Merge branch 'x86/header-guards' into x86-v28-for-linus-phase1
[deliverable/linux.git] / arch / x86 / mm / fault.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001,2002 Andi Kleen, SuSE Labs.
4 */
5
6 #include <linux/signal.h>
7 #include <linux/sched.h>
8 #include <linux/kernel.h>
9 #include <linux/errno.h>
10 #include <linux/string.h>
11 #include <linux/types.h>
12 #include <linux/ptrace.h>
13 #include <linux/mmiotrace.h>
14 #include <linux/mman.h>
15 #include <linux/mm.h>
16 #include <linux/smp.h>
17 #include <linux/interrupt.h>
18 #include <linux/init.h>
19 #include <linux/tty.h>
20 #include <linux/vt_kern.h> /* For unblank_screen() */
21 #include <linux/compiler.h>
22 #include <linux/highmem.h>
23 #include <linux/bootmem.h> /* for max_low_pfn */
24 #include <linux/vmalloc.h>
25 #include <linux/module.h>
26 #include <linux/kprobes.h>
27 #include <linux/uaccess.h>
28 #include <linux/kdebug.h>
29
30 #include <asm/system.h>
31 #include <asm/desc.h>
32 #include <asm/segment.h>
33 #include <asm/pgalloc.h>
34 #include <asm/smp.h>
35 #include <asm/tlbflush.h>
36 #include <asm/proto.h>
37 #include <asm-generic/sections.h>
38
39 /*
40 * Page fault error code bits
41 * bit 0 == 0 means no page found, 1 means protection fault
42 * bit 1 == 0 means read, 1 means write
43 * bit 2 == 0 means kernel, 1 means user-mode
44 * bit 3 == 1 means use of reserved bit detected
45 * bit 4 == 1 means fault was an instruction fetch
46 */
47 #define PF_PROT (1<<0)
48 #define PF_WRITE (1<<1)
49 #define PF_USER (1<<2)
50 #define PF_RSVD (1<<3)
51 #define PF_INSTR (1<<4)
52
53 static inline int kmmio_fault(struct pt_regs *regs, unsigned long addr)
54 {
55 #ifdef CONFIG_MMIOTRACE_HOOKS
56 if (unlikely(is_kmmio_active()))
57 if (kmmio_handler(regs, addr) == 1)
58 return -1;
59 #endif
60 return 0;
61 }
62
63 static inline int notify_page_fault(struct pt_regs *regs)
64 {
65 #ifdef CONFIG_KPROBES
66 int ret = 0;
67
68 /* kprobe_running() needs smp_processor_id() */
69 if (!user_mode_vm(regs)) {
70 preempt_disable();
71 if (kprobe_running() && kprobe_fault_handler(regs, 14))
72 ret = 1;
73 preempt_enable();
74 }
75
76 return ret;
77 #else
78 return 0;
79 #endif
80 }
81
82 /*
83 * X86_32
84 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
85 * Check that here and ignore it.
86 *
87 * X86_64
88 * Sometimes the CPU reports invalid exceptions on prefetch.
89 * Check that here and ignore it.
90 *
91 * Opcode checker based on code by Richard Brunner
92 */
93 static int is_prefetch(struct pt_regs *regs, unsigned long addr,
94 unsigned long error_code)
95 {
96 unsigned char *instr;
97 int scan_more = 1;
98 int prefetch = 0;
99 unsigned char *max_instr;
100
101 /*
102 * If it was a exec (instruction fetch) fault on NX page, then
103 * do not ignore the fault:
104 */
105 if (error_code & PF_INSTR)
106 return 0;
107
108 instr = (unsigned char *)convert_ip_to_linear(current, regs);
109 max_instr = instr + 15;
110
111 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
112 return 0;
113
114 while (scan_more && instr < max_instr) {
115 unsigned char opcode;
116 unsigned char instr_hi;
117 unsigned char instr_lo;
118
119 if (probe_kernel_address(instr, opcode))
120 break;
121
122 instr_hi = opcode & 0xf0;
123 instr_lo = opcode & 0x0f;
124 instr++;
125
126 switch (instr_hi) {
127 case 0x20:
128 case 0x30:
129 /*
130 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
131 * In X86_64 long mode, the CPU will signal invalid
132 * opcode if some of these prefixes are present so
133 * X86_64 will never get here anyway
134 */
135 scan_more = ((instr_lo & 7) == 0x6);
136 break;
137 #ifdef CONFIG_X86_64
138 case 0x40:
139 /*
140 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
141 * Need to figure out under what instruction mode the
142 * instruction was issued. Could check the LDT for lm,
143 * but for now it's good enough to assume that long
144 * mode only uses well known segments or kernel.
