3e36614627396a32c693e1ac2e2bd846587efc19
[deliverable/linux.git] / arch / x86 / mm / fault.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4 */
5 #include <linux/interrupt.h>
6 #include <linux/mmiotrace.h>
7 #include <linux/bootmem.h>
8 #include <linux/compiler.h>
9 #include <linux/highmem.h>
10 #include <linux/kprobes.h>
11 #include <linux/uaccess.h>
12 #include <linux/vmalloc.h>
13 #include <linux/vt_kern.h>
14 #include <linux/signal.h>
15 #include <linux/kernel.h>
16 #include <linux/ptrace.h>
17 #include <linux/string.h>
18 #include <linux/module.h>
19 #include <linux/kdebug.h>
20 #include <linux/errno.h>
21 #include <linux/magic.h>
22 #include <linux/sched.h>
23 #include <linux/types.h>
24 #include <linux/init.h>
25 #include <linux/mman.h>
26 #include <linux/tty.h>
27 #include <linux/smp.h>
28 #include <linux/mm.h>
29
30 #include <asm-generic/sections.h>
31
32 #include <asm/tlbflush.h>
33 #include <asm/pgalloc.h>
34 #include <asm/segment.h>
35 #include <asm/system.h>
36 #include <asm/proto.h>
37 #include <asm/traps.h>
38 #include <asm/desc.h>
39
40 /*
41 * Page fault error code bits:
42 *
43 * bit 0 == 0: no page found 1: protection fault
44 * bit 1 == 0: read access 1: write access
45 * bit 2 == 0: kernel-mode access 1: user-mode access
46 * bit 3 == 1: use of reserved bit detected
47 * bit 4 == 1: fault was an instruction fetch
48 */
49 enum x86_pf_error_code {
50
51 PF_PROT = 1 << 0,
52 PF_WRITE = 1 << 1,
53 PF_USER = 1 << 2,
54 PF_RSVD = 1 << 3,
55 PF_INSTR = 1 << 4,
56 };
57
58 static inline int kmmio_fault(struct pt_regs *regs, unsigned long addr)
59 {
60 #ifdef CONFIG_MMIOTRACE
61 if (unlikely(is_kmmio_active()))
62 if (kmmio_handler(regs, addr) == 1)
63 return -1;
64 #endif
65 return 0;
66 }
67
68 static inline int notify_page_fault(struct pt_regs *regs)
69 {
70 #ifdef CONFIG_KPROBES
71 int ret = 0;
72
73 /* kprobe_running() needs smp_processor_id() */
74 if (!user_mode_vm(regs)) {
75 preempt_disable();
76 if (kprobe_running() && kprobe_fault_handler(regs, 14))
77 ret = 1;
78 preempt_enable();
79 }
80
81 return ret;
82 #else
83 return 0;
84 #endif
85 }
86
87 /*
88 * Prefetch quirks:
89 *
90 * 32-bit mode:
91 *
92 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
93 * Check that here and ignore it.
94 *
95 * 64-bit mode:
96 *
97 * Sometimes the CPU reports invalid exceptions on prefetch.
98 * Check that here and ignore it.
99 *
100 * Opcode checker based on code by Richard Brunner.
101 */
102 static inline int
103 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
104 unsigned char opcode, int *prefetch)
105 {
106 unsigned char instr_hi = opcode & 0xf0;
107 unsigned char instr_lo = opcode & 0x0f;
108
109 switch (instr_hi) {
110 case 0x20:
111 case 0x30:
112 /*
113 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
114 * In X86_64 long mode, the CPU will signal invalid
115 * opcode if some of these prefixes are present so
116 * X86_64 will never get here anyway
117 */
118 return ((instr_lo & 7) == 0x6);
119 #ifdef CONFIG_X86_64
120 case 0x40:
121 /*
122 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
123 * Need to figure out under what instruction mode the
124 * instruction was issued. Could check the LDT for lm,
125 * but for now it's good enough to assume that long
126 * mode only uses well known segments or kernel.
