mm: drop unneeded pgdat argument from free_area_init_node()
[deliverable/linux.git] / arch / x86 / mach-voyager / voyager_smp.c
1 /* -*- mode: c; c-basic-offset: 8 -*- */
2
3 /* Copyright (C) 1999,2001
4 *
5 * Author: J.E.J.Bottomley@HansenPartnership.com
6 *
7 * This file provides all the same external entries as smp.c but uses
8 * the voyager hal to provide the functionality
9 */
10 #include <linux/module.h>
11 #include <linux/mm.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/delay.h>
14 #include <linux/mc146818rtc.h>
15 #include <linux/cache.h>
16 #include <linux/interrupt.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/bootmem.h>
20 #include <linux/completion.h>
21 #include <asm/desc.h>
22 #include <asm/voyager.h>
23 #include <asm/vic.h>
24 #include <asm/mtrr.h>
25 #include <asm/pgalloc.h>
26 #include <asm/tlbflush.h>
27 #include <asm/arch_hooks.h>
28 #include <asm/trampoline.h>
29
30 /* TLB state -- visible externally, indexed physically */
31 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = { &init_mm, 0 };
32
33 /* CPU IRQ affinity -- set to all ones initially */
34 static unsigned long cpu_irq_affinity[NR_CPUS] __cacheline_aligned =
35 {[0 ... NR_CPUS-1] = ~0UL };
36
37 /* per CPU data structure (for /proc/cpuinfo et al), visible externally
38 * indexed physically */
39 DEFINE_PER_CPU_SHARED_ALIGNED(struct cpuinfo_x86, cpu_info);
40 EXPORT_PER_CPU_SYMBOL(cpu_info);
41
42 /* physical ID of the CPU used to boot the system */
43 unsigned char boot_cpu_id;
44
45 /* The memory line addresses for the Quad CPIs */
46 struct voyager_qic_cpi *voyager_quad_cpi_addr[NR_CPUS] __cacheline_aligned;
47
48 /* The masks for the Extended VIC processors, filled in by cat_init */
49 __u32 voyager_extended_vic_processors = 0;
50
51 /* Masks for the extended Quad processors which cannot be VIC booted */
52 __u32 voyager_allowed_boot_processors = 0;
53
54 /* The mask for the Quad Processors (both extended and non-extended) */
55 __u32 voyager_quad_processors = 0;
56
57 /* Total count of live CPUs, used in process.c to display
58 * the CPU information and in irq.c for the per CPU irq
59 * activity count. Finally exported by i386_ksyms.c */
60 static int voyager_extended_cpus = 1;
61
62 /* Used for the invalidate map that's also checked in the spinlock */
63 static volatile unsigned long smp_invalidate_needed;
64
65 /* Bitmask of currently online CPUs - used by setup.c for
66 /proc/cpuinfo, visible externally but still physical */
67 cpumask_t cpu_online_map = CPU_MASK_NONE;
68 EXPORT_SYMBOL(cpu_online_map);
69
70 /* Bitmask of CPUs present in the system - exported by i386_syms.c, used
71 * by scheduler but indexed physically */
72 cpumask_t phys_cpu_present_map = CPU_MASK_NONE;
73
74 /* The internal functions */
75 static void send_CPI(__u32 cpuset, __u8 cpi);
76 static void ack_CPI(__u8 cpi);
77 static int ack_QIC_CPI(__u8 cpi);
78 static void ack_special_QIC_CPI(__u8 cpi);
79 static void ack_VIC_CPI(__u8 cpi);
80 static void send_CPI_allbutself(__u8 cpi);
81 static void mask_vic_irq(unsigned int irq);
82 static void unmask_vic_irq(unsigned int irq);
83 static unsigned int startup_vic_irq(unsigned int irq);
84 static void enable_local_vic_irq(unsigned int irq);
85 static void disable_local_vic_irq(unsigned int irq);
86 static void before_handle_vic_irq(unsigned int irq);
87 static void after_handle_vic_irq(unsigned int irq);
88 static void set_vic_irq_affinity(unsigned int irq, cpumask_t mask);
89 static void ack_vic_irq(unsigned int irq);
90 static void vic_enable_cpi(void);
91 static void do_boot_cpu(__u8 cpuid);
92 static void do_quad_bootstrap(void);
93
94 int hard_smp_processor_id(void);
95 int safe_smp_processor_id(void);
96
97 /* Inline functions */
98 static inline void send_one_QIC_CPI(__u8 cpu, __u8 cpi)
99 {
100 voyager_quad_cpi_addr[cpu]->qic_cpi[cpi].cpi =
101 (smp_processor_id() << 16) + cpi;
102 }
103
104 static inline void send_QIC_CPI(__u32 cpuset, __u8 cpi)
105 {
106 int cpu;
107
108 for_each_online_cpu(cpu) {
109 if (cpuset & (1 << cpu)) {
110 #ifdef VOYAGER_DEBUG
111 if (!cpu_online(cpu))
112 VDEBUG(("CPU%d sending cpi %d to CPU%d not in "
113 "cpu_online_map\n",
114 hard_smp_processor_id(), cpi, cpu));
115 #endif
116 send_one_QIC_CPI(cpu, cpi - QIC_CPI_OFFSET);
117 }
118 }
119 }
120
121 static inline void wrapper_smp_local_timer_interrupt(void)
122 {
123 irq_enter();
124 smp_local_timer_interrupt();
125 irq_exit();
126 }
127
128 static inline void send_one_CPI(__u8 cpu, __u8 cpi)
129 {
130 if (voyager_quad_processors & (1 << cpu))
131 send_one_QIC_CPI(cpu, cpi - QIC_CPI_OFFSET);
132 else
133 send_CPI(1 << cpu, cpi);
134 }
135
136 static inline void send_CPI_allbutself(__u8 cpi)
137 {
138 __u8 cpu = smp_processor_id();
139 __u32 mask = cpus_addr(cpu_online_map)[0] & ~(1 << cpu);
140 send_CPI(mask, cpi);
141 }
142
143 static inline int is_cpu_quad(void)
144 {
145 __u8 cpumask = inb(VIC_PROC_WHO_AM_I);
146 return ((cpumask & QUAD_IDENTIFIER) == QUAD_IDENTIFIER);
147 }
148
149 static inline int is_cpu_extended(void)
150 {
151 __u8 cpu = hard_smp_processor_id();
152
153 return (voyager_extended_vic_processors & (1 << cpu));
154 }
155
156 static inline int is_cpu_vic_boot(void)
157 {
158 __u8 cpu = hard_smp_processor_id();
159
160 return (voyager_extended_vic_processors
161 & voyager_allowed_boot_processors & (1 << cpu));
162 }
163
164 static inline void ack_CPI(__u8 cpi)
165 {
166 switch (cpi) {
167 case VIC_CPU_BOOT_CPI:
168 if (is_cpu_quad() && !is_cpu_vic_boot())
169 ack_QIC_CPI(cpi);
170 else
171 ack_VIC_CPI(cpi);
172 break;
173 case VIC_SYS_INT:
174 case VIC_CMN_INT:
175 /* These are slightly strange. Even on the Quad card,
176 * They are vectored as VIC CPIs */
177 if (is_cpu_quad())
178 ack_special_QIC_CPI(cpi);
179 else
180 ack_VIC_CPI(cpi);
181 break;
182 default:
183 printk("VOYAGER ERROR: CPI%d is in common CPI code\n", cpi);
184 break;
185 }
186 }
187
188 /* local variables */
189
190 /* The VIC IRQ descriptors -- these look almost identical to the
191 * 8259 IRQs except that masks and things must be kept per processor
192 */
193 static struct irq_chip vic_chip = {
194 .name = "VIC",
195 .startup = startup_vic_irq,
196 .mask = mask_vic_irq,
197 .unmask = unmask_vic_irq,
198 .set_affinity = set_vic_irq_affinity,
199 };
200
201 /* used to count up as CPUs are brought on line (starts at 0) */
202 static int cpucount = 0;
203
204 /* The per cpu profile stuff - used in smp_local_timer_interrupt */
205 static DEFINE_PER_CPU(int, prof_multiplier) = 1;
206 static DEFINE_PER_CPU(int, prof_old_multiplier) = 1;
207 static DEFINE_PER_CPU(int, prof_counter) = 1;
208
209 /* the map used to check if a CPU has booted */
210 static __u32 cpu_booted_map;
211
212 /* the synchronize flag used to hold all secondary CPUs spinning in
213 * a tight loop until the boot sequence is ready for them */
214 static cpumask_t smp_commenced_mask = CPU_MASK_NONE;
215
216 /* This is for the new dynamic CPU boot code */
217 cpumask_t cpu_callin_map = CPU_MASK_NONE;
218 cpumask_t cpu_callout_map = CPU_MASK_NONE;
219 cpumask_t cpu_possible_map = CPU_MASK_NONE;
220 EXPORT_SYMBOL(cpu_possible_map);
221
222 /* The per processor IRQ masks (these are usually kept in sync) */
223 static __u16 vic_irq_mask[NR_CPUS] __cacheline_aligned;
224
225 /* the list of IRQs to be enabled by the VIC_ENABLE_IRQ_CPI */
226 static __u16 vic_irq_enable_mask[NR_CPUS] __cacheline_aligned = { 0 };
227
228 /* Lock for enable/disable of VIC interrupts */
229 static __cacheline_aligned DEFINE_SPINLOCK(vic_irq_lock);
230
231 /* The boot processor is correctly set up in PC mode when it
232 * comes up, but the secondaries need their master/slave 8259
233 * pairs initializing correctly */
234