145 */
146 scan_more = (!user_mode(regs)) || (regs->cs == __USER_CS);
147 break;
148 #endif
149 case 0x60:
150 /* 0x64 thru 0x67 are valid prefixes in all modes. */
151 scan_more = (instr_lo & 0xC) == 0x4;
152 break;
153 case 0xF0:
154 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
155 scan_more = !instr_lo || (instr_lo>>1) == 1;
156 break;
157 case 0x00:
158 /* Prefetch instruction is 0x0F0D or 0x0F18 */
159 scan_more = 0;
160
161 if (probe_kernel_address(instr, opcode))
162 break;
163 prefetch = (instr_lo == 0xF) &&
164 (opcode == 0x0D || opcode == 0x18);
165 break;
166 default:
167 scan_more = 0;
168 break;
169 }
170 }
171 return prefetch;
172 }
173
174 static void force_sig_info_fault(int si_signo, int si_code,
175 unsigned long address, struct task_struct *tsk)
176 {
177 siginfo_t info;
178
179 info.si_signo = si_signo;
180 info.si_errno = 0;
181 info.si_code = si_code;
182 info.si_addr = (void __user *)address;
183 force_sig_info(si_signo, &info, tsk);
184 }
185
186 #ifdef CONFIG_X86_64
187 static int bad_address(void *p)
188 {
189 unsigned long dummy;
190 return probe_kernel_address((unsigned long *)p, dummy);
191 }
192 #endif
193
194 static void dump_pagetable(unsigned long address)
195 {
196 #ifdef CONFIG_X86_32
197 __typeof__(pte_val(__pte(0))) page;
198
199 page = read_cr3();
200 page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT];
201 #ifdef CONFIG_X86_PAE
202 printk("*pdpt = %016Lx ", page);
203 if ((page >> PAGE_SHIFT) < max_low_pfn
204 && page & _PAGE_PRESENT) {
205 page &= PAGE_MASK;
206 page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT)
207 & (PTRS_PER_PMD - 1)];
208 printk(KERN_CONT "*pde = %016Lx ", page);
209 page &= ~_PAGE_NX;
210 }
211 #else
212 printk("*pde = %08lx ", page);
213 #endif
214
215 /*
216 * We must not directly access the pte in the highpte
217 * case if the page table is located in highmem.
218 * And let's rather not kmap-atomic the pte, just in case
219 * it's allocated already.
220 */
221 if ((page >> PAGE_SHIFT) < max_low_pfn
222 && (page & _PAGE_PRESENT)
223 && !(page & _PAGE_PSE)) {
224 page &= PAGE_MASK;
225 page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT)
226 & (PTRS_PER_PTE - 1)];
227 printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page);
228 }
229
230 printk("\n");
231 #else /* CONFIG_X86_64 */
232 pgd_t *pgd;
233 pud_t *pud;
234 pmd_t *pmd;
235 pte_t *pte;
236
237 pgd = (pgd_t *)read_cr3();
238
239 pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK);
240 pgd += pgd_index(address);
241 if (bad_address(pgd)) goto bad;
242 printk("PGD %lx ", pgd_val(*pgd));
243 if (!pgd_present(*pgd)) goto ret;
244
245 pud = pud_offset(pgd, address);
246 if (bad_address(pud)) goto bad;
247 printk("PUD %lx ", pud_val(*pud));
248 if (!pud_present(*pud) || pud_large(*pud))
249 goto ret;
250
251 pmd = pmd_offset(pud, address);
252 if (bad_address(pmd)) goto bad;
253 printk("PMD %lx ", pmd_val(*pmd));
254 if (!pmd_present(*pmd) || pmd_large(*pmd)) goto ret;
255
256 pte = pte_offset_kernel(pmd, address);
257 if (bad_address(pte)) goto bad;
258 printk("PTE %lx", pte_val(*pte));
259 ret:
260 printk("\n");
261 return;
262 bad:
263 printk("BAD\n");
264 #endif
265 }
266
267 #ifdef CONFIG_X86_32
268 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
269 {
270 unsigned index = pgd_index(address);
271 pgd_t *pgd_k;
272 pud_t *pud, *pud_k;
273 pmd_t *pmd, *pmd_k;
274
275 pgd += index;
276 pgd_k = init_mm.pgd + index;
277
278 if (!pgd_present(*pgd_k))
279 return NULL;
280
281 /*
282 * set_pgd(pgd, *pgd_k); here would be useless on PAE
283 * and redundant with the set_pmd() on non-PAE. As would
284 * set_pud.
