Merge tag 'trace-v4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux...
[deliverable/linux.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/module.h>
39 #include <linux/mman.h>
40 #include <linux/highmem.h>
41 #include <linux/iommu.h>
42 #include <linux/intel-iommu.h>
43 #include <linux/cpufreq.h>
44 #include <linux/user-return-notifier.h>
45 #include <linux/srcu.h>
46 #include <linux/slab.h>
47 #include <linux/perf_event.h>
48 #include <linux/uaccess.h>
49 #include <linux/hash.h>
50 #include <linux/pci.h>
51 #include <linux/timekeeper_internal.h>
52 #include <linux/pvclock_gtod.h>
53 #include <trace/events/kvm.h>
54
55 #define CREATE_TRACE_POINTS
56 #include "trace.h"
57
58 #include <asm/debugreg.h>
59 #include <asm/msr.h>
60 #include <asm/desc.h>
61 #include <asm/mce.h>
62 #include <linux/kernel_stat.h>
63 #include <asm/fpu/internal.h> /* Ugh! */
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
66
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
70
71 #define emul_to_vcpu(ctxt) \
72 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
73
74 /* EFER defaults:
75 * - enable syscall per default because its emulated by KVM
76 * - enable LME and LMA per default on 64 bit KVM
77 */
78 #ifdef CONFIG_X86_64
79 static
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
81 #else
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #endif
84
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
87
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
90 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
91
92 struct kvm_x86_ops *kvm_x86_ops;
93 EXPORT_SYMBOL_GPL(kvm_x86_ops);
94
95 static bool ignore_msrs = 0;
96 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
97
98 unsigned int min_timer_period_us = 500;
99 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
100
101 static bool __read_mostly kvmclock_periodic_sync = true;
102 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
103
104 bool kvm_has_tsc_control;
105 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
106 u32 kvm_max_guest_tsc_khz;
107 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
108
109 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
110 static u32 tsc_tolerance_ppm = 250;
111 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
112
113 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
114 unsigned int lapic_timer_advance_ns = 0;
115 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
116
117 static bool backwards_tsc_observed = false;
118
119 #define KVM_NR_SHARED_MSRS 16
120
121 struct kvm_shared_msrs_global {
122 int nr;
123 u32 msrs[KVM_NR_SHARED_MSRS];
124 };
125
126 struct kvm_shared_msrs {
127 struct user_return_notifier urn;
128 bool registered;
129 struct kvm_shared_msr_values {
130 u64 host;
131 u64 curr;
132 } values[KVM_NR_SHARED_MSRS];
133 };
134
135 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
136 static struct kvm_shared_msrs __percpu *shared_msrs;
137
138 struct kvm_stats_debugfs_item debugfs_entries[] = {
139 { "pf_fixed", VCPU_STAT(pf_fixed) },
140 { "pf_guest", VCPU_STAT(pf_guest) },
141 { "tlb_flush", VCPU_STAT(tlb_flush) },
142 { "invlpg", VCPU_STAT(invlpg) },
143 { "exits", VCPU_STAT(exits) },
144 { "io_exits", VCPU_STAT(io_exits) },
145 { "mmio_exits", VCPU_STAT(mmio_exits) },
146 { "signal_exits", VCPU_STAT(signal_exits) },
147 { "irq_window", VCPU_STAT(irq_window_exits) },
148 { "nmi_window", VCPU_STAT(nmi_window_exits) },
149 { "halt_exits", VCPU_STAT(halt_exits) },
150 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
151 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
152 { "hypercalls", VCPU_STAT(hypercalls) },
153 { "request_irq", VCPU_STAT(request_irq_exits) },
154 { "irq_exits", VCPU_STAT(irq_exits) },
155 { "host_state_reload", VCPU_STAT(host_state_reload) },
156 { "efer_reload", VCPU_STAT(efer_reload) },
157 { "fpu_reload", VCPU_STAT(fpu_reload) },
158 { "insn_emulation", VCPU_STAT(insn_emulation) },
159 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
160 { "irq_injections", VCPU_STAT(irq_injections) },
161 { "nmi_injections", VCPU_STAT(nmi_injections) },
162 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
163 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
164 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
165 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
166 { "mmu_flooded", VM_STAT(mmu_flooded) },
167 { "mmu_recycled", VM_STAT(mmu_recycled) },
168 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
169 { "mmu_unsync", VM_STAT(mmu_unsync) },
170 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
171 { "largepages", VM_STAT(lpages) },
172 { NULL }
173 };
174
175 u64 __read_mostly host_xcr0;
176
177 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
178
179 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
180 {
181 int i;
182 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
183 vcpu->arch.apf.gfns[i] = ~0;
184 }
185
186 static void kvm_on_user_return(struct user_return_notifier *urn)
187 {
188 unsigned slot;
189 struct kvm_shared_msrs *locals
190 = container_of(urn, struct kvm_shared_msrs, urn);
191 struct kvm_shared_msr_values *values;
192
193 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
194 values = &locals->values[slot];
195 if (values->host != values->curr) {
196 wrmsrl(shared_msrs_global.msrs[slot], values->host);
197 values->curr = values->host;
198 }
199 }
200 locals->registered = false;
201 user_return_notifier_unregister(urn);
202 }
203
204 static void shared_msr_update(unsigned slot, u32 msr)
205 {
206 u64 value;
207 unsigned int cpu = smp_processor_id();
208 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
209
210 /* only read, and nobody should modify it at this time,
211 * so don't need lock */
212 if (slot >= shared_msrs_global.nr) {
213 printk(KERN_ERR "kvm: invalid MSR slot!");
214 return;
215 }
216 rdmsrl_safe(msr, &value);
217 smsr->values[slot].host = value;
218 smsr->values[slot].curr = value;
219 }
220
221 void kvm_define_shared_msr(unsigned slot, u32 msr)
222 {
223 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
224 if (slot >= shared_msrs_global.nr)
225 shared_msrs_global.nr = slot + 1;
226 shared_msrs_global.msrs[slot] = msr;
227 /* we need ensured the shared_msr_global have been updated */
228 smp_wmb();
229 }
230 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
231
232 static void kvm_shared_msr_cpu_online(void)
233 {
234 unsigned i;
235
236 for (i = 0; i < shared_msrs_global.nr; ++i)
237 shared_msr_update(i, shared_msrs_global.msrs[i]);
238 }
239
240 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
241 {
242 unsigned int cpu = smp_processor_id();
243 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
244 int err;
245
246 if (((value ^ smsr->values[slot].curr) & mask) == 0)
247 return 0;
248 smsr->values[slot].curr = value;
249 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
250 if (err)
251 return 1;
252
253 if (!smsr->registered) {
254 smsr->urn.on_user_return = kvm_on_user_return;
255 user_return_notifier_register(&smsr->urn);
256 smsr->registered = true;
257 }
258 return 0;
259 }
260 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
261
262 static void drop_user_return_notifiers(void)
263 {
264 unsigned int cpu = smp_processor_id();
265 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
266
267 if (smsr->registered)
268 kvm_on_user_return(&smsr->urn);
269 }
270
271 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
272 {
273 return vcpu->arch.apic_base;
274 }
275 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
276
277 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
278 {
279 u64 old_state = vcpu->arch.apic_base &
280 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
281 u64 new_state = msr_info->data &
282 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
283 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
284 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
285
286 if (!msr_info->host_initiated &&
287 ((msr_info->data & reserved_bits) != 0 ||
288 new_state == X2APIC_ENABLE ||
289 (new_state == MSR_IA32_APICBASE_ENABLE &&
290 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
291 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
292 old_state == 0)))
293 return 1;
294
295 kvm_lapic_set_base(vcpu, msr_info->data);
296 return 0;
297 }
298 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
299
300 asmlinkage __visible void kvm_spurious_fault(void)
301 {
302 /* Fault while not rebooting. We want the trace. */
303 BUG();
304 }
305 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
306
307 #define EXCPT_BENIGN 0
308 #define EXCPT_CONTRIBUTORY 1
309 #define EXCPT_PF 2
310
311 static int exception_class(int vector)
312 {
313 switch (vector) {
314 case PF_VECTOR:
315 return EXCPT_PF;
316 case DE_VECTOR:
317 case TS_VECTOR:
318 case NP_VECTOR:
319 case SS_VECTOR:
320 case GP_VECTOR:
321 return EXCPT_CONTRIBUTORY;
322 default:
323 break;
324 }
325 return EXCPT_BENIGN;
326 }
327
328 #define EXCPT_FAULT 0
329 #define EXCPT_TRAP 1
330 #define EXCPT_ABORT 2
331 #define EXCPT_INTERRUPT 3
332
333 static int exception_type(int vector)
334 {
335 unsigned int mask;
336
337 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
338 return EXCPT_INTERRUPT;
339
340 mask = 1 << vector;
341
342 /* #DB is trap, as instruction watchpoints are handled elsewhere */
343 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
344 return EXCPT_TRAP;
345
346 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
347 return EXCPT_ABORT;
348
349 /* Reserved exceptions will result in fault */
350 return EXCPT_FAULT;
351 }
352
353 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
354 unsigned nr, bool has_error, u32 error_code,
355 bool reinject)
356 {
357 u32 prev_nr;
358 int class1, class2;
359
360 kvm_make_request(KVM_REQ_EVENT, vcpu);
361
362 if (!vcpu->arch.exception.pending) {
363 queue:
364 if (has_error && !is_protmode(vcpu))
365 has_error = false;
366 vcpu->arch.exception.pending = true;
367 vcpu->arch.exception.has_error_code = has_error;
368 vcpu->arch.exception.nr = nr;
369 vcpu->arch.exception.error_code = error_code;
370 vcpu->arch.exception.reinject = reinject;
371 return;
372 }
373
374 /* to check exception */
375 prev_nr = vcpu->arch.exception.nr;
376 if (prev_nr == DF_VECTOR) {
377 /* triple fault -> shutdown */
378 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
379 return;
380 }
381 class1 = exception_class(prev_nr);
382 class2 = exception_class(nr);
383 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
384 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
385 /* generate double fault per SDM Table 5-5 */
386 vcpu->arch.exception.pending = true;
387 vcpu->arch.exception.has_error_code = true;
388 vcpu->arch.exception.nr = DF_VECTOR;
389 vcpu->arch.exception.error_code = 0;
390 } else
391 /* replace previous exception with a new one in a hope
392 that instruction re-execution will regenerate lost
393 exception */
394 goto queue;
395 }
396
397 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
398 {
399 kvm_multiple_exception(vcpu, nr, false, 0, false);
400 }
401 EXPORT_SYMBOL_GPL(kvm_queue_exception);
402
403 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
404 {
405 kvm_multiple_exception(vcpu, nr, false, 0, true);
406 }
407 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
408
409 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
410 {
411 if (err)
412 kvm_inject_gp(vcpu, 0);
413 else
414 kvm_x86_ops->skip_emulated_instruction(vcpu);
415 }
416 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
417
418 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
419 {
420 ++vcpu->stat.pf_guest;
421 vcpu->arch.cr2 = fault->address;
422 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
423 }
424 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
425
426 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
427 {
428 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
429 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
430 else
431 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
432
433 return fault->nested_page_fault;
434 }
435
436 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
437 {
438 atomic_inc(&vcpu->arch.nmi_queued);
439 kvm_make_request(KVM_REQ_NMI, vcpu);
440 }
441 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
442
443 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
444 {
445 kvm_multiple_exception(vcpu, nr, true, error_code, false);
446 }
447 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
448
449 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
450 {
451 kvm_multiple_exception(vcpu, nr, true, error_code, true);
452 }
453 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
454
455 /*
456 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
457 * a #GP and return false.
458 */
459 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
460 {
461 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
462 return true;
463 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
464 return false;
465 }
466 EXPORT_SYMBOL_GPL(kvm_require_cpl);
467
468 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
469 {
470 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
471 return true;
472
473 kvm_queue_exception(vcpu, UD_VECTOR);
474 return false;
475 }
476 EXPORT_SYMBOL_GPL(kvm_require_dr);
477
478 /*
479 * This function will be used to read from the physical memory of the currently
480 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
481 * can read from guest physical or from the guest's guest physical memory.
482 */
483 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
484 gfn_t ngfn, void *data, int offset, int len,
485 u32 access)
486 {
487 struct x86_exception exception;
488 gfn_t real_gfn;
489 gpa_t ngpa;
490
491 ngpa = gfn_to_gpa(ngfn);
492 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
493 if (real_gfn == UNMAPPED_GVA)
494 return -EFAULT;
495
496 real_gfn = gpa_to_gfn(real_gfn);
497
498 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
499 }
500 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
501
502 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
503 void *data, int offset, int len, u32 access)
504 {
505 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
506 data, offset, len, access);
507 }
508
509 /*
510 * Load the pae pdptrs. Return true is they are all valid.
511 */
512 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
513 {
514 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
515 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
516 int i;
517 int ret;
518 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
519
520 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
521 offset * sizeof(u64), sizeof(pdpte),
522 PFERR_USER_MASK|PFERR_WRITE_MASK);
523 if (ret < 0) {
524 ret = 0;
525 goto out;
526 }
527 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
528 if (is_present_gpte(pdpte[i]) &&
529 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
530 ret = 0;
531 goto out;
532 }
533 }
534 ret = 1;
535
536 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
537 __set_bit(VCPU_EXREG_PDPTR,
538 (unsigned long *)&vcpu->arch.regs_avail);
539 __set_bit(VCPU_EXREG_PDPTR,
540 (unsigned long *)&vcpu->arch.regs_dirty);
541 out:
542
543 return ret;
544 }
545 EXPORT_SYMBOL_GPL(load_pdptrs);
546
547 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
548 {
549 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
550 bool changed = true;
551 int offset;
552 gfn_t gfn;
553 int r;
554
555 if (is_long_mode(vcpu) || !is_pae(vcpu))
556 return false;
557
558 if (!test_bit(VCPU_EXREG_PDPTR,
559 (unsigned long *)&vcpu->arch.regs_avail))
560 return true;
561
562 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
563 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
564 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
565 PFERR_USER_MASK | PFERR_WRITE_MASK);
566 if (r < 0)
567 goto out;
568 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
569 out:
570
571 return changed;
572 }
573
574 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
575 {
576 unsigned long old_cr0 = kvm_read_cr0(vcpu);
577 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
578
579 cr0 |= X86_CR0_ET;
580
581 #ifdef CONFIG_X86_64
582 if (cr0 & 0xffffffff00000000UL)
583 return 1;
584 #endif
585
586 cr0 &= ~CR0_RESERVED_BITS;
587
588 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
589 return 1;
590
591 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
592 return 1;
593
594 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
595 #ifdef CONFIG_X86_64
596 if ((vcpu->arch.efer & EFER_LME)) {
597 int cs_db, cs_l;
598
599 if (!is_pae(vcpu))
600 return 1;
601 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
602 if (cs_l)
603 return 1;
604 } else
605 #endif
606 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
607 kvm_read_cr3(vcpu)))
608 return 1;
609 }
610
611 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
612 return 1;
613
614 kvm_x86_ops->set_cr0(vcpu, cr0);
615
616 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
617 kvm_clear_async_pf_completion_queue(vcpu);
618 kvm_async_pf_hash_reset(vcpu);
619 }
620
621 if ((cr0 ^ old_cr0) & update_bits)
622 kvm_mmu_reset_context(vcpu);
623
624 if ((cr0 ^ old_cr0) & X86_CR0_CD)
625 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
626
627 return 0;
628 }
629 EXPORT_SYMBOL_GPL(kvm_set_cr0);
630
631 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
632 {
633 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
634 }
635 EXPORT_SYMBOL_GPL(kvm_lmsw);
636
637 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
638 {
639 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
640 !vcpu->guest_xcr0_loaded) {
641 /* kvm_set_xcr() also depends on this */
642 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
643 vcpu->guest_xcr0_loaded = 1;
644 }
645 }
646
647 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
648 {
649 if (vcpu->guest_xcr0_loaded) {
650 if (vcpu->arch.xcr0 != host_xcr0)
651 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
652 vcpu->guest_xcr0_loaded = 0;
653 }
654 }
655
656 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
657 {
658 u64 xcr0 = xcr;
659 u64 old_xcr0 = vcpu->arch.xcr0;
660 u64 valid_bits;
661
662 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
663 if (index != XCR_XFEATURE_ENABLED_MASK)
664 return 1;
665 if (!(xcr0 & XSTATE_FP))
666 return 1;
667 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
668 return 1;
669
670 /*
671 * Do not allow the guest to set bits that we do not support
672 * saving. However, xcr0 bit 0 is always set, even if the
673 * emulated CPU does not support XSAVE (see fx_init).
674 */
675 valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
676 if (xcr0 & ~valid_bits)
677 return 1;
678
679 if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR)))
680 return 1;
681
682 if (xcr0 & XSTATE_AVX512) {
683 if (!(xcr0 & XSTATE_YMM))
684 return 1;
685 if ((xcr0 & XSTATE_AVX512) != XSTATE_AVX512)
686 return 1;
687 }
688 kvm_put_guest_xcr0(vcpu);
689 vcpu->arch.xcr0 = xcr0;
690
691 if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK)
692 kvm_update_cpuid(vcpu);
693 return 0;
694 }
695
696 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
697 {
698 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
699 __kvm_set_xcr(vcpu, index, xcr)) {
700 kvm_inject_gp(vcpu, 0);
701 return 1;
702 }
703 return 0;
704 }
705 EXPORT_SYMBOL_GPL(kvm_set_xcr);
706
707 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
708 {
709 unsigned long old_cr4 = kvm_read_cr4(vcpu);
710 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
711 X86_CR4_SMEP | X86_CR4_SMAP;
712
713 if (cr4 & CR4_RESERVED_BITS)
714 return 1;
715
716 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
717 return 1;
718
719 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
720 return 1;
721
722 if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
723 return 1;
724
725 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
726 return 1;
727
728 if (is_long_mode(vcpu)) {
729 if (!(cr4 & X86_CR4_PAE))
730 return 1;
731 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
732 && ((cr4 ^ old_cr4) & pdptr_bits)
733 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
734 kvm_read_cr3(vcpu)))
735 return 1;
736
737 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
738 if (!guest_cpuid_has_pcid(vcpu))
739 return 1;
740
741 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
742 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
743 return 1;
744 }
745
746 if (kvm_x86_ops->set_cr4(vcpu, cr4))
747 return 1;
748
749 if (((cr4 ^ old_cr4) & pdptr_bits) ||
750 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
751 kvm_mmu_reset_context(vcpu);
752
753 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
754 kvm_update_cpuid(vcpu);
755
756 return 0;
757 }
758 EXPORT_SYMBOL_GPL(kvm_set_cr4);
759
760 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
761 {
762 #ifdef CONFIG_X86_64
763 cr3 &= ~CR3_PCID_INVD;
764 #endif
765
766 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
767 kvm_mmu_sync_roots(vcpu);
768 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
769 return 0;
770 }
771
772 if (is_long_mode(vcpu)) {
773 if (cr3 & CR3_L_MODE_RESERVED_BITS)
774 return 1;
775 } else if (is_pae(vcpu) && is_paging(vcpu) &&
776 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
777 return 1;
778
779 vcpu->arch.cr3 = cr3;
780 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
781 kvm_mmu_new_cr3(vcpu);
782 return 0;
783 }
784 EXPORT_SYMBOL_GPL(kvm_set_cr3);
785
786 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
787 {
788 if (cr8 & CR8_RESERVED_BITS)
789 return 1;
790 if (irqchip_in_kernel(vcpu->kvm))
791 kvm_lapic_set_tpr(vcpu, cr8);
792 else
793 vcpu->arch.cr8 = cr8;
794 return 0;
795 }
796 EXPORT_SYMBOL_GPL(kvm_set_cr8);
797
798 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
799 {
800 if (irqchip_in_kernel(vcpu->kvm))
801 return kvm_lapic_get_cr8(vcpu);
802 else
803 return vcpu->arch.cr8;
804 }
805 EXPORT_SYMBOL_GPL(kvm_get_cr8);
806
807 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
808 {
809 int i;
810
811 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
812 for (i = 0; i < KVM_NR_DB_REGS; i++)
813 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
814 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
815 }
816 }
817
818 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
819 {
820 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
821 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
822 }
823
824 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
825 {
826 unsigned long dr7;
827
828 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
829 dr7 = vcpu->arch.guest_debug_dr7;
830 else
831 dr7 = vcpu->arch.dr7;
832 kvm_x86_ops->set_dr7(vcpu, dr7);
833 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
834 if (dr7 & DR7_BP_EN_MASK)
835 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
836 }
837
838 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
839 {
840 u64 fixed = DR6_FIXED_1;
841
842 if (!guest_cpuid_has_rtm(vcpu))
843 fixed |= DR6_RTM;
844 return fixed;
845 }
846
847 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
848 {
849 switch (dr) {
850 case 0 ... 3:
851 vcpu->arch.db[dr] = val;
852 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
853 vcpu->arch.eff_db[dr] = val;
854 break;
855 case 4:
856 /* fall through */
857 case 6:
858 if (val & 0xffffffff00000000ULL)
859 return -1; /* #GP */
860 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
861 kvm_update_dr6(vcpu);
862 break;
863 case 5:
864 /* fall through */
865 default: /* 7 */
866 if (val & 0xffffffff00000000ULL)
867 return -1; /* #GP */
868 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
869 kvm_update_dr7(vcpu);
870 break;
871 }
872
873 return 0;
874 }
875
876 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
877 {
878 if (__kvm_set_dr(vcpu, dr, val)) {
879 kvm_inject_gp(vcpu, 0);
880 return 1;
881 }
882 return 0;
883 }
884 EXPORT_SYMBOL_GPL(kvm_set_dr);
885
886 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
887 {
888 switch (dr) {
889 case 0 ... 3:
890 *val = vcpu->arch.db[dr];
891 break;
892 case 4:
893 /* fall through */
894 case 6:
895 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
896 *val = vcpu->arch.dr6;
897 else
898 *val = kvm_x86_ops->get_dr6(vcpu);
899 break;
900 case 5:
901 /* fall through */
902 default: /* 7 */
903 *val = vcpu->arch.dr7;
904 break;
905 }
906 return 0;
907 }
908 EXPORT_SYMBOL_GPL(kvm_get_dr);
909
910 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
911 {
912 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
913 u64 data;
914 int err;
915
916 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
917 if (err)
918 return err;
919 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
920 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
921 return err;
922 }
923 EXPORT_SYMBOL_GPL(kvm_rdpmc);
924
925 /*
926 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
927 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
928 *
929 * This list is modified at module load time to reflect the
930 * capabilities of the host cpu. This capabilities test skips MSRs that are
931 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
932 * may depend on host virtualization features rather than host cpu features.
933 */
934
935 static u32 msrs_to_save[] = {
936 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
937 MSR_STAR,
938 #ifdef CONFIG_X86_64
939 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
940 #endif
941 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
942 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
943 };
944
945 static unsigned num_msrs_to_save;
946
947 static u32 emulated_msrs[] = {
948 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
949 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
950 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
951 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
952 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
953 MSR_KVM_PV_EOI_EN,
954
955 MSR_IA32_TSC_ADJUST,
956 MSR_IA32_TSCDEADLINE,
957 MSR_IA32_MISC_ENABLE,
958 MSR_IA32_MCG_STATUS,
959 MSR_IA32_MCG_CTL,
960 MSR_IA32_SMBASE,
961 };
962
963 static unsigned num_emulated_msrs;
964
965 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
966 {
967 if (efer & efer_reserved_bits)
968 return false;
969
970 if (efer & EFER_FFXSR) {
971 struct kvm_cpuid_entry2 *feat;
972
973 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
974 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
975 return false;
976 }
977
978 if (efer & EFER_SVME) {
979 struct kvm_cpuid_entry2 *feat;
980
981 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
982 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
983 return false;
984 }
985
986 return true;
987 }
988 EXPORT_SYMBOL_GPL(kvm_valid_efer);
989
990 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
991 {
992 u64 old_efer = vcpu->arch.efer;
993
994 if (!kvm_valid_efer(vcpu, efer))
995 return 1;
996
997 if (is_paging(vcpu)
998 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
999 return 1;
1000
1001 efer &= ~EFER_LMA;
1002 efer |= vcpu->arch.efer & EFER_LMA;
1003
1004 kvm_x86_ops->set_efer(vcpu, efer);
1005
1006 /* Update reserved bits */
1007 if ((efer ^ old_efer) & EFER_NX)
1008 kvm_mmu_reset_context(vcpu);
1009
1010 return 0;
1011 }
1012
1013 void kvm_enable_efer_bits(u64 mask)
1014 {
1015 efer_reserved_bits &= ~mask;
1016 }
1017 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1018
1019 /*
1020 * Writes msr value into into the appropriate "register".
1021 * Returns 0 on success, non-0 otherwise.
1022 * Assumes vcpu_load() was already called.
1023 */
1024 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1025 {
1026 switch (msr->index) {
1027 case MSR_FS_BASE:
1028 case MSR_GS_BASE:
1029 case MSR_KERNEL_GS_BASE:
1030 case MSR_CSTAR:
1031 case MSR_LSTAR:
1032 if (is_noncanonical_address(msr->data))
1033 return 1;
1034 break;
1035 case MSR_IA32_SYSENTER_EIP:
1036 case MSR_IA32_SYSENTER_ESP:
1037 /*
1038 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1039 * non-canonical address is written on Intel but not on
1040 * AMD (which ignores the top 32-bits, because it does
1041 * not implement 64-bit SYSENTER).
1042 *
1043 * 64-bit code should hence be able to write a non-canonical
1044 * value on AMD. Making the address canonical ensures that
1045 * vmentry does not fail on Intel after writing a non-canonical
1046 * value, and that something deterministic happens if the guest
1047 * invokes 64-bit SYSENTER.
1048 */
1049 msr->data = get_canonical(msr->data);
1050 }
1051 return kvm_x86_ops->set_msr(vcpu, msr);
1052 }
1053 EXPORT_SYMBOL_GPL(kvm_set_msr);
1054
1055 /*
1056 * Adapt set_msr() to msr_io()'s calling convention
1057 */
1058 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1059 {
1060 struct msr_data msr;
1061 int r;
1062
1063 msr.index = index;
1064 msr.host_initiated = true;
1065 r = kvm_get_msr(vcpu, &msr);
1066 if (r)
1067 return r;
1068
1069 *data = msr.data;
1070 return 0;
1071 }
1072
1073 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1074 {
1075 struct msr_data msr;
1076
1077 msr.data = *data;
1078 msr.index = index;
1079 msr.host_initiated = true;
1080 return kvm_set_msr(vcpu, &msr);
1081 }
1082
1083 #ifdef CONFIG_X86_64
1084 struct pvclock_gtod_data {
1085 seqcount_t seq;
1086
1087 struct { /* extract of a clocksource struct */
1088 int vclock_mode;
1089 cycle_t cycle_last;
1090 cycle_t mask;
1091 u32 mult;
1092 u32 shift;
1093 } clock;
1094
1095 u64 boot_ns;
1096 u64 nsec_base;
1097 };
1098
1099 static struct pvclock_gtod_data pvclock_gtod_data;
1100
1101 static void update_pvclock_gtod(struct timekeeper *tk)
1102 {
1103 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1104 u64 boot_ns;
1105
1106 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1107
1108 write_seqcount_begin(&vdata->seq);
1109
1110 /* copy pvclock gtod data */
1111 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
1112 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1113 vdata->clock.mask = tk->tkr_mono.mask;
1114 vdata->clock.mult = tk->tkr_mono.mult;
1115 vdata->clock.shift = tk->tkr_mono.shift;
1116
1117 vdata->boot_ns = boot_ns;
1118 vdata->nsec_base = tk->tkr_mono.xtime_nsec;
1119
1120 write_seqcount_end(&vdata->seq);
1121 }
1122 #endif
1123
1124 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1125 {
1126 /*
1127 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1128 * vcpu_enter_guest. This function is only called from
1129 * the physical CPU that is running vcpu.
1130 */
1131 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1132 }
1133
1134 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1135 {
1136 int version;
1137 int r;
1138 struct pvclock_wall_clock wc;
1139 struct timespec boot;
1140
1141 if (!wall_clock)
1142 return;
1143
1144 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1145 if (r)
1146 return;
1147
1148 if (version & 1)
1149 ++version; /* first time write, random junk */
1150
1151 ++version;
1152
1153 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1154
1155 /*
1156 * The guest calculates current wall clock time by adding
1157 * system time (updated by kvm_guest_time_update below) to the
1158 * wall clock specified here. guest system time equals host
1159 * system time for us, thus we must fill in host boot time here.
