port, vcpu->arch.pio.size,
4400 pd);
4401 return r;
4402 }
4403
4404 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4405 unsigned short port, void *val,
4406 unsigned int count, bool in)
4407 {
4408 trace_kvm_pio(!in, port, size, count);
4409
4410 vcpu->arch.pio.port = port;
4411 vcpu->arch.pio.in = in;
4412 vcpu->arch.pio.count = count;
4413 vcpu->arch.pio.size = size;
4414
4415 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4416 vcpu->arch.pio.count = 0;
4417 return 1;
4418 }
4419
4420 vcpu->run->exit_reason = KVM_EXIT_IO;
4421 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4422 vcpu->run->io.size = size;
4423 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4424 vcpu->run->io.count = count;
4425 vcpu->run->io.port = port;
4426
4427 return 0;
4428 }
4429
4430 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4431 int size, unsigned short port, void *val,
4432 unsigned int count)
4433 {
4434 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4435 int ret;
4436
4437 if (vcpu->arch.pio.count)
4438 goto data_avail;
4439
4440 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4441 if (ret) {
4442 data_avail:
4443 memcpy(val, vcpu->arch.pio_data, size * count);
4444 vcpu->arch.pio.count = 0;
4445 return 1;
4446 }
4447
4448 return 0;
4449 }
4450
4451 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4452 int size, unsigned short port,
4453 const void *val, unsigned int count)
4454 {
4455 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4456
4457 memcpy(vcpu->arch.pio_data, val, size * count);
4458 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4459 }
4460
4461 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4462 {
4463 return kvm_x86_ops->get_segment_base(vcpu, seg);
4464 }
4465
4466 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4467 {
4468 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4469 }
4470
4471 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4472 {
4473 if (!need_emulate_wbinvd(vcpu))
4474 return X86EMUL_CONTINUE;
4475
4476 if (kvm_x86_ops->has_wbinvd_exit()) {
4477 int cpu = get_cpu();
4478
4479 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4480 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4481 wbinvd_ipi, NULL, 1);
4482 put_cpu();
4483 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4484 } else
4485 wbinvd();
4486 return X86EMUL_CONTINUE;
4487 }
4488 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4489
4490 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4491 {
4492 kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4493 }
4494
4495 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4496 {
4497 return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4498 }
4499
4500 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4501 {
4502
4503 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4504 }
4505
4506 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4507 {
4508 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4509 }
4510
4511 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4512 {
4513 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4514 unsigned long value;
4515
4516 switch (cr) {
4517 case 0:
4518 value = kvm_read_cr0(vcpu);
4519 break;
4520 case 2:
4521 value = vcpu->arch.cr2;
4522 break;
4523 case 3:
4524 value = kvm_read_cr3(vcpu);
4525 break;
4526 case 4:
4527 value = kvm_read_cr4(vcpu);
4528 break;
4529 case 8:
4530 value = kvm_get_cr8(vcpu);
4531 break;
4532 default:
4533 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4534 return 0;
4535 }
4536
4537 return value;
4538 }
4539
4540 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4541 {
4542 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4543 int res = 0;
4544
4545 switch (cr) {
4546 case 0:
4547 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4548 break;
4549 case 2:
4550 vcpu->arch.cr2 = val;
4551 break;
4552 case 3:
4553 res = kvm_set_cr3(vcpu, val);
4554 break;
4555 case 4:
4556 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4557 break;
4558 case 8:
4559 res = kvm_set_cr8(vcpu, val);
4560 break;
4561 default:
4562 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4563 res = -1;
4564 }
4565
4566 return res;
4567 }
4568
4569 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4570 {
4571 kvm_set_rflags(emul_to_vcpu(ctxt), val);
4572 }
4573
4574 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4575 {
4576 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4577 }
4578
4579 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4580 {
4581 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4582 }
4583
4584 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4585 {
4586 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4587 }
4588
4589 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4590 {
4591 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4592 }
4593
4594 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4595 {
4596 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4597 }
4598
4599 static unsigned long emulator_get_cached_segment_base(
4600 struct x86_emulate_ctxt *ctxt, int seg)
4601 {
4602 return get_segment_base(emul_to_vcpu(ctxt), seg);
4603 }
4604
4605 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4606 struct desc_struct *desc, u32 *base3,
4607 int seg)
4608 {
4609 struct kvm_segment var;
4610
4611 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4612 *selector = var.selector;
4613
4614 if (var.unusable) {
4615 memset(desc, 0, sizeof(*desc));
4616 return false;
4617 }
4618
4619 if (var.g)
4620 var.limit >>= 12;
4621 set_desc_limit(desc, var.limit);
4622 set_desc_base(desc, (unsigned long)var.base);
4623 #ifdef CONFIG_X86_64
4624 if (base3)
4625 *base3 = var.base >> 32;
4626 #endif
4627 desc->type = var.type;
4628 desc->s = var.s;
4629 desc->dpl = var.dpl;
4630 desc->p = var.present;
4631 desc->avl = var.avl;
4632 desc->l = var.l;
4633 desc->d = var.db;
4634 desc->g = var.g;
4635
4636 return true;
4637 }
4638
4639 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4640 struct desc_struct *desc, u32 base3,
4641 int seg)
4642 {
4643 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4644 struct kvm_segment var;
4645
4646 var.selector = selector;
4647 var.base = get_desc_base(desc);
4648 #ifdef CONFIG_X86_64
4649 var.base |= ((u64)base3) << 32;
4650 #endif
4651 var.limit = get_desc_limit(desc);
4652 if (desc->g)
4653 var.limit = (var.limit << 12) | 0xfff;
4654 var.type = desc->type;
4655 var.present = desc->p;
4656 var.dpl = desc->dpl;
4657 var.db = desc->d;
4658 var.s = desc->s;
4659 var.l = desc->l;
4660 var.g = desc->g;
4661 var.avl = desc->avl;
4662 var.present = desc->p;
4663 var.unusable = !var.present;
4664 var.padding = 0;
4665
4666 kvm_set_segment(vcpu, &var, seg);
4667 return;
4668 }
4669
4670 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4671 u32 msr_index, u64 *pdata)
4672 {
4673 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4674 }
4675
4676 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4677 u32 msr_index, u64 data)
4678 {
4679 struct msr_data msr;
4680
4681 msr.data = data;
4682 msr.index = msr_index;
4683 msr.host_initiated = false;
4684 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4685 }
4686
4687 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4688 u32 pmc, u64 *pdata)
4689 {
4690 return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4691 }
4692
4693 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4694 {
4695 emul_to_vcpu(ctxt)->arch.halt_request = 1;
4696 }
4697
4698 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4699 {
4700 preempt_disable();
4701 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4702 /*
4703 * CR0.TS may reference the host fpu state, not the guest fpu state,
4704 * so it may be clear at this point.
4705 */
4706 clts();
4707 }
4708
4709 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4710 {
4711 preempt_enable();
4712 }
4713
4714 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4715 struct x86_instruction_info *info,
4716 enum x86_intercept_stage stage)
4717 {
4718 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4719 }
4720
4721 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4722 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4723 {
4724 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4725 }
4726
4727 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4728 {
4729 return kvm_register_read(emul_to_vcpu(ctxt), reg);
4730 }
4731
4732 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4733 {
4734 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4735 }
4736
4737 static const struct x86_emulate_ops emulate_ops = {
4738 .read_gpr = emulator_read_gpr,
4739 .write_gpr = emulator_write_gpr,
4740 .read_std = kvm_read_guest_virt_system,
4741 .write_std = kvm_write_guest_virt_system,
4742 .fetch = kvm_fetch_guest_virt,
4743 .read_emulated = emulator_read_emulated,
4744 .write_emulated = emulator_write_emulated,
4745 .cmpxchg_emulated = emulator_cmpxchg_emulated,
4746 .invlpg = emulator_invlpg,
4747 .pio_in_emulated = emulator_pio_in_emulated,
4748 .pio_out_emulated = emulator_pio_out_emulated,
4749 .get_segment = emulator_get_segment,
4750 .set_segment = emulator_set_segment,
4751 .get_cached_segment_base = emulator_get_cached_segment_base,
4752 .get_gdt = emulator_get_gdt,
4753 .get_idt = emulator_get_idt,
4754 .set_gdt = emulator_set_gdt,
4755 .set_idt = emulator_set_idt,
4756 .get_cr = emulator_get_cr,
4757 .set_cr = emulator_set_cr,
4758 .set_rflags = emulator_set_rflags,
4759 .cpl = emulator_get_cpl,
4760 .get_dr = emulator_get_dr,
4761 .set_dr = emulator_set_dr,
4762 .set_msr = emulator_set_msr,
4763 .get_msr = emulator_get_msr,
4764 .read_pmc = emulator_read_pmc,
4765 .halt = emulator_halt,
4766 .wbinvd = emulator_wbinvd,
4767 .fix_hypercall = emulator_fix_hypercall,
4768 .get_fpu = emulator_get_fpu,
4769 .put_fpu = emulator_put_fpu,
4770 .intercept = emulator_intercept,
4771 .get_cpuid = emulator_get_cpuid,
4772 };
4773
4774 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4775 {
4776 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4777 /*
4778 * an sti; sti; sequence only disable interrupts for the first
4779 * instruction. So, if the last instruction, be it emulated or
4780 * not, left the system with the INT_STI flag enabled, it
4781 * means that the last instruction is an sti. We should not
4782 * leave the flag on in this case. The same goes for mov ss
4783 */
4784 if (!(int_shadow & mask))
4785 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4786 }
4787
4788 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4789 {
4790 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4791 if (ctxt->exception.vector == PF_VECTOR)
4792 kvm_propagate_fault(vcpu, &ctxt->exception);
4793 else if (ctxt->exception.error_code_valid)
4794 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4795 ctxt->exception.error_code);
4796 else
4797 kvm_queue_exception(vcpu, ctxt->exception.vector);
4798 }
4799
4800 static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
4801 {
4802 memset(&ctxt->opcode_len, 0,
4803 (void *)&ctxt->_regs - (void *)&ctxt->opcode_len);
4804
4805 ctxt->fetch.start = 0;
4806 ctxt->fetch.end = 0;
4807 ctxt->io_read.pos = 0;
4808 ctxt->io_read.end = 0;
4809 ctxt->mem_read.pos = 0;
4810 ctxt->mem_read.end = 0;
4811 }
4812
4813 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4814 {
4815 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4816 int cs_db, cs_l;
4817
4818 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4819
4820 ctxt->eflags = kvm_get_rflags(vcpu);
4821 ctxt->eip = kvm_rip_read(vcpu);
4822 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4823 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
4824 cs_l ? X86EMUL_MODE_PROT64 :
4825 cs_db ? X86EMUL_MODE_PROT32 :
4826 X86EMUL_MODE_PROT16;
4827 ctxt->guest_mode = is_guest_mode(vcpu);
4828
4829 init_decode_cache(ctxt);
4830 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4831 }
4832
4833 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4834 {
4835 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4836 int ret;
4837
4838 init_emulate_ctxt(vcpu);
4839
4840 ctxt->op_bytes = 2;
4841 ctxt->ad_bytes = 2;
4842 ctxt->_eip = ctxt->eip + inc_eip;
4843 ret = emulate_int_real(ctxt, irq);
4844
4845 if (ret != X86EMUL_CONTINUE)
4846 return EMULATE_FAIL;
4847
4848 ctxt->eip = ctxt->_eip;
4849 kvm_rip_write(vcpu, ctxt->eip);
4850 kvm_set_rflags(vcpu, ctxt->eflags);
4851
4852 if (irq == NMI_VECTOR)
4853 vcpu->arch.nmi_pending = 0;
4854 else
4855 vcpu->arch.interrupt.pending = false;
4856
4857 return EMULATE_DONE;
4858 }
4859 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4860
4861 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4862 {
4863 int r = EMULATE_DONE;
4864
4865 ++vcpu->stat.insn_emulation_fail;
4866 trace_kvm_emulate_insn_failed(vcpu);
4867 if (!is_guest_mode(vcpu)) {
4868 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4869 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4870 vcpu->run->internal.ndata = 0;
4871 r = EMULATE_FAIL;
4872 }
4873 kvm_queue_exception(vcpu, UD_VECTOR);
4874
4875 return r;
4876 }
4877
4878 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
4879 bool write_fault_to_shadow_pgtable,
4880 int emulation_type)
4881 {
4882 gpa_t gpa = cr2;
4883 pfn_t pfn;
4884
4885 if (emulation_type & EMULTYPE_NO_REEXECUTE)
4886 return false;
4887
4888 if (!vcpu->arch.mmu.direct_map) {
4889 /*
4890 * Write permission should be allowed since only
4891 * write access need to be emulated.