235 /* Interrupt counters (per cpu) and total - used to try to
236 * even up the interrupt handling routines */
237 static long vic_intr_total = 0;
238 static long vic_intr_count[NR_CPUS] __cacheline_aligned = { 0 };
239 static unsigned long vic_tick[NR_CPUS] __cacheline_aligned = { 0 };
240
241 /* Since we can only use CPI0, we fake all the other CPIs */
242 static unsigned long vic_cpi_mailbox[NR_CPUS] __cacheline_aligned;
243
244 /* debugging routine to read the isr of the cpu's pic */
245 static inline __u16 vic_read_isr(void)
246 {
247 __u16 isr;
248
249 outb(0x0b, 0xa0);
250 isr = inb(0xa0) << 8;
251 outb(0x0b, 0x20);
252 isr |= inb(0x20);
253
254 return isr;
255 }
256
257 static __init void qic_setup(void)
258 {
259 if (!is_cpu_quad()) {
260 /* not a quad, no setup */
261 return;
262 }
263 outb(QIC_DEFAULT_MASK0, QIC_MASK_REGISTER0);
264 outb(QIC_CPI_ENABLE, QIC_MASK_REGISTER1);
265
266 if (is_cpu_extended()) {
267 /* the QIC duplicate of the VIC base register */
268 outb(VIC_DEFAULT_CPI_BASE, QIC_VIC_CPI_BASE_REGISTER);
269 outb(QIC_DEFAULT_CPI_BASE, QIC_CPI_BASE_REGISTER);
270
271 /* FIXME: should set up the QIC timer and memory parity
272 * error vectors here */
273 }
274 }
275
276 static __init void vic_setup_pic(void)
277 {
278 outb(1, VIC_REDIRECT_REGISTER_1);
279 /* clear the claim registers for dynamic routing */
280 outb(0, VIC_CLAIM_REGISTER_0);
281 outb(0, VIC_CLAIM_REGISTER_1);
282
283 outb(0, VIC_PRIORITY_REGISTER);
284 /* Set the Primary and Secondary Microchannel vector
285 * bases to be the same as the ordinary interrupts
286 *
287 * FIXME: This would be more efficient using separate
288 * vectors. */
289 outb(FIRST_EXTERNAL_VECTOR, VIC_PRIMARY_MC_BASE);
290 outb(FIRST_EXTERNAL_VECTOR, VIC_SECONDARY_MC_BASE);
291 /* Now initiallise the master PIC belonging to this CPU by
292 * sending the four ICWs */
293
294 /* ICW1: level triggered, ICW4 needed */
295 outb(0x19, 0x20);
296
297 /* ICW2: vector base */
298 outb(FIRST_EXTERNAL_VECTOR, 0x21);
299
300 /* ICW3: slave at line 2 */
301 outb(0x04, 0x21);
302
303 /* ICW4: 8086 mode */
304 outb(0x01, 0x21);
305
306 /* now the same for the slave PIC */
307
308 /* ICW1: level trigger, ICW4 needed */
309 outb(0x19, 0xA0);
310
311 /* ICW2: slave vector base */
312 outb(FIRST_EXTERNAL_VECTOR + 8, 0xA1);
313
314 /* ICW3: slave ID */
315 outb(0x02, 0xA1);
316
317 /* ICW4: 8086 mode */
318 outb(0x01, 0xA1);
319 }
320
321 static void do_quad_bootstrap(void)
322 {
323 if (is_cpu_quad() && is_cpu_vic_boot()) {
324 int i;
325 unsigned long flags;
326 __u8 cpuid = hard_smp_processor_id();
327
328 local_irq_save(flags);
329
330 for (i = 0; i < 4; i++) {
331 /* FIXME: this would be >>3 &0x7 on the 32 way */
332 if (((cpuid >> 2) & 0x03) == i)
333 /* don't lower our own mask! */
334 continue;
335
336 /* masquerade as local Quad CPU */
337 outb(QIC_CPUID_ENABLE | i, QIC_PROCESSOR_ID);
338 /* enable the startup CPI */
339 outb(QIC_BOOT_CPI_MASK, QIC_MASK_REGISTER1);
340 /* restore cpu id */
341 outb(0, QIC_PROCESSOR_ID);
342 }
343 local_irq_restore(flags);
344 }
345 }
346
347 /* Set up all the basic stuff: read the SMP config and make all the
348 * SMP information reflect only the boot cpu. All others will be
349 * brought on-line later. */
350 void __init find_smp_config(void)
351 {
352 int i;
353
354 boot_cpu_id = hard_smp_processor_id();
355
356 printk("VOYAGER SMP: Boot cpu is %d\n", boot_cpu_id);
357
358 /* initialize the CPU structures (moved from smp_boot_cpus) */
359 for (i = 0; i < NR_CPUS; i++) {
360 cpu_irq_affinity[i] = ~0;
361 }
362 cpu_online_map = cpumask_of_cpu(boot_cpu_id);
363
364 /* The boot CPU must be extended */
365 voyager_extended_vic_processors = 1 << boot_cpu_id;
366 /* initially, all of the first 8 CPUs can boot */
367 voyager_allowed_boot_processors = 0xff;
368 /* set up everything for just this CPU, we can alter
369 * this as we start the other CPUs later */
370 /* now get the CPU disposition from the extended CMOS */
371 cpus_addr(phys_cpu_present_map)[0] =
372 voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK);
373 cpus_addr(phys_cpu_present_map)[0] |=
374 voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + 1) << 8;
375 cpus_addr(phys_cpu_present_map)[0] |=
376 voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK +
377 2) << 16;
378 cpus_addr(phys_cpu_present_map)[0] |=
379 voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK +
380 3) << 24;
381 cpu_possible_map = phys_cpu_present_map;
382 printk("VOYAGER SMP: phys_cpu_present_map = 0x%lx\n",
383 cpus_addr(phys_cpu_present_map)[0]);
384 /* Here we set up the VIC to enable SMP */
385 /* enable the CPIs by writing the base vector to their register */
386 outb(VIC_DEFAULT_CPI_BASE, VIC_CPI_BASE_REGISTER);
387 outb(1, VIC_REDIRECT_REGISTER_1);
388 /* set the claim registers for static routing --- Boot CPU gets
389 * all interrupts untill all other CPUs started */
390 outb(0xff, VIC_CLAIM_REGISTER_0);
391 outb(0xff, VIC_CLAIM_REGISTER_1);
392 /* Set the Primary and Secondary Microchannel vector
393 * bases to be the same as the ordinary interrupts
394 *
395 * FIXME: This would be more efficient using separate
396 * vectors. */
397 outb(FIRST_EXTERNAL_VECTOR, VIC_PRIMARY_MC_BASE);
398 outb(FIRST_EXTERNAL_VECTOR, VIC_SECONDARY_MC_BASE);
399
400 /* Finally tell the firmware that we're driving */
401 outb(inb(VOYAGER_SUS_IN_CONTROL_PORT) | VOYAGER_IN_CONTROL_FLAG,
402 VOYAGER_SUS_IN_CONTROL_PORT);
403
404 current_thread_info()->cpu = boot_cpu_id;
405 x86_write_percpu(cpu_number, boot_cpu_id);
406 }
407
408 /*
409 * The bootstrap kernel entry code has set these up. Save them
410 * for a given CPU, id is physical */
411 void __init smp_store_cpu_info(int id)
412 {
413 struct cpuinfo_x86 *c = &cpu_data(id);
414
415 *c = boot_cpu_data;
416
417 identify_secondary_cpu(c);
418 }
419
420 /* Routine initially called when a non-boot CPU is brought online */
421 static void __init start_secondary(void *unused)
422 {
423 __u8 cpuid = hard_smp_processor_id();
424
425 cpu_init();
426
427 /* OK, we're in the routine */
428 ack_CPI(VIC_CPU_BOOT_CPI);
429
430 /* setup the 8259 master slave pair belonging to this CPU ---
431 * we won't actually receive any until the boot CPU
432 * relinquishes it's static routing mask */
433 vic_setup_pic();
434
435 qic_setup();
436
437 if (is_cpu_quad() && !is_cpu_vic_boot()) {
438 /* clear the boot CPI */
439 __u8 dummy;
440
441 dummy =
442 voyager_quad_cpi_addr[cpuid]->qic_cpi[VIC_CPU_BOOT_CPI].cpi;
443 printk("read dummy %d\n", dummy);
444 }
445
446 /* lower the mask to receive CPIs */
447 vic_enable_cpi();
448
449 VDEBUG(("VOYAGER SMP: CPU%d, stack at about %p\n", cpuid, &cpuid));
450
451 /* enable interrupts */
452 local_irq_enable();
453
454 /* get our bogomips */
455 calibrate_delay();
456
457 /* save our processor parameters */
458 smp_store_cpu_info(cpuid);
459
460 /* if we're a quad, we may need to bootstrap other CPUs */
461 do_quad_bootstrap();
462
463 /* FIXME: this is rather a poor hack to prevent the CPU
464 * activating softirqs while it's supposed to be waiting for
465 * permission to proceed. Without this, the new per CPU stuff
466 * in the softirqs will fail */
467 local_irq_disable();
468 cpu_set(cpuid, cpu_callin_map);
469
470 /* signal that we're done */
471 cpu_booted_map = 1;
472
473 while (!cpu_isset(cpuid, smp_commenced_mask))
474 rep_nop();
475 local_irq_enable();
476
477 local_flush_tlb();
478
479 cpu_set(cpuid, cpu_online_map);
480 wmb();
481 cpu_idle();
482 }
483
484 /* Routine to kick start the given CPU and wait for it to report ready
485 * (or timeout in startup). When this routine returns, the requested
486 * CPU is either fully running and configured or known to be dead.