1160 */
1161 getboottime(&boot);
1162
1163 if (kvm->arch.kvmclock_offset) {
1164 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1165 boot = timespec_sub(boot, ts);
1166 }
1167 wc.sec = boot.tv_sec;
1168 wc.nsec = boot.tv_nsec;
1169 wc.version = version;
1170
1171 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1172
1173 version++;
1174 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1175 }
1176
1177 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1178 {
1179 uint32_t quotient, remainder;
1180
1181 /* Don't try to replace with do_div(), this one calculates
1182 * "(dividend << 32) / divisor" */
1183 __asm__ ( "divl %4"
1184 : "=a" (quotient), "=d" (remainder)
1185 : "0" (0), "1" (dividend), "r" (divisor) );
1186 return quotient;
1187 }
1188
1189 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1190 s8 *pshift, u32 *pmultiplier)
1191 {
1192 uint64_t scaled64;
1193 int32_t shift = 0;
1194 uint64_t tps64;
1195 uint32_t tps32;
1196
1197 tps64 = base_khz * 1000LL;
1198 scaled64 = scaled_khz * 1000LL;
1199 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1200 tps64 >>= 1;
1201 shift--;
1202 }
1203
1204 tps32 = (uint32_t)tps64;
1205 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1206 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1207 scaled64 >>= 1;
1208 else
1209 tps32 <<= 1;
1210 shift++;
1211 }
1212
1213 *pshift = shift;
1214 *pmultiplier = div_frac(scaled64, tps32);
1215
1216 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1217 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1218 }
1219
1220 static inline u64 get_kernel_ns(void)
1221 {
1222 return ktime_get_boot_ns();
1223 }
1224
1225 #ifdef CONFIG_X86_64
1226 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1227 #endif
1228
1229 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1230 static unsigned long max_tsc_khz;
1231
1232 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1233 {
1234 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1235 vcpu->arch.virtual_tsc_shift);
1236 }
1237
1238 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1239 {
1240 u64 v = (u64)khz * (1000000 + ppm);
1241 do_div(v, 1000000);
1242 return v;
1243 }
1244
1245 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1246 {
1247 u32 thresh_lo, thresh_hi;
1248 int use_scaling = 0;
1249
1250 /* tsc_khz can be zero if TSC calibration fails */
1251 if (this_tsc_khz == 0)
1252 return;
1253
1254 /* Compute a scale to convert nanoseconds in TSC cycles */
1255 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1256 &vcpu->arch.virtual_tsc_shift,
1257 &vcpu->arch.virtual_tsc_mult);
1258 vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1259
1260 /*
1261 * Compute the variation in TSC rate which is acceptable
1262 * within the range of tolerance and decide if the
1263 * rate being applied is within that bounds of the hardware
1264 * rate. If so, no scaling or compensation need be done.
1265 */
1266 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1267 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1268 if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1269 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1270 use_scaling = 1;
1271 }
1272 kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1273 }
1274
1275 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1276 {
1277 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1278 vcpu->arch.virtual_tsc_mult,
1279 vcpu->arch.virtual_tsc_shift);
1280 tsc += vcpu->arch.this_tsc_write;
1281 return tsc;
1282 }
1283
1284 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1285 {
1286 #ifdef CONFIG_X86_64
1287 bool vcpus_matched;
1288 struct kvm_arch *ka = &vcpu->kvm->arch;
1289 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1290
1291 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1292 atomic_read(&vcpu->kvm->online_vcpus));
1293
1294 /*
1295 * Once the masterclock is enabled, always perform request in
1296 * order to update it.
1297 *
1298 * In order to enable masterclock, the host clocksource must be TSC
1299 * and the vcpus need to have matched TSCs. When that happens,
1300 * perform request to enable masterclock.
1301 */
1302 if (ka->use_master_clock ||
1303 (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1304 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1305
1306 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1307 atomic_read(&vcpu->kvm->online_vcpus),
1308 ka->use_master_clock, gtod->clock.vclock_mode);
1309 #endif
1310 }
1311
1312 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1313 {
1314 u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1315 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1316 }
1317
1318 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1319 {
1320 struct kvm *kvm = vcpu->kvm;
1321 u64 offset, ns, elapsed;
1322 unsigned long flags;
1323 s64 usdiff;
1324 bool matched;
1325 bool already_matched;
1326 u64 data = msr->data;
1327
1328 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1329 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1330 ns = get_kernel_ns();
1331 elapsed = ns - kvm->arch.last_tsc_nsec;
1332
1333 if (vcpu->arch.virtual_tsc_khz) {
1334 int faulted = 0;
1335
1336 /* n.b - signed multiplication and division required */
1337 usdiff = data - kvm->arch.last_tsc_write;
1338 #ifdef CONFIG_X86_64
1339 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1340 #else
1341 /* do_div() only does unsigned */
1342 asm("1: idivl %[divisor]\n"
1343 "2: xor %%edx, %%edx\n"
1344 " movl $0, %[faulted]\n"
1345 "3:\n"
1346 ".section .fixup,\"ax\"\n"
1347 "4: movl $1, %[faulted]\n"
1348 " jmp 3b\n"
1349 ".previous\n"
1350
1351 _ASM_EXTABLE(1b, 4b)
1352
1353 : "=A"(usdiff), [faulted] "=r" (faulted)
1354 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1355
1356 #endif
1357 do_div(elapsed, 1000);
1358 usdiff -= elapsed;
1359 if (usdiff < 0)
1360 usdiff = -usdiff;
1361
1362 /* idivl overflow => difference is larger than USEC_PER_SEC */
1363 if (faulted)
1364 usdiff = USEC_PER_SEC;
1365 } else
1366 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1367
1368 /*
1369 * Special case: TSC write with a small delta (1 second) of virtual
1370 * cycle time against real time is interpreted as an attempt to
1371 * synchronize the CPU.
1372 *
1373 * For a reliable TSC, we can match TSC offsets, and for an unstable
1374 * TSC, we add elapsed time in this computation. We could let the
1375 * compensation code attempt to catch up if we fall behind, but
1376 * it's better to try to match offsets from the beginning.
1377 */
1378 if (usdiff < USEC_PER_SEC &&
1379 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1380 if (!check_tsc_unstable()) {
1381 offset = kvm->arch.cur_tsc_offset;
1382 pr_debug("kvm: matched tsc offset for %llu\n", data);
1383 } else {
1384 u64 delta = nsec_to_cycles(vcpu, elapsed);
1385 data += delta;
1386 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1387 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1388 }
1389 matched = true;
1390 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1391 } else {
1392 /*
1393 * We split periods of matched TSC writes into generations.
1394 * For each generation, we track the original measured
1395 * nanosecond time, offset, and write, so if TSCs are in
1396 * sync, we can match exact offset, and if not, we can match
1397 * exact software computation in compute_guest_tsc()
1398 *
1399 * These values are tracked in kvm->arch.cur_xxx variables.
1400 */
1401 kvm->arch.cur_tsc_generation++;
1402 kvm->arch.cur_tsc_nsec = ns;
1403 kvm->arch.cur_tsc_write = data;
1404 kvm->arch.cur_tsc_offset = offset;
1405 matched = false;
1406 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1407 kvm->arch.cur_tsc_generation, data);
1408 }
1409
1410 /*
1411 * We also track th most recent recorded KHZ, write and time to
1412 * allow the matching interval to be extended at each write.
1413 */
1414 kvm->arch.last_tsc_nsec = ns;
1415 kvm->arch.last_tsc_write = data;
1416 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1417
1418 vcpu->arch.last_guest_tsc = data;
1419
1420 /* Keep track of which generation this VCPU has synchronized to */
1421 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1422 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1423 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1424
1425 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1426 update_ia32_tsc_adjust_msr(vcpu, offset);
1427 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1428 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1429
1430 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1431 if (!matched) {
1432 kvm->arch.nr_vcpus_matched_tsc = 0;
1433 } else if (!already_matched) {
1434 kvm->arch.nr_vcpus_matched_tsc++;
1435 }
1436
1437 kvm_track_tsc_matching(vcpu);
1438 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1439 }
1440
1441 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1442
1443 #ifdef CONFIG_X86_64
1444
1445 static cycle_t read_tsc(void)
1446 {
1447 cycle_t ret;
1448 u64 last;
1449
1450 /*
1451 * Empirically, a fence (of type that depends on the CPU)
1452 * before rdtsc is enough to ensure that rdtsc is ordered
1453 * with respect to loads. The various CPU manuals are unclear
1454 * as to whether rdtsc can be reordered with later loads,
1455 * but no one has ever seen it happen.
1456 */
1457 rdtsc_barrier();
1458 ret = (cycle_t)vget_cycles();
1459
1460 last = pvclock_gtod_data.clock.cycle_last;
1461
1462 if (likely(ret >= last))
1463 return ret;
1464
1465 /*
1466 * GCC likes to generate cmov here, but this branch is extremely
1467 * predictable (it's just a funciton of time and the likely is
1468 * very likely) and there's a data dependence, so force GCC
1469 * to generate a branch instead. I don't barrier() because
1470 * we don't actually need a barrier, and if this function
1471 * ever gets inlined it will generate worse code.
1472 */
1473 asm volatile ("");
1474 return last;
1475 }
1476
1477 static inline u64 vgettsc(cycle_t *cycle_now)
1478 {
1479 long v;
1480 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1481
1482 *cycle_now = read_tsc();
1483
1484 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1485 return v * gtod->clock.mult;
1486 }
1487
1488 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1489 {
1490 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1491 unsigned long seq;
1492 int mode;
1493 u64 ns;
1494
1495 do {
1496 seq = read_seqcount_begin(&gtod->seq);
1497 mode = gtod->clock.vclock_mode;
1498 ns = gtod->nsec_base;
1499 ns += vgettsc(cycle_now);
1500 ns >>= gtod->clock.shift;
1501 ns += gtod->boot_ns;
1502 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1503 *t = ns;
1504
1505 return mode;
1506 }
1507
1508 /* returns true if host is using tsc clocksource */
1509 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1510 {
1511 /* checked again under seqlock below */
1512 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1513 return false;
1514
1515 return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1516 }
1517 #endif
1518
1519 /*
1520 *
1521 * Assuming a stable TSC across physical CPUS, and a stable TSC
1522 * across virtual CPUs, the following condition is possible.
1523 * Each numbered line represents an event visible to both
1524 * CPUs at the next numbered event.
1525 *
1526 * "timespecX" represents host monotonic time. "tscX" represents
1527 * RDTSC value.
1528 *
1529 * VCPU0 on CPU0 | VCPU1 on CPU1
1530 *
1531 * 1. read timespec0,tsc0
1532 * 2. | timespec1 = timespec0 + N
1533 * | tsc1 = tsc0 + M
1534 * 3. transition to guest | transition to guest
1535 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1536 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1537 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1538 *
1539 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1540 *
1541 * - ret0 < ret1
1542 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1543 * ...
1544 * - 0 < N - M => M < N
1545 *
1546 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1547 * always the case (the difference between two distinct xtime instances
1548 * might be smaller then the difference between corresponding TSC reads,
1549 * when updating guest vcpus pvclock areas).
1550 *
1551 * To avoid that problem, do not allow visibility of distinct
1552 * system_timestamp/tsc_timestamp values simultaneously: use a master
1553 * copy of host monotonic time values. Update that master copy
1554 * in lockstep.
1555 *
1556 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1557 *
1558 */
1559
1560 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1561 {
1562 #ifdef CONFIG_X86_64
1563 struct kvm_arch *ka = &kvm->arch;
1564 int vclock_mode;
1565 bool host_tsc_clocksource, vcpus_matched;
1566
1567 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1568 atomic_read(&kvm->online_vcpus));
1569
1570 /*
1571 * If the host uses TSC clock, then passthrough TSC as stable
1572 * to the guest.
1573 */
1574 host_tsc_clocksource = kvm_get_time_and_clockread(
1575 &ka->master_kernel_ns,
1576 &ka->master_cycle_now);
1577
1578 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1579 && !backwards_tsc_observed
1580 && !ka->boot_vcpu_runs_old_kvmclock;
1581
1582 if (ka->use_master_clock)
1583 atomic_set(&kvm_guest_has_master_clock, 1);
1584
1585 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1586 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1587 vcpus_matched);
1588 #endif
1589 }
1590
1591 static void kvm_gen_update_masterclock(struct kvm *kvm)
1592 {
1593 #ifdef CONFIG_X86_64
1594 int i;
1595 struct kvm_vcpu *vcpu;
1596 struct kvm_arch *ka = &kvm->arch;
1597
1598 spin_lock(&ka->pvclock_gtod_sync_lock);
1599 kvm_make_mclock_inprogress_request(kvm);
1600 /* no guest entries from this point */
1601 pvclock_update_vm_gtod_copy(kvm);
1602
1603 kvm_for_each_vcpu(i, vcpu, kvm)
1604 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1605
1606 /* guest entries allowed */
1607 kvm_for_each_vcpu(i, vcpu, kvm)
1608 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1609
1610 spin_unlock(&ka->pvclock_gtod_sync_lock);
1611 #endif
1612 }
1613
1614 static int kvm_guest_time_update(struct kvm_vcpu *v)
1615 {
1616 unsigned long flags, this_tsc_khz;
1617 struct kvm_vcpu_arch *vcpu = &v->arch;
1618 struct kvm_arch *ka = &v->kvm->arch;
1619 s64 kernel_ns;
1620 u64 tsc_timestamp, host_tsc;
1621 struct pvclock_vcpu_time_info guest_hv_clock;
1622 u8 pvclock_flags;
1623 bool use_master_clock;
1624
1625 kernel_ns = 0;
1626 host_tsc = 0;
1627
1628 /*
1629 * If the host uses TSC clock, then passthrough TSC as stable
1630 * to the guest.
1631 */
1632 spin_lock(&ka->pvclock_gtod_sync_lock);
1633 use_master_clock = ka->use_master_clock;
1634 if (use_master_clock) {
1635 host_tsc = ka->master_cycle_now;
1636 kernel_ns = ka->master_kernel_ns;
1637 }
1638 spin_unlock(&ka->pvclock_gtod_sync_lock);
1639
1640 /* Keep irq disabled to prevent changes to the clock */
1641 local_irq_save(flags);
1642 this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1643 if (unlikely(this_tsc_khz == 0)) {
1644 local_irq_restore(flags);
1645 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1646 return 1;
1647 }
1648 if (!use_master_clock) {
1649 host_tsc = native_read_tsc();
1650 kernel_ns = get_kernel_ns();
1651 }
1652
1653 tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1654
1655 /*
1656 * We may have to catch up the TSC to match elapsed wall clock
1657 * time for two reasons, even if kvmclock is used.
1658 * 1) CPU could have been running below the maximum TSC rate
1659 * 2) Broken TSC compensation resets the base at each VCPU
1660 * entry to avoid unknown leaps of TSC even when running
1661 * again on the same CPU. This may cause apparent elapsed
1662 * time to disappear, and the guest to stand still or run
1663 * very slowly.
1664 */
1665 if (vcpu->tsc_catchup) {
1666 u64 tsc = compute_guest_tsc(v, kernel_ns);
1667 if (tsc > tsc_timestamp) {
1668 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1669 tsc_timestamp = tsc;
1670 }
1671 }
1672
1673 local_irq_restore(flags);
1674
1675 if (!vcpu->pv_time_enabled)
1676 return 0;
1677
1678 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1679 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1680 &vcpu->hv_clock.tsc_shift,
1681 &vcpu->hv_clock.tsc_to_system_mul);
1682 vcpu->hw_tsc_khz = this_tsc_khz;
1683 }
1684
1685 /* With all the info we got, fill in the values */
1686 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1687 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1688 vcpu->last_guest_tsc = tsc_timestamp;
1689
1690 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1691 &guest_hv_clock, sizeof(guest_hv_clock))))
1692 return 0;
1693
1694 /* This VCPU is paused, but it's legal for a guest to read another
1695 * VCPU's kvmclock, so we really have to follow the specification where
1696 * it says that version is odd if data is being modified, and even after
1697 * it is consistent.
1698 *
1699 * Version field updates must be kept separate. This is because
1700 * kvm_write_guest_cached might use a "rep movs" instruction, and
1701 * writes within a string instruction are weakly ordered. So there
1702 * are three writes overall.
1703 *
1704 * As a small optimization, only write the version field in the first
1705 * and third write. The vcpu->pv_time cache is still valid, because the
1706 * version field is the first in the struct.
1707 */
1708 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1709
1710 vcpu->hv_clock.version = guest_hv_clock.version + 1;
1711 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1712 &vcpu->hv_clock,
1713 sizeof(vcpu->hv_clock.version));
1714
1715 smp_wmb();
1716
1717 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1718 pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1719
1720 if (vcpu->pvclock_set_guest_stopped_request) {
1721 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1722 vcpu->pvclock_set_guest_stopped_request = false;
1723 }
1724
1725 pvclock_flags |= PVCLOCK_COUNTS_FROM_ZERO;
1726
1727 /* If the host uses TSC clocksource, then it is stable */
1728 if (use_master_clock)
1729 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1730
1731 vcpu->hv_clock.flags = pvclock_flags;
1732
1733 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1734
1735 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1736 &vcpu->hv_clock,
1737 sizeof(vcpu->hv_clock));
1738
1739 smp_wmb();
1740
1741 vcpu->hv_clock.version++;
1742 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1743 &vcpu->hv_clock,
1744 sizeof(vcpu->hv_clock.version));
1745 return 0;
1746 }
1747
1748 /*
1749 * kvmclock updates which are isolated to a given vcpu, such as
1750 * vcpu->cpu migration, should not allow system_timestamp from
1751 * the rest of the vcpus to remain static. Otherwise ntp frequency
1752 * correction applies to one vcpu's system_timestamp but not
1753 * the others.
1754 *
1755 * So in those cases, request a kvmclock update for all vcpus.
1756 * We need to rate-limit these requests though, as they can
1757 * considerably slow guests that have a large number of vcpus.
1758 * The time for a remote vcpu to update its kvmclock is bound
1759 * by the delay we use to rate-limit the updates.
1760 */
1761
1762 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1763
1764 static void kvmclock_update_fn(struct work_struct *work)
1765 {
1766 int i;
1767 struct delayed_work *dwork = to_delayed_work(work);
1768 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1769 kvmclock_update_work);
1770 struct kvm *kvm = container_of(ka, struct kvm, arch);
1771 struct kvm_vcpu *vcpu;
1772
1773 kvm_for_each_vcpu(i, vcpu, kvm) {
1774 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1775 kvm_vcpu_kick(vcpu);
1776 }
1777 }
1778
1779 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1780 {
1781 struct kvm *kvm = v->kvm;
1782
1783 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1784 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1785 KVMCLOCK_UPDATE_DELAY);
1786 }
1787
1788 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1789
1790 static void kvmclock_sync_fn(struct work_struct *work)
1791 {
1792 struct delayed_work *dwork = to_delayed_work(work);
1793 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1794 kvmclock_sync_work);
1795 struct kvm *kvm = container_of(ka, struct kvm, arch);
1796
1797 if (!kvmclock_periodic_sync)
1798 return;
1799
1800 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1801 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1802 KVMCLOCK_SYNC_PERIOD);
1803 }
1804
1805 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1806 {
1807 u64 mcg_cap = vcpu->arch.mcg_cap;
1808 unsigned bank_num = mcg_cap & 0xff;
1809
1810 switch (msr) {
1811 case MSR_IA32_MCG_STATUS:
1812 vcpu->arch.mcg_status = data;
1813 break;
1814 case MSR_IA32_MCG_CTL:
1815 if (!(mcg_cap & MCG_CTL_P))
1816 return 1;
1817 if (data != 0 && data != ~(u64)0)
1818 return -1;
1819 vcpu->arch.mcg_ctl = data;
1820 break;
1821 default:
1822 if (msr >= MSR_IA32_MC0_CTL &&
1823 msr < MSR_IA32_MCx_CTL(bank_num)) {
1824 u32 offset = msr - MSR_IA32_MC0_CTL;
1825 /* only 0 or all 1s can be written to IA32_MCi_CTL
1826 * some Linux kernels though clear bit 10 in bank 4 to
1827 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1828 * this to avoid an uncatched #GP in the guest
1829 */
1830 if ((offset & 0x3) == 0 &&
1831 data != 0 && (data | (1 << 10)) != ~(u64)0)
1832 return -1;
1833 vcpu->arch.mce_banks[offset] = data;
1834 break;
1835 }
1836 return 1;
1837 }
1838 return 0;
1839 }
1840
1841 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1842 {
1843 struct kvm *kvm = vcpu->kvm;
1844 int lm = is_long_mode(vcpu);
1845 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1846 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1847 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1848 : kvm->arch.xen_hvm_config.blob_size_32;
1849 u32 page_num = data & ~PAGE_MASK;
1850 u64 page_addr = data & PAGE_MASK;
1851 u8 *page;
1852 int r;
1853
1854 r = -E2BIG;
1855 if (page_num >= blob_size)
1856 goto out;
1857 r = -ENOMEM;
1858 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1859 if (IS_ERR(page)) {
1860 r = PTR_ERR(page);
1861 goto out;
1862 }
1863 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
1864 goto out_free;
1865 r = 0;
1866 out_free:
1867 kfree(page);
1868 out:
1869 return r;
1870 }
1871
1872 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1873 {
1874 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1875 }
1876
1877 static bool kvm_hv_msr_partition_wide(u32 msr)
1878 {
1879 bool r = false;
1880 switch (msr) {
1881 case HV_X64_MSR_GUEST_OS_ID:
1882 case HV_X64_MSR_HYPERCALL:
1883 case HV_X64_MSR_REFERENCE_TSC:
1884 case HV_X64_MSR_TIME_REF_COUNT:
1885 r = true;
1886 break;
1887 }
1888
1889 return r;
1890 }
1891
1892 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1893 {
1894 struct kvm *kvm = vcpu->kvm;
1895
1896 switch (msr) {
1897 case HV_X64_MSR_GUEST_OS_ID:
1898 kvm->arch.hv_guest_os_id = data;
1899 /* setting guest os id to zero disables hypercall page */
1900 if (!kvm->arch.hv_guest_os_id)
1901 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1902 break;
1903 case HV_X64_MSR_HYPERCALL: {
1904 u64 gfn;
1905 unsigned long addr;
1906 u8 instructions[4];
1907
1908 /* if guest os id is not set hypercall should remain disabled */
1909 if (!kvm->arch.hv_guest_os_id)
1910 break;
1911 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1912 kvm->arch.hv_hypercall = data;
1913 break;
1914 }
1915 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1916 addr = gfn_to_hva(kvm, gfn);
1917 if (kvm_is_error_hva(addr))
1918 return 1;
1919 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1920 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1921 if (__copy_to_user((void __user *)addr, instructions, 4))
1922 return 1;
1923 kvm->arch.hv_hypercall = data;
1924 mark_page_dirty(kvm, gfn);
1925 break;
1926 }
1927 case HV_X64_MSR_REFERENCE_TSC: {
1928 u64 gfn;
1929 HV_REFERENCE_TSC_PAGE tsc_ref;
1930 memset(&tsc_ref, 0, sizeof(tsc_ref));
1931 kvm->arch.hv_tsc_page = data;
1932 if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1933 break;
1934 gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1935 if (kvm_write_guest(kvm, gfn << HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT,
1936 &tsc_ref, sizeof(tsc_ref)))
1937 return 1;
1938 mark_page_dirty(kvm, gfn);
1939 break;
1940 }
1941 default:
1942 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1943 "data 0x%llx\n", msr, data);
1944 return 1;
1945 }
1946 return 0;
1947 }
1948
1949 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1950 {
1951 switch (msr) {
1952 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1953 u64 gfn;
1954 unsigned long addr;
1955
1956 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1957 vcpu->arch.hv_vapic = data;
1958 if (kvm_lapic_enable_pv_eoi(vcpu, 0))
1959 return 1;
1960 break;
1961 }
1962 gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT;
1963 addr = kvm_vcpu_gfn_to_hva(vcpu, gfn);
1964 if (kvm_is_error_hva(addr))
1965 return 1;
1966 if (__clear_user((void __user *)addr, PAGE_SIZE))
1967 return 1;
1968 vcpu->arch.hv_vapic = data;
1969 kvm_vcpu_mark_page_dirty(vcpu, gfn);
1970 if (kvm_lapic_enable_pv_eoi(vcpu, gfn_to_gpa(gfn) | KVM_MSR_ENABLED))
1971 return 1;
1972 break;
1973 }
1974 case HV_X64_MSR_EOI:
1975 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1976 case HV_X64_MSR_ICR:
1977 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1978 case HV_X64_MSR_TPR:
1979 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1980 default:
1981 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1982 "data 0x%llx\n", msr, data);
1983 return 1;
1984 }
1985
1986 return 0;
1987 }
1988
1989 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1990 {
1991 gpa_t gpa = data & ~0x3f;
1992
1993 /* Bits 2:5 are reserved, Should be zero */
1994 if (data & 0x3c)
1995 return 1;
1996
1997 vcpu->arch.apf.msr_val = data;
1998
1999 if (!(data & KVM_ASYNC_PF_ENABLED)) {
2000 kvm_clear_async_pf_completion_queue(vcpu);
2001 kvm_async_pf_hash_reset(vcpu);
2002 return 0;
2003 }
2004
2005 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2006 sizeof(u32)))
2007 return 1;
2008
2009 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2010 kvm_async_pf_wakeup_all(vcpu);
2011 return 0;
2012 }
2013
2014 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2015 {
2016 vcpu->arch.pv_time_enabled = false;
2017 }
2018
2019 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
2020 {
2021 u64 delta;
2022
2023 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2024 return;
2025
2026 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2027 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2028 vcpu->arch.st.accum_steal = delta;
2029 }
2030
2031 static void record_steal_time(struct kvm_vcpu *vcpu)
2032 {
2033 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2034 return;
2035
2036 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2037 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2038 return;
2039
2040 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2041 vcpu->arch.st.steal.version += 2;
2042 vcpu->arch.st.accum_steal = 0;
2043
2044 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2045 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2046 }
2047
2048 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2049 {
2050 bool pr = false;
2051 u32 msr = msr_info->index;
2052 u64 data = msr_info->data;
2053
2054 switch (msr) {
2055 case MSR_AMD64_NB_CFG:
2056 case MSR_IA32_UCODE_REV:
2057 case MSR_IA32_UCODE_WRITE:
2058 case MSR_VM_HSAVE_PA:
2059 case MSR_AMD64_PATCH_LOADER:
2060 case MSR_AMD64_BU_CFG2:
2061 break;
2062
2063 case MSR_EFER:
2064 return set_efer(vcpu, data);
2065 case MSR_K7_HWCR:
2066 data &= ~(u64)0x40; /* ignore flush filter disable */
2067 data &= ~(u64)0x100; /* ignore ignne emulation enable */
2068 data &= ~(u64)0x8; /* ignore TLB cache disable */
2069 data &= ~(u64)0x40000; /* ignore Mc status write enable */
2070 if (data != 0) {
2071 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2072 data);
2073 return 1;
2074 }
2075 break;
2076 case MSR_FAM10H_MMIO_CONF_BASE:
2077 if (data != 0) {
2078 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2079 "0x%llx\n", data);
2080 return 1;
2081 }
2082 break;
2083 case MSR_IA32_DEBUGCTLMSR:
2084 if (!data) {
2085 /* We support the non-activated case already */
2086 break;
2087 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2088 /* Values other than LBR and BTF are vendor-specific,
2089 thus reserved and should throw a #GP */
2090 return 1;
2091 }
2092 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2093 __func__, data);
2094 break;
2095 case 0x200 ... 0x2ff:
2096 return kvm_mtrr_set_msr(vcpu, msr, data);
2097 case MSR_IA32_APICBASE:
2098 return kvm_set_apic_base(vcpu, msr_info);
2099 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2100 return kvm_x2apic_msr_write(vcpu, msr, data);
2101 case MSR_IA32_TSCDEADLINE:
2102 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2103 break;
2104 case MSR_IA32_TSC_ADJUST:
2105 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2106 if (!msr_info->host_initiated) {
2107 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2108 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2109 }
2110 vcpu->arch.ia32_tsc_adjust_msr = data;
2111 }
2112 break;
2113 case MSR_IA32_MISC_ENABLE:
2114 vcpu->arch.ia32_misc_enable_msr = data;
2115 break;
2116 case MSR_IA32_SMBASE:
2117 if (!msr_info->host_initiated)
2118 return 1;
2119 vcpu->arch.smbase = data;
2120 break;
2121 case MSR_KVM_WALL_CLOCK_NEW:
2122 case MSR_KVM_WALL_CLOCK:
2123 vcpu->kvm->arch.wall_clock = data;
2124 kvm_write_wall_clock(vcpu->kvm, data);
2125 break;
2126 case MSR_KVM_SYSTEM_TIME_NEW:
2127 case MSR_KVM_SYSTEM_TIME: {
2128 u64 gpa_offset;
2129 struct kvm_arch *ka = &vcpu->kvm->arch;
2130
2131 kvmclock_reset(vcpu);
2132
2133 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2134 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2135
2136 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2137 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2138 &vcpu->requests);
2139
2140 ka->boot_vcpu_runs_old_kvmclock = tmp;
2141
2142 ka->kvmclock_offset = -get_kernel_ns();
2143 }
2144
2145 vcpu->arch.time = data;
2146 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2147
2148 /* we verify if the enable bit is set... */
2149 if (!(data & 1))
2150 break;
2151
2152 gpa_offset = data & ~(PAGE_MASK | 1);
2153
2154 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2155 &vcpu->arch.pv_time, data & ~1ULL,
2156 sizeof(struct pvclock_vcpu_time_info)))
2157 vcpu->arch.pv_time_enabled = false;
2158 else
2159 vcpu->arch.pv_time_enabled = true;
2160
2161 break;
2162 }
2163 case MSR_KVM_ASYNC_PF_EN:
2164 if (kvm_pv_enable_async_pf(vcpu, data))
2165 return 1;
2166 break;
2167 case MSR_KVM_STEAL_TIME:
2168
2169 if (unlikely(!sched_info_on()))
2170 return 1;
2171
2172 if (data & KVM_STEAL_RESERVED_MASK)
2173 return 1;
2174
2175 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2176 data & KVM_STEAL_VALID_BITS,
2177 sizeof(struct kvm_steal_time)))
2178 return 1;
2179
2180 vcpu->arch.st.msr_val = data;
2181
2182 if (!(data & KVM_MSR_ENABLED))
2183 break;
2184
2185 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2186
2187 preempt_disable();
2188 accumulate_steal_time(vcpu);
2189 preempt_enable();
2190
2191 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2192
2193 break;
2194 case MSR_KVM_PV_EOI_EN:
2195 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2196 return 1;
2197 break;
2198
2199 case MSR_IA32_MCG_CTL:
2200 case MSR_IA32_MCG_STATUS:
2201 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2202 return set_msr_mce(vcpu, msr, data);
2203
2204 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2205 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2206 pr = true; /* fall through */
2207 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2208 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2209 if (kvm_pmu_is_valid_msr(vcpu, msr))
2210 return kvm_pmu_set_msr(vcpu, msr_info);
2211
2212 if (pr || data != 0)
2213 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2214 "0x%x data 0x%llx\n", msr, data);
2215 break;
2216 case MSR_K7_CLK_CTL:
2217 /*
2218 * Ignore all writes to this no longer documented MSR.
