bc23a7043c6599e9dcb209e65fe209fe46fc2f29
[deliverable/linux.git] / arch / x86 / mm / fault.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
5 */
6 #include <linux/sched.h> /* test_thread_flag(), ... */
7 #include <linux/kdebug.h> /* oops_begin/end, ... */
8 #include <linux/module.h> /* search_exception_table */
9 #include <linux/bootmem.h> /* max_low_pfn */
10 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
11 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
12 #include <linux/perf_event.h> /* perf_sw_event */
13 #include <linux/hugetlb.h> /* hstate_index_to_shift */
14 #include <linux/prefetch.h> /* prefetchw */
15 #include <linux/context_tracking.h> /* exception_enter(), ... */
16
17 #include <asm/traps.h> /* dotraplinkage, ... */
18 #include <asm/pgalloc.h> /* pgd_*(), ... */
19 #include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
20 #include <asm/fixmap.h> /* VSYSCALL_ADDR */
21 #include <asm/vsyscall.h> /* emulate_vsyscall */
22
23 #define CREATE_TRACE_POINTS
24 #include <asm/trace/exceptions.h>
25
26 /*
27 * Page fault error code bits:
28 *
29 * bit 0 == 0: no page found 1: protection fault
30 * bit 1 == 0: read access 1: write access
31 * bit 2 == 0: kernel-mode access 1: user-mode access
32 * bit 3 == 1: use of reserved bit detected
33 * bit 4 == 1: fault was an instruction fetch
34 */
35 enum x86_pf_error_code {
36
37 PF_PROT = 1 << 0,
38 PF_WRITE = 1 << 1,
39 PF_USER = 1 << 2,
40 PF_RSVD = 1 << 3,
41 PF_INSTR = 1 << 4,
42 };
43
44 /*
45 * Returns 0 if mmiotrace is disabled, or if the fault is not
46 * handled by mmiotrace:
47 */
48 static nokprobe_inline int
49 kmmio_fault(struct pt_regs *regs, unsigned long addr)
50 {
51 if (unlikely(is_kmmio_active()))
52 if (kmmio_handler(regs, addr) == 1)
53 return -1;
54 return 0;
55 }
56
57 static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
58 {
59 int ret = 0;
60
61 /* kprobe_running() needs smp_processor_id() */
62 if (kprobes_built_in() && !user_mode_vm(regs)) {
63 preempt_disable();
64 if (kprobe_running() && kprobe_fault_handler(regs, 14))
65 ret = 1;
66 preempt_enable();
67 }
68
69 return ret;
70 }
71
72 /*
73 * Prefetch quirks:
74 *
75 * 32-bit mode:
76 *
77 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
78 * Check that here and ignore it.
79 *
80 * 64-bit mode:
81 *
82 * Sometimes the CPU reports invalid exceptions on prefetch.
83 * Check that here and ignore it.
84 *
85 * Opcode checker based on code by Richard Brunner.
86 */
87 static inline int
88 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
89 unsigned char opcode, int *prefetch)
90 {
91 unsigned char instr_hi = opcode & 0xf0;
92 unsigned char instr_lo = opcode & 0x0f;
93
94 switch (instr_hi) {
95 case 0x20:
96 case 0x30:
97 /*
98 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
99 * In X86_64 long mode, the CPU will signal invalid
100 * opcode if some of these prefixes are present so
101 * X86_64 will never get here anyway
102 */
103 return ((instr_lo & 7) == 0x6);
104 #ifdef CONFIG_X86_64
105 case 0x40:
106 /*
107 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
108 * Need to figure out under what instruction mode the
109 * instruction was issued. Could check the LDT for lm,
110 * but for now it's good enough to assume that long
111 * mode only uses well known segments or kernel.