127 */
128 return (!user_mode(regs)) || (regs->cs == __USER_CS);
129 #endif
130 case 0x60:
131 /* 0x64 thru 0x67 are valid prefixes in all modes. */
132 return (instr_lo & 0xC) == 0x4;
133 case 0xF0:
134 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
135 return !instr_lo || (instr_lo>>1) == 1;
136 case 0x00:
137 /* Prefetch instruction is 0x0F0D or 0x0F18 */
138 if (probe_kernel_address(instr, opcode))
139 return 0;
140
141 *prefetch = (instr_lo == 0xF) &&
142 (opcode == 0x0D || opcode == 0x18);
143 return 0;
144 default:
145 return 0;
146 }
147 }
148
149 static int
150 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
151 {
152 unsigned char *max_instr;
153 unsigned char *instr;
154 int prefetch = 0;
155
156 /*
157 * If it was a exec (instruction fetch) fault on NX page, then
158 * do not ignore the fault:
159 */
160 if (error_code & PF_INSTR)
161 return 0;
162
163 instr = (void *)convert_ip_to_linear(current, regs);
164 max_instr = instr + 15;
165
166 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
167 return 0;
168
169 while (instr < max_instr) {
170 unsigned char opcode;
171
172 if (probe_kernel_address(instr, opcode))
173 break;
174
175 instr++;
176
177 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
178 break;
179 }
180 return prefetch;
181 }
182
183 static void
184 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
185 struct task_struct *tsk)
186 {
187 siginfo_t info;
188
189 info.si_signo = si_signo;
190 info.si_errno = 0;
191 info.si_code = si_code;
192 info.si_addr = (void __user *)address;
193
194 force_sig_info(si_signo, &info, tsk);
195 }
196
197 #ifdef CONFIG_X86_64
198 static int bad_address(void *p)
199 {
200 unsigned long dummy;
201
202 return probe_kernel_address((unsigned long *)p, dummy);
203 }
204 #endif
205
206 static void dump_pagetable(unsigned long address)
207 {
208 #ifdef CONFIG_X86_32
209 __typeof__(pte_val(__pte(0))) page;
210
211 page = read_cr3();
212 page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT];
213
214 #ifdef CONFIG_X86_PAE
215 printk("*pdpt = %016Lx ", page);
216 if ((page >> PAGE_SHIFT) < max_low_pfn
217 && page & _PAGE_PRESENT) {
218 page &= PAGE_MASK;
219 page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT)
220 & (PTRS_PER_PMD - 1)];
221 printk(KERN_CONT "*pde = %016Lx ", page);
222 page &= ~_PAGE_NX;
223 }
224 #else
225 printk("*pde = %08lx ", page);
226 #endif
227
228 /*
229 * We must not directly access the pte in the highpte
230 * case if the page table is located in highmem.
231 * And let's rather not kmap-atomic the pte, just in case
232 * it's allocated already:
233 */
234 if ((page >> PAGE_SHIFT) < max_low_pfn
235 && (page & _PAGE_PRESENT)
236 && !(page & _PAGE_PSE)) {
237
238 page &= PAGE_MASK;
239 page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT)
240 & (PTRS_PER_PTE - 1)];
241 printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page);
242 }
243
244 printk("\n");
245 #else /* CONFIG_X86_64 */
246 pgd_t *pgd;
247 pud_t *pud;
248 pmd_t *pmd;
249 pte_t *pte;
250
251 pgd = (pgd_t *)read_cr3();
252
253 pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK);
254
255 pgd += pgd_index(address);
256 if (bad_address(pgd))
257 goto bad;
258
259 printk("PGD %lx ", pgd_val(*pgd));
260
261 if (!pgd_present(*pgd))
262 goto out;
263
264 pud = pud_offset(pgd, address);
265 if (bad_address(pud))
266 goto bad;
267
268 printk("PUD %lx ", pud_val(*pud));
269 if (!pud_present(*pud) || pud_large(*pud))
270 goto out;
271
272 pmd = pmd_offset(pud, address);
273 if (bad_address(pmd))
274 goto bad;
275
276 printk("PMD %lx ", pmd_val(*pmd));
277 if (!pmd_present(*pmd) || pmd_large(*pmd))
278 goto out;
279
280 pte = pte_offset_kernel(pmd, address);
281 if (bad_address(pte))
282 goto bad;
283
284 printk("PTE %lx", pte_val(*pte));
285 out:
286 printk("\n");
287 return;
288 bad:
289 printk("BAD\n");
290 #endif
291 }
292
293 #ifdef CONFIG_X86_32
294 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
295 {
296 unsigned index = pgd_index(address);
297 pgd_t *pgd_k;
298 pud_t *pud, *pud_k;
299 pmd_t *pmd, *pmd_k;
300
301 pgd += index;
302 pgd_k = init_mm.pgd + index;
303
304 if (!pgd_present(*pgd_k))
305 return NULL;
306
307 /*
308 * set_pgd(pgd, *pgd_k); here would be useless on PAE
309 * and redundant with the set_pmd() on non-PAE. As would
310 * set_pud.