4892 */
4893 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4894
4895 /*
4896 * If the mapping is invalid in guest, let cpu retry
4897 * it to generate fault.
4898 */
4899 if (gpa == UNMAPPED_GVA)
4900 return true;
4901 }
4902
4903 /*
4904 * Do not retry the unhandleable instruction if it faults on the
4905 * readonly host memory, otherwise it will goto a infinite loop:
4906 * retry instruction -> write #PF -> emulation fail -> retry
4907 * instruction -> ...
4908 */
4909 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4910
4911 /*
4912 * If the instruction failed on the error pfn, it can not be fixed,
4913 * report the error to userspace.
4914 */
4915 if (is_error_noslot_pfn(pfn))
4916 return false;
4917
4918 kvm_release_pfn_clean(pfn);
4919
4920 /* The instructions are well-emulated on direct mmu. */
4921 if (vcpu->arch.mmu.direct_map) {
4922 unsigned int indirect_shadow_pages;
4923
4924 spin_lock(&vcpu->kvm->mmu_lock);
4925 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
4926 spin_unlock(&vcpu->kvm->mmu_lock);
4927
4928 if (indirect_shadow_pages)
4929 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4930
4931 return true;
4932 }
4933
4934 /*
4935 * if emulation was due to access to shadowed page table
4936 * and it failed try to unshadow page and re-enter the
4937 * guest to let CPU execute the instruction.
4938 */
4939 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4940
4941 /*
4942 * If the access faults on its page table, it can not
4943 * be fixed by unprotecting shadow page and it should
4944 * be reported to userspace.
4945 */
4946 return !write_fault_to_shadow_pgtable;
4947 }
4948
4949 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4950 unsigned long cr2, int emulation_type)
4951 {
4952 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4953 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4954
4955 last_retry_eip = vcpu->arch.last_retry_eip;
4956 last_retry_addr = vcpu->arch.last_retry_addr;
4957
4958 /*
4959 * If the emulation is caused by #PF and it is non-page_table
4960 * writing instruction, it means the VM-EXIT is caused by shadow
4961 * page protected, we can zap the shadow page and retry this
4962 * instruction directly.
4963 *
4964 * Note: if the guest uses a non-page-table modifying instruction
4965 * on the PDE that points to the instruction, then we will unmap
4966 * the instruction and go to an infinite loop. So, we cache the
4967 * last retried eip and the last fault address, if we meet the eip
4968 * and the address again, we can break out of the potential infinite
4969 * loop.
4970 */
4971 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4972
4973 if (!(emulation_type & EMULTYPE_RETRY))
4974 return false;
4975
4976 if (x86_page_table_writing_insn(ctxt))
4977 return false;
4978
4979 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4980 return false;
4981
4982 vcpu->arch.last_retry_eip = ctxt->eip;
4983 vcpu->arch.last_retry_addr = cr2;
4984
4985 if (!vcpu->arch.mmu.direct_map)
4986 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4987
4988 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4989
4990 return true;
4991 }
4992
4993 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
4994 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
4995
4996 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
4997 unsigned long *db)
4998 {
4999 u32 dr6 = 0;
5000 int i;
5001 u32 enable, rwlen;
5002
5003 enable = dr7;
5004 rwlen = dr7 >> 16;
5005 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5006 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5007 dr6 |= (1 << i);
5008 return dr6;
5009 }
5010
5011 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, int *r)
5012 {
5013 struct kvm_run *kvm_run = vcpu->run;
5014
5015 /*
5016 * Use the "raw" value to see if TF was passed to the processor.
5017 * Note that the new value of the flags has not been saved yet.
5018 *
5019 * This is correct even for TF set by the guest, because "the
5020 * processor will not generate this exception after the instruction
5021 * that sets the TF flag".
5022 */
5023 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5024
5025 if (unlikely(rflags & X86_EFLAGS_TF)) {
5026 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5027 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1;
5028 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5029 kvm_run->debug.arch.exception = DB_VECTOR;
5030 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5031 *r = EMULATE_USER_EXIT;
5032 } else {
5033 vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5034 /*
5035 * "Certain debug exceptions may clear bit 0-3. The
5036 * remaining contents of the DR6 register are never
5037 * cleared by the processor".
5038 */
5039 vcpu->arch.dr6 &= ~15;
5040 vcpu->arch.dr6 |= DR6_BS;
5041 kvm_queue_exception(vcpu, DB_VECTOR);
5042 }
5043 }
5044 }
5045
5046 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5047 {
5048 struct kvm_run *kvm_run = vcpu->run;
5049 unsigned long eip = vcpu->arch.emulate_ctxt.eip;
5050 u32 dr6 = 0;
5051
5052 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5053 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5054 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5055 vcpu->arch.guest_debug_dr7,
5056 vcpu->arch.eff_db);
5057
5058 if (dr6 != 0) {
5059 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5060 kvm_run->debug.arch.pc = kvm_rip_read(vcpu) +
5061 get_segment_base(vcpu, VCPU_SREG_CS);
5062
5063 kvm_run->debug.arch.exception = DB_VECTOR;
5064 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5065 *r = EMULATE_USER_EXIT;
5066 return true;
5067 }
5068 }
5069
5070 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK)) {
5071 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5072 vcpu->arch.dr7,
5073 vcpu->arch.db);
5074
5075 if (dr6 != 0) {
5076 vcpu->arch.dr6 &= ~15;
5077 vcpu->arch.dr6 |= dr6;
5078 kvm_queue_exception(vcpu, DB_VECTOR);
5079 *r = EMULATE_DONE;
5080 return true;
5081 }
5082 }
5083
5084 return false;
5085 }
5086
5087 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5088 unsigned long cr2,
5089 int emulation_type,
5090 void *insn,
5091 int insn_len)
5092 {
5093 int r;
5094 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5095 bool writeback = true;
5096 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5097
5098 /*
5099 * Clear write_fault_to_shadow_pgtable here to ensure it is
5100 * never reused.
5101 */
5102 vcpu->arch.write_fault_to_shadow_pgtable = false;
5103 kvm_clear_exception_queue(vcpu);
5104
5105 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5106 init_emulate_ctxt(vcpu);
5107
5108 /*
5109 * We will reenter on the same instruction since
5110 * we do not set complete_userspace_io. This does not
5111 * handle watchpoints yet, those would be handled in
5112 * the emulate_ops.
5113 */
5114 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5115 return r;
5116
5117 ctxt->interruptibility = 0;
5118 ctxt->have_exception = false;
5119 ctxt->perm_ok = false;
5120
5121 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5122
5123 r = x86_decode_insn(ctxt, insn, insn_len);
5124
5125 trace_kvm_emulate_insn_start(vcpu);
5126 ++vcpu->stat.insn_emulation;
5127 if (r != EMULATION_OK) {
5128 if (emulation_type & EMULTYPE_TRAP_UD)
5129 return EMULATE_FAIL;
5130 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5131 emulation_type))
5132 return EMULATE_DONE;
5133 if (emulation_type & EMULTYPE_SKIP)
5134 return EMULATE_FAIL;
5135 return handle_emulation_failure(vcpu);
5136 }
5137 }
5138
5139 if (emulation_type & EMULTYPE_SKIP) {
5140 kvm_rip_write(vcpu, ctxt->_eip);
5141 return EMULATE_DONE;
5142 }
5143
5144 if (retry_instruction(ctxt, cr2, emulation_type))
5145 return EMULATE_DONE;
5146
5147 /* this is needed for vmware backdoor interface to work since it
5148 changes registers values during IO operation */
5149 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5150 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5151 emulator_invalidate_register_cache(ctxt);
5152 }
5153
5154 restart:
5155 r = x86_emulate_insn(ctxt);
5156
5157 if (r == EMULATION_INTERCEPTED)
5158 return EMULATE_DONE;
5159
5160 if (r == EMULATION_FAILED) {
5161 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5162 emulation_type))
5163 return EMULATE_DONE;
5164
5165 return handle_emulation_failure(vcpu);
5166 }
5167
5168 if (ctxt->have_exception) {
5169 inject_emulated_exception(vcpu);
5170 r = EMULATE_DONE;
5171 } else if (vcpu->arch.pio.count) {
5172 if (!vcpu->arch.pio.in) {
5173 /* FIXME: return into emulator if single-stepping. */
5174 vcpu->arch.pio.count = 0;
5175 } else {
5176 writeback = false;
5177 vcpu->arch.complete_userspace_io = complete_emulated_pio;
5178 }
5179 r = EMULATE_USER_EXIT;
5180 } else if (vcpu->mmio_needed) {
5181 if (!vcpu->mmio_is_write)
5182 writeback = false;
5183 r = EMULATE_USER_EXIT;
5184 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5185 } else if (r == EMULATION_RESTART)
5186 goto restart;
5187 else
5188 r = EMULATE_DONE;
5189
5190 if (writeback) {
5191 toggle_interruptibility(vcpu, ctxt->interruptibility);
5192 kvm_make_request(KVM_REQ_EVENT, vcpu);
5193 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5194 kvm_rip_write(vcpu, ctxt->eip);
5195 if (r == EMULATE_DONE)
5196 kvm_vcpu_check_singlestep(vcpu, &r);
5197 kvm_set_rflags(vcpu, ctxt->eflags);
5198 } else
5199 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5200
5201 return r;
5202 }
5203 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5204
5205 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5206 {
5207 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5208 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5209 size, port, &val, 1);
5210 /* do not return to emulator after return from userspace */
5211 vcpu->arch.pio.count = 0;
5212 return ret;
5213 }
5214 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5215
5216 static void tsc_bad(void *info)
5217 {
5218 __this_cpu_write(cpu_tsc_khz, 0);
5219 }
5220
5221 static void tsc_khz_changed(void *data)
5222 {
5223 struct cpufreq_freqs *freq = data;
5224 unsigned long khz = 0;
5225
5226 if (data)
5227 khz = freq->new;
5228 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5229 khz = cpufreq_quick_get(raw_smp_processor_id());
5230 if (!khz)
5231 khz = tsc_khz;
5232 __this_cpu_write(cpu_tsc_khz, khz);
5233 }
5234
5235 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5236 void *data)
5237 {
5238 struct cpufreq_freqs *freq = data;
5239 struct kvm *kvm;
5240 struct kvm_vcpu *vcpu;
5241 int i, send_ipi = 0;
5242
5243 /*
5244 * We allow guests to temporarily run on slowing clocks,
5245 * provided we notify them after, or to run on accelerating
5246 * clocks, provided we notify them before. Thus time never
5247 * goes backwards.