112 */
113 return (!user_mode(regs) || user_64bit_mode(regs));
114 #endif
115 case 0x60:
116 /* 0x64 thru 0x67 are valid prefixes in all modes. */
117 return (instr_lo & 0xC) == 0x4;
118 case 0xF0:
119 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
120 return !instr_lo || (instr_lo>>1) == 1;
121 case 0x00:
122 /* Prefetch instruction is 0x0F0D or 0x0F18 */
123 if (probe_kernel_address(instr, opcode))
124 return 0;
125
126 *prefetch = (instr_lo == 0xF) &&
127 (opcode == 0x0D || opcode == 0x18);
128 return 0;
129 default:
130 return 0;
131 }
132 }
133
134 static int
135 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
136 {
137 unsigned char *max_instr;
138 unsigned char *instr;
139 int prefetch = 0;
140
141 /*
142 * If it was a exec (instruction fetch) fault on NX page, then
143 * do not ignore the fault:
144 */
145 if (error_code & PF_INSTR)
146 return 0;
147
148 instr = (void *)convert_ip_to_linear(current, regs);
149 max_instr = instr + 15;
150
151 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
152 return 0;
153
154 while (instr < max_instr) {
155 unsigned char opcode;
156
157 if (probe_kernel_address(instr, opcode))
158 break;
159
160 instr++;
161
162 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
163 break;
164 }
165 return prefetch;
166 }
167
168 static void
169 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
170 struct task_struct *tsk, int fault)
171 {
172 unsigned lsb = 0;
173 siginfo_t info;
174
175 info.si_signo = si_signo;
176 info.si_errno = 0;
177 info.si_code = si_code;
178 info.si_addr = (void __user *)address;
179 if (fault & VM_FAULT_HWPOISON_LARGE)
180 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
181 if (fault & VM_FAULT_HWPOISON)
182 lsb = PAGE_SHIFT;
183 info.si_addr_lsb = lsb;
184
185 force_sig_info(si_signo, &info, tsk);
186 }
187
188 DEFINE_SPINLOCK(pgd_lock);
189 LIST_HEAD(pgd_list);
190
191 #ifdef CONFIG_X86_32
192 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
193 {
194 unsigned index = pgd_index(address);
195 pgd_t *pgd_k;
196 pud_t *pud, *pud_k;
197 pmd_t *pmd, *pmd_k;
198
199 pgd += index;
200 pgd_k = init_mm.pgd + index;
201
202 if (!pgd_present(*pgd_k))
203 return NULL;
204
205 /*
206 * set_pgd(pgd, *pgd_k); here would be useless on PAE
207 * and redundant with the set_pmd() on non-PAE. As would
208 * set_pud.
209 */
210 pud = pud_offset(pgd, address);
211 pud_k = pud_offset(pgd_k, address);
212 if (!pud_present(*pud_k))
213 return NULL;
214
215 pmd = pmd_offset(pud, address);
216 pmd_k = pmd_offset(pud_k, address);
217 if (!pmd_present(*pmd_k))
218 return NULL;
219
220 if (!pmd_present(*pmd))
221 set_pmd(pmd, *pmd_k);
222 else
223 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
224
225 return pmd_k;
226 }
227
228 void vmalloc_sync_all(void)
229 {
230 unsigned long address;
231
232 if (SHARED_KERNEL_PMD)
233 return;
234
235 for (address = VMALLOC_START & PMD_MASK;
236 address >= TASK_SIZE && address < FIXADDR_TOP;
237 address += PMD_SIZE) {
238 struct page *page;
239
240 spin_lock(&pgd_lock);
241 list_for_each_entry(page, &pgd_list, lru) {
242 spinlock_t *pgt_lock;
243 pmd_t *ret;
244
245 /* the pgt_lock only for Xen */
246 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
247
248 spin_lock(pgt_lock);
249 ret = vmalloc_sync_one(page_address(page), address);
250 spin_unlock(pgt_lock);
251
252 if (!ret)
253 break;
254 }
255 spin_unlock(&pgd_lock);
256 }
257 }
258
259 /*
260 * 32-bit:
261 *
262 * Handle a fault on the vmalloc or module mapping area
263 */
264 static noinline int vmalloc_fault(unsigned long address)
265 {
266 unsigned long pgd_paddr;
267 pmd_t *pmd_k;
268 pte_t *pte_k;
269
270 /* Make sure we are in vmalloc area: */
271 if (!(address >= VMALLOC_START && address < VMALLOC_END))
272 return -1;
273
274 WARN_ON_ONCE(in_nmi());
275
276 /*
277 * Synchronize this task's top level page-table
278 * with the 'reference' page table.
279 *
280 * Do _not_ use "current" here. We might be inside
281 * an interrupt in the middle of a task switch..
282 */
283 pgd_paddr = read_cr3();
284 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
285 if (!pmd_k)
286 return -1;
287
288 pte_k = pte_offset_kernel(pmd_k, address);
289 if (!pte_present(*pte_k))
290 return -1;
291
292 return 0;
293 }
294 NOKPROBE_SYMBOL(vmalloc_fault);
295
296 /*
297 * Did it hit the DOS screen memory VA from vm86 mode?
298 */
299 static inline void
300 check_v8086_mode(struct pt_regs *regs, unsigned long address,
301 struct task_struct *tsk)
302 {
303 unsigned long bit;
304
305 if (!v8086_mode(regs))
306 return;
307
308 bit = (address - 0xA0000) >> PAGE_SHIFT;
309 if (bit < 32)
310 tsk->thread.screen_bitmap |= 1 << bit;
311 }
312
313 static bool low_pfn(unsigned long pfn)
314 {
315 return pfn < max_low_pfn;
316 }
317
318 static void dump_pagetable(unsigned long address)
319 {
320 pgd_t *base = __va(read_cr3());
321 pgd_t *pgd = &base[pgd_index(address)];
322 pmd_t *pmd;
323 pte_t *pte;
324
325 #ifdef CONFIG_X86_PAE
326 printk("*pdpt = %016Lx ", pgd_val(*pgd));
327 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
328 goto out;
329 #endif
330 pmd = pmd_offset(pud_offset(pgd, address), address);
331 printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
332
333 /*
334 * We must not directly access the pte in the highpte
335 * case if the page table is located in highmem.