311 */
312 pud = pud_offset(pgd, address);
313 pud_k = pud_offset(pgd_k, address);
314 if (!pud_present(*pud_k))
315 return NULL;
316
317 pmd = pmd_offset(pud, address);
318 pmd_k = pmd_offset(pud_k, address);
319 if (!pmd_present(*pmd_k))
320 return NULL;
321
322 if (!pmd_present(*pmd)) {
323 set_pmd(pmd, *pmd_k);
324 arch_flush_lazy_mmu_mode();
325 } else {
326 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
327 }
328
329 return pmd_k;
330 }
331
332 /*
333 * Did it hit the DOS screen memory VA from vm86 mode?
334 */
335 static inline void
336 check_v8086_mode(struct pt_regs *regs, unsigned long address,
337 struct task_struct *tsk)
338 {
339 unsigned long bit;
340
341 if (!v8086_mode(regs))
342 return;
343
344 bit = (address - 0xA0000) >> PAGE_SHIFT;
345 if (bit < 32)
346 tsk->thread.screen_bitmap |= 1 << bit;
347 }
348
349 #else /* CONFIG_X86_64: */
350
351 static const char errata93_warning[] =
352 KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
353 KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
354 KERN_ERR "******* Please consider a BIOS update.\n"
355 KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
356
357 /*
358 * No vm86 mode in 64-bit mode:
359 */
360 static inline void
361 check_v8086_mode(struct pt_regs *regs, unsigned long address,
362 struct task_struct *tsk)
363 {
364 }
365
366 #endif
367
368 /*
369 * Workaround for K8 erratum #93 & buggy BIOS.
370 *
371 * BIOS SMM functions are required to use a specific workaround
372 * to avoid corruption of the 64bit RIP register on C stepping K8.
373 *
374 * A lot of BIOS that didn't get tested properly miss this.
375 *
376 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
377 * Try to work around it here.
378 *
379 * Note we only handle faults in kernel here.
380 * Does nothing on 32-bit.
381 */
382 static int is_errata93(struct pt_regs *regs, unsigned long address)
383 {
384 #ifdef CONFIG_X86_64
385 static int once;
386
387 if (address != regs->ip)
388 return 0;
389
390 if ((address >> 32) != 0)
391 return 0;
392
393 address |= 0xffffffffUL << 32;
394 if ((address >= (u64)_stext && address <= (u64)_etext) ||
395 (address >= MODULES_VADDR && address <= MODULES_END)) {
396 if (!once) {
397 printk(errata93_warning);
398 once = 1;
399 }
400 regs->ip = address;
401 return 1;
402 }
403 #endif
404 return 0;
405 }
406
407 /*
408 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
409 * to illegal addresses >4GB.
410 *
411 * We catch this in the page fault handler because these addresses
412 * are not reachable. Just detect this case and return. Any code
413 * segment in LDT is compatibility mode.
