x86: unify KERNEL_PGD_PTRS
[deliverable/linux.git] / arch / x86 / mach-voyager / voyager_smp.c
1 /* -*- mode: c; c-basic-offset: 8 -*- */
2
3 /* Copyright (C) 1999,2001
4 *
5 * Author: J.E.J.Bottomley@HansenPartnership.com
6 *
7 * This file provides all the same external entries as smp.c but uses
8 * the voyager hal to provide the functionality
9 */
10 #include <linux/module.h>
11 #include <linux/mm.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/delay.h>
14 #include <linux/mc146818rtc.h>
15 #include <linux/cache.h>
16 #include <linux/interrupt.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/bootmem.h>
20 #include <linux/completion.h>
21 #include <asm/desc.h>
22 #include <asm/voyager.h>
23 #include <asm/vic.h>
24 #include <asm/mtrr.h>
25 #include <asm/pgalloc.h>
26 #include <asm/tlbflush.h>
27 #include <asm/arch_hooks.h>
28 #include <asm/trampoline.h>
29
30 /* TLB state -- visible externally, indexed physically */
31 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = { &init_mm, 0 };
32
33 /* CPU IRQ affinity -- set to all ones initially */
34 static unsigned long cpu_irq_affinity[NR_CPUS] __cacheline_aligned =
35 {[0 ... NR_CPUS-1] = ~0UL };
36
37 /* per CPU data structure (for /proc/cpuinfo et al), visible externally
38 * indexed physically */
39 DEFINE_PER_CPU_SHARED_ALIGNED(struct cpuinfo_x86, cpu_info);
40 EXPORT_PER_CPU_SYMBOL(cpu_info);
41
42 /* physical ID of the CPU used to boot the system */
43 unsigned char boot_cpu_id;
44
45 /* The memory line addresses for the Quad CPIs */
46 struct voyager_qic_cpi *voyager_quad_cpi_addr[NR_CPUS] __cacheline_aligned;
47
48 /* The masks for the Extended VIC processors, filled in by cat_init */
49 __u32 voyager_extended_vic_processors = 0;
50
51 /* Masks for the extended Quad processors which cannot be VIC booted */
52 __u32 voyager_allowed_boot_processors = 0;
53
54 /* The mask for the Quad Processors (both extended and non-extended) */
55 __u32 voyager_quad_processors = 0;
56
57 /* Total count of live CPUs, used in process.c to display
58 * the CPU information and in irq.c for the per CPU irq
59 * activity count. Finally exported by i386_ksyms.c */
60 static int voyager_extended_cpus = 1;
61
62 /* Have we found an SMP box - used by time.c to do the profiling
63 interrupt for timeslicing; do not set to 1 until the per CPU timer
64 interrupt is active */
65 int smp_found_config = 0;
66
67 /* Used for the invalidate map that's also checked in the spinlock */
68 static volatile unsigned long smp_invalidate_needed;
69
70 /* Bitmask of currently online CPUs - used by setup.c for
71 /proc/cpuinfo, visible externally but still physical */
72 cpumask_t cpu_online_map = CPU_MASK_NONE;
73 EXPORT_SYMBOL(cpu_online_map);
74
75 /* Bitmask of CPUs present in the system - exported by i386_syms.c, used
76 * by scheduler but indexed physically */
77 cpumask_t phys_cpu_present_map = CPU_MASK_NONE;
78
79 /* The internal functions */
80 static void send_CPI(__u32 cpuset, __u8 cpi);
81 static void ack_CPI(__u8 cpi);
82 static int ack_QIC_CPI(__u8 cpi);
83 static void ack_special_QIC_CPI(__u8 cpi);
84 static void ack_VIC_CPI(__u8 cpi);
85 static void send_CPI_allbutself(__u8 cpi);
86 static void mask_vic_irq(unsigned int irq);
87 static void unmask_vic_irq(unsigned int irq);
88 static unsigned int startup_vic_irq(unsigned int irq);
89 static void enable_local_vic_irq(unsigned int irq);
90 static void disable_local_vic_irq(unsigned int irq);
91 static void before_handle_vic_irq(unsigned int irq);
92 static void after_handle_vic_irq(unsigned int irq);
93 static void set_vic_irq_affinity(unsigned int irq, cpumask_t mask);
94 static void ack_vic_irq(unsigned int irq);
95 static void vic_enable_cpi(void);
96 static void do_boot_cpu(__u8 cpuid);
97 static void do_quad_bootstrap(void);
98
99 int hard_smp_processor_id(void);
100 int safe_smp_processor_id(void);
101
102 /* Inline functions */
103 static inline void send_one_QIC_CPI(__u8 cpu, __u8 cpi)
104 {
105 voyager_quad_cpi_addr[cpu]->qic_cpi[cpi].cpi =
106 (smp_processor_id() << 16) + cpi;
107 }
108
109 static inline void send_QIC_CPI(__u32 cpuset, __u8 cpi)
110 {
111 int cpu;
112
113 for_each_online_cpu(cpu) {
114 if (cpuset & (1 << cpu)) {
115 #ifdef VOYAGER_DEBUG
116 if (!cpu_isset(cpu, cpu_online_map))
117 VDEBUG(("CPU%d sending cpi %d to CPU%d not in "
118 "cpu_online_map\n",
119 hard_smp_processor_id(), cpi, cpu));
120 #endif
121 send_one_QIC_CPI(cpu, cpi - QIC_CPI_OFFSET);
122 }
123 }
124 }
125
126 static inline void wrapper_smp_local_timer_interrupt(void)
127 {
128 irq_enter();
129 smp_local_timer_interrupt();
130 irq_exit();
131 }
132
133 static inline void send_one_CPI(__u8 cpu, __u8 cpi)
134 {
135 if (voyager_quad_processors & (1 << cpu))
136 send_one_QIC_CPI(cpu, cpi - QIC_CPI_OFFSET);
137 else
138 send_CPI(1 << cpu, cpi);
139 }
140
141 static inline void send_CPI_allbutself(__u8 cpi)
142 {
143 __u8 cpu = smp_processor_id();
144 __u32 mask = cpus_addr(cpu_online_map)[0] & ~(1 << cpu);
145 send_CPI(mask, cpi);
146 }
147
148 static inline int is_cpu_quad(void)
149 {
150 __u8 cpumask = inb(VIC_PROC_WHO_AM_I);
151 return ((cpumask & QUAD_IDENTIFIER) == QUAD_IDENTIFIER);
152 }
153
154 static inline int is_cpu_extended(void)
155 {
156 __u8 cpu = hard_smp_processor_id();
157
158 return (voyager_extended_vic_processors & (1 << cpu));
159 }
160
161 static inline int is_cpu_vic_boot(void)
162 {
163 __u8 cpu = hard_smp_processor_id();
164
165 return (voyager_extended_vic_processors
166 & voyager_allowed_boot_processors & (1 << cpu));
167 }
168
169 static inline void ack_CPI(__u8 cpi)
170 {
171 switch (cpi) {
172 case VIC_CPU_BOOT_CPI:
173 if (is_cpu_quad() && !is_cpu_vic_boot())
174 ack_QIC_CPI(cpi);
175 else
176 ack_VIC_CPI(cpi);
177 break;
178 case VIC_SYS_INT:
179 case VIC_CMN_INT:
180 /* These are slightly strange. Even on the Quad card,
181 * They are vectored as VIC CPIs */
182 if (is_cpu_quad())
183 ack_special_QIC_CPI(cpi);
184 else
185 ack_VIC_CPI(cpi);
186 break;
187 default:
188 printk("VOYAGER ERROR: CPI%d is in common CPI code\n", cpi);
189 break;
190 }
191 }
192
193 /* local variables */
194
195 /* The VIC IRQ descriptors -- these look almost identical to the
196 * 8259 IRQs except that masks and things must be kept per processor
197 */
198 static struct irq_chip vic_chip = {
199 .name = "VIC",
200 .startup = startup_vic_irq,
201 .mask = mask_vic_irq,
202 .unmask = unmask_vic_irq,
203 .set_affinity = set_vic_irq_affinity,
204 };
205
206 /* used to count up as CPUs are brought on line (starts at 0) */
207 static int cpucount = 0;
208
209 /* steal a page from the bottom of memory for the trampoline and
210 * squirrel its address away here. This will be in kernel virtual
211 * space */
212 unsigned char *trampoline_base;
213
214 /* The per cpu profile stuff - used in smp_local_timer_interrupt */
215 static DEFINE_PER_CPU(int, prof_multiplier) = 1;
216 static DEFINE_PER_CPU(int, prof_old_multiplier) = 1;
217 static DEFINE_PER_CPU(int, prof_counter) = 1;
218
219 /* the map used to check if a CPU has booted */
220 static __u32 cpu_booted_map;
221
222 /* the synchronize flag used to hold all secondary CPUs spinning in
223 * a tight loop until the boot sequence is ready for them */
224 static cpumask_t smp_commenced_mask = CPU_MASK_NONE;
225
226 /* This is for the new dynamic CPU boot code */
227 cpumask_t cpu_callin_map = CPU_MASK_NONE;
228 cpumask_t cpu_callout_map = CPU_MASK_NONE;
229 cpumask_t cpu_possible_map = CPU_MASK_NONE;
230 EXPORT_SYMBOL(cpu_possible_map);
231
232 /* The per processor IRQ masks (these are usually kept in sync) */
233 static __u16 vic_irq_mask[NR_CPUS] __cacheline_aligned;
234
235 /* the list of IRQs to be enabled by the VIC_ENABLE_IRQ_CPI */
236 static __u16 vic_irq_enable_mask[NR_CPUS] __cacheline_aligned = { 0 };
237
238 /* Lock for enable/disable of VIC interrupts */
239 static __cacheline_aligned DEFINE_SPINLOCK(vic_irq_lock);
240
241 /* The boot processor is correctly set up in PC mode when it
242 * comes up, but the secondaries need their master/slave 8259
243 * pairs initializing correctly */
244