285 */
286
287 pud = pud_offset(pgd, address);
288 pud_k = pud_offset(pgd_k, address);
289 if (!pud_present(*pud_k))
290 return NULL;
291
292 pmd = pmd_offset(pud, address);
293 pmd_k = pmd_offset(pud_k, address);
294 if (!pmd_present(*pmd_k))
295 return NULL;
296 if (!pmd_present(*pmd)) {
297 set_pmd(pmd, *pmd_k);
298 arch_flush_lazy_mmu_mode();
299 } else
300 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
301 return pmd_k;
302 }
303 #endif
304
305 #ifdef CONFIG_X86_64
306 static const char errata93_warning[] =
307 KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
308 KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
309 KERN_ERR "******* Please consider a BIOS update.\n"
310 KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
311 #endif
312
313 /* Workaround for K8 erratum #93 & buggy BIOS.
314 BIOS SMM functions are required to use a specific workaround
315 to avoid corruption of the 64bit RIP register on C stepping K8.
316 A lot of BIOS that didn't get tested properly miss this.
317 The OS sees this as a page fault with the upper 32bits of RIP cleared.
318 Try to work around it here.
319 Note we only handle faults in kernel here.
320 Does nothing for X86_32
321 */
322 static int is_errata93(struct pt_regs *regs, unsigned long address)
323 {
324 #ifdef CONFIG_X86_64
325 static int warned;
326 if (address != regs->ip)
327 return 0;
328 if ((address >> 32) != 0)
329 return 0;
330 address |= 0xffffffffUL << 32;
331 if ((address >= (u64)_stext && address <= (u64)_etext) ||
332 (address >= MODULES_VADDR && address <= MODULES_END)) {
333 if (!warned) {
334 printk(errata93_warning);
335 warned = 1;
336 }
337 regs->ip = address;
338 return 1;
339 }
340 #endif
341 return 0;
342 }
343
344 /*
345 * Work around K8 erratum #100 K8 in compat mode occasionally jumps to illegal
346 * addresses >4GB. We catch this in the page fault handler because these
347 * addresses are not reachable. Just detect this case and return. Any code
348 * segment in LDT is compatibility mode.
349 */
350 static int is_errata100(struct pt_regs *regs, unsigned long address)
351 {
352 #ifdef CONFIG_X86_64
353 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) &&
354 (address >> 32))
355 return 1;
356 #endif
357 return 0;
358 }
359
360 void do_invalid_op(struct pt_regs *, unsigned long);
361
362 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
363 {
364 #ifdef CONFIG_X86_F00F_BUG
365 unsigned long nr;
366 /*
367 * Pentium F0 0F C7 C8 bug workaround.
368 */
369 if (boot_cpu_data.f00f_bug) {
370 nr = (address - idt_descr.address) >> 3;
371
372 if (nr == 6) {
373 do_invalid_op(regs, 0);
374 return 1;
375 }
376 }
377 #endif
378 return 0;
379 }
380
381 static void show_fault_oops(struct pt_regs *regs, unsigned long error_code,
382 unsigned long address)
383 {
384 #ifdef CONFIG_X86_32
385 if (!oops_may_print())
386 return;
387 #endif
388
389 #ifdef CONFIG_X86_PAE
390 if (error_code & PF_INSTR) {
391 unsigned int level;
392 pte_t *pte = lookup_address(address, &level);
393
394 if (pte && pte_present(*pte) && !pte_exec(*pte))
395 printk(KERN_CRIT "kernel tried to execute "
396 "NX-protected page - exploit attempt? "
397 "(uid: %d)\n", current->uid);
398 }
399 #endif
400
401 printk(KERN_ALERT "BUG: unable to handle kernel ");
402 if (address < PAGE_SIZE)
403 printk(KERN_CONT "NULL pointer dereference");
404 else
405 printk(KERN_CONT "paging request");
406 printk(KERN_CONT " at %p\n", (void *) address);
407 printk(KERN_ALERT "IP:");
408 printk_address(regs->ip, 1);
409 dump_pagetable(address);
410 }
411
412 #ifdef CONFIG_X86_64
413 static noinline void pgtable_bad(unsigned long address, struct pt_regs *regs,
414 unsigned long error_code)
415 {
416 unsigned long flags = oops_begin();
417 struct task_struct *tsk;
418
419 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
420 current->comm, address);
421 dump_pagetable(address);
422 tsk = current;
423 tsk->thread.cr2 = address;
424 tsk->thread.trap_no = 14;
425 tsk->thread.error_code = error_code;
426 if (__die("Bad pagetable", regs, error_code))
427 regs = NULL;
428 oops_end(flags, regs, SIGKILL);
429 }
430 #endif
431
432 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
433 {
434 if ((error_code & PF_WRITE) && !pte_write(*pte))
435 return 0;
436 if ((error_code & PF_INSTR) && !pte_exec(*pte))
437 return 0;
438
439 return 1;
440 }
441
442 /*
443 * Handle a spurious fault caused by a stale TLB entry. This allows
444 * us to lazily refresh the TLB when increasing the permissions of a
445 * kernel page (RO -> RW or NX -> X). Doing it eagerly is very
446 * expensive since that implies doing a full cross-processor TLB
447 * flush, even if no stale TLB entries exist on other processors.