414 */
415 static int is_errata100(struct pt_regs *regs, unsigned long address)
416 {
417 #ifdef CONFIG_X86_64
418 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
419 return 1;
420 #endif
421 return 0;
422 }
423
424 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
425 {
426 #ifdef CONFIG_X86_F00F_BUG
427 unsigned long nr;
428
429 /*
430 * Pentium F0 0F C7 C8 bug workaround:
431 */
432 if (boot_cpu_data.f00f_bug) {
433 nr = (address - idt_descr.address) >> 3;
434
435 if (nr == 6) {
436 do_invalid_op(regs, 0);
437 return 1;
438 }
439 }
440 #endif
441 return 0;
442 }
443
444 static void
445 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
446 unsigned long address)
447 {
448 #ifdef CONFIG_X86_32
449 if (!oops_may_print())
450 return;
451 #endif
452
453 #ifdef CONFIG_X86_PAE
454 if (error_code & PF_INSTR) {
455 unsigned int level;
456
457 pte_t *pte = lookup_address(address, &level);
458
459 if (pte && pte_present(*pte) && !pte_exec(*pte)) {
460 printk(KERN_CRIT "kernel tried to execute "
461 "NX-protected page - exploit attempt? "
462 "(uid: %d)\n", current_uid());
463 }
464 }
465 #endif
466
467 printk(KERN_ALERT "BUG: unable to handle kernel ");
468 if (address < PAGE_SIZE)
469 printk(KERN_CONT "NULL pointer dereference");
470 else
471 printk(KERN_CONT "paging request");
472
473 printk(KERN_CONT " at %p\n", (void *) address);
474 printk(KERN_ALERT "IP:");
475 printk_address(regs->ip, 1);
476
477 dump_pagetable(address);
478 }
479
480 static noinline void
481 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
482 unsigned long address)
483 {
484 struct task_struct *tsk;
485 unsigned long flags;
486 int sig;
487
488 flags = oops_begin();
489 tsk = current;
490 sig = SIGKILL;
491
492 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
493 tsk->comm, address);
494 dump_pagetable(address);
495
496 tsk->thread.cr2 = address;
497 tsk->thread.trap_no = 14;
498 tsk->thread.error_code = error_code;
499
500 if (__die("Bad pagetable", regs, error_code))
501 sig = 0;
502
503 oops_end(flags, regs, sig);
504 }
505
506 static noinline void
507 no_context(struct pt_regs *regs, unsigned long error_code,
508 unsigned long address)
509 {
510 struct task_struct *tsk = current;
511 unsigned long *stackend;
512
513 #ifdef CONFIG_X86_64
514 unsigned long flags;
515 int sig;
516 #endif
517
518 /* Are we prepared to handle this kernel fault? */
519 if (fixup_exception(regs))
520 return;
521
522 /*
523 * 32-bit:
524 *
525 * Valid to do another page fault here, because if this fault
526 * had been triggered by is_prefetch fixup_exception would have
527 * handled it.
528 *
529 * 64-bit:
530 *
531 * Hall of shame of CPU/BIOS bugs.
532 */
533 if (is_prefetch(regs, error_code, address))
534 return;
535
536 if (is_errata93(regs, address))
537 return;
538
539 /*
540 * Oops. The kernel tried to access some bad page. We'll have to
541 * terminate things with extreme prejudice:
542 */
543 #ifdef CONFIG_X86_32
544 bust_spinlocks(1);
545 #else
546 flags = oops_begin();
547 #endif
548
549 show_fault_oops(regs, error_code, address);
550
551 stackend = end_of_stack(tsk);
552 if (*stackend != STACK_END_MAGIC)
553 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
554
555 tsk->thread.cr2 = address;
556 tsk->thread.trap_no = 14;
557 tsk->thread.error_code = error_code;
558
559 #ifdef CONFIG_X86_32
560 die("Oops", regs, error_code);
561 bust_spinlocks(0);
562 do_exit(SIGKILL);
563 #else
564 sig = SIGKILL;
565 if (__die("Oops", regs, error_code))
566 sig = 0;
567
568 /* Executive summary in case the body of the oops scrolled away */
569 printk(KERN_EMERG "CR2: %016lx\n", address);
570
571 oops_end(flags, regs, sig);
572 #endif
573 }
574
575 /*
576 * Print out info about fatal segfaults, if the show_unhandled_signals
577 * sysctl is set:
578 */
579 static inline void
580 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
581 unsigned long address, struct task_struct *tsk)
582 {
583 if (!unhandled_signal(tsk, SIGSEGV))
584 return;
585
586 if (!printk_ratelimit())
587 return;
588
589 printk(KERN_CONT "%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
590 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
591 tsk->comm, task_pid_nr(tsk), address,