487 *
488 * We call this routine sequentially 1 CPU at a time, so no need for
489 * locking */
490
491 static void __init do_boot_cpu(__u8 cpu)
492 {
493 struct task_struct *idle;
494 int timeout;
495 unsigned long flags;
496 int quad_boot = (1 << cpu) & voyager_quad_processors
497 & ~(voyager_extended_vic_processors
498 & voyager_allowed_boot_processors);
499
500 /* This is the format of the CPI IDT gate (in real mode) which
501 * we're hijacking to boot the CPU */
502 union IDTFormat {
503 struct seg {
504 __u16 Offset;
505 __u16 Segment;
506 } idt;
507 __u32 val;
508 } hijack_source;
509
510 __u32 *hijack_vector;
511 __u32 start_phys_address = setup_trampoline();
512
513 /* There's a clever trick to this: The linux trampoline is
514 * compiled to begin at absolute location zero, so make the
515 * address zero but have the data segment selector compensate
516 * for the actual address */
517 hijack_source.idt.Offset = start_phys_address & 0x000F;
518 hijack_source.idt.Segment = (start_phys_address >> 4) & 0xFFFF;
519
520 cpucount++;
521 alternatives_smp_switch(1);
522
523 idle = fork_idle(cpu);
524 if (IS_ERR(idle))
525 panic("failed fork for CPU%d", cpu);
526 idle->thread.ip = (unsigned long)start_secondary;
527 /* init_tasks (in sched.c) is indexed logically */
528 stack_start.sp = (void *)idle->thread.sp;
529
530 init_gdt(cpu);
531 per_cpu(current_task, cpu) = idle;
532 early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu);
533 irq_ctx_init(cpu);
534
535 /* Note: Don't modify initial ss override */
536 VDEBUG(("VOYAGER SMP: Booting CPU%d at 0x%lx[%x:%x], stack %p\n", cpu,
537 (unsigned long)hijack_source.val, hijack_source.idt.Segment,
538 hijack_source.idt.Offset, stack_start.sp));
539
540 /* init lowmem identity mapping */
541 clone_pgd_range(swapper_pg_dir, swapper_pg_dir + KERNEL_PGD_BOUNDARY,
542 min_t(unsigned long, KERNEL_PGD_PTRS, KERNEL_PGD_BOUNDARY));
543 flush_tlb_all();
544
545 if (quad_boot) {
546 printk("CPU %d: non extended Quad boot\n", cpu);
547 hijack_vector =
548 (__u32 *)
549 phys_to_virt((VIC_CPU_BOOT_CPI + QIC_DEFAULT_CPI_BASE) * 4);
550 *hijack_vector = hijack_source.val;
551 } else {
552 printk("CPU%d: extended VIC boot\n", cpu);
553 hijack_vector =
554 (__u32 *)
555 phys_to_virt((VIC_CPU_BOOT_CPI + VIC_DEFAULT_CPI_BASE) * 4);
556 *hijack_vector = hijack_source.val;
557 /* VIC errata, may also receive interrupt at this address */
558 hijack_vector =
559 (__u32 *)
560 phys_to_virt((VIC_CPU_BOOT_ERRATA_CPI +
561 VIC_DEFAULT_CPI_BASE) * 4);
562 *hijack_vector = hijack_source.val;
563 }
564 /* All non-boot CPUs start with interrupts fully masked. Need
565 * to lower the mask of the CPI we're about to send. We do
566 * this in the VIC by masquerading as the processor we're
567 * about to boot and lowering its interrupt mask */
568 local_irq_save(flags);
569 if (quad_boot) {
570 send_one_QIC_CPI(cpu, VIC_CPU_BOOT_CPI);
571 } else {
572 outb(VIC_CPU_MASQUERADE_ENABLE | cpu, VIC_PROCESSOR_ID);
573 /* here we're altering registers belonging to `cpu' */
574
575 outb(VIC_BOOT_INTERRUPT_MASK, 0x21);
576 /* now go back to our original identity */
577 outb(boot_cpu_id, VIC_PROCESSOR_ID);
578
579 /* and boot the CPU */
580
581 send_CPI((1 << cpu), VIC_CPU_BOOT_CPI);
582 }
583 cpu_booted_map = 0;
584 local_irq_restore(flags);
585
586 /* now wait for it to become ready (or timeout) */
587 for (timeout = 0; timeout < 50000; timeout++) {
588 if (cpu_booted_map)
589 break;
590 udelay(100);
591 }
592 /* reset the page table */
593 zap_low_mappings();
594
595 if (cpu_booted_map) {
596 VDEBUG(("CPU%d: Booted successfully, back in CPU %d\n",
597 cpu, smp_processor_id()));
598
599 printk("CPU%d: ", cpu);
600 print_cpu_info(&cpu_data(cpu));
601 wmb();
602 cpu_set(cpu, cpu_callout_map);
603 cpu_set(cpu, cpu_present_map);
604 } else {
605 printk("CPU%d FAILED TO BOOT: ", cpu);
606 if (*
607 ((volatile unsigned char *)phys_to_virt(start_phys_address))
608 == 0xA5)
609 printk("Stuck.\n");
610 else
611 printk("Not responding.\n");
612
613 cpucount--;
614 }
615 }
616
617 void __init smp_boot_cpus(void)
618 {
619 int i;
620
621 /* CAT BUS initialisation must be done after the memory */
622 /* FIXME: The L4 has a catbus too, it just needs to be
623 * accessed in a totally different way */
624 if (voyager_level == 5) {
625 voyager_cat_init();
626
627 /* now that the cat has probed the Voyager System Bus, sanity
628 * check the cpu map */
629 if (((voyager_quad_processors | voyager_extended_vic_processors)
630 & cpus_addr(phys_cpu_present_map)[0]) !=
631 cpus_addr(phys_cpu_present_map)[0]) {
632 /* should panic */
633 printk("\n\n***WARNING*** "
634 "Sanity check of CPU present map FAILED\n");
635 }
636 } else if (voyager_level == 4)
637 voyager_extended_vic_processors =
638 cpus_addr(phys_cpu_present_map)[0];
639
640 /* this sets up the idle task to run on the current cpu */
641 voyager_extended_cpus = 1;
642 /* Remove the global_irq_holder setting, it triggers a BUG() on
643 * schedule at the moment */
644 //global_irq_holder = boot_cpu_id;
645
646 /* FIXME: Need to do something about this but currently only works
647 * on CPUs with a tsc which none of mine have.