336 * And let's rather not kmap-atomic the pte, just in case
337 * it's allocated already:
338 */
339 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
340 goto out;
341
342 pte = pte_offset_kernel(pmd, address);
343 printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
344 out:
345 printk("\n");
346 }
347
348 #else /* CONFIG_X86_64: */
349
350 void vmalloc_sync_all(void)
351 {
352 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
353 }
354
355 /*
356 * 64-bit:
357 *
358 * Handle a fault on the vmalloc area
359 *
360 * This assumes no large pages in there.
361 */
362 static noinline int vmalloc_fault(unsigned long address)
363 {
364 pgd_t *pgd, *pgd_ref;
365 pud_t *pud, *pud_ref;
366 pmd_t *pmd, *pmd_ref;
367 pte_t *pte, *pte_ref;
368
369 /* Make sure we are in vmalloc area: */
370 if (!(address >= VMALLOC_START && address < VMALLOC_END))
371 return -1;
372
373 WARN_ON_ONCE(in_nmi());
374
375 /*
376 * Copy kernel mappings over when needed. This can also
377 * happen within a race in page table update. In the later
378 * case just flush:
379 */
380 pgd = pgd_offset(current->active_mm, address);
381 pgd_ref = pgd_offset_k(address);
382 if (pgd_none(*pgd_ref))
383 return -1;
384
385 if (pgd_none(*pgd)) {
386 set_pgd(pgd, *pgd_ref);
387 arch_flush_lazy_mmu_mode();
388 } else {
389 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
390 }
391
392 /*
393 * Below here mismatches are bugs because these lower tables
394 * are shared:
395 */
396
397 pud = pud_offset(pgd, address);
398 pud_ref = pud_offset(pgd_ref, address);
399 if (pud_none(*pud_ref))
400 return -1;
401
402 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
403 BUG();
404
405 pmd = pmd_offset(pud, address);
406 pmd_ref = pmd_offset(pud_ref, address);
407 if (pmd_none(*pmd_ref))
408 return -1;
409
410 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
411 BUG();
412
413 pte_ref = pte_offset_kernel(pmd_ref, address);
414 if (!pte_present(*pte_ref))
415 return -1;
416
417 pte = pte_offset_kernel(pmd, address);
418
419 /*
420 * Don't use pte_page here, because the mappings can point
421 * outside mem_map, and the NUMA hash lookup cannot handle
422 * that:
423 */
424 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
425 BUG();
426
427 return 0;
428 }
429 NOKPROBE_SYMBOL(vmalloc_fault);
430
431 #ifdef CONFIG_CPU_SUP_AMD
432 static const char errata93_warning[] =
433 KERN_ERR
434 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
435 "******* Working around it, but it may cause SEGVs or burn power.\n"
436 "******* Please consider a BIOS update.\n"
437 "******* Disabling USB legacy in the BIOS may also help.\n";
438 #endif
439
440 /*
441 * No vm86 mode in 64-bit mode:
442 */
443 static inline void
444 check_v8086_mode(struct pt_regs *regs, unsigned long address,
445 struct task_struct *tsk)
446 {
447 }
448
449 static int bad_address(void *p)
450 {
451 unsigned long dummy;
452
453 return probe_kernel_address((unsigned long *)p, dummy);
454 }
455
456 static void dump_pagetable(unsigned long address)
457 {
458 pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
459 pgd_t *pgd = base + pgd_index(address);
460 pud_t *pud;
461 pmd_t *pmd;
462 pte_t *pte;
463
464 if (bad_address(pgd))
465 goto bad;
466
467 printk("PGD %lx ", pgd_val(*pgd));
468
469 if (!pgd_present(*pgd))
470 goto out;
471
472 pud = pud_offset(pgd, address);
473 if (bad_address(pud))
474 goto bad;
475
476 printk("PUD %lx ", pud_val(*pud));
477 if (!pud_present(*pud) || pud_large(*pud))
478 goto out;
479
480 pmd = pmd_offset(pud, address);
481 if (bad_address(pmd))
482 goto bad;
483
484 printk("PMD %lx ", pmd_val(*pmd));
485 if (!pmd_present(*pmd) || pmd_large(*pmd))
486 goto out;
487
488 pte = pte_offset_kernel(pmd, address);
489 if (bad_address(pte))
490 goto bad;
491
492 printk("PTE %lx", pte_val(*pte));
493 out:
494 printk("\n");
495 return;
496 bad:
497 printk("BAD\n");
498 }
499
500 #endif /* CONFIG_X86_64 */
501
502 /*
503 * Workaround for K8 erratum #93 & buggy BIOS.