2219 * Writes are only relevant for old K7 processors,
2220 * all pre-dating SVM, but a recommended workaround from
2221 * AMD for these chips. It is possible to specify the
2222 * affected processor models on the command line, hence
2223 * the need to ignore the workaround.
2224 */
2225 break;
2226 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2227 if (kvm_hv_msr_partition_wide(msr)) {
2228 int r;
2229 mutex_lock(&vcpu->kvm->lock);
2230 r = set_msr_hyperv_pw(vcpu, msr, data);
2231 mutex_unlock(&vcpu->kvm->lock);
2232 return r;
2233 } else
2234 return set_msr_hyperv(vcpu, msr, data);
2235 break;
2236 case MSR_IA32_BBL_CR_CTL3:
2237 /* Drop writes to this legacy MSR -- see rdmsr
2238 * counterpart for further detail.
2239 */
2240 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2241 break;
2242 case MSR_AMD64_OSVW_ID_LENGTH:
2243 if (!guest_cpuid_has_osvw(vcpu))
2244 return 1;
2245 vcpu->arch.osvw.length = data;
2246 break;
2247 case MSR_AMD64_OSVW_STATUS:
2248 if (!guest_cpuid_has_osvw(vcpu))
2249 return 1;
2250 vcpu->arch.osvw.status = data;
2251 break;
2252 default:
2253 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2254 return xen_hvm_config(vcpu, data);
2255 if (kvm_pmu_is_valid_msr(vcpu, msr))
2256 return kvm_pmu_set_msr(vcpu, msr_info);
2257 if (!ignore_msrs) {
2258 vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2259 msr, data);
2260 return 1;
2261 } else {
2262 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2263 msr, data);
2264 break;
2265 }
2266 }
2267 return 0;
2268 }
2269 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2270
2271
2272 /*
2273 * Reads an msr value (of 'msr_index') into 'pdata'.
2274 * Returns 0 on success, non-0 otherwise.
2275 * Assumes vcpu_load() was already called.
2276 */
2277 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2278 {
2279 return kvm_x86_ops->get_msr(vcpu, msr);
2280 }
2281 EXPORT_SYMBOL_GPL(kvm_get_msr);
2282
2283 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2284 {
2285 u64 data;
2286 u64 mcg_cap = vcpu->arch.mcg_cap;
2287 unsigned bank_num = mcg_cap & 0xff;
2288
2289 switch (msr) {
2290 case MSR_IA32_P5_MC_ADDR:
2291 case MSR_IA32_P5_MC_TYPE:
2292 data = 0;
2293 break;
2294 case MSR_IA32_MCG_CAP:
2295 data = vcpu->arch.mcg_cap;
2296 break;
2297 case MSR_IA32_MCG_CTL:
2298 if (!(mcg_cap & MCG_CTL_P))
2299 return 1;
2300 data = vcpu->arch.mcg_ctl;
2301 break;
2302 case MSR_IA32_MCG_STATUS:
2303 data = vcpu->arch.mcg_status;
2304 break;
2305 default:
2306 if (msr >= MSR_IA32_MC0_CTL &&
2307 msr < MSR_IA32_MCx_CTL(bank_num)) {
2308 u32 offset = msr - MSR_IA32_MC0_CTL;
2309 data = vcpu->arch.mce_banks[offset];
2310 break;
2311 }
2312 return 1;
2313 }
2314 *pdata = data;
2315 return 0;
2316 }
2317
2318 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2319 {
2320 u64 data = 0;
2321 struct kvm *kvm = vcpu->kvm;
2322
2323 switch (msr) {
2324 case HV_X64_MSR_GUEST_OS_ID:
2325 data = kvm->arch.hv_guest_os_id;
2326 break;
2327 case HV_X64_MSR_HYPERCALL:
2328 data = kvm->arch.hv_hypercall;
2329 break;
2330 case HV_X64_MSR_TIME_REF_COUNT: {
2331 data =
2332 div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100);
2333 break;
2334 }
2335 case HV_X64_MSR_REFERENCE_TSC:
2336 data = kvm->arch.hv_tsc_page;
2337 break;
2338 default:
2339 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2340 return 1;
2341 }
2342
2343 *pdata = data;
2344 return 0;
2345 }
2346
2347 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2348 {
2349 u64 data = 0;
2350
2351 switch (msr) {
2352 case HV_X64_MSR_VP_INDEX: {
2353 int r;
2354 struct kvm_vcpu *v;
2355 kvm_for_each_vcpu(r, v, vcpu->kvm) {
2356 if (v == vcpu) {
2357 data = r;
2358 break;
2359 }
2360 }
2361 break;
2362 }
2363 case HV_X64_MSR_EOI:
2364 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2365 case HV_X64_MSR_ICR:
2366 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2367 case HV_X64_MSR_TPR:
2368 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2369 case HV_X64_MSR_APIC_ASSIST_PAGE:
2370 data = vcpu->arch.hv_vapic;
2371 break;
2372 default:
2373 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2374 return 1;
2375 }
2376 *pdata = data;
2377 return 0;
2378 }
2379
2380 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2381 {
2382 u64 data;
2383
2384 switch (msr_info->index) {
2385 case MSR_IA32_PLATFORM_ID:
2386 case MSR_IA32_EBL_CR_POWERON:
2387 case MSR_IA32_DEBUGCTLMSR:
2388 case MSR_IA32_LASTBRANCHFROMIP:
2389 case MSR_IA32_LASTBRANCHTOIP:
2390 case MSR_IA32_LASTINTFROMIP:
2391 case MSR_IA32_LASTINTTOIP:
2392 case MSR_K8_SYSCFG:
2393 case MSR_K7_HWCR:
2394 case MSR_VM_HSAVE_PA:
2395 case MSR_K8_INT_PENDING_MSG:
2396 case MSR_AMD64_NB_CFG:
2397 case MSR_FAM10H_MMIO_CONF_BASE:
2398 case MSR_AMD64_BU_CFG2:
2399 msr_info->data = 0;
2400 break;
2401 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2402 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2403 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2404 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2405 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2406 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2407 msr_info->data = 0;
2408 break;
2409 case MSR_IA32_UCODE_REV:
2410 msr_info->data = 0x100000000ULL;
2411 break;
2412 case MSR_MTRRcap:
2413 case 0x200 ... 0x2ff:
2414 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2415 case 0xcd: /* fsb frequency */
2416 msr_info->data = 3;
2417 break;
2418 /*
2419 * MSR_EBC_FREQUENCY_ID
2420 * Conservative value valid for even the basic CPU models.
2421 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2422 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2423 * and 266MHz for model 3, or 4. Set Core Clock
2424 * Frequency to System Bus Frequency Ratio to 1 (bits
2425 * 31:24) even though these are only valid for CPU
2426 * models > 2, however guests may end up dividing or
2427 * multiplying by zero otherwise.
2428 */
2429 case MSR_EBC_FREQUENCY_ID:
2430 msr_info->data = 1 << 24;
2431 break;
2432 case MSR_IA32_APICBASE:
2433 msr_info->data = kvm_get_apic_base(vcpu);
2434 break;
2435 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2436 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2437 break;
2438 case MSR_IA32_TSCDEADLINE:
2439 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2440 break;
2441 case MSR_IA32_TSC_ADJUST:
2442 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2443 break;
2444 case MSR_IA32_MISC_ENABLE:
2445 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2446 break;
2447 case MSR_IA32_SMBASE:
2448 if (!msr_info->host_initiated)
2449 return 1;
2450 msr_info->data = vcpu->arch.smbase;
2451 break;
2452 case MSR_IA32_PERF_STATUS:
2453 /* TSC increment by tick */
2454 msr_info->data = 1000ULL;
2455 /* CPU multiplier */
2456 data |= (((uint64_t)4ULL) << 40);
2457 break;
2458 case MSR_EFER:
2459 msr_info->data = vcpu->arch.efer;
2460 break;
2461 case MSR_KVM_WALL_CLOCK:
2462 case MSR_KVM_WALL_CLOCK_NEW:
2463 msr_info->data = vcpu->kvm->arch.wall_clock;
2464 break;
2465 case MSR_KVM_SYSTEM_TIME:
2466 case MSR_KVM_SYSTEM_TIME_NEW:
2467 msr_info->data = vcpu->arch.time;
2468 break;
2469 case MSR_KVM_ASYNC_PF_EN:
2470 msr_info->data = vcpu->arch.apf.msr_val;
2471 break;
2472 case MSR_KVM_STEAL_TIME:
2473 msr_info->data = vcpu->arch.st.msr_val;
2474 break;
2475 case MSR_KVM_PV_EOI_EN:
2476 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2477 break;
2478 case MSR_IA32_P5_MC_ADDR:
2479 case MSR_IA32_P5_MC_TYPE:
2480 case MSR_IA32_MCG_CAP:
2481 case MSR_IA32_MCG_CTL:
2482 case MSR_IA32_MCG_STATUS:
2483 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2484 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2485 case MSR_K7_CLK_CTL:
2486 /*
2487 * Provide expected ramp-up count for K7. All other
2488 * are set to zero, indicating minimum divisors for
2489 * every field.
2490 *
2491 * This prevents guest kernels on AMD host with CPU
2492 * type 6, model 8 and higher from exploding due to
2493 * the rdmsr failing.
2494 */
2495 msr_info->data = 0x20000000;
2496 break;
2497 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2498 if (kvm_hv_msr_partition_wide(msr_info->index)) {
2499 int r;
2500 mutex_lock(&vcpu->kvm->lock);
2501 r = get_msr_hyperv_pw(vcpu, msr_info->index, &msr_info->data);
2502 mutex_unlock(&vcpu->kvm->lock);
2503 return r;
2504 } else
2505 return get_msr_hyperv(vcpu, msr_info->index, &msr_info->data);
2506 break;
2507 case MSR_IA32_BBL_CR_CTL3:
2508 /* This legacy MSR exists but isn't fully documented in current
2509 * silicon. It is however accessed by winxp in very narrow
2510 * scenarios where it sets bit #19, itself documented as
2511 * a "reserved" bit. Best effort attempt to source coherent
2512 * read data here should the balance of the register be
2513 * interpreted by the guest:
2514 *
2515 * L2 cache control register 3: 64GB range, 256KB size,
2516 * enabled, latency 0x1, configured
2517 */
2518 msr_info->data = 0xbe702111;
2519 break;
2520 case MSR_AMD64_OSVW_ID_LENGTH:
2521 if (!guest_cpuid_has_osvw(vcpu))
2522 return 1;
2523 msr_info->data = vcpu->arch.osvw.length;
2524 break;
2525 case MSR_AMD64_OSVW_STATUS:
2526 if (!guest_cpuid_has_osvw(vcpu))
2527 return 1;
2528 msr_info->data = vcpu->arch.osvw.status;
2529 break;
2530 default:
2531 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2532 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2533 if (!ignore_msrs) {
2534 vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2535 return 1;
2536 } else {
2537 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2538 msr_info->data = 0;
2539 }
2540 break;
2541 }
2542 return 0;
2543 }
2544 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2545
2546 /*
2547 * Read or write a bunch of msrs. All parameters are kernel addresses.
2548 *
2549 * @return number of msrs set successfully.
2550 */
2551 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2552 struct kvm_msr_entry *entries,
2553 int (*do_msr)(struct kvm_vcpu *vcpu,
2554 unsigned index, u64 *data))
2555 {
2556 int i, idx;
2557
2558 idx = srcu_read_lock(&vcpu->kvm->srcu);
2559 for (i = 0; i < msrs->nmsrs; ++i)
2560 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2561 break;
2562 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2563
2564 return i;
2565 }
2566
2567 /*
2568 * Read or write a bunch of msrs. Parameters are user addresses.
2569 *
2570 * @return number of msrs set successfully.
2571 */
2572 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2573 int (*do_msr)(struct kvm_vcpu *vcpu,
2574 unsigned index, u64 *data),
2575 int writeback)
2576 {
2577 struct kvm_msrs msrs;
2578 struct kvm_msr_entry *entries;
2579 int r, n;
2580 unsigned size;
2581
2582 r = -EFAULT;
2583 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2584 goto out;
2585
2586 r = -E2BIG;
2587 if (msrs.nmsrs >= MAX_IO_MSRS)
2588 goto out;
2589
2590 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2591 entries = memdup_user(user_msrs->entries, size);
2592 if (IS_ERR(entries)) {
2593 r = PTR_ERR(entries);
2594 goto out;
2595 }
2596
2597 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2598 if (r < 0)
2599 goto out_free;
2600
2601 r = -EFAULT;
2602 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2603 goto out_free;
2604
2605 r = n;
2606
2607 out_free:
2608 kfree(entries);
2609 out:
2610 return r;
2611 }
2612
2613 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2614 {
2615 int r;
2616
2617 switch (ext) {
2618 case KVM_CAP_IRQCHIP:
2619 case KVM_CAP_HLT:
2620 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2621 case KVM_CAP_SET_TSS_ADDR:
2622 case KVM_CAP_EXT_CPUID:
2623 case KVM_CAP_EXT_EMUL_CPUID:
2624 case KVM_CAP_CLOCKSOURCE:
2625 case KVM_CAP_PIT:
2626 case KVM_CAP_NOP_IO_DELAY:
2627 case KVM_CAP_MP_STATE:
2628 case KVM_CAP_SYNC_MMU:
2629 case KVM_CAP_USER_NMI:
2630 case KVM_CAP_REINJECT_CONTROL:
2631 case KVM_CAP_IRQ_INJECT_STATUS:
2632 case KVM_CAP_IOEVENTFD:
2633 case KVM_CAP_IOEVENTFD_NO_LENGTH:
2634 case KVM_CAP_PIT2:
2635 case KVM_CAP_PIT_STATE2:
2636 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2637 case KVM_CAP_XEN_HVM:
2638 case KVM_CAP_ADJUST_CLOCK:
2639 case KVM_CAP_VCPU_EVENTS:
2640 case KVM_CAP_HYPERV:
2641 case KVM_CAP_HYPERV_VAPIC:
2642 case KVM_CAP_HYPERV_SPIN:
2643 case KVM_CAP_PCI_SEGMENT:
2644 case KVM_CAP_DEBUGREGS:
2645 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2646 case KVM_CAP_XSAVE:
2647 case KVM_CAP_ASYNC_PF:
2648 case KVM_CAP_GET_TSC_KHZ:
2649 case KVM_CAP_KVMCLOCK_CTRL:
2650 case KVM_CAP_READONLY_MEM:
2651 case KVM_CAP_HYPERV_TIME:
2652 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2653 case KVM_CAP_TSC_DEADLINE_TIMER:
2654 case KVM_CAP_ENABLE_CAP_VM:
2655 case KVM_CAP_DISABLE_QUIRKS:
2656 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2657 case KVM_CAP_ASSIGN_DEV_IRQ:
2658 case KVM_CAP_PCI_2_3:
2659 #endif
2660 r = 1;
2661 break;
2662 case KVM_CAP_X86_SMM:
2663 /* SMBASE is usually relocated above 1M on modern chipsets,
2664 * and SMM handlers might indeed rely on 4G segment limits,
2665 * so do not report SMM to be available if real mode is
2666 * emulated via vm86 mode. Still, do not go to great lengths
2667 * to avoid userspace's usage of the feature, because it is a
2668 * fringe case that is not enabled except via specific settings
2669 * of the module parameters.
2670 */
2671 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2672 break;
2673 case KVM_CAP_COALESCED_MMIO:
2674 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2675 break;
2676 case KVM_CAP_VAPIC:
2677 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2678 break;
2679 case KVM_CAP_NR_VCPUS:
2680 r = KVM_SOFT_MAX_VCPUS;
2681 break;
2682 case KVM_CAP_MAX_VCPUS:
2683 r = KVM_MAX_VCPUS;
2684 break;
2685 case KVM_CAP_NR_MEMSLOTS:
2686 r = KVM_USER_MEM_SLOTS;
2687 break;
2688 case KVM_CAP_PV_MMU: /* obsolete */
2689 r = 0;
2690 break;
2691 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2692 case KVM_CAP_IOMMU:
2693 r = iommu_present(&pci_bus_type);
2694 break;
2695 #endif
2696 case KVM_CAP_MCE:
2697 r = KVM_MAX_MCE_BANKS;
2698 break;
2699 case KVM_CAP_XCRS:
2700 r = cpu_has_xsave;
2701 break;
2702 case KVM_CAP_TSC_CONTROL:
2703 r = kvm_has_tsc_control;
2704 break;
2705 default:
2706 r = 0;
2707 break;
2708 }
2709 return r;
2710
2711 }
2712
2713 long kvm_arch_dev_ioctl(struct file *filp,
2714 unsigned int ioctl, unsigned long arg)
2715 {
2716 void __user *argp = (void __user *)arg;
2717 long r;
2718
2719 switch (ioctl) {
2720 case KVM_GET_MSR_INDEX_LIST: {
2721 struct kvm_msr_list __user *user_msr_list = argp;
2722 struct kvm_msr_list msr_list;
2723 unsigned n;
2724
2725 r = -EFAULT;
2726 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2727 goto out;
2728 n = msr_list.nmsrs;
2729 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2730 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2731 goto out;
2732 r = -E2BIG;
2733 if (n < msr_list.nmsrs)
2734 goto out;
2735 r = -EFAULT;
2736 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2737 num_msrs_to_save * sizeof(u32)))
2738 goto out;
2739 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2740 &emulated_msrs,
2741 num_emulated_msrs * sizeof(u32)))
2742 goto out;
2743 r = 0;
2744 break;
2745 }
2746 case KVM_GET_SUPPORTED_CPUID:
2747 case KVM_GET_EMULATED_CPUID: {
2748 struct kvm_cpuid2 __user *cpuid_arg = argp;
2749 struct kvm_cpuid2 cpuid;
2750
2751 r = -EFAULT;
2752 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2753 goto out;
2754
2755 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2756 ioctl);
2757 if (r)
2758 goto out;
2759
2760 r = -EFAULT;
2761 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2762 goto out;
2763 r = 0;
2764 break;
2765 }
2766 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2767 u64 mce_cap;
2768
2769 mce_cap = KVM_MCE_CAP_SUPPORTED;
2770 r = -EFAULT;
2771 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2772 goto out;
2773 r = 0;
2774 break;
2775 }
2776 default:
2777 r = -EINVAL;
2778 }
2779 out:
2780 return r;
2781 }
2782
2783 static void wbinvd_ipi(void *garbage)
2784 {
2785 wbinvd();
2786 }
2787
2788 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2789 {
2790 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2791 }
2792
2793 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2794 {
2795 /* Address WBINVD may be executed by guest */
2796 if (need_emulate_wbinvd(vcpu)) {
2797 if (kvm_x86_ops->has_wbinvd_exit())
2798 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2799 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2800 smp_call_function_single(vcpu->cpu,
2801 wbinvd_ipi, NULL, 1);
2802 }
2803
2804 kvm_x86_ops->vcpu_load(vcpu, cpu);
2805
2806 /* Apply any externally detected TSC adjustments (due to suspend) */
2807 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2808 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2809 vcpu->arch.tsc_offset_adjustment = 0;
2810 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2811 }
2812
2813 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2814 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2815 native_read_tsc() - vcpu->arch.last_host_tsc;
2816 if (tsc_delta < 0)
2817 mark_tsc_unstable("KVM discovered backwards TSC");
2818 if (check_tsc_unstable()) {
2819 u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2820 vcpu->arch.last_guest_tsc);
2821 kvm_x86_ops->write_tsc_offset(vcpu, offset);
2822 vcpu->arch.tsc_catchup = 1;
2823 }
2824 /*
2825 * On a host with synchronized TSC, there is no need to update
2826 * kvmclock on vcpu->cpu migration
2827 */
2828 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2829 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2830 if (vcpu->cpu != cpu)
2831 kvm_migrate_timers(vcpu);
2832 vcpu->cpu = cpu;
2833 }
2834
2835 accumulate_steal_time(vcpu);
2836 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2837 }
2838
2839 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2840 {
2841 kvm_x86_ops->vcpu_put(vcpu);
2842 kvm_put_guest_fpu(vcpu);
2843 vcpu->arch.last_host_tsc = native_read_tsc();
2844 }
2845
2846 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2847 struct kvm_lapic_state *s)
2848 {
2849 kvm_x86_ops->sync_pir_to_irr(vcpu);
2850 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2851
2852 return 0;
2853 }
2854
2855 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2856 struct kvm_lapic_state *s)
2857 {
2858 kvm_apic_post_state_restore(vcpu, s);
2859 update_cr8_intercept(vcpu);
2860
2861 return 0;
2862 }
2863
2864 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2865 struct kvm_interrupt *irq)
2866 {
2867 if (irq->irq >= KVM_NR_INTERRUPTS)
2868 return -EINVAL;
2869 if (irqchip_in_kernel(vcpu->kvm))
2870 return -ENXIO;
2871
2872 kvm_queue_interrupt(vcpu, irq->irq, false);
2873 kvm_make_request(KVM_REQ_EVENT, vcpu);
2874
2875 return 0;
2876 }
2877
2878 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2879 {
2880 kvm_inject_nmi(vcpu);
2881
2882 return 0;
2883 }
2884
2885 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2886 {
2887 kvm_make_request(KVM_REQ_SMI, vcpu);
2888
2889 return 0;
2890 }
2891
2892 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2893 struct kvm_tpr_access_ctl *tac)
2894 {
2895 if (tac->flags)
2896 return -EINVAL;
2897 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2898 return 0;
2899 }
2900
2901 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2902 u64 mcg_cap)
2903 {
2904 int r;
2905 unsigned bank_num = mcg_cap & 0xff, bank;
2906
2907 r = -EINVAL;
2908 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2909 goto out;
2910 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2911 goto out;
2912 r = 0;
2913 vcpu->arch.mcg_cap = mcg_cap;
2914 /* Init IA32_MCG_CTL to all 1s */
2915 if (mcg_cap & MCG_CTL_P)
2916 vcpu->arch.mcg_ctl = ~(u64)0;
2917 /* Init IA32_MCi_CTL to all 1s */
2918 for (bank = 0; bank < bank_num; bank++)
2919 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2920 out:
2921 return r;
2922 }
2923
2924 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2925 struct kvm_x86_mce *mce)
2926 {
2927 u64 mcg_cap = vcpu->arch.mcg_cap;
2928 unsigned bank_num = mcg_cap & 0xff;
2929 u64 *banks = vcpu->arch.mce_banks;
2930
2931 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2932 return -EINVAL;
2933 /*
2934 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2935 * reporting is disabled
2936 */
2937 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2938 vcpu->arch.mcg_ctl != ~(u64)0)
2939 return 0;
2940 banks += 4 * mce->bank;
2941 /*
2942 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2943 * reporting is disabled for the bank
2944 */
2945 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2946 return 0;
2947 if (mce->status & MCI_STATUS_UC) {
2948 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2949 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2950 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2951 return 0;
2952 }
2953 if (banks[1] & MCI_STATUS_VAL)
2954 mce->status |= MCI_STATUS_OVER;
2955 banks[2] = mce->addr;
2956 banks[3] = mce->misc;
2957 vcpu->arch.mcg_status = mce->mcg_status;
2958 banks[1] = mce->status;
2959 kvm_queue_exception(vcpu, MC_VECTOR);
2960 } else if (!(banks[1] & MCI_STATUS_VAL)
2961 || !(banks[1] & MCI_STATUS_UC)) {
2962 if (banks[1] & MCI_STATUS_VAL)
2963 mce->status |= MCI_STATUS_OVER;
2964 banks[2] = mce->addr;
2965 banks[3] = mce->misc;
2966 banks[1] = mce->status;
2967 } else
2968 banks[1] |= MCI_STATUS_OVER;
2969 return 0;
2970 }
2971
2972 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2973 struct kvm_vcpu_events *events)
2974 {
2975 process_nmi(vcpu);
2976 events->exception.injected =
2977 vcpu->arch.exception.pending &&
2978 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2979 events->exception.nr = vcpu->arch.exception.nr;
2980 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2981 events->exception.pad = 0;
2982 events->exception.error_code = vcpu->arch.exception.error_code;
2983
2984 events->interrupt.injected =
2985 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2986 events->interrupt.nr = vcpu->arch.interrupt.nr;
2987 events->interrupt.soft = 0;
2988 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
2989
2990 events->nmi.injected = vcpu->arch.nmi_injected;
2991 events->nmi.pending = vcpu->arch.nmi_pending != 0;
2992 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2993 events->nmi.pad = 0;
2994
2995 events->sipi_vector = 0; /* never valid when reporting to user space */
2996
2997 events->smi.smm = is_smm(vcpu);
2998 events->smi.pending = vcpu->arch.smi_pending;
2999 events->smi.smm_inside_nmi =
3000 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3001 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3002
3003 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3004 | KVM_VCPUEVENT_VALID_SHADOW
3005 | KVM_VCPUEVENT_VALID_SMM);
3006 memset(&events->reserved, 0, sizeof(events->reserved));
3007 }
3008
3009 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3010 struct kvm_vcpu_events *events)
3011 {
3012 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3013 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3014 | KVM_VCPUEVENT_VALID_SHADOW
3015 | KVM_VCPUEVENT_VALID_SMM))
3016 return -EINVAL;
3017
3018 process_nmi(vcpu);
3019 vcpu->arch.exception.pending = events->exception.injected;
3020 vcpu->arch.exception.nr = events->exception.nr;
3021 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3022 vcpu->arch.exception.error_code = events->exception.error_code;
3023
3024 vcpu->arch.interrupt.pending = events->interrupt.injected;
3025 vcpu->arch.interrupt.nr = events->interrupt.nr;
3026 vcpu->arch.interrupt.soft = events->interrupt.soft;
3027 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3028 kvm_x86_ops->set_interrupt_shadow(vcpu,
3029 events->interrupt.shadow);
3030
3031 vcpu->arch.nmi_injected = events->nmi.injected;
3032 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3033 vcpu->arch.nmi_pending = events->nmi.pending;
3034 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3035
3036 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3037 kvm_vcpu_has_lapic(vcpu))
3038 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3039
3040 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3041 if (events->smi.smm)
3042 vcpu->arch.hflags |= HF_SMM_MASK;
3043 else
3044 vcpu->arch.hflags &= ~HF_SMM_MASK;
3045 vcpu->arch.smi_pending = events->smi.pending;
3046 if (events->smi.smm_inside_nmi)
3047 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3048 else
3049 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3050 if (kvm_vcpu_has_lapic(vcpu)) {
3051 if (events->smi.latched_init)
3052 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3053 else
3054 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3055 }
3056 }
3057
3058 kvm_make_request(KVM_REQ_EVENT, vcpu);
3059
3060 return 0;
3061 }
3062
3063 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3064 struct kvm_debugregs *dbgregs)
3065 {
3066 unsigned long val;
3067
3068 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3069 kvm_get_dr(vcpu, 6, &val);
3070 dbgregs->dr6 = val;
3071 dbgregs->dr7 = vcpu->arch.dr7;
3072 dbgregs->flags = 0;
3073 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3074 }
3075
3076 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3077 struct kvm_debugregs *dbgregs)
3078 {
3079 if (dbgregs->flags)
3080 return -EINVAL;
3081
3082 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3083 kvm_update_dr0123(vcpu);
3084 vcpu->arch.dr6 = dbgregs->dr6;
3085 kvm_update_dr6(vcpu);
3086 vcpu->arch.dr7 = dbgregs->dr7;
3087 kvm_update_dr7(vcpu);
3088
3089 return 0;
3090 }
3091
3092 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3093
3094 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3095 {
3096 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3097 u64 xstate_bv = xsave->header.xfeatures;
3098 u64 valid;
3099
3100 /*
3101 * Copy legacy XSAVE area, to avoid complications with CPUID
3102 * leaves 0 and 1 in the loop below.