648 smp_tune_scheduling();
649 */
650 smp_store_cpu_info(boot_cpu_id);
651 printk("CPU%d: ", boot_cpu_id);
652 print_cpu_info(&cpu_data(boot_cpu_id));
653
654 if (is_cpu_quad()) {
655 /* booting on a Quad CPU */
656 printk("VOYAGER SMP: Boot CPU is Quad\n");
657 qic_setup();
658 do_quad_bootstrap();
659 }
660
661 /* enable our own CPIs */
662 vic_enable_cpi();
663
664 cpu_set(boot_cpu_id, cpu_online_map);
665 cpu_set(boot_cpu_id, cpu_callout_map);
666
667 /* loop over all the extended VIC CPUs and boot them. The
668 * Quad CPUs must be bootstrapped by their extended VIC cpu */
669 for (i = 0; i < NR_CPUS; i++) {
670 if (i == boot_cpu_id || !cpu_isset(i, phys_cpu_present_map))
671 continue;
672 do_boot_cpu(i);
673 /* This udelay seems to be needed for the Quad boots
674 * don't remove unless you know what you're doing */
675 udelay(1000);
676 }
677 /* we could compute the total bogomips here, but why bother?,
678 * Code added from smpboot.c */
679 {
680 unsigned long bogosum = 0;
681
682 for_each_online_cpu(i)
683 bogosum += cpu_data(i).loops_per_jiffy;
684 printk(KERN_INFO "Total of %d processors activated "
685 "(%lu.%02lu BogoMIPS).\n",
686 cpucount + 1, bogosum / (500000 / HZ),
687 (bogosum / (5000 / HZ)) % 100);
688 }
689 voyager_extended_cpus = hweight32(voyager_extended_vic_processors);
690 printk("VOYAGER: Extended (interrupt handling CPUs): "
691 "%d, non-extended: %d\n", voyager_extended_cpus,
692 num_booting_cpus() - voyager_extended_cpus);
693 /* that's it, switch to symmetric mode */
694 outb(0, VIC_PRIORITY_REGISTER);
695 outb(0, VIC_CLAIM_REGISTER_0);
696 outb(0, VIC_CLAIM_REGISTER_1);
697
698 VDEBUG(("VOYAGER SMP: Booted with %d CPUs\n", num_booting_cpus()));
699 }
700
701 /* Reload the secondary CPUs task structure (this function does not
702 * return ) */
703 void __init initialize_secondary(void)
704 {
705 #if 0
706 // AC kernels only
707 set_current(hard_get_current());
708 #endif
709
710 /*
711 * We don't actually need to load the full TSS,
712 * basically just the stack pointer and the eip.
713 */
714
715 asm volatile ("movl %0,%%esp\n\t"
716 "jmp *%1"::"r" (current->thread.sp),
717 "r"(current->thread.ip));
718 }
719
720 /* handle a Voyager SYS_INT -- If we don't, the base board will
721 * panic the system.
722 *
723 * System interrupts occur because some problem was detected on the
724 * various busses. To find out what you have to probe all the
725 * hardware via the CAT bus. FIXME: At the moment we do nothing. */
726 void smp_vic_sys_interrupt(struct pt_regs *regs)
727 {
728 ack_CPI(VIC_SYS_INT);
729 printk("Voyager SYSTEM INTERRUPT\n");
730 }
731
732 /* Handle a voyager CMN_INT; These interrupts occur either because of
733 * a system status change or because a single bit memory error
734 * occurred. FIXME: At the moment, ignore all this. */
735 void smp_vic_cmn_interrupt(struct pt_regs *regs)
736 {
737 static __u8 in_cmn_int = 0;
738 static DEFINE_SPINLOCK(cmn_int_lock);
739
740 /* common ints are broadcast, so make sure we only do this once */
741 _raw_spin_lock(&cmn_int_lock);
742 if (in_cmn_int)
743 goto unlock_end;
744
745 in_cmn_int++;
746 _raw_spin_unlock(&cmn_int_lock);
747
748 VDEBUG(("Voyager COMMON INTERRUPT\n"));
749
750 if (voyager_level == 5)
751 voyager_cat_do_common_interrupt();
752
753 _raw_spin_lock(&cmn_int_lock);
754 in_cmn_int = 0;
755 unlock_end:
756 _raw_spin_unlock(&cmn_int_lock);
757 ack_CPI(VIC_CMN_INT);
758 }
759
760 /*
761 * Reschedule call back. Nothing to do, all the work is done
762 * automatically when we return from the interrupt. */
763 static void smp_reschedule_interrupt(void)
764 {
765 /* do nothing */
766 }
767
768 static struct mm_struct *flush_mm;
769 static unsigned long flush_va;
770 static DEFINE_SPINLOCK(tlbstate_lock);
771
772 /*
773 * We cannot call mmdrop() because we are in interrupt context,
774 * instead update mm->cpu_vm_mask.
775 *
776 * We need to reload %cr3 since the page tables may be going
777 * away from under us..
778 */
779 static inline void voyager_leave_mm(unsigned long cpu)
780 {
781 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK)
782 BUG();
783 cpu_clear(cpu, per_cpu(cpu_tlbstate, cpu).active_mm->cpu_vm_mask);
784 load_cr3(swapper_pg_dir);
785 }
786
787 /*
788 * Invalidate call-back
789 */
790 static void smp_invalidate_interrupt(void)
791 {
792 __u8 cpu = smp_processor_id();
793
794 if (!test_bit(cpu, &smp_invalidate_needed))
795 return;
796 /* This will flood messages. Don't uncomment unless you see
797 * Problems with cross cpu invalidation
798 VDEBUG(("VOYAGER SMP: CPU%d received INVALIDATE_CPI\n",
799 smp_processor_id()));
800 */
801
802 if (flush_mm == per_cpu(cpu_tlbstate, cpu).active_mm) {
803 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) {
804 if (flush_va == TLB_FLUSH_ALL)
805 local_flush_tlb();
806 else
807 __flush_tlb_one(flush_va);
808 } else
809 voyager_leave_mm(cpu);
810 }
811 smp_mb__before_clear_bit();
812 clear_bit(cpu, &smp_invalidate_needed);
813 smp_mb__after_clear_bit();
814 }
815
816 /* All the new flush operations for 2.4 */
817
818 /* This routine is called with a physical cpu mask */
819 static void
820 voyager_flush_tlb_others(unsigned long cpumask, struct mm_struct *mm,
821 unsigned long va)
822 {
823 int stuck = 50000;
824
825 if (!cpumask)
826 BUG();
827 if ((cpumask & cpus_addr(cpu_online_map)[0]) != cpumask)
828 BUG();
829 if (cpumask & (1 << smp_processor_id()))
830 BUG();
831 if (!mm)
832 BUG();
833
834 spin_lock(&tlbstate_lock);
835
836 flush_mm = mm;
837 flush_va = va;
838 atomic_set_mask(cpumask, &smp_invalidate_needed);
839 /*
840 * We have to send the CPI only to
841 * CPUs affected.
842 */
843 send_CPI(cpumask, VIC_INVALIDATE_CPI);
844
845 while (smp_invalidate_needed) {
846 mb();
847 if (--stuck == 0) {
848 printk("***WARNING*** Stuck doing invalidate CPI "
849 "(CPU%d)\n", smp_processor_id());
850 break;
851 }
852 }
853
854 /* Uncomment only to debug invalidation problems
855 VDEBUG(("VOYAGER SMP: Completed invalidate CPI (CPU%d)\n", cpu));
856 */
857
858 flush_mm = NULL;
859 flush_va = 0;
860 spin_unlock(&tlbstate_lock);
861 }
862
863 void flush_tlb_current_task(void)
864 {
865 struct mm_struct *mm = current->mm;
866 unsigned long cpu_mask;
867
868 preempt_disable();
869
870 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
871 local_flush_tlb();
872 if (cpu_mask)
873 voyager_flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
874
875 preempt_enable();
876 }
877
878 void flush_tlb_mm(struct mm_struct *mm)
879 {
880 unsigned long cpu_mask;
881
882 preempt_disable();
883
884 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
885
886 if (current->active_mm == mm) {
887 if (current->mm)
888 local_flush_tlb();
889 else
890 voyager_leave_mm(smp_processor_id());
891 }
892 if (cpu_mask)
893 voyager_flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
894
895 preempt_enable();
896 }
897
898 void flush_tlb_page(struct vm_area_struct *vma, unsigned long va)
899 {
900 struct mm_struct *mm = vma->vm_mm;
901 unsigned long cpu_mask;
902
903 preempt_disable();
904
905 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
906 if (current->active_mm == mm) {
907 if (current->mm)
908 __flush_tlb_one(va);
909 else
910 voyager_leave_mm(smp_processor_id());
911 }
912
913 if (cpu_mask)
914 voyager_flush_tlb_others(cpu_mask, mm, va);
915
916 preempt_enable();
917 }
918
919 EXPORT_SYMBOL(flush_tlb_page);
920
921 /* enable the requested IRQs */
922 static void smp_enable_irq_interrupt(void)
923 {
924 __u8 irq;
925 __u8 cpu = get_cpu();