504 *
505 * BIOS SMM functions are required to use a specific workaround
506 * to avoid corruption of the 64bit RIP register on C stepping K8.
507 *
508 * A lot of BIOS that didn't get tested properly miss this.
509 *
510 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
511 * Try to work around it here.
512 *
513 * Note we only handle faults in kernel here.
514 * Does nothing on 32-bit.
515 */
516 static int is_errata93(struct pt_regs *regs, unsigned long address)
517 {
518 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
519 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
520 || boot_cpu_data.x86 != 0xf)
521 return 0;
522
523 if (address != regs->ip)
524 return 0;
525
526 if ((address >> 32) != 0)
527 return 0;
528
529 address |= 0xffffffffUL << 32;
530 if ((address >= (u64)_stext && address <= (u64)_etext) ||
531 (address >= MODULES_VADDR && address <= MODULES_END)) {
532 printk_once(errata93_warning);
533 regs->ip = address;
534 return 1;
535 }
536 #endif
537 return 0;
538 }
539
540 /*
541 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
542 * to illegal addresses >4GB.
543 *
544 * We catch this in the page fault handler because these addresses
545 * are not reachable. Just detect this case and return. Any code
546 * segment in LDT is compatibility mode.
547 */
548 static int is_errata100(struct pt_regs *regs, unsigned long address)
549 {
550 #ifdef CONFIG_X86_64
551 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
552 return 1;
553 #endif
554 return 0;
555 }
556
557 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
558 {
559 #ifdef CONFIG_X86_F00F_BUG
560 unsigned long nr;
561
562 /*
563 * Pentium F0 0F C7 C8 bug workaround:
564 */
565 if (boot_cpu_has_bug(X86_BUG_F00F)) {
566 nr = (address - idt_descr.address) >> 3;
567
568 if (nr == 6) {
569 do_invalid_op(regs, 0);
570 return 1;
571 }
572 }
573 #endif
574 return 0;
575 }
576
577 static const char nx_warning[] = KERN_CRIT
578 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
579 static const char smep_warning[] = KERN_CRIT
580 "unable to execute userspace code (SMEP?) (uid: %d)\n";
581
582 static void
583 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
584 unsigned long address)
585 {
586 if (!oops_may_print())
587 return;
588
589 if (error_code & PF_INSTR) {
590 unsigned int level;
591 pgd_t *pgd;
592 pte_t *pte;
593
594 pgd = __va(read_cr3() & PHYSICAL_PAGE_MASK);
595 pgd += pgd_index(address);
596
597 pte = lookup_address_in_pgd(pgd, address, &level);
598
599 if (pte && pte_present(*pte) && !pte_exec(*pte))
600 printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
601 if (pte && pte_present(*pte) && pte_exec(*pte) &&
602 (pgd_flags(*pgd) & _PAGE_USER) &&
603 (read_cr4() & X86_CR4_SMEP))
604 printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
605 }
606
607 printk(KERN_ALERT "BUG: unable to handle kernel ");
608 if (address < PAGE_SIZE)
609 printk(KERN_CONT "NULL pointer dereference");
610 else
611 printk(KERN_CONT "paging request");
612
613 printk(KERN_CONT " at %p\n", (void *) address);
614 printk(KERN_ALERT "IP:");
615 printk_address(regs->ip);
616
617 dump_pagetable(address);
618 }
619
620 static noinline void
621 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
622 unsigned long address)
623 {
624 struct task_struct *tsk;
625 unsigned long flags;
626 int sig;
627
628 flags = oops_begin();
629 tsk = current;
630 sig = SIGKILL;
631
632 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
633 tsk->comm, address);
634 dump_pagetable(address);
635
636 tsk->thread.cr2 = address;
637 tsk->thread.trap_nr = X86_TRAP_PF;
638 tsk->thread.error_code = error_code;
639
640 if (__die("Bad pagetable", regs, error_code))
641 sig = 0;
642
643 oops_end(flags, regs, sig);
644 }
645
646 static noinline void
647 no_context(struct pt_regs *regs, unsigned long error_code,
648 unsigned long address, int signal, int si_code)
649 {
650 struct task_struct *tsk = current;
651 unsigned long *stackend;
652 unsigned long flags;
653 int sig;
654
655 /* Are we prepared to handle this kernel fault? */
656 if (fixup_exception(regs)) {
657 /*
658 * Any interrupt that takes a fault gets the fixup. This makes
659 * the below recursive fault logic only apply to a faults from
660 * task context.
661 */
662 if (in_interrupt())
663 return;
664
665 /*
666 * Per the above we're !in_interrupt(), aka. task context.
667 *
668 * In this case we need to make sure we're not recursively
669 * faulting through the emulate_vsyscall() logic.