3103 */
3104 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3105
3106 /* Set XSTATE_BV */
3107 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3108
3109 /*
3110 * Copy each region from the possibly compacted offset to the
3111 * non-compacted offset.
3112 */
3113 valid = xstate_bv & ~XSTATE_FPSSE;
3114 while (valid) {
3115 u64 feature = valid & -valid;
3116 int index = fls64(feature) - 1;
3117 void *src = get_xsave_addr(xsave, feature);
3118
3119 if (src) {
3120 u32 size, offset, ecx, edx;
3121 cpuid_count(XSTATE_CPUID, index,
3122 &size, &offset, &ecx, &edx);
3123 memcpy(dest + offset, src, size);
3124 }
3125
3126 valid -= feature;
3127 }
3128 }
3129
3130 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3131 {
3132 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3133 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3134 u64 valid;
3135
3136 /*
3137 * Copy legacy XSAVE area, to avoid complications with CPUID
3138 * leaves 0 and 1 in the loop below.
3139 */
3140 memcpy(xsave, src, XSAVE_HDR_OFFSET);
3141
3142 /* Set XSTATE_BV and possibly XCOMP_BV. */
3143 xsave->header.xfeatures = xstate_bv;
3144 if (cpu_has_xsaves)
3145 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3146
3147 /*
3148 * Copy each region from the non-compacted offset to the
3149 * possibly compacted offset.
3150 */
3151 valid = xstate_bv & ~XSTATE_FPSSE;
3152 while (valid) {
3153 u64 feature = valid & -valid;
3154 int index = fls64(feature) - 1;
3155 void *dest = get_xsave_addr(xsave, feature);
3156
3157 if (dest) {
3158 u32 size, offset, ecx, edx;
3159 cpuid_count(XSTATE_CPUID, index,
3160 &size, &offset, &ecx, &edx);
3161 memcpy(dest, src + offset, size);
3162 } else
3163 WARN_ON_ONCE(1);
3164
3165 valid -= feature;
3166 }
3167 }
3168
3169 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3170 struct kvm_xsave *guest_xsave)
3171 {
3172 if (cpu_has_xsave) {
3173 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3174 fill_xsave((u8 *) guest_xsave->region, vcpu);
3175 } else {
3176 memcpy(guest_xsave->region,
3177 &vcpu->arch.guest_fpu.state.fxsave,
3178 sizeof(struct fxregs_state));
3179 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3180 XSTATE_FPSSE;
3181 }
3182 }
3183
3184 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3185 struct kvm_xsave *guest_xsave)
3186 {
3187 u64 xstate_bv =
3188 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3189
3190 if (cpu_has_xsave) {
3191 /*
3192 * Here we allow setting states that are not present in
3193 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3194 * with old userspace.
3195 */
3196 if (xstate_bv & ~kvm_supported_xcr0())
3197 return -EINVAL;
3198 load_xsave(vcpu, (u8 *)guest_xsave->region);
3199 } else {
3200 if (xstate_bv & ~XSTATE_FPSSE)
3201 return -EINVAL;
3202 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3203 guest_xsave->region, sizeof(struct fxregs_state));
3204 }
3205 return 0;
3206 }
3207
3208 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3209 struct kvm_xcrs *guest_xcrs)
3210 {
3211 if (!cpu_has_xsave) {
3212 guest_xcrs->nr_xcrs = 0;
3213 return;
3214 }
3215
3216 guest_xcrs->nr_xcrs = 1;
3217 guest_xcrs->flags = 0;
3218 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3219 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3220 }
3221
3222 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3223 struct kvm_xcrs *guest_xcrs)
3224 {
3225 int i, r = 0;
3226
3227 if (!cpu_has_xsave)
3228 return -EINVAL;
3229
3230 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3231 return -EINVAL;
3232
3233 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3234 /* Only support XCR0 currently */
3235 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3236 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3237 guest_xcrs->xcrs[i].value);
3238 break;
3239 }
3240 if (r)
3241 r = -EINVAL;
3242 return r;
3243 }
3244
3245 /*
3246 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3247 * stopped by the hypervisor. This function will be called from the host only.
3248 * EINVAL is returned when the host attempts to set the flag for a guest that
3249 * does not support pv clocks.
3250 */
3251 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3252 {
3253 if (!vcpu->arch.pv_time_enabled)
3254 return -EINVAL;
3255 vcpu->arch.pvclock_set_guest_stopped_request = true;
3256 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3257 return 0;
3258 }
3259
3260 long kvm_arch_vcpu_ioctl(struct file *filp,
3261 unsigned int ioctl, unsigned long arg)
3262 {
3263 struct kvm_vcpu *vcpu = filp->private_data;
3264 void __user *argp = (void __user *)arg;
3265 int r;
3266 union {
3267 struct kvm_lapic_state *lapic;
3268 struct kvm_xsave *xsave;
3269 struct kvm_xcrs *xcrs;
3270 void *buffer;
3271 } u;
3272
3273 u.buffer = NULL;
3274 switch (ioctl) {
3275 case KVM_GET_LAPIC: {
3276 r = -EINVAL;
3277 if (!vcpu->arch.apic)
3278 goto out;
3279 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3280
3281 r = -ENOMEM;
3282 if (!u.lapic)
3283 goto out;
3284 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3285 if (r)
3286 goto out;
3287 r = -EFAULT;
3288 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3289 goto out;
3290 r = 0;
3291 break;
3292 }
3293 case KVM_SET_LAPIC: {
3294 r = -EINVAL;
3295 if (!vcpu->arch.apic)
3296 goto out;
3297 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3298 if (IS_ERR(u.lapic))
3299 return PTR_ERR(u.lapic);
3300
3301 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3302 break;
3303 }
3304 case KVM_INTERRUPT: {
3305 struct kvm_interrupt irq;
3306
3307 r = -EFAULT;
3308 if (copy_from_user(&irq, argp, sizeof irq))
3309 goto out;
3310 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3311 break;
3312 }
3313 case KVM_NMI: {
3314 r = kvm_vcpu_ioctl_nmi(vcpu);
3315 break;
3316 }
3317 case KVM_SMI: {
3318 r = kvm_vcpu_ioctl_smi(vcpu);
3319 break;
3320 }
3321 case KVM_SET_CPUID: {
3322 struct kvm_cpuid __user *cpuid_arg = argp;
3323 struct kvm_cpuid cpuid;
3324
3325 r = -EFAULT;
3326 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3327 goto out;
3328 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3329 break;
3330 }
3331 case KVM_SET_CPUID2: {
3332 struct kvm_cpuid2 __user *cpuid_arg = argp;
3333 struct kvm_cpuid2 cpuid;
3334
3335 r = -EFAULT;
3336 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3337 goto out;
3338 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3339 cpuid_arg->entries);
3340 break;
3341 }
3342 case KVM_GET_CPUID2: {
3343 struct kvm_cpuid2 __user *cpuid_arg = argp;
3344 struct kvm_cpuid2 cpuid;
3345
3346 r = -EFAULT;
3347 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3348 goto out;
3349 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3350 cpuid_arg->entries);
3351 if (r)
3352 goto out;
3353 r = -EFAULT;
3354 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3355 goto out;
3356 r = 0;
3357 break;
3358 }
3359 case KVM_GET_MSRS:
3360 r = msr_io(vcpu, argp, do_get_msr, 1);
3361 break;
3362 case KVM_SET_MSRS:
3363 r = msr_io(vcpu, argp, do_set_msr, 0);
3364 break;
3365 case KVM_TPR_ACCESS_REPORTING: {
3366 struct kvm_tpr_access_ctl tac;
3367
3368 r = -EFAULT;
3369 if (copy_from_user(&tac, argp, sizeof tac))
3370 goto out;
3371 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3372 if (r)
3373 goto out;
3374 r = -EFAULT;
3375 if (copy_to_user(argp, &tac, sizeof tac))
3376 goto out;
3377 r = 0;
3378 break;
3379 };
3380 case KVM_SET_VAPIC_ADDR: {
3381 struct kvm_vapic_addr va;
3382
3383 r = -EINVAL;
3384 if (!irqchip_in_kernel(vcpu->kvm))
3385 goto out;
3386 r = -EFAULT;
3387 if (copy_from_user(&va, argp, sizeof va))
3388 goto out;
3389 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3390 break;
3391 }
3392 case KVM_X86_SETUP_MCE: {
3393 u64 mcg_cap;
3394
3395 r = -EFAULT;
3396 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3397 goto out;
3398 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3399 break;
3400 }
3401 case KVM_X86_SET_MCE: {
3402 struct kvm_x86_mce mce;
3403
3404 r = -EFAULT;
3405 if (copy_from_user(&mce, argp, sizeof mce))
3406 goto out;
3407 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3408 break;
3409 }
3410 case KVM_GET_VCPU_EVENTS: {
3411 struct kvm_vcpu_events events;
3412
3413 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3414
3415 r = -EFAULT;
3416 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3417 break;
3418 r = 0;
3419 break;
3420 }
3421 case KVM_SET_VCPU_EVENTS: {
3422 struct kvm_vcpu_events events;
3423
3424 r = -EFAULT;
3425 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3426 break;
3427
3428 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3429 break;
3430 }
3431 case KVM_GET_DEBUGREGS: {
3432 struct kvm_debugregs dbgregs;
3433
3434 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3435
3436 r = -EFAULT;
3437 if (copy_to_user(argp, &dbgregs,
3438 sizeof(struct kvm_debugregs)))
3439 break;
3440 r = 0;
3441 break;
3442 }
3443 case KVM_SET_DEBUGREGS: {
3444 struct kvm_debugregs dbgregs;
3445
3446 r = -EFAULT;
3447 if (copy_from_user(&dbgregs, argp,
3448 sizeof(struct kvm_debugregs)))
3449 break;
3450
3451 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3452 break;
3453 }
3454 case KVM_GET_XSAVE: {
3455 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3456 r = -ENOMEM;
3457 if (!u.xsave)
3458 break;
3459
3460 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3461
3462 r = -EFAULT;
3463 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3464 break;
3465 r = 0;
3466 break;
3467 }
3468 case KVM_SET_XSAVE: {
3469 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3470 if (IS_ERR(u.xsave))
3471 return PTR_ERR(u.xsave);
3472
3473 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3474 break;
3475 }
3476 case KVM_GET_XCRS: {
3477 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3478 r = -ENOMEM;
3479 if (!u.xcrs)
3480 break;
3481
3482 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3483
3484 r = -EFAULT;
3485 if (copy_to_user(argp, u.xcrs,
3486 sizeof(struct kvm_xcrs)))
3487 break;
3488 r = 0;
3489 break;
3490 }
3491 case KVM_SET_XCRS: {
3492 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3493 if (IS_ERR(u.xcrs))
3494 return PTR_ERR(u.xcrs);
3495
3496 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3497 break;
3498 }
3499 case KVM_SET_TSC_KHZ: {
3500 u32 user_tsc_khz;
3501
3502 r = -EINVAL;
3503 user_tsc_khz = (u32)arg;
3504
3505 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3506 goto out;
3507
3508 if (user_tsc_khz == 0)
3509 user_tsc_khz = tsc_khz;
3510
3511 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3512
3513 r = 0;
3514 goto out;
3515 }
3516 case KVM_GET_TSC_KHZ: {
3517 r = vcpu->arch.virtual_tsc_khz;
3518 goto out;
3519 }
3520 case KVM_KVMCLOCK_CTRL: {
3521 r = kvm_set_guest_paused(vcpu);
3522 goto out;
3523 }
3524 default:
3525 r = -EINVAL;
3526 }
3527 out:
3528 kfree(u.buffer);
3529 return r;
3530 }
3531
3532 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3533 {
3534 return VM_FAULT_SIGBUS;
3535 }
3536
3537 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3538 {
3539 int ret;
3540
3541 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3542 return -EINVAL;
3543 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3544 return ret;
3545 }
3546
3547 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3548 u64 ident_addr)
3549 {
3550 kvm->arch.ept_identity_map_addr = ident_addr;
3551 return 0;
3552 }
3553
3554 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3555 u32 kvm_nr_mmu_pages)
3556 {
3557 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3558 return -EINVAL;
3559
3560 mutex_lock(&kvm->slots_lock);
3561
3562 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3563 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3564
3565 mutex_unlock(&kvm->slots_lock);
3566 return 0;
3567 }
3568
3569 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3570 {
3571 return kvm->arch.n_max_mmu_pages;
3572 }
3573
3574 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3575 {
3576 int r;
3577
3578 r = 0;
3579 switch (chip->chip_id) {
3580 case KVM_IRQCHIP_PIC_MASTER:
3581 memcpy(&chip->chip.pic,
3582 &pic_irqchip(kvm)->pics[0],
3583 sizeof(struct kvm_pic_state));
3584 break;
3585 case KVM_IRQCHIP_PIC_SLAVE:
3586 memcpy(&chip->chip.pic,
3587 &pic_irqchip(kvm)->pics[1],
3588 sizeof(struct kvm_pic_state));
3589 break;
3590 case KVM_IRQCHIP_IOAPIC:
3591 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3592 break;
3593 default:
3594 r = -EINVAL;
3595 break;
3596 }
3597 return r;
3598 }
3599
3600 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3601 {
3602 int r;
3603
3604 r = 0;
3605 switch (chip->chip_id) {
3606 case KVM_IRQCHIP_PIC_MASTER:
3607 spin_lock(&pic_irqchip(kvm)->lock);
3608 memcpy(&pic_irqchip(kvm)->pics[0],
3609 &chip->chip.pic,
3610 sizeof(struct kvm_pic_state));
3611 spin_unlock(&pic_irqchip(kvm)->lock);
3612 break;
3613 case KVM_IRQCHIP_PIC_SLAVE:
3614 spin_lock(&pic_irqchip(kvm)->lock);
3615 memcpy(&pic_irqchip(kvm)->pics[1],
3616 &chip->chip.pic,
3617 sizeof(struct kvm_pic_state));
3618 spin_unlock(&pic_irqchip(kvm)->lock);
3619 break;
3620 case KVM_IRQCHIP_IOAPIC:
3621 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3622 break;
3623 default:
3624 r = -EINVAL;
3625 break;
3626 }
3627 kvm_pic_update_irq(pic_irqchip(kvm));
3628 return r;
3629 }
3630
3631 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3632 {
3633 int r = 0;
3634
3635 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3636 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3637 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3638 return r;
3639 }
3640
3641 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3642 {
3643 int r = 0;
3644
3645 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3646 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3647 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3648 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3649 return r;
3650 }
3651
3652 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3653 {
3654 int r = 0;
3655
3656 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3657 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3658 sizeof(ps->channels));
3659 ps->flags = kvm->arch.vpit->pit_state.flags;
3660 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3661 memset(&ps->reserved, 0, sizeof(ps->reserved));
3662 return r;
3663 }
3664
3665 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3666 {
3667 int r = 0, start = 0;
3668 u32 prev_legacy, cur_legacy;
3669 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3670 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3671 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3672 if (!prev_legacy && cur_legacy)
3673 start = 1;
3674 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3675 sizeof(kvm->arch.vpit->pit_state.channels));
3676 kvm->arch.vpit->pit_state.flags = ps->flags;
3677 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3678 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3679 return r;
3680 }
3681
3682 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3683 struct kvm_reinject_control *control)
3684 {
3685 if (!kvm->arch.vpit)
3686 return -ENXIO;
3687 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3688 kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3689 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3690 return 0;
3691 }
3692
3693 /**
3694 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3695 * @kvm: kvm instance
3696 * @log: slot id and address to which we copy the log
3697 *
3698 * Steps 1-4 below provide general overview of dirty page logging. See
3699 * kvm_get_dirty_log_protect() function description for additional details.
3700 *
3701 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3702 * always flush the TLB (step 4) even if previous step failed and the dirty
3703 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3704 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3705 * writes will be marked dirty for next log read.
3706 *
3707 * 1. Take a snapshot of the bit and clear it if needed.
3708 * 2. Write protect the corresponding page.
3709 * 3. Copy the snapshot to the userspace.
3710 * 4. Flush TLB's if needed.
3711 */
3712 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3713 {
3714 bool is_dirty = false;
3715 int r;
3716
3717 mutex_lock(&kvm->slots_lock);
3718
3719 /*
3720 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3721 */
3722 if (kvm_x86_ops->flush_log_dirty)
3723 kvm_x86_ops->flush_log_dirty(kvm);
3724
3725 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3726
3727 /*
3728 * All the TLBs can be flushed out of mmu lock, see the comments in
3729 * kvm_mmu_slot_remove_write_access().
3730 */
3731 lockdep_assert_held(&kvm->slots_lock);
3732 if (is_dirty)
3733 kvm_flush_remote_tlbs(kvm);
3734
3735 mutex_unlock(&kvm->slots_lock);
3736 return r;
3737 }
3738
3739 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3740 bool line_status)
3741 {
3742 if (!irqchip_in_kernel(kvm))
3743 return -ENXIO;
3744
3745 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3746 irq_event->irq, irq_event->level,
3747 line_status);
3748 return 0;
3749 }
3750
3751 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3752 struct kvm_enable_cap *cap)
3753 {
3754 int r;
3755
3756 if (cap->flags)
3757 return -EINVAL;
3758
3759 switch (cap->cap) {
3760 case KVM_CAP_DISABLE_QUIRKS:
3761 kvm->arch.disabled_quirks = cap->args[0];
3762 r = 0;
3763 break;
3764 default:
3765 r = -EINVAL;
3766 break;
3767 }
3768 return r;
3769 }
3770
3771 long kvm_arch_vm_ioctl(struct file *filp,
3772 unsigned int ioctl, unsigned long arg)
3773 {
3774 struct kvm *kvm = filp->private_data;
3775 void __user *argp = (void __user *)arg;
3776 int r = -ENOTTY;
3777 /*
3778 * This union makes it completely explicit to gcc-3.x
3779 * that these two variables' stack usage should be
3780 * combined, not added together.
3781 */
3782 union {
3783 struct kvm_pit_state ps;
3784 struct kvm_pit_state2 ps2;
3785 struct kvm_pit_config pit_config;
3786 } u;
3787
3788 switch (ioctl) {
3789 case KVM_SET_TSS_ADDR:
3790 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3791 break;
3792 case KVM_SET_IDENTITY_MAP_ADDR: {
3793 u64 ident_addr;
3794
3795 r = -EFAULT;
3796 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3797 goto out;
3798 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3799 break;
3800 }
3801 case KVM_SET_NR_MMU_PAGES:
3802 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3803 break;
3804 case KVM_GET_NR_MMU_PAGES:
3805 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3806 break;
3807 case KVM_CREATE_IRQCHIP: {
3808 struct kvm_pic *vpic;
3809
3810 mutex_lock(&kvm->lock);
3811 r = -EEXIST;
3812 if (kvm->arch.vpic)
3813 goto create_irqchip_unlock;
3814 r = -EINVAL;
3815 if (atomic_read(&kvm->online_vcpus))
3816 goto create_irqchip_unlock;
3817 r = -ENOMEM;
3818 vpic = kvm_create_pic(kvm);
3819 if (vpic) {
3820 r = kvm_ioapic_init(kvm);
3821 if (r) {
3822 mutex_lock(&kvm->slots_lock);
3823 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3824 &vpic->dev_master);
3825 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3826 &vpic->dev_slave);
3827 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3828 &vpic->dev_eclr);
3829 mutex_unlock(&kvm->slots_lock);
3830 kfree(vpic);
3831 goto create_irqchip_unlock;
3832 }
3833 } else
3834 goto create_irqchip_unlock;
3835 smp_wmb();
3836 kvm->arch.vpic = vpic;
3837 smp_wmb();
3838 r = kvm_setup_default_irq_routing(kvm);
3839 if (r) {
3840 mutex_lock(&kvm->slots_lock);
3841 mutex_lock(&kvm->irq_lock);
3842 kvm_ioapic_destroy(kvm);
3843 kvm_destroy_pic(kvm);
3844 mutex_unlock(&kvm->irq_lock);
3845 mutex_unlock(&kvm->slots_lock);
3846 }
3847 create_irqchip_unlock:
3848 mutex_unlock(&kvm->lock);
3849 break;
3850 }
3851 case KVM_CREATE_PIT:
3852 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3853 goto create_pit;
3854 case KVM_CREATE_PIT2:
3855 r = -EFAULT;
3856 if (copy_from_user(&u.pit_config, argp,
3857 sizeof(struct kvm_pit_config)))
3858 goto out;
3859 create_pit:
3860 mutex_lock(&kvm->slots_lock);
3861 r = -EEXIST;
3862 if (kvm->arch.vpit)
3863 goto create_pit_unlock;
3864 r = -ENOMEM;
3865 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3866 if (kvm->arch.vpit)
3867 r = 0;
3868 create_pit_unlock:
3869 mutex_unlock(&kvm->slots_lock);
3870 break;
3871 case KVM_GET_IRQCHIP: {
3872 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3873 struct kvm_irqchip *chip;
3874
3875 chip = memdup_user(argp, sizeof(*chip));
3876 if (IS_ERR(chip)) {
3877 r = PTR_ERR(chip);
3878 goto out;
3879 }
3880
3881 r = -ENXIO;
3882 if (!irqchip_in_kernel(kvm))
3883 goto get_irqchip_out;
3884 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3885 if (r)
3886 goto get_irqchip_out;
3887 r = -EFAULT;
3888 if (copy_to_user(argp, chip, sizeof *chip))
3889 goto get_irqchip_out;
3890 r = 0;
3891 get_irqchip_out:
3892 kfree(chip);
3893 break;
3894 }
3895 case KVM_SET_IRQCHIP: {
3896 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3897 struct kvm_irqchip *chip;
3898
3899 chip = memdup_user(argp, sizeof(*chip));
3900 if (IS_ERR(chip)) {
3901 r = PTR_ERR(chip);
3902 goto out;
3903 }
3904
3905 r = -ENXIO;
3906 if (!irqchip_in_kernel(kvm))
3907 goto set_irqchip_out;
3908 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3909 if (r)
3910 goto set_irqchip_out;
3911 r = 0;
3912 set_irqchip_out:
3913 kfree(chip);
3914 break;
3915 }
3916 case KVM_GET_PIT: {
3917 r = -EFAULT;
3918 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3919 goto out;
3920 r = -ENXIO;
3921 if (!kvm->arch.vpit)
3922 goto out;
3923 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3924 if (r)
3925 goto out;
3926 r = -EFAULT;
3927 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3928 goto out;
3929 r = 0;
3930 break;
3931 }
3932 case KVM_SET_PIT: {
3933 r = -EFAULT;
3934 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3935 goto out;
3936 r = -ENXIO;
3937 if (!kvm->arch.vpit)
3938 goto out;
3939 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3940 break;
3941 }
3942 case KVM_GET_PIT2: {
3943 r = -ENXIO;
3944 if (!kvm->arch.vpit)
3945 goto out;
3946 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3947 if (r)
3948 goto out;
3949 r = -EFAULT;
3950 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3951 goto out;
3952 r = 0;
3953 break;
3954 }
3955 case KVM_SET_PIT2: {
3956 r = -EFAULT;
3957 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3958 goto out;
3959 r = -ENXIO;
3960 if (!kvm->arch.vpit)
3961 goto out;
3962 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3963 break;
3964 }
3965 case KVM_REINJECT_CONTROL: {
3966 struct kvm_reinject_control control;
3967 r = -EFAULT;
3968 if (copy_from_user(&control, argp, sizeof(control)))
3969 goto out;
3970 r = kvm_vm_ioctl_reinject(kvm, &control);
3971 break;
3972 }
3973 case KVM_XEN_HVM_CONFIG: {
3974 r = -EFAULT;
3975 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3976 sizeof(struct kvm_xen_hvm_config)))
3977 goto out;
3978 r = -EINVAL;
3979 if (kvm->arch.xen_hvm_config.flags)
3980 goto out;
3981 r = 0;
3982 break;
3983 }
3984 case KVM_SET_CLOCK: {
3985 struct kvm_clock_data user_ns;
3986 u64 now_ns;
3987 s64 delta;
3988
3989 r = -EFAULT;
3990 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3991 goto out;
3992
3993 r = -EINVAL;
3994 if (user_ns.flags)
3995 goto out;
3996
3997 r = 0;
3998 local_irq_disable();
3999 now_ns = get_kernel_ns();
4000 delta = user_ns.clock - now_ns;
4001 local_irq_enable();
4002 kvm->arch.kvmclock_offset = delta;
4003 kvm_gen_update_masterclock(kvm);
4004 break;
4005 }
4006 case KVM_GET_CLOCK: {
4007 struct kvm_clock_data user_ns;
4008 u64 now_ns;
4009
4010 local_irq_disable();
4011 now_ns = get_kernel_ns();
4012 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
4013 local_irq_enable();
4014 user_ns.flags = 0;
4015 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4016
4017 r = -EFAULT;
4018 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4019 goto out;
4020 r = 0;
4021 break;
4022 }
4023 case KVM_ENABLE_CAP: {
4024 struct kvm_enable_cap cap;
4025
4026 r = -EFAULT;
4027 if (copy_from_user(&cap, argp, sizeof(cap)))
4028 goto out;
4029 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4030 break;
4031 }
4032 default:
4033 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4034 }
4035 out:
4036 return r;
4037 }
4038
4039 static void kvm_init_msr_list(void)
4040 {
4041 u32 dummy[2];
4042 unsigned i, j;
4043
4044 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4045 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4046 continue;
4047
4048 /*
4049 * Even MSRs that are valid in the host may not be exposed
4050 * to the guests in some cases. We could work around this
4051 * in VMX with the generic MSR save/load machinery, but it
4052 * is not really worthwhile since it will really only
4053 * happen with nested virtualization.