926
927 VDEBUG(("VOYAGER SMP: CPU%d enabling irq mask 0x%x\n", cpu,
928 vic_irq_enable_mask[cpu]));
929
930 spin_lock(&vic_irq_lock);
931 for (irq = 0; irq < 16; irq++) {
932 if (vic_irq_enable_mask[cpu] & (1 << irq))
933 enable_local_vic_irq(irq);
934 }
935 vic_irq_enable_mask[cpu] = 0;
936 spin_unlock(&vic_irq_lock);
937
938 put_cpu_no_resched();
939 }
940
941 /*
942 * CPU halt call-back
943 */
944 static void smp_stop_cpu_function(void *dummy)
945 {
946 VDEBUG(("VOYAGER SMP: CPU%d is STOPPING\n", smp_processor_id()));
947 cpu_clear(smp_processor_id(), cpu_online_map);
948 local_irq_disable();
949 for (;;)
950 halt();
951 }
952
953 /* execute a thread on a new CPU. The function to be called must be
954 * previously set up. This is used to schedule a function for
955 * execution on all CPUs - set up the function then broadcast a
956 * function_interrupt CPI to come here on each CPU */
957 static void smp_call_function_interrupt(void)
958 {
959 irq_enter();
960 generic_smp_call_function_interrupt();
961 __get_cpu_var(irq_stat).irq_call_count++;
962 irq_exit();
963 }
964
965 static void smp_call_function_single_interrupt(void)
966 {
967 irq_enter();
968 generic_smp_call_function_single_interrupt();
969 __get_cpu_var(irq_stat).irq_call_count++;
970 irq_exit();
971 }
972
973 /* Sorry about the name. In an APIC based system, the APICs
974 * themselves are programmed to send a timer interrupt. This is used
975 * by linux to reschedule the processor. Voyager doesn't have this,
976 * so we use the system clock to interrupt one processor, which in
977 * turn, broadcasts a timer CPI to all the others --- we receive that
978 * CPI here. We don't use this actually for counting so losing
979 * ticks doesn't matter
980 *
981 * FIXME: For those CPUs which actually have a local APIC, we could
982 * try to use it to trigger this interrupt instead of having to
983 * broadcast the timer tick. Unfortunately, all my pentium DYADs have
984 * no local APIC, so I can't do this
985 *
986 * This function is currently a placeholder and is unused in the code */
987 void smp_apic_timer_interrupt(struct pt_regs *regs)
988 {
989 struct pt_regs *old_regs = set_irq_regs(regs);
990 wrapper_smp_local_timer_interrupt();
991 set_irq_regs(old_regs);
992 }
993
994 /* All of the QUAD interrupt GATES */
995 void smp_qic_timer_interrupt(struct pt_regs *regs)
996 {
997 struct pt_regs *old_regs = set_irq_regs(regs);
998 ack_QIC_CPI(QIC_TIMER_CPI);
999 wrapper_smp_local_timer_interrupt();
1000 set_irq_regs(old_regs);
1001 }
1002
1003 void smp_qic_invalidate_interrupt(struct pt_regs *regs)
1004 {
1005 ack_QIC_CPI(QIC_INVALIDATE_CPI);
1006 smp_invalidate_interrupt();
1007 }
1008
1009 void smp_qic_reschedule_interrupt(struct pt_regs *regs)
1010 {
1011 ack_QIC_CPI(QIC_RESCHEDULE_CPI);
1012 smp_reschedule_interrupt();
1013 }
1014
1015 void smp_qic_enable_irq_interrupt(struct pt_regs *regs)
1016 {
1017 ack_QIC_CPI(QIC_ENABLE_IRQ_CPI);
1018 smp_enable_irq_interrupt();
1019 }
1020
1021 void smp_qic_call_function_interrupt(struct pt_regs *regs)
1022 {
1023 ack_QIC_CPI(QIC_CALL_FUNCTION_CPI);
1024 smp_call_function_interrupt();
1025 }
1026
1027 void smp_qic_call_function_single_interrupt(struct pt_regs *regs)
1028 {
1029 ack_QIC_CPI(QIC_CALL_FUNCTION_SINGLE_CPI);
1030 smp_call_function_single_interrupt();
1031 }
1032
1033 void smp_vic_cpi_interrupt(struct pt_regs *regs)
1034 {
1035 struct pt_regs *old_regs = set_irq_regs(regs);
1036 __u8 cpu = smp_processor_id();
1037
1038 if (is_cpu_quad())
1039 ack_QIC_CPI(VIC_CPI_LEVEL0);
1040 else
1041 ack_VIC_CPI(VIC_CPI_LEVEL0);
1042
1043 if (test_and_clear_bit(VIC_TIMER_CPI, &vic_cpi_mailbox[cpu]))
1044 wrapper_smp_local_timer_interrupt();
1045 if (test_and_clear_bit(VIC_INVALIDATE_CPI, &vic_cpi_mailbox[cpu]))
1046 smp_invalidate_interrupt();
1047 if (test_and_clear_bit(VIC_RESCHEDULE_CPI, &vic_cpi_mailbox[cpu]))
1048 smp_reschedule_interrupt();
1049 if (test_and_clear_bit(VIC_ENABLE_IRQ_CPI, &vic_cpi_mailbox[cpu]))
1050 smp_enable_irq_interrupt();
1051 if (test_and_clear_bit(VIC_CALL_FUNCTION_CPI, &vic_cpi_mailbox[cpu]))
1052 smp_call_function_interrupt();
1053 if (test_and_clear_bit(VIC_CALL_FUNCTION_SINGLE_CPI, &vic_cpi_mailbox[cpu]))
1054 smp_call_function_single_interrupt();
1055 set_irq_regs(old_regs);
1056 }
1057
1058 static void do_flush_tlb_all(void *info)
1059 {
1060 unsigned long cpu = smp_processor_id();
1061
1062 __flush_tlb_all();
1063 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_LAZY)
1064 voyager_leave_mm(cpu);
1065 }
1066
1067 /* flush the TLB of every active CPU in the system */
1068 void flush_tlb_all(void)
1069 {
1070 on_each_cpu(do_flush_tlb_all, 0, 1);
1071 }
1072
1073 /* send a reschedule CPI to one CPU by physical CPU number*/
1074 static void voyager_smp_send_reschedule(int cpu)
1075 {
1076 send_one_CPI(cpu, VIC_RESCHEDULE_CPI);
1077 }
1078
1079 int hard_smp_processor_id(void)
1080 {
1081 __u8 i;
1082 __u8 cpumask = inb(VIC_PROC_WHO_AM_I);
1083 if ((cpumask & QUAD_IDENTIFIER) == QUAD_IDENTIFIER)
1084 return cpumask & 0x1F;
1085
1086 for (i = 0; i < 8; i++) {
1087 if (cpumask & (1 << i))
1088 return i;
1089 }
1090 printk("** WARNING ** Illegal cpuid returned by VIC: %d", cpumask);
1091 return 0;
1092 }
1093
1094 int safe_smp_processor_id(void)
1095 {
1096 return hard_smp_processor_id();
1097 }
1098
1099 /* broadcast a halt to all other CPUs */
1100 static void voyager_smp_send_stop(void)
1101 {
1102 smp_call_function(smp_stop_cpu_function, NULL, 1);
1103 }
1104
1105 /* this function is triggered in time.c when a clock tick fires
1106 * we need to re-broadcast the tick to all CPUs */
1107 void smp_vic_timer_interrupt(void)
1108 {
1109 send_CPI_allbutself(VIC_TIMER_CPI);
1110 smp_local_timer_interrupt();
1111 }
1112
1113 /* local (per CPU) timer interrupt. It does both profiling and
1114 * process statistics/rescheduling.
1115 *
1116 * We do profiling in every local tick, statistics/rescheduling
1117 * happen only every 'profiling multiplier' ticks. The default
1118 * multiplier is 1 and it can be changed by writing the new multiplier
1119 * value into /proc/profile.
1120 */
1121 void smp_local_timer_interrupt(void)
1122 {
1123 int cpu = smp_processor_id();
1124 long weight;
1125
1126 profile_tick(CPU_PROFILING);
1127 if (--per_cpu(prof_counter, cpu) <= 0) {
1128 /*
1129 * The multiplier may have changed since the last time we got
1130 * to this point as a result of the user writing to
1131 * /proc/profile. In this case we need to adjust the APIC
1132 * timer accordingly.
1133 *
1134 * Interrupts are already masked off at this point.
1135 */
1136 per_cpu(prof_counter, cpu) = per_cpu(prof_multiplier, cpu);
1137 if (per_cpu(prof_counter, cpu) !=
1138 per_cpu(prof_old_multiplier, cpu)) {
1139 /* FIXME: need to update the vic timer tick here */
1140 per_cpu(prof_old_multiplier, cpu) =
1141 per_cpu(prof_counter, cpu);
1142 }
1143
1144 update_process_times(user_mode_vm(get_irq_regs()));
1145 }
1146
1147 if (((1 << cpu) & voyager_extended_vic_processors) == 0)
1148 /* only extended VIC processors participate in
1149 * interrupt distribution */
1150 return;
1151
1152 /*
1153 * We take the 'long' return path, and there every subsystem
1154 * grabs the appropriate locks (kernel lock/ irq lock).
1155 *
1156 * we might want to decouple profiling from the 'long path',
1157 * and do the profiling totally in assembly.
1158 *
1159 * Currently this isn't too much of an issue (performance wise),
1160 * we can take more than 100K local irqs per second on a 100 MHz P5.