448 * There are no security implications to leaving a stale TLB when
449 * increasing the permissions on a page.
450 */
451 static int spurious_fault(unsigned long address,
452 unsigned long error_code)
453 {
454 pgd_t *pgd;
455 pud_t *pud;
456 pmd_t *pmd;
457 pte_t *pte;
458
459 /* Reserved-bit violation or user access to kernel space? */
460 if (error_code & (PF_USER | PF_RSVD))
461 return 0;
462
463 pgd = init_mm.pgd + pgd_index(address);
464 if (!pgd_present(*pgd))
465 return 0;
466
467 pud = pud_offset(pgd, address);
468 if (!pud_present(*pud))
469 return 0;
470
471 if (pud_large(*pud))
472 return spurious_fault_check(error_code, (pte_t *) pud);
473
474 pmd = pmd_offset(pud, address);
475 if (!pmd_present(*pmd))
476 return 0;
477
478 if (pmd_large(*pmd))
479 return spurious_fault_check(error_code, (pte_t *) pmd);
480
481 pte = pte_offset_kernel(pmd, address);
482 if (!pte_present(*pte))
483 return 0;
484
485 return spurious_fault_check(error_code, pte);
486 }
487
488 /*
489 * X86_32
490 * Handle a fault on the vmalloc or module mapping area
491 *
492 * X86_64
493 * Handle a fault on the vmalloc area
494 *
495 * This assumes no large pages in there.
496 */
497 static int vmalloc_fault(unsigned long address)
498 {
499 #ifdef CONFIG_X86_32
500 unsigned long pgd_paddr;
501 pmd_t *pmd_k;
502 pte_t *pte_k;
503
504 /* Make sure we are in vmalloc area */
505 if (!(address >= VMALLOC_START && address < VMALLOC_END))
506 return -1;
507
508 /*
509 * Synchronize this task's top level page-table
510 * with the 'reference' page table.
511 *
512 * Do _not_ use "current" here. We might be inside
513 * an interrupt in the middle of a task switch..
514 */
515 pgd_paddr = read_cr3();
516 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
517 if (!pmd_k)
518 return -1;
519 pte_k = pte_offset_kernel(pmd_k, address);
520 if (!pte_present(*pte_k))
521 return -1;
522 return 0;
523 #else
524 pgd_t *pgd, *pgd_ref;
525 pud_t *pud, *pud_ref;
526 pmd_t *pmd, *pmd_ref;
527 pte_t *pte, *pte_ref;
528
529 /* Make sure we are in vmalloc area */
530 if (!(address >= VMALLOC_START && address < VMALLOC_END))
531 return -1;
532
533 /* Copy kernel mappings over when needed. This can also
534 happen within a race in page table update. In the later
535 case just flush. */
536
537 pgd = pgd_offset(current->mm ?: &init_mm, address);
538 pgd_ref = pgd_offset_k(address);
539 if (pgd_none(*pgd_ref))
540 return -1;
541 if (pgd_none(*pgd))
542 set_pgd(pgd, *pgd_ref);
543 else
544 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
545
546 /* Below here mismatches are bugs because these lower tables
547 are shared */
548
549 pud = pud_offset(pgd, address);
550 pud_ref = pud_offset(pgd_ref, address);
551 if (pud_none(*pud_ref))
552 return -1;
553 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
554 BUG();
555 pmd = pmd_offset(pud, address);
556 pmd_ref = pmd_offset(pud_ref, address);
557 if (pmd_none(*pmd_ref))
558 return -1;
559 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
560 BUG();
561 pte_ref = pte_offset_kernel(pmd_ref, address);
562 if (!pte_present(*pte_ref))
563 return -1;
564 pte = pte_offset_kernel(pmd, address);
565 /* Don't use pte_page here, because the mappings can point
566 outside mem_map, and the NUMA hash lookup cannot handle
567 that. */
568 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
569 BUG();
570 return 0;
571 #endif
572 }
573
574 int show_unhandled_signals = 1;
575
576 /*
577 * This routine handles page faults. It determines the address,
578 * and the problem, and then passes it off to one of the appropriate
579 * routines.