592 (void *)regs->ip, (void *)regs->sp, error_code);
593
594 print_vma_addr(KERN_CONT " in ", regs->ip);
595
596 printk(KERN_CONT "\n");
597 }
598
599 static void
600 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
601 unsigned long address, int si_code)
602 {
603 struct task_struct *tsk = current;
604
605 /* User mode accesses just cause a SIGSEGV */
606 if (error_code & PF_USER) {
607 /*
608 * It's possible to have interrupts off here:
609 */
610 local_irq_enable();
611
612 /*
613 * Valid to do another page fault here because this one came
614 * from user space:
615 */
616 if (is_prefetch(regs, error_code, address))
617 return;
618
619 if (is_errata100(regs, address))
620 return;
621
622 if (unlikely(show_unhandled_signals))
623 show_signal_msg(regs, error_code, address, tsk);
624
625 /* Kernel addresses are always protection faults: */
626 tsk->thread.cr2 = address;
627 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
628 tsk->thread.trap_no = 14;
629
630 force_sig_info_fault(SIGSEGV, si_code, address, tsk);
631
632 return;
633 }
634
635 if (is_f00f_bug(regs, address))
636 return;
637
638 no_context(regs, error_code, address);
639 }
640
641 static noinline void
642 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
643 unsigned long address)
644 {
645 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
646 }
647
648 static void
649 __bad_area(struct pt_regs *regs, unsigned long error_code,
650 unsigned long address, int si_code)
651 {
652 struct mm_struct *mm = current->mm;
653
654 /*
655 * Something tried to access memory that isn't in our memory map..
656 * Fix it, but check if it's kernel or user first..
657 */
658 up_read(&mm->mmap_sem);
659
660 __bad_area_nosemaphore(regs, error_code, address, si_code);
661 }
662
663 static noinline void
664 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
665 {
666 __bad_area(regs, error_code, address, SEGV_MAPERR);
667 }
668
669 static noinline void
670 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
671 unsigned long address)
672 {
673 __bad_area(regs, error_code, address, SEGV_ACCERR);
674 }
675
676 /* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */
677 static void
678 out_of_memory(struct pt_regs *regs, unsigned long error_code,
679 unsigned long address)
680 {
681 /*
682 * We ran out of memory, call the OOM killer, and return the userspace
683 * (which will retry the fault, or kill us if we got oom-killed):
684 */
685 up_read(&current->mm->mmap_sem);
686
687 pagefault_out_of_memory();
688 }
689
690 static void
691 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address)
692 {
693 struct task_struct *tsk = current;
694 struct mm_struct *mm = tsk->mm;
695
696 up_read(&mm->mmap_sem);
697
698 /* Kernel mode? Handle exceptions or die: */
699 if (!(error_code & PF_USER))
700 no_context(regs, error_code, address);
701
702 #ifdef CONFIG_X86_32
703 /* User space => ok to do another page fault: */
704 if (is_prefetch(regs, error_code, address))
705 return;
706 #endif
707
708 tsk->thread.cr2 = address;
709 tsk->thread.error_code = error_code;
710 tsk->thread.trap_no = 14;
711
712 force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
713 }
714
715 static noinline void
716 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
717 unsigned long address, unsigned int fault)
718 {
719 if (fault & VM_FAULT_OOM) {
720 out_of_memory(regs, error_code, address);
721 } else {
722 if (fault & VM_FAULT_SIGBUS)
723 do_sigbus(regs, error_code, address);
724 else
725 BUG();
726 }
727 }
728
729 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
730 {
731 if ((error_code & PF_WRITE) && !pte_write(*pte))
732 return 0;
733
734 if ((error_code & PF_INSTR) && !pte_exec(*pte))
735 return 0;
736
737 return 1;
738 }
739
740 /*
741 * Handle a spurious fault caused by a stale TLB entry.
742 *
743 * This allows us to lazily refresh the TLB when increasing the
744 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
745 * eagerly is very expensive since that implies doing a full
746 * cross-processor TLB flush, even if no stale TLB entries exist
747 * on other processors.
748 *
749 * There are no security implications to leaving a stale TLB when
750 * increasing the permissions on a page.