670 */
671 if (current_thread_info()->sig_on_uaccess_error && signal) {
672 tsk->thread.trap_nr = X86_TRAP_PF;
673 tsk->thread.error_code = error_code | PF_USER;
674 tsk->thread.cr2 = address;
675
676 /* XXX: hwpoison faults will set the wrong code. */
677 force_sig_info_fault(signal, si_code, address, tsk, 0);
678 }
679
680 /*
681 * Barring that, we can do the fixup and be happy.
682 */
683 return;
684 }
685
686 /*
687 * 32-bit:
688 *
689 * Valid to do another page fault here, because if this fault
690 * had been triggered by is_prefetch fixup_exception would have
691 * handled it.
692 *
693 * 64-bit:
694 *
695 * Hall of shame of CPU/BIOS bugs.
696 */
697 if (is_prefetch(regs, error_code, address))
698 return;
699
700 if (is_errata93(regs, address))
701 return;
702
703 /*
704 * Oops. The kernel tried to access some bad page. We'll have to
705 * terminate things with extreme prejudice:
706 */
707 flags = oops_begin();
708
709 show_fault_oops(regs, error_code, address);
710
711 stackend = end_of_stack(tsk);
712 if (*stackend != STACK_END_MAGIC)
713 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
714
715 tsk->thread.cr2 = address;
716 tsk->thread.trap_nr = X86_TRAP_PF;
717 tsk->thread.error_code = error_code;
718
719 sig = SIGKILL;
720 if (__die("Oops", regs, error_code))
721 sig = 0;
722
723 /* Executive summary in case the body of the oops scrolled away */
724 printk(KERN_DEFAULT "CR2: %016lx\n", address);
725
726 oops_end(flags, regs, sig);
727 }
728
729 /*
730 * Print out info about fatal segfaults, if the show_unhandled_signals
731 * sysctl is set:
732 */
733 static inline void
734 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
735 unsigned long address, struct task_struct *tsk)
736 {
737 if (!unhandled_signal(tsk, SIGSEGV))
738 return;
739
740 if (!printk_ratelimit())
741 return;
742
743 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
744 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
745 tsk->comm, task_pid_nr(tsk), address,
746 (void *)regs->ip, (void *)regs->sp, error_code);
747
748 print_vma_addr(KERN_CONT " in ", regs->ip);
749
750 printk(KERN_CONT "\n");
751 }
752
753 static void
754 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
755 unsigned long address, int si_code)
756 {
757 struct task_struct *tsk = current;
758
759 /* User mode accesses just cause a SIGSEGV */
760 if (error_code & PF_USER) {
761 /*
762 * It's possible to have interrupts off here:
763 */
764 local_irq_enable();
765
766 /*
767 * Valid to do another page fault here because this one came
768 * from user space:
769 */
770 if (is_prefetch(regs, error_code, address))
771 return;
772
773 if (is_errata100(regs, address))
774 return;
775
776 #ifdef CONFIG_X86_64
777 /*
778 * Instruction fetch faults in the vsyscall page might need
779 * emulation.
780 */
781 if (unlikely((error_code & PF_INSTR) &&
782 ((address & ~0xfff) == VSYSCALL_ADDR))) {
783 if (emulate_vsyscall(regs, address))
784 return;
785 }
786 #endif
787 /* Kernel addresses are always protection faults: */
788 if (address >= TASK_SIZE)
789 error_code |= PF_PROT;
790
791 if (likely(show_unhandled_signals))
792 show_signal_msg(regs, error_code, address, tsk);
793
794 tsk->thread.cr2 = address;
795 tsk->thread.error_code = error_code;
796 tsk->thread.trap_nr = X86_TRAP_PF;
797
798 force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0);
799
800 return;
801 }
802
803 if (is_f00f_bug(regs, address))
804 return;
805
806 no_context(regs, error_code, address, SIGSEGV, si_code);
807 }
808
809 static noinline void
810 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
811 unsigned long address)
812 {
813 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
814 }
815
816 static void
817 __bad_area(struct pt_regs *regs, unsigned long error_code,
818 unsigned long address, int si_code)
819 {
820 struct mm_struct *mm = current->mm;
821
822 /*
823 * Something tried to access memory that isn't in our memory map..
824 * Fix it, but check if it's kernel or user first..
