KVM: SVM: Add tracepoint for nested #vmexit
[deliverable/linux.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Amit Shah <amit.shah@qumranet.com>
14 * Ben-Ami Yassour <benami@il.ibm.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
28
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40 #include <trace/events/kvm.h>
41 #undef TRACE_INCLUDE_FILE
42 #define CREATE_TRACE_POINTS
43 #include "trace.h"
44
45 #include <asm/uaccess.h>
46 #include <asm/msr.h>
47 #include <asm/desc.h>
48 #include <asm/mtrr.h>
49 #include <asm/mce.h>
50
51 #define MAX_IO_MSRS 256
52 #define CR0_RESERVED_BITS \
53 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
54 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
55 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
56 #define CR4_RESERVED_BITS \
57 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
58 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
59 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
60 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
61
62 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
63
64 #define KVM_MAX_MCE_BANKS 32
65 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
66
67 /* EFER defaults:
68 * - enable syscall per default because its emulated by KVM
69 * - enable LME and LMA per default on 64 bit KVM
70 */
71 #ifdef CONFIG_X86_64
72 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
73 #else
74 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
75 #endif
76
77 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
78 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
79
80 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
81 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
82 struct kvm_cpuid_entry2 __user *entries);
83
84 struct kvm_x86_ops *kvm_x86_ops;
85 EXPORT_SYMBOL_GPL(kvm_x86_ops);
86
87 int ignore_msrs = 0;
88 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
89
90 struct kvm_stats_debugfs_item debugfs_entries[] = {
91 { "pf_fixed", VCPU_STAT(pf_fixed) },
92 { "pf_guest", VCPU_STAT(pf_guest) },
93 { "tlb_flush", VCPU_STAT(tlb_flush) },
94 { "invlpg", VCPU_STAT(invlpg) },
95 { "exits", VCPU_STAT(exits) },
96 { "io_exits", VCPU_STAT(io_exits) },
97 { "mmio_exits", VCPU_STAT(mmio_exits) },
98 { "signal_exits", VCPU_STAT(signal_exits) },
99 { "irq_window", VCPU_STAT(irq_window_exits) },
100 { "nmi_window", VCPU_STAT(nmi_window_exits) },
101 { "halt_exits", VCPU_STAT(halt_exits) },
102 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
103 { "hypercalls", VCPU_STAT(hypercalls) },
104 { "request_irq", VCPU_STAT(request_irq_exits) },
105 { "irq_exits", VCPU_STAT(irq_exits) },
106 { "host_state_reload", VCPU_STAT(host_state_reload) },
107 { "efer_reload", VCPU_STAT(efer_reload) },
108 { "fpu_reload", VCPU_STAT(fpu_reload) },
109 { "insn_emulation", VCPU_STAT(insn_emulation) },
110 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
111 { "irq_injections", VCPU_STAT(irq_injections) },
112 { "nmi_injections", VCPU_STAT(nmi_injections) },
113 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
114 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
115 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
116 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
117 { "mmu_flooded", VM_STAT(mmu_flooded) },
118 { "mmu_recycled", VM_STAT(mmu_recycled) },
119 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
120 { "mmu_unsync", VM_STAT(mmu_unsync) },
121 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
122 { "largepages", VM_STAT(lpages) },
123 { NULL }
124 };
125
126 unsigned long segment_base(u16 selector)
127 {
128 struct descriptor_table gdt;
129 struct desc_struct *d;
130 unsigned long table_base;
131 unsigned long v;
132
133 if (selector == 0)
134 return 0;
135
136 kvm_get_gdt(&gdt);
137 table_base = gdt.base;
138
139 if (selector & 4) { /* from ldt */
140 u16 ldt_selector = kvm_read_ldt();
141
142 table_base = segment_base(ldt_selector);
143 }
144 d = (struct desc_struct *)(table_base + (selector & ~7));
145 v = get_desc_base(d);
146 #ifdef CONFIG_X86_64
147 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
148 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
149 #endif
150 return v;
151 }
152 EXPORT_SYMBOL_GPL(segment_base);
153
154 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
155 {
156 if (irqchip_in_kernel(vcpu->kvm))
157 return vcpu->arch.apic_base;
158 else
159 return vcpu->arch.apic_base;
160 }
161 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
162
163 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
164 {
165 /* TODO: reserve bits check */
166 if (irqchip_in_kernel(vcpu->kvm))
167 kvm_lapic_set_base(vcpu, data);
168 else
169 vcpu->arch.apic_base = data;
170 }
171 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
172
173 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
174 {
175 WARN_ON(vcpu->arch.exception.pending);
176 vcpu->arch.exception.pending = true;
177 vcpu->arch.exception.has_error_code = false;
178 vcpu->arch.exception.nr = nr;
179 }
180 EXPORT_SYMBOL_GPL(kvm_queue_exception);
181
182 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
183 u32 error_code)
184 {
185 ++vcpu->stat.pf_guest;
186
187 if (vcpu->arch.exception.pending) {
188 switch(vcpu->arch.exception.nr) {
189 case DF_VECTOR:
190 /* triple fault -> shutdown */
191 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
192 return;
193 case PF_VECTOR:
194 vcpu->arch.exception.nr = DF_VECTOR;
195 vcpu->arch.exception.error_code = 0;
196 return;
197 default:
198 /* replace previous exception with a new one in a hope
199 that instruction re-execution will regenerate lost
200 exception */
201 vcpu->arch.exception.pending = false;
202 break;
203 }
204 }
205 vcpu->arch.cr2 = addr;
206 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
207 }
208
209 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
210 {
211 vcpu->arch.nmi_pending = 1;
212 }
213 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
214
215 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
216 {
217 WARN_ON(vcpu->arch.exception.pending);
218 vcpu->arch.exception.pending = true;
219 vcpu->arch.exception.has_error_code = true;
220 vcpu->arch.exception.nr = nr;
221 vcpu->arch.exception.error_code = error_code;
222 }
223 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
224
225 /*
226 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
227 * a #GP and return false.
228 */
229 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
230 {
231 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
232 return true;
233 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
234 return false;
235 }
236 EXPORT_SYMBOL_GPL(kvm_require_cpl);
237
238 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
239 {
240 unsigned long rflags;
241
242 rflags = kvm_x86_ops->get_rflags(vcpu);
243 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
244 rflags &= ~(unsigned long)(X86_EFLAGS_TF | X86_EFLAGS_RF);
245 return rflags;
246 }
247 EXPORT_SYMBOL_GPL(kvm_get_rflags);
248
249 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
250 {
251 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
252 rflags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
253 kvm_x86_ops->set_rflags(vcpu, rflags);
254 }
255 EXPORT_SYMBOL_GPL(kvm_set_rflags);
256
257 /*
258 * Load the pae pdptrs. Return true is they are all valid.
259 */
260 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
261 {
262 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
263 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
264 int i;
265 int ret;
266 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
267
268 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
269 offset * sizeof(u64), sizeof(pdpte));
270 if (ret < 0) {
271 ret = 0;
272 goto out;
273 }
274 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
275 if (is_present_gpte(pdpte[i]) &&
276 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
277 ret = 0;
278 goto out;
279 }
280 }
281 ret = 1;
282
283 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
284 __set_bit(VCPU_EXREG_PDPTR,
285 (unsigned long *)&vcpu->arch.regs_avail);
286 __set_bit(VCPU_EXREG_PDPTR,
287 (unsigned long *)&vcpu->arch.regs_dirty);
288 out:
289
290 return ret;
291 }
292 EXPORT_SYMBOL_GPL(load_pdptrs);
293
294 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
295 {
296 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
297 bool changed = true;
298 int r;
299
300 if (is_long_mode(vcpu) || !is_pae(vcpu))
301 return false;
302
303 if (!test_bit(VCPU_EXREG_PDPTR,
304 (unsigned long *)&vcpu->arch.regs_avail))
305 return true;
306
307 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
308 if (r < 0)
309 goto out;
310 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
311 out:
312
313 return changed;
314 }
315
316 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
317 {
318 if (cr0 & CR0_RESERVED_BITS) {
319 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
320 cr0, vcpu->arch.cr0);
321 kvm_inject_gp(vcpu, 0);
322 return;
323 }
324
325 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
326 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
327 kvm_inject_gp(vcpu, 0);
328 return;
329 }
330
331 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
332 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
333 "and a clear PE flag\n");
334 kvm_inject_gp(vcpu, 0);
335 return;
336 }
337
338 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
339 #ifdef CONFIG_X86_64
340 if ((vcpu->arch.shadow_efer & EFER_LME)) {
341 int cs_db, cs_l;
342
343 if (!is_pae(vcpu)) {
344 printk(KERN_DEBUG "set_cr0: #GP, start paging "
345 "in long mode while PAE is disabled\n");
346 kvm_inject_gp(vcpu, 0);
347 return;
348 }
349 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
350 if (cs_l) {
351 printk(KERN_DEBUG "set_cr0: #GP, start paging "
352 "in long mode while CS.L == 1\n");
353 kvm_inject_gp(vcpu, 0);
354 return;
355
356 }
357 } else
358 #endif
359 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
360 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
361 "reserved bits\n");
362 kvm_inject_gp(vcpu, 0);
363 return;
364 }
365
366 }
367
368 kvm_x86_ops->set_cr0(vcpu, cr0);
369 vcpu->arch.cr0 = cr0;
370
371 kvm_mmu_reset_context(vcpu);
372 return;
373 }
374 EXPORT_SYMBOL_GPL(kvm_set_cr0);
375
376 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
377 {
378 kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
379 }
380 EXPORT_SYMBOL_GPL(kvm_lmsw);
381
382 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
383 {
384 unsigned long old_cr4 = vcpu->arch.cr4;
385 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
386
387 if (cr4 & CR4_RESERVED_BITS) {
388 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
389 kvm_inject_gp(vcpu, 0);
390 return;
391 }
392
393 if (is_long_mode(vcpu)) {
394 if (!(cr4 & X86_CR4_PAE)) {
395 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
396 "in long mode\n");
397 kvm_inject_gp(vcpu, 0);
398 return;
399 }
400 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
401 && ((cr4 ^ old_cr4) & pdptr_bits)
402 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
403 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
404 kvm_inject_gp(vcpu, 0);
405 return;
406 }
407
408 if (cr4 & X86_CR4_VMXE) {
409 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
410 kvm_inject_gp(vcpu, 0);
411 return;
412 }
413 kvm_x86_ops->set_cr4(vcpu, cr4);
414 vcpu->arch.cr4 = cr4;
415 vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
416 kvm_mmu_reset_context(vcpu);
417 }
418 EXPORT_SYMBOL_GPL(kvm_set_cr4);
419
420 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
421 {
422 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
423 kvm_mmu_sync_roots(vcpu);
424 kvm_mmu_flush_tlb(vcpu);
425 return;
426 }
427
428 if (is_long_mode(vcpu)) {
429 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
430 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
431 kvm_inject_gp(vcpu, 0);
432 return;
433 }
434 } else {
435 if (is_pae(vcpu)) {
436 if (cr3 & CR3_PAE_RESERVED_BITS) {
437 printk(KERN_DEBUG
438 "set_cr3: #GP, reserved bits\n");
439 kvm_inject_gp(vcpu, 0);
440 return;
441 }
442 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
443 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
444 "reserved bits\n");
445 kvm_inject_gp(vcpu, 0);
446 return;
447 }
448 }
449 /*
450 * We don't check reserved bits in nonpae mode, because
451 * this isn't enforced, and VMware depends on this.
452 */
453 }
454
455 /*
456 * Does the new cr3 value map to physical memory? (Note, we
457 * catch an invalid cr3 even in real-mode, because it would
458 * cause trouble later on when we turn on paging anyway.)
459 *
460 * A real CPU would silently accept an invalid cr3 and would
461 * attempt to use it - with largely undefined (and often hard
462 * to debug) behavior on the guest side.
463 */
464 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
465 kvm_inject_gp(vcpu, 0);
466 else {
467 vcpu->arch.cr3 = cr3;
468 vcpu->arch.mmu.new_cr3(vcpu);
469 }
470 }
471 EXPORT_SYMBOL_GPL(kvm_set_cr3);
472
473 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
474 {
475 if (cr8 & CR8_RESERVED_BITS) {
476 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
477 kvm_inject_gp(vcpu, 0);
478 return;
479 }
480 if (irqchip_in_kernel(vcpu->kvm))
481 kvm_lapic_set_tpr(vcpu, cr8);
482 else
483 vcpu->arch.cr8 = cr8;
484 }
485 EXPORT_SYMBOL_GPL(kvm_set_cr8);
486
487 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
488 {
489 if (irqchip_in_kernel(vcpu->kvm))
490 return kvm_lapic_get_cr8(vcpu);
491 else
492 return vcpu->arch.cr8;
493 }
494 EXPORT_SYMBOL_GPL(kvm_get_cr8);
495
496 static inline u32 bit(int bitno)
497 {
498 return 1 << (bitno & 31);
499 }
500
501 /*
502 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
503 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
504 *
505 * This list is modified at module load time to reflect the
506 * capabilities of the host cpu. This capabilities test skips MSRs that are
507 * kvm-specific. Those are put in the beginning of the list.
508 */
509
510 #define KVM_SAVE_MSRS_BEGIN 2
511 static u32 msrs_to_save[] = {
512 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
513 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
514 MSR_K6_STAR,
515 #ifdef CONFIG_X86_64
516 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
517 #endif
518 MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
519 };
520
521 static unsigned num_msrs_to_save;
522
523 static u32 emulated_msrs[] = {
524 MSR_IA32_MISC_ENABLE,
525 };
526
527 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
528 {
529 if (efer & efer_reserved_bits) {
530 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
531 efer);
532 kvm_inject_gp(vcpu, 0);
533 return;
534 }
535
536 if (is_paging(vcpu)
537 && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
538 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
539 kvm_inject_gp(vcpu, 0);
540 return;
541 }
542
543 if (efer & EFER_FFXSR) {
544 struct kvm_cpuid_entry2 *feat;
545
546 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
547 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
548 printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
549 kvm_inject_gp(vcpu, 0);
550 return;
551 }
552 }
553
554 if (efer & EFER_SVME) {
555 struct kvm_cpuid_entry2 *feat;
556
557 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
558 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
559 printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
560 kvm_inject_gp(vcpu, 0);
561 return;
562 }
563 }
564
565 kvm_x86_ops->set_efer(vcpu, efer);
566
567 efer &= ~EFER_LMA;
568 efer |= vcpu->arch.shadow_efer & EFER_LMA;
569
570 vcpu->arch.shadow_efer = efer;
571
572 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
573 kvm_mmu_reset_context(vcpu);
574 }
575
576 void kvm_enable_efer_bits(u64 mask)
577 {
578 efer_reserved_bits &= ~mask;
579 }
580 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
581
582
583 /*
584 * Writes msr value into into the appropriate "register".
585 * Returns 0 on success, non-0 otherwise.
586 * Assumes vcpu_load() was already called.
587 */
588 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
589 {
590 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
591 }
592
593 /*
594 * Adapt set_msr() to msr_io()'s calling convention
595 */
596 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
597 {
598 return kvm_set_msr(vcpu, index, *data);
599 }
600
601 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
602 {
603 static int version;
604 struct pvclock_wall_clock wc;
605 struct timespec now, sys, boot;
606
607 if (!wall_clock)
608 return;
609
610 version++;
611
612 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
613
614 /*
615 * The guest calculates current wall clock time by adding
616 * system time (updated by kvm_write_guest_time below) to the
617 * wall clock specified here. guest system time equals host
618 * system time for us, thus we must fill in host boot time here.
619 */
620 now = current_kernel_time();
621 ktime_get_ts(&sys);
622 boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
623
624 wc.sec = boot.tv_sec;
625 wc.nsec = boot.tv_nsec;
626 wc.version = version;
627
628 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
629
630 version++;
631 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
632 }
633
634 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
635 {
636 uint32_t quotient, remainder;
637
638 /* Don't try to replace with do_div(), this one calculates
639 * "(dividend << 32) / divisor" */
640 __asm__ ( "divl %4"
641 : "=a" (quotient), "=d" (remainder)
642 : "0" (0), "1" (dividend), "r" (divisor) );
643 return quotient;
644 }
645
646 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
647 {
648 uint64_t nsecs = 1000000000LL;
649 int32_t shift = 0;
650 uint64_t tps64;
651 uint32_t tps32;
652
653 tps64 = tsc_khz * 1000LL;
654 while (tps64 > nsecs*2) {
655 tps64 >>= 1;
656 shift--;
657 }
658
659 tps32 = (uint32_t)tps64;
660 while (tps32 <= (uint32_t)nsecs) {
661 tps32 <<= 1;
662 shift++;
663 }
664
665 hv_clock->tsc_shift = shift;
666 hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
667
668 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
669 __func__, tsc_khz, hv_clock->tsc_shift,
670 hv_clock->tsc_to_system_mul);
671 }
672
673 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
674
675 static void kvm_write_guest_time(struct kvm_vcpu *v)
676 {
677 struct timespec ts;
678 unsigned long flags;
679 struct kvm_vcpu_arch *vcpu = &v->arch;
680 void *shared_kaddr;
681 unsigned long this_tsc_khz;
682
683 if ((!vcpu->time_page))
684 return;
685
686 this_tsc_khz = get_cpu_var(cpu_tsc_khz);
687 if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
688 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
689 vcpu->hv_clock_tsc_khz = this_tsc_khz;
690 }
691 put_cpu_var(cpu_tsc_khz);
692
693 /* Keep irq disabled to prevent changes to the clock */
694 local_irq_save(flags);
695 kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
696 ktime_get_ts(&ts);
697 local_irq_restore(flags);
698
699 /* With all the info we got, fill in the values */
700
701 vcpu->hv_clock.system_time = ts.tv_nsec +
702 (NSEC_PER_SEC * (u64)ts.tv_sec);
703 /*
704 * The interface expects us to write an even number signaling that the
705 * update is finished. Since the guest won't see the intermediate
706 * state, we just increase by 2 at the end.
