eb4d7fe05938eac3324ed500f90ebd2cd62fddcd
[deliverable/linux.git] / arch / x86 / mm / fault.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001,2002 Andi Kleen, SuSE Labs.
4 */
5
6 #include <linux/signal.h>
7 #include <linux/sched.h>
8 #include <linux/kernel.h>
9 #include <linux/errno.h>
10 #include <linux/string.h>
11 #include <linux/types.h>
12 #include <linux/ptrace.h>
13 #include <linux/mmiotrace.h>
14 #include <linux/mman.h>
15 #include <linux/mm.h>
16 #include <linux/smp.h>
17 #include <linux/interrupt.h>
18 #include <linux/init.h>
19 #include <linux/tty.h>
20 #include <linux/vt_kern.h> /* For unblank_screen() */
21 #include <linux/compiler.h>
22 #include <linux/highmem.h>
23 #include <linux/bootmem.h> /* for max_low_pfn */
24 #include <linux/vmalloc.h>
25 #include <linux/module.h>
26 #include <linux/kprobes.h>
27 #include <linux/uaccess.h>
28 #include <linux/kdebug.h>
29
30 #include <asm/system.h>
31 #include <asm/desc.h>
32 #include <asm/segment.h>
33 #include <asm/pgalloc.h>
34 #include <asm/smp.h>
35 #include <asm/tlbflush.h>
36 #include <asm/proto.h>
37 #include <asm-generic/sections.h>
38 #include <asm/traps.h>
39
40 /*
41 * Page fault error code bits
42 * bit 0 == 0 means no page found, 1 means protection fault
43 * bit 1 == 0 means read, 1 means write
44 * bit 2 == 0 means kernel, 1 means user-mode
45 * bit 3 == 1 means use of reserved bit detected
46 * bit 4 == 1 means fault was an instruction fetch
47 */
48 #define PF_PROT (1<<0)
49 #define PF_WRITE (1<<1)
50 #define PF_USER (1<<2)
51 #define PF_RSVD (1<<3)
52 #define PF_INSTR (1<<4)
53
54 static inline int kmmio_fault(struct pt_regs *regs, unsigned long addr)
55 {
56 #ifdef CONFIG_MMIOTRACE
57 if (unlikely(is_kmmio_active()))
58 if (kmmio_handler(regs, addr) == 1)
59 return -1;
60 #endif
61 return 0;
62 }
63
64 static inline int notify_page_fault(struct pt_regs *regs)
65 {
66 #ifdef CONFIG_KPROBES
67 int ret = 0;
68
69 /* kprobe_running() needs smp_processor_id() */
70 if (!user_mode_vm(regs)) {
71 preempt_disable();
72 if (kprobe_running() && kprobe_fault_handler(regs, 14))
73 ret = 1;
74 preempt_enable();
75 }
76
77 return ret;
78 #else
79 return 0;
80 #endif
81 }
82
83 /*
84 * X86_32
85 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
86 * Check that here and ignore it.
87 *
88 * X86_64
89 * Sometimes the CPU reports invalid exceptions on prefetch.
90 * Check that here and ignore it.
91 *
92 * Opcode checker based on code by Richard Brunner
93 */
94 static int is_prefetch(struct pt_regs *regs, unsigned long error_code,
95 unsigned long addr)
96 {
97 unsigned char *instr;
98 int scan_more = 1;
99 int prefetch = 0;
100 unsigned char *max_instr;
101
102 /*
103 * If it was a exec (instruction fetch) fault on NX page, then
104 * do not ignore the fault:
105 */
106 if (error_code & PF_INSTR)
107 return 0;
108
109 instr = (unsigned char *)convert_ip_to_linear(current, regs);
110 max_instr = instr + 15;
111
112 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
113 return 0;
114
115 while (scan_more && instr < max_instr) {
116 unsigned char opcode;
117 unsigned char instr_hi;
118 unsigned char instr_lo;
119
120 if (probe_kernel_address(instr, opcode))
121 break;
122
123 instr_hi = opcode & 0xf0;
124 instr_lo = opcode & 0x0f;
125 instr++;
126
127 switch (instr_hi) {
128 case 0x20:
129 case 0x30:
130 /*
131 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
132 * In X86_64 long mode, the CPU will signal invalid
133 * opcode if some of these prefixes are present so
134 * X86_64 will never get here anyway
135 */
136 scan_more = ((instr_lo & 7) == 0x6);
137 break;
138 #ifdef CONFIG_X86_64
139 case 0x40:
140 /*
141 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
142 * Need to figure out under what instruction mode the
143 * instruction was issued. Could check the LDT for lm,
144 * but for now it's good enough to assume that long
145 * mode only uses well known segments or kernel.