825 */
826 up_read(&mm->mmap_sem);
827
828 __bad_area_nosemaphore(regs, error_code, address, si_code);
829 }
830
831 static noinline void
832 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
833 {
834 __bad_area(regs, error_code, address, SEGV_MAPERR);
835 }
836
837 static noinline void
838 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
839 unsigned long address)
840 {
841 __bad_area(regs, error_code, address, SEGV_ACCERR);
842 }
843
844 static void
845 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
846 unsigned int fault)
847 {
848 struct task_struct *tsk = current;
849 struct mm_struct *mm = tsk->mm;
850 int code = BUS_ADRERR;
851
852 up_read(&mm->mmap_sem);
853
854 /* Kernel mode? Handle exceptions or die: */
855 if (!(error_code & PF_USER)) {
856 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
857 return;
858 }
859
860 /* User-space => ok to do another page fault: */
861 if (is_prefetch(regs, error_code, address))
862 return;
863
864 tsk->thread.cr2 = address;
865 tsk->thread.error_code = error_code;
866 tsk->thread.trap_nr = X86_TRAP_PF;
867
868 #ifdef CONFIG_MEMORY_FAILURE
869 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
870 printk(KERN_ERR
871 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
872 tsk->comm, tsk->pid, address);
873 code = BUS_MCEERR_AR;
874 }
875 #endif
876 force_sig_info_fault(SIGBUS, code, address, tsk, fault);
877 }
878
879 static noinline void
880 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
881 unsigned long address, unsigned int fault)
882 {
883 if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
884 up_read(&current->mm->mmap_sem);
885 no_context(regs, error_code, address, 0, 0);
886 return;
887 }
888
889 if (fault & VM_FAULT_OOM) {
890 /* Kernel mode? Handle exceptions or die: */
891 if (!(error_code & PF_USER)) {
892 up_read(&current->mm->mmap_sem);
893 no_context(regs, error_code, address,
894 SIGSEGV, SEGV_MAPERR);
895 return;
896 }
897
898 up_read(&current->mm->mmap_sem);
899
900 /*
901 * We ran out of memory, call the OOM killer, and return the
902 * userspace (which will retry the fault, or kill us if we got
903 * oom-killed):
904 */
905 pagefault_out_of_memory();
906 } else {
907 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
908 VM_FAULT_HWPOISON_LARGE))
909 do_sigbus(regs, error_code, address, fault);
910 else
911 BUG();
912 }
913 }
914
915 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
916 {
917 if ((error_code & PF_WRITE) && !pte_write(*pte))
918 return 0;
919
920 if ((error_code & PF_INSTR) && !pte_exec(*pte))
921 return 0;
922
923 return 1;
924 }
925
926 /*
927 * Handle a spurious fault caused by a stale TLB entry.
928 *
929 * This allows us to lazily refresh the TLB when increasing the
930 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
931 * eagerly is very expensive since that implies doing a full
932 * cross-processor TLB flush, even if no stale TLB entries exist
933 * on other processors.
934 *
935 * There are no security implications to leaving a stale TLB when
936 * increasing the permissions on a page.
937 */
938 static noinline int
939 spurious_fault(unsigned long error_code, unsigned long address)
940 {
941 pgd_t *pgd;
942 pud_t *pud;
943 pmd_t *pmd;
944 pte_t *pte;
945 int ret;
946
947 /* Reserved-bit violation or user access to kernel space? */
948 if (error_code & (PF_USER | PF_RSVD))
949 return 0;
950
951 pgd = init_mm.pgd + pgd_index(address);
952 if (!pgd_present(*pgd))
953 return 0;
954
955 pud = pud_offset(pgd, address);
956 if (!pud_present(*pud))
957 return 0;
958
959 if (pud_large(*pud))
960 return spurious_fault_check(error_code, (pte_t *) pud);
961
962 pmd = pmd_offset(pud, address);
963 if (!pmd_present(*pmd))
964 return 0;
965
966 if (pmd_large(*pmd))
967 return spurious_fault_check(error_code, (pte_t *) pmd);
968
969 pte = pte_offset_kernel(pmd, address);
970 if (!pte_present(*pte))
971 return 0;
972
973 ret = spurious_fault_check(error_code, pte);
974 if (!ret)
975 return 0;
976
977 /*
978 * Make sure we have permissions in PMD.
979 * If not, then there's a bug in the page tables:
980 */
981 ret = spurious_fault_check(error_code, (pte_t *) pmd);
982 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
983
984 return ret;
985 }
986 NOKPROBE_SYMBOL(spurious_fault);
987
988 int show_unhandled_signals = 1;
989
990 static inline int
991 access_error(unsigned long error_code, struct vm_area_struct *vma)
992 {
993 if (error_code & PF_WRITE) {
994 /* write, present and write, not present: */
995 if (unlikely(!(vma->vm_flags & VM_WRITE)))
996 return 1;
997 return 0;
998 }
999
1000 /* read, present: */
1001 if (unlikely(error_code & PF_PROT))
1002 return 1;
1003
1004 /* read, not present: */
1005 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1006 return 1;
1007
1008 return 0;
1009 }
1010
1011 static int fault_in_kernel_space(unsigned long address)
1012 {
1013 return address >= TASK_SIZE_MAX;
1014 }
1015
1016 static inline bool smap_violation(int error_code, struct pt_regs *regs)
1017 {
1018 if (!IS_ENABLED(CONFIG_X86_SMAP))
1019 return false;
1020
1021 if (!static_cpu_has(X86_FEATURE_SMAP))
1022 return false;
1023
1024 if (error_code & PF_USER)
1025 return false;
1026
1027 if (!user_mode_vm(regs) && (regs->flags & X86_EFLAGS_AC))
1028 return false;
1029
1030 return true;
1031 }
1032
1033 /*
1034 * This routine handles page faults. It determines the address,
1035 * and the problem, and then passes it off to one of the appropriate
1036 * routines.