707 */
708 vcpu->hv_clock.version += 2;
709
710 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
711
712 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
713 sizeof(vcpu->hv_clock));
714
715 kunmap_atomic(shared_kaddr, KM_USER0);
716
717 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
718 }
719
720 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
721 {
722 struct kvm_vcpu_arch *vcpu = &v->arch;
723
724 if (!vcpu->time_page)
725 return 0;
726 set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
727 return 1;
728 }
729
730 static bool msr_mtrr_valid(unsigned msr)
731 {
732 switch (msr) {
733 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
734 case MSR_MTRRfix64K_00000:
735 case MSR_MTRRfix16K_80000:
736 case MSR_MTRRfix16K_A0000:
737 case MSR_MTRRfix4K_C0000:
738 case MSR_MTRRfix4K_C8000:
739 case MSR_MTRRfix4K_D0000:
740 case MSR_MTRRfix4K_D8000:
741 case MSR_MTRRfix4K_E0000:
742 case MSR_MTRRfix4K_E8000:
743 case MSR_MTRRfix4K_F0000:
744 case MSR_MTRRfix4K_F8000:
745 case MSR_MTRRdefType:
746 case MSR_IA32_CR_PAT:
747 return true;
748 case 0x2f8:
749 return true;
750 }
751 return false;
752 }
753
754 static bool valid_pat_type(unsigned t)
755 {
756 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
757 }
758
759 static bool valid_mtrr_type(unsigned t)
760 {
761 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
762 }
763
764 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
765 {
766 int i;
767
768 if (!msr_mtrr_valid(msr))
769 return false;
770
771 if (msr == MSR_IA32_CR_PAT) {
772 for (i = 0; i < 8; i++)
773 if (!valid_pat_type((data >> (i * 8)) & 0xff))
774 return false;
775 return true;
776 } else if (msr == MSR_MTRRdefType) {
777 if (data & ~0xcff)
778 return false;
779 return valid_mtrr_type(data & 0xff);
780 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
781 for (i = 0; i < 8 ; i++)
782 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
783 return false;
784 return true;
785 }
786
787 /* variable MTRRs */
788 return valid_mtrr_type(data & 0xff);
789 }
790
791 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
792 {
793 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
794
795 if (!mtrr_valid(vcpu, msr, data))
796 return 1;
797
798 if (msr == MSR_MTRRdefType) {
799 vcpu->arch.mtrr_state.def_type = data;
800 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
801 } else if (msr == MSR_MTRRfix64K_00000)
802 p[0] = data;
803 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
804 p[1 + msr - MSR_MTRRfix16K_80000] = data;
805 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
806 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
807 else if (msr == MSR_IA32_CR_PAT)
808 vcpu->arch.pat = data;
809 else { /* Variable MTRRs */
810 int idx, is_mtrr_mask;
811 u64 *pt;
812
813 idx = (msr - 0x200) / 2;
814 is_mtrr_mask = msr - 0x200 - 2 * idx;
815 if (!is_mtrr_mask)
816 pt =
817 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
818 else
819 pt =
820 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
821 *pt = data;
822 }
823
824 kvm_mmu_reset_context(vcpu);
825 return 0;
826 }
827
828 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
829 {
830 u64 mcg_cap = vcpu->arch.mcg_cap;
831 unsigned bank_num = mcg_cap & 0xff;
832
833 switch (msr) {
834 case MSR_IA32_MCG_STATUS:
835 vcpu->arch.mcg_status = data;
836 break;
837 case MSR_IA32_MCG_CTL:
838 if (!(mcg_cap & MCG_CTL_P))
839 return 1;
840 if (data != 0 && data != ~(u64)0)
841 return -1;
842 vcpu->arch.mcg_ctl = data;
843 break;
844 default:
845 if (msr >= MSR_IA32_MC0_CTL &&
846 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
847 u32 offset = msr - MSR_IA32_MC0_CTL;
848 /* only 0 or all 1s can be written to IA32_MCi_CTL */
849 if ((offset & 0x3) == 0 &&
850 data != 0 && data != ~(u64)0)
851 return -1;
852 vcpu->arch.mce_banks[offset] = data;
853 break;
854 }
855 return 1;
856 }
857 return 0;
858 }
859
860 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
861 {
862 switch (msr) {
863 case MSR_EFER:
864 set_efer(vcpu, data);
865 break;
866 case MSR_K7_HWCR:
867 data &= ~(u64)0x40; /* ignore flush filter disable */
868 if (data != 0) {
869 pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
870 data);
871 return 1;
872 }
873 break;
874 case MSR_FAM10H_MMIO_CONF_BASE:
875 if (data != 0) {
876 pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
877 "0x%llx\n", data);
878 return 1;
879 }
880 break;
881 case MSR_AMD64_NB_CFG:
882 break;
883 case MSR_IA32_DEBUGCTLMSR:
884 if (!data) {
885 /* We support the non-activated case already */
886 break;
887 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
888 /* Values other than LBR and BTF are vendor-specific,
889 thus reserved and should throw a #GP */
890 return 1;
891 }
892 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
893 __func__, data);
894 break;
895 case MSR_IA32_UCODE_REV:
896 case MSR_IA32_UCODE_WRITE:
897 case MSR_VM_HSAVE_PA:
898 case MSR_AMD64_PATCH_LOADER:
899 break;
900 case 0x200 ... 0x2ff:
901 return set_msr_mtrr(vcpu, msr, data);
902 case MSR_IA32_APICBASE:
903 kvm_set_apic_base(vcpu, data);
904 break;
905 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
906 return kvm_x2apic_msr_write(vcpu, msr, data);
907 case MSR_IA32_MISC_ENABLE:
908 vcpu->arch.ia32_misc_enable_msr = data;
909 break;
910 case MSR_KVM_WALL_CLOCK:
911 vcpu->kvm->arch.wall_clock = data;
912 kvm_write_wall_clock(vcpu->kvm, data);
913 break;
914 case MSR_KVM_SYSTEM_TIME: {
915 if (vcpu->arch.time_page) {
916 kvm_release_page_dirty(vcpu->arch.time_page);
917 vcpu->arch.time_page = NULL;
918 }
919
920 vcpu->arch.time = data;
921
922 /* we verify if the enable bit is set... */
923 if (!(data & 1))
924 break;
925
926 /* ...but clean it before doing the actual write */
927 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
928
929 vcpu->arch.time_page =
930 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
931
932 if (is_error_page(vcpu->arch.time_page)) {
933 kvm_release_page_clean(vcpu->arch.time_page);
934 vcpu->arch.time_page = NULL;
935 }
936
937 kvm_request_guest_time_update(vcpu);
938 break;
939 }
940 case MSR_IA32_MCG_CTL:
941 case MSR_IA32_MCG_STATUS:
942 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
943 return set_msr_mce(vcpu, msr, data);
944
945 /* Performance counters are not protected by a CPUID bit,
946 * so we should check all of them in the generic path for the sake of
947 * cross vendor migration.
948 * Writing a zero into the event select MSRs disables them,
949 * which we perfectly emulate ;-). Any other value should be at least
950 * reported, some guests depend on them.
951 */
952 case MSR_P6_EVNTSEL0:
953 case MSR_P6_EVNTSEL1:
954 case MSR_K7_EVNTSEL0:
955 case MSR_K7_EVNTSEL1:
956 case MSR_K7_EVNTSEL2:
957 case MSR_K7_EVNTSEL3:
958 if (data != 0)
959 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
960 "0x%x data 0x%llx\n", msr, data);
961 break;
962 /* at least RHEL 4 unconditionally writes to the perfctr registers,
963 * so we ignore writes to make it happy.
964 */
965 case MSR_P6_PERFCTR0:
966 case MSR_P6_PERFCTR1:
967 case MSR_K7_PERFCTR0:
968 case MSR_K7_PERFCTR1:
969 case MSR_K7_PERFCTR2:
970 case MSR_K7_PERFCTR3:
971 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
972 "0x%x data 0x%llx\n", msr, data);
973 break;
974 default:
975 if (!ignore_msrs) {
976 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
977 msr, data);
978 return 1;
979 } else {
980 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
981 msr, data);
982 break;
983 }
984 }
985 return 0;
986 }
987 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
988
989
990 /*
991 * Reads an msr value (of 'msr_index') into 'pdata'.
992 * Returns 0 on success, non-0 otherwise.
993 * Assumes vcpu_load() was already called.
994 */
995 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
996 {
997 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
998 }
999
1000 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1001 {
1002 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1003
1004 if (!msr_mtrr_valid(msr))
1005 return 1;
1006
1007 if (msr == MSR_MTRRdefType)
1008 *pdata = vcpu->arch.mtrr_state.def_type +
1009 (vcpu->arch.mtrr_state.enabled << 10);
1010 else if (msr == MSR_MTRRfix64K_00000)
1011 *pdata = p[0];
1012 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1013 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1014 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1015 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1016 else if (msr == MSR_IA32_CR_PAT)
1017 *pdata = vcpu->arch.pat;
1018 else { /* Variable MTRRs */
1019 int idx, is_mtrr_mask;
1020 u64 *pt;
1021
1022 idx = (msr - 0x200) / 2;
1023 is_mtrr_mask = msr - 0x200 - 2 * idx;
1024 if (!is_mtrr_mask)
1025 pt =
1026 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1027 else
1028 pt =
1029 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1030 *pdata = *pt;
1031 }
1032
1033 return 0;
1034 }
1035
1036 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1037 {
1038 u64 data;
1039 u64 mcg_cap = vcpu->arch.mcg_cap;
1040 unsigned bank_num = mcg_cap & 0xff;
1041
1042 switch (msr) {
1043 case MSR_IA32_P5_MC_ADDR:
1044 case MSR_IA32_P5_MC_TYPE:
1045 data = 0;
1046 break;
1047 case MSR_IA32_MCG_CAP:
1048 data = vcpu->arch.mcg_cap;
1049 break;
1050 case MSR_IA32_MCG_CTL:
1051 if (!(mcg_cap & MCG_CTL_P))
1052 return 1;
1053 data = vcpu->arch.mcg_ctl;
1054 break;
1055 case MSR_IA32_MCG_STATUS:
1056 data = vcpu->arch.mcg_status;
1057 break;
1058 default:
1059 if (msr >= MSR_IA32_MC0_CTL &&
1060 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1061 u32 offset = msr - MSR_IA32_MC0_CTL;
1062 data = vcpu->arch.mce_banks[offset];
1063 break;
1064 }
1065 return 1;
1066 }
1067 *pdata = data;
1068 return 0;
1069 }
1070
1071 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1072 {
1073 u64 data;
1074
1075 switch (msr) {
1076 case MSR_IA32_PLATFORM_ID:
1077 case MSR_IA32_UCODE_REV:
1078 case MSR_IA32_EBL_CR_POWERON:
1079 case MSR_IA32_DEBUGCTLMSR:
1080 case MSR_IA32_LASTBRANCHFROMIP:
1081 case MSR_IA32_LASTBRANCHTOIP:
1082 case MSR_IA32_LASTINTFROMIP:
1083 case MSR_IA32_LASTINTTOIP:
1084 case MSR_K8_SYSCFG:
1085 case MSR_K7_HWCR:
1086 case MSR_VM_HSAVE_PA:
1087 case MSR_P6_PERFCTR0:
1088 case MSR_P6_PERFCTR1:
1089 case MSR_P6_EVNTSEL0:
1090 case MSR_P6_EVNTSEL1:
1091 case MSR_K7_EVNTSEL0:
1092 case MSR_K7_PERFCTR0:
1093 case MSR_K8_INT_PENDING_MSG:
1094 case MSR_AMD64_NB_CFG:
1095 case MSR_FAM10H_MMIO_CONF_BASE:
1096 data = 0;
1097 break;
1098 case MSR_MTRRcap:
1099 data = 0x500 | KVM_NR_VAR_MTRR;
1100 break;
1101 case 0x200 ... 0x2ff:
1102 return get_msr_mtrr(vcpu, msr, pdata);
1103 case 0xcd: /* fsb frequency */
1104 data = 3;
1105 break;
1106 case MSR_IA32_APICBASE:
1107 data = kvm_get_apic_base(vcpu);
1108 break;
1109 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1110 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1111 break;
1112 case MSR_IA32_MISC_ENABLE:
1113 data = vcpu->arch.ia32_misc_enable_msr;
1114 break;
1115 case MSR_IA32_PERF_STATUS:
1116 /* TSC increment by tick */
1117 data = 1000ULL;
1118 /* CPU multiplier */
1119 data |= (((uint64_t)4ULL) << 40);
1120 break;
1121 case MSR_EFER:
1122 data = vcpu->arch.shadow_efer;
1123 break;
1124 case MSR_KVM_WALL_CLOCK:
1125 data = vcpu->kvm->arch.wall_clock;
1126 break;
1127 case MSR_KVM_SYSTEM_TIME:
1128 data = vcpu->arch.time;
1129 break;
1130 case MSR_IA32_P5_MC_ADDR:
1131 case MSR_IA32_P5_MC_TYPE:
1132 case MSR_IA32_MCG_CAP:
1133 case MSR_IA32_MCG_CTL:
1134 case MSR_IA32_MCG_STATUS:
1135 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1136 return get_msr_mce(vcpu, msr, pdata);
1137 default:
1138 if (!ignore_msrs) {
1139 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1140 return 1;
1141 } else {
1142 pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1143 data = 0;
1144 }
1145 break;
1146 }
1147 *pdata = data;
1148 return 0;
1149 }
1150 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1151
1152 /*
1153 * Read or write a bunch of msrs. All parameters are kernel addresses.
1154 *
1155 * @return number of msrs set successfully.
1156 */
1157 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1158 struct kvm_msr_entry *entries,
1159 int (*do_msr)(struct kvm_vcpu *vcpu,
1160 unsigned index, u64 *data))
1161 {
1162 int i;
1163
1164 vcpu_load(vcpu);
1165
1166 down_read(&vcpu->kvm->slots_lock);
1167 for (i = 0; i < msrs->nmsrs; ++i)
1168 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1169 break;
1170 up_read(&vcpu->kvm->slots_lock);
1171
1172 vcpu_put(vcpu);
1173
1174 return i;
1175 }
1176
1177 /*
1178 * Read or write a bunch of msrs. Parameters are user addresses.
1179 *
1180 * @return number of msrs set successfully.