4054 */
4055 switch (msrs_to_save[i]) {
4056 case MSR_IA32_BNDCFGS:
4057 if (!kvm_x86_ops->mpx_supported())
4058 continue;
4059 break;
4060 default:
4061 break;
4062 }
4063
4064 if (j < i)
4065 msrs_to_save[j] = msrs_to_save[i];
4066 j++;
4067 }
4068 num_msrs_to_save = j;
4069
4070 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4071 switch (emulated_msrs[i]) {
4072 case MSR_IA32_SMBASE:
4073 if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4074 continue;
4075 break;
4076 default:
4077 break;
4078 }
4079
4080 if (j < i)
4081 emulated_msrs[j] = emulated_msrs[i];
4082 j++;
4083 }
4084 num_emulated_msrs = j;
4085 }
4086
4087 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4088 const void *v)
4089 {
4090 int handled = 0;
4091 int n;
4092
4093 do {
4094 n = min(len, 8);
4095 if (!(vcpu->arch.apic &&
4096 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4097 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4098 break;
4099 handled += n;
4100 addr += n;
4101 len -= n;
4102 v += n;
4103 } while (len);
4104
4105 return handled;
4106 }
4107
4108 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4109 {
4110 int handled = 0;
4111 int n;
4112
4113 do {
4114 n = min(len, 8);
4115 if (!(vcpu->arch.apic &&
4116 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4117 addr, n, v))
4118 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4119 break;
4120 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4121 handled += n;
4122 addr += n;
4123 len -= n;
4124 v += n;
4125 } while (len);
4126
4127 return handled;
4128 }
4129
4130 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4131 struct kvm_segment *var, int seg)
4132 {
4133 kvm_x86_ops->set_segment(vcpu, var, seg);
4134 }
4135
4136 void kvm_get_segment(struct kvm_vcpu *vcpu,
4137 struct kvm_segment *var, int seg)
4138 {
4139 kvm_x86_ops->get_segment(vcpu, var, seg);
4140 }
4141
4142 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4143 struct x86_exception *exception)
4144 {
4145 gpa_t t_gpa;
4146
4147 BUG_ON(!mmu_is_nested(vcpu));
4148
4149 /* NPT walks are always user-walks */
4150 access |= PFERR_USER_MASK;
4151 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4152
4153 return t_gpa;
4154 }
4155
4156 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4157 struct x86_exception *exception)
4158 {
4159 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4160 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4161 }
4162
4163 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4164 struct x86_exception *exception)
4165 {
4166 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4167 access |= PFERR_FETCH_MASK;
4168 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4169 }
4170
4171 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4172 struct x86_exception *exception)
4173 {
4174 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4175 access |= PFERR_WRITE_MASK;
4176 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4177 }
4178
4179 /* uses this to access any guest's mapped memory without checking CPL */
4180 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4181 struct x86_exception *exception)
4182 {
4183 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4184 }
4185
4186 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4187 struct kvm_vcpu *vcpu, u32 access,
4188 struct x86_exception *exception)
4189 {
4190 void *data = val;
4191 int r = X86EMUL_CONTINUE;
4192
4193 while (bytes) {
4194 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4195 exception);
4196 unsigned offset = addr & (PAGE_SIZE-1);
4197 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4198 int ret;
4199
4200 if (gpa == UNMAPPED_GVA)
4201 return X86EMUL_PROPAGATE_FAULT;
4202 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4203 offset, toread);
4204 if (ret < 0) {
4205 r = X86EMUL_IO_NEEDED;
4206 goto out;
4207 }
4208
4209 bytes -= toread;
4210 data += toread;
4211 addr += toread;
4212 }
4213 out:
4214 return r;
4215 }
4216
4217 /* used for instruction fetching */
4218 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4219 gva_t addr, void *val, unsigned int bytes,
4220 struct x86_exception *exception)
4221 {
4222 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4223 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4224 unsigned offset;
4225 int ret;
4226
4227 /* Inline kvm_read_guest_virt_helper for speed. */
4228 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4229 exception);
4230 if (unlikely(gpa == UNMAPPED_GVA))
4231 return X86EMUL_PROPAGATE_FAULT;
4232
4233 offset = addr & (PAGE_SIZE-1);
4234 if (WARN_ON(offset + bytes > PAGE_SIZE))
4235 bytes = (unsigned)PAGE_SIZE - offset;
4236 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4237 offset, bytes);
4238 if (unlikely(ret < 0))
4239 return X86EMUL_IO_NEEDED;
4240
4241 return X86EMUL_CONTINUE;
4242 }
4243
4244 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4245 gva_t addr, void *val, unsigned int bytes,
4246 struct x86_exception *exception)
4247 {
4248 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4249 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4250
4251 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4252 exception);
4253 }
4254 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4255
4256 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4257 gva_t addr, void *val, unsigned int bytes,
4258 struct x86_exception *exception)
4259 {
4260 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4261 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4262 }
4263
4264 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4265 gva_t addr, void *val,
4266 unsigned int bytes,
4267 struct x86_exception *exception)
4268 {
4269 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4270 void *data = val;
4271 int r = X86EMUL_CONTINUE;
4272
4273 while (bytes) {
4274 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4275 PFERR_WRITE_MASK,
4276 exception);
4277 unsigned offset = addr & (PAGE_SIZE-1);
4278 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4279 int ret;
4280
4281 if (gpa == UNMAPPED_GVA)
4282 return X86EMUL_PROPAGATE_FAULT;
4283 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4284 if (ret < 0) {
4285 r = X86EMUL_IO_NEEDED;
4286 goto out;
4287 }
4288
4289 bytes -= towrite;
4290 data += towrite;
4291 addr += towrite;
4292 }
4293 out:
4294 return r;
4295 }
4296 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4297
4298 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4299 gpa_t *gpa, struct x86_exception *exception,
4300 bool write)
4301 {
4302 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4303 | (write ? PFERR_WRITE_MASK : 0);
4304
4305 if (vcpu_match_mmio_gva(vcpu, gva)
4306 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4307 vcpu->arch.access, access)) {
4308 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4309 (gva & (PAGE_SIZE - 1));
4310 trace_vcpu_match_mmio(gva, *gpa, write, false);
4311 return 1;
4312 }
4313
4314 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4315
4316 if (*gpa == UNMAPPED_GVA)
4317 return -1;
4318
4319 /* For APIC access vmexit */
4320 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4321 return 1;
4322
4323 if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4324 trace_vcpu_match_mmio(gva, *gpa, write, true);
4325 return 1;
4326 }
4327
4328 return 0;
4329 }
4330
4331 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4332 const void *val, int bytes)
4333 {
4334 int ret;
4335
4336 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4337 if (ret < 0)
4338 return 0;
4339 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4340 return 1;
4341 }
4342
4343 struct read_write_emulator_ops {
4344 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4345 int bytes);
4346 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4347 void *val, int bytes);
4348 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4349 int bytes, void *val);
4350 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4351 void *val, int bytes);
4352 bool write;
4353 };
4354
4355 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4356 {
4357 if (vcpu->mmio_read_completed) {
4358 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4359 vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4360 vcpu->mmio_read_completed = 0;
4361 return 1;
4362 }
4363
4364 return 0;
4365 }
4366
4367 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4368 void *val, int bytes)
4369 {
4370 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4371 }
4372
4373 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4374 void *val, int bytes)
4375 {
4376 return emulator_write_phys(vcpu, gpa, val, bytes);
4377 }
4378
4379 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4380 {
4381 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4382 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4383 }
4384
4385 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4386 void *val, int bytes)
4387 {
4388 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4389 return X86EMUL_IO_NEEDED;
4390 }
4391
4392 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4393 void *val, int bytes)
4394 {
4395 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4396
4397 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4398 return X86EMUL_CONTINUE;
4399 }
4400
4401 static const struct read_write_emulator_ops read_emultor = {
4402 .read_write_prepare = read_prepare,
4403 .read_write_emulate = read_emulate,
4404 .read_write_mmio = vcpu_mmio_read,
4405 .read_write_exit_mmio = read_exit_mmio,
4406 };
4407
4408 static const struct read_write_emulator_ops write_emultor = {
4409 .read_write_emulate = write_emulate,
4410 .read_write_mmio = write_mmio,
4411 .read_write_exit_mmio = write_exit_mmio,
4412 .write = true,
4413 };
4414
4415 static int emulator_read_write_onepage(unsigned long addr, void *val,
4416 unsigned int bytes,
4417 struct x86_exception *exception,
4418 struct kvm_vcpu *vcpu,
4419 const struct read_write_emulator_ops *ops)
4420 {
4421 gpa_t gpa;
4422 int handled, ret;
4423 bool write = ops->write;
4424 struct kvm_mmio_fragment *frag;
4425
4426 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4427
4428 if (ret < 0)
4429 return X86EMUL_PROPAGATE_FAULT;
4430
4431 /* For APIC access vmexit */
4432 if (ret)
4433 goto mmio;
4434
4435 if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4436 return X86EMUL_CONTINUE;
4437
4438 mmio:
4439 /*
4440 * Is this MMIO handled locally?
4441 */
4442 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4443 if (handled == bytes)
4444 return X86EMUL_CONTINUE;
4445
4446 gpa += handled;
4447 bytes -= handled;
4448 val += handled;
4449
4450 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4451 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4452 frag->gpa = gpa;
4453 frag->data = val;
4454 frag->len = bytes;
4455 return X86EMUL_CONTINUE;
4456 }
4457
4458 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4459 unsigned long addr,
4460 void *val, unsigned int bytes,
4461 struct x86_exception *exception,
4462 const struct read_write_emulator_ops *ops)
4463 {
4464 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4465 gpa_t gpa;
4466 int rc;
4467
4468 if (ops->read_write_prepare &&
4469 ops->read_write_prepare(vcpu, val, bytes))
4470 return X86EMUL_CONTINUE;
4471
4472 vcpu->mmio_nr_fragments = 0;
4473
4474 /* Crossing a page boundary? */
4475 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4476 int now;
4477
4478 now = -addr & ~PAGE_MASK;
4479 rc = emulator_read_write_onepage(addr, val, now, exception,
4480 vcpu, ops);
4481
4482 if (rc != X86EMUL_CONTINUE)
4483 return rc;
4484 addr += now;
4485 if (ctxt->mode != X86EMUL_MODE_PROT64)
4486 addr = (u32)addr;
4487 val += now;
4488 bytes -= now;
4489 }
4490
4491 rc = emulator_read_write_onepage(addr, val, bytes, exception,
4492 vcpu, ops);
4493 if (rc != X86EMUL_CONTINUE)
4494 return rc;
4495
4496 if (!vcpu->mmio_nr_fragments)
4497 return rc;
4498
4499 gpa = vcpu->mmio_fragments[0].gpa;
4500
4501 vcpu->mmio_needed = 1;
4502 vcpu->mmio_cur_fragment = 0;
4503
4504 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4505 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4506 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4507 vcpu->run->mmio.phys_addr = gpa;
4508
4509 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4510 }
4511
4512 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4513 unsigned long addr,
4514 void *val,
4515 unsigned int bytes,
4516 struct x86_exception *exception)
4517 {
4518 return emulator_read_write(ctxt, addr, val, bytes,
4519 exception, &read_emultor);
4520 }
4521
4522 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4523 unsigned long addr,
4524 const void *val,
4525 unsigned int bytes,
4526 struct x86_exception *exception)
4527 {
4528 return emulator_read_write(ctxt, addr, (void *)val, bytes,
4529 exception, &write_emultor);
4530 }
4531
4532 #define CMPXCHG_TYPE(t, ptr, old, new) \
4533 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4534
4535 #ifdef CONFIG_X86_64
4536 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4537 #else
4538 # define CMPXCHG64(ptr, old, new) \
4539 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4540 #endif
4541
4542 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4543 unsigned long addr,
4544 const void *old,
4545 const void *new,
4546 unsigned int bytes,
4547 struct x86_exception *exception)
4548 {
4549 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4550 gpa_t gpa;
4551 struct page *page;
4552 char *kaddr;
4553 bool exchanged;
4554
4555 /* guests cmpxchg8b have to be emulated atomically */
4556 if (bytes > 8 || (bytes & (bytes - 1)))
4557 goto emul_write;
4558
4559 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4560
4561 if (gpa == UNMAPPED_GVA ||
4562 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4563 goto emul_write;
4564
4565 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4566 goto emul_write;
4567
4568 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4569 if (is_error_page(page))
4570 goto emul_write;
4571
4572 kaddr = kmap_atomic(page);
4573 kaddr += offset_in_page(gpa);
4574 switch (bytes) {
4575 case 1:
4576 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4577 break;
4578 case 2:
4579 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4580 break;
4581 case 4:
4582 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4583 break;
4584 case 8:
4585 exchanged = CMPXCHG64(kaddr, old, new);
4586 break;
4587 default:
4588 BUG();
4589 }
4590 kunmap_atomic(kaddr);
4591 kvm_release_page_dirty(page);
4592
4593 if (!exchanged)
4594 return X86EMUL_CMPXCHG_FAILED;
4595
4596 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4597 kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4598
4599 return X86EMUL_CONTINUE;
4600
4601 emul_write:
4602 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4603
4604 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4605 }
4606
4607 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4608 {
4609 /* TODO: String I/O for in kernel device */
4610 int r;
4611
4612 if (vcpu->arch.pio.in)
4613 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4614 vcpu->arch.pio.size, pd);
4615 else
4616 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4617 vcpu->arch.pio.port, vcpu->arch.pio.size,
4618 pd);
4619 return r;
4620 }
4621
4622 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4623 unsigned short port, void *val,
4624 unsigned int count, bool in)
4625 {
4626 vcpu->arch.pio.port = port;
4627 vcpu->arch.pio.in = in;
4628 vcpu->arch.pio.count = count;
4629 vcpu->arch.pio.size = size;
4630
4631 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4632 vcpu->arch.pio.count = 0;
4633 return 1;
4634 }
4635
4636 vcpu->run->exit_reason = KVM_EXIT_IO;
4637 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4638 vcpu->run->io.size = size;
4639 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4640 vcpu->run->io.count = count;
4641 vcpu->run->io.port = port;
4642
4643 return 0;
4644 }
4645
4646 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4647 int size, unsigned short port, void *val,
4648 unsigned int count)
4649 {
4650 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4651 int ret;
4652
4653 if (vcpu->arch.pio.count)
4654 goto data_avail;
4655
4656 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4657 if (ret) {
4658 data_avail:
4659 memcpy(val, vcpu->arch.pio_data, size * count);
4660 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4661 vcpu->arch.pio.count = 0;
4662 return 1;
4663 }
4664
4665 return 0;
4666 }
4667
4668 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4669 int size, unsigned short port,
4670 const void *val, unsigned int count)
4671 {
4672 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4673
4674 memcpy(vcpu->arch.pio_data, val, size * count);
4675 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4676 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4677 }
4678
4679 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4680 {
4681 return kvm_x86_ops->get_segment_base(vcpu, seg);
4682 }
4683
4684 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4685 {
4686 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4687 }
4688
4689 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4690 {
4691 if (!need_emulate_wbinvd(vcpu))
4692 return X86EMUL_CONTINUE;
4693
4694 if (kvm_x86_ops->has_wbinvd_exit()) {
4695 int cpu = get_cpu();
4696
4697 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4698 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4699 wbinvd_ipi, NULL, 1);
4700 put_cpu();
4701 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4702 } else
4703 wbinvd();
4704 return X86EMUL_CONTINUE;
4705 }
4706
4707 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4708 {
4709 kvm_x86_ops->skip_emulated_instruction(vcpu);
4710 return kvm_emulate_wbinvd_noskip(vcpu);
4711 }
4712 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4713
4714
4715
4716 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4717 {
4718 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4719 }
4720
4721 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4722 unsigned long *dest)
4723 {
4724 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4725 }
4726
4727 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4728 unsigned long value)
4729 {
4730
4731 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4732 }
4733
4734 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4735 {
4736 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4737 }
4738
4739 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4740 {
4741 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4742 unsigned long value;
4743
4744 switch (cr) {
4745 case 0:
4746 value = kvm_read_cr0(vcpu);
4747 break;
4748 case 2:
4749 value = vcpu->arch.cr2;
4750 break;
4751 case 3:
4752 value = kvm_read_cr3(vcpu);
4753 break;
4754 case 4:
4755 value = kvm_read_cr4(vcpu);
4756 break;
4757 case 8:
4758 value = kvm_get_cr8(vcpu);
4759 break;
4760 default:
4761 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4762 return 0;
4763 }
4764
4765 return value;
4766 }
4767
4768 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4769 {
4770 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4771 int res = 0;
4772
4773 switch (cr) {
4774 case 0:
4775 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4776 break;
4777 case 2:
4778 vcpu->arch.cr2 = val;
4779 break;
4780 case 3:
4781 res = kvm_set_cr3(vcpu, val);
4782 break;
4783 case 4:
4784 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4785 break;
4786 case 8:
4787 res = kvm_set_cr8(vcpu, val);
4788 break;
4789 default:
4790 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4791 res = -1;
4792 }
4793
4794 return res;
4795 }
4796
4797 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4798 {
4799 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4800 }
4801
4802 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4803 {
4804 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4805 }
4806
4807 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4808 {
4809 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4810 }
4811
4812 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4813 {
4814 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4815 }
4816
4817 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4818 {
4819 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4820 }
4821
4822 static unsigned long emulator_get_cached_segment_base(
4823 struct x86_emulate_ctxt *ctxt, int seg)
4824 {
4825 return get_segment_base(emul_to_vcpu(ctxt), seg);
4826 }
4827
4828 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4829 struct desc_struct *desc, u32 *base3,
4830 int seg)
4831 {
4832 struct kvm_segment var;
4833
4834 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4835 *selector = var.selector;
4836
4837 if (var.unusable) {
4838 memset(desc, 0, sizeof(*desc));
4839 return false;
4840 }
4841
4842 if (var.g)
4843 var.limit >>= 12;
4844 set_desc_limit(desc, var.limit);
4845 set_desc_base(desc, (unsigned long)var.base);
4846 #ifdef CONFIG_X86_64
4847 if (base3)
4848 *base3 = var.base >> 32;
4849 #endif
4850 desc->type = var.type;
4851 desc->s = var.s;
4852 desc->dpl = var.dpl;
4853 desc->p = var.present;
4854 desc->avl = var.avl;
4855 desc->l = var.l;
4856 desc->d = var.db;
4857 desc->g = var.g;
4858
4859 return true;
4860 }
4861
4862 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4863 struct desc_struct *desc, u32 base3,
4864 int seg)
4865 {
4866 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4867 struct kvm_segment var;
4868
4869 var.selector = selector;
4870 var.base = get_desc_base(desc);
4871 #ifdef CONFIG_X86_64
4872 var.base |= ((u64)base3) << 32;
4873 #endif
4874 var.limit = get_desc_limit(desc);
4875 if (desc->g)
4876 var.limit = (var.limit << 12) | 0xfff;
4877 var.type = desc->type;
4878 var.dpl = desc->dpl;
4879 var.db = desc->d;
4880 var.s = desc->s;
4881 var.l = desc->l;
4882 var.g = desc->g;
4883 var.avl = desc->avl;
4884 var.present = desc->p;
4885 var.unusable = !var.present;
4886 var.padding = 0;
4887
4888 kvm_set_segment(vcpu, &var, seg);
4889 return;
4890 }
4891
4892 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4893 u32 msr_index, u64 *pdata)
4894 {
4895 struct msr_data msr;
4896 int r;
4897
4898 msr.index = msr_index;
4899 msr.host_initiated = false;
4900 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
4901 if (r)
4902 return r;
4903
4904 *pdata = msr.data;
4905 return 0;
4906 }
4907
4908 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4909 u32 msr_index, u64 data)
4910 {
4911 struct msr_data msr;
4912
4913 msr.data = data;
4914 msr.index = msr_index;
4915 msr.host_initiated = false;
4916 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4917 }
4918
4919 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
4920 {
4921 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4922
4923 return vcpu->arch.smbase;
4924 }
4925
4926 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
4927 {
4928 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4929
4930 vcpu->arch.smbase = smbase;
4931 }
4932
4933 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4934 u32 pmc)
4935 {
4936 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
4937 }
4938
4939 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4940 u32 pmc, u64 *pdata)
4941 {
4942 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
4943 }
4944
4945 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4946 {
4947 emul_to_vcpu(ctxt)->arch.halt_request = 1;
4948 }
4949
4950 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4951 {
4952 preempt_disable();
4953 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4954 /*
4955 * CR0.TS may reference the host fpu state, not the guest fpu state,
4956 * so it may be clear at this point.
4957 */
4958 clts();
4959 }
4960
4961 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4962 {
4963 preempt_enable();
4964 }
4965
4966 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4967 struct x86_instruction_info *info,
4968 enum x86_intercept_stage stage)
4969 {
4970 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4971 }
4972
4973 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4974 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4975 {
4976 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4977 }
4978
4979 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4980 {
4981 return kvm_register_read(emul_to_vcpu(ctxt), reg);
4982 }
4983
4984 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4985 {
4986 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4987 }
4988
4989 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
4990 {
4991 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
4992 }
4993
4994 static const struct x86_emulate_ops emulate_ops = {
4995 .read_gpr = emulator_read_gpr,
4996 .write_gpr = emulator_write_gpr,
4997 .read_std = kvm_read_guest_virt_system,
4998 .write_std = kvm_write_guest_virt_system,
4999 .fetch = kvm_fetch_guest_virt,
5000 .read_emulated = emulator_read_emulated,
5001 .write_emulated = emulator_write_emulated,
5002 .cmpxchg_emulated = emulator_cmpxchg_emulated,
5003 .invlpg = emulator_invlpg,
5004 .pio_in_emulated = emulator_pio_in_emulated,
5005 .pio_out_emulated = emulator_pio_out_emulated,
5006 .get_segment = emulator_get_segment,
5007 .set_segment = emulator_set_segment,
5008 .get_cached_segment_base = emulator_get_cached_segment_base,
5009 .get_gdt = emulator_get_gdt,
5010 .get_idt = emulator_get_idt,
5011 .set_gdt = emulator_set_gdt,
5012 .set_idt = emulator_set_idt,
5013 .get_cr = emulator_get_cr,
5014 .set_cr = emulator_set_cr,
5015 .cpl = emulator_get_cpl,
5016 .get_dr = emulator_get_dr,
5017 .set_dr = emulator_set_dr,
5018 .get_smbase = emulator_get_smbase,
5019 .set_smbase = emulator_set_smbase,
5020 .set_msr = emulator_set_msr,
5021 .get_msr = emulator_get_msr,
5022 .check_pmc = emulator_check_pmc,
5023 .read_pmc = emulator_read_pmc,
5024 .halt = emulator_halt,
5025 .wbinvd = emulator_wbinvd,
5026 .fix_hypercall = emulator_fix_hypercall,
5027 .get_fpu = emulator_get_fpu,
5028 .put_fpu = emulator_put_fpu,
5029 .intercept = emulator_intercept,
5030 .get_cpuid = emulator_get_cpuid,
5031 .set_nmi_mask = emulator_set_nmi_mask,
5032 };
5033
5034 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5035 {
5036 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5037 /*
5038 * an sti; sti; sequence only disable interrupts for the first
5039 * instruction. So, if the last instruction, be it emulated or
5040 * not, left the system with the INT_STI flag enabled, it
5041 * means that the last instruction is an sti. We should not
5042 * leave the flag on in this case. The same goes for mov ss
5043 */
5044 if (int_shadow & mask)
5045 mask = 0;
5046 if (unlikely(int_shadow || mask)) {
5047 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5048 if (!mask)
5049 kvm_make_request(KVM_REQ_EVENT, vcpu);
5050 }
5051 }
5052
5053 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5054 {
5055 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5056 if (ctxt->exception.vector == PF_VECTOR)
5057 return kvm_propagate_fault(vcpu, &ctxt->exception);
5058
5059 if (ctxt->exception.error_code_valid)
5060 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5061 ctxt->exception.error_code);
5062 else
5063 kvm_queue_exception(vcpu, ctxt->exception.vector);
5064 return false;
5065 }
5066
5067 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5068 {
5069 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5070 int cs_db, cs_l;
5071
5072 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5073
5074 ctxt->eflags = kvm_get_rflags(vcpu);
5075 ctxt->eip = kvm_rip_read(vcpu);
5076 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
5077 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
5078 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
5079 cs_db ? X86EMUL_MODE_PROT32 :
5080 X86EMUL_MODE_PROT16;
5081 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5082 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5083 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5084 ctxt->emul_flags = vcpu->arch.hflags;
5085
5086 init_decode_cache(ctxt);
5087 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5088 }
5089
5090 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5091 {
5092 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5093 int ret;
5094
5095 init_emulate_ctxt(vcpu);
5096
5097 ctxt->op_bytes = 2;
5098 ctxt->ad_bytes = 2;
5099 ctxt->_eip = ctxt->eip + inc_eip;
5100 ret = emulate_int_real(ctxt, irq);
5101
5102 if (ret != X86EMUL_CONTINUE)
5103 return EMULATE_FAIL;
5104
5105 ctxt->eip = ctxt->_eip;
5106 kvm_rip_write(vcpu, ctxt->eip);
5107 kvm_set_rflags(vcpu, ctxt->eflags);
5108
5109 if (irq == NMI_VECTOR)
5110 vcpu->arch.nmi_pending = 0;
5111 else
5112 vcpu->arch.interrupt.pending = false;
5113
5114 return EMULATE_DONE;
5115 }
5116 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5117
5118 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5119 {
5120 int r = EMULATE_DONE;
5121
5122 ++vcpu->stat.insn_emulation_fail;
5123 trace_kvm_emulate_insn_failed(vcpu);
5124 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5125 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5126 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5127 vcpu->run->internal.ndata = 0;
5128 r = EMULATE_FAIL;
5129 }
5130 kvm_queue_exception(vcpu, UD_VECTOR);
5131
5132 return r;
5133 }
5134
5135 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5136 bool write_fault_to_shadow_pgtable,
5137 int emulation_type)
5138 {
5139 gpa_t gpa = cr2;
5140 pfn_t pfn;
5141
5142 if (emulation_type & EMULTYPE_NO_REEXECUTE)
5143 return false;
5144
5145 if (!vcpu->arch.mmu.direct_map) {
5146 /*
5147 * Write permission should be allowed since only
5148 * write access need to be emulated.
5149 */
5150 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5151
5152 /*
5153 * If the mapping is invalid in guest, let cpu retry
5154 * it to generate fault.
5155 */
5156 if (gpa == UNMAPPED_GVA)
5157 return true;
5158 }
5159
5160 /*
5161 * Do not retry the unhandleable instruction if it faults on the
5162 * readonly host memory, otherwise it will goto a infinite loop:
5163 * retry instruction -> write #PF -> emulation fail -> retry
5164 * instruction -> ...
5165 */
5166 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5167
5168 /*
5169 * If the instruction failed on the error pfn, it can not be fixed,
5170 * report the error to userspace.
5171 */
5172 if (is_error_noslot_pfn(pfn))
5173 return false;
5174
5175 kvm_release_pfn_clean(pfn);
5176
5177 /* The instructions are well-emulated on direct mmu. */
5178 if (vcpu->arch.mmu.direct_map) {
5179 unsigned int indirect_shadow_pages;
5180
5181 spin_lock(&vcpu->kvm->mmu_lock);
5182 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5183 spin_unlock(&vcpu->kvm->mmu_lock);
5184
5185 if (indirect_shadow_pages)
5186 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5187
5188 return true;
5189 }
5190
5191 /*
5192 * if emulation was due to access to shadowed page table
5193 * and it failed try to unshadow page and re-enter the
5194 * guest to let CPU execute the instruction.
5195 */
5196 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5197
5198 /*
5199 * If the access faults on its page table, it can not
5200 * be fixed by unprotecting shadow page and it should
5201 * be reported to userspace.
5202 */
5203 return !write_fault_to_shadow_pgtable;
5204 }
5205
5206 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5207 unsigned long cr2, int emulation_type)
5208 {
5209 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5210 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5211
5212 last_retry_eip = vcpu->arch.last_retry_eip;
5213 last_retry_addr = vcpu->arch.last_retry_addr;
5214
5215 /*
5216 * If the emulation is caused by #PF and it is non-page_table
5217 * writing instruction, it means the VM-EXIT is caused by shadow
5218 * page protected, we can zap the shadow page and retry this
5219 * instruction directly.
5220 *
5221 * Note: if the guest uses a non-page-table modifying instruction
5222 * on the PDE that points to the instruction, then we will unmap
5223 * the instruction and go to an infinite loop. So, we cache the
5224 * last retried eip and the last fault address, if we meet the eip
5225 * and the address again, we can break out of the potential infinite
5226 * loop.