1161 */
1162
1163 if ((++vic_tick[cpu] & 0x7) != 0)
1164 return;
1165 /* get here every 16 ticks (about every 1/6 of a second) */
1166
1167 /* Change our priority to give someone else a chance at getting
1168 * the IRQ. The algorithm goes like this:
1169 *
1170 * In the VIC, the dynamically routed interrupt is always
1171 * handled by the lowest priority eligible (i.e. receiving
1172 * interrupts) CPU. If >1 eligible CPUs are equal lowest, the
1173 * lowest processor number gets it.
1174 *
1175 * The priority of a CPU is controlled by a special per-CPU
1176 * VIC priority register which is 3 bits wide 0 being lowest
1177 * and 7 highest priority..
1178 *
1179 * Therefore we subtract the average number of interrupts from
1180 * the number we've fielded. If this number is negative, we
1181 * lower the activity count and if it is positive, we raise
1182 * it.
1183 *
1184 * I'm afraid this still leads to odd looking interrupt counts:
1185 * the totals are all roughly equal, but the individual ones
1186 * look rather skewed.
1187 *
1188 * FIXME: This algorithm is total crap when mixed with SMP
1189 * affinity code since we now try to even up the interrupt
1190 * counts when an affinity binding is keeping them on a
1191 * particular CPU*/
1192 weight = (vic_intr_count[cpu] * voyager_extended_cpus
1193 - vic_intr_total) >> 4;
1194 weight += 4;
1195 if (weight > 7)
1196 weight = 7;
1197 if (weight < 0)
1198 weight = 0;
1199
1200 outb((__u8) weight, VIC_PRIORITY_REGISTER);
1201
1202 #ifdef VOYAGER_DEBUG
1203 if ((vic_tick[cpu] & 0xFFF) == 0) {
1204 /* print this message roughly every 25 secs */
1205 printk("VOYAGER SMP: vic_tick[%d] = %lu, weight = %ld\n",
1206 cpu, vic_tick[cpu], weight);
1207 }
1208 #endif
1209 }
1210
1211 /* setup the profiling timer */
1212 int setup_profiling_timer(unsigned int multiplier)
1213 {
1214 int i;
1215
1216 if ((!multiplier))
1217 return -EINVAL;
1218
1219 /*
1220 * Set the new multiplier for each CPU. CPUs don't start using the
1221 * new values until the next timer interrupt in which they do process
1222 * accounting.
1223 */
1224 for (i = 0; i < NR_CPUS; ++i)
1225 per_cpu(prof_multiplier, i) = multiplier;
1226
1227 return 0;
1228 }
1229
1230 /* This is a bit of a mess, but forced on us by the genirq changes
1231 * there's no genirq handler that really does what voyager wants
1232 * so hack it up with the simple IRQ handler */
1233 static void handle_vic_irq(unsigned int irq, struct irq_desc *desc)
1234 {
1235 before_handle_vic_irq(irq);
1236 handle_simple_irq(irq, desc);
1237 after_handle_vic_irq(irq);
1238 }
1239
1240 /* The CPIs are handled in the per cpu 8259s, so they must be
1241 * enabled to be received: FIX: enabling the CPIs in the early
1242 * boot sequence interferes with bug checking; enable them later
1243 * on in smp_init */
1244 #define VIC_SET_GATE(cpi, vector) \
1245 set_intr_gate((cpi) + VIC_DEFAULT_CPI_BASE, (vector))
1246 #define QIC_SET_GATE(cpi, vector) \
1247 set_intr_gate((cpi) + QIC_DEFAULT_CPI_BASE, (vector))
1248
1249 void __init smp_intr_init(void)
1250 {
1251 int i;
1252
1253 /* initialize the per cpu irq mask to all disabled */
1254 for (i = 0; i < NR_CPUS; i++)
1255 vic_irq_mask[i] = 0xFFFF;
1256
1257 VIC_SET_GATE(VIC_CPI_LEVEL0, vic_cpi_interrupt);
1258
1259 VIC_SET_GATE(VIC_SYS_INT, vic_sys_interrupt);
1260 VIC_SET_GATE(VIC_CMN_INT, vic_cmn_interrupt);
1261
1262 QIC_SET_GATE(QIC_TIMER_CPI, qic_timer_interrupt);
1263 QIC_SET_GATE(QIC_INVALIDATE_CPI, qic_invalidate_interrupt);
1264 QIC_SET_GATE(QIC_RESCHEDULE_CPI, qic_reschedule_interrupt);
1265 QIC_SET_GATE(QIC_ENABLE_IRQ_CPI, qic_enable_irq_interrupt);
1266 QIC_SET_GATE(QIC_CALL_FUNCTION_CPI, qic_call_function_interrupt);
1267
1268 /* now put the VIC descriptor into the first 48 IRQs
1269 *
1270 * This is for later: first 16 correspond to PC IRQs; next 16
1271 * are Primary MC IRQs and final 16 are Secondary MC IRQs */
1272 for (i = 0; i < 48; i++)
1273 set_irq_chip_and_handler(i, &vic_chip, handle_vic_irq);
1274 }
1275
1276 /* send a CPI at level cpi to a set of cpus in cpuset (set 1 bit per
1277 * processor to receive CPI */
1278 static void send_CPI(__u32 cpuset, __u8 cpi)
1279 {
1280 int cpu;
1281 __u32 quad_cpuset = (cpuset & voyager_quad_processors);
1282
1283 if (cpi < VIC_START_FAKE_CPI) {
1284 /* fake CPI are only used for booting, so send to the
1285 * extended quads as well---Quads must be VIC booted */
1286 outb((__u8) (cpuset), VIC_CPI_Registers[cpi]);
1287 return;
1288 }
1289 if (quad_cpuset)
1290 send_QIC_CPI(quad_cpuset, cpi);
1291 cpuset &= ~quad_cpuset;
1292 cpuset &= 0xff; /* only first 8 CPUs vaild for VIC CPI */
1293 if (cpuset == 0)
1294 return;
1295 for_each_online_cpu(cpu) {
1296 if (cpuset & (1 << cpu))
1297 set_bit(cpi, &vic_cpi_mailbox[cpu]);
1298 }
1299 if (cpuset)
1300 outb((__u8) cpuset, VIC_CPI_Registers[VIC_CPI_LEVEL0]);
1301 }
1302
1303 /* Acknowledge receipt of CPI in the QIC, clear in QIC hardware and
1304 * set the cache line to shared by reading it.
1305 *
1306 * DON'T make this inline otherwise the cache line read will be
1307 * optimised away
1308 * */
1309 static int ack_QIC_CPI(__u8 cpi)
1310 {
1311 __u8 cpu = hard_smp_processor_id();
1312
1313 cpi &= 7;
1314
1315 outb(1 << cpi, QIC_INTERRUPT_CLEAR1);
1316 return voyager_quad_cpi_addr[cpu]->qic_cpi[cpi].cpi;
1317 }
1318
1319 static void ack_special_QIC_CPI(__u8 cpi)
1320 {
1321 switch (cpi) {
1322 case VIC_CMN_INT:
1323 outb(QIC_CMN_INT, QIC_INTERRUPT_CLEAR0);
1324 break;
1325 case VIC_SYS_INT:
1326 outb(QIC_SYS_INT, QIC_INTERRUPT_CLEAR0);
1327 break;
1328 }
1329 /* also clear at the VIC, just in case (nop for non-extended proc) */
1330 ack_VIC_CPI(cpi);
1331 }
1332
1333 /* Acknowledge receipt of CPI in the VIC (essentially an EOI) */
1334 static void ack_VIC_CPI(__u8 cpi)
1335 {
1336 #ifdef VOYAGER_DEBUG
1337 unsigned long flags;
1338 __u16 isr;
1339 __u8 cpu = smp_processor_id();
1340
1341 local_irq_save(flags);
1342 isr = vic_read_isr();
1343 if ((isr & (1 << (cpi & 7))) == 0) {
1344 printk("VOYAGER SMP: CPU%d lost CPI%d\n", cpu, cpi);
1345 }
1346 #endif
1347 /* send specific EOI; the two system interrupts have
1348 * bit 4 set for a separate vector but behave as the
1349 * corresponding 3 bit intr */
1350 outb_p(0x60 | (cpi & 7), 0x20);
1351
1352 #ifdef VOYAGER_DEBUG
1353 if ((vic_read_isr() & (1 << (cpi & 7))) != 0) {
1354 printk("VOYAGER SMP: CPU%d still asserting CPI%d\n", cpu, cpi);
1355 }
1356 local_irq_restore(flags);
1357 #endif
1358 }
1359
1360 /* cribbed with thanks from irq.c */
1361 #define __byte(x,y) (((unsigned char *)&(y))[x])
1362 #define cached_21(cpu) (__byte(0,vic_irq_mask[cpu]))
1363 #define cached_A1(cpu) (__byte(1,vic_irq_mask[cpu]))
1364
1365 static unsigned int startup_vic_irq(unsigned int irq)
1366 {
1367 unmask_vic_irq(irq);
1368
1369 return 0;
1370 }
1371
1372 /* The enable and disable routines. This is where we run into
1373 * conflicting architectural philosophy. Fundamentally, the voyager
1374 * architecture does not expect to have to disable interrupts globally
1375 * (the IRQ controllers belong to each CPU). The processor masquerade
1376 * which is used to start the system shouldn't be used in a running OS
1377 * since it will cause great confusion if two separate CPUs drive to
1378 * the same IRQ controller (I know, I've tried it).