1181 */
1182 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1183 int (*do_msr)(struct kvm_vcpu *vcpu,
1184 unsigned index, u64 *data),
1185 int writeback)
1186 {
1187 struct kvm_msrs msrs;
1188 struct kvm_msr_entry *entries;
1189 int r, n;
1190 unsigned size;
1191
1192 r = -EFAULT;
1193 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1194 goto out;
1195
1196 r = -E2BIG;
1197 if (msrs.nmsrs >= MAX_IO_MSRS)
1198 goto out;
1199
1200 r = -ENOMEM;
1201 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1202 entries = vmalloc(size);
1203 if (!entries)
1204 goto out;
1205
1206 r = -EFAULT;
1207 if (copy_from_user(entries, user_msrs->entries, size))
1208 goto out_free;
1209
1210 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1211 if (r < 0)
1212 goto out_free;
1213
1214 r = -EFAULT;
1215 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1216 goto out_free;
1217
1218 r = n;
1219
1220 out_free:
1221 vfree(entries);
1222 out:
1223 return r;
1224 }
1225
1226 int kvm_dev_ioctl_check_extension(long ext)
1227 {
1228 int r;
1229
1230 switch (ext) {
1231 case KVM_CAP_IRQCHIP:
1232 case KVM_CAP_HLT:
1233 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1234 case KVM_CAP_SET_TSS_ADDR:
1235 case KVM_CAP_EXT_CPUID:
1236 case KVM_CAP_CLOCKSOURCE:
1237 case KVM_CAP_PIT:
1238 case KVM_CAP_NOP_IO_DELAY:
1239 case KVM_CAP_MP_STATE:
1240 case KVM_CAP_SYNC_MMU:
1241 case KVM_CAP_REINJECT_CONTROL:
1242 case KVM_CAP_IRQ_INJECT_STATUS:
1243 case KVM_CAP_ASSIGN_DEV_IRQ:
1244 case KVM_CAP_IRQFD:
1245 case KVM_CAP_IOEVENTFD:
1246 case KVM_CAP_PIT2:
1247 case KVM_CAP_PIT_STATE2:
1248 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1249 r = 1;
1250 break;
1251 case KVM_CAP_COALESCED_MMIO:
1252 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1253 break;
1254 case KVM_CAP_VAPIC:
1255 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1256 break;
1257 case KVM_CAP_NR_VCPUS:
1258 r = KVM_MAX_VCPUS;
1259 break;
1260 case KVM_CAP_NR_MEMSLOTS:
1261 r = KVM_MEMORY_SLOTS;
1262 break;
1263 case KVM_CAP_PV_MMU: /* obsolete */
1264 r = 0;
1265 break;
1266 case KVM_CAP_IOMMU:
1267 r = iommu_found();
1268 break;
1269 case KVM_CAP_MCE:
1270 r = KVM_MAX_MCE_BANKS;
1271 break;
1272 default:
1273 r = 0;
1274 break;
1275 }
1276 return r;
1277
1278 }
1279
1280 long kvm_arch_dev_ioctl(struct file *filp,
1281 unsigned int ioctl, unsigned long arg)
1282 {
1283 void __user *argp = (void __user *)arg;
1284 long r;
1285
1286 switch (ioctl) {
1287 case KVM_GET_MSR_INDEX_LIST: {
1288 struct kvm_msr_list __user *user_msr_list = argp;
1289 struct kvm_msr_list msr_list;
1290 unsigned n;
1291
1292 r = -EFAULT;
1293 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1294 goto out;
1295 n = msr_list.nmsrs;
1296 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1297 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1298 goto out;
1299 r = -E2BIG;
1300 if (n < msr_list.nmsrs)
1301 goto out;
1302 r = -EFAULT;
1303 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1304 num_msrs_to_save * sizeof(u32)))
1305 goto out;
1306 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1307 &emulated_msrs,
1308 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1309 goto out;
1310 r = 0;
1311 break;
1312 }
1313 case KVM_GET_SUPPORTED_CPUID: {
1314 struct kvm_cpuid2 __user *cpuid_arg = argp;
1315 struct kvm_cpuid2 cpuid;
1316
1317 r = -EFAULT;
1318 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1319 goto out;
1320 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1321 cpuid_arg->entries);
1322 if (r)
1323 goto out;
1324
1325 r = -EFAULT;
1326 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1327 goto out;
1328 r = 0;
1329 break;
1330 }
1331 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1332 u64 mce_cap;
1333
1334 mce_cap = KVM_MCE_CAP_SUPPORTED;
1335 r = -EFAULT;
1336 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1337 goto out;
1338 r = 0;
1339 break;
1340 }
1341 default:
1342 r = -EINVAL;
1343 }
1344 out:
1345 return r;
1346 }
1347
1348 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1349 {
1350 kvm_x86_ops->vcpu_load(vcpu, cpu);
1351 if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0))
1352 per_cpu(cpu_tsc_khz, cpu) = cpufreq_quick_get(cpu);
1353 kvm_request_guest_time_update(vcpu);
1354 }
1355
1356 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1357 {
1358 kvm_x86_ops->vcpu_put(vcpu);
1359 kvm_put_guest_fpu(vcpu);
1360 }
1361
1362 static int is_efer_nx(void)
1363 {
1364 unsigned long long efer = 0;
1365
1366 rdmsrl_safe(MSR_EFER, &efer);
1367 return efer & EFER_NX;
1368 }
1369
1370 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1371 {
1372 int i;
1373 struct kvm_cpuid_entry2 *e, *entry;
1374
1375 entry = NULL;
1376 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1377 e = &vcpu->arch.cpuid_entries[i];
1378 if (e->function == 0x80000001) {
1379 entry = e;
1380 break;
1381 }
1382 }
1383 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1384 entry->edx &= ~(1 << 20);
1385 printk(KERN_INFO "kvm: guest NX capability removed\n");
1386 }
1387 }
1388
1389 /* when an old userspace process fills a new kernel module */
1390 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1391 struct kvm_cpuid *cpuid,
1392 struct kvm_cpuid_entry __user *entries)
1393 {
1394 int r, i;
1395 struct kvm_cpuid_entry *cpuid_entries;
1396
1397 r = -E2BIG;
1398 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1399 goto out;
1400 r = -ENOMEM;
1401 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1402 if (!cpuid_entries)
1403 goto out;
1404 r = -EFAULT;
1405 if (copy_from_user(cpuid_entries, entries,
1406 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1407 goto out_free;
1408 for (i = 0; i < cpuid->nent; i++) {
1409 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1410 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1411 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1412 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1413 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1414 vcpu->arch.cpuid_entries[i].index = 0;
1415 vcpu->arch.cpuid_entries[i].flags = 0;
1416 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1417 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1418 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1419 }
1420 vcpu->arch.cpuid_nent = cpuid->nent;
1421 cpuid_fix_nx_cap(vcpu);
1422 r = 0;
1423 kvm_apic_set_version(vcpu);
1424
1425 out_free:
1426 vfree(cpuid_entries);
1427 out:
1428 return r;
1429 }
1430
1431 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1432 struct kvm_cpuid2 *cpuid,
1433 struct kvm_cpuid_entry2 __user *entries)
1434 {
1435 int r;
1436
1437 r = -E2BIG;
1438 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1439 goto out;
1440 r = -EFAULT;
1441 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1442 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1443 goto out;
1444 vcpu->arch.cpuid_nent = cpuid->nent;
1445 kvm_apic_set_version(vcpu);
1446 return 0;
1447
1448 out:
1449 return r;
1450 }
1451
1452 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1453 struct kvm_cpuid2 *cpuid,
1454 struct kvm_cpuid_entry2 __user *entries)
1455 {
1456 int r;
1457
1458 r = -E2BIG;
1459 if (cpuid->nent < vcpu->arch.cpuid_nent)
1460 goto out;
1461 r = -EFAULT;
1462 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1463 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1464 goto out;
1465 return 0;
1466
1467 out:
1468 cpuid->nent = vcpu->arch.cpuid_nent;
1469 return r;
1470 }
1471
1472 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1473 u32 index)
1474 {
1475 entry->function = function;
1476 entry->index = index;
1477 cpuid_count(entry->function, entry->index,
1478 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1479 entry->flags = 0;
1480 }
1481
1482 #define F(x) bit(X86_FEATURE_##x)
1483
1484 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1485 u32 index, int *nent, int maxnent)
1486 {
1487 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
1488 unsigned f_gbpages = kvm_x86_ops->gb_page_enable() ? F(GBPAGES) : 0;
1489 #ifdef CONFIG_X86_64
1490 unsigned f_lm = F(LM);
1491 #else
1492 unsigned f_lm = 0;
1493 #endif
1494
1495 /* cpuid 1.edx */
1496 const u32 kvm_supported_word0_x86_features =
1497 F(FPU) | F(VME) | F(DE) | F(PSE) |
1498 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1499 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
1500 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1501 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
1502 0 /* Reserved, DS, ACPI */ | F(MMX) |
1503 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
1504 0 /* HTT, TM, Reserved, PBE */;
1505 /* cpuid 0x80000001.edx */
1506 const u32 kvm_supported_word1_x86_features =
1507 F(FPU) | F(VME) | F(DE) | F(PSE) |
1508 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1509 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
1510 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1511 F(PAT) | F(PSE36) | 0 /* Reserved */ |
1512 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
1513 F(FXSR) | F(FXSR_OPT) | f_gbpages | 0 /* RDTSCP */ |
1514 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
1515 /* cpuid 1.ecx */
1516 const u32 kvm_supported_word4_x86_features =
1517 F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
1518 0 /* DS-CPL, VMX, SMX, EST */ |
1519 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1520 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
1521 0 /* Reserved, DCA */ | F(XMM4_1) |
1522 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
1523 0 /* Reserved, XSAVE, OSXSAVE */;
1524 /* cpuid 0x80000001.ecx */
1525 const u32 kvm_supported_word6_x86_features =
1526 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
1527 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
1528 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
1529 0 /* SKINIT */ | 0 /* WDT */;
1530
1531 /* all calls to cpuid_count() should be made on the same cpu */
1532 get_cpu();
1533 do_cpuid_1_ent(entry, function, index);
1534 ++*nent;
1535
1536 switch (function) {
1537 case 0:
1538 entry->eax = min(entry->eax, (u32)0xb);
1539 break;
1540 case 1:
1541 entry->edx &= kvm_supported_word0_x86_features;
1542 entry->ecx &= kvm_supported_word4_x86_features;
1543 /* we support x2apic emulation even if host does not support
1544 * it since we emulate x2apic in software */
1545 entry->ecx |= F(X2APIC);
1546 break;
1547 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1548 * may return different values. This forces us to get_cpu() before
1549 * issuing the first command, and also to emulate this annoying behavior
1550 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1551 case 2: {
1552 int t, times = entry->eax & 0xff;
1553
1554 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1555 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1556 for (t = 1; t < times && *nent < maxnent; ++t) {
1557 do_cpuid_1_ent(&entry[t], function, 0);
1558 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1559 ++*nent;
1560 }
1561 break;
1562 }
1563 /* function 4 and 0xb have additional index. */
1564 case 4: {
1565 int i, cache_type;
1566
1567 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1568 /* read more entries until cache_type is zero */
1569 for (i = 1; *nent < maxnent; ++i) {
1570 cache_type = entry[i - 1].eax & 0x1f;
1571 if (!cache_type)
1572 break;
1573 do_cpuid_1_ent(&entry[i], function, i);
1574 entry[i].flags |=
1575 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1576 ++*nent;
1577 }
1578 break;
1579 }
1580 case 0xb: {
1581 int i, level_type;
1582
1583 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1584 /* read more entries until level_type is zero */
1585 for (i = 1; *nent < maxnent; ++i) {
1586 level_type = entry[i - 1].ecx & 0xff00;
1587 if (!level_type)
1588 break;
1589 do_cpuid_1_ent(&entry[i], function, i);
1590 entry[i].flags |=
1591 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1592 ++*nent;
1593 }
1594 break;
1595 }
1596 case 0x80000000:
1597 entry->eax = min(entry->eax, 0x8000001a);
1598 break;
1599 case 0x80000001:
1600 entry->edx &= kvm_supported_word1_x86_features;
1601 entry->ecx &= kvm_supported_word6_x86_features;
1602 break;
1603 }
1604 put_cpu();
1605 }
1606
1607 #undef F
1608
1609 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1610 struct kvm_cpuid_entry2 __user *entries)
1611 {
1612 struct kvm_cpuid_entry2 *cpuid_entries;
1613 int limit, nent = 0, r = -E2BIG;
1614 u32 func;
1615
1616 if (cpuid->nent < 1)
1617 goto out;
1618 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1619 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1620 r = -ENOMEM;
1621 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1622 if (!cpuid_entries)
1623 goto out;
1624
1625 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1626 limit = cpuid_entries[0].eax;
1627 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1628 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1629 &nent, cpuid->nent);
1630 r = -E2BIG;
1631 if (nent >= cpuid->nent)
1632 goto out_free;
1633
1634 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1635 limit = cpuid_entries[nent - 1].eax;
1636 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1637 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1638 &nent, cpuid->nent);
1639 r = -E2BIG;
1640 if (nent >= cpuid->nent)
1641 goto out_free;
1642
1643 r = -EFAULT;
1644 if (copy_to_user(entries, cpuid_entries,
1645 nent * sizeof(struct kvm_cpuid_entry2)))
1646 goto out_free;
1647 cpuid->nent = nent;
1648 r = 0;
1649
1650 out_free:
1651 vfree(cpuid_entries);
1652 out:
1653 return r;
1654 }
1655
1656 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1657 struct kvm_lapic_state *s)
1658 {
1659 vcpu_load(vcpu);
1660 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1661 vcpu_put(vcpu);
1662
1663 return 0;
1664 }
1665
1666 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1667 struct kvm_lapic_state *s)
1668 {
1669 vcpu_load(vcpu);
1670 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1671 kvm_apic_post_state_restore(vcpu);
1672 update_cr8_intercept(vcpu);
1673 vcpu_put(vcpu);
1674
1675 return 0;
1676 }
1677
1678 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1679 struct kvm_interrupt *irq)
1680 {
1681 if (irq->irq < 0 || irq->irq >= 256)
1682 return -EINVAL;
1683 if (irqchip_in_kernel(vcpu->kvm))
1684 return -ENXIO;
1685 vcpu_load(vcpu);
1686
1687 kvm_queue_interrupt(vcpu, irq->irq, false);
1688
1689 vcpu_put(vcpu);
1690
1691 return 0;
1692 }
1693
1694 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
1695 {
1696 vcpu_load(vcpu);
1697 kvm_inject_nmi(vcpu);
1698 vcpu_put(vcpu);
1699
1700 return 0;
1701 }
1702
1703 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1704 struct kvm_tpr_access_ctl *tac)
1705 {
1706 if (tac->flags)
1707 return -EINVAL;
1708 vcpu->arch.tpr_access_reporting = !!tac->enabled;
1709 return 0;
1710 }
1711
1712 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
1713 u64 mcg_cap)
1714 {
1715 int r;
1716 unsigned bank_num = mcg_cap & 0xff, bank;
1717
1718 r = -EINVAL;
1719 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
1720 goto out;
1721 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
1722 goto out;
1723 r = 0;
1724 vcpu->arch.mcg_cap = mcg_cap;
1725 /* Init IA32_MCG_CTL to all 1s */
1726 if (mcg_cap & MCG_CTL_P)
1727 vcpu->arch.mcg_ctl = ~(u64)0;
1728 /* Init IA32_MCi_CTL to all 1s */
1729 for (bank = 0; bank < bank_num; bank++)
1730 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
1731 out:
1732 return r;
1733 }
1734
1735 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
1736 struct kvm_x86_mce *mce)
1737 {
1738 u64 mcg_cap = vcpu->arch.mcg_cap;
1739 unsigned bank_num = mcg_cap & 0xff;
1740 u64 *banks = vcpu->arch.mce_banks;
1741
1742 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
1743 return -EINVAL;
1744 /*
1745 * if IA32_MCG_CTL is not all 1s, the uncorrected error
1746 * reporting is disabled
1747 */
1748 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
1749 vcpu->arch.mcg_ctl != ~(u64)0)
1750 return 0;
1751 banks += 4 * mce->bank;
1752 /*
1753 * if IA32_MCi_CTL is not all 1s, the uncorrected error
1754 * reporting is disabled for the bank
1755 */
1756 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
1757 return 0;
1758 if (mce->status & MCI_STATUS_UC) {
1759 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
1760 !(vcpu->arch.cr4 & X86_CR4_MCE)) {
1761 printk(KERN_DEBUG "kvm: set_mce: "
1762 "injects mce exception while "
1763 "previous one is in progress!\n");
1764 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
1765 return 0;
1766 }
1767 if (banks[1] & MCI_STATUS_VAL)
1768 mce->status |= MCI_STATUS_OVER;
1769 banks[2] = mce->addr;
1770 banks[3] = mce->misc;
1771 vcpu->arch.mcg_status = mce->mcg_status;
1772 banks[1] = mce->status;
1773 kvm_queue_exception(vcpu, MC_VECTOR);
1774 } else if (!(banks[1] & MCI_STATUS_VAL)
1775 || !(banks[1] & MCI_STATUS_UC)) {
1776 if (banks[1] & MCI_STATUS_VAL)
1777 mce->status |= MCI_STATUS_OVER;
1778 banks[2] = mce->addr;
1779 banks[3] = mce->misc;
1780 banks[1] = mce->status;
1781 } else
1782 banks[1] |= MCI_STATUS_OVER;
1783 return 0;
1784 }
1785
1786 long kvm_arch_vcpu_ioctl(struct file *filp,
1787 unsigned int ioctl, unsigned long arg)
1788 {
1789 struct kvm_vcpu *vcpu = filp->private_data;
1790 void __user *argp = (void __user *)arg;
1791 int r;
1792 struct kvm_lapic_state *lapic = NULL;
1793
1794 switch (ioctl) {
1795 case KVM_GET_LAPIC: {
1796 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1797
1798 r = -ENOMEM;
1799 if (!lapic)
1800 goto out;
1801 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
1802 if (r)
1803 goto out;
1804 r = -EFAULT;
1805 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
1806 goto out;
1807 r = 0;
1808 break;
1809 }
1810 case KVM_SET_LAPIC: {
1811 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1812 r = -ENOMEM;
1813 if (!lapic)
1814 goto out;
1815 r = -EFAULT;
1816 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
1817 goto out;
1818 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
1819 if (r)
1820 goto out;
1821 r = 0;
1822 break;
1823 }
1824 case KVM_INTERRUPT: {
1825 struct kvm_interrupt irq;
1826
1827 r = -EFAULT;
1828 if (copy_from_user(&irq, argp, sizeof irq))
1829 goto out;
1830 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1831 if (r)
1832 goto out;
1833 r = 0;
1834 break;
1835 }
1836 case KVM_NMI: {
1837 r = kvm_vcpu_ioctl_nmi(vcpu);
1838 if (r)
1839 goto out;
1840 r = 0;
1841 break;
1842 }
1843 case KVM_SET_CPUID: {
1844 struct kvm_cpuid __user *cpuid_arg = argp;
1845 struct kvm_cpuid cpuid;
1846
1847 r = -EFAULT;
1848 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1849 goto out;
1850 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1851 if (r)
1852 goto out;
1853 break;
1854 }
1855 case KVM_SET_CPUID2: {
1856 struct kvm_cpuid2 __user *cpuid_arg = argp;
1857 struct kvm_cpuid2 cpuid;
1858
1859 r = -EFAULT;
1860 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1861 goto out;
1862 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1863 cpuid_arg->entries);
1864 if (r)
1865 goto out;
1866 break;
1867 }
1868 case KVM_GET_CPUID2: {
1869 struct kvm_cpuid2 __user *cpuid_arg = argp;
1870 struct kvm_cpuid2 cpuid;
1871
1872 r = -EFAULT;
1873 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1874 goto out;
1875 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1876 cpuid_arg->entries);
1877 if (r)
1878 goto out;
1879 r = -EFAULT;
1880 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1881 goto out;
1882 r = 0;
1883 break;
1884 }
1885 case KVM_GET_MSRS:
1886 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1887 break;
1888 case KVM_SET_MSRS:
1889 r = msr_io(vcpu, argp, do_set_msr, 0);
1890 break;
1891 case KVM_TPR_ACCESS_REPORTING: {
1892 struct kvm_tpr_access_ctl tac;
1893
1894 r = -EFAULT;
1895 if (copy_from_user(&tac, argp, sizeof tac))
1896 goto out;
1897 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1898 if (r)
1899 goto out;
1900 r = -EFAULT;
1901 if (copy_to_user(argp, &tac, sizeof tac))
1902 goto out;
1903 r = 0;
1904 break;
1905 };
1906 case KVM_SET_VAPIC_ADDR: {
1907 struct kvm_vapic_addr va;
1908
1909 r = -EINVAL;
1910 if (!irqchip_in_kernel(vcpu->kvm))
1911 goto out;
1912 r = -EFAULT;
1913 if (copy_from_user(&va, argp, sizeof va))
1914 goto out;
1915 r = 0;
1916 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1917 break;
1918 }
1919 case KVM_X86_SETUP_MCE: {
1920 u64 mcg_cap;
1921
1922 r = -EFAULT;
1923 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
1924 goto out;
1925 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
1926 break;
1927 }
1928 case KVM_X86_SET_MCE: {
1929 struct kvm_x86_mce mce;
1930
1931 r = -EFAULT;
1932 if (copy_from_user(&mce, argp, sizeof mce))
1933 goto out;
1934 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
1935 break;
1936 }
1937 default:
1938 r = -EINVAL;
1939 }
1940 out:
1941 kfree(lapic);
1942 return r;
1943 }
1944
1945 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1946 {
1947 int ret;
1948
1949 if (addr > (unsigned int)(-3 * PAGE_SIZE))
1950 return -1;
1951 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1952 return ret;
1953 }
1954
1955 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
1956 u64 ident_addr)
1957 {
1958 kvm->arch.ept_identity_map_addr = ident_addr;
1959 return 0;
1960 }
1961
1962 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1963 u32 kvm_nr_mmu_pages)
1964 {
1965 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1966 return -EINVAL;
1967
1968 down_write(&kvm->slots_lock);
1969 spin_lock(&kvm->mmu_lock);
1970
1971 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1972 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1973
1974 spin_unlock(&kvm->mmu_lock);
1975 up_write(&kvm->slots_lock);
1976 return 0;
1977 }
1978
1979 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1980 {
1981 return kvm->arch.n_alloc_mmu_pages;
1982 }
1983
1984 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1985 {
1986 int i;
1987 struct kvm_mem_alias *alias;
1988
1989 for (i = 0; i < kvm->arch.naliases; ++i) {
1990 alias = &kvm->arch.aliases[i];
1991 if (gfn >= alias->base_gfn
1992 && gfn < alias->base_gfn + alias->npages)
1993 return alias->target_gfn + gfn - alias->base_gfn;
1994 }
1995 return gfn;
1996 }
1997
1998 /*
1999 * Set a new alias region. Aliases map a portion of physical memory into
2000 * another portion. This is useful for memory windows, for example the PC
2001 * VGA region.