245 /* Interrupt counters (per cpu) and total - used to try to
246 * even up the interrupt handling routines */
247 static long vic_intr_total = 0;
248 static long vic_intr_count[NR_CPUS] __cacheline_aligned = { 0 };
249 static unsigned long vic_tick[NR_CPUS] __cacheline_aligned = { 0 };
250
251 /* Since we can only use CPI0, we fake all the other CPIs */
252 static unsigned long vic_cpi_mailbox[NR_CPUS] __cacheline_aligned;
253
254 /* debugging routine to read the isr of the cpu's pic */
255 static inline __u16 vic_read_isr(void)
256 {
257 __u16 isr;
258
259 outb(0x0b, 0xa0);
260 isr = inb(0xa0) << 8;
261 outb(0x0b, 0x20);
262 isr |= inb(0x20);
263
264 return isr;
265 }
266
267 static __init void qic_setup(void)
268 {
269 if (!is_cpu_quad()) {
270 /* not a quad, no setup */
271 return;
272 }
273 outb(QIC_DEFAULT_MASK0, QIC_MASK_REGISTER0);
274 outb(QIC_CPI_ENABLE, QIC_MASK_REGISTER1);
275
276 if (is_cpu_extended()) {
277 /* the QIC duplicate of the VIC base register */
278 outb(VIC_DEFAULT_CPI_BASE, QIC_VIC_CPI_BASE_REGISTER);
279 outb(QIC_DEFAULT_CPI_BASE, QIC_CPI_BASE_REGISTER);
280
281 /* FIXME: should set up the QIC timer and memory parity
282 * error vectors here */
283 }
284 }
285
286 static __init void vic_setup_pic(void)
287 {
288 outb(1, VIC_REDIRECT_REGISTER_1);
289 /* clear the claim registers for dynamic routing */
290 outb(0, VIC_CLAIM_REGISTER_0);
291 outb(0, VIC_CLAIM_REGISTER_1);
292
293 outb(0, VIC_PRIORITY_REGISTER);
294 /* Set the Primary and Secondary Microchannel vector
295 * bases to be the same as the ordinary interrupts
296 *
297 * FIXME: This would be more efficient using separate
298 * vectors. */
299 outb(FIRST_EXTERNAL_VECTOR, VIC_PRIMARY_MC_BASE);
300 outb(FIRST_EXTERNAL_VECTOR, VIC_SECONDARY_MC_BASE);
301 /* Now initiallise the master PIC belonging to this CPU by
302 * sending the four ICWs */
303
304 /* ICW1: level triggered, ICW4 needed */
305 outb(0x19, 0x20);
306
307 /* ICW2: vector base */
308 outb(FIRST_EXTERNAL_VECTOR, 0x21);
309
310 /* ICW3: slave at line 2 */
311 outb(0x04, 0x21);
312
313 /* ICW4: 8086 mode */
314 outb(0x01, 0x21);
315
316 /* now the same for the slave PIC */
317
318 /* ICW1: level trigger, ICW4 needed */
319 outb(0x19, 0xA0);
320
321 /* ICW2: slave vector base */
322 outb(FIRST_EXTERNAL_VECTOR + 8, 0xA1);
323
324 /* ICW3: slave ID */
325 outb(0x02, 0xA1);
326
327 /* ICW4: 8086 mode */
328 outb(0x01, 0xA1);
329 }
330
331 static void do_quad_bootstrap(void)
332 {
333 if (is_cpu_quad() && is_cpu_vic_boot()) {
334 int i;
335 unsigned long flags;
336 __u8 cpuid = hard_smp_processor_id();
337
338 local_irq_save(flags);
339
340 for (i = 0; i < 4; i++) {
341 /* FIXME: this would be >>3 &0x7 on the 32 way */
342 if (((cpuid >> 2) & 0x03) == i)
343 /* don't lower our own mask! */
344 continue;
345
346 /* masquerade as local Quad CPU */
347 outb(QIC_CPUID_ENABLE | i, QIC_PROCESSOR_ID);
348 /* enable the startup CPI */
349 outb(QIC_BOOT_CPI_MASK, QIC_MASK_REGISTER1);
350 /* restore cpu id */
351 outb(0, QIC_PROCESSOR_ID);
352 }
353 local_irq_restore(flags);
354 }
355 }
356
357 /* Set up all the basic stuff: read the SMP config and make all the
358 * SMP information reflect only the boot cpu. All others will be
359 * brought on-line later. */
360 void __init find_smp_config(void)
361 {
362 int i;
363
364 boot_cpu_id = hard_smp_processor_id();
365
366 printk("VOYAGER SMP: Boot cpu is %d\n", boot_cpu_id);
367
368 /* initialize the CPU structures (moved from smp_boot_cpus) */
369 for (i = 0; i < NR_CPUS; i++) {
370 cpu_irq_affinity[i] = ~0;
371 }
372 cpu_online_map = cpumask_of_cpu(boot_cpu_id);
373
374 /* The boot CPU must be extended */
375 voyager_extended_vic_processors = 1 << boot_cpu_id;
376 /* initially, all of the first 8 CPUs can boot */
377 voyager_allowed_boot_processors = 0xff;
378 /* set up everything for just this CPU, we can alter
379 * this as we start the other CPUs later */
380 /* now get the CPU disposition from the extended CMOS */
381 cpus_addr(phys_cpu_present_map)[0] =
382 voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK);
383 cpus_addr(phys_cpu_present_map)[0] |=
384 voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + 1) << 8;
385 cpus_addr(phys_cpu_present_map)[0] |=
386 voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK +
387 2) << 16;
388 cpus_addr(phys_cpu_present_map)[0] |=
389 voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK +
390 3) << 24;
391 cpu_possible_map = phys_cpu_present_map;
392 printk("VOYAGER SMP: phys_cpu_present_map = 0x%lx\n",
393 cpus_addr(phys_cpu_present_map)[0]);
394 /* Here we set up the VIC to enable SMP */
395 /* enable the CPIs by writing the base vector to their register */
396 outb(VIC_DEFAULT_CPI_BASE, VIC_CPI_BASE_REGISTER);
397 outb(1, VIC_REDIRECT_REGISTER_1);
398 /* set the claim registers for static routing --- Boot CPU gets
399 * all interrupts untill all other CPUs started */
400 outb(0xff, VIC_CLAIM_REGISTER_0);
401 outb(0xff, VIC_CLAIM_REGISTER_1);
402 /* Set the Primary and Secondary Microchannel vector
403 * bases to be the same as the ordinary interrupts
404 *
405 * FIXME: This would be more efficient using separate
406 * vectors. */
407 outb(FIRST_EXTERNAL_VECTOR, VIC_PRIMARY_MC_BASE);
408 outb(FIRST_EXTERNAL_VECTOR, VIC_SECONDARY_MC_BASE);
409
410 /* Finally tell the firmware that we're driving */
411 outb(inb(VOYAGER_SUS_IN_CONTROL_PORT) | VOYAGER_IN_CONTROL_FLAG,
412 VOYAGER_SUS_IN_CONTROL_PORT);
413
414 current_thread_info()->cpu = boot_cpu_id;
415 x86_write_percpu(cpu_number, boot_cpu_id);
416 }
417
418 /*
419 * The bootstrap kernel entry code has set these up. Save them
420 * for a given CPU, id is physical */
421 void __init smp_store_cpu_info(int id)
422 {
423 struct cpuinfo_x86 *c = &cpu_data(id);
424
425 *c = boot_cpu_data;
426
427 identify_secondary_cpu(c);
428 }
429
430 /* set up the trampoline and return the physical address of the code */
431 unsigned long __init setup_trampoline(void)
432 {
433 /* these two are global symbols in trampoline.S */
434 extern const __u8 trampoline_end[];
435 extern const __u8 trampoline_data[];
436
437 memcpy(trampoline_base, trampoline_data,
438 trampoline_end - trampoline_data);
439 return virt_to_phys(trampoline_base);
440 }
441
442 /* Routine initially called when a non-boot CPU is brought online */
443 static void __init start_secondary(void *unused)
444 {
445 __u8 cpuid = hard_smp_processor_id();
446
447 cpu_init();
448
449 /* OK, we're in the routine */
450 ack_CPI(VIC_CPU_BOOT_CPI);
451
452 /* setup the 8259 master slave pair belonging to this CPU ---
453 * we won't actually receive any until the boot CPU
454 * relinquishes it's static routing mask */
455 vic_setup_pic();
456
457 qic_setup();
458
459 if (is_cpu_quad() && !is_cpu_vic_boot()) {
460 /* clear the boot CPI */
461 __u8 dummy;
462
463 dummy =
464 voyager_quad_cpi_addr[cpuid]->qic_cpi[VIC_CPU_BOOT_CPI].cpi;
465 printk("read dummy %d\n", dummy);
466 }
467
468 /* lower the mask to receive CPIs */
469 vic_enable_cpi();
470
471 VDEBUG(("VOYAGER SMP: CPU%d, stack at about %p\n", cpuid, &cpuid));
472
473 /* enable interrupts */
474 local_irq_enable();
475
476 /* get our bogomips */
477 calibrate_delay();
478
479 /* save our processor parameters */
480 smp_store_cpu_info(cpuid);
481
482 /* if we're a quad, we may need to bootstrap other CPUs */
483 do_quad_bootstrap();
484
485 /* FIXME: this is rather a poor hack to prevent the CPU
486 * activating softirqs while it's supposed to be waiting for
487 * permission to proceed. Without this, the new per CPU stuff
488 * in the softirqs will fail */
489 local_irq_disable();
490 cpu_set(cpuid, cpu_callin_map);
491
492 /* signal that we're done */
493 cpu_booted_map = 1;
494
495 while (!cpu_isset(cpuid, smp_commenced_mask))
496 rep_nop();
497 local_irq_enable();
498
499 local_flush_tlb();
500
501 cpu_set(cpuid, cpu_online_map);
502 wmb();
503 cpu_idle();
504 }
505
506 /* Routine to kick start the given CPU and wait for it to report ready
507 * (or timeout in startup). When this routine returns, the requested
508 * CPU is either fully running and configured or known to be dead.