1379 *
1380 * The solution is a variant on the NCR lazy SPL design:
1381 *
1382 * 1) To disable an interrupt, do nothing (other than set the
1383 * IRQ_DISABLED flag). This dares the interrupt actually to arrive.
1384 *
1385 * 2) If the interrupt dares to come in, raise the local mask against
1386 * it (this will result in all the CPU masks being raised
1387 * eventually).
1388 *
1389 * 3) To enable the interrupt, lower the mask on the local CPU and
1390 * broadcast an Interrupt enable CPI which causes all other CPUs to
1391 * adjust their masks accordingly. */
1392
1393 static void unmask_vic_irq(unsigned int irq)
1394 {
1395 /* linux doesn't to processor-irq affinity, so enable on
1396 * all CPUs we know about */
1397 int cpu = smp_processor_id(), real_cpu;
1398 __u16 mask = (1 << irq);
1399 __u32 processorList = 0;
1400 unsigned long flags;
1401
1402 VDEBUG(("VOYAGER: unmask_vic_irq(%d) CPU%d affinity 0x%lx\n",
1403 irq, cpu, cpu_irq_affinity[cpu]));
1404 spin_lock_irqsave(&vic_irq_lock, flags);
1405 for_each_online_cpu(real_cpu) {
1406 if (!(voyager_extended_vic_processors & (1 << real_cpu)))
1407 continue;
1408 if (!(cpu_irq_affinity[real_cpu] & mask)) {
1409 /* irq has no affinity for this CPU, ignore */
1410 continue;
1411 }
1412 if (real_cpu == cpu) {
1413 enable_local_vic_irq(irq);
1414 } else if (vic_irq_mask[real_cpu] & mask) {
1415 vic_irq_enable_mask[real_cpu] |= mask;
1416 processorList |= (1 << real_cpu);
1417 }
1418 }
1419 spin_unlock_irqrestore(&vic_irq_lock, flags);
1420 if (processorList)
1421 send_CPI(processorList, VIC_ENABLE_IRQ_CPI);
1422 }
1423
1424 static void mask_vic_irq(unsigned int irq)
1425 {
1426 /* lazy disable, do nothing */
1427 }
1428
1429 static void enable_local_vic_irq(unsigned int irq)
1430 {
1431 __u8 cpu = smp_processor_id();
1432 __u16 mask = ~(1 << irq);
1433 __u16 old_mask = vic_irq_mask[cpu];
1434
1435 vic_irq_mask[cpu] &= mask;
1436 if (vic_irq_mask[cpu] == old_mask)
1437 return;
1438
1439 VDEBUG(("VOYAGER DEBUG: Enabling irq %d in hardware on CPU %d\n",
1440 irq, cpu));
1441
1442 if (irq & 8) {
1443 outb_p(cached_A1(cpu), 0xA1);
1444 (void)inb_p(0xA1);
1445 } else {
1446 outb_p(cached_21(cpu), 0x21);
1447 (void)inb_p(0x21);
1448 }
1449 }
1450
1451 static void disable_local_vic_irq(unsigned int irq)
1452 {
1453 __u8 cpu = smp_processor_id();
1454 __u16 mask = (1 << irq);
1455 __u16 old_mask = vic_irq_mask[cpu];
1456
1457 if (irq == 7)
1458 return;
1459
1460 vic_irq_mask[cpu] |= mask;
1461 if (old_mask == vic_irq_mask[cpu])
1462 return;
1463
1464 VDEBUG(("VOYAGER DEBUG: Disabling irq %d in hardware on CPU %d\n",
1465 irq, cpu));
1466
1467 if (irq & 8) {
1468 outb_p(cached_A1(cpu), 0xA1);
1469 (void)inb_p(0xA1);
1470 } else {
1471 outb_p(cached_21(cpu), 0x21);
1472 (void)inb_p(0x21);
1473 }
1474 }
1475
1476 /* The VIC is level triggered, so the ack can only be issued after the
1477 * interrupt completes. However, we do Voyager lazy interrupt
1478 * handling here: It is an extremely expensive operation to mask an
1479 * interrupt in the vic, so we merely set a flag (IRQ_DISABLED). If
1480 * this interrupt actually comes in, then we mask and ack here to push
1481 * the interrupt off to another CPU */
1482 static void before_handle_vic_irq(unsigned int irq)
1483 {
1484 irq_desc_t *desc = irq_desc + irq;
1485 __u8 cpu = smp_processor_id();
1486
1487 _raw_spin_lock(&vic_irq_lock);
1488 vic_intr_total++;
1489 vic_intr_count[cpu]++;
1490
1491 if (!(cpu_irq_affinity[cpu] & (1 << irq))) {
1492 /* The irq is not in our affinity mask, push it off
1493 * onto another CPU */
1494 VDEBUG(("VOYAGER DEBUG: affinity triggered disable of irq %d "
1495 "on cpu %d\n", irq, cpu));
1496 disable_local_vic_irq(irq);
1497 /* set IRQ_INPROGRESS to prevent the handler in irq.c from
1498 * actually calling the interrupt routine */
1499 desc->status |= IRQ_REPLAY | IRQ_INPROGRESS;
1500 } else if (desc->status & IRQ_DISABLED) {
1501 /* Damn, the interrupt actually arrived, do the lazy
1502 * disable thing. The interrupt routine in irq.c will
1503 * not handle a IRQ_DISABLED interrupt, so nothing more
1504 * need be done here */
1505 VDEBUG(("VOYAGER DEBUG: lazy disable of irq %d on CPU %d\n",
1506 irq, cpu));
1507 disable_local_vic_irq(irq);
1508 desc->status |= IRQ_REPLAY;
1509 } else {
1510 desc->status &= ~IRQ_REPLAY;
1511 }
1512
1513 _raw_spin_unlock(&vic_irq_lock);
1514 }
1515
1516 /* Finish the VIC interrupt: basically mask */
1517 static void after_handle_vic_irq(unsigned int irq)
1518 {
1519 irq_desc_t *desc = irq_desc + irq;
1520
1521 _raw_spin_lock(&vic_irq_lock);
1522 {
1523 unsigned int status = desc->status & ~IRQ_INPROGRESS;
1524 #ifdef VOYAGER_DEBUG
1525 __u16 isr;
1526 #endif
1527
1528 desc->status = status;
1529 if ((status & IRQ_DISABLED))
1530 disable_local_vic_irq(irq);
1531 #ifdef VOYAGER_DEBUG
1532 /* DEBUG: before we ack, check what's in progress */
1533 isr = vic_read_isr();
1534 if ((isr & (1 << irq) && !(status & IRQ_REPLAY)) == 0) {
1535 int i;
1536 __u8 cpu = smp_processor_id();
1537 __u8 real_cpu;
1538 int mask; /* Um... initialize me??? --RR */
1539
1540 printk("VOYAGER SMP: CPU%d lost interrupt %d\n",
1541 cpu, irq);
1542 for_each_possible_cpu(real_cpu, mask) {
1543
1544 outb(VIC_CPU_MASQUERADE_ENABLE | real_cpu,
1545 VIC_PROCESSOR_ID);
1546 isr = vic_read_isr();
1547 if (isr & (1 << irq)) {
1548 printk
1549 ("VOYAGER SMP: CPU%d ack irq %d\n",
1550 real_cpu, irq);
1551 ack_vic_irq(irq);
1552 }
1553 outb(cpu, VIC_PROCESSOR_ID);
1554 }
1555 }
1556 #endif /* VOYAGER_DEBUG */
1557 /* as soon as we ack, the interrupt is eligible for
1558 * receipt by another CPU so everything must be in
1559 * order here */
1560 ack_vic_irq(irq);
1561 if (status & IRQ_REPLAY) {
1562 /* replay is set if we disable the interrupt
1563 * in the before_handle_vic_irq() routine, so
1564 * clear the in progress bit here to allow the
1565 * next CPU to handle this correctly */
1566 desc->status &= ~(IRQ_REPLAY | IRQ_INPROGRESS);
1567 }
1568 #ifdef VOYAGER_DEBUG
1569 isr = vic_read_isr();
1570 if ((isr & (1 << irq)) != 0)
1571 printk("VOYAGER SMP: after_handle_vic_irq() after "
1572 "ack irq=%d, isr=0x%x\n", irq, isr);
1573 #endif /* VOYAGER_DEBUG */
1574 }
1575 _raw_spin_unlock(&vic_irq_lock);
1576
1577 /* All code after this point is out of the main path - the IRQ
1578 * may be intercepted by another CPU if reasserted */
1579 }
1580
1581 /* Linux processor - interrupt affinity manipulations.