5248 *
5249 * However, we have a problem. We can't atomically update
5250 * the frequency of a given CPU from this function; it is
5251 * merely a notifier, which can be called from any CPU.
5252 * Changing the TSC frequency at arbitrary points in time
5253 * requires a recomputation of local variables related to
5254 * the TSC for each VCPU. We must flag these local variables
5255 * to be updated and be sure the update takes place with the
5256 * new frequency before any guests proceed.
5257 *
5258 * Unfortunately, the combination of hotplug CPU and frequency
5259 * change creates an intractable locking scenario; the order
5260 * of when these callouts happen is undefined with respect to
5261 * CPU hotplug, and they can race with each other. As such,
5262 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5263 * undefined; you can actually have a CPU frequency change take
5264 * place in between the computation of X and the setting of the
5265 * variable. To protect against this problem, all updates of
5266 * the per_cpu tsc_khz variable are done in an interrupt
5267 * protected IPI, and all callers wishing to update the value
5268 * must wait for a synchronous IPI to complete (which is trivial
5269 * if the caller is on the CPU already). This establishes the
5270 * necessary total order on variable updates.
5271 *
5272 * Note that because a guest time update may take place
5273 * anytime after the setting of the VCPU's request bit, the
5274 * correct TSC value must be set before the request. However,
5275 * to ensure the update actually makes it to any guest which
5276 * starts running in hardware virtualization between the set
5277 * and the acquisition of the spinlock, we must also ping the
5278 * CPU after setting the request bit.
5279 *
5280 */
5281
5282 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5283 return 0;
5284 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5285 return 0;
5286
5287 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5288
5289 spin_lock(&kvm_lock);
5290 list_for_each_entry(kvm, &vm_list, vm_list) {
5291 kvm_for_each_vcpu(i, vcpu, kvm) {
5292 if (vcpu->cpu != freq->cpu)
5293 continue;
5294 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5295 if (vcpu->cpu != smp_processor_id())
5296 send_ipi = 1;
5297 }
5298 }
5299 spin_unlock(&kvm_lock);
5300
5301 if (freq->old < freq->new && send_ipi) {
5302 /*
5303 * We upscale the frequency. Must make the guest
5304 * doesn't see old kvmclock values while running with
5305 * the new frequency, otherwise we risk the guest sees
5306 * time go backwards.
5307 *
5308 * In case we update the frequency for another cpu
5309 * (which might be in guest context) send an interrupt
5310 * to kick the cpu out of guest context. Next time
5311 * guest context is entered kvmclock will be updated,
5312 * so the guest will not see stale values.
5313 */
5314 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5315 }
5316 return 0;
5317 }
5318
5319 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5320 .notifier_call = kvmclock_cpufreq_notifier
5321 };
5322
5323 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5324 unsigned long action, void *hcpu)
5325 {
5326 unsigned int cpu = (unsigned long)hcpu;
5327
5328 switch (action) {
5329 case CPU_ONLINE:
5330 case CPU_DOWN_FAILED:
5331 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5332 break;
5333 case CPU_DOWN_PREPARE:
5334 smp_call_function_single(cpu, tsc_bad, NULL, 1);
5335 break;
5336 }
5337 return NOTIFY_OK;
5338 }
5339
5340 static struct notifier_block kvmclock_cpu_notifier_block = {
5341 .notifier_call = kvmclock_cpu_notifier,
5342 .priority = -INT_MAX
5343 };
5344
5345 static void kvm_timer_init(void)
5346 {
5347 int cpu;
5348
5349 max_tsc_khz = tsc_khz;
5350 register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5351 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5352 #ifdef CONFIG_CPU_FREQ
5353 struct cpufreq_policy policy;
5354 memset(&policy, 0, sizeof(policy));
5355 cpu = get_cpu();
5356 cpufreq_get_policy(&policy, cpu);
5357 if (policy.cpuinfo.max_freq)
5358 max_tsc_khz = policy.cpuinfo.max_freq;
5359 put_cpu();
5360 #endif
5361 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5362 CPUFREQ_TRANSITION_NOTIFIER);
5363 }
5364 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5365 for_each_online_cpu(cpu)
5366 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5367 }
5368
5369 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5370
5371 int kvm_is_in_guest(void)
5372 {
5373 return __this_cpu_read(current_vcpu) != NULL;
5374 }
5375
5376 static int kvm_is_user_mode(void)
5377 {
5378 int user_mode = 3;
5379
5380 if (__this_cpu_read(current_vcpu))
5381 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5382
5383 return user_mode != 0;
5384 }
5385
5386 static unsigned long kvm_get_guest_ip(void)
5387 {
5388 unsigned long ip = 0;
5389
5390 if (__this_cpu_read(current_vcpu))
5391 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5392
5393 return ip;
5394 }
5395
5396 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5397 .is_in_guest = kvm_is_in_guest,
5398 .is_user_mode = kvm_is_user_mode,
5399 .get_guest_ip = kvm_get_guest_ip,
5400 };
5401
5402 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5403 {
5404 __this_cpu_write(current_vcpu, vcpu);
5405 }
5406 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5407
5408 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5409 {
5410 __this_cpu_write(current_vcpu, NULL);
5411 }
5412 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5413
5414 static void kvm_set_mmio_spte_mask(void)
5415 {
5416 u64 mask;
5417 int maxphyaddr = boot_cpu_data.x86_phys_bits;
5418
5419 /*
5420 * Set the reserved bits and the present bit of an paging-structure
5421 * entry to generate page fault with PFER.RSV = 1.
5422 */
5423 /* Mask the reserved physical address bits. */
5424 mask = ((1ull << (51 - maxphyaddr + 1)) - 1) << maxphyaddr;
5425
5426 /* Bit 62 is always reserved for 32bit host. */
5427 mask |= 0x3ull << 62;
5428
5429 /* Set the present bit. */
5430 mask |= 1ull;
5431
5432 #ifdef CONFIG_X86_64
5433 /*
5434 * If reserved bit is not supported, clear the present bit to disable
5435 * mmio page fault.
5436 */
5437 if (maxphyaddr == 52)
5438 mask &= ~1ull;
5439 #endif
5440
5441 kvm_mmu_set_mmio_spte_mask(mask);
5442 }
5443
5444 #ifdef CONFIG_X86_64
5445 static void pvclock_gtod_update_fn(struct work_struct *work)
5446 {
5447 struct kvm *kvm;
5448
5449 struct kvm_vcpu *vcpu;
5450 int i;
5451
5452 spin_lock(&kvm_lock);
5453 list_for_each_entry(kvm, &vm_list, vm_list)
5454 kvm_for_each_vcpu(i, vcpu, kvm)
5455 set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests);
5456 atomic_set(&kvm_guest_has_master_clock, 0);
5457 spin_unlock(&kvm_lock);
5458 }
5459
5460 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5461
5462 /*
5463 * Notification about pvclock gtod data update.
5464 */
5465 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5466 void *priv)
5467 {
5468 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5469 struct timekeeper *tk = priv;
5470
5471 update_pvclock_gtod(tk);
5472
5473 /* disable master clock if host does not trust, or does not
5474 * use, TSC clocksource
5475 */
5476 if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5477 atomic_read(&kvm_guest_has_master_clock) != 0)
5478 queue_work(system_long_wq, &pvclock_gtod_work);
5479
5480 return 0;
5481 }
5482
5483 static struct notifier_block pvclock_gtod_notifier = {
5484 .notifier_call = pvclock_gtod_notify,
5485 };
5486 #endif
5487
5488 int kvm_arch_init(void *opaque)
5489 {
5490 int r;
5491 struct kvm_x86_ops *ops = opaque;
5492
5493 if (kvm_x86_ops) {
5494 printk(KERN_ERR "kvm: already loaded the other module\n");
5495 r = -EEXIST;
5496 goto out;
5497 }
5498
5499 if (!ops->cpu_has_kvm_support()) {
5500 printk(KERN_ERR "kvm: no hardware support\n");
5501 r = -EOPNOTSUPP;
5502 goto out;
5503 }
5504 if (ops->disabled_by_bios()) {
5505 printk(KERN_ERR "kvm: disabled by bios\n");
5506 r = -EOPNOTSUPP;
5507 goto out;
5508 }
5509
5510 r = -ENOMEM;
5511 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5512 if (!shared_msrs) {
5513 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5514 goto out;
5515 }
5516
5517 r = kvm_mmu_module_init();
5518 if (r)
5519 goto out_free_percpu;
5520
5521 kvm_set_mmio_spte_mask();
5522 kvm_init_msr_list();
5523
5524 kvm_x86_ops = ops;
5525 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5526 PT_DIRTY_MASK, PT64_NX_MASK, 0);
5527
5528 kvm_timer_init();
5529
5530 perf_register_guest_info_callbacks(&kvm_guest_cbs);
5531
5532 if (cpu_has_xsave)
5533 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5534
5535 kvm_lapic_init();
5536 #ifdef CONFIG_X86_64
5537 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5538 #endif
5539
5540 return 0;
5541
5542 out_free_percpu:
5543 free_percpu(shared_msrs);
5544 out:
5545 return r;
5546 }
5547
5548 void kvm_arch_exit(void)
5549 {
5550 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5551
5552 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5553 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5554 CPUFREQ_TRANSITION_NOTIFIER);
5555 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5556 #ifdef CONFIG_X86_64
5557 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5558 #endif
5559 kvm_x86_ops = NULL;
5560 kvm_mmu_module_exit();
5561 free_percpu(shared_msrs);
5562 }
5563
5564 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5565 {
5566 ++vcpu->stat.halt_exits;
5567 if (irqchip_in_kernel(vcpu->kvm)) {
5568 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5569 return 1;
5570 } else {
5571 vcpu->run->exit_reason = KVM_EXIT_HLT;
5572 return 0;
5573 }
5574 }
5575 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5576
5577 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5578 {
5579 u64 param, ingpa, outgpa, ret;
5580 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5581 bool fast, longmode;
5582 int cs_db, cs_l;
5583
5584 /*
5585 * hypercall generates UD from non zero cpl and real mode
5586 * per HYPER-V spec
5587 */
5588 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5589 kvm_queue_exception(vcpu, UD_VECTOR);
5590 return 0;
5591 }
5592
5593 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5594 longmode = is_long_mode(vcpu) && cs_l == 1;
5595
5596 if (!longmode) {
5597 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5598 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5599 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5600 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5601 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5602 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5603 }
5604 #ifdef CONFIG_X86_64
5605 else {
5606 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5607 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5608 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5609 }
5610 #endif
5611
5612 code = param & 0xffff;
5613 fast = (param >> 16) & 0x1;
5614 rep_cnt = (param >> 32) & 0xfff;
5615 rep_idx = (param >> 48) & 0xfff;
5616
5617 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5618
5619 switch (code) {
5620 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5621 kvm_vcpu_on_spin(vcpu);
5622 break;
5623 default:
5624 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5625 break;
5626 }
5627
5628 ret = res | (((u64)rep_done & 0xfff) << 32);
5629 if (longmode) {
5630 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5631 } else {
5632 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5633 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5634 }
5635
5636 return 1;
5637 }
5638
5639 /*
5640 * kvm_pv_kick_cpu_op: Kick a vcpu.