5227 */
5228 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5229
5230 if (!(emulation_type & EMULTYPE_RETRY))
5231 return false;
5232
5233 if (x86_page_table_writing_insn(ctxt))
5234 return false;
5235
5236 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5237 return false;
5238
5239 vcpu->arch.last_retry_eip = ctxt->eip;
5240 vcpu->arch.last_retry_addr = cr2;
5241
5242 if (!vcpu->arch.mmu.direct_map)
5243 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5244
5245 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5246
5247 return true;
5248 }
5249
5250 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5251 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5252
5253 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5254 {
5255 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5256 /* This is a good place to trace that we are exiting SMM. */
5257 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5258
5259 if (unlikely(vcpu->arch.smi_pending)) {
5260 kvm_make_request(KVM_REQ_SMI, vcpu);
5261 vcpu->arch.smi_pending = 0;
5262 } else {
5263 /* Process a latched INIT, if any. */
5264 kvm_make_request(KVM_REQ_EVENT, vcpu);
5265 }
5266 }
5267
5268 kvm_mmu_reset_context(vcpu);
5269 }
5270
5271 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5272 {
5273 unsigned changed = vcpu->arch.hflags ^ emul_flags;
5274
5275 vcpu->arch.hflags = emul_flags;
5276
5277 if (changed & HF_SMM_MASK)
5278 kvm_smm_changed(vcpu);
5279 }
5280
5281 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5282 unsigned long *db)
5283 {
5284 u32 dr6 = 0;
5285 int i;
5286 u32 enable, rwlen;
5287
5288 enable = dr7;
5289 rwlen = dr7 >> 16;
5290 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5291 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5292 dr6 |= (1 << i);
5293 return dr6;
5294 }
5295
5296 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5297 {
5298 struct kvm_run *kvm_run = vcpu->run;
5299
5300 /*
5301 * rflags is the old, "raw" value of the flags. The new value has
5302 * not been saved yet.
5303 *
5304 * This is correct even for TF set by the guest, because "the
5305 * processor will not generate this exception after the instruction
5306 * that sets the TF flag".
5307 */
5308 if (unlikely(rflags & X86_EFLAGS_TF)) {
5309 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5310 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5311 DR6_RTM;
5312 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5313 kvm_run->debug.arch.exception = DB_VECTOR;
5314 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5315 *r = EMULATE_USER_EXIT;
5316 } else {
5317 vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5318 /*
5319 * "Certain debug exceptions may clear bit 0-3. The
5320 * remaining contents of the DR6 register are never
5321 * cleared by the processor".
5322 */
5323 vcpu->arch.dr6 &= ~15;
5324 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5325 kvm_queue_exception(vcpu, DB_VECTOR);
5326 }
5327 }
5328 }
5329
5330 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5331 {
5332 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5333 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5334 struct kvm_run *kvm_run = vcpu->run;
5335 unsigned long eip = kvm_get_linear_rip(vcpu);
5336 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5337 vcpu->arch.guest_debug_dr7,
5338 vcpu->arch.eff_db);
5339
5340 if (dr6 != 0) {
5341 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5342 kvm_run->debug.arch.pc = eip;
5343 kvm_run->debug.arch.exception = DB_VECTOR;
5344 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5345 *r = EMULATE_USER_EXIT;
5346 return true;
5347 }
5348 }
5349
5350 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5351 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5352 unsigned long eip = kvm_get_linear_rip(vcpu);
5353 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5354 vcpu->arch.dr7,
5355 vcpu->arch.db);
5356
5357 if (dr6 != 0) {
5358 vcpu->arch.dr6 &= ~15;
5359 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5360 kvm_queue_exception(vcpu, DB_VECTOR);
5361 *r = EMULATE_DONE;
5362 return true;
5363 }
5364 }
5365
5366 return false;
5367 }
5368
5369 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5370 unsigned long cr2,
5371 int emulation_type,
5372 void *insn,
5373 int insn_len)
5374 {
5375 int r;
5376 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5377 bool writeback = true;
5378 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5379
5380 /*
5381 * Clear write_fault_to_shadow_pgtable here to ensure it is
5382 * never reused.
5383 */
5384 vcpu->arch.write_fault_to_shadow_pgtable = false;
5385 kvm_clear_exception_queue(vcpu);
5386
5387 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5388 init_emulate_ctxt(vcpu);
5389
5390 /*
5391 * We will reenter on the same instruction since
5392 * we do not set complete_userspace_io. This does not
5393 * handle watchpoints yet, those would be handled in
5394 * the emulate_ops.
5395 */
5396 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5397 return r;
5398
5399 ctxt->interruptibility = 0;
5400 ctxt->have_exception = false;
5401 ctxt->exception.vector = -1;
5402 ctxt->perm_ok = false;
5403
5404 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5405
5406 r = x86_decode_insn(ctxt, insn, insn_len);
5407
5408 trace_kvm_emulate_insn_start(vcpu);
5409 ++vcpu->stat.insn_emulation;
5410 if (r != EMULATION_OK) {
5411 if (emulation_type & EMULTYPE_TRAP_UD)
5412 return EMULATE_FAIL;
5413 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5414 emulation_type))
5415 return EMULATE_DONE;
5416 if (emulation_type & EMULTYPE_SKIP)
5417 return EMULATE_FAIL;
5418 return handle_emulation_failure(vcpu);
5419 }
5420 }
5421
5422 if (emulation_type & EMULTYPE_SKIP) {
5423 kvm_rip_write(vcpu, ctxt->_eip);
5424 if (ctxt->eflags & X86_EFLAGS_RF)
5425 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5426 return EMULATE_DONE;
5427 }
5428
5429 if (retry_instruction(ctxt, cr2, emulation_type))
5430 return EMULATE_DONE;
5431
5432 /* this is needed for vmware backdoor interface to work since it
5433 changes registers values during IO operation */
5434 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5435 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5436 emulator_invalidate_register_cache(ctxt);
5437 }
5438
5439 restart:
5440 r = x86_emulate_insn(ctxt);
5441
5442 if (r == EMULATION_INTERCEPTED)
5443 return EMULATE_DONE;
5444
5445 if (r == EMULATION_FAILED) {
5446 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5447 emulation_type))
5448 return EMULATE_DONE;
5449
5450 return handle_emulation_failure(vcpu);
5451 }
5452
5453 if (ctxt->have_exception) {
5454 r = EMULATE_DONE;
5455 if (inject_emulated_exception(vcpu))
5456 return r;
5457 } else if (vcpu->arch.pio.count) {
5458 if (!vcpu->arch.pio.in) {
5459 /* FIXME: return into emulator if single-stepping. */
5460 vcpu->arch.pio.count = 0;
5461 } else {
5462 writeback = false;
5463 vcpu->arch.complete_userspace_io = complete_emulated_pio;
5464 }
5465 r = EMULATE_USER_EXIT;
5466 } else if (vcpu->mmio_needed) {
5467 if (!vcpu->mmio_is_write)
5468 writeback = false;
5469 r = EMULATE_USER_EXIT;
5470 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5471 } else if (r == EMULATION_RESTART)
5472 goto restart;
5473 else
5474 r = EMULATE_DONE;
5475
5476 if (writeback) {
5477 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5478 toggle_interruptibility(vcpu, ctxt->interruptibility);
5479 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5480 if (vcpu->arch.hflags != ctxt->emul_flags)
5481 kvm_set_hflags(vcpu, ctxt->emul_flags);
5482 kvm_rip_write(vcpu, ctxt->eip);
5483 if (r == EMULATE_DONE)
5484 kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5485 if (!ctxt->have_exception ||
5486 exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5487 __kvm_set_rflags(vcpu, ctxt->eflags);
5488
5489 /*
5490 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5491 * do nothing, and it will be requested again as soon as
5492 * the shadow expires. But we still need to check here,
5493 * because POPF has no interrupt shadow.
5494 */
5495 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5496 kvm_make_request(KVM_REQ_EVENT, vcpu);
5497 } else
5498 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5499
5500 return r;
5501 }
5502 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5503
5504 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5505 {
5506 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5507 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5508 size, port, &val, 1);
5509 /* do not return to emulator after return from userspace */
5510 vcpu->arch.pio.count = 0;
5511 return ret;
5512 }
5513 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5514
5515 static void tsc_bad(void *info)
5516 {
5517 __this_cpu_write(cpu_tsc_khz, 0);
5518 }
5519
5520 static void tsc_khz_changed(void *data)
5521 {
5522 struct cpufreq_freqs *freq = data;
5523 unsigned long khz = 0;
5524
5525 if (data)
5526 khz = freq->new;
5527 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5528 khz = cpufreq_quick_get(raw_smp_processor_id());
5529 if (!khz)
5530 khz = tsc_khz;
5531 __this_cpu_write(cpu_tsc_khz, khz);
5532 }
5533
5534 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5535 void *data)
5536 {
5537 struct cpufreq_freqs *freq = data;
5538 struct kvm *kvm;
5539 struct kvm_vcpu *vcpu;
5540 int i, send_ipi = 0;
5541
5542 /*
5543 * We allow guests to temporarily run on slowing clocks,
5544 * provided we notify them after, or to run on accelerating
5545 * clocks, provided we notify them before. Thus time never
5546 * goes backwards.
5547 *
5548 * However, we have a problem. We can't atomically update
5549 * the frequency of a given CPU from this function; it is
5550 * merely a notifier, which can be called from any CPU.
5551 * Changing the TSC frequency at arbitrary points in time
5552 * requires a recomputation of local variables related to
5553 * the TSC for each VCPU. We must flag these local variables
5554 * to be updated and be sure the update takes place with the
5555 * new frequency before any guests proceed.
5556 *
5557 * Unfortunately, the combination of hotplug CPU and frequency
5558 * change creates an intractable locking scenario; the order
5559 * of when these callouts happen is undefined with respect to
5560 * CPU hotplug, and they can race with each other. As such,
5561 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5562 * undefined; you can actually have a CPU frequency change take
5563 * place in between the computation of X and the setting of the
5564 * variable. To protect against this problem, all updates of
5565 * the per_cpu tsc_khz variable are done in an interrupt
5566 * protected IPI, and all callers wishing to update the value
5567 * must wait for a synchronous IPI to complete (which is trivial
5568 * if the caller is on the CPU already). This establishes the
5569 * necessary total order on variable updates.
5570 *
5571 * Note that because a guest time update may take place
5572 * anytime after the setting of the VCPU's request bit, the
5573 * correct TSC value must be set before the request. However,
5574 * to ensure the update actually makes it to any guest which
5575 * starts running in hardware virtualization between the set
5576 * and the acquisition of the spinlock, we must also ping the
5577 * CPU after setting the request bit.
5578 *
5579 */
5580
5581 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5582 return 0;
5583 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5584 return 0;
5585
5586 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5587
5588 spin_lock(&kvm_lock);
5589 list_for_each_entry(kvm, &vm_list, vm_list) {
5590 kvm_for_each_vcpu(i, vcpu, kvm) {
5591 if (vcpu->cpu != freq->cpu)
5592 continue;
5593 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5594 if (vcpu->cpu != smp_processor_id())
5595 send_ipi = 1;
5596 }
5597 }
5598 spin_unlock(&kvm_lock);
5599
5600 if (freq->old < freq->new && send_ipi) {
5601 /*
5602 * We upscale the frequency. Must make the guest
5603 * doesn't see old kvmclock values while running with
5604 * the new frequency, otherwise we risk the guest sees
5605 * time go backwards.
5606 *
5607 * In case we update the frequency for another cpu
5608 * (which might be in guest context) send an interrupt
5609 * to kick the cpu out of guest context. Next time
5610 * guest context is entered kvmclock will be updated,
5611 * so the guest will not see stale values.
5612 */
5613 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5614 }
5615 return 0;
5616 }
5617
5618 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5619 .notifier_call = kvmclock_cpufreq_notifier
5620 };
5621
5622 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5623 unsigned long action, void *hcpu)
5624 {
5625 unsigned int cpu = (unsigned long)hcpu;
5626
5627 switch (action) {
5628 case CPU_ONLINE:
5629 case CPU_DOWN_FAILED:
5630 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5631 break;
5632 case CPU_DOWN_PREPARE:
5633 smp_call_function_single(cpu, tsc_bad, NULL, 1);
5634 break;
5635 }
5636 return NOTIFY_OK;
5637 }
5638
5639 static struct notifier_block kvmclock_cpu_notifier_block = {
5640 .notifier_call = kvmclock_cpu_notifier,
5641 .priority = -INT_MAX
5642 };
5643
5644 static void kvm_timer_init(void)
5645 {
5646 int cpu;
5647
5648 max_tsc_khz = tsc_khz;
5649
5650 cpu_notifier_register_begin();
5651 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5652 #ifdef CONFIG_CPU_FREQ
5653 struct cpufreq_policy policy;
5654 memset(&policy, 0, sizeof(policy));
5655 cpu = get_cpu();
5656 cpufreq_get_policy(&policy, cpu);
5657 if (policy.cpuinfo.max_freq)
5658 max_tsc_khz = policy.cpuinfo.max_freq;
5659 put_cpu();
5660 #endif
5661 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5662 CPUFREQ_TRANSITION_NOTIFIER);
5663 }
5664 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5665 for_each_online_cpu(cpu)
5666 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5667
5668 __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5669 cpu_notifier_register_done();
5670
5671 }
5672
5673 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5674
5675 int kvm_is_in_guest(void)
5676 {
5677 return __this_cpu_read(current_vcpu) != NULL;
5678 }
5679
5680 static int kvm_is_user_mode(void)
5681 {
5682 int user_mode = 3;
5683
5684 if (__this_cpu_read(current_vcpu))
5685 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5686
5687 return user_mode != 0;
5688 }
5689
5690 static unsigned long kvm_get_guest_ip(void)
5691 {
5692 unsigned long ip = 0;
5693
5694 if (__this_cpu_read(current_vcpu))
5695 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5696
5697 return ip;
5698 }
5699
5700 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5701 .is_in_guest = kvm_is_in_guest,
5702 .is_user_mode = kvm_is_user_mode,
5703 .get_guest_ip = kvm_get_guest_ip,
5704 };
5705
5706 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5707 {
5708 __this_cpu_write(current_vcpu, vcpu);
5709 }
5710 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5711
5712 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5713 {
5714 __this_cpu_write(current_vcpu, NULL);
5715 }
5716 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5717
5718 static void kvm_set_mmio_spte_mask(void)
5719 {
5720 u64 mask;
5721 int maxphyaddr = boot_cpu_data.x86_phys_bits;
5722
5723 /*
5724 * Set the reserved bits and the present bit of an paging-structure
5725 * entry to generate page fault with PFER.RSV = 1.
5726 */
5727 /* Mask the reserved physical address bits. */
5728 mask = rsvd_bits(maxphyaddr, 51);
5729
5730 /* Bit 62 is always reserved for 32bit host. */
5731 mask |= 0x3ull << 62;
5732
5733 /* Set the present bit. */
5734 mask |= 1ull;
5735
5736 #ifdef CONFIG_X86_64
5737 /*
5738 * If reserved bit is not supported, clear the present bit to disable
5739 * mmio page fault.
5740 */
5741 if (maxphyaddr == 52)
5742 mask &= ~1ull;
5743 #endif
5744
5745 kvm_mmu_set_mmio_spte_mask(mask);
5746 }
5747
5748 #ifdef CONFIG_X86_64
5749 static void pvclock_gtod_update_fn(struct work_struct *work)
5750 {
5751 struct kvm *kvm;
5752
5753 struct kvm_vcpu *vcpu;
5754 int i;
5755
5756 spin_lock(&kvm_lock);
5757 list_for_each_entry(kvm, &vm_list, vm_list)
5758 kvm_for_each_vcpu(i, vcpu, kvm)
5759 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5760 atomic_set(&kvm_guest_has_master_clock, 0);
5761 spin_unlock(&kvm_lock);
5762 }
5763
5764 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5765
5766 /*
5767 * Notification about pvclock gtod data update.
5768 */
5769 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5770 void *priv)
5771 {
5772 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5773 struct timekeeper *tk = priv;
5774
5775 update_pvclock_gtod(tk);
5776
5777 /* disable master clock if host does not trust, or does not
5778 * use, TSC clocksource
5779 */
5780 if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5781 atomic_read(&kvm_guest_has_master_clock) != 0)
5782 queue_work(system_long_wq, &pvclock_gtod_work);
5783
5784 return 0;
5785 }
5786
5787 static struct notifier_block pvclock_gtod_notifier = {
5788 .notifier_call = pvclock_gtod_notify,
5789 };
5790 #endif
5791
5792 int kvm_arch_init(void *opaque)
5793 {
5794 int r;
5795 struct kvm_x86_ops *ops = opaque;
5796
5797 if (kvm_x86_ops) {
5798 printk(KERN_ERR "kvm: already loaded the other module\n");
5799 r = -EEXIST;
5800 goto out;
5801 }
5802
5803 if (!ops->cpu_has_kvm_support()) {
5804 printk(KERN_ERR "kvm: no hardware support\n");
5805 r = -EOPNOTSUPP;
5806 goto out;
5807 }
5808 if (ops->disabled_by_bios()) {
5809 printk(KERN_ERR "kvm: disabled by bios\n");
5810 r = -EOPNOTSUPP;
5811 goto out;
5812 }
5813
5814 r = -ENOMEM;
5815 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5816 if (!shared_msrs) {
5817 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5818 goto out;
5819 }
5820
5821 r = kvm_mmu_module_init();
5822 if (r)
5823 goto out_free_percpu;
5824
5825 kvm_set_mmio_spte_mask();
5826
5827 kvm_x86_ops = ops;
5828
5829 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5830 PT_DIRTY_MASK, PT64_NX_MASK, 0);
5831
5832 kvm_timer_init();
5833
5834 perf_register_guest_info_callbacks(&kvm_guest_cbs);
5835
5836 if (cpu_has_xsave)
5837 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5838
5839 kvm_lapic_init();
5840 #ifdef CONFIG_X86_64
5841 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5842 #endif
5843
5844 return 0;
5845
5846 out_free_percpu:
5847 free_percpu(shared_msrs);
5848 out:
5849 return r;
5850 }
5851
5852 void kvm_arch_exit(void)
5853 {
5854 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5855
5856 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5857 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5858 CPUFREQ_TRANSITION_NOTIFIER);
5859 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5860 #ifdef CONFIG_X86_64
5861 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5862 #endif
5863 kvm_x86_ops = NULL;
5864 kvm_mmu_module_exit();
5865 free_percpu(shared_msrs);
5866 }
5867
5868 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5869 {
5870 ++vcpu->stat.halt_exits;
5871 if (irqchip_in_kernel(vcpu->kvm)) {
5872 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5873 return 1;
5874 } else {
5875 vcpu->run->exit_reason = KVM_EXIT_HLT;
5876 return 0;
5877 }
5878 }
5879 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5880
5881 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5882 {
5883 kvm_x86_ops->skip_emulated_instruction(vcpu);
5884 return kvm_vcpu_halt(vcpu);
5885 }
5886 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5887
5888 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5889 {
5890 u64 param, ingpa, outgpa, ret;
5891 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5892 bool fast, longmode;
5893
5894 /*
5895 * hypercall generates UD from non zero cpl and real mode
5896 * per HYPER-V spec
5897 */
5898 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5899 kvm_queue_exception(vcpu, UD_VECTOR);
5900 return 0;
5901 }
5902
5903 longmode = is_64_bit_mode(vcpu);
5904
5905 if (!longmode) {
5906 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5907 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5908 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5909 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5910 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5911 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5912 }
5913 #ifdef CONFIG_X86_64
5914 else {
5915 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5916 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5917 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5918 }
5919 #endif
5920
5921 code = param & 0xffff;
5922 fast = (param >> 16) & 0x1;
5923 rep_cnt = (param >> 32) & 0xfff;
5924 rep_idx = (param >> 48) & 0xfff;
5925
5926 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5927
5928 switch (code) {
5929 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5930 kvm_vcpu_on_spin(vcpu);
5931 break;
5932 default:
5933 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5934 break;
5935 }
5936
5937 ret = res | (((u64)rep_done & 0xfff) << 32);
5938 if (longmode) {
5939 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5940 } else {
5941 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5942 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5943 }
5944
5945 return 1;
5946 }
5947
5948 /*
5949 * kvm_pv_kick_cpu_op: Kick a vcpu.
5950 *
5951 * @apicid - apicid of vcpu to be kicked.
5952 */
5953 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5954 {
5955 struct kvm_lapic_irq lapic_irq;
5956
5957 lapic_irq.shorthand = 0;
5958 lapic_irq.dest_mode = 0;
5959 lapic_irq.dest_id = apicid;
5960 lapic_irq.msi_redir_hint = false;
5961
5962 lapic_irq.delivery_mode = APIC_DM_REMRD;
5963 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5964 }
5965
5966 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5967 {
5968 unsigned long nr, a0, a1, a2, a3, ret;
5969 int op_64_bit, r = 1;
5970
5971 kvm_x86_ops->skip_emulated_instruction(vcpu);
5972
5973 if (kvm_hv_hypercall_enabled(vcpu->kvm))
5974 return kvm_hv_hypercall(vcpu);
5975
5976 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5977 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5978 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5979 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5980 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5981
5982 trace_kvm_hypercall(nr, a0, a1, a2, a3);
5983
5984 op_64_bit = is_64_bit_mode(vcpu);
5985 if (!op_64_bit) {
5986 nr &= 0xFFFFFFFF;
5987 a0 &= 0xFFFFFFFF;
5988 a1 &= 0xFFFFFFFF;
5989 a2 &= 0xFFFFFFFF;
5990 a3 &= 0xFFFFFFFF;
5991 }
5992
5993 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5994 ret = -KVM_EPERM;
5995 goto out;
5996 }
5997
5998 switch (nr) {
5999 case KVM_HC_VAPIC_POLL_IRQ:
6000 ret = 0;
6001 break;
6002 case KVM_HC_KICK_CPU:
6003 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6004 ret = 0;
6005 break;
6006 default:
6007 ret = -KVM_ENOSYS;
6008 break;
6009 }
6010 out:
6011 if (!op_64_bit)
6012 ret = (u32)ret;
6013 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6014 ++vcpu->stat.hypercalls;
6015 return r;
6016 }
6017 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6018
6019 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6020 {
6021 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6022 char instruction[3];
6023 unsigned long rip = kvm_rip_read(vcpu);
6024
6025 kvm_x86_ops->patch_hypercall(vcpu, instruction);
6026
6027 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
6028 }
6029
6030 /*
6031 * Check if userspace requested an interrupt window, and that the
6032 * interrupt window is open.
6033 *
6034 * No need to exit to userspace if we already have an interrupt queued.
6035 */
6036 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6037 {
6038 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
6039 vcpu->run->request_interrupt_window &&
6040 kvm_arch_interrupt_allowed(vcpu));
6041 }
6042
6043 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6044 {
6045 struct kvm_run *kvm_run = vcpu->run;
6046
6047 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6048 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6049 kvm_run->cr8 = kvm_get_cr8(vcpu);
6050 kvm_run->apic_base = kvm_get_apic_base(vcpu);
6051 if (irqchip_in_kernel(vcpu->kvm))
6052 kvm_run->ready_for_interrupt_injection = 1;
6053 else
6054 kvm_run->ready_for_interrupt_injection =
6055 kvm_arch_interrupt_allowed(vcpu) &&
6056 !kvm_cpu_has_interrupt(vcpu) &&
6057 !kvm_event_needs_reinjection(vcpu);
6058 }
6059
6060 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6061 {
6062 int max_irr, tpr;
6063
6064 if (!kvm_x86_ops->update_cr8_intercept)
6065 return;
6066
6067 if (!vcpu->arch.apic)
6068 return;
6069
6070 if (!vcpu->arch.apic->vapic_addr)
6071 max_irr = kvm_lapic_find_highest_irr(vcpu);
6072 else
6073 max_irr = -1;
6074
6075 if (max_irr != -1)
6076 max_irr >>= 4;
6077
6078 tpr = kvm_lapic_get_cr8(vcpu);
6079
6080 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6081 }
6082
6083 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6084 {
6085 int r;
6086
6087 /* try to reinject previous events if any */
6088 if (vcpu->arch.exception.pending) {
6089 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6090 vcpu->arch.exception.has_error_code,
6091 vcpu->arch.exception.error_code);
6092
6093 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6094 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6095 X86_EFLAGS_RF);
6096
6097 if (vcpu->arch.exception.nr == DB_VECTOR &&
6098 (vcpu->arch.dr7 & DR7_GD)) {
6099 vcpu->arch.dr7 &= ~DR7_GD;
6100 kvm_update_dr7(vcpu);
6101 }
6102
6103 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6104 vcpu->arch.exception.has_error_code,
6105 vcpu->arch.exception.error_code,
6106 vcpu->arch.exception.reinject);
6107 return 0;
6108 }
6109
6110 if (vcpu->arch.nmi_injected) {
6111 kvm_x86_ops->set_nmi(vcpu);
6112 return 0;
6113 }
6114
6115 if (vcpu->arch.interrupt.pending) {
6116 kvm_x86_ops->set_irq(vcpu);
6117 return 0;
6118 }
6119
6120 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6121 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6122 if (r != 0)
6123 return r;
6124 }
6125
6126 /* try to inject new event if pending */
6127 if (vcpu->arch.nmi_pending) {
6128 if (kvm_x86_ops->nmi_allowed(vcpu)) {
6129 --vcpu->arch.nmi_pending;
6130 vcpu->arch.nmi_injected = true;
6131 kvm_x86_ops->set_nmi(vcpu);
6132 }
6133 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6134 /*
6135 * Because interrupts can be injected asynchronously, we are
6136 * calling check_nested_events again here to avoid a race condition.
6137 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6138 * proposal and current concerns. Perhaps we should be setting
6139 * KVM_REQ_EVENT only on certain events and not unconditionally?
6140 */
6141 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6142 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6143 if (r != 0)
6144 return r;
6145 }
6146 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6147 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6148 false);
6149 kvm_x86_ops->set_irq(vcpu);
6150 }
6151 }
6152 return 0;
6153 }
6154
6155 static void process_nmi(struct kvm_vcpu *vcpu)
6156 {
6157 unsigned limit = 2;
6158
6159 /*
6160 * x86 is limited to one NMI running, and one NMI pending after it.
6161 * If an NMI is already in progress, limit further NMIs to just one.
6162 * Otherwise, allow two (and we'll inject the first one immediately).