2002 */
2003 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
2004 struct kvm_memory_alias *alias)
2005 {
2006 int r, n;
2007 struct kvm_mem_alias *p;
2008
2009 r = -EINVAL;
2010 /* General sanity checks */
2011 if (alias->memory_size & (PAGE_SIZE - 1))
2012 goto out;
2013 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
2014 goto out;
2015 if (alias->slot >= KVM_ALIAS_SLOTS)
2016 goto out;
2017 if (alias->guest_phys_addr + alias->memory_size
2018 < alias->guest_phys_addr)
2019 goto out;
2020 if (alias->target_phys_addr + alias->memory_size
2021 < alias->target_phys_addr)
2022 goto out;
2023
2024 down_write(&kvm->slots_lock);
2025 spin_lock(&kvm->mmu_lock);
2026
2027 p = &kvm->arch.aliases[alias->slot];
2028 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
2029 p->npages = alias->memory_size >> PAGE_SHIFT;
2030 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
2031
2032 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
2033 if (kvm->arch.aliases[n - 1].npages)
2034 break;
2035 kvm->arch.naliases = n;
2036
2037 spin_unlock(&kvm->mmu_lock);
2038 kvm_mmu_zap_all(kvm);
2039
2040 up_write(&kvm->slots_lock);
2041
2042 return 0;
2043
2044 out:
2045 return r;
2046 }
2047
2048 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2049 {
2050 int r;
2051
2052 r = 0;
2053 switch (chip->chip_id) {
2054 case KVM_IRQCHIP_PIC_MASTER:
2055 memcpy(&chip->chip.pic,
2056 &pic_irqchip(kvm)->pics[0],
2057 sizeof(struct kvm_pic_state));
2058 break;
2059 case KVM_IRQCHIP_PIC_SLAVE:
2060 memcpy(&chip->chip.pic,
2061 &pic_irqchip(kvm)->pics[1],
2062 sizeof(struct kvm_pic_state));
2063 break;
2064 case KVM_IRQCHIP_IOAPIC:
2065 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2066 break;
2067 default:
2068 r = -EINVAL;
2069 break;
2070 }
2071 return r;
2072 }
2073
2074 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2075 {
2076 int r;
2077
2078 r = 0;
2079 switch (chip->chip_id) {
2080 case KVM_IRQCHIP_PIC_MASTER:
2081 spin_lock(&pic_irqchip(kvm)->lock);
2082 memcpy(&pic_irqchip(kvm)->pics[0],
2083 &chip->chip.pic,
2084 sizeof(struct kvm_pic_state));
2085 spin_unlock(&pic_irqchip(kvm)->lock);
2086 break;
2087 case KVM_IRQCHIP_PIC_SLAVE:
2088 spin_lock(&pic_irqchip(kvm)->lock);
2089 memcpy(&pic_irqchip(kvm)->pics[1],
2090 &chip->chip.pic,
2091 sizeof(struct kvm_pic_state));
2092 spin_unlock(&pic_irqchip(kvm)->lock);
2093 break;
2094 case KVM_IRQCHIP_IOAPIC:
2095 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
2096 break;
2097 default:
2098 r = -EINVAL;
2099 break;
2100 }
2101 kvm_pic_update_irq(pic_irqchip(kvm));
2102 return r;
2103 }
2104
2105 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2106 {
2107 int r = 0;
2108
2109 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2110 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2111 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2112 return r;
2113 }
2114
2115 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2116 {
2117 int r = 0;
2118
2119 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2120 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2121 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2122 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2123 return r;
2124 }
2125
2126 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2127 {
2128 int r = 0;
2129
2130 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2131 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2132 sizeof(ps->channels));
2133 ps->flags = kvm->arch.vpit->pit_state.flags;
2134 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2135 return r;
2136 }
2137
2138 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2139 {
2140 int r = 0, start = 0;
2141 u32 prev_legacy, cur_legacy;
2142 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2143 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2144 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2145 if (!prev_legacy && cur_legacy)
2146 start = 1;
2147 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2148 sizeof(kvm->arch.vpit->pit_state.channels));
2149 kvm->arch.vpit->pit_state.flags = ps->flags;
2150 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2151 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2152 return r;
2153 }
2154
2155 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2156 struct kvm_reinject_control *control)
2157 {
2158 if (!kvm->arch.vpit)
2159 return -ENXIO;
2160 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2161 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2162 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2163 return 0;
2164 }
2165
2166 /*
2167 * Get (and clear) the dirty memory log for a memory slot.
2168 */
2169 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2170 struct kvm_dirty_log *log)
2171 {
2172 int r;
2173 int n;
2174 struct kvm_memory_slot *memslot;
2175 int is_dirty = 0;
2176
2177 down_write(&kvm->slots_lock);
2178
2179 r = kvm_get_dirty_log(kvm, log, &is_dirty);
2180 if (r)
2181 goto out;
2182
2183 /* If nothing is dirty, don't bother messing with page tables. */
2184 if (is_dirty) {
2185 spin_lock(&kvm->mmu_lock);
2186 kvm_mmu_slot_remove_write_access(kvm, log->slot);
2187 spin_unlock(&kvm->mmu_lock);
2188 memslot = &kvm->memslots[log->slot];
2189 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
2190 memset(memslot->dirty_bitmap, 0, n);
2191 }
2192 r = 0;
2193 out:
2194 up_write(&kvm->slots_lock);
2195 return r;
2196 }
2197
2198 long kvm_arch_vm_ioctl(struct file *filp,
2199 unsigned int ioctl, unsigned long arg)
2200 {
2201 struct kvm *kvm = filp->private_data;
2202 void __user *argp = (void __user *)arg;
2203 int r = -ENOTTY;
2204 /*
2205 * This union makes it completely explicit to gcc-3.x
2206 * that these two variables' stack usage should be
2207 * combined, not added together.
2208 */
2209 union {
2210 struct kvm_pit_state ps;
2211 struct kvm_pit_state2 ps2;
2212 struct kvm_memory_alias alias;
2213 struct kvm_pit_config pit_config;
2214 } u;
2215
2216 switch (ioctl) {
2217 case KVM_SET_TSS_ADDR:
2218 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
2219 if (r < 0)
2220 goto out;
2221 break;
2222 case KVM_SET_IDENTITY_MAP_ADDR: {
2223 u64 ident_addr;
2224
2225 r = -EFAULT;
2226 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
2227 goto out;
2228 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
2229 if (r < 0)
2230 goto out;
2231 break;
2232 }
2233 case KVM_SET_MEMORY_REGION: {
2234 struct kvm_memory_region kvm_mem;
2235 struct kvm_userspace_memory_region kvm_userspace_mem;
2236
2237 r = -EFAULT;
2238 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2239 goto out;
2240 kvm_userspace_mem.slot = kvm_mem.slot;
2241 kvm_userspace_mem.flags = kvm_mem.flags;
2242 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
2243 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
2244 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
2245 if (r)
2246 goto out;
2247 break;
2248 }
2249 case KVM_SET_NR_MMU_PAGES:
2250 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
2251 if (r)
2252 goto out;
2253 break;
2254 case KVM_GET_NR_MMU_PAGES:
2255 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
2256 break;
2257 case KVM_SET_MEMORY_ALIAS:
2258 r = -EFAULT;
2259 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
2260 goto out;
2261 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
2262 if (r)
2263 goto out;
2264 break;
2265 case KVM_CREATE_IRQCHIP:
2266 r = -ENOMEM;
2267 kvm->arch.vpic = kvm_create_pic(kvm);
2268 if (kvm->arch.vpic) {
2269 r = kvm_ioapic_init(kvm);
2270 if (r) {
2271 kfree(kvm->arch.vpic);
2272 kvm->arch.vpic = NULL;
2273 goto out;
2274 }
2275 } else
2276 goto out;
2277 r = kvm_setup_default_irq_routing(kvm);
2278 if (r) {
2279 kfree(kvm->arch.vpic);
2280 kfree(kvm->arch.vioapic);
2281 goto out;
2282 }
2283 break;
2284 case KVM_CREATE_PIT:
2285 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
2286 goto create_pit;
2287 case KVM_CREATE_PIT2:
2288 r = -EFAULT;
2289 if (copy_from_user(&u.pit_config, argp,
2290 sizeof(struct kvm_pit_config)))
2291 goto out;
2292 create_pit:
2293 down_write(&kvm->slots_lock);
2294 r = -EEXIST;
2295 if (kvm->arch.vpit)
2296 goto create_pit_unlock;
2297 r = -ENOMEM;
2298 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
2299 if (kvm->arch.vpit)
2300 r = 0;
2301 create_pit_unlock:
2302 up_write(&kvm->slots_lock);
2303 break;
2304 case KVM_IRQ_LINE_STATUS:
2305 case KVM_IRQ_LINE: {
2306 struct kvm_irq_level irq_event;
2307
2308 r = -EFAULT;
2309 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2310 goto out;
2311 if (irqchip_in_kernel(kvm)) {
2312 __s32 status;
2313 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2314 irq_event.irq, irq_event.level);
2315 if (ioctl == KVM_IRQ_LINE_STATUS) {
2316 irq_event.status = status;
2317 if (copy_to_user(argp, &irq_event,
2318 sizeof irq_event))
2319 goto out;
2320 }
2321 r = 0;
2322 }
2323 break;
2324 }
2325 case KVM_GET_IRQCHIP: {
2326 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2327 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2328
2329 r = -ENOMEM;
2330 if (!chip)
2331 goto out;
2332 r = -EFAULT;
2333 if (copy_from_user(chip, argp, sizeof *chip))
2334 goto get_irqchip_out;
2335 r = -ENXIO;
2336 if (!irqchip_in_kernel(kvm))
2337 goto get_irqchip_out;
2338 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
2339 if (r)
2340 goto get_irqchip_out;
2341 r = -EFAULT;
2342 if (copy_to_user(argp, chip, sizeof *chip))
2343 goto get_irqchip_out;
2344 r = 0;
2345 get_irqchip_out:
2346 kfree(chip);
2347 if (r)
2348 goto out;
2349 break;
2350 }
2351 case KVM_SET_IRQCHIP: {
2352 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2353 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2354
2355 r = -ENOMEM;
2356 if (!chip)
2357 goto out;
2358 r = -EFAULT;
2359 if (copy_from_user(chip, argp, sizeof *chip))
2360 goto set_irqchip_out;
2361 r = -ENXIO;
2362 if (!irqchip_in_kernel(kvm))
2363 goto set_irqchip_out;
2364 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
2365 if (r)
2366 goto set_irqchip_out;
2367 r = 0;
2368 set_irqchip_out:
2369 kfree(chip);
2370 if (r)
2371 goto out;
2372 break;
2373 }
2374 case KVM_GET_PIT: {
2375 r = -EFAULT;
2376 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
2377 goto out;
2378 r = -ENXIO;
2379 if (!kvm->arch.vpit)
2380 goto out;
2381 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
2382 if (r)
2383 goto out;
2384 r = -EFAULT;
2385 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
2386 goto out;
2387 r = 0;
2388 break;
2389 }
2390 case KVM_SET_PIT: {
2391 r = -EFAULT;
2392 if (copy_from_user(&u.ps, argp, sizeof u.ps))
2393 goto out;
2394 r = -ENXIO;
2395 if (!kvm->arch.vpit)
2396 goto out;
2397 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
2398 if (r)
2399 goto out;
2400 r = 0;
2401 break;
2402 }
2403 case KVM_GET_PIT2: {
2404 r = -ENXIO;
2405 if (!kvm->arch.vpit)
2406 goto out;
2407 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
2408 if (r)
2409 goto out;
2410 r = -EFAULT;
2411 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
2412 goto out;
2413 r = 0;
2414 break;
2415 }
2416 case KVM_SET_PIT2: {
2417 r = -EFAULT;
2418 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
2419 goto out;
2420 r = -ENXIO;
2421 if (!kvm->arch.vpit)
2422 goto out;
2423 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
2424 if (r)
2425 goto out;
2426 r = 0;
2427 break;
2428 }
2429 case KVM_REINJECT_CONTROL: {
2430 struct kvm_reinject_control control;
2431 r = -EFAULT;
2432 if (copy_from_user(&control, argp, sizeof(control)))
2433 goto out;
2434 r = kvm_vm_ioctl_reinject(kvm, &control);
2435 if (r)
2436 goto out;
2437 r = 0;
2438 break;
2439 }
2440 default:
2441 ;
2442 }
2443 out:
2444 return r;
2445 }
2446
2447 static void kvm_init_msr_list(void)
2448 {
2449 u32 dummy[2];
2450 unsigned i, j;
2451
2452 /* skip the first msrs in the list. KVM-specific */
2453 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
2454 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2455 continue;
2456 if (j < i)
2457 msrs_to_save[j] = msrs_to_save[i];
2458 j++;
2459 }
2460 num_msrs_to_save = j;
2461 }
2462
2463 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
2464 const void *v)
2465 {
2466 if (vcpu->arch.apic &&
2467 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
2468 return 0;
2469
2470 return kvm_io_bus_write(&vcpu->kvm->mmio_bus, addr, len, v);
2471 }
2472
2473 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
2474 {
2475 if (vcpu->arch.apic &&
2476 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
2477 return 0;
2478
2479 return kvm_io_bus_read(&vcpu->kvm->mmio_bus, addr, len, v);
2480 }
2481
2482 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
2483 struct kvm_vcpu *vcpu)
2484 {
2485 void *data = val;
2486 int r = X86EMUL_CONTINUE;
2487
2488 while (bytes) {
2489 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2490 unsigned offset = addr & (PAGE_SIZE-1);
2491 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
2492 int ret;
2493
2494 if (gpa == UNMAPPED_GVA) {
2495 r = X86EMUL_PROPAGATE_FAULT;
2496 goto out;
2497 }
2498 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
2499 if (ret < 0) {
2500 r = X86EMUL_UNHANDLEABLE;
2501 goto out;
2502 }
2503
2504 bytes -= toread;
2505 data += toread;
2506 addr += toread;
2507 }
2508 out:
2509 return r;
2510 }
2511
2512 static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
2513 struct kvm_vcpu *vcpu)
2514 {
2515 void *data = val;
2516 int r = X86EMUL_CONTINUE;
2517
2518 while (bytes) {
2519 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2520 unsigned offset = addr & (PAGE_SIZE-1);
2521 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
2522 int ret;
2523
2524 if (gpa == UNMAPPED_GVA) {
2525 r = X86EMUL_PROPAGATE_FAULT;
2526 goto out;
2527 }
2528 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
2529 if (ret < 0) {
2530 r = X86EMUL_UNHANDLEABLE;
2531 goto out;
2532 }
2533
2534 bytes -= towrite;
2535 data += towrite;
2536 addr += towrite;
2537 }
2538 out:
2539 return r;
2540 }
2541
2542
2543 static int emulator_read_emulated(unsigned long addr,
2544 void *val,
2545 unsigned int bytes,
2546 struct kvm_vcpu *vcpu)
2547 {
2548 gpa_t gpa;
2549
2550 if (vcpu->mmio_read_completed) {
2551 memcpy(val, vcpu->mmio_data, bytes);
2552 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
2553 vcpu->mmio_phys_addr, *(u64 *)val);
2554 vcpu->mmio_read_completed = 0;
2555 return X86EMUL_CONTINUE;
2556 }
2557
2558 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2559
2560 /* For APIC access vmexit */
2561 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2562 goto mmio;
2563
2564 if (kvm_read_guest_virt(addr, val, bytes, vcpu)
2565 == X86EMUL_CONTINUE)
2566 return X86EMUL_CONTINUE;
2567 if (gpa == UNMAPPED_GVA)
2568 return X86EMUL_PROPAGATE_FAULT;
2569
2570 mmio:
2571 /*
2572 * Is this MMIO handled locally?