5641 *
5642 * @apicid - apicid of vcpu to be kicked.
5643 */
5644 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5645 {
5646 struct kvm_lapic_irq lapic_irq;
5647
5648 lapic_irq.shorthand = 0;
5649 lapic_irq.dest_mode = 0;
5650 lapic_irq.dest_id = apicid;
5651
5652 lapic_irq.delivery_mode = APIC_DM_REMRD;
5653 kvm_irq_delivery_to_apic(kvm, 0, &lapic_irq, NULL);
5654 }
5655
5656 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5657 {
5658 unsigned long nr, a0, a1, a2, a3, ret;
5659 int r = 1;
5660
5661 if (kvm_hv_hypercall_enabled(vcpu->kvm))
5662 return kvm_hv_hypercall(vcpu);
5663
5664 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5665 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5666 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5667 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5668 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5669
5670 trace_kvm_hypercall(nr, a0, a1, a2, a3);
5671
5672 if (!is_long_mode(vcpu)) {
5673 nr &= 0xFFFFFFFF;
5674 a0 &= 0xFFFFFFFF;
5675 a1 &= 0xFFFFFFFF;
5676 a2 &= 0xFFFFFFFF;
5677 a3 &= 0xFFFFFFFF;
5678 }
5679
5680 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5681 ret = -KVM_EPERM;
5682 goto out;
5683 }
5684
5685 switch (nr) {
5686 case KVM_HC_VAPIC_POLL_IRQ:
5687 ret = 0;
5688 break;
5689 case KVM_HC_KICK_CPU:
5690 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5691 ret = 0;
5692 break;
5693 default:
5694 ret = -KVM_ENOSYS;
5695 break;
5696 }
5697 out:
5698 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5699 ++vcpu->stat.hypercalls;
5700 return r;
5701 }
5702 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5703
5704 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5705 {
5706 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5707 char instruction[3];
5708 unsigned long rip = kvm_rip_read(vcpu);
5709
5710 kvm_x86_ops->patch_hypercall(vcpu, instruction);
5711
5712 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5713 }
5714
5715 /*
5716 * Check if userspace requested an interrupt window, and that the
5717 * interrupt window is open.
5718 *
5719 * No need to exit to userspace if we already have an interrupt queued.
5720 */
5721 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5722 {
5723 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5724 vcpu->run->request_interrupt_window &&
5725 kvm_arch_interrupt_allowed(vcpu));
5726 }
5727
5728 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5729 {
5730 struct kvm_run *kvm_run = vcpu->run;
5731
5732 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5733 kvm_run->cr8 = kvm_get_cr8(vcpu);
5734 kvm_run->apic_base = kvm_get_apic_base(vcpu);
5735 if (irqchip_in_kernel(vcpu->kvm))
5736 kvm_run->ready_for_interrupt_injection = 1;
5737 else
5738 kvm_run->ready_for_interrupt_injection =
5739 kvm_arch_interrupt_allowed(vcpu) &&
5740 !kvm_cpu_has_interrupt(vcpu) &&
5741 !kvm_event_needs_reinjection(vcpu);
5742 }
5743
5744 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5745 {
5746 int max_irr, tpr;
5747
5748 if (!kvm_x86_ops->update_cr8_intercept)
5749 return;
5750
5751 if (!vcpu->arch.apic)
5752 return;
5753
5754 if (!vcpu->arch.apic->vapic_addr)
5755 max_irr = kvm_lapic_find_highest_irr(vcpu);
5756 else
5757 max_irr = -1;
5758
5759 if (max_irr != -1)
5760 max_irr >>= 4;
5761
5762 tpr = kvm_lapic_get_cr8(vcpu);
5763
5764 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5765 }
5766
5767 static void inject_pending_event(struct kvm_vcpu *vcpu)
5768 {
5769 /* try to reinject previous events if any */
5770 if (vcpu->arch.exception.pending) {
5771 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5772 vcpu->arch.exception.has_error_code,
5773 vcpu->arch.exception.error_code);
5774 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5775 vcpu->arch.exception.has_error_code,
5776 vcpu->arch.exception.error_code,
5777 vcpu->arch.exception.reinject);
5778 return;
5779 }
5780
5781 if (vcpu->arch.nmi_injected) {
5782 kvm_x86_ops->set_nmi(vcpu);
5783 return;
5784 }
5785
5786 if (vcpu->arch.interrupt.pending) {
5787 kvm_x86_ops->set_irq(vcpu);
5788 return;
5789 }
5790
5791 /* try to inject new event if pending */
5792 if (vcpu->arch.nmi_pending) {
5793 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5794 --vcpu->arch.nmi_pending;
5795 vcpu->arch.nmi_injected = true;
5796 kvm_x86_ops->set_nmi(vcpu);
5797 }
5798 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
5799 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5800 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5801 false);
5802 kvm_x86_ops->set_irq(vcpu);
5803 }
5804 }
5805 }
5806
5807 static void process_nmi(struct kvm_vcpu *vcpu)
5808 {
5809 unsigned limit = 2;
5810
5811 /*
5812 * x86 is limited to one NMI running, and one NMI pending after it.
5813 * If an NMI is already in progress, limit further NMIs to just one.
5814 * Otherwise, allow two (and we'll inject the first one immediately).
5815 */
5816 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5817 limit = 1;
5818
5819 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5820 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5821 kvm_make_request(KVM_REQ_EVENT, vcpu);
5822 }
5823
5824 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
5825 {
5826 u64 eoi_exit_bitmap[4];
5827 u32 tmr[8];
5828
5829 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
5830 return;
5831
5832 memset(eoi_exit_bitmap, 0, 32);
5833 memset(tmr, 0, 32);
5834
5835 kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
5836 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
5837 kvm_apic_update_tmr(vcpu, tmr);
5838 }
5839
5840 /*
5841 * Returns 1 to let __vcpu_run() continue the guest execution loop without
5842 * exiting to the userspace. Otherwise, the value will be returned to the
5843 * userspace.
5844 */
5845 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5846 {
5847 int r;
5848 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5849 vcpu->run->request_interrupt_window;
5850 bool req_immediate_exit = false;
5851
5852 if (vcpu->requests) {
5853 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5854 kvm_mmu_unload(vcpu);
5855 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5856 __kvm_migrate_timers(vcpu);
5857 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
5858 kvm_gen_update_masterclock(vcpu->kvm);
5859 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
5860 kvm_gen_kvmclock_update(vcpu);
5861 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5862 r = kvm_guest_time_update(vcpu);
5863 if (unlikely(r))
5864 goto out;
5865 }
5866 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5867 kvm_mmu_sync_roots(vcpu);
5868 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5869 kvm_x86_ops->tlb_flush(vcpu);
5870 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5871 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5872 r = 0;
5873 goto out;
5874 }
5875 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5876 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5877 r = 0;
5878 goto out;
5879 }
5880 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5881 vcpu->fpu_active = 0;
5882 kvm_x86_ops->fpu_deactivate(vcpu);
5883 }
5884 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5885 /* Page is swapped out. Do synthetic halt */
5886 vcpu->arch.apf.halted = true;
5887 r = 1;
5888 goto out;
5889 }
5890 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5891 record_steal_time(vcpu);
5892 if (kvm_check_request(KVM_REQ_NMI, vcpu))
5893 process_nmi(vcpu);
5894 if (kvm_check_request(KVM_REQ_PMU, vcpu))
5895 kvm_handle_pmu_event(vcpu);
5896 if (kvm_check_request(KVM_REQ_PMI, vcpu))
5897 kvm_deliver_pmi(vcpu);
5898 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
5899 vcpu_scan_ioapic(vcpu);
5900 }
5901
5902 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5903 kvm_apic_accept_events(vcpu);
5904 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
5905 r = 1;
5906 goto out;
5907 }
5908
5909 inject_pending_event(vcpu);
5910
5911 /* enable NMI/IRQ window open exits if needed */
5912 if (vcpu->arch.nmi_pending)
5913 req_immediate_exit =
5914 kvm_x86_ops->enable_nmi_window(vcpu) != 0;
5915 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
5916 req_immediate_exit =
5917 kvm_x86_ops->enable_irq_window(vcpu) != 0;
5918
5919 if (kvm_lapic_enabled(vcpu)) {
5920 /*
5921 * Update architecture specific hints for APIC
5922 * virtual interrupt delivery.