6163 */
6164 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6165 limit = 1;
6166
6167 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6168 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6169 kvm_make_request(KVM_REQ_EVENT, vcpu);
6170 }
6171
6172 #define put_smstate(type, buf, offset, val) \
6173 *(type *)((buf) + (offset) - 0x7e00) = val
6174
6175 static u32 process_smi_get_segment_flags(struct kvm_segment *seg)
6176 {
6177 u32 flags = 0;
6178 flags |= seg->g << 23;
6179 flags |= seg->db << 22;
6180 flags |= seg->l << 21;
6181 flags |= seg->avl << 20;
6182 flags |= seg->present << 15;
6183 flags |= seg->dpl << 13;
6184 flags |= seg->s << 12;
6185 flags |= seg->type << 8;
6186 return flags;
6187 }
6188
6189 static void process_smi_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6190 {
6191 struct kvm_segment seg;
6192 int offset;
6193
6194 kvm_get_segment(vcpu, &seg, n);
6195 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6196
6197 if (n < 3)
6198 offset = 0x7f84 + n * 12;
6199 else
6200 offset = 0x7f2c + (n - 3) * 12;
6201
6202 put_smstate(u32, buf, offset + 8, seg.base);
6203 put_smstate(u32, buf, offset + 4, seg.limit);
6204 put_smstate(u32, buf, offset, process_smi_get_segment_flags(&seg));
6205 }
6206
6207 static void process_smi_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6208 {
6209 struct kvm_segment seg;
6210 int offset;
6211 u16 flags;
6212
6213 kvm_get_segment(vcpu, &seg, n);
6214 offset = 0x7e00 + n * 16;
6215
6216 flags = process_smi_get_segment_flags(&seg) >> 8;
6217 put_smstate(u16, buf, offset, seg.selector);
6218 put_smstate(u16, buf, offset + 2, flags);
6219 put_smstate(u32, buf, offset + 4, seg.limit);
6220 put_smstate(u64, buf, offset + 8, seg.base);
6221 }
6222
6223 static void process_smi_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6224 {
6225 struct desc_ptr dt;
6226 struct kvm_segment seg;
6227 unsigned long val;
6228 int i;
6229
6230 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6231 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6232 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6233 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6234
6235 for (i = 0; i < 8; i++)
6236 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6237
6238 kvm_get_dr(vcpu, 6, &val);
6239 put_smstate(u32, buf, 0x7fcc, (u32)val);
6240 kvm_get_dr(vcpu, 7, &val);
6241 put_smstate(u32, buf, 0x7fc8, (u32)val);
6242
6243 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6244 put_smstate(u32, buf, 0x7fc4, seg.selector);
6245 put_smstate(u32, buf, 0x7f64, seg.base);
6246 put_smstate(u32, buf, 0x7f60, seg.limit);
6247 put_smstate(u32, buf, 0x7f5c, process_smi_get_segment_flags(&seg));
6248
6249 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6250 put_smstate(u32, buf, 0x7fc0, seg.selector);
6251 put_smstate(u32, buf, 0x7f80, seg.base);
6252 put_smstate(u32, buf, 0x7f7c, seg.limit);
6253 put_smstate(u32, buf, 0x7f78, process_smi_get_segment_flags(&seg));
6254
6255 kvm_x86_ops->get_gdt(vcpu, &dt);
6256 put_smstate(u32, buf, 0x7f74, dt.address);
6257 put_smstate(u32, buf, 0x7f70, dt.size);
6258
6259 kvm_x86_ops->get_idt(vcpu, &dt);
6260 put_smstate(u32, buf, 0x7f58, dt.address);
6261 put_smstate(u32, buf, 0x7f54, dt.size);
6262
6263 for (i = 0; i < 6; i++)
6264 process_smi_save_seg_32(vcpu, buf, i);
6265
6266 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6267
6268 /* revision id */
6269 put_smstate(u32, buf, 0x7efc, 0x00020000);
6270 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6271 }
6272
6273 static void process_smi_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6274 {
6275 #ifdef CONFIG_X86_64
6276 struct desc_ptr dt;
6277 struct kvm_segment seg;
6278 unsigned long val;
6279 int i;
6280
6281 for (i = 0; i < 16; i++)
6282 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6283
6284 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6285 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6286
6287 kvm_get_dr(vcpu, 6, &val);
6288 put_smstate(u64, buf, 0x7f68, val);
6289 kvm_get_dr(vcpu, 7, &val);
6290 put_smstate(u64, buf, 0x7f60, val);
6291
6292 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6293 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6294 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6295
6296 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6297
6298 /* revision id */
6299 put_smstate(u32, buf, 0x7efc, 0x00020064);
6300
6301 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6302
6303 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6304 put_smstate(u16, buf, 0x7e90, seg.selector);
6305 put_smstate(u16, buf, 0x7e92, process_smi_get_segment_flags(&seg) >> 8);
6306 put_smstate(u32, buf, 0x7e94, seg.limit);
6307 put_smstate(u64, buf, 0x7e98, seg.base);
6308
6309 kvm_x86_ops->get_idt(vcpu, &dt);
6310 put_smstate(u32, buf, 0x7e84, dt.size);
6311 put_smstate(u64, buf, 0x7e88, dt.address);
6312
6313 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6314 put_smstate(u16, buf, 0x7e70, seg.selector);
6315 put_smstate(u16, buf, 0x7e72, process_smi_get_segment_flags(&seg) >> 8);
6316 put_smstate(u32, buf, 0x7e74, seg.limit);
6317 put_smstate(u64, buf, 0x7e78, seg.base);
6318
6319 kvm_x86_ops->get_gdt(vcpu, &dt);
6320 put_smstate(u32, buf, 0x7e64, dt.size);
6321 put_smstate(u64, buf, 0x7e68, dt.address);
6322
6323 for (i = 0; i < 6; i++)
6324 process_smi_save_seg_64(vcpu, buf, i);
6325 #else
6326 WARN_ON_ONCE(1);
6327 #endif
6328 }
6329
6330 static void process_smi(struct kvm_vcpu *vcpu)
6331 {
6332 struct kvm_segment cs, ds;
6333 char buf[512];
6334 u32 cr0;
6335
6336 if (is_smm(vcpu)) {
6337 vcpu->arch.smi_pending = true;
6338 return;
6339 }
6340
6341 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6342 vcpu->arch.hflags |= HF_SMM_MASK;
6343 memset(buf, 0, 512);
6344 if (guest_cpuid_has_longmode(vcpu))
6345 process_smi_save_state_64(vcpu, buf);
6346 else
6347 process_smi_save_state_32(vcpu, buf);
6348
6349 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6350
6351 if (kvm_x86_ops->get_nmi_mask(vcpu))
6352 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6353 else
6354 kvm_x86_ops->set_nmi_mask(vcpu, true);
6355
6356 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6357 kvm_rip_write(vcpu, 0x8000);
6358
6359 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6360 kvm_x86_ops->set_cr0(vcpu, cr0);
6361 vcpu->arch.cr0 = cr0;
6362
6363 kvm_x86_ops->set_cr4(vcpu, 0);
6364
6365 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6366
6367 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6368 cs.base = vcpu->arch.smbase;
6369
6370 ds.selector = 0;
6371 ds.base = 0;
6372
6373 cs.limit = ds.limit = 0xffffffff;
6374 cs.type = ds.type = 0x3;
6375 cs.dpl = ds.dpl = 0;
6376 cs.db = ds.db = 0;
6377 cs.s = ds.s = 1;
6378 cs.l = ds.l = 0;
6379 cs.g = ds.g = 1;
6380 cs.avl = ds.avl = 0;
6381 cs.present = ds.present = 1;
6382 cs.unusable = ds.unusable = 0;
6383 cs.padding = ds.padding = 0;
6384
6385 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6386 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6387 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6388 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6389 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6390 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6391
6392 if (guest_cpuid_has_longmode(vcpu))
6393 kvm_x86_ops->set_efer(vcpu, 0);
6394
6395 kvm_update_cpuid(vcpu);
6396 kvm_mmu_reset_context(vcpu);
6397 }
6398
6399 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6400 {
6401 u64 eoi_exit_bitmap[4];
6402 u32 tmr[8];
6403
6404 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6405 return;
6406
6407 memset(eoi_exit_bitmap, 0, 32);
6408 memset(tmr, 0, 32);
6409
6410 kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
6411 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6412 kvm_apic_update_tmr(vcpu, tmr);
6413 }
6414
6415 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6416 {
6417 ++vcpu->stat.tlb_flush;
6418 kvm_x86_ops->tlb_flush(vcpu);
6419 }
6420
6421 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6422 {
6423 struct page *page = NULL;
6424
6425 if (!irqchip_in_kernel(vcpu->kvm))
6426 return;
6427
6428 if (!kvm_x86_ops->set_apic_access_page_addr)
6429 return;
6430
6431 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6432 if (is_error_page(page))
6433 return;
6434 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6435
6436 /*
6437 * Do not pin apic access page in memory, the MMU notifier
6438 * will call us again if it is migrated or swapped out.
6439 */
6440 put_page(page);
6441 }
6442 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6443
6444 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6445 unsigned long address)
6446 {
6447 /*
6448 * The physical address of apic access page is stored in the VMCS.
6449 * Update it when it becomes invalid.
6450 */
6451 if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6452 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6453 }
6454
6455 /*
6456 * Returns 1 to let vcpu_run() continue the guest execution loop without
6457 * exiting to the userspace. Otherwise, the value will be returned to the
6458 * userspace.
6459 */
6460 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6461 {
6462 int r;
6463 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
6464 vcpu->run->request_interrupt_window;
6465 bool req_immediate_exit = false;
6466
6467 if (vcpu->requests) {
6468 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6469 kvm_mmu_unload(vcpu);
6470 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6471 __kvm_migrate_timers(vcpu);
6472 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6473 kvm_gen_update_masterclock(vcpu->kvm);
6474 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6475 kvm_gen_kvmclock_update(vcpu);
6476 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6477 r = kvm_guest_time_update(vcpu);
6478 if (unlikely(r))
6479 goto out;
6480 }
6481 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6482 kvm_mmu_sync_roots(vcpu);
6483 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6484 kvm_vcpu_flush_tlb(vcpu);
6485 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6486 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6487 r = 0;
6488 goto out;
6489 }
6490 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6491 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6492 r = 0;
6493 goto out;
6494 }
6495 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6496 vcpu->fpu_active = 0;
6497 kvm_x86_ops->fpu_deactivate(vcpu);
6498 }
6499 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6500 /* Page is swapped out. Do synthetic halt */
6501 vcpu->arch.apf.halted = true;
6502 r = 1;
6503 goto out;
6504 }
6505 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6506 record_steal_time(vcpu);
6507 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6508 process_smi(vcpu);
6509 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6510 process_nmi(vcpu);
6511 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6512 kvm_pmu_handle_event(vcpu);
6513 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6514 kvm_pmu_deliver_pmi(vcpu);
6515 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6516 vcpu_scan_ioapic(vcpu);
6517 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6518 kvm_vcpu_reload_apic_access_page(vcpu);
6519 }
6520
6521 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6522 kvm_apic_accept_events(vcpu);
6523 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6524 r = 1;
6525 goto out;
6526 }
6527
6528 if (inject_pending_event(vcpu, req_int_win) != 0)
6529 req_immediate_exit = true;
6530 /* enable NMI/IRQ window open exits if needed */
6531 else if (vcpu->arch.nmi_pending)
6532 kvm_x86_ops->enable_nmi_window(vcpu);
6533 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6534 kvm_x86_ops->enable_irq_window(vcpu);
6535
6536 if (kvm_lapic_enabled(vcpu)) {
6537 /*
6538 * Update architecture specific hints for APIC
6539 * virtual interrupt delivery.
6540 */
6541 if (kvm_x86_ops->hwapic_irr_update)
6542 kvm_x86_ops->hwapic_irr_update(vcpu,
6543 kvm_lapic_find_highest_irr(vcpu));
6544 update_cr8_intercept(vcpu);
6545 kvm_lapic_sync_to_vapic(vcpu);
6546 }
6547 }
6548
6549 r = kvm_mmu_reload(vcpu);
6550 if (unlikely(r)) {
6551 goto cancel_injection;
6552 }
6553
6554 preempt_disable();
6555
6556 kvm_x86_ops->prepare_guest_switch(vcpu);
6557 if (vcpu->fpu_active)
6558 kvm_load_guest_fpu(vcpu);
6559 kvm_load_guest_xcr0(vcpu);
6560
6561 vcpu->mode = IN_GUEST_MODE;
6562
6563 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6564
6565 /* We should set ->mode before check ->requests,
6566 * see the comment in make_all_cpus_request.
6567 */
6568 smp_mb__after_srcu_read_unlock();
6569
6570 local_irq_disable();
6571
6572 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6573 || need_resched() || signal_pending(current)) {
6574 vcpu->mode = OUTSIDE_GUEST_MODE;
6575 smp_wmb();
6576 local_irq_enable();
6577 preempt_enable();
6578 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6579 r = 1;
6580 goto cancel_injection;
6581 }
6582
6583 if (req_immediate_exit)
6584 smp_send_reschedule(vcpu->cpu);
6585
6586 __kvm_guest_enter();
6587
6588 if (unlikely(vcpu->arch.switch_db_regs)) {
6589 set_debugreg(0, 7);
6590 set_debugreg(vcpu->arch.eff_db[0], 0);
6591 set_debugreg(vcpu->arch.eff_db[1], 1);
6592 set_debugreg(vcpu->arch.eff_db[2], 2);
6593 set_debugreg(vcpu->arch.eff_db[3], 3);
6594 set_debugreg(vcpu->arch.dr6, 6);
6595 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6596 }
6597
6598 trace_kvm_entry(vcpu->vcpu_id);
6599 wait_lapic_expire(vcpu);
6600 kvm_x86_ops->run(vcpu);
6601
6602 /*
6603 * Do this here before restoring debug registers on the host. And
6604 * since we do this before handling the vmexit, a DR access vmexit
6605 * can (a) read the correct value of the debug registers, (b) set
6606 * KVM_DEBUGREG_WONT_EXIT again.
6607 */
6608 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6609 int i;
6610
6611 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6612 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6613 for (i = 0; i < KVM_NR_DB_REGS; i++)
6614 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6615 }
6616
6617 /*
6618 * If the guest has used debug registers, at least dr7
6619 * will be disabled while returning to the host.
6620 * If we don't have active breakpoints in the host, we don't
6621 * care about the messed up debug address registers. But if
6622 * we have some of them active, restore the old state.
6623 */
6624 if (hw_breakpoint_active())
6625 hw_breakpoint_restore();
6626
6627 vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
6628 native_read_tsc());
6629
6630 vcpu->mode = OUTSIDE_GUEST_MODE;
6631 smp_wmb();
6632
6633 /* Interrupt is enabled by handle_external_intr() */
6634 kvm_x86_ops->handle_external_intr(vcpu);
6635
6636 ++vcpu->stat.exits;
6637
6638 /*
6639 * We must have an instruction between local_irq_enable() and
6640 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6641 * the interrupt shadow. The stat.exits increment will do nicely.
6642 * But we need to prevent reordering, hence this barrier():
6643 */
6644 barrier();
6645
6646 kvm_guest_exit();
6647
6648 preempt_enable();
6649
6650 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6651
6652 /*
6653 * Profile KVM exit RIPs:
6654 */
6655 if (unlikely(prof_on == KVM_PROFILING)) {
6656 unsigned long rip = kvm_rip_read(vcpu);
6657 profile_hit(KVM_PROFILING, (void *)rip);
6658 }
6659
6660 if (unlikely(vcpu->arch.tsc_always_catchup))
6661 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6662
6663 if (vcpu->arch.apic_attention)
6664 kvm_lapic_sync_from_vapic(vcpu);
6665
6666 r = kvm_x86_ops->handle_exit(vcpu);
6667 return r;
6668
6669 cancel_injection:
6670 kvm_x86_ops->cancel_injection(vcpu);
6671 if (unlikely(vcpu->arch.apic_attention))
6672 kvm_lapic_sync_from_vapic(vcpu);
6673 out:
6674 return r;
6675 }
6676
6677 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6678 {
6679 if (!kvm_arch_vcpu_runnable(vcpu)) {
6680 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6681 kvm_vcpu_block(vcpu);
6682 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6683 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6684 return 1;
6685 }
6686
6687 kvm_apic_accept_events(vcpu);
6688 switch(vcpu->arch.mp_state) {
6689 case KVM_MP_STATE_HALTED:
6690 vcpu->arch.pv.pv_unhalted = false;
6691 vcpu->arch.mp_state =
6692 KVM_MP_STATE_RUNNABLE;
6693 case KVM_MP_STATE_RUNNABLE:
6694 vcpu->arch.apf.halted = false;
6695 break;
6696 case KVM_MP_STATE_INIT_RECEIVED:
6697 break;
6698 default:
6699 return -EINTR;
6700 break;
6701 }
6702 return 1;
6703 }
6704
6705 static int vcpu_run(struct kvm_vcpu *vcpu)
6706 {
6707 int r;
6708 struct kvm *kvm = vcpu->kvm;
6709
6710 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6711
6712 for (;;) {
6713 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6714 !vcpu->arch.apf.halted)
6715 r = vcpu_enter_guest(vcpu);
6716 else
6717 r = vcpu_block(kvm, vcpu);
6718 if (r <= 0)
6719 break;
6720
6721 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6722 if (kvm_cpu_has_pending_timer(vcpu))
6723 kvm_inject_pending_timer_irqs(vcpu);
6724
6725 if (dm_request_for_irq_injection(vcpu)) {
6726 r = -EINTR;
6727 vcpu->run->exit_reason = KVM_EXIT_INTR;
6728 ++vcpu->stat.request_irq_exits;
6729 break;
6730 }
6731
6732 kvm_check_async_pf_completion(vcpu);
6733
6734 if (signal_pending(current)) {
6735 r = -EINTR;
6736 vcpu->run->exit_reason = KVM_EXIT_INTR;
6737 ++vcpu->stat.signal_exits;
6738 break;
6739 }
6740 if (need_resched()) {
6741 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6742 cond_resched();
6743 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6744 }
6745 }
6746
6747 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6748
6749 return r;
6750 }
6751
6752 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6753 {
6754 int r;
6755 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6756 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6757 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6758 if (r != EMULATE_DONE)
6759 return 0;
6760 return 1;
6761 }
6762
6763 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6764 {
6765 BUG_ON(!vcpu->arch.pio.count);
6766
6767 return complete_emulated_io(vcpu);
6768 }
6769
6770 /*
6771 * Implements the following, as a state machine:
6772 *
6773 * read:
6774 * for each fragment
6775 * for each mmio piece in the fragment
6776 * write gpa, len
6777 * exit
6778 * copy data
6779 * execute insn
6780 *
6781 * write:
6782 * for each fragment
6783 * for each mmio piece in the fragment
6784 * write gpa, len
6785 * copy data
6786 * exit
6787 */
6788 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6789 {
6790 struct kvm_run *run = vcpu->run;
6791 struct kvm_mmio_fragment *frag;
6792 unsigned len;
6793
6794 BUG_ON(!vcpu->mmio_needed);
6795
6796 /* Complete previous fragment */
6797 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6798 len = min(8u, frag->len);
6799 if (!vcpu->mmio_is_write)
6800 memcpy(frag->data, run->mmio.data, len);
6801
6802 if (frag->len <= 8) {
6803 /* Switch to the next fragment. */
6804 frag++;
6805 vcpu->mmio_cur_fragment++;
6806 } else {
6807 /* Go forward to the next mmio piece. */
6808 frag->data += len;
6809 frag->gpa += len;
6810 frag->len -= len;
6811 }
6812
6813 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6814 vcpu->mmio_needed = 0;
6815
6816 /* FIXME: return into emulator if single-stepping. */
6817 if (vcpu->mmio_is_write)
6818 return 1;
6819 vcpu->mmio_read_completed = 1;
6820 return complete_emulated_io(vcpu);
6821 }
6822
6823 run->exit_reason = KVM_EXIT_MMIO;
6824 run->mmio.phys_addr = frag->gpa;
6825 if (vcpu->mmio_is_write)
6826 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6827 run->mmio.len = min(8u, frag->len);
6828 run->mmio.is_write = vcpu->mmio_is_write;
6829 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6830 return 0;
6831 }
6832
6833
6834 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6835 {
6836 struct fpu *fpu = &current->thread.fpu;
6837 int r;
6838 sigset_t sigsaved;
6839
6840 fpu__activate_curr(fpu);
6841
6842 if (vcpu->sigset_active)
6843 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6844
6845 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6846 kvm_vcpu_block(vcpu);
6847 kvm_apic_accept_events(vcpu);
6848 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6849 r = -EAGAIN;
6850 goto out;
6851 }
6852
6853 /* re-sync apic's tpr */
6854 if (!irqchip_in_kernel(vcpu->kvm)) {
6855 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6856 r = -EINVAL;
6857 goto out;
6858 }
6859 }
6860
6861 if (unlikely(vcpu->arch.complete_userspace_io)) {
6862 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6863 vcpu->arch.complete_userspace_io = NULL;
6864 r = cui(vcpu);
6865 if (r <= 0)
6866 goto out;
6867 } else
6868 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6869
6870 r = vcpu_run(vcpu);
6871
6872 out:
6873 post_kvm_run_save(vcpu);
6874 if (vcpu->sigset_active)
6875 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6876
6877 return r;
6878 }
6879
6880 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6881 {
6882 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6883 /*
6884 * We are here if userspace calls get_regs() in the middle of
6885 * instruction emulation. Registers state needs to be copied
6886 * back from emulation context to vcpu. Userspace shouldn't do
6887 * that usually, but some bad designed PV devices (vmware
6888 * backdoor interface) need this to work
6889 */
6890 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6891 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6892 }
6893 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6894 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6895 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6896 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6897 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6898 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6899 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6900 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6901 #ifdef CONFIG_X86_64
6902 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6903 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6904 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6905 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6906 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6907 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6908 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6909 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6910 #endif
6911
6912 regs->rip = kvm_rip_read(vcpu);
6913 regs->rflags = kvm_get_rflags(vcpu);
6914
6915 return 0;
6916 }
6917
6918 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6919 {
6920 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6921 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6922
6923 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6924 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6925 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6926 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6927 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6928 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6929 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6930 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6931 #ifdef CONFIG_X86_64
6932 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6933 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6934 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6935 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6936 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6937 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6938 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6939 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6940 #endif
6941
6942 kvm_rip_write(vcpu, regs->rip);
6943 kvm_set_rflags(vcpu, regs->rflags);
6944
6945 vcpu->arch.exception.pending = false;
6946
6947 kvm_make_request(KVM_REQ_EVENT, vcpu);
6948
6949 return 0;
6950 }
6951
6952 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6953 {
6954 struct kvm_segment cs;
6955
6956 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6957 *db = cs.db;
6958 *l = cs.l;
6959 }
6960 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6961
6962 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6963 struct kvm_sregs *sregs)
6964 {
6965 struct desc_ptr dt;
6966
6967 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6968 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6969 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6970 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6971 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6972 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6973
6974 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6975 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6976
6977 kvm_x86_ops->get_idt(vcpu, &dt);
6978 sregs->idt.limit = dt.size;
6979 sregs->idt.base = dt.address;
6980 kvm_x86_ops->get_gdt(vcpu, &dt);
6981 sregs->gdt.limit = dt.size;
6982 sregs->gdt.base = dt.address;
6983
6984 sregs->cr0 = kvm_read_cr0(vcpu);
6985 sregs->cr2 = vcpu->arch.cr2;
6986 sregs->cr3 = kvm_read_cr3(vcpu);
6987 sregs->cr4 = kvm_read_cr4(vcpu);
6988 sregs->cr8 = kvm_get_cr8(vcpu);
6989 sregs->efer = vcpu->arch.efer;
6990 sregs->apic_base = kvm_get_apic_base(vcpu);
6991
6992 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6993
6994 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6995 set_bit(vcpu->arch.interrupt.nr,
6996 (unsigned long *)sregs->interrupt_bitmap);
6997
6998 return 0;
6999 }
7000
7001 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7002 struct kvm_mp_state *mp_state)
7003 {
7004 kvm_apic_accept_events(vcpu);
7005 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7006 vcpu->arch.pv.pv_unhalted)
7007 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7008 else
7009 mp_state->mp_state = vcpu->arch.mp_state;
7010
7011 return 0;
7012 }
7013
7014 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7015 struct kvm_mp_state *mp_state)
7016 {
7017 if (!kvm_vcpu_has_lapic(vcpu) &&
7018 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7019 return -EINVAL;
7020
7021 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7022 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7023 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7024 } else
7025 vcpu->arch.mp_state = mp_state->mp_state;
7026 kvm_make_request(KVM_REQ_EVENT, vcpu);
7027 return 0;
7028 }
7029
7030 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7031 int reason, bool has_error_code, u32 error_code)
7032 {
7033 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7034 int ret;
7035
7036 init_emulate_ctxt(vcpu);
7037
7038 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7039 has_error_code, error_code);
7040
7041 if (ret)
7042 return EMULATE_FAIL;
7043
7044 kvm_rip_write(vcpu, ctxt->eip);
7045 kvm_set_rflags(vcpu, ctxt->eflags);
7046 kvm_make_request(KVM_REQ_EVENT, vcpu);
7047 return EMULATE_DONE;
7048 }
7049 EXPORT_SYMBOL_GPL(kvm_task_switch);
7050
7051 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7052 struct kvm_sregs *sregs)
7053 {
7054 struct msr_data apic_base_msr;
7055 int mmu_reset_needed = 0;
7056 int pending_vec, max_bits, idx;
7057 struct desc_ptr dt;
7058
7059 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7060 return -EINVAL;
7061
7062 dt.size = sregs->idt.limit;
7063 dt.address = sregs->idt.base;
7064 kvm_x86_ops->set_idt(vcpu, &dt);
7065 dt.size = sregs->gdt.limit;
7066 dt.address = sregs->gdt.base;
7067 kvm_x86_ops->set_gdt(vcpu, &dt);
7068
7069 vcpu->arch.cr2 = sregs->cr2;
7070 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7071 vcpu->arch.cr3 = sregs->cr3;
7072 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7073
7074 kvm_set_cr8(vcpu, sregs->cr8);
7075
7076 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7077 kvm_x86_ops->set_efer(vcpu, sregs->efer);
7078 apic_base_msr.data = sregs->apic_base;
7079 apic_base_msr.host_initiated = true;
7080 kvm_set_apic_base(vcpu, &apic_base_msr);
7081
7082 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7083 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7084 vcpu->arch.cr0 = sregs->cr0;
7085
7086 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7087 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7088 if (sregs->cr4 & X86_CR4_OSXSAVE)
7089 kvm_update_cpuid(vcpu);
7090
7091 idx = srcu_read_lock(&vcpu->kvm->srcu);
7092 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7093 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7094 mmu_reset_needed = 1;
7095 }
7096 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7097
7098 if (mmu_reset_needed)
7099 kvm_mmu_reset_context(vcpu);
7100
7101 max_bits = KVM_NR_INTERRUPTS;
7102 pending_vec = find_first_bit(
7103 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7104 if (pending_vec < max_bits) {
7105 kvm_queue_interrupt(vcpu, pending_vec, false);
7106 pr_debug("Set back pending irq %d\n", pending_vec);
7107 }
7108
7109 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7110 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7111 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7112 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7113 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7114 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7115
7116 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7117 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7118
7119 update_cr8_intercept(vcpu);
7120
7121 /* Older userspace won't unhalt the vcpu on reset. */
7122 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7123 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7124 !is_protmode(vcpu))
7125 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7126
7127 kvm_make_request(KVM_REQ_EVENT, vcpu);
7128
7129 return 0;
7130 }
7131
7132 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7133 struct kvm_guest_debug *dbg)
7134 {
7135 unsigned long rflags;
7136 int i, r;
7137
7138 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7139 r = -EBUSY;
7140 if (vcpu->arch.exception.pending)
7141 goto out;
7142 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7143 kvm_queue_exception(vcpu, DB_VECTOR);
7144 else
7145 kvm_queue_exception(vcpu, BP_VECTOR);
7146 }
7147
7148 /*
7149 * Read rflags as long as potentially injected trace flags are still
7150 * filtered out.
7151 */
7152 rflags = kvm_get_rflags(vcpu);
7153
7154 vcpu->guest_debug = dbg->control;
7155 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7156 vcpu->guest_debug = 0;
7157
7158 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7159 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7160 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7161 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7162 } else {
7163 for (i = 0; i < KVM_NR_DB_REGS; i++)
7164 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7165 }
7166 kvm_update_dr7(vcpu);
7167
7168 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7169 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7170 get_segment_base(vcpu, VCPU_SREG_CS);
7171
7172 /*
7173 * Trigger an rflags update that will inject or remove the trace
7174 * flags.
7175 */
7176 kvm_set_rflags(vcpu, rflags);
7177
7178 kvm_x86_ops->update_db_bp_intercept(vcpu);
7179
7180 r = 0;
7181
7182 out:
7183
7184 return r;
7185 }
7186
7187 /*
7188 * Translate a guest virtual address to a guest physical address.
7189 */
7190 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7191 struct kvm_translation *tr)
7192 {
7193 unsigned long vaddr = tr->linear_address;
7194 gpa_t gpa;
7195 int idx;
7196
7197 idx = srcu_read_lock(&vcpu->kvm->srcu);
7198 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7199 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7200 tr->physical_address = gpa;
7201 tr->valid = gpa != UNMAPPED_GVA;
7202 tr->writeable = 1;
7203 tr->usermode = 0;
7204
7205 return 0;
7206 }
7207
7208 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7209 {
7210 struct fxregs_state *fxsave =
7211 &vcpu->arch.guest_fpu.state.fxsave;
7212
7213 memcpy(fpu->fpr, fxsave->st_space, 128);
7214 fpu->fcw = fxsave->cwd;
7215 fpu->fsw = fxsave->swd;
7216 fpu->ftwx = fxsave->twd;
7217 fpu->last_opcode = fxsave->fop;
7218 fpu->last_ip = fxsave->rip;
7219 fpu->last_dp = fxsave->rdp;
7220 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7221
7222 return 0;
7223 }
7224
7225 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7226 {
7227 struct fxregs_state *fxsave =
7228 &vcpu->arch.guest_fpu.state.fxsave;
7229
7230 memcpy(fxsave->st_space, fpu->fpr, 128);
7231 fxsave->cwd = fpu->fcw;
7232 fxsave->swd = fpu->fsw;
7233 fxsave->twd = fpu->ftwx;
7234 fxsave->fop = fpu->last_opcode;
7235 fxsave->rip = fpu->last_ip;
7236 fxsave->rdp = fpu->last_dp;
7237 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7238
7239 return 0;
7240 }
7241
7242 static void fx_init(struct kvm_vcpu *vcpu)
7243 {
7244 fpstate_init(&vcpu->arch.guest_fpu.state);
7245 if (cpu_has_xsaves)
7246 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7247 host_xcr0 | XSTATE_COMPACTION_ENABLED;
7248
7249 /*
7250 * Ensure guest xcr0 is valid for loading
7251 */
7252 vcpu->arch.xcr0 = XSTATE_FP;
7253
7254 vcpu->arch.cr0 |= X86_CR0_ET;
7255 }
7256
7257 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7258 {
7259 if (vcpu->guest_fpu_loaded)
7260 return;
7261
7262 /*
7263 * Restore all possible states in the guest,
7264 * and assume host would use all available bits.