2573 */
2574 if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
2575 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
2576 return X86EMUL_CONTINUE;
2577 }
2578
2579 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
2580
2581 vcpu->mmio_needed = 1;
2582 vcpu->mmio_phys_addr = gpa;
2583 vcpu->mmio_size = bytes;
2584 vcpu->mmio_is_write = 0;
2585
2586 return X86EMUL_UNHANDLEABLE;
2587 }
2588
2589 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2590 const void *val, int bytes)
2591 {
2592 int ret;
2593
2594 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
2595 if (ret < 0)
2596 return 0;
2597 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
2598 return 1;
2599 }
2600
2601 static int emulator_write_emulated_onepage(unsigned long addr,
2602 const void *val,
2603 unsigned int bytes,
2604 struct kvm_vcpu *vcpu)
2605 {
2606 gpa_t gpa;
2607
2608 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2609
2610 if (gpa == UNMAPPED_GVA) {
2611 kvm_inject_page_fault(vcpu, addr, 2);
2612 return X86EMUL_PROPAGATE_FAULT;
2613 }
2614
2615 /* For APIC access vmexit */
2616 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2617 goto mmio;
2618
2619 if (emulator_write_phys(vcpu, gpa, val, bytes))
2620 return X86EMUL_CONTINUE;
2621
2622 mmio:
2623 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
2624 /*
2625 * Is this MMIO handled locally?
2626 */
2627 if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
2628 return X86EMUL_CONTINUE;
2629
2630 vcpu->mmio_needed = 1;
2631 vcpu->mmio_phys_addr = gpa;
2632 vcpu->mmio_size = bytes;
2633 vcpu->mmio_is_write = 1;
2634 memcpy(vcpu->mmio_data, val, bytes);
2635
2636 return X86EMUL_CONTINUE;
2637 }
2638
2639 int emulator_write_emulated(unsigned long addr,
2640 const void *val,
2641 unsigned int bytes,
2642 struct kvm_vcpu *vcpu)
2643 {
2644 /* Crossing a page boundary? */
2645 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
2646 int rc, now;
2647
2648 now = -addr & ~PAGE_MASK;
2649 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
2650 if (rc != X86EMUL_CONTINUE)
2651 return rc;
2652 addr += now;
2653 val += now;
2654 bytes -= now;
2655 }
2656 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
2657 }
2658 EXPORT_SYMBOL_GPL(emulator_write_emulated);
2659
2660 static int emulator_cmpxchg_emulated(unsigned long addr,
2661 const void *old,
2662 const void *new,
2663 unsigned int bytes,
2664 struct kvm_vcpu *vcpu)
2665 {
2666 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
2667 #ifndef CONFIG_X86_64
2668 /* guests cmpxchg8b have to be emulated atomically */
2669 if (bytes == 8) {
2670 gpa_t gpa;
2671 struct page *page;
2672 char *kaddr;
2673 u64 val;
2674
2675 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2676
2677 if (gpa == UNMAPPED_GVA ||
2678 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2679 goto emul_write;
2680
2681 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2682 goto emul_write;
2683
2684 val = *(u64 *)new;
2685
2686 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2687
2688 kaddr = kmap_atomic(page, KM_USER0);
2689 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2690 kunmap_atomic(kaddr, KM_USER0);
2691 kvm_release_page_dirty(page);
2692 }
2693 emul_write:
2694 #endif
2695
2696 return emulator_write_emulated(addr, new, bytes, vcpu);
2697 }
2698
2699 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2700 {
2701 return kvm_x86_ops->get_segment_base(vcpu, seg);
2702 }
2703
2704 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2705 {
2706 kvm_mmu_invlpg(vcpu, address);
2707 return X86EMUL_CONTINUE;
2708 }
2709
2710 int emulate_clts(struct kvm_vcpu *vcpu)
2711 {
2712 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2713 return X86EMUL_CONTINUE;
2714 }
2715
2716 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2717 {
2718 struct kvm_vcpu *vcpu = ctxt->vcpu;
2719
2720 switch (dr) {
2721 case 0 ... 3:
2722 *dest = kvm_x86_ops->get_dr(vcpu, dr);
2723 return X86EMUL_CONTINUE;
2724 default:
2725 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2726 return X86EMUL_UNHANDLEABLE;
2727 }
2728 }
2729
2730 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2731 {
2732 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2733 int exception;
2734
2735 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2736 if (exception) {
2737 /* FIXME: better handling */
2738 return X86EMUL_UNHANDLEABLE;
2739 }
2740 return X86EMUL_CONTINUE;
2741 }
2742
2743 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2744 {
2745 u8 opcodes[4];
2746 unsigned long rip = kvm_rip_read(vcpu);
2747 unsigned long rip_linear;
2748
2749 if (!printk_ratelimit())
2750 return;
2751
2752 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2753
2754 kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
2755
2756 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2757 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2758 }
2759 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2760
2761 static struct x86_emulate_ops emulate_ops = {
2762 .read_std = kvm_read_guest_virt,
2763 .read_emulated = emulator_read_emulated,
2764 .write_emulated = emulator_write_emulated,
2765 .cmpxchg_emulated = emulator_cmpxchg_emulated,
2766 };
2767
2768 static void cache_all_regs(struct kvm_vcpu *vcpu)
2769 {
2770 kvm_register_read(vcpu, VCPU_REGS_RAX);
2771 kvm_register_read(vcpu, VCPU_REGS_RSP);
2772 kvm_register_read(vcpu, VCPU_REGS_RIP);
2773 vcpu->arch.regs_dirty = ~0;
2774 }
2775
2776 int emulate_instruction(struct kvm_vcpu *vcpu,
2777 unsigned long cr2,
2778 u16 error_code,
2779 int emulation_type)
2780 {
2781 int r, shadow_mask;
2782 struct decode_cache *c;
2783 struct kvm_run *run = vcpu->run;
2784
2785 kvm_clear_exception_queue(vcpu);
2786 vcpu->arch.mmio_fault_cr2 = cr2;
2787 /*
2788 * TODO: fix emulate.c to use guest_read/write_register
2789 * instead of direct ->regs accesses, can save hundred cycles
2790 * on Intel for instructions that don't read/change RSP, for
2791 * for example.
2792 */
2793 cache_all_regs(vcpu);
2794
2795 vcpu->mmio_is_write = 0;
2796 vcpu->arch.pio.string = 0;
2797
2798 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2799 int cs_db, cs_l;
2800 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2801
2802 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2803 vcpu->arch.emulate_ctxt.eflags = kvm_get_rflags(vcpu);
2804 vcpu->arch.emulate_ctxt.mode =
2805 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2806 ? X86EMUL_MODE_REAL : cs_l
2807 ? X86EMUL_MODE_PROT64 : cs_db
2808 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2809
2810 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2811
2812 /* Only allow emulation of specific instructions on #UD
2813 * (namely VMMCALL, sysenter, sysexit, syscall)*/
2814 c = &vcpu->arch.emulate_ctxt.decode;
2815 if (emulation_type & EMULTYPE_TRAP_UD) {
2816 if (!c->twobyte)
2817 return EMULATE_FAIL;
2818 switch (c->b) {
2819 case 0x01: /* VMMCALL */
2820 if (c->modrm_mod != 3 || c->modrm_rm != 1)
2821 return EMULATE_FAIL;
2822 break;
2823 case 0x34: /* sysenter */
2824 case 0x35: /* sysexit */
2825 if (c->modrm_mod != 0 || c->modrm_rm != 0)
2826 return EMULATE_FAIL;
2827 break;
2828 case 0x05: /* syscall */
2829 if (c->modrm_mod != 0 || c->modrm_rm != 0)
2830 return EMULATE_FAIL;
2831 break;
2832 default:
2833 return EMULATE_FAIL;
2834 }
2835
2836 if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
2837 return EMULATE_FAIL;
2838 }
2839
2840 ++vcpu->stat.insn_emulation;
2841 if (r) {
2842 ++vcpu->stat.insn_emulation_fail;
2843 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2844 return EMULATE_DONE;
2845 return EMULATE_FAIL;
2846 }
2847 }
2848
2849 if (emulation_type & EMULTYPE_SKIP) {
2850 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
2851 return EMULATE_DONE;
2852 }
2853
2854 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2855 shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
2856
2857 if (r == 0)
2858 kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
2859
2860 if (vcpu->arch.pio.string)
2861 return EMULATE_DO_MMIO;
2862
2863 if ((r || vcpu->mmio_is_write) && run) {
2864 run->exit_reason = KVM_EXIT_MMIO;
2865 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2866 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2867 run->mmio.len = vcpu->mmio_size;
2868 run->mmio.is_write = vcpu->mmio_is_write;
2869 }
2870
2871 if (r) {
2872 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2873 return EMULATE_DONE;
2874 if (!vcpu->mmio_needed) {
2875 kvm_report_emulation_failure(vcpu, "mmio");
2876 return EMULATE_FAIL;
2877 }
2878 return EMULATE_DO_MMIO;
2879 }
2880
2881 kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2882
2883 if (vcpu->mmio_is_write) {
2884 vcpu->mmio_needed = 0;
2885 return EMULATE_DO_MMIO;
2886 }
2887
2888 return EMULATE_DONE;
2889 }
2890 EXPORT_SYMBOL_GPL(emulate_instruction);
2891
2892 static int pio_copy_data(struct kvm_vcpu *vcpu)
2893 {
2894 void *p = vcpu->arch.pio_data;
2895 gva_t q = vcpu->arch.pio.guest_gva;
2896 unsigned bytes;
2897 int ret;
2898
2899 bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2900 if (vcpu->arch.pio.in)
2901 ret = kvm_write_guest_virt(q, p, bytes, vcpu);
2902 else
2903 ret = kvm_read_guest_virt(q, p, bytes, vcpu);
2904 return ret;
2905 }
2906
2907 int complete_pio(struct kvm_vcpu *vcpu)
2908 {
2909 struct kvm_pio_request *io = &vcpu->arch.pio;
2910 long delta;
2911 int r;
2912 unsigned long val;
2913
2914 if (!io->string) {
2915 if (io->in) {
2916 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2917 memcpy(&val, vcpu->arch.pio_data, io->size);
2918 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
2919 }
2920 } else {
2921 if (io->in) {
2922 r = pio_copy_data(vcpu);
2923 if (r)
2924 return r;
2925 }
2926
2927 delta = 1;
2928 if (io->rep) {
2929 delta *= io->cur_count;
2930 /*
2931 * The size of the register should really depend on
2932 * current address size.
2933 */
2934 val = kvm_register_read(vcpu, VCPU_REGS_RCX);
2935 val -= delta;
2936 kvm_register_write(vcpu, VCPU_REGS_RCX, val);
2937 }
2938 if (io->down)
2939 delta = -delta;
2940 delta *= io->size;
2941 if (io->in) {
2942 val = kvm_register_read(vcpu, VCPU_REGS_RDI);
2943 val += delta;
2944 kvm_register_write(vcpu, VCPU_REGS_RDI, val);
2945 } else {
2946 val = kvm_register_read(vcpu, VCPU_REGS_RSI);
2947 val += delta;
2948 kvm_register_write(vcpu, VCPU_REGS_RSI, val);
2949 }
2950 }
2951
2952 io->count -= io->cur_count;
2953 io->cur_count = 0;
2954
2955 return 0;
2956 }
2957
2958 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
2959 {
2960 /* TODO: String I/O for in kernel device */
2961 int r;
2962
2963 if (vcpu->arch.pio.in)
2964 r = kvm_io_bus_read(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
2965 vcpu->arch.pio.size, pd);
2966 else
2967 r = kvm_io_bus_write(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
2968 vcpu->arch.pio.size, pd);
2969 return r;
2970 }
2971
2972 static int pio_string_write(struct kvm_vcpu *vcpu)
2973 {
2974 struct kvm_pio_request *io = &vcpu->arch.pio;
2975 void *pd = vcpu->arch.pio_data;
2976 int i, r = 0;
2977
2978 for (i = 0; i < io->cur_count; i++) {
2979 if (kvm_io_bus_write(&vcpu->kvm->pio_bus,
2980 io->port, io->size, pd)) {
2981 r = -EOPNOTSUPP;
2982 break;
2983 }
2984 pd += io->size;
2985 }
2986 return r;
2987 }
2988
2989 int kvm_emulate_pio(struct kvm_vcpu *vcpu, int in, int size, unsigned port)
2990 {
2991 unsigned long val;
2992
2993 vcpu->run->exit_reason = KVM_EXIT_IO;
2994 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2995 vcpu->run->io.size = vcpu->arch.pio.size = size;
2996 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2997 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2998 vcpu->run->io.port = vcpu->arch.pio.port = port;
2999 vcpu->arch.pio.in = in;
3000 vcpu->arch.pio.string = 0;
3001 vcpu->arch.pio.down = 0;
3002 vcpu->arch.pio.rep = 0;
3003
3004 trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
3005 size, 1);
3006
3007 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
3008 memcpy(vcpu->arch.pio_data, &val, 4);
3009
3010 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3011 complete_pio(vcpu);
3012 return 1;
3013 }
3014 return 0;
3015 }
3016 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
3017
3018 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, int in,
3019 int size, unsigned long count, int down,
3020 gva_t address, int rep, unsigned port)
3021 {
3022 unsigned now, in_page;
3023 int ret = 0;
3024
3025 vcpu->run->exit_reason = KVM_EXIT_IO;
3026 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3027 vcpu->run->io.size = vcpu->arch.pio.size = size;
3028 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3029 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
3030 vcpu->run->io.port = vcpu->arch.pio.port = port;
3031 vcpu->arch.pio.in = in;
3032 vcpu->arch.pio.string = 1;
3033 vcpu->arch.pio.down = down;
3034 vcpu->arch.pio.rep = rep;
3035
3036 trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
3037 size, count);
3038
3039 if (!count) {
3040 kvm_x86_ops->skip_emulated_instruction(vcpu);
3041 return 1;
3042 }
3043
3044 if (!down)
3045 in_page = PAGE_SIZE - offset_in_page(address);
3046 else
3047 in_page = offset_in_page(address) + size;
3048 now = min(count, (unsigned long)in_page / size);
3049 if (!now)
3050 now = 1;
3051 if (down) {
3052 /*
3053 * String I/O in reverse. Yuck. Kill the guest, fix later.
3054 */
3055 pr_unimpl(vcpu, "guest string pio down\n");
3056 kvm_inject_gp(vcpu, 0);
3057 return 1;
3058 }
3059 vcpu->run->io.count = now;
3060 vcpu->arch.pio.cur_count = now;
3061
3062 if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
3063 kvm_x86_ops->skip_emulated_instruction(vcpu);
3064
3065 vcpu->arch.pio.guest_gva = address;
3066
3067 if (!vcpu->arch.pio.in) {
3068 /* string PIO write */
3069 ret = pio_copy_data(vcpu);
3070 if (ret == X86EMUL_PROPAGATE_FAULT) {
3071 kvm_inject_gp(vcpu, 0);
3072 return 1;
3073 }
3074 if (ret == 0 && !pio_string_write(vcpu)) {
3075 complete_pio(vcpu);
3076 if (vcpu->arch.pio.count == 0)
3077 ret = 1;
3078 }
3079 }
3080 /* no string PIO read support yet */
3081
3082 return ret;
3083 }
3084 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
3085
3086 static void bounce_off(void *info)
3087 {
3088 /* nothing */
3089 }
3090
3091 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
3092 void *data)
3093 {
3094 struct cpufreq_freqs *freq = data;
3095 struct kvm *kvm;
3096 struct kvm_vcpu *vcpu;
3097 int i, send_ipi = 0;
3098
3099 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
3100 return 0;
3101 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
3102 return 0;
3103 per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
3104
3105 spin_lock(&kvm_lock);
3106 list_for_each_entry(kvm, &vm_list, vm_list) {
3107 kvm_for_each_vcpu(i, vcpu, kvm) {
3108 if (vcpu->cpu != freq->cpu)
3109 continue;
3110 if (!kvm_request_guest_time_update(vcpu))
3111 continue;
3112 if (vcpu->cpu != smp_processor_id())
3113 send_ipi++;
3114 }
3115 }
3116 spin_unlock(&kvm_lock);
3117
3118 if (freq->old < freq->new && send_ipi) {
3119 /*
3120 * We upscale the frequency. Must make the guest
3121 * doesn't see old kvmclock values while running with
3122 * the new frequency, otherwise we risk the guest sees
3123 * time go backwards.