5923 */
5924 if (kvm_x86_ops->hwapic_irr_update)
5925 kvm_x86_ops->hwapic_irr_update(vcpu,
5926 kvm_lapic_find_highest_irr(vcpu));
5927 update_cr8_intercept(vcpu);
5928 kvm_lapic_sync_to_vapic(vcpu);
5929 }
5930 }
5931
5932 r = kvm_mmu_reload(vcpu);
5933 if (unlikely(r)) {
5934 goto cancel_injection;
5935 }
5936
5937 preempt_disable();
5938
5939 kvm_x86_ops->prepare_guest_switch(vcpu);
5940 if (vcpu->fpu_active)
5941 kvm_load_guest_fpu(vcpu);
5942 kvm_load_guest_xcr0(vcpu);
5943
5944 vcpu->mode = IN_GUEST_MODE;
5945
5946 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5947
5948 /* We should set ->mode before check ->requests,
5949 * see the comment in make_all_cpus_request.
5950 */
5951 smp_mb__after_srcu_read_unlock();
5952
5953 local_irq_disable();
5954
5955 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5956 || need_resched() || signal_pending(current)) {
5957 vcpu->mode = OUTSIDE_GUEST_MODE;
5958 smp_wmb();
5959 local_irq_enable();
5960 preempt_enable();
5961 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5962 r = 1;
5963 goto cancel_injection;
5964 }
5965
5966 if (req_immediate_exit)
5967 smp_send_reschedule(vcpu->cpu);
5968
5969 kvm_guest_enter();
5970
5971 if (unlikely(vcpu->arch.switch_db_regs)) {
5972 set_debugreg(0, 7);
5973 set_debugreg(vcpu->arch.eff_db[0], 0);
5974 set_debugreg(vcpu->arch.eff_db[1], 1);
5975 set_debugreg(vcpu->arch.eff_db[2], 2);
5976 set_debugreg(vcpu->arch.eff_db[3], 3);
5977 }
5978
5979 trace_kvm_entry(vcpu->vcpu_id);
5980 kvm_x86_ops->run(vcpu);
5981
5982 /*
5983 * If the guest has used debug registers, at least dr7
5984 * will be disabled while returning to the host.
5985 * If we don't have active breakpoints in the host, we don't
5986 * care about the messed up debug address registers. But if
5987 * we have some of them active, restore the old state.
5988 */
5989 if (hw_breakpoint_active())
5990 hw_breakpoint_restore();
5991
5992 vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
5993 native_read_tsc());
5994
5995 vcpu->mode = OUTSIDE_GUEST_MODE;
5996 smp_wmb();
5997
5998 /* Interrupt is enabled by handle_external_intr() */
5999 kvm_x86_ops->handle_external_intr(vcpu);
6000
6001 ++vcpu->stat.exits;
6002
6003 /*
6004 * We must have an instruction between local_irq_enable() and
6005 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6006 * the interrupt shadow. The stat.exits increment will do nicely.
6007 * But we need to prevent reordering, hence this barrier():
6008 */
6009 barrier();
6010
6011 kvm_guest_exit();
6012
6013 preempt_enable();
6014
6015 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6016
6017 /*
6018 * Profile KVM exit RIPs:
6019 */
6020 if (unlikely(prof_on == KVM_PROFILING)) {
6021 unsigned long rip = kvm_rip_read(vcpu);
6022 profile_hit(KVM_PROFILING, (void *)rip);
6023 }
6024
6025 if (unlikely(vcpu->arch.tsc_always_catchup))
6026 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6027
6028 if (vcpu->arch.apic_attention)
6029 kvm_lapic_sync_from_vapic(vcpu);
6030
6031 r = kvm_x86_ops->handle_exit(vcpu);
6032 return r;
6033
6034 cancel_injection:
6035 kvm_x86_ops->cancel_injection(vcpu);
6036 if (unlikely(vcpu->arch.apic_attention))
6037 kvm_lapic_sync_from_vapic(vcpu);
6038 out:
6039 return r;
6040 }
6041
6042
6043 static int __vcpu_run(struct kvm_vcpu *vcpu)
6044 {
6045 int r;
6046 struct kvm *kvm = vcpu->kvm;
6047
6048 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6049
6050 r = 1;
6051 while (r > 0) {
6052 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6053 !vcpu->arch.apf.halted)
6054 r = vcpu_enter_guest(vcpu);
6055 else {
6056 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6057 kvm_vcpu_block(vcpu);
6058 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6059 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
6060 kvm_apic_accept_events(vcpu);
6061 switch(vcpu->arch.mp_state) {
6062 case KVM_MP_STATE_HALTED:
6063 vcpu->arch.pv.pv_unhalted = false;
6064 vcpu->arch.mp_state =
6065 KVM_MP_STATE_RUNNABLE;
6066 case KVM_MP_STATE_RUNNABLE:
6067 vcpu->arch.apf.halted = false;
6068 break;
6069 case KVM_MP_STATE_INIT_RECEIVED:
6070 break;
6071 default:
6072 r = -EINTR;
6073 break;
6074 }
6075 }
6076 }
6077
6078 if (r <= 0)
6079 break;
6080
6081 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6082 if (kvm_cpu_has_pending_timer(vcpu))
6083 kvm_inject_pending_timer_irqs(vcpu);
6084
6085 if (dm_request_for_irq_injection(vcpu)) {
6086 r = -EINTR;
6087 vcpu->run->exit_reason = KVM_EXIT_INTR;
6088 ++vcpu->stat.request_irq_exits;
6089 }
6090
6091 kvm_check_async_pf_completion(vcpu);
6092
6093 if (signal_pending(current)) {
6094 r = -EINTR;
6095 vcpu->run->exit_reason = KVM_EXIT_INTR;
6096 ++vcpu->stat.signal_exits;
6097 }
6098 if (need_resched()) {
6099 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6100 cond_resched();
6101 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6102 }
6103 }
6104
6105 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6106
6107 return r;
6108 }
6109
6110 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6111 {
6112 int r;
6113 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6114 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6115 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6116 if (r != EMULATE_DONE)
6117 return 0;
6118 return 1;
6119 }
6120
6121 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6122 {
6123 BUG_ON(!vcpu->arch.pio.count);
6124
6125 return complete_emulated_io(vcpu);
6126 }
6127
6128 /*
6129 * Implements the following, as a state machine:
6130 *
6131 * read:
6132 * for each fragment
6133 * for each mmio piece in the fragment
6134 * write gpa, len
6135 * exit
6136 * copy data
6137 * execute insn
6138 *
6139 * write:
6140 * for each fragment
6141 * for each mmio piece in the fragment
6142 * write gpa, len
6143 * copy data
6144 * exit
6145 */
6146 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6147 {
6148 struct kvm_run *run = vcpu->run;
6149 struct kvm_mmio_fragment *frag;
6150 unsigned len;
6151
6152 BUG_ON(!vcpu->mmio_needed);
6153
6154 /* Complete previous fragment */
6155 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6156 len = min(8u, frag->len);
6157 if (!vcpu->mmio_is_write)
6158 memcpy(frag->data, run->mmio.data, len);
6159
6160 if (frag->len <= 8) {
6161 /* Switch to the next fragment. */
6162 frag++;
6163 vcpu->mmio_cur_fragment++;
6164 } else {
6165 /* Go forward to the next mmio piece. */
6166 frag->data += len;
6167 frag->gpa += len;
6168 frag->len -= len;
6169 }
6170
6171 if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
6172 vcpu->mmio_needed = 0;
6173
6174 /* FIXME: return into emulator if single-stepping. */
6175 if (vcpu->mmio_is_write)
6176 return 1;
6177 vcpu->mmio_read_completed = 1;
6178 return complete_emulated_io(vcpu);
6179 }
6180
6181 run->exit_reason = KVM_EXIT_MMIO;
6182 run->mmio.phys_addr = frag->gpa;
6183 if (vcpu->mmio_is_write)
6184 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6185 run->mmio.len = min(8u, frag->len);
6186 run->mmio.is_write = vcpu->mmio_is_write;
6187 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6188 return 0;
6189 }
6190
6191
6192 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6193 {
6194 int r;
6195 sigset_t sigsaved;
6196
6197 if (!tsk_used_math(current) && init_fpu(current))
6198 return -ENOMEM;
6199
6200 if (vcpu->sigset_active)
6201 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6202
6203 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6204 kvm_vcpu_block(vcpu);
6205 kvm_apic_accept_events(vcpu);
6206 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6207 r = -EAGAIN;
6208 goto out;
6209 }
6210
6211 /* re-sync apic's tpr */
6212 if (!irqchip_in_kernel(vcpu->kvm)) {
6213 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6214 r = -EINVAL;
6215 goto out;
6216 }
6217 }
6218
6219 if (unlikely(vcpu->arch.complete_userspace_io)) {
6220 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6221 vcpu->arch.complete_userspace_io = NULL;
6222 r = cui(vcpu);
6223 if (r <= 0)
6224 goto out;
6225 } else
6226 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6227
6228 r = __vcpu_run(vcpu);
6229
6230 out:
6231 post_kvm_run_save(vcpu);
6232 if (vcpu->sigset_active)
6233 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6234
6235 return r;
6236 }
6237
6238 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6239 {
6240 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6241 /*
6242 * We are here if userspace calls get_regs() in the middle of
6243 * instruction emulation. Registers state needs to be copied
6244 * back from emulation context to vcpu. Userspace shouldn't do
6245 * that usually, but some bad designed PV devices (vmware
6246 * backdoor interface) need this to work
6247 */
6248 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6249 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6250 }
6251 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6252 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6253 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6254 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6255 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6256 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6257 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6258 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6259 #ifdef CONFIG_X86_64
6260 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6261 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6262 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6263 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6264 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6265 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6266 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6267 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6268 #endif
6269
6270 regs->rip = kvm_rip_read(vcpu);
6271 regs->rflags = kvm_get_rflags(vcpu);
6272
6273 return 0;
6274 }
6275
6276 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6277 {
6278 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6279 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6280
6281 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6282 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6283 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6284 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6285 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6286 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6287 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6288 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6289 #ifdef CONFIG_X86_64