751 */
752 static noinline int
753 spurious_fault(unsigned long error_code, unsigned long address)
754 {
755 pgd_t *pgd;
756 pud_t *pud;
757 pmd_t *pmd;
758 pte_t *pte;
759 int ret;
760
761 /* Reserved-bit violation or user access to kernel space? */
762 if (error_code & (PF_USER | PF_RSVD))
763 return 0;
764
765 pgd = init_mm.pgd + pgd_index(address);
766 if (!pgd_present(*pgd))
767 return 0;
768
769 pud = pud_offset(pgd, address);
770 if (!pud_present(*pud))
771 return 0;
772
773 if (pud_large(*pud))
774 return spurious_fault_check(error_code, (pte_t *) pud);
775
776 pmd = pmd_offset(pud, address);
777 if (!pmd_present(*pmd))
778 return 0;
779
780 if (pmd_large(*pmd))
781 return spurious_fault_check(error_code, (pte_t *) pmd);
782
783 pte = pte_offset_kernel(pmd, address);
784 if (!pte_present(*pte))
785 return 0;
786
787 ret = spurious_fault_check(error_code, pte);
788 if (!ret)
789 return 0;
790
791 /*
792 * Make sure we have permissions in PMD.
793 * If not, then there's a bug in the page tables:
794 */
795 ret = spurious_fault_check(error_code, (pte_t *) pmd);
796 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
797
798 return ret;
799 }
800
801 /*
802 * 32-bit:
803 *
804 * Handle a fault on the vmalloc or module mapping area
805 *
806 * 64-bit:
807 *
808 * Handle a fault on the vmalloc area
809 *
810 * This assumes no large pages in there.
811 */
812 static noinline int vmalloc_fault(unsigned long address)
813 {
814 #ifdef CONFIG_X86_32
815 unsigned long pgd_paddr;
816 pmd_t *pmd_k;
817 pte_t *pte_k;
818
819 /* Make sure we are in vmalloc area: */
820 if (!(address >= VMALLOC_START && address < VMALLOC_END))
821 return -1;
822
823 /*
824 * Synchronize this task's top level page-table
825 * with the 'reference' page table.
826 *
827 * Do _not_ use "current" here. We might be inside
828 * an interrupt in the middle of a task switch..
829 */
830 pgd_paddr = read_cr3();
831 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
832 if (!pmd_k)
833 return -1;
834
835 pte_k = pte_offset_kernel(pmd_k, address);
836 if (!pte_present(*pte_k))
837 return -1;
838
839 return 0;
840 #else
841 pgd_t *pgd, *pgd_ref;
842 pud_t *pud, *pud_ref;
843 pmd_t *pmd, *pmd_ref;
844 pte_t *pte, *pte_ref;
845
846 /* Make sure we are in vmalloc area: */
847 if (!(address >= VMALLOC_START && address < VMALLOC_END))
848 return -1;
849
850 /*
851 * Copy kernel mappings over when needed. This can also
852 * happen within a race in page table update. In the later
853 * case just flush:
854 */
855 pgd = pgd_offset(current->active_mm, address);
856 pgd_ref = pgd_offset_k(address);
857 if (pgd_none(*pgd_ref))
858 return -1;
859
860 if (pgd_none(*pgd))
861 set_pgd(pgd, *pgd_ref);
862 else
863 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
864
865 /*
866 * Below here mismatches are bugs because these lower tables
867 * are shared:
868 */
869
870 pud = pud_offset(pgd, address);
871 pud_ref = pud_offset(pgd_ref, address);
872 if (pud_none(*pud_ref))
873 return -1;
874
875 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
876 BUG();
877
878 pmd = pmd_offset(pud, address);
879 pmd_ref = pmd_offset(pud_ref, address);
880 if (pmd_none(*pmd_ref))
881 return -1;
882
883 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
884 BUG();
885
886 pte_ref = pte_offset_kernel(pmd_ref, address);
887 if (!pte_present(*pte_ref))
888 return -1;
889
890 pte = pte_offset_kernel(pmd, address);
891
892 /*
893 * Don't use pte_page here, because the mappings can point
894 * outside mem_map, and the NUMA hash lookup cannot handle
895 * that:
896 */
897 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
898 BUG();
899
900 return 0;
901 #endif
902 }
903
904 int show_unhandled_signals = 1;
905
906 static inline int
907 access_error(unsigned long error_code, int write, struct vm_area_struct *vma)
908 {
909 if (write) {
910 /* write, present and write, not present: */
911 if (unlikely(!(vma->vm_flags & VM_WRITE)))
912 return 1;
913 return 0;
914 }
915
916 /* read, present: */
917 if (unlikely(error_code & PF_PROT))
918 return 1;
919
920 /* read, not present: */
921 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
922 return 1;
923
924 return 0;
925 }
926
927 static int fault_in_kernel_space(unsigned long address)
928 {
929 #ifdef CONFIG_X86_32
930 return address >= TASK_SIZE;
931 #else
932 return address >= TASK_SIZE64;
933 #endif
934 }
935
936 /*
937 * This routine handles page faults. It determines the address,
938 * and the problem, and then passes it off to one of the appropriate
939 * routines.