580 */
581 #ifdef CONFIG_X86_64
582 asmlinkage
583 #endif
584 void __kprobes do_page_fault(struct pt_regs *regs, unsigned long error_code)
585 {
586 struct task_struct *tsk;
587 struct mm_struct *mm;
588 struct vm_area_struct *vma;
589 unsigned long address;
590 int write, si_code;
591 int fault;
592 #ifdef CONFIG_X86_64
593 unsigned long flags;
594 #endif
595
596 /*
597 * We can fault from pretty much anywhere, with unknown IRQ state.
598 */
599 trace_hardirqs_fixup();
600
601 tsk = current;
602 mm = tsk->mm;
603 prefetchw(&mm->mmap_sem);
604
605 /* get the address */
606 address = read_cr2();
607
608 si_code = SEGV_MAPERR;
609
610 if (notify_page_fault(regs))
611 return;
612 if (unlikely(kmmio_fault(regs, address)))
613 return;
614
615 /*
616 * We fault-in kernel-space virtual memory on-demand. The
617 * 'reference' page table is init_mm.pgd.
618 *
619 * NOTE! We MUST NOT take any locks for this case. We may
620 * be in an interrupt or a critical region, and should
621 * only copy the information from the master page table,
622 * nothing more.
623 *
624 * This verifies that the fault happens in kernel space
625 * (error_code & 4) == 0, and that the fault was not a
626 * protection error (error_code & 9) == 0.
627 */
628 #ifdef CONFIG_X86_32
629 if (unlikely(address >= TASK_SIZE)) {
630 #else
631 if (unlikely(address >= TASK_SIZE64)) {
632 #endif
633 if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) &&
634 vmalloc_fault(address) >= 0)
635 return;
636
637 /* Can handle a stale RO->RW TLB */
638 if (spurious_fault(address, error_code))
639 return;
640
641 /*
642 * Don't take the mm semaphore here. If we fixup a prefetch
643 * fault we could otherwise deadlock.
644 */
645 goto bad_area_nosemaphore;
646 }
647
648
649 #ifdef CONFIG_X86_32
650 /* It's safe to allow irq's after cr2 has been saved and the vmalloc
651 fault has been handled. */
652 if (regs->flags & (X86_EFLAGS_IF | X86_VM_MASK))
653 local_irq_enable();
654
655 /*
656 * If we're in an interrupt, have no user context or are running in an
657 * atomic region then we must not take the fault.
658 */
659 if (in_atomic() || !mm)
660 goto bad_area_nosemaphore;
661 #else /* CONFIG_X86_64 */
662 if (likely(regs->flags & X86_EFLAGS_IF))
663 local_irq_enable();
664
665 if (unlikely(error_code & PF_RSVD))
666 pgtable_bad(address, regs, error_code);
667
668 /*
669 * If we're in an interrupt, have no user context or are running in an
670 * atomic region then we must not take the fault.
671 */
672 if (unlikely(in_atomic() || !mm))
673 goto bad_area_nosemaphore;
674
675 /*
676 * User-mode registers count as a user access even for any
677 * potential system fault or CPU buglet.
678 */
679 if (user_mode_vm(regs))
680 error_code |= PF_USER;
681 again:
682 #endif
683 /* When running in the kernel we expect faults to occur only to
684 * addresses in user space. All other faults represent errors in the
685 * kernel and should generate an OOPS. Unfortunately, in the case of an
686 * erroneous fault occurring in a code path which already holds mmap_sem
687 * we will deadlock attempting to validate the fault against the
688 * address space. Luckily the kernel only validly references user
689 * space from well defined areas of code, which are listed in the
690 * exceptions table.