6290 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6291 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6292 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6293 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6294 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6295 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6296 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6297 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6298 #endif
6299
6300 kvm_rip_write(vcpu, regs->rip);
6301 kvm_set_rflags(vcpu, regs->rflags);
6302
6303 vcpu->arch.exception.pending = false;
6304
6305 kvm_make_request(KVM_REQ_EVENT, vcpu);
6306
6307 return 0;
6308 }
6309
6310 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6311 {
6312 struct kvm_segment cs;
6313
6314 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6315 *db = cs.db;
6316 *l = cs.l;
6317 }
6318 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6319
6320 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6321 struct kvm_sregs *sregs)
6322 {
6323 struct desc_ptr dt;
6324
6325 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6326 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6327 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6328 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6329 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6330 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6331
6332 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6333 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6334
6335 kvm_x86_ops->get_idt(vcpu, &dt);
6336 sregs->idt.limit = dt.size;
6337 sregs->idt.base = dt.address;
6338 kvm_x86_ops->get_gdt(vcpu, &dt);
6339 sregs->gdt.limit = dt.size;
6340 sregs->gdt.base = dt.address;
6341
6342 sregs->cr0 = kvm_read_cr0(vcpu);
6343 sregs->cr2 = vcpu->arch.cr2;
6344 sregs->cr3 = kvm_read_cr3(vcpu);
6345 sregs->cr4 = kvm_read_cr4(vcpu);
6346 sregs->cr8 = kvm_get_cr8(vcpu);
6347 sregs->efer = vcpu->arch.efer;
6348 sregs->apic_base = kvm_get_apic_base(vcpu);
6349
6350 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6351
6352 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6353 set_bit(vcpu->arch.interrupt.nr,
6354 (unsigned long *)sregs->interrupt_bitmap);
6355
6356 return 0;
6357 }
6358
6359 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6360 struct kvm_mp_state *mp_state)
6361 {
6362 kvm_apic_accept_events(vcpu);
6363 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6364 vcpu->arch.pv.pv_unhalted)
6365 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6366 else
6367 mp_state->mp_state = vcpu->arch.mp_state;
6368
6369 return 0;
6370 }
6371
6372 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6373 struct kvm_mp_state *mp_state)
6374 {
6375 if (!kvm_vcpu_has_lapic(vcpu) &&
6376 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6377 return -EINVAL;
6378
6379 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6380 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6381 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6382 } else
6383 vcpu->arch.mp_state = mp_state->mp_state;
6384 kvm_make_request(KVM_REQ_EVENT, vcpu);
6385 return 0;
6386 }
6387
6388 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6389 int reason, bool has_error_code, u32 error_code)
6390 {
6391 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6392 int ret;
6393
6394 init_emulate_ctxt(vcpu);
6395
6396 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6397 has_error_code, error_code);
6398
6399 if (ret)
6400 return EMULATE_FAIL;
6401
6402 kvm_rip_write(vcpu, ctxt->eip);
6403 kvm_set_rflags(vcpu, ctxt->eflags);
6404 kvm_make_request(KVM_REQ_EVENT, vcpu);
6405 return EMULATE_DONE;
6406 }
6407 EXPORT_SYMBOL_GPL(kvm_task_switch);
6408
6409 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6410 struct kvm_sregs *sregs)
6411 {
6412 int mmu_reset_needed = 0;
6413 int pending_vec, max_bits, idx;
6414 struct desc_ptr dt;
6415
6416 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6417 return -EINVAL;
6418
6419 dt.size = sregs->idt.limit;
6420 dt.address = sregs->idt.base;
6421 kvm_x86_ops->set_idt(vcpu, &dt);
6422 dt.size = sregs->gdt.limit;
6423 dt.address = sregs->gdt.base;
6424 kvm_x86_ops->set_gdt(vcpu, &dt);
6425
6426 vcpu->arch.cr2 = sregs->cr2;
6427 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6428 vcpu->arch.cr3 = sregs->cr3;
6429 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6430
6431 kvm_set_cr8(vcpu, sregs->cr8);
6432
6433 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6434 kvm_x86_ops->set_efer(vcpu, sregs->efer);
6435 kvm_set_apic_base(vcpu, sregs->apic_base);
6436
6437 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6438 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6439 vcpu->arch.cr0 = sregs->cr0;
6440
6441 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6442 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6443 if (sregs->cr4 & X86_CR4_OSXSAVE)
6444 kvm_update_cpuid(vcpu);
6445
6446 idx = srcu_read_lock(&vcpu->kvm->srcu);
6447 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6448 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6449 mmu_reset_needed = 1;
6450 }
6451 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6452
6453 if (mmu_reset_needed)
6454 kvm_mmu_reset_context(vcpu);
6455
6456 max_bits = KVM_NR_INTERRUPTS;
6457 pending_vec = find_first_bit(
6458 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6459 if (pending_vec < max_bits) {
6460 kvm_queue_interrupt(vcpu, pending_vec, false);
6461 pr_debug("Set back pending irq %d\n", pending_vec);
6462 }
6463
6464 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6465 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6466 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6467 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6468 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6469 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6470
6471 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6472 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6473
6474 update_cr8_intercept(vcpu);
6475
6476 /* Older userspace won't unhalt the vcpu on reset. */
6477 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6478 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6479 !is_protmode(vcpu))
6480 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6481
6482 kvm_make_request(KVM_REQ_EVENT, vcpu);
6483
6484 return 0;
6485 }
6486
6487 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6488 struct kvm_guest_debug *dbg)
6489 {
6490 unsigned long rflags;
6491 int i, r;
6492
6493 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6494 r = -EBUSY;
6495 if (vcpu->arch.exception.pending)
6496 goto out;
6497 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6498 kvm_queue_exception(vcpu, DB_VECTOR);
6499 else
6500 kvm_queue_exception(vcpu, BP_VECTOR);
6501 }
6502
6503 /*
6504 * Read rflags as long as potentially injected trace flags are still
6505 * filtered out.
6506 */
6507 rflags = kvm_get_rflags(vcpu);
6508
6509 vcpu->guest_debug = dbg->control;
6510 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6511 vcpu->guest_debug = 0;
6512
6513 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6514 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6515 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6516 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6517 } else {
6518 for (i = 0; i < KVM_NR_DB_REGS; i++)
6519 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6520 }
6521 kvm_update_dr7(vcpu);
6522
6523 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6524 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6525 get_segment_base(vcpu, VCPU_SREG_CS);
6526
6527 /*
6528 * Trigger an rflags update that will inject or remove the trace
6529 * flags.
6530 */
6531 kvm_set_rflags(vcpu, rflags);
6532
6533 kvm_x86_ops->update_db_bp_intercept(vcpu);
6534
6535 r = 0;
6536
6537 out:
6538
6539 return r;
6540 }
6541
6542 /*
6543 * Translate a guest virtual address to a guest physical address.
6544 */
6545 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6546 struct kvm_translation *tr)
6547 {
6548 unsigned long vaddr = tr->linear_address;
6549 gpa_t gpa;
6550 int idx;
6551
6552 idx = srcu_read_lock(&vcpu->kvm->srcu);
6553 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6554 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6555 tr->physical_address = gpa;
6556 tr->valid = gpa != UNMAPPED_GVA;
6557 tr->writeable = 1;
6558 tr->usermode = 0;
6559
6560 return 0;
6561 }
6562
6563 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6564 {
6565 struct i387_fxsave_struct *fxsave =
6566 &vcpu->arch.guest_fpu.state->fxsave;
6567
6568 memcpy(fpu->fpr, fxsave->st_space, 128);
6569 fpu->fcw = fxsave->cwd;
6570 fpu->fsw = fxsave->swd;
6571 fpu->ftwx = fxsave->twd;
6572 fpu->last_opcode = fxsave->fop;
6573 fpu->last_ip = fxsave->rip;
6574 fpu->last_dp = fxsave->rdp;
6575 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6576
6577 return 0;
6578 }
6579
6580 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6581 {
6582 struct i387_fxsave_struct *fxsave =
6583 &vcpu->arch.guest_fpu.state->fxsave;
6584
6585 memcpy(fxsave->st_space, fpu->fpr, 128);
6586 fxsave->cwd = fpu->fcw;
6587 fxsave->swd = fpu->fsw;
6588 fxsave->twd = fpu->ftwx;
6589 fxsave->fop = fpu->last_opcode;
6590 fxsave->rip = fpu->last_ip;
6591 fxsave->rdp = fpu->last_dp;
6592 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6593
6594 return 0;
6595 }
6596
6597 int fx_init(struct kvm_vcpu *vcpu)
6598 {
6599 int err;
6600
6601 err = fpu_alloc(&vcpu->arch.guest_fpu);
6602 if (err)
6603 return err;
6604
6605 fpu_finit(&vcpu->arch.guest_fpu);
6606
6607 /*
6608 * Ensure guest xcr0 is valid for loading
6609 */
6610 vcpu->arch.xcr0 = XSTATE_FP;
6611
6612 vcpu->arch.cr0 |= X86_CR0_ET;
6613
6614 return 0;
6615 }
6616 EXPORT_SYMBOL_GPL(fx_init);
6617
6618 static void fx_free(struct kvm_vcpu *vcpu)
6619 {
6620 fpu_free(&vcpu->arch.guest_fpu);
6621 }
6622
6623 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6624 {
6625 if (vcpu->guest_fpu_loaded)
6626 return;
6627
6628 /*
6629 * Restore all possible states in the guest,
6630 * and assume host would use all available bits.
6631 * Guest xcr0 would be loaded later.