3124 *
3125 * In case we update the frequency for another cpu
3126 * (which might be in guest context) send an interrupt
3127 * to kick the cpu out of guest context. Next time
3128 * guest context is entered kvmclock will be updated,
3129 * so the guest will not see stale values.
3130 */
3131 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
3132 }
3133 return 0;
3134 }
3135
3136 static struct notifier_block kvmclock_cpufreq_notifier_block = {
3137 .notifier_call = kvmclock_cpufreq_notifier
3138 };
3139
3140 static void kvm_timer_init(void)
3141 {
3142 int cpu;
3143
3144 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
3145 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
3146 CPUFREQ_TRANSITION_NOTIFIER);
3147 for_each_online_cpu(cpu)
3148 per_cpu(cpu_tsc_khz, cpu) = cpufreq_get(cpu);
3149 } else {
3150 for_each_possible_cpu(cpu)
3151 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
3152 }
3153 }
3154
3155 int kvm_arch_init(void *opaque)
3156 {
3157 int r;
3158 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
3159
3160 if (kvm_x86_ops) {
3161 printk(KERN_ERR "kvm: already loaded the other module\n");
3162 r = -EEXIST;
3163 goto out;
3164 }
3165
3166 if (!ops->cpu_has_kvm_support()) {
3167 printk(KERN_ERR "kvm: no hardware support\n");
3168 r = -EOPNOTSUPP;
3169 goto out;
3170 }
3171 if (ops->disabled_by_bios()) {
3172 printk(KERN_ERR "kvm: disabled by bios\n");
3173 r = -EOPNOTSUPP;
3174 goto out;
3175 }
3176
3177 r = kvm_mmu_module_init();
3178 if (r)
3179 goto out;
3180
3181 kvm_init_msr_list();
3182
3183 kvm_x86_ops = ops;
3184 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
3185 kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
3186 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
3187 PT_DIRTY_MASK, PT64_NX_MASK, 0);
3188
3189 kvm_timer_init();
3190
3191 return 0;
3192
3193 out:
3194 return r;
3195 }
3196
3197 void kvm_arch_exit(void)
3198 {
3199 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
3200 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
3201 CPUFREQ_TRANSITION_NOTIFIER);
3202 kvm_x86_ops = NULL;
3203 kvm_mmu_module_exit();
3204 }
3205
3206 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
3207 {
3208 ++vcpu->stat.halt_exits;
3209 if (irqchip_in_kernel(vcpu->kvm)) {
3210 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
3211 return 1;
3212 } else {
3213 vcpu->run->exit_reason = KVM_EXIT_HLT;
3214 return 0;
3215 }
3216 }
3217 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
3218
3219 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
3220 unsigned long a1)
3221 {
3222 if (is_long_mode(vcpu))
3223 return a0;
3224 else
3225 return a0 | ((gpa_t)a1 << 32);
3226 }
3227
3228 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
3229 {
3230 unsigned long nr, a0, a1, a2, a3, ret;
3231 int r = 1;
3232
3233 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
3234 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
3235 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
3236 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
3237 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
3238
3239 trace_kvm_hypercall(nr, a0, a1, a2, a3);
3240
3241 if (!is_long_mode(vcpu)) {
3242 nr &= 0xFFFFFFFF;
3243 a0 &= 0xFFFFFFFF;
3244 a1 &= 0xFFFFFFFF;
3245 a2 &= 0xFFFFFFFF;
3246 a3 &= 0xFFFFFFFF;
3247 }
3248
3249 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
3250 ret = -KVM_EPERM;
3251 goto out;
3252 }
3253
3254 switch (nr) {
3255 case KVM_HC_VAPIC_POLL_IRQ:
3256 ret = 0;
3257 break;
3258 case KVM_HC_MMU_OP:
3259 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
3260 break;
3261 default:
3262 ret = -KVM_ENOSYS;
3263 break;
3264 }
3265 out:
3266 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
3267 ++vcpu->stat.hypercalls;
3268 return r;
3269 }
3270 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
3271
3272 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
3273 {
3274 char instruction[3];
3275 int ret = 0;
3276 unsigned long rip = kvm_rip_read(vcpu);
3277
3278
3279 /*
3280 * Blow out the MMU to ensure that no other VCPU has an active mapping
3281 * to ensure that the updated hypercall appears atomically across all
3282 * VCPUs.
3283 */
3284 kvm_mmu_zap_all(vcpu->kvm);
3285
3286 kvm_x86_ops->patch_hypercall(vcpu, instruction);
3287 if (emulator_write_emulated(rip, instruction, 3, vcpu)
3288 != X86EMUL_CONTINUE)
3289 ret = -EFAULT;
3290
3291 return ret;
3292 }
3293
3294 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3295 {
3296 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3297 }
3298
3299 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3300 {
3301 struct descriptor_table dt = { limit, base };
3302
3303 kvm_x86_ops->set_gdt(vcpu, &dt);
3304 }
3305
3306 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3307 {
3308 struct descriptor_table dt = { limit, base };
3309
3310 kvm_x86_ops->set_idt(vcpu, &dt);
3311 }
3312
3313 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
3314 unsigned long *rflags)
3315 {
3316 kvm_lmsw(vcpu, msw);
3317 *rflags = kvm_get_rflags(vcpu);
3318 }
3319
3320 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
3321 {
3322 unsigned long value;
3323
3324 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3325 switch (cr) {
3326 case 0:
3327 value = vcpu->arch.cr0;
3328 break;
3329 case 2:
3330 value = vcpu->arch.cr2;
3331 break;
3332 case 3:
3333 value = vcpu->arch.cr3;
3334 break;
3335 case 4:
3336 value = vcpu->arch.cr4;
3337 break;
3338 case 8:
3339 value = kvm_get_cr8(vcpu);
3340 break;
3341 default:
3342 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3343 return 0;
3344 }
3345
3346 return value;
3347 }
3348
3349 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
3350 unsigned long *rflags)
3351 {
3352 switch (cr) {
3353 case 0:
3354 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
3355 *rflags = kvm_get_rflags(vcpu);
3356 break;
3357 case 2:
3358 vcpu->arch.cr2 = val;
3359 break;
3360 case 3:
3361 kvm_set_cr3(vcpu, val);
3362 break;
3363 case 4:
3364 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
3365 break;
3366 case 8:
3367 kvm_set_cr8(vcpu, val & 0xfUL);
3368 break;
3369 default:
3370 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3371 }
3372 }
3373
3374 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
3375 {
3376 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
3377 int j, nent = vcpu->arch.cpuid_nent;
3378
3379 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
3380 /* when no next entry is found, the current entry[i] is reselected */
3381 for (j = i + 1; ; j = (j + 1) % nent) {
3382 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
3383 if (ej->function == e->function) {
3384 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
3385 return j;
3386 }
3387 }
3388 return 0; /* silence gcc, even though control never reaches here */
3389 }
3390
3391 /* find an entry with matching function, matching index (if needed), and that
3392 * should be read next (if it's stateful) */
3393 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
3394 u32 function, u32 index)
3395 {
3396 if (e->function != function)
3397 return 0;
3398 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
3399 return 0;
3400 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
3401 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
3402 return 0;
3403 return 1;
3404 }
3405
3406 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
3407 u32 function, u32 index)
3408 {
3409 int i;
3410 struct kvm_cpuid_entry2 *best = NULL;
3411
3412 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
3413 struct kvm_cpuid_entry2 *e;
3414
3415 e = &vcpu->arch.cpuid_entries[i];
3416 if (is_matching_cpuid_entry(e, function, index)) {
3417 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
3418 move_to_next_stateful_cpuid_entry(vcpu, i);
3419 best = e;
3420 break;
3421 }
3422 /*
3423 * Both basic or both extended?
3424 */
3425 if (((e->function ^ function) & 0x80000000) == 0)
3426 if (!best || e->function > best->function)
3427 best = e;
3428 }
3429 return best;
3430 }
3431
3432 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
3433 {
3434 struct kvm_cpuid_entry2 *best;
3435
3436 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
3437 if (best)
3438 return best->eax & 0xff;
3439 return 36;
3440 }
3441
3442 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
3443 {
3444 u32 function, index;
3445 struct kvm_cpuid_entry2 *best;
3446
3447 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
3448 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3449 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
3450 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
3451 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
3452 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
3453 best = kvm_find_cpuid_entry(vcpu, function, index);
3454 if (best) {
3455 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
3456 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
3457 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
3458 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
3459 }
3460 kvm_x86_ops->skip_emulated_instruction(vcpu);
3461 trace_kvm_cpuid(function,
3462 kvm_register_read(vcpu, VCPU_REGS_RAX),
3463 kvm_register_read(vcpu, VCPU_REGS_RBX),
3464 kvm_register_read(vcpu, VCPU_REGS_RCX),
3465 kvm_register_read(vcpu, VCPU_REGS_RDX));
3466 }
3467 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
3468
3469 /*
3470 * Check if userspace requested an interrupt window, and that the
3471 * interrupt window is open.
3472 *
3473 * No need to exit to userspace if we already have an interrupt queued.
3474 */
3475 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
3476 {
3477 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
3478 vcpu->run->request_interrupt_window &&
3479 kvm_arch_interrupt_allowed(vcpu));
3480 }
3481
3482 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
3483 {
3484 struct kvm_run *kvm_run = vcpu->run;
3485
3486 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
3487 kvm_run->cr8 = kvm_get_cr8(vcpu);
3488 kvm_run->apic_base = kvm_get_apic_base(vcpu);
3489 if (irqchip_in_kernel(vcpu->kvm))
3490 kvm_run->ready_for_interrupt_injection = 1;
3491 else
3492 kvm_run->ready_for_interrupt_injection =
3493 kvm_arch_interrupt_allowed(vcpu) &&
3494 !kvm_cpu_has_interrupt(vcpu) &&
3495 !kvm_event_needs_reinjection(vcpu);
3496 }
3497
3498 static void vapic_enter(struct kvm_vcpu *vcpu)
3499 {
3500 struct kvm_lapic *apic = vcpu->arch.apic;
3501 struct page *page;
3502
3503 if (!apic || !apic->vapic_addr)
3504 return;
3505
3506 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3507
3508 vcpu->arch.apic->vapic_page = page;
3509 }
3510
3511 static void vapic_exit(struct kvm_vcpu *vcpu)
3512 {
3513 struct kvm_lapic *apic = vcpu->arch.apic;
3514
3515 if (!apic || !apic->vapic_addr)
3516 return;
3517
3518 down_read(&vcpu->kvm->slots_lock);
3519 kvm_release_page_dirty(apic->vapic_page);
3520 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3521 up_read(&vcpu->kvm->slots_lock);
3522 }
3523
3524 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
3525 {
3526 int max_irr, tpr;
3527
3528 if (!kvm_x86_ops->update_cr8_intercept)
3529 return;
3530
3531 if (!vcpu->arch.apic)
3532 return;
3533
3534 if (!vcpu->arch.apic->vapic_addr)
3535 max_irr = kvm_lapic_find_highest_irr(vcpu);
3536 else
3537 max_irr = -1;
3538
3539 if (max_irr != -1)
3540 max_irr >>= 4;
3541
3542 tpr = kvm_lapic_get_cr8(vcpu);
3543
3544 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
3545 }
3546
3547 static void inject_pending_event(struct kvm_vcpu *vcpu)
3548 {
3549 /* try to reinject previous events if any */
3550 if (vcpu->arch.exception.pending) {
3551 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
3552 vcpu->arch.exception.has_error_code,
3553 vcpu->arch.exception.error_code);
3554 return;
3555 }
3556
3557 if (vcpu->arch.nmi_injected) {
3558 kvm_x86_ops->set_nmi(vcpu);
3559 return;
3560 }
3561
3562 if (vcpu->arch.interrupt.pending) {
3563 kvm_x86_ops->set_irq(vcpu);
3564 return;
3565 }
3566
3567 /* try to inject new event if pending */
3568 if (vcpu->arch.nmi_pending) {
3569 if (kvm_x86_ops->nmi_allowed(vcpu)) {
3570 vcpu->arch.nmi_pending = false;
3571 vcpu->arch.nmi_injected = true;
3572 kvm_x86_ops->set_nmi(vcpu);
3573 }
3574 } else if (kvm_cpu_has_interrupt(vcpu)) {
3575 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
3576 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
3577 false);
3578 kvm_x86_ops->set_irq(vcpu);
3579 }
3580 }
3581 }
3582
3583 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
3584 {
3585 int r;
3586 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
3587 vcpu->run->request_interrupt_window;
3588
3589 if (vcpu->requests)
3590 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
3591 kvm_mmu_unload(vcpu);
3592
3593 r = kvm_mmu_reload(vcpu);
3594 if (unlikely(r))
3595 goto out;
3596
3597 if (vcpu->requests) {
3598 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
3599 __kvm_migrate_timers(vcpu);
3600 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
3601 kvm_write_guest_time(vcpu);
3602 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
3603 kvm_mmu_sync_roots(vcpu);
3604 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
3605 kvm_x86_ops->tlb_flush(vcpu);
3606 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
3607 &vcpu->requests)) {
3608 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
3609 r = 0;
3610 goto out;
3611 }
3612 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
3613 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
3614 r = 0;
3615 goto out;
3616 }
3617 }
3618
3619 preempt_disable();
3620
3621 kvm_x86_ops->prepare_guest_switch(vcpu);
3622 kvm_load_guest_fpu(vcpu);
3623
3624 local_irq_disable();
3625
3626 clear_bit(KVM_REQ_KICK, &vcpu->requests);
3627 smp_mb__after_clear_bit();
3628
3629 if (vcpu->requests || need_resched() || signal_pending(current)) {
3630 set_bit(KVM_REQ_KICK, &vcpu->requests);
3631 local_irq_enable();
3632 preempt_enable();
3633 r = 1;
3634 goto out;
3635 }
3636
3637 inject_pending_event(vcpu);
3638
3639 /* enable NMI/IRQ window open exits if needed */
3640 if (vcpu->arch.nmi_pending)
3641 kvm_x86_ops->enable_nmi_window(vcpu);
3642 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
3643 kvm_x86_ops->enable_irq_window(vcpu);
3644
3645 if (kvm_lapic_enabled(vcpu)) {
3646 update_cr8_intercept(vcpu);
3647 kvm_lapic_sync_to_vapic(vcpu);
3648 }
3649
3650 up_read(&vcpu->kvm->slots_lock);
3651
3652 kvm_guest_enter();
3653
3654 if (unlikely(vcpu->arch.switch_db_regs)) {
3655 set_debugreg(0, 7);
3656 set_debugreg(vcpu->arch.eff_db[0], 0);
3657 set_debugreg(vcpu->arch.eff_db[1], 1);
3658 set_debugreg(vcpu->arch.eff_db[2], 2);
3659 set_debugreg(vcpu->arch.eff_db[3], 3);
3660 }
3661
3662 trace_kvm_entry(vcpu->vcpu_id);
3663 kvm_x86_ops->run(vcpu);
3664
3665 if (unlikely(vcpu->arch.switch_db_regs || test_thread_flag(TIF_DEBUG))) {
3666 set_debugreg(current->thread.debugreg0, 0);
3667 set_debugreg(current->thread.debugreg1, 1);
3668 set_debugreg(current->thread.debugreg2, 2);
3669 set_debugreg(current->thread.debugreg3, 3);
3670 set_debugreg(current->thread.debugreg6, 6);
3671 set_debugreg(current->thread.debugreg7, 7);
3672 }
3673
3674 set_bit(KVM_REQ_KICK, &vcpu->requests);
3675 local_irq_enable();
3676
3677 ++vcpu->stat.exits;
3678
3679 /*
3680 * We must have an instruction between local_irq_enable() and
3681 * kvm_guest_exit(), so the timer interrupt isn't delayed by
3682 * the interrupt shadow. The stat.exits increment will do nicely.