1037 *
1038 * This function must have noinline because both callers
1039 * {,trace_}do_page_fault() have notrace on. Having this an actual function
1040 * guarantees there's a function trace entry.
1041 */
1042 static noinline void
1043 __do_page_fault(struct pt_regs *regs, unsigned long error_code,
1044 unsigned long address)
1045 {
1046 struct vm_area_struct *vma;
1047 struct task_struct *tsk;
1048 struct mm_struct *mm;
1049 int fault;
1050 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1051
1052 tsk = current;
1053 mm = tsk->mm;
1054
1055 /*
1056 * Detect and handle instructions that would cause a page fault for
1057 * both a tracked kernel page and a userspace page.
1058 */
1059 if (kmemcheck_active(regs))
1060 kmemcheck_hide(regs);
1061 prefetchw(&mm->mmap_sem);
1062
1063 if (unlikely(kmmio_fault(regs, address)))
1064 return;
1065
1066 /*
1067 * We fault-in kernel-space virtual memory on-demand. The
1068 * 'reference' page table is init_mm.pgd.
1069 *
1070 * NOTE! We MUST NOT take any locks for this case. We may
1071 * be in an interrupt or a critical region, and should
1072 * only copy the information from the master page table,
1073 * nothing more.
1074 *
1075 * This verifies that the fault happens in kernel space
1076 * (error_code & 4) == 0, and that the fault was not a
1077 * protection error (error_code & 9) == 0.
1078 */
1079 if (unlikely(fault_in_kernel_space(address))) {
1080 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1081 if (vmalloc_fault(address) >= 0)
1082 return;
1083
1084 if (kmemcheck_fault(regs, address, error_code))
1085 return;
1086 }
1087
1088 /* Can handle a stale RO->RW TLB: */
1089 if (spurious_fault(error_code, address))
1090 return;
1091
1092 /* kprobes don't want to hook the spurious faults: */
1093 if (kprobes_fault(regs))
1094 return;
1095 /*
1096 * Don't take the mm semaphore here. If we fixup a prefetch
1097 * fault we could otherwise deadlock:
1098 */
1099 bad_area_nosemaphore(regs, error_code, address);
1100
1101 return;
1102 }
1103
1104 /* kprobes don't want to hook the spurious faults: */
1105 if (unlikely(kprobes_fault(regs)))
1106 return;
1107
1108 if (unlikely(error_code & PF_RSVD))
1109 pgtable_bad(regs, error_code, address);
1110
1111 if (unlikely(smap_violation(error_code, regs))) {
1112 bad_area_nosemaphore(regs, error_code, address);
1113 return;
1114 }
1115
1116 /*
1117 * If we're in an interrupt, have no user context or are running
1118 * in an atomic region then we must not take the fault:
1119 */
1120 if (unlikely(in_atomic() || !mm)) {
1121 bad_area_nosemaphore(regs, error_code, address);
1122 return;
1123 }
1124
1125 /*
1126 * It's safe to allow irq's after cr2 has been saved and the
1127 * vmalloc fault has been handled.
1128 *
1129 * User-mode registers count as a user access even for any
1130 * potential system fault or CPU buglet:
1131 */
1132 if (user_mode_vm(regs)) {
1133 local_irq_enable();
1134 error_code |= PF_USER;
1135 flags |= FAULT_FLAG_USER;
1136 } else {
1137 if (regs->flags & X86_EFLAGS_IF)
1138 local_irq_enable();
1139 }
1140
1141 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1142
1143 if (error_code & PF_WRITE)
1144 flags |= FAULT_FLAG_WRITE;
1145
1146 /*
1147 * When running in the kernel we expect faults to occur only to
1148 * addresses in user space. All other faults represent errors in
1149 * the kernel and should generate an OOPS. Unfortunately, in the
1150 * case of an erroneous fault occurring in a code path which already
1151 * holds mmap_sem we will deadlock attempting to validate the fault
1152 * against the address space. Luckily the kernel only validly
1153 * references user space from well defined areas of code, which are
1154 * listed in the exceptions table.