509 *
510 * We call this routine sequentially 1 CPU at a time, so no need for
511 * locking */
512
513 static void __init do_boot_cpu(__u8 cpu)
514 {
515 struct task_struct *idle;
516 int timeout;
517 unsigned long flags;
518 int quad_boot = (1 << cpu) & voyager_quad_processors
519 & ~(voyager_extended_vic_processors
520 & voyager_allowed_boot_processors);
521
522 /* This is the format of the CPI IDT gate (in real mode) which
523 * we're hijacking to boot the CPU */
524 union IDTFormat {
525 struct seg {
526 __u16 Offset;
527 __u16 Segment;
528 } idt;
529 __u32 val;
530 } hijack_source;
531
532 __u32 *hijack_vector;
533 __u32 start_phys_address = setup_trampoline();
534
535 /* There's a clever trick to this: The linux trampoline is
536 * compiled to begin at absolute location zero, so make the
537 * address zero but have the data segment selector compensate
538 * for the actual address */
539 hijack_source.idt.Offset = start_phys_address & 0x000F;
540 hijack_source.idt.Segment = (start_phys_address >> 4) & 0xFFFF;
541
542 cpucount++;
543 alternatives_smp_switch(1);
544
545 idle = fork_idle(cpu);
546 if (IS_ERR(idle))
547 panic("failed fork for CPU%d", cpu);
548 idle->thread.ip = (unsigned long)start_secondary;
549 /* init_tasks (in sched.c) is indexed logically */
550 stack_start.sp = (void *)idle->thread.sp;
551
552 init_gdt(cpu);
553 per_cpu(current_task, cpu) = idle;
554 early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu);
555 irq_ctx_init(cpu);
556
557 /* Note: Don't modify initial ss override */
558 VDEBUG(("VOYAGER SMP: Booting CPU%d at 0x%lx[%x:%x], stack %p\n", cpu,
559 (unsigned long)hijack_source.val, hijack_source.idt.Segment,
560 hijack_source.idt.Offset, stack_start.sp));
561
562 /* init lowmem identity mapping */
563 clone_pgd_range(swapper_pg_dir, swapper_pg_dir + KERNEL_PGD_BOUNDARY,
564 min_t(unsigned long, KERNEL_PGD_PTRS, KERNEL_PGD_BOUNDARY));
565 flush_tlb_all();
566
567 if (quad_boot) {
568 printk("CPU %d: non extended Quad boot\n", cpu);
569 hijack_vector =
570 (__u32 *)
571 phys_to_virt((VIC_CPU_BOOT_CPI + QIC_DEFAULT_CPI_BASE) * 4);
572 *hijack_vector = hijack_source.val;
573 } else {
574 printk("CPU%d: extended VIC boot\n", cpu);
575 hijack_vector =
576 (__u32 *)
577 phys_to_virt((VIC_CPU_BOOT_CPI + VIC_DEFAULT_CPI_BASE) * 4);
578 *hijack_vector = hijack_source.val;
579 /* VIC errata, may also receive interrupt at this address */
580 hijack_vector =
581 (__u32 *)
582 phys_to_virt((VIC_CPU_BOOT_ERRATA_CPI +
583 VIC_DEFAULT_CPI_BASE) * 4);
584 *hijack_vector = hijack_source.val;
585 }
586 /* All non-boot CPUs start with interrupts fully masked. Need
587 * to lower the mask of the CPI we're about to send. We do
588 * this in the VIC by masquerading as the processor we're
589 * about to boot and lowering its interrupt mask */
590 local_irq_save(flags);
591 if (quad_boot) {
592 send_one_QIC_CPI(cpu, VIC_CPU_BOOT_CPI);
593 } else {
594 outb(VIC_CPU_MASQUERADE_ENABLE | cpu, VIC_PROCESSOR_ID);
595 /* here we're altering registers belonging to `cpu' */
596
597 outb(VIC_BOOT_INTERRUPT_MASK, 0x21);
598 /* now go back to our original identity */
599 outb(boot_cpu_id, VIC_PROCESSOR_ID);
600
601 /* and boot the CPU */
602
603 send_CPI((1 << cpu), VIC_CPU_BOOT_CPI);
604 }
605 cpu_booted_map = 0;
606 local_irq_restore(flags);
607
608 /* now wait for it to become ready (or timeout) */
609 for (timeout = 0; timeout < 50000; timeout++) {
610 if (cpu_booted_map)
611 break;
612 udelay(100);
613 }
614 /* reset the page table */
615 zap_low_mappings();
616
617 if (cpu_booted_map) {
618 VDEBUG(("CPU%d: Booted successfully, back in CPU %d\n",
619 cpu, smp_processor_id()));
620
621 printk("CPU%d: ", cpu);
622 print_cpu_info(&cpu_data(cpu));
623 wmb();
624 cpu_set(cpu, cpu_callout_map);
625 cpu_set(cpu, cpu_present_map);
626 } else {
627 printk("CPU%d FAILED TO BOOT: ", cpu);
628 if (*
629 ((volatile unsigned char *)phys_to_virt(start_phys_address))
630 == 0xA5)
631 printk("Stuck.\n");
632 else
633 printk("Not responding.\n");
634
635 cpucount--;
636 }
637 }
638
639 void __init smp_boot_cpus(void)
640 {
641 int i;
642
643 /* CAT BUS initialisation must be done after the memory */
644 /* FIXME: The L4 has a catbus too, it just needs to be
645 * accessed in a totally different way */
646 if (voyager_level == 5) {
647 voyager_cat_init();
648
649 /* now that the cat has probed the Voyager System Bus, sanity
650 * check the cpu map */
651 if (((voyager_quad_processors | voyager_extended_vic_processors)
652 & cpus_addr(phys_cpu_present_map)[0]) !=
653 cpus_addr(phys_cpu_present_map)[0]) {
654 /* should panic */
655 printk("\n\n***WARNING*** "
656 "Sanity check of CPU present map FAILED\n");
657 }
658 } else if (voyager_level == 4)
659 voyager_extended_vic_processors =
660 cpus_addr(phys_cpu_present_map)[0];
661
662 /* this sets up the idle task to run on the current cpu */
663 voyager_extended_cpus = 1;
664 /* Remove the global_irq_holder setting, it triggers a BUG() on
665 * schedule at the moment */
666 //global_irq_holder = boot_cpu_id;
667
668 /* FIXME: Need to do something about this but currently only works
669 * on CPUs with a tsc which none of mine have.