146 */
147 scan_more = (!user_mode(regs)) || (regs->cs == __USER_CS);
148 break;
149 #endif
150 case 0x60:
151 /* 0x64 thru 0x67 are valid prefixes in all modes. */
152 scan_more = (instr_lo & 0xC) == 0x4;
153 break;
154 case 0xF0:
155 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
156 scan_more = !instr_lo || (instr_lo>>1) == 1;
157 break;
158 case 0x00:
159 /* Prefetch instruction is 0x0F0D or 0x0F18 */
160 scan_more = 0;
161
162 if (probe_kernel_address(instr, opcode))
163 break;
164 prefetch = (instr_lo == 0xF) &&
165 (opcode == 0x0D || opcode == 0x18);
166 break;
167 default:
168 scan_more = 0;
169 break;
170 }
171 }
172 return prefetch;
173 }
174
175 static void force_sig_info_fault(int si_signo, int si_code,
176 unsigned long address, struct task_struct *tsk)
177 {
178 siginfo_t info;
179
180 info.si_signo = si_signo;
181 info.si_errno = 0;
182 info.si_code = si_code;
183 info.si_addr = (void __user *)address;
184 force_sig_info(si_signo, &info, tsk);
185 }
186
187 #ifdef CONFIG_X86_64
188 static int bad_address(void *p)
189 {
190 unsigned long dummy;
191 return probe_kernel_address((unsigned long *)p, dummy);
192 }
193 #endif
194
195 static void dump_pagetable(unsigned long address)
196 {
197 #ifdef CONFIG_X86_32
198 __typeof__(pte_val(__pte(0))) page;
199
200 page = read_cr3();
201 page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT];
202 #ifdef CONFIG_X86_PAE
203 printk("*pdpt = %016Lx ", page);
204 if ((page >> PAGE_SHIFT) < max_low_pfn
205 && page & _PAGE_PRESENT) {
206 page &= PAGE_MASK;
207 page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT)
208 & (PTRS_PER_PMD - 1)];
209 printk(KERN_CONT "*pde = %016Lx ", page);
210 page &= ~_PAGE_NX;
211 }
212 #else
213 printk("*pde = %08lx ", page);
214 #endif
215
216 /*
217 * We must not directly access the pte in the highpte
218 * case if the page table is located in highmem.
219 * And let's rather not kmap-atomic the pte, just in case
220 * it's allocated already.