1582 *
1583 * For each processor, we maintain a 32 bit irq affinity mask.
1584 * Initially it is set to all 1's so every processor accepts every
1585 * interrupt. In this call, we change the processor's affinity mask:
1586 *
1587 * Change from enable to disable:
1588 *
1589 * If the interrupt ever comes in to the processor, we will disable it
1590 * and ack it to push it off to another CPU, so just accept the mask here.
1591 *
1592 * Change from disable to enable:
1593 *
1594 * change the mask and then do an interrupt enable CPI to re-enable on
1595 * the selected processors */
1596
1597 void set_vic_irq_affinity(unsigned int irq, cpumask_t mask)
1598 {
1599 /* Only extended processors handle interrupts */
1600 unsigned long real_mask;
1601 unsigned long irq_mask = 1 << irq;
1602 int cpu;
1603
1604 real_mask = cpus_addr(mask)[0] & voyager_extended_vic_processors;
1605
1606 if (cpus_addr(mask)[0] == 0)
1607 /* can't have no CPUs to accept the interrupt -- extremely
1608 * bad things will happen */
1609 return;
1610
1611 if (irq == 0)
1612 /* can't change the affinity of the timer IRQ. This
1613 * is due to the constraint in the voyager
1614 * architecture that the CPI also comes in on and IRQ
1615 * line and we have chosen IRQ0 for this. If you
1616 * raise the mask on this interrupt, the processor
1617 * will no-longer be able to accept VIC CPIs */
1618 return;
1619
1620 if (irq >= 32)
1621 /* You can only have 32 interrupts in a voyager system
1622 * (and 32 only if you have a secondary microchannel
1623 * bus) */
1624 return;
1625
1626 for_each_online_cpu(cpu) {
1627 unsigned long cpu_mask = 1 << cpu;
1628
1629 if (cpu_mask & real_mask) {
1630 /* enable the interrupt for this cpu */
1631 cpu_irq_affinity[cpu] |= irq_mask;
1632 } else {
1633 /* disable the interrupt for this cpu */
1634 cpu_irq_affinity[cpu] &= ~irq_mask;
1635 }
1636 }
1637 /* this is magic, we now have the correct affinity maps, so
1638 * enable the interrupt. This will send an enable CPI to
1639 * those CPUs who need to enable it in their local masks,
1640 * causing them to correct for the new affinity . If the
1641 * interrupt is currently globally disabled, it will simply be
1642 * disabled again as it comes in (voyager lazy disable). If
1643 * the affinity map is tightened to disable the interrupt on a
1644 * cpu, it will be pushed off when it comes in */
1645 unmask_vic_irq(irq);
1646 }
1647
1648 static void ack_vic_irq(unsigned int irq)
1649 {
1650 if (irq & 8) {
1651 outb(0x62, 0x20); /* Specific EOI to cascade */
1652 outb(0x60 | (irq & 7), 0xA0);
1653 } else {
1654 outb(0x60 | (irq & 7), 0x20);
1655 }
1656 }
1657
1658 /* enable the CPIs. In the VIC, the CPIs are delivered by the 8259
1659 * but are not vectored by it. This means that the 8259 mask must be
1660 * lowered to receive them */
1661 static __init void vic_enable_cpi(void)
1662 {
1663 __u8 cpu = smp_processor_id();
1664
1665 /* just take a copy of the current mask (nop for boot cpu) */
1666 vic_irq_mask[cpu] = vic_irq_mask[boot_cpu_id];
1667
1668 enable_local_vic_irq(VIC_CPI_LEVEL0);
1669 enable_local_vic_irq(VIC_CPI_LEVEL1);
1670 /* for sys int and cmn int */
1671 enable_local_vic_irq(7);
1672
1673 if (is_cpu_quad()) {
1674 outb(QIC_DEFAULT_MASK0, QIC_MASK_REGISTER0);
1675 outb(QIC_CPI_ENABLE, QIC_MASK_REGISTER1);
1676 VDEBUG(("VOYAGER SMP: QIC ENABLE CPI: CPU%d: MASK 0x%x\n",
1677 cpu, QIC_CPI_ENABLE));
1678 }
1679
1680 VDEBUG(("VOYAGER SMP: ENABLE CPI: CPU%d: MASK 0x%x\n",
1681 cpu, vic_irq_mask[cpu]));
1682 }
1683
1684 void voyager_smp_dump()
1685 {
1686 int old_cpu = smp_processor_id(), cpu;
1687
1688 /* dump the interrupt masks of each processor */
1689 for_each_online_cpu(cpu) {
1690 __u16 imr, isr, irr;
1691 unsigned long flags;
1692
1693 local_irq_save(flags);
1694 outb(VIC_CPU_MASQUERADE_ENABLE | cpu, VIC_PROCESSOR_ID);
1695 imr = (inb(0xa1) << 8) | inb(0x21);
1696 outb(0x0a, 0xa0);
1697 irr = inb(0xa0) << 8;
1698 outb(0x0a, 0x20);
1699 irr |= inb(0x20);
1700 outb(0x0b, 0xa0);
1701 isr = inb(0xa0) << 8;
1702 outb(0x0b, 0x20);
1703 isr |= inb(0x20);
1704 outb(old_cpu, VIC_PROCESSOR_ID);
1705 local_irq_restore(flags);
1706 printk("\tCPU%d: mask=0x%x, IMR=0x%x, IRR=0x%x, ISR=0x%x\n",
1707 cpu, vic_irq_mask[cpu], imr, irr, isr);
1708 #if 0
1709 /* These lines are put in to try to unstick an un ack'd irq */
1710 if (isr != 0) {
1711 int irq;
1712 for (irq = 0; irq < 16; irq++) {
1713 if (isr & (1 << irq)) {
1714 printk("\tCPU%d: ack irq %d\n",
1715 cpu, irq);
1716 local_irq_save(flags);
1717 outb(VIC_CPU_MASQUERADE_ENABLE | cpu,
1718 VIC_PROCESSOR_ID);
1719 ack_vic_irq(irq);
1720 outb(old_cpu, VIC_PROCESSOR_ID);
1721 local_irq_restore(flags);
1722 }
1723 }
1724 }
1725 #endif
1726 }
1727 }
1728
1729 void smp_voyager_power_off(void *dummy)
1730 {
1731 if (smp_processor_id() == boot_cpu_id)
1732 voyager_power_off();
1733 else
1734 smp_stop_cpu_function(NULL);
1735 }
1736
1737 static void __init voyager_smp_prepare_cpus(unsigned int max_cpus)
1738 {
1739 /* FIXME: ignore max_cpus for now */
1740 smp_boot_cpus();
1741 }
1742
1743 static void __cpuinit voyager_smp_prepare_boot_cpu(void)
1744 {
1745 init_gdt(smp_processor_id());
1746 switch_to_new_gdt();
1747
1748 cpu_set(smp_processor_id(), cpu_online_map);
1749 cpu_set(smp_processor_id(), cpu_callout_map);
1750 cpu_set(smp_processor_id(), cpu_possible_map);
1751 cpu_set(smp_processor_id(), cpu_present_map);
1752 }
1753
1754 static int __cpuinit voyager_cpu_up(unsigned int cpu)
1755 {
1756 /* This only works at boot for x86. See "rewrite" above. */
1757 if (cpu_isset(cpu, smp_commenced_mask))
1758 return -ENOSYS;
1759
1760 /* In case one didn't come up */
1761 if (!cpu_isset(cpu, cpu_callin_map))
1762 return -EIO;
1763 /* Unleash the CPU! */
1764 cpu_set(cpu, smp_commenced_mask);
1765 while (!cpu_online(cpu))
1766 mb();
1767 return 0;
1768 }
1769
1770 static void __init voyager_smp_cpus_done(unsigned int max_cpus)
1771 {
1772 zap_low_mappings();
1773 }
1774
1775 void __init smp_setup_processor_id(void)
1776 {
1777 current_thread_info()->cpu = hard_smp_processor_id();
1778 x86_write_percpu(cpu_number, hard_smp_processor_id());
1779 }
1780
1781 struct smp_ops smp_ops = {
1782 .smp_prepare_boot_cpu = voyager_smp_prepare_boot_cpu,
1783 .smp_prepare_cpus = voyager_smp_prepare_cpus,
1784 .cpu_up = voyager_cpu_up,
1785 .smp_cpus_done = voyager_smp_cpus_done,
1786
1787 .smp_send_stop = voyager_smp_send_stop,
1788 .smp_send_reschedule = voyager_smp_send_reschedule,
1789
1790 .send_call_func_ipi = native_send_call_func_ipi,
1791 .send_call_func_single_ipi = native_send_call_func_single_ipi,
1792 };
This page took 0.101816 seconds and 5 git commands to generate.