691 *
692 * As the vast majority of faults will be valid we will only perform
693 * the source reference check when there is a possibility of a deadlock.
694 * Attempt to lock the address space, if we cannot we then validate the
695 * source. If this is invalid we can skip the address space check,
696 * thus avoiding the deadlock.
697 */
698 if (!down_read_trylock(&mm->mmap_sem)) {
699 if ((error_code & PF_USER) == 0 &&
700 !search_exception_tables(regs->ip))
701 goto bad_area_nosemaphore;
702 down_read(&mm->mmap_sem);
703 }
704
705 vma = find_vma(mm, address);
706 if (!vma)
707 goto bad_area;
708 if (vma->vm_start <= address)
709 goto good_area;
710 if (!(vma->vm_flags & VM_GROWSDOWN))
711 goto bad_area;
712 if (error_code & PF_USER) {
713 /*
714 * Accessing the stack below %sp is always a bug.
715 * The large cushion allows instructions like enter
716 * and pusha to work. ("enter $65535,$31" pushes
717 * 32 pointers and then decrements %sp by 65535.)
718 */
719 if (address + 65536 + 32 * sizeof(unsigned long) < regs->sp)
720 goto bad_area;
721 }
722 if (expand_stack(vma, address))
723 goto bad_area;
724 /*
725 * Ok, we have a good vm_area for this memory access, so
726 * we can handle it..
727 */
728 good_area:
729 si_code = SEGV_ACCERR;
730 write = 0;
731 switch (error_code & (PF_PROT|PF_WRITE)) {
732 default: /* 3: write, present */
733 /* fall through */
734 case PF_WRITE: /* write, not present */
735 if (!(vma->vm_flags & VM_WRITE))
736 goto bad_area;
737 write++;
738 break;
739 case PF_PROT: /* read, present */
740 goto bad_area;
741 case 0: /* read, not present */
742 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
743 goto bad_area;
744 }
745
746 #ifdef CONFIG_X86_32
747 survive:
748 #endif
749 /*
750 * If for any reason at all we couldn't handle the fault,
751 * make sure we exit gracefully rather than endlessly redo
752 * the fault.
753 */
754 fault = handle_mm_fault(mm, vma, address, write);
755 if (unlikely(fault & VM_FAULT_ERROR)) {
756 if (fault & VM_FAULT_OOM)
757 goto out_of_memory;
758 else if (fault & VM_FAULT_SIGBUS)
759 goto do_sigbus;
760 BUG();
761 }
762 if (fault & VM_FAULT_MAJOR)
763 tsk->maj_flt++;
764 else
765 tsk->min_flt++;
766
767 #ifdef CONFIG_X86_32
768 /*
769 * Did it hit the DOS screen memory VA from vm86 mode?
770 */
771 if (v8086_mode(regs)) {
772 unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT;
773 if (bit < 32)
774 tsk->thread.screen_bitmap |= 1 << bit;
775 }
776 #endif
777 up_read(&mm->mmap_sem);
778 return;
779
780 /*
781 * Something tried to access memory that isn't in our memory map..
782 * Fix it, but check if it's kernel or user first..
783 */
784 bad_area:
785 up_read(&mm->mmap_sem);
786
787 bad_area_nosemaphore:
788 /* User mode accesses just cause a SIGSEGV */
789 if (error_code & PF_USER) {
790 /*
791 * It's possible to have interrupts off here.
792 */
793 local_irq_enable();
794
795 /*
796 * Valid to do another page fault here because this one came
797 * from user space.
798 */
799 if (is_prefetch(regs, address, error_code))
800 return;
801
802 if (is_errata100(regs, address))
803 return;
804
805 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
806 printk_ratelimit()) {
807 printk(
808 "%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
809 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
810 tsk->comm, task_pid_nr(tsk), address,
811 (void *) regs->ip, (void *) regs->sp, error_code);
812 print_vma_addr(" in ", regs->ip);
813 printk("\n");
814 }
815
816 tsk->thread.cr2 = address;
817 /* Kernel addresses are always protection faults */
818 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
819 tsk->thread.trap_no = 14;
820 force_sig_info_fault(SIGSEGV, si_code, address, tsk);
821 return;
822 }
823
824 if (is_f00f_bug(regs, address))
825 return;
826
827 no_context:
828 /* Are we prepared to handle this kernel fault? */
829 if (fixup_exception(regs))
830 return;
831
832 /*
833 * X86_32
834 * Valid to do another page fault here, because if this fault
835 * had been triggered by is_prefetch fixup_exception would have
836 * handled it.