3683 * But we need to prevent reordering, hence this barrier():
3684 */
3685 barrier();
3686
3687 kvm_guest_exit();
3688
3689 preempt_enable();
3690
3691 down_read(&vcpu->kvm->slots_lock);
3692
3693 /*
3694 * Profile KVM exit RIPs:
3695 */
3696 if (unlikely(prof_on == KVM_PROFILING)) {
3697 unsigned long rip = kvm_rip_read(vcpu);
3698 profile_hit(KVM_PROFILING, (void *)rip);
3699 }
3700
3701
3702 kvm_lapic_sync_from_vapic(vcpu);
3703
3704 r = kvm_x86_ops->handle_exit(vcpu);
3705 out:
3706 return r;
3707 }
3708
3709
3710 static int __vcpu_run(struct kvm_vcpu *vcpu)
3711 {
3712 int r;
3713
3714 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
3715 pr_debug("vcpu %d received sipi with vector # %x\n",
3716 vcpu->vcpu_id, vcpu->arch.sipi_vector);
3717 kvm_lapic_reset(vcpu);
3718 r = kvm_arch_vcpu_reset(vcpu);
3719 if (r)
3720 return r;
3721 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3722 }
3723
3724 down_read(&vcpu->kvm->slots_lock);
3725 vapic_enter(vcpu);
3726
3727 r = 1;
3728 while (r > 0) {
3729 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
3730 r = vcpu_enter_guest(vcpu);
3731 else {
3732 up_read(&vcpu->kvm->slots_lock);
3733 kvm_vcpu_block(vcpu);
3734 down_read(&vcpu->kvm->slots_lock);
3735 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
3736 {
3737 switch(vcpu->arch.mp_state) {
3738 case KVM_MP_STATE_HALTED:
3739 vcpu->arch.mp_state =
3740 KVM_MP_STATE_RUNNABLE;
3741 case KVM_MP_STATE_RUNNABLE:
3742 break;
3743 case KVM_MP_STATE_SIPI_RECEIVED:
3744 default:
3745 r = -EINTR;
3746 break;
3747 }
3748 }
3749 }
3750
3751 if (r <= 0)
3752 break;
3753
3754 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
3755 if (kvm_cpu_has_pending_timer(vcpu))
3756 kvm_inject_pending_timer_irqs(vcpu);
3757
3758 if (dm_request_for_irq_injection(vcpu)) {
3759 r = -EINTR;
3760 vcpu->run->exit_reason = KVM_EXIT_INTR;
3761 ++vcpu->stat.request_irq_exits;
3762 }
3763 if (signal_pending(current)) {
3764 r = -EINTR;
3765 vcpu->run->exit_reason = KVM_EXIT_INTR;
3766 ++vcpu->stat.signal_exits;
3767 }
3768 if (need_resched()) {
3769 up_read(&vcpu->kvm->slots_lock);
3770 kvm_resched(vcpu);
3771 down_read(&vcpu->kvm->slots_lock);
3772 }
3773 }
3774
3775 up_read(&vcpu->kvm->slots_lock);
3776 post_kvm_run_save(vcpu);
3777
3778 vapic_exit(vcpu);
3779
3780 return r;
3781 }
3782
3783 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3784 {
3785 int r;
3786 sigset_t sigsaved;
3787
3788 vcpu_load(vcpu);
3789
3790 if (vcpu->sigset_active)
3791 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
3792
3793 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
3794 kvm_vcpu_block(vcpu);
3795 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
3796 r = -EAGAIN;
3797 goto out;
3798 }
3799
3800 /* re-sync apic's tpr */
3801 if (!irqchip_in_kernel(vcpu->kvm))
3802 kvm_set_cr8(vcpu, kvm_run->cr8);
3803
3804 if (vcpu->arch.pio.cur_count) {
3805 r = complete_pio(vcpu);
3806 if (r)
3807 goto out;
3808 }
3809 #if CONFIG_HAS_IOMEM
3810 if (vcpu->mmio_needed) {
3811 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
3812 vcpu->mmio_read_completed = 1;
3813 vcpu->mmio_needed = 0;
3814
3815 down_read(&vcpu->kvm->slots_lock);
3816 r = emulate_instruction(vcpu, vcpu->arch.mmio_fault_cr2, 0,
3817 EMULTYPE_NO_DECODE);
3818 up_read(&vcpu->kvm->slots_lock);
3819 if (r == EMULATE_DO_MMIO) {
3820 /*
3821 * Read-modify-write. Back to userspace.
3822 */
3823 r = 0;
3824 goto out;
3825 }
3826 }
3827 #endif
3828 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
3829 kvm_register_write(vcpu, VCPU_REGS_RAX,
3830 kvm_run->hypercall.ret);
3831
3832 r = __vcpu_run(vcpu);
3833
3834 out:
3835 if (vcpu->sigset_active)
3836 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
3837
3838 vcpu_put(vcpu);
3839 return r;
3840 }
3841
3842 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3843 {
3844 vcpu_load(vcpu);
3845
3846 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3847 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3848 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3849 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3850 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3851 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3852 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3853 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3854 #ifdef CONFIG_X86_64
3855 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
3856 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
3857 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
3858 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
3859 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
3860 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
3861 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
3862 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
3863 #endif
3864
3865 regs->rip = kvm_rip_read(vcpu);
3866 regs->rflags = kvm_get_rflags(vcpu);
3867
3868 vcpu_put(vcpu);
3869
3870 return 0;
3871 }
3872
3873 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3874 {
3875 vcpu_load(vcpu);
3876
3877 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
3878 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
3879 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
3880 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
3881 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
3882 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
3883 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
3884 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
3885 #ifdef CONFIG_X86_64
3886 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
3887 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
3888 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
3889 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
3890 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
3891 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
3892 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
3893 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
3894 #endif
3895
3896 kvm_rip_write(vcpu, regs->rip);
3897 kvm_set_rflags(vcpu, regs->rflags);
3898
3899 vcpu->arch.exception.pending = false;
3900
3901 vcpu_put(vcpu);
3902
3903 return 0;
3904 }
3905
3906 void kvm_get_segment(struct kvm_vcpu *vcpu,
3907 struct kvm_segment *var, int seg)
3908 {
3909 kvm_x86_ops->get_segment(vcpu, var, seg);
3910 }
3911
3912 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3913 {
3914 struct kvm_segment cs;
3915
3916 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3917 *db = cs.db;
3918 *l = cs.l;
3919 }
3920 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3921
3922 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3923 struct kvm_sregs *sregs)
3924 {
3925 struct descriptor_table dt;
3926
3927 vcpu_load(vcpu);
3928
3929 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3930 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3931 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3932 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3933 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3934 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3935
3936 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3937 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3938
3939 kvm_x86_ops->get_idt(vcpu, &dt);
3940 sregs->idt.limit = dt.limit;
3941 sregs->idt.base = dt.base;
3942 kvm_x86_ops->get_gdt(vcpu, &dt);
3943 sregs->gdt.limit = dt.limit;
3944 sregs->gdt.base = dt.base;
3945
3946 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3947 sregs->cr0 = vcpu->arch.cr0;
3948 sregs->cr2 = vcpu->arch.cr2;
3949 sregs->cr3 = vcpu->arch.cr3;
3950 sregs->cr4 = vcpu->arch.cr4;
3951 sregs->cr8 = kvm_get_cr8(vcpu);
3952 sregs->efer = vcpu->arch.shadow_efer;
3953 sregs->apic_base = kvm_get_apic_base(vcpu);
3954
3955 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
3956
3957 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
3958 set_bit(vcpu->arch.interrupt.nr,
3959 (unsigned long *)sregs->interrupt_bitmap);
3960
3961 vcpu_put(vcpu);
3962
3963 return 0;
3964 }
3965
3966 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3967 struct kvm_mp_state *mp_state)
3968 {
3969 vcpu_load(vcpu);
3970 mp_state->mp_state = vcpu->arch.mp_state;
3971 vcpu_put(vcpu);
3972 return 0;
3973 }
3974
3975 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3976 struct kvm_mp_state *mp_state)
3977 {
3978 vcpu_load(vcpu);
3979 vcpu->arch.mp_state = mp_state->mp_state;
3980 vcpu_put(vcpu);
3981 return 0;
3982 }
3983
3984 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3985 struct kvm_segment *var, int seg)
3986 {
3987 kvm_x86_ops->set_segment(vcpu, var, seg);
3988 }
3989
3990 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
3991 struct kvm_segment *kvm_desct)
3992 {
3993 kvm_desct->base = get_desc_base(seg_desc);
3994 kvm_desct->limit = get_desc_limit(seg_desc);
3995 if (seg_desc->g) {
3996 kvm_desct->limit <<= 12;
3997 kvm_desct->limit |= 0xfff;
3998 }
3999 kvm_desct->selector = selector;
4000 kvm_desct->type = seg_desc->type;
4001 kvm_desct->present = seg_desc->p;
4002 kvm_desct->dpl = seg_desc->dpl;
4003 kvm_desct->db = seg_desc->d;
4004 kvm_desct->s = seg_desc->s;
4005 kvm_desct->l = seg_desc->l;
4006 kvm_desct->g = seg_desc->g;
4007 kvm_desct->avl = seg_desc->avl;
4008 if (!selector)
4009 kvm_desct->unusable = 1;
4010 else
4011 kvm_desct->unusable = 0;
4012 kvm_desct->padding = 0;
4013 }
4014
4015 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
4016 u16 selector,
4017 struct descriptor_table *dtable)
4018 {
4019 if (selector & 1 << 2) {
4020 struct kvm_segment kvm_seg;
4021
4022 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
4023
4024 if (kvm_seg.unusable)
4025 dtable->limit = 0;
4026 else
4027 dtable->limit = kvm_seg.limit;
4028 dtable->base = kvm_seg.base;
4029 }
4030 else
4031 kvm_x86_ops->get_gdt(vcpu, dtable);
4032 }
4033
4034 /* allowed just for 8 bytes segments */
4035 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4036 struct desc_struct *seg_desc)
4037 {
4038 struct descriptor_table dtable;
4039 u16 index = selector >> 3;
4040
4041 get_segment_descriptor_dtable(vcpu, selector, &dtable);
4042
4043 if (dtable.limit < index * 8 + 7) {
4044 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
4045 return 1;
4046 }
4047 return kvm_read_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
4048 }
4049
4050 /* allowed just for 8 bytes segments */
4051 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4052 struct desc_struct *seg_desc)
4053 {
4054 struct descriptor_table dtable;
4055 u16 index = selector >> 3;
4056
4057 get_segment_descriptor_dtable(vcpu, selector, &dtable);
4058
4059 if (dtable.limit < index * 8 + 7)
4060 return 1;
4061 return kvm_write_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
4062 }
4063
4064 static gpa_t get_tss_base_addr(struct kvm_vcpu *vcpu,
4065 struct desc_struct *seg_desc)
4066 {
4067 u32 base_addr = get_desc_base(seg_desc);
4068
4069 return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
4070 }
4071
4072 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
4073 {
4074 struct kvm_segment kvm_seg;
4075
4076 kvm_get_segment(vcpu, &kvm_seg, seg);
4077 return kvm_seg.selector;
4078 }
4079
4080 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
4081 u16 selector,
4082 struct kvm_segment *kvm_seg)
4083 {
4084 struct desc_struct seg_desc;
4085
4086 if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
4087 return 1;
4088 seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
4089 return 0;
4090 }
4091
4092 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
4093 {
4094 struct kvm_segment segvar = {
4095 .base = selector << 4,
4096 .limit = 0xffff,
4097 .selector = selector,
4098 .type = 3,
4099 .present = 1,
4100 .dpl = 3,
4101 .db = 0,
4102 .s = 1,
4103 .l = 0,
4104 .g = 0,
4105 .avl = 0,
4106 .unusable = 0,
4107 };
4108 kvm_x86_ops->set_segment(vcpu, &segvar, seg);
4109 return 0;
4110 }
4111
4112 static int is_vm86_segment(struct kvm_vcpu *vcpu, int seg)
4113 {
4114 return (seg != VCPU_SREG_LDTR) &&
4115 (seg != VCPU_SREG_TR) &&
4116 (kvm_get_rflags(vcpu) & X86_EFLAGS_VM);
4117 }
4118
4119 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4120 int type_bits, int seg)
4121 {
4122 struct kvm_segment kvm_seg;
4123
4124 if (is_vm86_segment(vcpu, seg) || !(vcpu->arch.cr0 & X86_CR0_PE))
4125 return kvm_load_realmode_segment(vcpu, selector, seg);
4126 if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
4127 return 1;
4128 kvm_seg.type |= type_bits;
4129
4130 if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
4131 seg != VCPU_SREG_LDTR)
4132 if (!kvm_seg.s)
4133 kvm_seg.unusable = 1;
4134
4135 kvm_set_segment(vcpu, &kvm_seg, seg);
4136 return 0;
4137 }
4138
4139 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
4140 struct tss_segment_32 *tss)
4141 {
4142 tss->cr3 = vcpu->arch.cr3;
4143 tss->eip = kvm_rip_read(vcpu);
4144 tss->eflags = kvm_get_rflags(vcpu);
4145 tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4146 tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4147 tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4148 tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4149 tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4150 tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4151 tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4152 tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4153 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4154 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4155 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4156 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4157 tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
4158 tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
4159 tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4160 }
4161
4162 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
4163 struct tss_segment_32 *tss)
4164 {
4165 kvm_set_cr3(vcpu, tss->cr3);
4166
4167 kvm_rip_write(vcpu, tss->eip);
4168 kvm_set_rflags(vcpu, tss->eflags | 2);
4169
4170 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
4171 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
4172 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
4173 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
4174 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
4175 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
4176 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
4177 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
4178
4179 if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
4180 return 1;
4181
4182 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4183 return 1;
4184
4185 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4186 return 1;
4187
4188 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4189 return 1;
4190
4191 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4192 return 1;
4193
4194 if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
4195 return 1;
4196
4197 if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
4198 return 1;
4199 return 0;
4200 }
4201
4202 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
4203 struct tss_segment_16 *tss)
4204 {
4205 tss->ip = kvm_rip_read(vcpu);
4206 tss->flag = kvm_get_rflags(vcpu);
4207 tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4208 tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4209 tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4210 tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4211 tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4212 tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4213 tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
4214 tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
4215
4216 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4217 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4218 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4219 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4220 tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4221 }
4222
4223 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
4224 struct tss_segment_16 *tss)
4225 {
4226 kvm_rip_write(vcpu, tss->ip);
4227 kvm_set_rflags(vcpu, tss->flag | 2);
4228 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
4229 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
4230 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
4231 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
4232 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
4233 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
4234 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
4235 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
4236
4237 if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
4238 return 1;
4239
4240 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4241 return 1;
4242
4243 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4244 return 1;
4245
4246 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4247 return 1;
4248
4249 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4250 return 1;
4251 return 0;
4252 }
4253
4254 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
4255 u16 old_tss_sel, u32 old_tss_base,
4256 struct desc_struct *nseg_desc)
4257 {
4258 struct tss_segment_16 tss_segment_16;
4259 int ret = 0;
4260
4261 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4262 sizeof tss_segment_16))
4263 goto out;
4264
4265 save_state_to_tss16(vcpu, &tss_segment_16);
4266
4267 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4268 sizeof tss_segment_16))
4269 goto out;
4270
4271 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4272 &tss_segment_16, sizeof tss_segment_16))
4273 goto out;
4274
4275 if (old_tss_sel != 0xffff) {
4276 tss_segment_16.prev_task_link = old_tss_sel;
4277
4278 if (kvm_write_guest(vcpu->kvm,
4279 get_tss_base_addr(vcpu, nseg_desc),
4280 &tss_segment_16.prev_task_link,
4281 sizeof tss_segment_16.prev_task_link))
4282 goto out;
4283 }
4284
4285 if (load_state_from_tss16(vcpu, &tss_segment_16))
4286 goto out;
4287
4288 ret = 1;
4289 out:
4290 return ret;
4291 }
4292
4293 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
4294 u16 old_tss_sel, u32 old_tss_base,
4295 struct desc_struct *nseg_desc)
4296 {
4297 struct tss_segment_32 tss_segment_32;
4298 int ret = 0;
4299
4300 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4301 sizeof tss_segment_32))
4302 goto out;
4303
4304 save_state_to_tss32(vcpu, &tss_segment_32);
4305
4306 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4307 sizeof tss_segment_32))
4308 goto out;
4309
4310 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4311 &tss_segment_32, sizeof tss_segment_32))
4312 goto out;
4313
4314 if (old_tss_sel != 0xffff) {
4315 tss_segment_32.prev_task_link = old_tss_sel;
4316
4317 if (kvm_write_guest(vcpu->kvm,
4318 get_tss_base_addr(vcpu, nseg_desc),
4319 &tss_segment_32.prev_task_link,
4320 sizeof tss_segment_32.prev_task_link))
4321 goto out;
4322 }
4323
4324 if (load_state_from_tss32(vcpu, &tss_segment_32))
4325 goto out;
4326
4327 ret = 1;
4328 out:
4329 return ret;
4330 }
4331
4332 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
4333 {
4334 struct kvm_segment tr_seg;
4335 struct desc_struct cseg_desc;
4336 struct desc_struct nseg_desc;
4337 int ret = 0;
4338 u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
4339 u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
4340
4341 old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
4342
4343 /* FIXME: Handle errors. Failure to read either TSS or their
4344 * descriptors should generate a pagefault.