670 smp_tune_scheduling();
671 */
672 smp_store_cpu_info(boot_cpu_id);
673 printk("CPU%d: ", boot_cpu_id);
674 print_cpu_info(&cpu_data(boot_cpu_id));
675
676 if (is_cpu_quad()) {
677 /* booting on a Quad CPU */
678 printk("VOYAGER SMP: Boot CPU is Quad\n");
679 qic_setup();
680 do_quad_bootstrap();
681 }
682
683 /* enable our own CPIs */
684 vic_enable_cpi();
685
686 cpu_set(boot_cpu_id, cpu_online_map);
687 cpu_set(boot_cpu_id, cpu_callout_map);
688
689 /* loop over all the extended VIC CPUs and boot them. The
690 * Quad CPUs must be bootstrapped by their extended VIC cpu */
691 for (i = 0; i < NR_CPUS; i++) {
692 if (i == boot_cpu_id || !cpu_isset(i, phys_cpu_present_map))
693 continue;
694 do_boot_cpu(i);
695 /* This udelay seems to be needed for the Quad boots
696 * don't remove unless you know what you're doing */
697 udelay(1000);
698 }
699 /* we could compute the total bogomips here, but why bother?,
700 * Code added from smpboot.c */
701 {
702 unsigned long bogosum = 0;
703 for (i = 0; i < NR_CPUS; i++)
704 if (cpu_isset(i, cpu_online_map))
705 bogosum += cpu_data(i).loops_per_jiffy;
706 printk(KERN_INFO "Total of %d processors activated "
707 "(%lu.%02lu BogoMIPS).\n",
708 cpucount + 1, bogosum / (500000 / HZ),
709 (bogosum / (5000 / HZ)) % 100);
710 }
711 voyager_extended_cpus = hweight32(voyager_extended_vic_processors);
712 printk("VOYAGER: Extended (interrupt handling CPUs): "
713 "%d, non-extended: %d\n", voyager_extended_cpus,
714 num_booting_cpus() - voyager_extended_cpus);
715 /* that's it, switch to symmetric mode */
716 outb(0, VIC_PRIORITY_REGISTER);
717 outb(0, VIC_CLAIM_REGISTER_0);
718 outb(0, VIC_CLAIM_REGISTER_1);
719
720 VDEBUG(("VOYAGER SMP: Booted with %d CPUs\n", num_booting_cpus()));
721 }
722
723 /* Reload the secondary CPUs task structure (this function does not
724 * return ) */
725 void __init initialize_secondary(void)
726 {
727 #if 0
728 // AC kernels only
729 set_current(hard_get_current());
730 #endif
731
732 /*
733 * We don't actually need to load the full TSS,
734 * basically just the stack pointer and the eip.
735 */
736
737 asm volatile ("movl %0,%%esp\n\t"
738 "jmp *%1"::"r" (current->thread.sp),
739 "r"(current->thread.ip));
740 }
741
742 /* handle a Voyager SYS_INT -- If we don't, the base board will
743 * panic the system.
744 *
745 * System interrupts occur because some problem was detected on the
746 * various busses. To find out what you have to probe all the
747 * hardware via the CAT bus. FIXME: At the moment we do nothing. */
748 void smp_vic_sys_interrupt(struct pt_regs *regs)
749 {
750 ack_CPI(VIC_SYS_INT);
751 printk("Voyager SYSTEM INTERRUPT\n");
752 }
753
754 /* Handle a voyager CMN_INT; These interrupts occur either because of
755 * a system status change or because a single bit memory error
756 * occurred. FIXME: At the moment, ignore all this. */
757 void smp_vic_cmn_interrupt(struct pt_regs *regs)
758 {
759 static __u8 in_cmn_int = 0;
760 static DEFINE_SPINLOCK(cmn_int_lock);
761
762 /* common ints are broadcast, so make sure we only do this once */
763 _raw_spin_lock(&cmn_int_lock);
764 if (in_cmn_int)
765 goto unlock_end;
766
767 in_cmn_int++;
768 _raw_spin_unlock(&cmn_int_lock);
769
770 VDEBUG(("Voyager COMMON INTERRUPT\n"));
771
772 if (voyager_level == 5)
773 voyager_cat_do_common_interrupt();
774
775 _raw_spin_lock(&cmn_int_lock);
776 in_cmn_int = 0;
777 unlock_end:
778 _raw_spin_unlock(&cmn_int_lock);
779 ack_CPI(VIC_CMN_INT);
780 }
781
782 /*
783 * Reschedule call back. Nothing to do, all the work is done
784 * automatically when we return from the interrupt. */
785 static void smp_reschedule_interrupt(void)
786 {
787 /* do nothing */
788 }
789
790 static struct mm_struct *flush_mm;
791 static unsigned long flush_va;
792 static DEFINE_SPINLOCK(tlbstate_lock);
793
794 /*
795 * We cannot call mmdrop() because we are in interrupt context,
796 * instead update mm->cpu_vm_mask.
797 *
798 * We need to reload %cr3 since the page tables may be going
799 * away from under us..
800 */
801 static inline void voyager_leave_mm(unsigned long cpu)
802 {
803 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK)
804 BUG();
805 cpu_clear(cpu, per_cpu(cpu_tlbstate, cpu).active_mm->cpu_vm_mask);
806 load_cr3(swapper_pg_dir);
807 }
808
809 /*
810 * Invalidate call-back
811 */
812 static void smp_invalidate_interrupt(void)
813 {
814 __u8 cpu = smp_processor_id();
815
816 if (!test_bit(cpu, &smp_invalidate_needed))
817 return;
818 /* This will flood messages. Don't uncomment unless you see
819 * Problems with cross cpu invalidation
820 VDEBUG(("VOYAGER SMP: CPU%d received INVALIDATE_CPI\n",
821 smp_processor_id()));
822 */
823
824 if (flush_mm == per_cpu(cpu_tlbstate, cpu).active_mm) {
825 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) {
826 if (flush_va == TLB_FLUSH_ALL)
827 local_flush_tlb();
828 else
829 __flush_tlb_one(flush_va);
830 } else
831 voyager_leave_mm(cpu);
832 }
833 smp_mb__before_clear_bit();
834 clear_bit(cpu, &smp_invalidate_needed);
835 smp_mb__after_clear_bit();
836 }
837
838 /* All the new flush operations for 2.4 */
839
840 /* This routine is called with a physical cpu mask */
841 static void
842 voyager_flush_tlb_others(unsigned long cpumask, struct mm_struct *mm,
843 unsigned long va)
844 {
845 int stuck = 50000;
846
847 if (!cpumask)
848 BUG();
849 if ((cpumask & cpus_addr(cpu_online_map)[0]) != cpumask)
850 BUG();
851 if (cpumask & (1 << smp_processor_id()))
852 BUG();
853 if (!mm)
854 BUG();
855
856 spin_lock(&tlbstate_lock);
857
858 flush_mm = mm;
859 flush_va = va;
860 atomic_set_mask(cpumask, &smp_invalidate_needed);
861 /*
862 * We have to send the CPI only to
863 * CPUs affected.
864 */
865 send_CPI(cpumask, VIC_INVALIDATE_CPI);
866
867 while (smp_invalidate_needed) {
868 mb();
869 if (--stuck == 0) {
870 printk("***WARNING*** Stuck doing invalidate CPI "
871 "(CPU%d)\n", smp_processor_id());
872 break;
873 }
874 }
875
876 /* Uncomment only to debug invalidation problems
877 VDEBUG(("VOYAGER SMP: Completed invalidate CPI (CPU%d)\n", cpu));
878 */
879
880 flush_mm = NULL;
881 flush_va = 0;
882 spin_unlock(&tlbstate_lock);
883 }
884
885 void flush_tlb_current_task(void)
886 {
887 struct mm_struct *mm = current->mm;
888 unsigned long cpu_mask;
889
890 preempt_disable();
891
892 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
893 local_flush_tlb();
894 if (cpu_mask)
895 voyager_flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
896
897 preempt_enable();
898 }
899
900 void flush_tlb_mm(struct mm_struct *mm)
901 {
902 unsigned long cpu_mask;
903
904 preempt_disable();
905
906 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
907
908 if (current->active_mm == mm) {
909 if (current->mm)
910 local_flush_tlb();
911 else
912 voyager_leave_mm(smp_processor_id());
913 }
914 if (cpu_mask)
915 voyager_flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
916
917 preempt_enable();
918 }
919
920 void flush_tlb_page(struct vm_area_struct *vma, unsigned long va)
921 {
922 struct mm_struct *mm = vma->vm_mm;
923 unsigned long cpu_mask;
924
925 preempt_disable();
926
927 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
928 if (current->active_mm == mm) {
929 if (current->mm)
930 __flush_tlb_one(va);
931 else
932 voyager_leave_mm(smp_processor_id());
933 }
934
935 if (cpu_mask)
936 voyager_flush_tlb_others(cpu_mask, mm, va);
937
938 preempt_enable();
939 }
940
941 EXPORT_SYMBOL(flush_tlb_page);
942
943 /* enable the requested IRQs */
944 static void smp_enable_irq_interrupt(void)
945 {
946 __u8 irq;
947 __u8 cpu = get_cpu();
948
949 VDEBUG(("VOYAGER SMP: CPU%d enabling irq mask 0x%x\n", cpu,
950 vic_irq_enable_mask[cpu]));
951
952 spin_lock(&vic_irq_lock);
953 for (irq = 0; irq < 16; irq++) {
954 if (vic_irq_enable_mask[cpu] & (1 << irq))
955 enable_local_vic_irq(irq);
956 }
957 vic_irq_enable_mask[cpu] = 0;
958 spin_unlock(&vic_irq_lock);
959
960 put_cpu_no_resched();
961 }
962
963 /*
964 * CPU halt call-back
965 */