1155 *
1156 * As the vast majority of faults will be valid we will only perform
1157 * the source reference check when there is a possibility of a
1158 * deadlock. Attempt to lock the address space, if we cannot we then
1159 * validate the source. If this is invalid we can skip the address
1160 * space check, thus avoiding the deadlock:
1161 */
1162 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1163 if ((error_code & PF_USER) == 0 &&
1164 !search_exception_tables(regs->ip)) {
1165 bad_area_nosemaphore(regs, error_code, address);
1166 return;
1167 }
1168 retry:
1169 down_read(&mm->mmap_sem);
1170 } else {
1171 /*
1172 * The above down_read_trylock() might have succeeded in
1173 * which case we'll have missed the might_sleep() from
1174 * down_read():
1175 */
1176 might_sleep();
1177 }
1178
1179 vma = find_vma(mm, address);
1180 if (unlikely(!vma)) {
1181 bad_area(regs, error_code, address);
1182 return;
1183 }
1184 if (likely(vma->vm_start <= address))
1185 goto good_area;
1186 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1187 bad_area(regs, error_code, address);
1188 return;
1189 }
1190 if (error_code & PF_USER) {
1191 /*
1192 * Accessing the stack below %sp is always a bug.
1193 * The large cushion allows instructions like enter
1194 * and pusha to work. ("enter $65535, $31" pushes
1195 * 32 pointers and then decrements %sp by 65535.)
1196 */
1197 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1198 bad_area(regs, error_code, address);
1199 return;
1200 }
1201 }
1202 if (unlikely(expand_stack(vma, address))) {
1203 bad_area(regs, error_code, address);
1204 return;
1205 }
1206
1207 /*
1208 * Ok, we have a good vm_area for this memory access, so
1209 * we can handle it..
1210 */
1211 good_area:
1212 if (unlikely(access_error(error_code, vma))) {
1213 bad_area_access_error(regs, error_code, address);
1214 return;
1215 }
1216
1217 /*
1218 * If for any reason at all we couldn't handle the fault,
1219 * make sure we exit gracefully rather than endlessly redo
1220 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1221 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1222 */
1223 fault = handle_mm_fault(mm, vma, address, flags);
1224
1225 /*
1226 * If we need to retry but a fatal signal is pending, handle the
1227 * signal first. We do not need to release the mmap_sem because it
1228 * would already be released in __lock_page_or_retry in mm/filemap.c.
1229 */
1230 if (unlikely((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)))
1231 return;
1232
1233 if (unlikely(fault & VM_FAULT_ERROR)) {
1234 mm_fault_error(regs, error_code, address, fault);
1235 return;
1236 }
1237
1238 /*
1239 * Major/minor page fault accounting is only done on the
1240 * initial attempt. If we go through a retry, it is extremely
1241 * likely that the page will be found in page cache at that point.
1242 */
1243 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1244 if (fault & VM_FAULT_MAJOR) {
1245 tsk->maj_flt++;
1246 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
1247 regs, address);
1248 } else {
1249 tsk->min_flt++;
1250 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
1251 regs, address);
1252 }
1253 if (fault & VM_FAULT_RETRY) {
1254 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
1255 * of starvation. */
1256 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1257 flags |= FAULT_FLAG_TRIED;
1258 goto retry;
1259 }
1260 }
1261
1262 check_v8086_mode(regs, address, tsk);
1263
1264 up_read(&mm->mmap_sem);
1265 }
1266 NOKPROBE_SYMBOL(__do_page_fault);
1267
1268 dotraplinkage void notrace
1269 do_page_fault(struct pt_regs *regs, unsigned long error_code)
1270 {
1271 unsigned long address = read_cr2(); /* Get the faulting address */
1272 enum ctx_state prev_state;
1273
1274 /*
1275 * We must have this function tagged with __kprobes, notrace and call
1276 * read_cr2() before calling anything else. To avoid calling any kind
1277 * of tracing machinery before we've observed the CR2 value.
1278 *
1279 * exception_{enter,exit}() contain all sorts of tracepoints.
1280 */
1281
1282 prev_state = exception_enter();
1283 __do_page_fault(regs, error_code, address);
1284 exception_exit(prev_state);
1285 }
1286 NOKPROBE_SYMBOL(do_page_fault);
1287
1288 #ifdef CONFIG_TRACING
1289 static nokprobe_inline void
1290 trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1291 unsigned long error_code)
1292 {
1293 if (user_mode(regs))
1294 trace_page_fault_user(address, regs, error_code);
1295 else
1296 trace_page_fault_kernel(address, regs, error_code);
1297 }
1298
1299 dotraplinkage void notrace
1300 trace_do_page_fault(struct pt_regs *regs, unsigned long error_code)
1301 {
1302 /*
1303 * The exception_enter and tracepoint processing could
1304 * trigger another page faults (user space callchain
1305 * reading) and destroy the original cr2 value, so read
1306 * the faulting address now.
1307 */
1308 unsigned long address = read_cr2();
1309 enum ctx_state prev_state;
1310
1311 prev_state = exception_enter();
1312 trace_page_fault_entries(address, regs, error_code);
1313 __do_page_fault(regs, error_code, address);
1314 exception_exit(prev_state);
1315 }
1316 NOKPROBE_SYMBOL(trace_do_page_fault);
1317 #endif /* CONFIG_TRACING */
This page took 0.058571 seconds and 5 git commands to generate.