7265 * Guest xcr0 would be loaded later.
7266 */
7267 kvm_put_guest_xcr0(vcpu);
7268 vcpu->guest_fpu_loaded = 1;
7269 __kernel_fpu_begin();
7270 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7271 trace_kvm_fpu(1);
7272 }
7273
7274 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7275 {
7276 kvm_put_guest_xcr0(vcpu);
7277
7278 if (!vcpu->guest_fpu_loaded) {
7279 vcpu->fpu_counter = 0;
7280 return;
7281 }
7282
7283 vcpu->guest_fpu_loaded = 0;
7284 copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7285 __kernel_fpu_end();
7286 ++vcpu->stat.fpu_reload;
7287 /*
7288 * If using eager FPU mode, or if the guest is a frequent user
7289 * of the FPU, just leave the FPU active for next time.
7290 * Every 255 times fpu_counter rolls over to 0; a guest that uses
7291 * the FPU in bursts will revert to loading it on demand.
7292 */
7293 if (!vcpu->arch.eager_fpu) {
7294 if (++vcpu->fpu_counter < 5)
7295 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7296 }
7297 trace_kvm_fpu(0);
7298 }
7299
7300 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7301 {
7302 kvmclock_reset(vcpu);
7303
7304 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7305 kvm_x86_ops->vcpu_free(vcpu);
7306 }
7307
7308 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7309 unsigned int id)
7310 {
7311 struct kvm_vcpu *vcpu;
7312
7313 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7314 printk_once(KERN_WARNING
7315 "kvm: SMP vm created on host with unstable TSC; "
7316 "guest TSC will not be reliable\n");
7317
7318 vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7319
7320 /*
7321 * Activate fpu unconditionally in case the guest needs eager FPU. It will be
7322 * deactivated soon if it doesn't.
7323 */
7324 kvm_x86_ops->fpu_activate(vcpu);
7325 return vcpu;
7326 }
7327
7328 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7329 {
7330 int r;
7331
7332 kvm_vcpu_mtrr_init(vcpu);
7333 r = vcpu_load(vcpu);
7334 if (r)
7335 return r;
7336 kvm_vcpu_reset(vcpu, false);
7337 kvm_mmu_setup(vcpu);
7338 vcpu_put(vcpu);
7339 return r;
7340 }
7341
7342 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7343 {
7344 struct msr_data msr;
7345 struct kvm *kvm = vcpu->kvm;
7346
7347 if (vcpu_load(vcpu))
7348 return;
7349 msr.data = 0x0;
7350 msr.index = MSR_IA32_TSC;
7351 msr.host_initiated = true;
7352 kvm_write_tsc(vcpu, &msr);
7353 vcpu_put(vcpu);
7354
7355 if (!kvmclock_periodic_sync)
7356 return;
7357
7358 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7359 KVMCLOCK_SYNC_PERIOD);
7360 }
7361
7362 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7363 {
7364 int r;
7365 vcpu->arch.apf.msr_val = 0;
7366
7367 r = vcpu_load(vcpu);
7368 BUG_ON(r);
7369 kvm_mmu_unload(vcpu);
7370 vcpu_put(vcpu);
7371
7372 kvm_x86_ops->vcpu_free(vcpu);
7373 }
7374
7375 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7376 {
7377 vcpu->arch.hflags = 0;
7378
7379 atomic_set(&vcpu->arch.nmi_queued, 0);
7380 vcpu->arch.nmi_pending = 0;
7381 vcpu->arch.nmi_injected = false;
7382 kvm_clear_interrupt_queue(vcpu);
7383 kvm_clear_exception_queue(vcpu);
7384
7385 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7386 kvm_update_dr0123(vcpu);
7387 vcpu->arch.dr6 = DR6_INIT;
7388 kvm_update_dr6(vcpu);
7389 vcpu->arch.dr7 = DR7_FIXED_1;
7390 kvm_update_dr7(vcpu);
7391
7392 vcpu->arch.cr2 = 0;
7393
7394 kvm_make_request(KVM_REQ_EVENT, vcpu);
7395 vcpu->arch.apf.msr_val = 0;
7396 vcpu->arch.st.msr_val = 0;
7397
7398 kvmclock_reset(vcpu);
7399
7400 kvm_clear_async_pf_completion_queue(vcpu);
7401 kvm_async_pf_hash_reset(vcpu);
7402 vcpu->arch.apf.halted = false;
7403
7404 if (!init_event) {
7405 kvm_pmu_reset(vcpu);
7406 vcpu->arch.smbase = 0x30000;
7407 }
7408
7409 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7410 vcpu->arch.regs_avail = ~0;
7411 vcpu->arch.regs_dirty = ~0;
7412
7413 kvm_x86_ops->vcpu_reset(vcpu, init_event);
7414 }
7415
7416 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7417 {
7418 struct kvm_segment cs;
7419
7420 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7421 cs.selector = vector << 8;
7422 cs.base = vector << 12;
7423 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7424 kvm_rip_write(vcpu, 0);
7425 }
7426
7427 int kvm_arch_hardware_enable(void)
7428 {
7429 struct kvm *kvm;
7430 struct kvm_vcpu *vcpu;
7431 int i;
7432 int ret;
7433 u64 local_tsc;
7434 u64 max_tsc = 0;
7435 bool stable, backwards_tsc = false;
7436
7437 kvm_shared_msr_cpu_online();
7438 ret = kvm_x86_ops->hardware_enable();
7439 if (ret != 0)
7440 return ret;
7441
7442 local_tsc = native_read_tsc();
7443 stable = !check_tsc_unstable();
7444 list_for_each_entry(kvm, &vm_list, vm_list) {
7445 kvm_for_each_vcpu(i, vcpu, kvm) {
7446 if (!stable && vcpu->cpu == smp_processor_id())
7447 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7448 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7449 backwards_tsc = true;
7450 if (vcpu->arch.last_host_tsc > max_tsc)
7451 max_tsc = vcpu->arch.last_host_tsc;
7452 }
7453 }
7454 }
7455
7456 /*
7457 * Sometimes, even reliable TSCs go backwards. This happens on
7458 * platforms that reset TSC during suspend or hibernate actions, but
7459 * maintain synchronization. We must compensate. Fortunately, we can
7460 * detect that condition here, which happens early in CPU bringup,
7461 * before any KVM threads can be running. Unfortunately, we can't
7462 * bring the TSCs fully up to date with real time, as we aren't yet far
7463 * enough into CPU bringup that we know how much real time has actually
7464 * elapsed; our helper function, get_kernel_ns() will be using boot
7465 * variables that haven't been updated yet.
7466 *
7467 * So we simply find the maximum observed TSC above, then record the
7468 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
7469 * the adjustment will be applied. Note that we accumulate
7470 * adjustments, in case multiple suspend cycles happen before some VCPU
7471 * gets a chance to run again. In the event that no KVM threads get a
7472 * chance to run, we will miss the entire elapsed period, as we'll have
7473 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7474 * loose cycle time. This isn't too big a deal, since the loss will be
7475 * uniform across all VCPUs (not to mention the scenario is extremely
7476 * unlikely). It is possible that a second hibernate recovery happens
7477 * much faster than a first, causing the observed TSC here to be
7478 * smaller; this would require additional padding adjustment, which is
7479 * why we set last_host_tsc to the local tsc observed here.
7480 *
7481 * N.B. - this code below runs only on platforms with reliable TSC,
7482 * as that is the only way backwards_tsc is set above. Also note
7483 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7484 * have the same delta_cyc adjustment applied if backwards_tsc
7485 * is detected. Note further, this adjustment is only done once,
7486 * as we reset last_host_tsc on all VCPUs to stop this from being
7487 * called multiple times (one for each physical CPU bringup).
7488 *
7489 * Platforms with unreliable TSCs don't have to deal with this, they
7490 * will be compensated by the logic in vcpu_load, which sets the TSC to
7491 * catchup mode. This will catchup all VCPUs to real time, but cannot
7492 * guarantee that they stay in perfect synchronization.
7493 */
7494 if (backwards_tsc) {
7495 u64 delta_cyc = max_tsc - local_tsc;
7496 backwards_tsc_observed = true;
7497 list_for_each_entry(kvm, &vm_list, vm_list) {
7498 kvm_for_each_vcpu(i, vcpu, kvm) {
7499 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7500 vcpu->arch.last_host_tsc = local_tsc;
7501 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7502 }
7503
7504 /*
7505 * We have to disable TSC offset matching.. if you were
7506 * booting a VM while issuing an S4 host suspend....
7507 * you may have some problem. Solving this issue is
7508 * left as an exercise to the reader.
7509 */
7510 kvm->arch.last_tsc_nsec = 0;
7511 kvm->arch.last_tsc_write = 0;
7512 }
7513
7514 }
7515 return 0;
7516 }
7517
7518 void kvm_arch_hardware_disable(void)
7519 {
7520 kvm_x86_ops->hardware_disable();
7521 drop_user_return_notifiers();
7522 }
7523
7524 int kvm_arch_hardware_setup(void)
7525 {
7526 int r;
7527
7528 r = kvm_x86_ops->hardware_setup();
7529 if (r != 0)
7530 return r;
7531
7532 kvm_init_msr_list();
7533 return 0;
7534 }
7535
7536 void kvm_arch_hardware_unsetup(void)
7537 {
7538 kvm_x86_ops->hardware_unsetup();
7539 }
7540
7541 void kvm_arch_check_processor_compat(void *rtn)
7542 {
7543 kvm_x86_ops->check_processor_compatibility(rtn);
7544 }
7545
7546 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7547 {
7548 return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
7549 }
7550
7551 struct static_key kvm_no_apic_vcpu __read_mostly;
7552
7553 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7554 {
7555 struct page *page;
7556 struct kvm *kvm;
7557 int r;
7558
7559 BUG_ON(vcpu->kvm == NULL);
7560 kvm = vcpu->kvm;
7561
7562 vcpu->arch.pv.pv_unhalted = false;
7563 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7564 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7565 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7566 else
7567 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7568
7569 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7570 if (!page) {
7571 r = -ENOMEM;
7572 goto fail;
7573 }
7574 vcpu->arch.pio_data = page_address(page);
7575
7576 kvm_set_tsc_khz(vcpu, max_tsc_khz);
7577
7578 r = kvm_mmu_create(vcpu);
7579 if (r < 0)
7580 goto fail_free_pio_data;
7581
7582 if (irqchip_in_kernel(kvm)) {
7583 r = kvm_create_lapic(vcpu);
7584 if (r < 0)
7585 goto fail_mmu_destroy;
7586 } else
7587 static_key_slow_inc(&kvm_no_apic_vcpu);
7588
7589 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7590 GFP_KERNEL);
7591 if (!vcpu->arch.mce_banks) {
7592 r = -ENOMEM;
7593 goto fail_free_lapic;
7594 }
7595 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7596
7597 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7598 r = -ENOMEM;
7599 goto fail_free_mce_banks;
7600 }
7601
7602 fx_init(vcpu);
7603
7604 vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7605 vcpu->arch.pv_time_enabled = false;
7606
7607 vcpu->arch.guest_supported_xcr0 = 0;
7608 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7609
7610 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7611
7612 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7613
7614 kvm_async_pf_hash_reset(vcpu);
7615 kvm_pmu_init(vcpu);
7616
7617 return 0;
7618
7619 fail_free_mce_banks:
7620 kfree(vcpu->arch.mce_banks);
7621 fail_free_lapic:
7622 kvm_free_lapic(vcpu);
7623 fail_mmu_destroy:
7624 kvm_mmu_destroy(vcpu);
7625 fail_free_pio_data:
7626 free_page((unsigned long)vcpu->arch.pio_data);
7627 fail:
7628 return r;
7629 }
7630
7631 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7632 {
7633 int idx;
7634
7635 kvm_pmu_destroy(vcpu);
7636 kfree(vcpu->arch.mce_banks);
7637 kvm_free_lapic(vcpu);
7638 idx = srcu_read_lock(&vcpu->kvm->srcu);
7639 kvm_mmu_destroy(vcpu);
7640 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7641 free_page((unsigned long)vcpu->arch.pio_data);
7642 if (!irqchip_in_kernel(vcpu->kvm))
7643 static_key_slow_dec(&kvm_no_apic_vcpu);
7644 }
7645
7646 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7647 {
7648 kvm_x86_ops->sched_in(vcpu, cpu);
7649 }
7650
7651 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7652 {
7653 if (type)
7654 return -EINVAL;
7655
7656 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7657 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7658 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7659 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7660 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7661
7662 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7663 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7664 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7665 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7666 &kvm->arch.irq_sources_bitmap);
7667
7668 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7669 mutex_init(&kvm->arch.apic_map_lock);
7670 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7671
7672 pvclock_update_vm_gtod_copy(kvm);
7673
7674 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7675 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7676
7677 return 0;
7678 }
7679
7680 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7681 {
7682 int r;
7683 r = vcpu_load(vcpu);
7684 BUG_ON(r);
7685 kvm_mmu_unload(vcpu);
7686 vcpu_put(vcpu);
7687 }
7688
7689 static void kvm_free_vcpus(struct kvm *kvm)
7690 {
7691 unsigned int i;
7692 struct kvm_vcpu *vcpu;
7693
7694 /*
7695 * Unpin any mmu pages first.
7696 */
7697 kvm_for_each_vcpu(i, vcpu, kvm) {
7698 kvm_clear_async_pf_completion_queue(vcpu);
7699 kvm_unload_vcpu_mmu(vcpu);
7700 }
7701 kvm_for_each_vcpu(i, vcpu, kvm)
7702 kvm_arch_vcpu_free(vcpu);
7703
7704 mutex_lock(&kvm->lock);
7705 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7706 kvm->vcpus[i] = NULL;
7707
7708 atomic_set(&kvm->online_vcpus, 0);
7709 mutex_unlock(&kvm->lock);
7710 }
7711
7712 void kvm_arch_sync_events(struct kvm *kvm)
7713 {
7714 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7715 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7716 kvm_free_all_assigned_devices(kvm);
7717 kvm_free_pit(kvm);
7718 }
7719
7720 int __x86_set_memory_region(struct kvm *kvm,
7721 const struct kvm_userspace_memory_region *mem)
7722 {
7723 int i, r;
7724
7725 /* Called with kvm->slots_lock held. */
7726 BUG_ON(mem->slot >= KVM_MEM_SLOTS_NUM);
7727
7728 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7729 struct kvm_userspace_memory_region m = *mem;
7730
7731 m.slot |= i << 16;
7732 r = __kvm_set_memory_region(kvm, &m);
7733 if (r < 0)
7734 return r;
7735 }
7736
7737 return 0;
7738 }
7739 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7740
7741 int x86_set_memory_region(struct kvm *kvm,
7742 const struct kvm_userspace_memory_region *mem)
7743 {
7744 int r;
7745
7746 mutex_lock(&kvm->slots_lock);
7747 r = __x86_set_memory_region(kvm, mem);
7748 mutex_unlock(&kvm->slots_lock);
7749
7750 return r;
7751 }
7752 EXPORT_SYMBOL_GPL(x86_set_memory_region);
7753
7754 void kvm_arch_destroy_vm(struct kvm *kvm)
7755 {
7756 if (current->mm == kvm->mm) {
7757 /*
7758 * Free memory regions allocated on behalf of userspace,
7759 * unless the the memory map has changed due to process exit
7760 * or fd copying.
7761 */
7762 struct kvm_userspace_memory_region mem;
7763 memset(&mem, 0, sizeof(mem));
7764 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7765 x86_set_memory_region(kvm, &mem);
7766
7767 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7768 x86_set_memory_region(kvm, &mem);
7769
7770 mem.slot = TSS_PRIVATE_MEMSLOT;
7771 x86_set_memory_region(kvm, &mem);
7772 }
7773 kvm_iommu_unmap_guest(kvm);
7774 kfree(kvm->arch.vpic);
7775 kfree(kvm->arch.vioapic);
7776 kvm_free_vcpus(kvm);
7777 kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7778 }
7779
7780 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7781 struct kvm_memory_slot *dont)
7782 {
7783 int i;
7784
7785 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7786 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7787 kvfree(free->arch.rmap[i]);
7788 free->arch.rmap[i] = NULL;
7789 }
7790 if (i == 0)
7791 continue;
7792
7793 if (!dont || free->arch.lpage_info[i - 1] !=
7794 dont->arch.lpage_info[i - 1]) {
7795 kvfree(free->arch.lpage_info[i - 1]);
7796 free->arch.lpage_info[i - 1] = NULL;
7797 }
7798 }
7799 }
7800
7801 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7802 unsigned long npages)
7803 {
7804 int i;
7805
7806 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7807 unsigned long ugfn;
7808 int lpages;
7809 int level = i + 1;
7810
7811 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7812 slot->base_gfn, level) + 1;
7813
7814 slot->arch.rmap[i] =
7815 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7816 if (!slot->arch.rmap[i])
7817 goto out_free;
7818 if (i == 0)
7819 continue;
7820
7821 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7822 sizeof(*slot->arch.lpage_info[i - 1]));
7823 if (!slot->arch.lpage_info[i - 1])
7824 goto out_free;
7825
7826 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7827 slot->arch.lpage_info[i - 1][0].write_count = 1;
7828 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7829 slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7830 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7831 /*
7832 * If the gfn and userspace address are not aligned wrt each
7833 * other, or if explicitly asked to, disable large page
7834 * support for this slot
7835 */
7836 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7837 !kvm_largepages_enabled()) {
7838 unsigned long j;
7839
7840 for (j = 0; j < lpages; ++j)
7841 slot->arch.lpage_info[i - 1][j].write_count = 1;
7842 }
7843 }
7844
7845 return 0;
7846
7847 out_free:
7848 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7849 kvfree(slot->arch.rmap[i]);
7850 slot->arch.rmap[i] = NULL;
7851 if (i == 0)
7852 continue;
7853
7854 kvfree(slot->arch.lpage_info[i - 1]);
7855 slot->arch.lpage_info[i - 1] = NULL;
7856 }
7857 return -ENOMEM;
7858 }
7859
7860 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
7861 {
7862 /*
7863 * memslots->generation has been incremented.
7864 * mmio generation may have reached its maximum value.
7865 */
7866 kvm_mmu_invalidate_mmio_sptes(kvm, slots);
7867 }
7868
7869 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7870 struct kvm_memory_slot *memslot,
7871 const struct kvm_userspace_memory_region *mem,
7872 enum kvm_mr_change change)
7873 {
7874 /*
7875 * Only private memory slots need to be mapped here since
7876 * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7877 */
7878 if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7879 unsigned long userspace_addr;
7880
7881 /*
7882 * MAP_SHARED to prevent internal slot pages from being moved
7883 * by fork()/COW.
7884 */
7885 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7886 PROT_READ | PROT_WRITE,
7887 MAP_SHARED | MAP_ANONYMOUS, 0);
7888
7889 if (IS_ERR((void *)userspace_addr))
7890 return PTR_ERR((void *)userspace_addr);
7891
7892 memslot->userspace_addr = userspace_addr;
7893 }
7894
7895 return 0;
7896 }
7897
7898 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
7899 struct kvm_memory_slot *new)
7900 {
7901 /* Still write protect RO slot */
7902 if (new->flags & KVM_MEM_READONLY) {
7903 kvm_mmu_slot_remove_write_access(kvm, new);
7904 return;
7905 }
7906
7907 /*
7908 * Call kvm_x86_ops dirty logging hooks when they are valid.
7909 *
7910 * kvm_x86_ops->slot_disable_log_dirty is called when:
7911 *
7912 * - KVM_MR_CREATE with dirty logging is disabled
7913 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
7914 *
7915 * The reason is, in case of PML, we need to set D-bit for any slots
7916 * with dirty logging disabled in order to eliminate unnecessary GPA
7917 * logging in PML buffer (and potential PML buffer full VMEXT). This
7918 * guarantees leaving PML enabled during guest's lifetime won't have
7919 * any additonal overhead from PML when guest is running with dirty
7920 * logging disabled for memory slots.
7921 *
7922 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
7923 * to dirty logging mode.
7924 *
7925 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
7926 *
7927 * In case of write protect:
7928 *
7929 * Write protect all pages for dirty logging.
7930 *
7931 * All the sptes including the large sptes which point to this
7932 * slot are set to readonly. We can not create any new large
7933 * spte on this slot until the end of the logging.
7934 *
7935 * See the comments in fast_page_fault().
7936 */
7937 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
7938 if (kvm_x86_ops->slot_enable_log_dirty)
7939 kvm_x86_ops->slot_enable_log_dirty(kvm, new);
7940 else
7941 kvm_mmu_slot_remove_write_access(kvm, new);
7942 } else {
7943 if (kvm_x86_ops->slot_disable_log_dirty)
7944 kvm_x86_ops->slot_disable_log_dirty(kvm, new);
7945 }
7946 }
7947
7948 void kvm_arch_commit_memory_region(struct kvm *kvm,
7949 const struct kvm_userspace_memory_region *mem,
7950 const struct kvm_memory_slot *old,
7951 const struct kvm_memory_slot *new,
7952 enum kvm_mr_change change)
7953 {
7954 int nr_mmu_pages = 0;
7955
7956 if (change == KVM_MR_DELETE && old->id >= KVM_USER_MEM_SLOTS) {
7957 int ret;
7958
7959 ret = vm_munmap(old->userspace_addr,
7960 old->npages * PAGE_SIZE);
7961 if (ret < 0)
7962 printk(KERN_WARNING
7963 "kvm_vm_ioctl_set_memory_region: "
7964 "failed to munmap memory\n");
7965 }
7966
7967 if (!kvm->arch.n_requested_mmu_pages)
7968 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7969
7970 if (nr_mmu_pages)
7971 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7972
7973 /*
7974 * Dirty logging tracks sptes in 4k granularity, meaning that large
7975 * sptes have to be split. If live migration is successful, the guest
7976 * in the source machine will be destroyed and large sptes will be
7977 * created in the destination. However, if the guest continues to run
7978 * in the source machine (for example if live migration fails), small
7979 * sptes will remain around and cause bad performance.
7980 *
7981 * Scan sptes if dirty logging has been stopped, dropping those
7982 * which can be collapsed into a single large-page spte. Later
7983 * page faults will create the large-page sptes.
7984 */
7985 if ((change != KVM_MR_DELETE) &&
7986 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
7987 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
7988 kvm_mmu_zap_collapsible_sptes(kvm, new);
7989
7990 /*
7991 * Set up write protection and/or dirty logging for the new slot.
7992 *
7993 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
7994 * been zapped so no dirty logging staff is needed for old slot. For
7995 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
7996 * new and it's also covered when dealing with the new slot.
7997 *
7998 * FIXME: const-ify all uses of struct kvm_memory_slot.
7999 */
8000 if (change != KVM_MR_DELETE)
8001 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8002 }
8003
8004 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8005 {
8006 kvm_mmu_invalidate_zap_all_pages(kvm);
8007 }
8008
8009 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8010 struct kvm_memory_slot *slot)
8011 {
8012 kvm_mmu_invalidate_zap_all_pages(kvm);
8013 }
8014
8015 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8016 {
8017 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8018 kvm_x86_ops->check_nested_events(vcpu, false);
8019
8020 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8021 !vcpu->arch.apf.halted)
8022 || !list_empty_careful(&vcpu->async_pf.done)
8023 || kvm_apic_has_events(vcpu)
8024 || vcpu->arch.pv.pv_unhalted
8025 || atomic_read(&vcpu->arch.nmi_queued) ||
8026 (kvm_arch_interrupt_allowed(vcpu) &&
8027 kvm_cpu_has_interrupt(vcpu));
8028 }
8029
8030 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8031 {
8032 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8033 }
8034
8035 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8036 {
8037 return kvm_x86_ops->interrupt_allowed(vcpu);
8038 }
8039
8040 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8041 {
8042 if (is_64_bit_mode(vcpu))
8043 return kvm_rip_read(vcpu);
8044 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8045 kvm_rip_read(vcpu));
8046 }
8047 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8048
8049 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8050 {
8051 return kvm_get_linear_rip(vcpu) == linear_rip;
8052 }
8053 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8054
8055 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8056 {
8057 unsigned long rflags;
8058
8059 rflags = kvm_x86_ops->get_rflags(vcpu);
8060 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8061 rflags &= ~X86_EFLAGS_TF;
8062 return rflags;
8063 }
8064 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8065
8066 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8067 {
8068 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8069 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8070 rflags |= X86_EFLAGS_TF;
8071 kvm_x86_ops->set_rflags(vcpu, rflags);
8072 }
8073
8074 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8075 {
8076 __kvm_set_rflags(vcpu, rflags);
8077 kvm_make_request(KVM_REQ_EVENT, vcpu);
8078 }
8079 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8080
8081 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8082 {
8083 int r;
8084
8085 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8086 work->wakeup_all)
8087 return;
8088
8089 r = kvm_mmu_reload(vcpu);
8090 if (unlikely(r))
8091 return;
8092
8093 if (!vcpu->arch.mmu.direct_map &&
8094 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8095 return;
8096
8097 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8098 }
8099
8100 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8101 {
8102 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8103 }
8104
8105 static inline u32 kvm_async_pf_next_probe(u32 key)
8106 {
8107 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8108 }
8109
8110 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8111 {
8112 u32 key = kvm_async_pf_hash_fn(gfn);
8113
8114 while (vcpu->arch.apf.gfns[key] != ~0)
8115 key = kvm_async_pf_next_probe(key);
8116
8117 vcpu->arch.apf.gfns[key] = gfn;
8118 }
8119
8120 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8121 {
8122 int i;
8123 u32 key = kvm_async_pf_hash_fn(gfn);
8124
8125 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8126 (vcpu->arch.apf.gfns[key] != gfn &&
8127 vcpu->arch.apf.gfns[key] != ~0); i++)
8128 key = kvm_async_pf_next_probe(key);
8129
8130 return key;
8131 }
8132
8133 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8134 {
8135 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8136 }
8137
8138 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8139 {
8140 u32 i, j, k;
8141
8142 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8143 while (true) {
8144 vcpu->arch.apf.gfns[i] = ~0;
8145 do {
8146 j = kvm_async_pf_next_probe(j);
8147 if (vcpu->arch.apf.gfns[j] == ~0)
8148 return;
8149 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8150 /*
8151 * k lies cyclically in ]i,j]
8152 * | i.k.j |
8153 * |....j i.k.| or |.k..j i...|
8154 */
8155 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8156 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8157 i = j;
8158 }
8159 }
8160
8161 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8162 {
8163
8164 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8165 sizeof(val));
8166 }
8167
8168 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8169 struct kvm_async_pf *work)
8170 {
8171 struct x86_exception fault;
8172
8173 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8174 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8175
8176 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8177 (vcpu->arch.apf.send_user_only &&
8178 kvm_x86_ops->get_cpl(vcpu) == 0))
8179 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8180 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8181 fault.vector = PF_VECTOR;
8182 fault.error_code_valid = true;
8183 fault.error_code = 0;
8184 fault.nested_page_fault = false;
8185 fault.address = work->arch.token;
8186 kvm_inject_page_fault(vcpu, &fault);
8187 }
8188 }
8189
8190 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8191 struct kvm_async_pf *work)
8192 {
8193 struct x86_exception fault;
8194
8195 trace_kvm_async_pf_ready(work->arch.token, work->gva);
8196 if (work->wakeup_all)
8197 work->arch.token = ~0; /* broadcast wakeup */
8198 else
8199 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8200
8201 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8202 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8203 fault.vector = PF_VECTOR;
8204 fault.error_code_valid = true;
8205 fault.error_code = 0;
8206 fault.nested_page_fault = false;
8207 fault.address = work->arch.token;
8208 kvm_inject_page_fault(vcpu, &fault);
8209 }
8210 vcpu->arch.apf.halted = false;
8211 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8212 }
8213
8214 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8215 {
8216 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8217 return true;
8218 else
8219 return !kvm_event_needs_reinjection(vcpu) &&
8220 kvm_x86_ops->interrupt_allowed(vcpu);
8221 }
8222
8223 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8224 {
8225 atomic_inc(&kvm->arch.noncoherent_dma_count);
8226 }
8227 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8228
8229 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8230 {
8231 atomic_dec(&kvm->arch.noncoherent_dma_count);
8232 }
8233 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8234
8235 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8236 {
8237 return atomic_read(&kvm->arch.noncoherent_dma_count);
8238 }
8239 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8240
8241 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8242 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8243 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8244 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8245 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8246 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8247 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8248 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8249 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8250 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8251 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8252 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8253 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8254 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8255 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
This page took 0.19395 seconds and 6 git commands to generate.