966 static void smp_stop_cpu_function(void *dummy)
967 {
968 VDEBUG(("VOYAGER SMP: CPU%d is STOPPING\n", smp_processor_id()));
969 cpu_clear(smp_processor_id(), cpu_online_map);
970 local_irq_disable();
971 for (;;)
972 halt();
973 }
974
975 static DEFINE_SPINLOCK(call_lock);
976
977 struct call_data_struct {
978 void (*func) (void *info);
979 void *info;
980 volatile unsigned long started;
981 volatile unsigned long finished;
982 int wait;
983 };
984
985 static struct call_data_struct *call_data;
986
987 /* execute a thread on a new CPU. The function to be called must be
988 * previously set up. This is used to schedule a function for
989 * execution on all CPUs - set up the function then broadcast a
990 * function_interrupt CPI to come here on each CPU */
991 static void smp_call_function_interrupt(void)
992 {
993 void (*func) (void *info) = call_data->func;
994 void *info = call_data->info;
995 /* must take copy of wait because call_data may be replaced
996 * unless the function is waiting for us to finish */
997 int wait = call_data->wait;
998 __u8 cpu = smp_processor_id();
999
1000 /*
1001 * Notify initiating CPU that I've grabbed the data and am
1002 * about to execute the function
1003 */
1004 mb();
1005 if (!test_and_clear_bit(cpu, &call_data->started)) {
1006 /* If the bit wasn't set, this could be a replay */
1007 printk(KERN_WARNING "VOYAGER SMP: CPU %d received call funtion"
1008 " with no call pending\n", cpu);
1009 return;
1010 }
1011 /*
1012 * At this point the info structure may be out of scope unless wait==1
1013 */
1014 irq_enter();
1015 (*func) (info);
1016 __get_cpu_var(irq_stat).irq_call_count++;
1017 irq_exit();
1018 if (wait) {
1019 mb();
1020 clear_bit(cpu, &call_data->finished);
1021 }
1022 }
1023
1024 static int
1025 voyager_smp_call_function_mask(cpumask_t cpumask,
1026 void (*func) (void *info), void *info, int wait)
1027 {
1028 struct call_data_struct data;
1029 u32 mask = cpus_addr(cpumask)[0];
1030
1031 mask &= ~(1 << smp_processor_id());
1032
1033 if (!mask)
1034 return 0;
1035
1036 /* Can deadlock when called with interrupts disabled */
1037 WARN_ON(irqs_disabled());
1038
1039 data.func = func;
1040 data.info = info;
1041 data.started = mask;
1042 data.wait = wait;
1043 if (wait)
1044 data.finished = mask;
1045
1046 spin_lock(&call_lock);
1047 call_data = &data;
1048 wmb();
1049 /* Send a message to all other CPUs and wait for them to respond */
1050 send_CPI(mask, VIC_CALL_FUNCTION_CPI);
1051
1052 /* Wait for response */
1053 while (data.started)
1054 barrier();
1055
1056 if (wait)
1057 while (data.finished)
1058 barrier();
1059
1060 spin_unlock(&call_lock);
1061
1062 return 0;
1063 }
1064
1065 /* Sorry about the name. In an APIC based system, the APICs
1066 * themselves are programmed to send a timer interrupt. This is used
1067 * by linux to reschedule the processor. Voyager doesn't have this,
1068 * so we use the system clock to interrupt one processor, which in
1069 * turn, broadcasts a timer CPI to all the others --- we receive that
1070 * CPI here. We don't use this actually for counting so losing
1071 * ticks doesn't matter
1072 *
1073 * FIXME: For those CPUs which actually have a local APIC, we could
1074 * try to use it to trigger this interrupt instead of having to
1075 * broadcast the timer tick. Unfortunately, all my pentium DYADs have
1076 * no local APIC, so I can't do this
1077 *
1078 * This function is currently a placeholder and is unused in the code */
1079 void smp_apic_timer_interrupt(struct pt_regs *regs)
1080 {
1081 struct pt_regs *old_regs = set_irq_regs(regs);
1082 wrapper_smp_local_timer_interrupt();
1083 set_irq_regs(old_regs);
1084 }
1085
1086 /* All of the QUAD interrupt GATES */
1087 void smp_qic_timer_interrupt(struct pt_regs *regs)
1088 {
1089 struct pt_regs *old_regs = set_irq_regs(regs);
1090 ack_QIC_CPI(QIC_TIMER_CPI);
1091 wrapper_smp_local_timer_interrupt();
1092 set_irq_regs(old_regs);
1093 }
1094
1095 void smp_qic_invalidate_interrupt(struct pt_regs *regs)
1096 {
1097 ack_QIC_CPI(QIC_INVALIDATE_CPI);
1098 smp_invalidate_interrupt();
1099 }
1100
1101 void smp_qic_reschedule_interrupt(struct pt_regs *regs)
1102 {
1103 ack_QIC_CPI(QIC_RESCHEDULE_CPI);
1104 smp_reschedule_interrupt();
1105 }
1106
1107 void smp_qic_enable_irq_interrupt(struct pt_regs *regs)
1108 {
1109 ack_QIC_CPI(QIC_ENABLE_IRQ_CPI);
1110 smp_enable_irq_interrupt();
1111 }
1112
1113 void smp_qic_call_function_interrupt(struct pt_regs *regs)
1114 {
1115 ack_QIC_CPI(QIC_CALL_FUNCTION_CPI);
1116 smp_call_function_interrupt();
1117 }
1118
1119 void smp_vic_cpi_interrupt(struct pt_regs *regs)
1120 {
1121 struct pt_regs *old_regs = set_irq_regs(regs);
1122 __u8 cpu = smp_processor_id();
1123
1124 if (is_cpu_quad())
1125 ack_QIC_CPI(VIC_CPI_LEVEL0);
1126 else
1127 ack_VIC_CPI(VIC_CPI_LEVEL0);
1128
1129 if (test_and_clear_bit(VIC_TIMER_CPI, &vic_cpi_mailbox[cpu]))
1130 wrapper_smp_local_timer_interrupt();
1131 if (test_and_clear_bit(VIC_INVALIDATE_CPI, &vic_cpi_mailbox[cpu]))
1132 smp_invalidate_interrupt();
1133 if (test_and_clear_bit(VIC_RESCHEDULE_CPI, &vic_cpi_mailbox[cpu]))
1134 smp_reschedule_interrupt();
1135 if (test_and_clear_bit(VIC_ENABLE_IRQ_CPI, &vic_cpi_mailbox[cpu]))
1136 smp_enable_irq_interrupt();
1137 if (test_and_clear_bit(VIC_CALL_FUNCTION_CPI, &vic_cpi_mailbox[cpu]))
1138 smp_call_function_interrupt();
1139 set_irq_regs(old_regs);
1140 }
1141
1142 static void do_flush_tlb_all(void *info)
1143 {
1144 unsigned long cpu = smp_processor_id();
1145
1146 __flush_tlb_all();
1147 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_LAZY)
1148 voyager_leave_mm(cpu);
1149 }
1150
1151 /* flush the TLB of every active CPU in the system */
1152 void flush_tlb_all(void)
1153 {
1154 on_each_cpu(do_flush_tlb_all, 0, 1, 1);
1155 }
1156
1157 /* used to set up the trampoline for other CPUs when the memory manager
1158 * is sorted out */
1159 void __init smp_alloc_memory(void)
1160 {
1161 trampoline_base = alloc_bootmem_low_pages(PAGE_SIZE);
1162 if (__pa(trampoline_base) >= 0x93000)
1163 BUG();
1164 }
1165
1166 /* send a reschedule CPI to one CPU by physical CPU number*/
1167 static void voyager_smp_send_reschedule(int cpu)
1168 {
1169 send_one_CPI(cpu, VIC_RESCHEDULE_CPI);
1170 }
1171
1172 int hard_smp_processor_id(void)
1173 {
1174 __u8 i;
1175 __u8 cpumask = inb(VIC_PROC_WHO_AM_I);
1176 if ((cpumask & QUAD_IDENTIFIER) == QUAD_IDENTIFIER)
1177 return cpumask & 0x1F;
1178
1179 for (i = 0; i < 8; i++) {
1180 if (cpumask & (1 << i))
1181 return i;
1182 }
1183 printk("** WARNING ** Illegal cpuid returned by VIC: %d", cpumask);
1184 return 0;
1185 }
1186
1187 int safe_smp_processor_id(void)
1188 {
1189 return hard_smp_processor_id();
1190 }
1191
1192 /* broadcast a halt to all other CPUs */
1193 static void voyager_smp_send_stop(void)
1194 {
1195 smp_call_function(smp_stop_cpu_function, NULL, 1, 1);
1196 }
1197
1198 /* this function is triggered in time.c when a clock tick fires
1199 * we need to re-broadcast the tick to all CPUs */
1200 void smp_vic_timer_interrupt(void)
1201 {
1202 send_CPI_allbutself(VIC_TIMER_CPI);
1203 smp_local_timer_interrupt();
1204 }
1205
1206 /* local (per CPU) timer interrupt. It does both profiling and
1207 * process statistics/rescheduling.
1208 *
1209 * We do profiling in every local tick, statistics/rescheduling
1210 * happen only every 'profiling multiplier' ticks. The default
1211 * multiplier is 1 and it can be changed by writing the new multiplier
1212 * value into /proc/profile.
1213 */
1214 void smp_local_timer_interrupt(void)
1215 {
1216 int cpu = smp_processor_id();
1217 long weight;
1218
1219 profile_tick(CPU_PROFILING);
1220 if (--per_cpu(prof_counter, cpu) <= 0) {
1221 /*
1222 * The multiplier may have changed since the last time we got
1223 * to this point as a result of the user writing to
1224 * /proc/profile. In this case we need to adjust the APIC
1225 * timer accordingly.
1226 *
1227 * Interrupts are already masked off at this point.