6632 */
6633 kvm_put_guest_xcr0(vcpu);
6634 vcpu->guest_fpu_loaded = 1;
6635 __kernel_fpu_begin();
6636 fpu_restore_checking(&vcpu->arch.guest_fpu);
6637 trace_kvm_fpu(1);
6638 }
6639
6640 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6641 {
6642 kvm_put_guest_xcr0(vcpu);
6643
6644 if (!vcpu->guest_fpu_loaded)
6645 return;
6646
6647 vcpu->guest_fpu_loaded = 0;
6648 fpu_save_init(&vcpu->arch.guest_fpu);
6649 __kernel_fpu_end();
6650 ++vcpu->stat.fpu_reload;
6651 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6652 trace_kvm_fpu(0);
6653 }
6654
6655 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6656 {
6657 kvmclock_reset(vcpu);
6658
6659 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6660 fx_free(vcpu);
6661 kvm_x86_ops->vcpu_free(vcpu);
6662 }
6663
6664 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6665 unsigned int id)
6666 {
6667 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6668 printk_once(KERN_WARNING
6669 "kvm: SMP vm created on host with unstable TSC; "
6670 "guest TSC will not be reliable\n");
6671 return kvm_x86_ops->vcpu_create(kvm, id);
6672 }
6673
6674 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6675 {
6676 int r;
6677
6678 vcpu->arch.mtrr_state.have_fixed = 1;
6679 r = vcpu_load(vcpu);
6680 if (r)
6681 return r;
6682 kvm_vcpu_reset(vcpu);
6683 kvm_mmu_setup(vcpu);
6684 vcpu_put(vcpu);
6685
6686 return r;
6687 }
6688
6689 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
6690 {
6691 int r;
6692 struct msr_data msr;
6693
6694 r = vcpu_load(vcpu);
6695 if (r)
6696 return r;
6697 msr.data = 0x0;
6698 msr.index = MSR_IA32_TSC;
6699 msr.host_initiated = true;
6700 kvm_write_tsc(vcpu, &msr);
6701 vcpu_put(vcpu);
6702
6703 return r;
6704 }
6705
6706 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6707 {
6708 int r;
6709 vcpu->arch.apf.msr_val = 0;
6710
6711 r = vcpu_load(vcpu);
6712 BUG_ON(r);
6713 kvm_mmu_unload(vcpu);
6714 vcpu_put(vcpu);
6715
6716 fx_free(vcpu);
6717 kvm_x86_ops->vcpu_free(vcpu);
6718 }
6719
6720 void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
6721 {
6722 atomic_set(&vcpu->arch.nmi_queued, 0);
6723 vcpu->arch.nmi_pending = 0;
6724 vcpu->arch.nmi_injected = false;
6725
6726 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6727 vcpu->arch.dr6 = DR6_FIXED_1;
6728 kvm_update_dr6(vcpu);
6729 vcpu->arch.dr7 = DR7_FIXED_1;
6730 kvm_update_dr7(vcpu);
6731
6732 kvm_make_request(KVM_REQ_EVENT, vcpu);
6733 vcpu->arch.apf.msr_val = 0;
6734 vcpu->arch.st.msr_val = 0;
6735
6736 kvmclock_reset(vcpu);
6737
6738 kvm_clear_async_pf_completion_queue(vcpu);
6739 kvm_async_pf_hash_reset(vcpu);
6740 vcpu->arch.apf.halted = false;
6741
6742 kvm_pmu_reset(vcpu);
6743
6744 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
6745 vcpu->arch.regs_avail = ~0;
6746 vcpu->arch.regs_dirty = ~0;
6747
6748 kvm_x86_ops->vcpu_reset(vcpu);
6749 }
6750
6751 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector)
6752 {
6753 struct kvm_segment cs;
6754
6755 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6756 cs.selector = vector << 8;
6757 cs.base = vector << 12;
6758 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6759 kvm_rip_write(vcpu, 0);
6760 }
6761
6762 int kvm_arch_hardware_enable(void *garbage)
6763 {
6764 struct kvm *kvm;
6765 struct kvm_vcpu *vcpu;
6766 int i;
6767 int ret;
6768 u64 local_tsc;
6769 u64 max_tsc = 0;
6770 bool stable, backwards_tsc = false;
6771
6772 kvm_shared_msr_cpu_online();
6773 ret = kvm_x86_ops->hardware_enable(garbage);
6774 if (ret != 0)
6775 return ret;
6776
6777 local_tsc = native_read_tsc();
6778 stable = !check_tsc_unstable();
6779 list_for_each_entry(kvm, &vm_list, vm_list) {
6780 kvm_for_each_vcpu(i, vcpu, kvm) {
6781 if (!stable && vcpu->cpu == smp_processor_id())
6782 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6783 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6784 backwards_tsc = true;
6785 if (vcpu->arch.last_host_tsc > max_tsc)
6786 max_tsc = vcpu->arch.last_host_tsc;
6787 }
6788 }
6789 }
6790
6791 /*
6792 * Sometimes, even reliable TSCs go backwards. This happens on
6793 * platforms that reset TSC during suspend or hibernate actions, but
6794 * maintain synchronization. We must compensate. Fortunately, we can
6795 * detect that condition here, which happens early in CPU bringup,
6796 * before any KVM threads can be running. Unfortunately, we can't
6797 * bring the TSCs fully up to date with real time, as we aren't yet far
6798 * enough into CPU bringup that we know how much real time has actually
6799 * elapsed; our helper function, get_kernel_ns() will be using boot
6800 * variables that haven't been updated yet.
6801 *
6802 * So we simply find the maximum observed TSC above, then record the
6803 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
6804 * the adjustment will be applied. Note that we accumulate
6805 * adjustments, in case multiple suspend cycles happen before some VCPU
6806 * gets a chance to run again. In the event that no KVM threads get a
6807 * chance to run, we will miss the entire elapsed period, as we'll have
6808 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6809 * loose cycle time. This isn't too big a deal, since the loss will be
6810 * uniform across all VCPUs (not to mention the scenario is extremely
6811 * unlikely). It is possible that a second hibernate recovery happens
6812 * much faster than a first, causing the observed TSC here to be
6813 * smaller; this would require additional padding adjustment, which is
6814 * why we set last_host_tsc to the local tsc observed here.
6815 *
6816 * N.B. - this code below runs only on platforms with reliable TSC,
6817 * as that is the only way backwards_tsc is set above. Also note
6818 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6819 * have the same delta_cyc adjustment applied if backwards_tsc
6820 * is detected. Note further, this adjustment is only done once,
6821 * as we reset last_host_tsc on all VCPUs to stop this from being
6822 * called multiple times (one for each physical CPU bringup).
6823 *
6824 * Platforms with unreliable TSCs don't have to deal with this, they
6825 * will be compensated by the logic in vcpu_load, which sets the TSC to
6826 * catchup mode. This will catchup all VCPUs to real time, but cannot
6827 * guarantee that they stay in perfect synchronization.
6828 */
6829 if (backwards_tsc) {
6830 u64 delta_cyc = max_tsc - local_tsc;
6831 list_for_each_entry(kvm, &vm_list, vm_list) {
6832 kvm_for_each_vcpu(i, vcpu, kvm) {
6833 vcpu->arch.tsc_offset_adjustment += delta_cyc;
6834 vcpu->arch.last_host_tsc = local_tsc;
6835 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
6836 &vcpu->requests);
6837 }
6838
6839 /*
6840 * We have to disable TSC offset matching.. if you were
6841 * booting a VM while issuing an S4 host suspend....
6842 * you may have some problem. Solving this issue is
6843 * left as an exercise to the reader.
6844 */
6845 kvm->arch.last_tsc_nsec = 0;
6846 kvm->arch.last_tsc_write = 0;
6847 }
6848
6849 }
6850 return 0;
6851 }
6852
6853 void kvm_arch_hardware_disable(void *garbage)
6854 {
6855 kvm_x86_ops->hardware_disable(garbage);
6856 drop_user_return_notifiers(garbage);
6857 }
6858
6859 int kvm_arch_hardware_setup(void)
6860 {
6861 return kvm_x86_ops->hardware_setup();
6862 }
6863
6864 void kvm_arch_hardware_unsetup(void)
6865 {
6866 kvm_x86_ops->hardware_unsetup();
6867 }
6868
6869 void kvm_arch_check_processor_compat(void *rtn)
6870 {
6871 kvm_x86_ops->check_processor_compatibility(rtn);
6872 }
6873
6874 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6875 {
6876 return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6877 }
6878
6879 struct static_key kvm_no_apic_vcpu __read_mostly;
6880
6881 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6882 {
6883 struct page *page;
6884 struct kvm *kvm;
6885 int r;
6886
6887 BUG_ON(vcpu->kvm == NULL);
6888 kvm = vcpu->kvm;
6889
6890 vcpu->arch.pv.pv_unhalted = false;
6891 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6892 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6893 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6894 else
6895 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6896
6897 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6898 if (!page) {
6899 r = -ENOMEM;
6900 goto fail;
6901 }
6902 vcpu->arch.pio_data = page_address(page);
6903
6904 kvm_set_tsc_khz(vcpu, max_tsc_khz);
6905
6906 r = kvm_mmu_create(vcpu);
6907 if (r < 0)
6908 goto fail_free_pio_data;
6909
6910 if (irqchip_in_kernel(kvm)) {
6911 r = kvm_create_lapic(vcpu);
6912 if (r < 0)
6913 goto fail_mmu_destroy;
6914 } else
6915 static_key_slow_inc(&kvm_no_apic_vcpu);
6916
6917 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6918 GFP_KERNEL);
6919 if (!vcpu->arch.mce_banks) {
6920 r = -ENOMEM;
6921 goto fail_free_lapic;
6922 }
6923 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6924
6925 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
6926 r = -ENOMEM;
6927 goto fail_free_mce_banks;
6928 }
6929
6930 r = fx_init(vcpu);
6931 if (r)
6932 goto fail_free_wbinvd_dirty_mask;
6933
6934 vcpu->arch.ia32_tsc_adjust_msr = 0x0;
6935 vcpu->arch.pv_time_enabled = false;
6936
6937 vcpu->arch.guest_supported_xcr0 = 0;
6938 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
6939
6940 kvm_async_pf_hash_reset(vcpu);
6941 kvm_pmu_init(vcpu);
6942
6943 return 0;
6944 fail_free_wbinvd_dirty_mask:
6945 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6946 fail_free_mce_banks:
6947 kfree(vcpu->arch.mce_banks);
6948 fail_free_lapic:
6949 kvm_free_lapic(vcpu);
6950 fail_mmu_destroy:
6951 kvm_mmu_destroy(vcpu);
6952 fail_free_pio_data:
6953 free_page((unsigned long)vcpu->arch.pio_data);
6954 fail:
6955 return r;
6956 }
6957
6958 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6959 {
6960 int idx;
6961
6962 kvm_pmu_destroy(vcpu);
6963 kfree(vcpu->arch.mce_banks);
6964 kvm_free_lapic(vcpu);
6965 idx = srcu_read_lock(&vcpu->kvm->srcu);
6966 kvm_mmu_destroy(vcpu);
6967 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6968 free_page((unsigned long)vcpu->arch.pio_data);
6969 if (!irqchip_in_kernel(vcpu->kvm))
6970 static_key_slow_dec(&kvm_no_apic_vcpu);
6971 }
6972
6973 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6974 {
6975 if (type)
6976 return -EINVAL;
6977
6978 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6979 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
6980 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6981 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
6982
6983 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6984 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6985 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
6986 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
6987 &kvm->arch.irq_sources_bitmap);
6988
6989 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6990 mutex_init(&kvm->arch.apic_map_lock);
6991 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
6992
6993 pvclock_update_vm_gtod_copy(kvm);
6994
6995 return 0;
6996 }
6997
6998 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6999 {
7000 int r;
7001 r = vcpu_load(vcpu);
7002 BUG_ON(r);
7003 kvm_mmu_unload(vcpu);
7004 vcpu_put(vcpu);
7005 }
7006
7007 static void kvm_free_vcpus(struct kvm *kvm)
7008 {
7009 unsigned int i;
7010 struct kvm_vcpu *vcpu;
7011
7012 /*
7013 * Unpin any mmu pages first.
7014 */
7015 kvm_for_each_vcpu(i, vcpu, kvm) {
7016 kvm_clear_async_pf_completion_queue(vcpu);
7017 kvm_unload_vcpu_mmu(vcpu);
7018 }
7019 kvm_for_each_vcpu(i, vcpu, kvm)
7020 kvm_arch_vcpu_free(vcpu);
7021
7022 mutex_lock(&kvm->lock);
7023 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7024 kvm->vcpus[i] = NULL;
7025
7026 atomic_set(&kvm->online_vcpus, 0);
7027 mutex_unlock(&kvm->lock);
7028 }
7029
7030 void kvm_arch_sync_events(struct kvm *kvm)
7031 {
7032 kvm_free_all_assigned_devices(kvm);
7033 kvm_free_pit(kvm);
7034 }
7035
7036 void kvm_arch_destroy_vm(struct kvm *kvm)
7037 {
7038 if (current->mm == kvm->mm) {
7039 /*
7040 * Free memory regions allocated on behalf of userspace,
7041 * unless the the memory map has changed due to process exit
7042 * or fd copying.