221 */
222 if ((page >> PAGE_SHIFT) < max_low_pfn
223 && (page & _PAGE_PRESENT)
224 && !(page & _PAGE_PSE)) {
225 page &= PAGE_MASK;
226 page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT)
227 & (PTRS_PER_PTE - 1)];
228 printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page);
229 }
230
231 printk("\n");
232 #else /* CONFIG_X86_64 */
233 pgd_t *pgd;
234 pud_t *pud;
235 pmd_t *pmd;
236 pte_t *pte;
237
238 pgd = (pgd_t *)read_cr3();
239
240 pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK);
241 pgd += pgd_index(address);
242 if (bad_address(pgd)) goto bad;
243 printk("PGD %lx ", pgd_val(*pgd));
244 if (!pgd_present(*pgd)) goto ret;
245
246 pud = pud_offset(pgd, address);
247 if (bad_address(pud)) goto bad;
248 printk("PUD %lx ", pud_val(*pud));
249 if (!pud_present(*pud) || pud_large(*pud))
250 goto ret;
251
252 pmd = pmd_offset(pud, address);
253 if (bad_address(pmd)) goto bad;
254 printk("PMD %lx ", pmd_val(*pmd));
255 if (!pmd_present(*pmd) || pmd_large(*pmd)) goto ret;
256
257 pte = pte_offset_kernel(pmd, address);
258 if (bad_address(pte)) goto bad;
259 printk("PTE %lx", pte_val(*pte));
260 ret:
261 printk("\n");
262 return;
263 bad:
264 printk("BAD\n");
265 #endif
266 }
267
268 #ifdef CONFIG_X86_32
269 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
270 {
271 unsigned index = pgd_index(address);
272 pgd_t *pgd_k;
273 pud_t *pud, *pud_k;
274 pmd_t *pmd, *pmd_k;
275
276 pgd += index;
277 pgd_k = init_mm.pgd + index;
278
279 if (!pgd_present(*pgd_k))
280 return NULL;
281
282 /*
283 * set_pgd(pgd, *pgd_k); here would be useless on PAE
284 * and redundant with the set_pmd() on non-PAE. As would
285 * set_pud.
286 */
287
288 pud = pud_offset(pgd, address);
289 pud_k = pud_offset(pgd_k, address);
290 if (!pud_present(*pud_k))
291 return NULL;
292
293 pmd = pmd_offset(pud, address);
294 pmd_k = pmd_offset(pud_k, address);
295 if (!pmd_present(*pmd_k))
296 return NULL;
297 if (!pmd_present(*pmd)) {
298 set_pmd(pmd, *pmd_k);
299 arch_flush_lazy_mmu_mode();
300 } else
301 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
302 return pmd_k;
303 }
304 #endif
305
306 #ifdef CONFIG_X86_64
307 static const char errata93_warning[] =
308 KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
309 KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
310 KERN_ERR "******* Please consider a BIOS update.\n"
311 KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
312 #endif
313
314 /* Workaround for K8 erratum #93 & buggy BIOS.
315 BIOS SMM functions are required to use a specific workaround
316 to avoid corruption of the 64bit RIP register on C stepping K8.
317 A lot of BIOS that didn't get tested properly miss this.
318 The OS sees this as a page fault with the upper 32bits of RIP cleared.
319 Try to work around it here.
320 Note we only handle faults in kernel here.
321 Does nothing for X86_32
322 */
323 static int is_errata93(struct pt_regs *regs, unsigned long address)
324 {
325 #ifdef CONFIG_X86_64
326 static int warned;
327 if (address != regs->ip)
328 return 0;
329 if ((address >> 32) != 0)
330 return 0;
331 address |= 0xffffffffUL << 32;
332 if ((address >= (u64)_stext && address <= (u64)_etext) ||
333 (address >= MODULES_VADDR && address <= MODULES_END)) {
334 if (!warned) {
335 printk(errata93_warning);
336 warned = 1;
337 }
338 regs->ip = address;
339 return 1;
340 }
341 #endif
342 return 0;
343 }
344
345 /*
346 * Work around K8 erratum #100 K8 in compat mode occasionally jumps to illegal
347 * addresses >4GB. We catch this in the page fault handler because these
348 * addresses are not reachable. Just detect this case and return. Any code
349 * segment in LDT is compatibility mode.
350 */
351 static int is_errata100(struct pt_regs *regs, unsigned long address)
352 {
353 #ifdef CONFIG_X86_64
354 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) &&
355 (address >> 32))
356 return 1;
357 #endif
358 return 0;
359 }
360
361 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
362 {
363 #ifdef CONFIG_X86_F00F_BUG
364 unsigned long nr;
365 /*
366 * Pentium F0 0F C7 C8 bug workaround.