940 */
941 #ifdef CONFIG_X86_64
942 asmlinkage
943 #endif
944 void __kprobes do_page_fault(struct pt_regs *regs, unsigned long error_code)
945 {
946 struct vm_area_struct *vma;
947 struct task_struct *tsk;
948 unsigned long address;
949 struct mm_struct *mm;
950 int write;
951 int fault;
952
953 tsk = current;
954 mm = tsk->mm;
955
956 prefetchw(&mm->mmap_sem);
957
958 /* Get the faulting address: */
959 address = read_cr2();
960
961 if (unlikely(kmmio_fault(regs, address)))
962 return;
963
964 /*
965 * We fault-in kernel-space virtual memory on-demand. The
966 * 'reference' page table is init_mm.pgd.
967 *
968 * NOTE! We MUST NOT take any locks for this case. We may
969 * be in an interrupt or a critical region, and should
970 * only copy the information from the master page table,
971 * nothing more.
972 *
973 * This verifies that the fault happens in kernel space
974 * (error_code & 4) == 0, and that the fault was not a
975 * protection error (error_code & 9) == 0.
976 */
977 if (unlikely(fault_in_kernel_space(address))) {
978 if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) &&
979 vmalloc_fault(address) >= 0)
980 return;
981
982 /* Can handle a stale RO->RW TLB: */
983 if (spurious_fault(error_code, address))
984 return;
985
986 /* kprobes don't want to hook the spurious faults: */
987 if (notify_page_fault(regs))
988 return;
989 /*
990 * Don't take the mm semaphore here. If we fixup a prefetch
991 * fault we could otherwise deadlock:
992 */
993 bad_area_nosemaphore(regs, error_code, address);
994
995 return;
996 }
997
998 /* kprobes don't want to hook the spurious faults: */
999 if (unlikely(notify_page_fault(regs)))
1000 return;
1001 /*
1002 * It's safe to allow irq's after cr2 has been saved and the
1003 * vmalloc fault has been handled.
1004 *
1005 * User-mode registers count as a user access even for any
1006 * potential system fault or CPU buglet:
1007 */
1008 if (user_mode_vm(regs)) {
1009 local_irq_enable();
1010 error_code |= PF_USER;
1011 } else {
1012 if (regs->flags & X86_EFLAGS_IF)
1013 local_irq_enable();
1014 }
1015
1016 if (unlikely(error_code & PF_RSVD))
1017 pgtable_bad(regs, error_code, address);
1018
1019 /*
1020 * If we're in an interrupt, have no user context or are running
1021 * in an atomic region then we must not take the fault:
1022 */
1023 if (unlikely(in_atomic() || !mm)) {
1024 bad_area_nosemaphore(regs, error_code, address);
1025 return;
1026 }
1027
1028 /*
1029 * When running in the kernel we expect faults to occur only to
1030 * addresses in user space. All other faults represent errors in
1031 * the kernel and should generate an OOPS. Unfortunately, in the
1032 * case of an erroneous fault occurring in a code path which already
1033 * holds mmap_sem we will deadlock attempting to validate the fault
1034 * against the address space. Luckily the kernel only validly
1035 * references user space from well defined areas of code, which are
1036 * listed in the exceptions table.