4345 */
4346 if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
4347 goto out;
4348
4349 if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
4350 goto out;
4351
4352 if (reason != TASK_SWITCH_IRET) {
4353 int cpl;
4354
4355 cpl = kvm_x86_ops->get_cpl(vcpu);
4356 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
4357 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4358 return 1;
4359 }
4360 }
4361
4362 if (!nseg_desc.p || get_desc_limit(&nseg_desc) < 0x67) {
4363 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
4364 return 1;
4365 }
4366
4367 if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
4368 cseg_desc.type &= ~(1 << 1); //clear the B flag
4369 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
4370 }
4371
4372 if (reason == TASK_SWITCH_IRET) {
4373 u32 eflags = kvm_get_rflags(vcpu);
4374 kvm_set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
4375 }
4376
4377 /* set back link to prev task only if NT bit is set in eflags
4378 note that old_tss_sel is not used afetr this point */
4379 if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4380 old_tss_sel = 0xffff;
4381
4382 /* set back link to prev task only if NT bit is set in eflags
4383 note that old_tss_sel is not used afetr this point */
4384 if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4385 old_tss_sel = 0xffff;
4386
4387 if (nseg_desc.type & 8)
4388 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
4389 old_tss_base, &nseg_desc);
4390 else
4391 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
4392 old_tss_base, &nseg_desc);
4393
4394 if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
4395 u32 eflags = kvm_get_rflags(vcpu);
4396 kvm_set_rflags(vcpu, eflags | X86_EFLAGS_NT);
4397 }
4398
4399 if (reason != TASK_SWITCH_IRET) {
4400 nseg_desc.type |= (1 << 1);
4401 save_guest_segment_descriptor(vcpu, tss_selector,
4402 &nseg_desc);
4403 }
4404
4405 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
4406 seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
4407 tr_seg.type = 11;
4408 kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
4409 out:
4410 return ret;
4411 }
4412 EXPORT_SYMBOL_GPL(kvm_task_switch);
4413
4414 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
4415 struct kvm_sregs *sregs)
4416 {
4417 int mmu_reset_needed = 0;
4418 int pending_vec, max_bits;
4419 struct descriptor_table dt;
4420
4421 vcpu_load(vcpu);
4422
4423 dt.limit = sregs->idt.limit;
4424 dt.base = sregs->idt.base;
4425 kvm_x86_ops->set_idt(vcpu, &dt);
4426 dt.limit = sregs->gdt.limit;
4427 dt.base = sregs->gdt.base;
4428 kvm_x86_ops->set_gdt(vcpu, &dt);
4429
4430 vcpu->arch.cr2 = sregs->cr2;
4431 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
4432 vcpu->arch.cr3 = sregs->cr3;
4433
4434 kvm_set_cr8(vcpu, sregs->cr8);
4435
4436 mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
4437 kvm_x86_ops->set_efer(vcpu, sregs->efer);
4438 kvm_set_apic_base(vcpu, sregs->apic_base);
4439
4440 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
4441
4442 mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
4443 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
4444 vcpu->arch.cr0 = sregs->cr0;
4445
4446 mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
4447 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
4448 if (!is_long_mode(vcpu) && is_pae(vcpu))
4449 load_pdptrs(vcpu, vcpu->arch.cr3);
4450
4451 if (mmu_reset_needed)
4452 kvm_mmu_reset_context(vcpu);
4453
4454 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
4455 pending_vec = find_first_bit(
4456 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
4457 if (pending_vec < max_bits) {
4458 kvm_queue_interrupt(vcpu, pending_vec, false);
4459 pr_debug("Set back pending irq %d\n", pending_vec);
4460 if (irqchip_in_kernel(vcpu->kvm))
4461 kvm_pic_clear_isr_ack(vcpu->kvm);
4462 }
4463
4464 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4465 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4466 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4467 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4468 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4469 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4470
4471 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4472 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4473
4474 update_cr8_intercept(vcpu);
4475
4476 /* Older userspace won't unhalt the vcpu on reset. */
4477 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
4478 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
4479 !(vcpu->arch.cr0 & X86_CR0_PE))
4480 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4481
4482 vcpu_put(vcpu);
4483
4484 return 0;
4485 }
4486
4487 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
4488 struct kvm_guest_debug *dbg)
4489 {
4490 unsigned long rflags;
4491 int i;
4492
4493 vcpu_load(vcpu);
4494
4495 /*
4496 * Read rflags as long as potentially injected trace flags are still
4497 * filtered out.
4498 */
4499 rflags = kvm_get_rflags(vcpu);
4500
4501 vcpu->guest_debug = dbg->control;
4502 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
4503 vcpu->guest_debug = 0;
4504
4505 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4506 for (i = 0; i < KVM_NR_DB_REGS; ++i)
4507 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
4508 vcpu->arch.switch_db_regs =
4509 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
4510 } else {
4511 for (i = 0; i < KVM_NR_DB_REGS; i++)
4512 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
4513 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
4514 }
4515
4516 /*
4517 * Trigger an rflags update that will inject or remove the trace
4518 * flags.
4519 */
4520 kvm_set_rflags(vcpu, rflags);
4521
4522 kvm_x86_ops->set_guest_debug(vcpu, dbg);
4523
4524 if (vcpu->guest_debug & KVM_GUESTDBG_INJECT_DB)
4525 kvm_queue_exception(vcpu, DB_VECTOR);
4526 else if (vcpu->guest_debug & KVM_GUESTDBG_INJECT_BP)
4527 kvm_queue_exception(vcpu, BP_VECTOR);
4528
4529 vcpu_put(vcpu);
4530
4531 return 0;
4532 }
4533
4534 /*
4535 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
4536 * we have asm/x86/processor.h
4537 */
4538 struct fxsave {
4539 u16 cwd;
4540 u16 swd;
4541 u16 twd;
4542 u16 fop;
4543 u64 rip;
4544 u64 rdp;
4545 u32 mxcsr;
4546 u32 mxcsr_mask;
4547 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
4548 #ifdef CONFIG_X86_64
4549 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
4550 #else
4551 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
4552 #endif
4553 };
4554
4555 /*
4556 * Translate a guest virtual address to a guest physical address.
4557 */
4558 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
4559 struct kvm_translation *tr)
4560 {
4561 unsigned long vaddr = tr->linear_address;
4562 gpa_t gpa;
4563
4564 vcpu_load(vcpu);
4565 down_read(&vcpu->kvm->slots_lock);
4566 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
4567 up_read(&vcpu->kvm->slots_lock);
4568 tr->physical_address = gpa;
4569 tr->valid = gpa != UNMAPPED_GVA;
4570 tr->writeable = 1;
4571 tr->usermode = 0;
4572 vcpu_put(vcpu);
4573
4574 return 0;
4575 }
4576
4577 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4578 {
4579 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4580
4581 vcpu_load(vcpu);
4582
4583 memcpy(fpu->fpr, fxsave->st_space, 128);
4584 fpu->fcw = fxsave->cwd;
4585 fpu->fsw = fxsave->swd;
4586 fpu->ftwx = fxsave->twd;
4587 fpu->last_opcode = fxsave->fop;
4588 fpu->last_ip = fxsave->rip;
4589 fpu->last_dp = fxsave->rdp;
4590 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
4591
4592 vcpu_put(vcpu);
4593
4594 return 0;
4595 }
4596
4597 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4598 {
4599 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4600
4601 vcpu_load(vcpu);
4602
4603 memcpy(fxsave->st_space, fpu->fpr, 128);
4604 fxsave->cwd = fpu->fcw;
4605 fxsave->swd = fpu->fsw;
4606 fxsave->twd = fpu->ftwx;
4607 fxsave->fop = fpu->last_opcode;
4608 fxsave->rip = fpu->last_ip;
4609 fxsave->rdp = fpu->last_dp;
4610 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
4611
4612 vcpu_put(vcpu);
4613
4614 return 0;
4615 }
4616
4617 void fx_init(struct kvm_vcpu *vcpu)
4618 {
4619 unsigned after_mxcsr_mask;
4620
4621 /*
4622 * Touch the fpu the first time in non atomic context as if
4623 * this is the first fpu instruction the exception handler
4624 * will fire before the instruction returns and it'll have to
4625 * allocate ram with GFP_KERNEL.
4626 */
4627 if (!used_math())
4628 kvm_fx_save(&vcpu->arch.host_fx_image);
4629
4630 /* Initialize guest FPU by resetting ours and saving into guest's */
4631 preempt_disable();
4632 kvm_fx_save(&vcpu->arch.host_fx_image);
4633 kvm_fx_finit();
4634 kvm_fx_save(&vcpu->arch.guest_fx_image);
4635 kvm_fx_restore(&vcpu->arch.host_fx_image);
4636 preempt_enable();
4637
4638 vcpu->arch.cr0 |= X86_CR0_ET;
4639 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
4640 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
4641 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
4642 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
4643 }
4644 EXPORT_SYMBOL_GPL(fx_init);
4645
4646 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
4647 {
4648 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
4649 return;
4650
4651 vcpu->guest_fpu_loaded = 1;
4652 kvm_fx_save(&vcpu->arch.host_fx_image);
4653 kvm_fx_restore(&vcpu->arch.guest_fx_image);
4654 }
4655 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
4656
4657 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
4658 {
4659 if (!vcpu->guest_fpu_loaded)
4660 return;
4661
4662 vcpu->guest_fpu_loaded = 0;
4663 kvm_fx_save(&vcpu->arch.guest_fx_image);
4664 kvm_fx_restore(&vcpu->arch.host_fx_image);
4665 ++vcpu->stat.fpu_reload;
4666 }
4667 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
4668
4669 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
4670 {
4671 if (vcpu->arch.time_page) {
4672 kvm_release_page_dirty(vcpu->arch.time_page);
4673 vcpu->arch.time_page = NULL;
4674 }
4675
4676 kvm_x86_ops->vcpu_free(vcpu);
4677 }
4678
4679 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
4680 unsigned int id)
4681 {
4682 return kvm_x86_ops->vcpu_create(kvm, id);
4683 }
4684
4685 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
4686 {
4687 int r;
4688
4689 /* We do fxsave: this must be aligned. */
4690 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
4691
4692 vcpu->arch.mtrr_state.have_fixed = 1;
4693 vcpu_load(vcpu);
4694 r = kvm_arch_vcpu_reset(vcpu);
4695 if (r == 0)
4696 r = kvm_mmu_setup(vcpu);
4697 vcpu_put(vcpu);
4698 if (r < 0)
4699 goto free_vcpu;
4700
4701 return 0;
4702 free_vcpu:
4703 kvm_x86_ops->vcpu_free(vcpu);
4704 return r;
4705 }
4706
4707 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
4708 {
4709 vcpu_load(vcpu);
4710 kvm_mmu_unload(vcpu);
4711 vcpu_put(vcpu);
4712
4713 kvm_x86_ops->vcpu_free(vcpu);
4714 }
4715
4716 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
4717 {
4718 vcpu->arch.nmi_pending = false;
4719 vcpu->arch.nmi_injected = false;
4720
4721 vcpu->arch.switch_db_regs = 0;
4722 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
4723 vcpu->arch.dr6 = DR6_FIXED_1;
4724 vcpu->arch.dr7 = DR7_FIXED_1;
4725
4726 return kvm_x86_ops->vcpu_reset(vcpu);
4727 }
4728
4729 int kvm_arch_hardware_enable(void *garbage)
4730 {
4731 /*
4732 * Since this may be called from a hotplug notifcation,
4733 * we can't get the CPU frequency directly.
4734 */
4735 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4736 int cpu = raw_smp_processor_id();
4737 per_cpu(cpu_tsc_khz, cpu) = 0;
4738 }
4739 return kvm_x86_ops->hardware_enable(garbage);
4740 }
4741
4742 void kvm_arch_hardware_disable(void *garbage)
4743 {
4744 kvm_x86_ops->hardware_disable(garbage);
4745 }
4746
4747 int kvm_arch_hardware_setup(void)
4748 {
4749 return kvm_x86_ops->hardware_setup();
4750 }
4751
4752 void kvm_arch_hardware_unsetup(void)
4753 {
4754 kvm_x86_ops->hardware_unsetup();
4755 }
4756
4757 void kvm_arch_check_processor_compat(void *rtn)
4758 {
4759 kvm_x86_ops->check_processor_compatibility(rtn);
4760 }
4761
4762 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
4763 {
4764 struct page *page;
4765 struct kvm *kvm;
4766 int r;
4767
4768 BUG_ON(vcpu->kvm == NULL);
4769 kvm = vcpu->kvm;
4770
4771 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4772 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
4773 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4774 else
4775 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
4776
4777 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
4778 if (!page) {
4779 r = -ENOMEM;
4780 goto fail;
4781 }
4782 vcpu->arch.pio_data = page_address(page);
4783
4784 r = kvm_mmu_create(vcpu);
4785 if (r < 0)
4786 goto fail_free_pio_data;
4787
4788 if (irqchip_in_kernel(kvm)) {
4789 r = kvm_create_lapic(vcpu);
4790 if (r < 0)
4791 goto fail_mmu_destroy;
4792 }
4793
4794 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
4795 GFP_KERNEL);
4796 if (!vcpu->arch.mce_banks) {
4797 r = -ENOMEM;
4798 goto fail_mmu_destroy;
4799 }
4800 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
4801
4802 return 0;
4803
4804 fail_mmu_destroy:
4805 kvm_mmu_destroy(vcpu);
4806 fail_free_pio_data:
4807 free_page((unsigned long)vcpu->arch.pio_data);
4808 fail:
4809 return r;
4810 }
4811
4812 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
4813 {
4814 kvm_free_lapic(vcpu);
4815 down_read(&vcpu->kvm->slots_lock);
4816 kvm_mmu_destroy(vcpu);
4817 up_read(&vcpu->kvm->slots_lock);
4818 free_page((unsigned long)vcpu->arch.pio_data);
4819 }
4820
4821 struct kvm *kvm_arch_create_vm(void)
4822 {
4823 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
4824
4825 if (!kvm)
4826 return ERR_PTR(-ENOMEM);
4827
4828 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
4829 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
4830
4831 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
4832 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
4833
4834 rdtscll(kvm->arch.vm_init_tsc);
4835
4836 return kvm;
4837 }
4838
4839 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
4840 {
4841 vcpu_load(vcpu);
4842 kvm_mmu_unload(vcpu);
4843 vcpu_put(vcpu);
4844 }
4845
4846 static void kvm_free_vcpus(struct kvm *kvm)
4847 {
4848 unsigned int i;
4849 struct kvm_vcpu *vcpu;
4850
4851 /*
4852 * Unpin any mmu pages first.
4853 */
4854 kvm_for_each_vcpu(i, vcpu, kvm)
4855 kvm_unload_vcpu_mmu(vcpu);
4856 kvm_for_each_vcpu(i, vcpu, kvm)
4857 kvm_arch_vcpu_free(vcpu);
4858
4859 mutex_lock(&kvm->lock);
4860 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
4861 kvm->vcpus[i] = NULL;
4862
4863 atomic_set(&kvm->online_vcpus, 0);
4864 mutex_unlock(&kvm->lock);
4865 }
4866
4867 void kvm_arch_sync_events(struct kvm *kvm)
4868 {
4869 kvm_free_all_assigned_devices(kvm);
4870 }
4871
4872 void kvm_arch_destroy_vm(struct kvm *kvm)
4873 {
4874 kvm_iommu_unmap_guest(kvm);
4875 kvm_free_pit(kvm);
4876 kfree(kvm->arch.vpic);
4877 kfree(kvm->arch.vioapic);
4878 kvm_free_vcpus(kvm);
4879 kvm_free_physmem(kvm);
4880 if (kvm->arch.apic_access_page)
4881 put_page(kvm->arch.apic_access_page);
4882 if (kvm->arch.ept_identity_pagetable)
4883 put_page(kvm->arch.ept_identity_pagetable);
4884 kfree(kvm);
4885 }
4886
4887 int kvm_arch_set_memory_region(struct kvm *kvm,
4888 struct kvm_userspace_memory_region *mem,
4889 struct kvm_memory_slot old,
4890 int user_alloc)
4891 {
4892 int npages = mem->memory_size >> PAGE_SHIFT;
4893 struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
4894
4895 /*To keep backward compatibility with older userspace,
4896 *x86 needs to hanlde !user_alloc case.
4897 */
4898 if (!user_alloc) {
4899 if (npages && !old.rmap) {
4900 unsigned long userspace_addr;
4901
4902 down_write(&current->mm->mmap_sem);
4903 userspace_addr = do_mmap(NULL, 0,
4904 npages * PAGE_SIZE,
4905 PROT_READ | PROT_WRITE,
4906 MAP_PRIVATE | MAP_ANONYMOUS,
4907 0);
4908 up_write(&current->mm->mmap_sem);
4909
4910 if (IS_ERR((void *)userspace_addr))
4911 return PTR_ERR((void *)userspace_addr);
4912
4913 /* set userspace_addr atomically for kvm_hva_to_rmapp */
4914 spin_lock(&kvm->mmu_lock);
4915 memslot->userspace_addr = userspace_addr;
4916 spin_unlock(&kvm->mmu_lock);
4917 } else {
4918 if (!old.user_alloc && old.rmap) {
4919 int ret;
4920
4921 down_write(&current->mm->mmap_sem);
4922 ret = do_munmap(current->mm, old.userspace_addr,
4923 old.npages * PAGE_SIZE);
4924 up_write(&current->mm->mmap_sem);
4925 if (ret < 0)
4926 printk(KERN_WARNING
4927 "kvm_vm_ioctl_set_memory_region: "
4928 "failed to munmap memory\n");
4929 }
4930 }
4931 }
4932
4933 spin_lock(&kvm->mmu_lock);
4934 if (!kvm->arch.n_requested_mmu_pages) {
4935 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
4936 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
4937 }
4938
4939 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
4940 spin_unlock(&kvm->mmu_lock);
4941
4942 return 0;
4943 }
4944
4945 void kvm_arch_flush_shadow(struct kvm *kvm)
4946 {
4947 kvm_mmu_zap_all(kvm);
4948 kvm_reload_remote_mmus(kvm);
4949 }
4950
4951 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
4952 {
4953 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
4954 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
4955 || vcpu->arch.nmi_pending ||
4956 (kvm_arch_interrupt_allowed(vcpu) &&
4957 kvm_cpu_has_interrupt(vcpu));
4958 }
4959
4960 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
4961 {
4962 int me;
4963 int cpu = vcpu->cpu;
4964
4965 if (waitqueue_active(&vcpu->wq)) {
4966 wake_up_interruptible(&vcpu->wq);
4967 ++vcpu->stat.halt_wakeup;
4968 }
4969
4970 me = get_cpu();
4971 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
4972 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
4973 smp_send_reschedule(cpu);
4974 put_cpu();
4975 }
4976
4977 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
4978 {
4979 return kvm_x86_ops->interrupt_allowed(vcpu);
4980 }
4981
4982 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
4983 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
4984 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
4985 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
4986 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
4987 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
4988 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
This page took 0.138834 seconds and 6 git commands to generate.