837 *
838 * X86_64
839 * Hall of shame of CPU/BIOS bugs.
840 */
841 if (is_prefetch(regs, address, error_code))
842 return;
843
844 if (is_errata93(regs, address))
845 return;
846
847 /*
848 * Oops. The kernel tried to access some bad page. We'll have to
849 * terminate things with extreme prejudice.
850 */
851 #ifdef CONFIG_X86_32
852 bust_spinlocks(1);
853 #else
854 flags = oops_begin();
855 #endif
856
857 show_fault_oops(regs, error_code, address);
858
859 tsk->thread.cr2 = address;
860 tsk->thread.trap_no = 14;
861 tsk->thread.error_code = error_code;
862
863 #ifdef CONFIG_X86_32
864 die("Oops", regs, error_code);
865 bust_spinlocks(0);
866 do_exit(SIGKILL);
867 #else
868 if (__die("Oops", regs, error_code))
869 regs = NULL;
870 /* Executive summary in case the body of the oops scrolled away */
871 printk(KERN_EMERG "CR2: %016lx\n", address);
872 oops_end(flags, regs, SIGKILL);
873 #endif
874
875 /*
876 * We ran out of memory, or some other thing happened to us that made
877 * us unable to handle the page fault gracefully.
878 */
879 out_of_memory:
880 up_read(&mm->mmap_sem);
881 if (is_global_init(tsk)) {
882 yield();
883 #ifdef CONFIG_X86_32
884 down_read(&mm->mmap_sem);
885 goto survive;
886 #else
887 goto again;
888 #endif
889 }
890
891 printk("VM: killing process %s\n", tsk->comm);
892 if (error_code & PF_USER)
893 do_group_exit(SIGKILL);
894 goto no_context;
895
896 do_sigbus:
897 up_read(&mm->mmap_sem);
898
899 /* Kernel mode? Handle exceptions or die */
900 if (!(error_code & PF_USER))
901 goto no_context;
902 #ifdef CONFIG_X86_32
903 /* User space => ok to do another page fault */
904 if (is_prefetch(regs, address, error_code))
905 return;
906 #endif
907 tsk->thread.cr2 = address;
908 tsk->thread.error_code = error_code;
909 tsk->thread.trap_no = 14;
910 force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
911 }
912
913 DEFINE_SPINLOCK(pgd_lock);
914 LIST_HEAD(pgd_list);
915
916 void vmalloc_sync_all(void)
917 {
918 #ifdef CONFIG_X86_32
919 unsigned long start = VMALLOC_START & PGDIR_MASK;
920 unsigned long address;
921
922 if (SHARED_KERNEL_PMD)
923 return;
924
925 BUILD_BUG_ON(TASK_SIZE & ~PGDIR_MASK);
926 for (address = start; address >= TASK_SIZE; address += PGDIR_SIZE) {
927 unsigned long flags;
928 struct page *page;
929
930 spin_lock_irqsave(&pgd_lock, flags);
931 list_for_each_entry(page, &pgd_list, lru) {
932 if (!vmalloc_sync_one(page_address(page),
933 address))
934 break;
935 }
936 spin_unlock_irqrestore(&pgd_lock, flags);
937 }
938 #else /* CONFIG_X86_64 */
939 unsigned long start = VMALLOC_START & PGDIR_MASK;
940 unsigned long address;
941
942 for (address = start; address <= VMALLOC_END; address += PGDIR_SIZE) {
943 const pgd_t *pgd_ref = pgd_offset_k(address);
944 unsigned long flags;
945 struct page *page;
946
947 if (pgd_none(*pgd_ref))
948 continue;
949 spin_lock_irqsave(&pgd_lock, flags);
950 list_for_each_entry(page, &pgd_list, lru) {
951 pgd_t *pgd;
952 pgd = (pgd_t *)page_address(page) + pgd_index(address);
953 if (pgd_none(*pgd))
954 set_pgd(pgd, *pgd_ref);
955 else
956 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
957 }
958 spin_unlock_irqrestore(&pgd_lock, flags);
959 }
960 #endif
961 }
This page took 0.069261 seconds and 5 git commands to generate.