1037 *
1038 * As the vast majority of faults will be valid we will only perform
1039 * the source reference check when there is a possibility of a
1040 * deadlock. Attempt to lock the address space, if we cannot we then
1041 * validate the source. If this is invalid we can skip the address
1042 * space check, thus avoiding the deadlock:
1043 */
1044 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1045 if ((error_code & PF_USER) == 0 &&
1046 !search_exception_tables(regs->ip)) {
1047 bad_area_nosemaphore(regs, error_code, address);
1048 return;
1049 }
1050 down_read(&mm->mmap_sem);
1051 } else {
1052 /*
1053 * The above down_read_trylock() might have succeeded in
1054 * which case we'll have missed the might_sleep() from
1055 * down_read():
1056 */
1057 might_sleep();
1058 }
1059
1060 vma = find_vma(mm, address);
1061 if (unlikely(!vma)) {
1062 bad_area(regs, error_code, address);
1063 return;
1064 }
1065 if (likely(vma->vm_start <= address))
1066 goto good_area;
1067 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1068 bad_area(regs, error_code, address);
1069 return;
1070 }
1071 if (error_code & PF_USER) {
1072 /*
1073 * Accessing the stack below %sp is always a bug.
1074 * The large cushion allows instructions like enter
1075 * and pusha to work. ("enter $65535, $31" pushes
1076 * 32 pointers and then decrements %sp by 65535.)
1077 */
1078 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1079 bad_area(regs, error_code, address);
1080 return;
1081 }
1082 }
1083 if (unlikely(expand_stack(vma, address))) {
1084 bad_area(regs, error_code, address);
1085 return;
1086 }
1087
1088 /*
1089 * Ok, we have a good vm_area for this memory access, so
1090 * we can handle it..
1091 */
1092 good_area:
1093 write = error_code & PF_WRITE;
1094
1095 if (unlikely(access_error(error_code, write, vma))) {
1096 bad_area_access_error(regs, error_code, address);
1097 return;
1098 }
1099
1100 /*
1101 * If for any reason at all we couldn't handle the fault,
1102 * make sure we exit gracefully rather than endlessly redo
1103 * the fault:
1104 */
1105 fault = handle_mm_fault(mm, vma, address, write);
1106
1107 if (unlikely(fault & VM_FAULT_ERROR)) {
1108 mm_fault_error(regs, error_code, address, fault);
1109 return;
1110 }
1111
1112 if (fault & VM_FAULT_MAJOR)
1113 tsk->maj_flt++;
1114 else
1115 tsk->min_flt++;
1116
1117 check_v8086_mode(regs, address, tsk);
1118
1119 up_read(&mm->mmap_sem);
1120 }
1121
1122 DEFINE_SPINLOCK(pgd_lock);
1123 LIST_HEAD(pgd_list);
1124
1125 void vmalloc_sync_all(void)
1126 {
1127 unsigned long address;
1128
1129 #ifdef CONFIG_X86_32
1130 if (SHARED_KERNEL_PMD)
1131 return;
1132
1133 for (address = VMALLOC_START & PMD_MASK;
1134 address >= TASK_SIZE && address < FIXADDR_TOP;
1135 address += PMD_SIZE) {
1136
1137 unsigned long flags;
1138 struct page *page;
1139
1140 spin_lock_irqsave(&pgd_lock, flags);
1141 list_for_each_entry(page, &pgd_list, lru) {
1142 if (!vmalloc_sync_one(page_address(page), address))
1143 break;
1144 }
1145 spin_unlock_irqrestore(&pgd_lock, flags);
1146 }
1147 #else /* CONFIG_X86_64 */
1148 for (address = VMALLOC_START & PGDIR_MASK; address <= VMALLOC_END;
1149 address += PGDIR_SIZE) {
1150
1151 const pgd_t *pgd_ref = pgd_offset_k(address);
1152 unsigned long flags;
1153 struct page *page;
1154
1155 if (pgd_none(*pgd_ref))
1156 continue;
1157
1158 spin_lock_irqsave(&pgd_lock, flags);
1159 list_for_each_entry(page, &pgd_list, lru) {
1160 pgd_t *pgd;
1161 pgd = (pgd_t *)page_address(page) + pgd_index(address);
1162 if (pgd_none(*pgd))
1163 set_pgd(pgd, *pgd_ref);
1164 else
1165 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
1166 }
1167 spin_unlock_irqrestore(&pgd_lock, flags);
1168 }
1169 #endif
1170 }
This page took 0.056974 seconds and 4 git commands to generate.