1228 */
1229 per_cpu(prof_counter, cpu) = per_cpu(prof_multiplier, cpu);
1230 if (per_cpu(prof_counter, cpu) !=
1231 per_cpu(prof_old_multiplier, cpu)) {
1232 /* FIXME: need to update the vic timer tick here */
1233 per_cpu(prof_old_multiplier, cpu) =
1234 per_cpu(prof_counter, cpu);
1235 }
1236
1237 update_process_times(user_mode_vm(get_irq_regs()));
1238 }
1239
1240 if (((1 << cpu) & voyager_extended_vic_processors) == 0)
1241 /* only extended VIC processors participate in
1242 * interrupt distribution */
1243 return;
1244
1245 /*
1246 * We take the 'long' return path, and there every subsystem
1247 * grabs the appropriate locks (kernel lock/ irq lock).
1248 *
1249 * we might want to decouple profiling from the 'long path',
1250 * and do the profiling totally in assembly.
1251 *
1252 * Currently this isn't too much of an issue (performance wise),
1253 * we can take more than 100K local irqs per second on a 100 MHz P5.
1254 */
1255
1256 if ((++vic_tick[cpu] & 0x7) != 0)
1257 return;
1258 /* get here every 16 ticks (about every 1/6 of a second) */
1259
1260 /* Change our priority to give someone else a chance at getting
1261 * the IRQ. The algorithm goes like this:
1262 *
1263 * In the VIC, the dynamically routed interrupt is always
1264 * handled by the lowest priority eligible (i.e. receiving
1265 * interrupts) CPU. If >1 eligible CPUs are equal lowest, the
1266 * lowest processor number gets it.
1267 *
1268 * The priority of a CPU is controlled by a special per-CPU
1269 * VIC priority register which is 3 bits wide 0 being lowest
1270 * and 7 highest priority..
1271 *
1272 * Therefore we subtract the average number of interrupts from
1273 * the number we've fielded. If this number is negative, we
1274 * lower the activity count and if it is positive, we raise
1275 * it.
1276 *
1277 * I'm afraid this still leads to odd looking interrupt counts:
1278 * the totals are all roughly equal, but the individual ones
1279 * look rather skewed.
1280 *
1281 * FIXME: This algorithm is total crap when mixed with SMP
1282 * affinity code since we now try to even up the interrupt
1283 * counts when an affinity binding is keeping them on a
1284 * particular CPU*/
1285 weight = (vic_intr_count[cpu] * voyager_extended_cpus
1286 - vic_intr_total) >> 4;
1287 weight += 4;
1288 if (weight > 7)
1289 weight = 7;
1290 if (weight < 0)
1291 weight = 0;
1292
1293 outb((__u8) weight, VIC_PRIORITY_REGISTER);
1294
1295 #ifdef VOYAGER_DEBUG
1296 if ((vic_tick[cpu] & 0xFFF) == 0) {
1297 /* print this message roughly every 25 secs */
1298 printk("VOYAGER SMP: vic_tick[%d] = %lu, weight = %ld\n",
1299 cpu, vic_tick[cpu], weight);
1300 }
1301 #endif
1302 }
1303
1304 /* setup the profiling timer */
1305 int setup_profiling_timer(unsigned int multiplier)
1306 {
1307 int i;
1308
1309 if ((!multiplier))
1310 return -EINVAL;
1311
1312 /*
1313 * Set the new multiplier for each CPU. CPUs don't start using the
1314 * new values until the next timer interrupt in which they do process
1315 * accounting.
1316 */
1317 for (i = 0; i < NR_CPUS; ++i)
1318 per_cpu(prof_multiplier, i) = multiplier;
1319
1320 return 0;
1321 }
1322
1323 /* This is a bit of a mess, but forced on us by the genirq changes
1324 * there's no genirq handler that really does what voyager wants
1325 * so hack it up with the simple IRQ handler */
1326 static void handle_vic_irq(unsigned int irq, struct irq_desc *desc)
1327 {
1328 before_handle_vic_irq(irq);
1329 handle_simple_irq(irq, desc);
1330 after_handle_vic_irq(irq);
1331 }
1332
1333 /* The CPIs are handled in the per cpu 8259s, so they must be
1334 * enabled to be received: FIX: enabling the CPIs in the early
1335 * boot sequence interferes with bug checking; enable them later
1336 * on in smp_init */
1337 #define VIC_SET_GATE(cpi, vector) \
1338 set_intr_gate((cpi) + VIC_DEFAULT_CPI_BASE, (vector))
1339 #define QIC_SET_GATE(cpi, vector) \
1340 set_intr_gate((cpi) + QIC_DEFAULT_CPI_BASE, (vector))
1341
1342 void __init smp_intr_init(void)
1343 {
1344 int i;
1345
1346 /* initialize the per cpu irq mask to all disabled */
1347 for (i = 0; i < NR_CPUS; i++)
1348 vic_irq_mask[i] = 0xFFFF;
1349
1350 VIC_SET_GATE(VIC_CPI_LEVEL0, vic_cpi_interrupt);
1351
1352 VIC_SET_GATE(VIC_SYS_INT, vic_sys_interrupt);
1353 VIC_SET_GATE(VIC_CMN_INT, vic_cmn_interrupt);
1354
1355 QIC_SET_GATE(QIC_TIMER_CPI, qic_timer_interrupt);
1356 QIC_SET_GATE(QIC_INVALIDATE_CPI, qic_invalidate_interrupt);
1357 QIC_SET_GATE(QIC_RESCHEDULE_CPI, qic_reschedule_interrupt);
1358 QIC_SET_GATE(QIC_ENABLE_IRQ_CPI, qic_enable_irq_interrupt);
1359 QIC_SET_GATE(QIC_CALL_FUNCTION_CPI, qic_call_function_interrupt);
1360
1361 /* now put the VIC descriptor into the first 48 IRQs
1362 *
1363 * This is for later: first 16 correspond to PC IRQs; next 16
1364 * are Primary MC IRQs and final 16 are Secondary MC IRQs */
1365 for (i = 0; i < 48; i++)
1366 set_irq_chip_and_handler(i, &vic_chip, handle_vic_irq);
1367 }
1368
1369 /* send a CPI at level cpi to a set of cpus in cpuset (set 1 bit per
1370 * processor to receive CPI */
1371 static void send_CPI(__u32 cpuset, __u8 cpi)
1372 {
1373 int cpu;
1374 __u32 quad_cpuset = (cpuset & voyager_quad_processors);
1375
1376 if (cpi < VIC_START_FAKE_CPI) {
1377 /* fake CPI are only used for booting, so send to the
1378 * extended quads as well---Quads must be VIC booted */
1379 outb((__u8) (cpuset), VIC_CPI_Registers[cpi]);
1380 return;
1381 }
1382 if (quad_cpuset)
1383 send_QIC_CPI(quad_cpuset, cpi);
1384 cpuset &= ~quad_cpuset;
1385 cpuset &= 0xff; /* only first 8 CPUs vaild for VIC CPI */
1386 if (cpuset == 0)
1387 return;
1388 for_each_online_cpu(cpu) {
1389 if (cpuset & (1 << cpu))
1390 set_bit(cpi, &vic_cpi_mailbox[cpu]);
1391 }
1392 if (cpuset)
1393 outb((__u8) cpuset, VIC_CPI_Registers[VIC_CPI_LEVEL0]);
1394 }
1395
1396 /* Acknowledge receipt of CPI in the QIC, clear in QIC hardware and
1397 * set the cache line to shared by reading it.
1398 *
1399 * DON'T make this inline otherwise the cache line read will be
1400 * optimised away
1401 * */
1402 static int ack_QIC_CPI(__u8 cpi)
1403 {
1404 __u8 cpu = hard_smp_processor_id();
1405
1406 cpi &= 7;
1407
1408 outb(1 << cpi, QIC_INTERRUPT_CLEAR1);
1409 return voyager_quad_cpi_addr[cpu]->qic_cpi[cpi].cpi;
1410 }
1411
1412 static void ack_special_QIC_CPI(__u8 cpi)
1413 {
1414 switch (cpi) {
1415 case VIC_CMN_INT:
1416 outb(QIC_CMN_INT, QIC_INTERRUPT_CLEAR0);
1417 break;
1418 case VIC_SYS_INT:
1419 outb(QIC_SYS_INT, QIC_INTERRUPT_CLEAR0);
1420 break;
1421 }
1422 /* also clear at the VIC, just in case (nop for non-extended proc) */
1423 ack_VIC_CPI(cpi);
1424 }
1425
1426 /* Acknowledge receipt of CPI in the VIC (essentially an EOI) */
1427 static void ack_VIC_CPI(__u8 cpi)
1428 {
1429 #ifdef VOYAGER_DEBUG
1430 unsigned long flags;
1431 __u16 isr;
1432 __u8 cpu = smp_processor_id();
1433
1434 local_irq_save(flags);
1435 isr = vic_read_isr();
1436 if ((isr & (1 << (cpi & 7))) == 0) {
1437 printk("VOYAGER SMP: CPU%d lost CPI%d\n", cpu, cpi);
1438 }
1439 #endif
1440 /* send specific EOI; the two system interrupts have
1441 * bit 4 set for a separate vector but behave as the
1442 * corresponding 3 bit intr */
1443 outb_p(0x60 | (cpi & 7), 0x20);
1444
1445 #ifdef VOYAGER_DEBUG
1446 if ((vic_read_isr() & (1 << (cpi & 7))) != 0) {
1447 printk("VOYAGER SMP: CPU%d still asserting CPI%d\n", cpu, cpi);
1448 }
1449 local_irq_restore(flags);
1450 #endif
1451 }
1452
1453 /* cribbed with thanks from irq.c */
1454 #define __byte(x,y) (((unsigned char *)&(y))[x])
1455 #define cached_21(cpu) (__byte(0,vic_irq_mask[cpu]))
1456 #define cached_A1(cpu) (__byte(1,vic_irq_mask[cpu]))
1457
1458 static unsigned int startup_vic_irq(unsigned int irq)
1459 {
1460 unmask_vic_irq(irq);
1461
1462 return 0;
1463 }
1464
1465 /* The enable and disable routines. This is where we run into
1466 * conflicting architectural philosophy. Fundamentally, the voyager
1467 * architecture does not expect to have to disable interrupts globally
1468 * (the IRQ controllers belong to each CPU). The processor masquerade
1469 * which is used to start the system shouldn't be used in a running OS
1470 * since it will cause great confusion if two separate CPUs drive to
1471 * the same IRQ controller (I know, I've tried it).