7043 */
7044 struct kvm_userspace_memory_region mem;
7045 memset(&mem, 0, sizeof(mem));
7046 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7047 kvm_set_memory_region(kvm, &mem);
7048
7049 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7050 kvm_set_memory_region(kvm, &mem);
7051
7052 mem.slot = TSS_PRIVATE_MEMSLOT;
7053 kvm_set_memory_region(kvm, &mem);
7054 }
7055 kvm_iommu_unmap_guest(kvm);
7056 kfree(kvm->arch.vpic);
7057 kfree(kvm->arch.vioapic);
7058 kvm_free_vcpus(kvm);
7059 if (kvm->arch.apic_access_page)
7060 put_page(kvm->arch.apic_access_page);
7061 if (kvm->arch.ept_identity_pagetable)
7062 put_page(kvm->arch.ept_identity_pagetable);
7063 kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7064 }
7065
7066 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7067 struct kvm_memory_slot *dont)
7068 {
7069 int i;
7070
7071 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7072 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7073 kvm_kvfree(free->arch.rmap[i]);
7074 free->arch.rmap[i] = NULL;
7075 }
7076 if (i == 0)
7077 continue;
7078
7079 if (!dont || free->arch.lpage_info[i - 1] !=
7080 dont->arch.lpage_info[i - 1]) {
7081 kvm_kvfree(free->arch.lpage_info[i - 1]);
7082 free->arch.lpage_info[i - 1] = NULL;
7083 }
7084 }
7085 }
7086
7087 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7088 unsigned long npages)
7089 {
7090 int i;
7091
7092 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7093 unsigned long ugfn;
7094 int lpages;
7095 int level = i + 1;
7096
7097 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7098 slot->base_gfn, level) + 1;
7099
7100 slot->arch.rmap[i] =
7101 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7102 if (!slot->arch.rmap[i])
7103 goto out_free;
7104 if (i == 0)
7105 continue;
7106
7107 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7108 sizeof(*slot->arch.lpage_info[i - 1]));
7109 if (!slot->arch.lpage_info[i - 1])
7110 goto out_free;
7111
7112 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7113 slot->arch.lpage_info[i - 1][0].write_count = 1;
7114 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7115 slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7116 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7117 /*
7118 * If the gfn and userspace address are not aligned wrt each
7119 * other, or if explicitly asked to, disable large page
7120 * support for this slot
7121 */
7122 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7123 !kvm_largepages_enabled()) {
7124 unsigned long j;
7125
7126 for (j = 0; j < lpages; ++j)
7127 slot->arch.lpage_info[i - 1][j].write_count = 1;
7128 }
7129 }
7130
7131 return 0;
7132
7133 out_free:
7134 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7135 kvm_kvfree(slot->arch.rmap[i]);
7136 slot->arch.rmap[i] = NULL;
7137 if (i == 0)
7138 continue;
7139
7140 kvm_kvfree(slot->arch.lpage_info[i - 1]);
7141 slot->arch.lpage_info[i - 1] = NULL;
7142 }
7143 return -ENOMEM;
7144 }
7145
7146 void kvm_arch_memslots_updated(struct kvm *kvm)
7147 {
7148 /*
7149 * memslots->generation has been incremented.
7150 * mmio generation may have reached its maximum value.
7151 */
7152 kvm_mmu_invalidate_mmio_sptes(kvm);
7153 }
7154
7155 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7156 struct kvm_memory_slot *memslot,
7157 struct kvm_userspace_memory_region *mem,
7158 enum kvm_mr_change change)
7159 {
7160 /*
7161 * Only private memory slots need to be mapped here since
7162 * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7163 */
7164 if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7165 unsigned long userspace_addr;
7166
7167 /*
7168 * MAP_SHARED to prevent internal slot pages from being moved
7169 * by fork()/COW.
7170 */
7171 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7172 PROT_READ | PROT_WRITE,
7173 MAP_SHARED | MAP_ANONYMOUS, 0);
7174
7175 if (IS_ERR((void *)userspace_addr))
7176 return PTR_ERR((void *)userspace_addr);
7177
7178 memslot->userspace_addr = userspace_addr;
7179 }
7180
7181 return 0;
7182 }
7183
7184 void kvm_arch_commit_memory_region(struct kvm *kvm,
7185 struct kvm_userspace_memory_region *mem,
7186 const struct kvm_memory_slot *old,
7187 enum kvm_mr_change change)
7188 {
7189
7190 int nr_mmu_pages = 0;
7191
7192 if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7193 int ret;
7194
7195 ret = vm_munmap(old->userspace_addr,
7196 old->npages * PAGE_SIZE);
7197 if (ret < 0)
7198 printk(KERN_WARNING
7199 "kvm_vm_ioctl_set_memory_region: "
7200 "failed to munmap memory\n");
7201 }
7202
7203 if (!kvm->arch.n_requested_mmu_pages)
7204 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7205
7206 if (nr_mmu_pages)
7207 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7208 /*
7209 * Write protect all pages for dirty logging.
7210 * Existing largepage mappings are destroyed here and new ones will
7211 * not be created until the end of the logging.
7212 */
7213 if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES))
7214 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
7215 }
7216
7217 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7218 {
7219 kvm_mmu_invalidate_zap_all_pages(kvm);
7220 }
7221
7222 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7223 struct kvm_memory_slot *slot)
7224 {
7225 kvm_mmu_invalidate_zap_all_pages(kvm);
7226 }
7227
7228 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7229 {
7230 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7231 !vcpu->arch.apf.halted)
7232 || !list_empty_careful(&vcpu->async_pf.done)
7233 || kvm_apic_has_events(vcpu)
7234 || vcpu->arch.pv.pv_unhalted
7235 || atomic_read(&vcpu->arch.nmi_queued) ||
7236 (kvm_arch_interrupt_allowed(vcpu) &&
7237 kvm_cpu_has_interrupt(vcpu));
7238 }
7239
7240 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7241 {
7242 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7243 }
7244
7245 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7246 {
7247 return kvm_x86_ops->interrupt_allowed(vcpu);
7248 }
7249
7250 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7251 {
7252 unsigned long current_rip = kvm_rip_read(vcpu) +
7253 get_segment_base(vcpu, VCPU_SREG_CS);
7254
7255 return current_rip == linear_rip;
7256 }
7257 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7258
7259 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7260 {
7261 unsigned long rflags;
7262
7263 rflags = kvm_x86_ops->get_rflags(vcpu);
7264 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7265 rflags &= ~X86_EFLAGS_TF;
7266 return rflags;
7267 }
7268 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7269
7270 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7271 {
7272 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7273 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7274 rflags |= X86_EFLAGS_TF;
7275 kvm_x86_ops->set_rflags(vcpu, rflags);
7276 kvm_make_request(KVM_REQ_EVENT, vcpu);
7277 }
7278 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7279
7280 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7281 {
7282 int r;
7283
7284 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7285 work->wakeup_all)
7286 return;
7287
7288 r = kvm_mmu_reload(vcpu);
7289 if (unlikely(r))
7290 return;
7291
7292 if (!vcpu->arch.mmu.direct_map &&
7293 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7294 return;
7295
7296 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7297 }
7298
7299 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7300 {
7301 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7302 }
7303
7304 static inline u32 kvm_async_pf_next_probe(u32 key)
7305 {
7306 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7307 }
7308
7309 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7310 {
7311 u32 key = kvm_async_pf_hash_fn(gfn);
7312
7313 while (vcpu->arch.apf.gfns[key] != ~0)
7314 key = kvm_async_pf_next_probe(key);
7315
7316 vcpu->arch.apf.gfns[key] = gfn;
7317 }
7318
7319 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7320 {
7321 int i;
7322 u32 key = kvm_async_pf_hash_fn(gfn);
7323
7324 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7325 (vcpu->arch.apf.gfns[key] != gfn &&
7326 vcpu->arch.apf.gfns[key] != ~0); i++)
7327 key = kvm_async_pf_next_probe(key);
7328
7329 return key;
7330 }
7331
7332 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7333 {
7334 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7335 }
7336
7337 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7338 {
7339 u32 i, j, k;
7340
7341 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7342 while (true) {
7343 vcpu->arch.apf.gfns[i] = ~0;
7344 do {
7345 j = kvm_async_pf_next_probe(j);
7346 if (vcpu->arch.apf.gfns[j] == ~0)
7347 return;
7348 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7349 /*
7350 * k lies cyclically in ]i,j]
7351 * | i.k.j |
7352 * |....j i.k.| or |.k..j i...|
7353 */
7354 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7355 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7356 i = j;
7357 }
7358 }
7359
7360 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7361 {
7362
7363 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7364 sizeof(val));
7365 }
7366
7367 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7368 struct kvm_async_pf *work)
7369 {
7370 struct x86_exception fault;
7371
7372 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7373 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7374
7375 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7376 (vcpu->arch.apf.send_user_only &&
7377 kvm_x86_ops->get_cpl(vcpu) == 0))
7378 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7379 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7380 fault.vector = PF_VECTOR;
7381 fault.error_code_valid = true;
7382 fault.error_code = 0;
7383 fault.nested_page_fault = false;
7384 fault.address = work->arch.token;
7385 kvm_inject_page_fault(vcpu, &fault);
7386 }
7387 }
7388
7389 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7390 struct kvm_async_pf *work)
7391 {
7392 struct x86_exception fault;
7393
7394 trace_kvm_async_pf_ready(work->arch.token, work->gva);
7395 if (work->wakeup_all)
7396 work->arch.token = ~0; /* broadcast wakeup */
7397 else
7398 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7399
7400 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7401 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7402 fault.vector = PF_VECTOR;
7403 fault.error_code_valid = true;
7404 fault.error_code = 0;
7405 fault.nested_page_fault = false;
7406 fault.address = work->arch.token;
7407 kvm_inject_page_fault(vcpu, &fault);
7408 }
7409 vcpu->arch.apf.halted = false;
7410 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7411 }
7412
7413 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7414 {
7415 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7416 return true;
7417 else
7418 return !kvm_event_needs_reinjection(vcpu) &&
7419 kvm_x86_ops->interrupt_allowed(vcpu);
7420 }
7421
7422 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
7423 {
7424 atomic_inc(&kvm->arch.noncoherent_dma_count);
7425 }
7426 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
7427
7428 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
7429 {
7430 atomic_dec(&kvm->arch.noncoherent_dma_count);
7431 }
7432 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
7433
7434 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
7435 {
7436 return atomic_read(&kvm->arch.noncoherent_dma_count);
7437 }
7438 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
7439
7440 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7441 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7442 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7443 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7444 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7445 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7446 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7447 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7448 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7449 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7450 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7451 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
7452 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
This page took 0.211709 seconds and 6 git commands to generate.