1472 *
1473 * The solution is a variant on the NCR lazy SPL design:
1474 *
1475 * 1) To disable an interrupt, do nothing (other than set the
1476 * IRQ_DISABLED flag). This dares the interrupt actually to arrive.
1477 *
1478 * 2) If the interrupt dares to come in, raise the local mask against
1479 * it (this will result in all the CPU masks being raised
1480 * eventually).
1481 *
1482 * 3) To enable the interrupt, lower the mask on the local CPU and
1483 * broadcast an Interrupt enable CPI which causes all other CPUs to
1484 * adjust their masks accordingly. */
1485
1486 static void unmask_vic_irq(unsigned int irq)
1487 {
1488 /* linux doesn't to processor-irq affinity, so enable on
1489 * all CPUs we know about */
1490 int cpu = smp_processor_id(), real_cpu;
1491 __u16 mask = (1 << irq);
1492 __u32 processorList = 0;
1493 unsigned long flags;
1494
1495 VDEBUG(("VOYAGER: unmask_vic_irq(%d) CPU%d affinity 0x%lx\n",
1496 irq, cpu, cpu_irq_affinity[cpu]));
1497 spin_lock_irqsave(&vic_irq_lock, flags);
1498 for_each_online_cpu(real_cpu) {
1499 if (!(voyager_extended_vic_processors & (1 << real_cpu)))
1500 continue;
1501 if (!(cpu_irq_affinity[real_cpu] & mask)) {
1502 /* irq has no affinity for this CPU, ignore */
1503 continue;
1504 }
1505 if (real_cpu == cpu) {
1506 enable_local_vic_irq(irq);
1507 } else if (vic_irq_mask[real_cpu] & mask) {
1508 vic_irq_enable_mask[real_cpu] |= mask;
1509 processorList |= (1 << real_cpu);
1510 }
1511 }
1512 spin_unlock_irqrestore(&vic_irq_lock, flags);
1513 if (processorList)
1514 send_CPI(processorList, VIC_ENABLE_IRQ_CPI);
1515 }
1516
1517 static void mask_vic_irq(unsigned int irq)
1518 {
1519 /* lazy disable, do nothing */
1520 }
1521
1522 static void enable_local_vic_irq(unsigned int irq)
1523 {
1524 __u8 cpu = smp_processor_id();
1525 __u16 mask = ~(1 << irq);
1526 __u16 old_mask = vic_irq_mask[cpu];
1527
1528 vic_irq_mask[cpu] &= mask;
1529 if (vic_irq_mask[cpu] == old_mask)
1530 return;
1531
1532 VDEBUG(("VOYAGER DEBUG: Enabling irq %d in hardware on CPU %d\n",
1533 irq, cpu));
1534
1535 if (irq & 8) {
1536 outb_p(cached_A1(cpu), 0xA1);
1537 (void)inb_p(0xA1);
1538 } else {
1539 outb_p(cached_21(cpu), 0x21);
1540 (void)inb_p(0x21);
1541 }
1542 }
1543
1544 static void disable_local_vic_irq(unsigned int irq)
1545 {
1546 __u8 cpu = smp_processor_id();
1547 __u16 mask = (1 << irq);
1548 __u16 old_mask = vic_irq_mask[cpu];
1549
1550 if (irq == 7)
1551 return;
1552
1553 vic_irq_mask[cpu] |= mask;
1554 if (old_mask == vic_irq_mask[cpu])
1555 return;
1556
1557 VDEBUG(("VOYAGER DEBUG: Disabling irq %d in hardware on CPU %d\n",
1558 irq, cpu));
1559
1560 if (irq & 8) {
1561 outb_p(cached_A1(cpu), 0xA1);
1562 (void)inb_p(0xA1);
1563 } else {
1564 outb_p(cached_21(cpu), 0x21);
1565 (void)inb_p(0x21);
1566 }
1567 }
1568
1569 /* The VIC is level triggered, so the ack can only be issued after the
1570 * interrupt completes. However, we do Voyager lazy interrupt
1571 * handling here: It is an extremely expensive operation to mask an
1572 * interrupt in the vic, so we merely set a flag (IRQ_DISABLED). If
1573 * this interrupt actually comes in, then we mask and ack here to push
1574 * the interrupt off to another CPU */
1575 static void before_handle_vic_irq(unsigned int irq)
1576 {
1577 irq_desc_t *desc = irq_desc + irq;
1578 __u8 cpu = smp_processor_id();
1579
1580 _raw_spin_lock(&vic_irq_lock);
1581 vic_intr_total++;
1582 vic_intr_count[cpu]++;
1583
1584 if (!(cpu_irq_affinity[cpu] & (1 << irq))) {
1585 /* The irq is not in our affinity mask, push it off
1586 * onto another CPU */
1587 VDEBUG(("VOYAGER DEBUG: affinity triggered disable of irq %d "
1588 "on cpu %d\n", irq, cpu));
1589 disable_local_vic_irq(irq);
1590 /* set IRQ_INPROGRESS to prevent the handler in irq.c from
1591 * actually calling the interrupt routine */
1592 desc->status |= IRQ_REPLAY | IRQ_INPROGRESS;
1593 } else if (desc->status & IRQ_DISABLED) {
1594 /* Damn, the interrupt actually arrived, do the lazy
1595 * disable thing. The interrupt routine in irq.c will
1596 * not handle a IRQ_DISABLED interrupt, so nothing more
1597 * need be done here */
1598 VDEBUG(("VOYAGER DEBUG: lazy disable of irq %d on CPU %d\n",
1599 irq, cpu));
1600 disable_local_vic_irq(irq);
1601 desc->status |= IRQ_REPLAY;
1602 } else {
1603 desc->status &= ~IRQ_REPLAY;
1604 }
1605
1606 _raw_spin_unlock(&vic_irq_lock);
1607 }
1608
1609 /* Finish the VIC interrupt: basically mask */
1610 static void after_handle_vic_irq(unsigned int irq)
1611 {
1612 irq_desc_t *desc = irq_desc + irq;
1613
1614 _raw_spin_lock(&vic_irq_lock);
1615 {
1616 unsigned int status = desc->status & ~IRQ_INPROGRESS;
1617 #ifdef VOYAGER_DEBUG
1618 __u16 isr;
1619 #endif
1620
1621 desc->status = status;
1622 if ((status & IRQ_DISABLED))
1623 disable_local_vic_irq(irq);
1624 #ifdef VOYAGER_DEBUG
1625 /* DEBUG: before we ack, check what's in progress */
1626 isr = vic_read_isr();
1627 if ((isr & (1 << irq) && !(status & IRQ_REPLAY)) == 0) {
1628 int i;
1629 __u8 cpu = smp_processor_id();
1630 __u8 real_cpu;
1631 int mask; /* Um... initialize me??? --RR */
1632
1633 printk("VOYAGER SMP: CPU%d lost interrupt %d\n",
1634 cpu, irq);
1635 for_each_possible_cpu(real_cpu, mask) {
1636
1637 outb(VIC_CPU_MASQUERADE_ENABLE | real_cpu,
1638 VIC_PROCESSOR_ID);
1639 isr = vic_read_isr();
1640 if (isr & (1 << irq)) {
1641 printk
1642 ("VOYAGER SMP: CPU%d ack irq %d\n",
1643 real_cpu, irq);
1644 ack_vic_irq(irq);
1645 }
1646 outb(cpu, VIC_PROCESSOR_ID);
1647 }
1648 }
1649 #endif /* VOYAGER_DEBUG */
1650 /* as soon as we ack, the interrupt is eligible for
1651 * receipt by another CPU so everything must be in
1652 * order here */
1653 ack_vic_irq(irq);
1654 if (status & IRQ_REPLAY) {
1655 /* replay is set if we disable the interrupt
1656 * in the before_handle_vic_irq() routine, so
1657 * clear the in progress bit here to allow the
1658 * next CPU to handle this correctly */
1659 desc->status &= ~(IRQ_REPLAY | IRQ_INPROGRESS);
1660 }
1661 #ifdef VOYAGER_DEBUG
1662 isr = vic_read_isr();
1663 if ((isr & (1 << irq)) != 0)
1664 printk("VOYAGER SMP: after_handle_vic_irq() after "
1665 "ack irq=%d, isr=0x%x\n", irq, isr);
1666 #endif /* VOYAGER_DEBUG */
1667 }
1668 _raw_spin_unlock(&vic_irq_lock);
1669
1670 /* All code after this point is out of the main path - the IRQ
1671 * may be intercepted by another CPU if reasserted */
1672 }
1673
1674 /* Linux processor - interrupt affinity manipulations.
1675 *
1676 * For each processor, we maintain a 32 bit irq affinity mask.
1677 * Initially it is set to all 1's so every processor accepts every
1678 * interrupt. In this call, we change the processor's affinity mask:
1679 *
1680 * Change from enable to disable:
1681 *
1682 * If the interrupt ever comes in to the processor, we will disable it
1683 * and ack it to push it off to another CPU, so just accept the mask here.
1684 *
1685 * Change from disable to enable:
1686 *
1687 * change the mask and then do an interrupt enable CPI to re-enable on
1688 * the selected processors */
1689
1690 void set_vic_irq_affinity(unsigned int irq, cpumask_t mask)
1691 {
1692 /* Only extended processors handle interrupts */
1693 unsigned long real_mask;
1694 unsigned long irq_mask = 1 << irq;
1695 int cpu;
1696
1697 real_mask = cpus_addr(mask)[0] & voyager_extended_vic_processors;
1698
1699 if (cpus_addr(mask)[0] == 0)
1700 /* can't have no CPUs to accept the interrupt -- extremely
1701 * bad things will happen */
1702 return;
1703
1704 if (irq == 0)
1705 /* can't change the affinity of the timer IRQ. This
1706 * is due to the constraint in the voyager
1707 * architecture that the CPI also comes in on and IRQ
1708 * line and we have chosen IRQ0 for this. If you
1709 * raise the mask on this interrupt, the processor
1710 * will no-longer be able to accept VIC CPIs */
1711 return;
1712
1713 if (irq >= 32)
1714 /* You can only have 32 interrupts in a voyager system
1715 * (and 32 only if you have a secondary microchannel
1716 * bus) */
1717 return;
1718
1719 for_each_online_cpu(cpu) {
1720 unsigned long cpu_mask = 1 << cpu;
1721
1722 if (cpu_mask & real_mask) {
1723 /* enable the interrupt for this cpu */
1724 cpu_irq_affinity[cpu] |= irq_mask;
1725 } else {
1726 /* disable the interrupt for this cpu */
1727 cpu_irq_affinity[cpu] &= ~irq_mask;
1728 }
1729 }
1730 /* this is magic, we now have the correct affinity maps, so
1731 * enable the interrupt. This will send an enable CPI to
1732 * those CPUs who need to enable it in their local masks,
1733 * causing them to correct for the new affinity . If the
1734 * interrupt is currently globally disabled, it will simply be
1735 * disabled again as it comes in (voyager lazy disable). If
1736 * the affinity map is tightened to disable the interrupt on a
1737 * cpu, it will be pushed off when it comes in */
1738 unmask_vic_irq(irq);
1739 }
1740
1741 static void ack_vic_irq(unsigned int irq)
1742 {
1743 if (irq & 8) {
1744 outb(0x62, 0x20); /* Specific EOI to cascade */
1745 outb(0x60 | (irq & 7), 0xA0);
1746 } else {
1747 outb(0x60 | (irq & 7), 0x20);
1748 }
1749 }
1750
1751 /* enable the CPIs. In the VIC, the CPIs are delivered by the 8259
1752 * but are not vectored by it. This means that the 8259 mask must be
1753 * lowered to receive them */
1754 static __init void vic_enable_cpi(void)
1755 {
1756 __u8 cpu = smp_processor_id();
1757
1758 /* just take a copy of the current mask (nop for boot cpu) */
1759 vic_irq_mask[cpu] = vic_irq_mask[boot_cpu_id];
1760
1761 enable_local_vic_irq(VIC_CPI_LEVEL0);
1762 enable_local_vic_irq(VIC_CPI_LEVEL1);
1763 /* for sys int and cmn int */
1764 enable_local_vic_irq(7);
1765
1766 if (is_cpu_quad()) {
1767 outb(QIC_DEFAULT_MASK0, QIC_MASK_REGISTER0);
1768 outb(QIC_CPI_ENABLE, QIC_MASK_REGISTER1);
1769 VDEBUG(("VOYAGER SMP: QIC ENABLE CPI: CPU%d: MASK 0x%x\n",
1770 cpu, QIC_CPI_ENABLE));
1771 }
1772
1773 VDEBUG(("VOYAGER SMP: ENABLE CPI: CPU%d: MASK 0x%x\n",
1774 cpu, vic_irq_mask[cpu]));
1775 }
1776
1777 void voyager_smp_dump()
1778 {
1779 int old_cpu = smp_processor_id(), cpu;
1780
1781 /* dump the interrupt masks of each processor */
1782 for_each_online_cpu(cpu) {
1783 __u16 imr, isr, irr;
1784 unsigned long flags;
1785
1786 local_irq_save(flags);
1787 outb(VIC_CPU_MASQUERADE_ENABLE | cpu, VIC_PROCESSOR_ID);
1788 imr = (inb(0xa1) << 8) | inb(0x21);
1789 outb(0x0a, 0xa0);
1790 irr = inb(0xa0) << 8;
1791 outb(0x0a, 0x20);
1792 irr |= inb(0x20);
1793 outb(0x0b, 0xa0);
1794 isr = inb(0xa0) << 8;
1795 outb(0x0b, 0x20);
1796 isr |= inb(0x20);
1797 outb(old_cpu, VIC_PROCESSOR_ID);
1798 local_irq_restore(flags);
1799 printk("\tCPU%d: mask=0x%x, IMR=0x%x, IRR=0x%x, ISR=0x%x\n",
1800 cpu, vic_irq_mask[cpu], imr, irr, isr);
1801 #if 0
1802 /* These lines are put in to try to unstick an un ack'd irq */
1803 if (isr != 0) {
1804 int irq;
1805 for (irq = 0; irq < 16; irq++) {
1806 if (isr & (1 << irq)) {
1807 printk("\tCPU%d: ack irq %d\n",
1808 cpu, irq);
1809 local_irq_save(flags);
1810 outb(VIC_CPU_MASQUERADE_ENABLE | cpu,
1811 VIC_PROCESSOR_ID);
1812 ack_vic_irq(irq);
1813 outb(old_cpu, VIC_PROCESSOR_ID);
1814 local_irq_restore(flags);
1815 }
1816 }
1817 }
1818 #endif
1819 }
1820 }
1821
1822 void smp_voyager_power_off(void *dummy)
1823 {
1824 if (smp_processor_id() == boot_cpu_id)
1825 voyager_power_off();
1826 else
1827 smp_stop_cpu_function(NULL);
1828 }
1829
1830 static void __init voyager_smp_prepare_cpus(unsigned int max_cpus)
1831 {
1832 /* FIXME: ignore max_cpus for now */
1833 smp_boot_cpus();
1834 }
1835
1836 static void __cpuinit voyager_smp_prepare_boot_cpu(void)
1837 {
1838 init_gdt(smp_processor_id());
1839 switch_to_new_gdt();
1840
1841 cpu_set(smp_processor_id(), cpu_online_map);
1842 cpu_set(smp_processor_id(), cpu_callout_map);
1843 cpu_set(smp_processor_id(), cpu_possible_map);
1844 cpu_set(smp_processor_id(), cpu_present_map);
1845 }
1846
1847 static int __cpuinit voyager_cpu_up(unsigned int cpu)
1848 {
1849 /* This only works at boot for x86. See "rewrite" above. */
1850 if (cpu_isset(cpu, smp_commenced_mask))
1851 return -ENOSYS;
1852
1853 /* In case one didn't come up */
1854 if (!cpu_isset(cpu, cpu_callin_map))
1855 return -EIO;
1856 /* Unleash the CPU! */
1857 cpu_set(cpu, smp_commenced_mask);
1858 while (!cpu_isset(cpu, cpu_online_map))
1859 mb();
1860 return 0;
1861 }
1862
1863 static void __init voyager_smp_cpus_done(unsigned int max_cpus)
1864 {
1865 zap_low_mappings();
1866 }
1867
1868 void __init smp_setup_processor_id(void)
1869 {
1870 current_thread_info()->cpu = hard_smp_processor_id();
1871 x86_write_percpu(cpu_number, hard_smp_processor_id());
1872 }
1873
1874 struct smp_ops smp_ops = {
1875 .smp_prepare_boot_cpu = voyager_smp_prepare_boot_cpu,
1876 .smp_prepare_cpus = voyager_smp_prepare_cpus,
1877 .cpu_up = voyager_cpu_up,
1878 .smp_cpus_done = voyager_smp_cpus_done,
1879
1880 .smp_send_stop = voyager_smp_send_stop,
1881 .smp_send_reschedule = voyager_smp_send_reschedule,
1882 .smp_call_function_mask = voyager_smp_call_function_mask,
1883 };
This page took 0.124615 seconds and 5 git commands to generate.