367 */
368 if (boot_cpu_data.f00f_bug) {
369 nr = (address - idt_descr.address) >> 3;
370
371 if (nr == 6) {
372 do_invalid_op(regs, 0);
373 return 1;
374 }
375 }
376 #endif
377 return 0;
378 }
379
380 static void show_fault_oops(struct pt_regs *regs, unsigned long error_code,
381 unsigned long address)
382 {
383 #ifdef CONFIG_X86_32
384 if (!oops_may_print())
385 return;
386 #endif
387
388 #ifdef CONFIG_X86_PAE
389 if (error_code & PF_INSTR) {
390 unsigned int level;
391 pte_t *pte = lookup_address(address, &level);
392
393 if (pte && pte_present(*pte) && !pte_exec(*pte))
394 printk(KERN_CRIT "kernel tried to execute "
395 "NX-protected page - exploit attempt? "
396 "(uid: %d)\n", current_uid());
397 }
398 #endif
399
400 printk(KERN_ALERT "BUG: unable to handle kernel ");
401 if (address < PAGE_SIZE)
402 printk(KERN_CONT "NULL pointer dereference");
403 else
404 printk(KERN_CONT "paging request");
405 printk(KERN_CONT " at %p\n", (void *) address);
406 printk(KERN_ALERT "IP:");
407 printk_address(regs->ip, 1);
408 dump_pagetable(address);
409 }
410
411 #ifdef CONFIG_X86_64
412 static noinline void pgtable_bad(struct pt_regs *regs,
413 unsigned long error_code, unsigned long address)
414 {
415 unsigned long flags = oops_begin();
416 int sig = SIGKILL;
417 struct task_struct *tsk = current;
418
419 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
420 tsk->comm, address);
421 dump_pagetable(address);
422 tsk->thread.cr2 = address;
423 tsk->thread.trap_no = 14;
424 tsk->thread.error_code = error_code;
425 if (__die("Bad pagetable", regs, error_code))
426 sig = 0;
427 oops_end(flags, regs, sig);
428 }
429 #endif
430
431 static noinline void no_context(struct pt_regs *regs,
432 unsigned long error_code, unsigned long address)
433 {
434 struct task_struct *tsk = current;
435 #ifdef CONFIG_X86_64
436 unsigned long flags;
437 int sig;
438 #endif
439
440 /* Are we prepared to handle this kernel fault? */
441 if (fixup_exception(regs))
442 return;
443
444 /*
445 * X86_32
446 * Valid to do another page fault here, because if this fault
447 * had been triggered by is_prefetch fixup_exception would have
448 * handled it.
449 *
450 * X86_64
451 * Hall of shame of CPU/BIOS bugs.
452 */
453 if (is_prefetch(regs, error_code, address))
454 return;
455
456 if (is_errata93(regs, address))
457 return;
458
459 /*
460 * Oops. The kernel tried to access some bad page. We'll have to
461 * terminate things with extreme prejudice.
462 */
463 #ifdef CONFIG_X86_32
464 bust_spinlocks(1);
465 #else
466 flags = oops_begin();
467 #endif
468
469 show_fault_oops(regs, error_code, address);
470
471 tsk->thread.cr2 = address;
472 tsk->thread.trap_no = 14;
473 tsk->thread.error_code = error_code;
474
475 #ifdef CONFIG_X86_32
476 die("Oops", regs, error_code);
477 bust_spinlocks(0);
478 do_exit(SIGKILL);
479 #else
480 sig = SIGKILL;
481 if (__die("Oops", regs, error_code))
482 sig = 0;
483 /* Executive summary in case the body of the oops scrolled away */
484 printk(KERN_EMERG "CR2: %016lx\n", address);
485 oops_end(flags, regs, sig);
486 #endif
487 }
488
489 static void __bad_area_nosemaphore(struct pt_regs *regs,
490 unsigned long error_code, unsigned long address,
491 int si_code)
492 {
493 struct task_struct *tsk = current;
494
495 /* User mode accesses just cause a SIGSEGV */
496 if (error_code & PF_USER) {
497 /*
498 * It's possible to have interrupts off here.
499 */
500 local_irq_enable();
501
502 /*
503 * Valid to do another page fault here because this one came
504 * from user space.
505 */
506 if (is_prefetch(regs, error_code, address))
507 return;
508
509 if (is_errata100(regs, address))
510 return;
511
512 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
513 printk_ratelimit()) {
514 printk(
515 "%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
516 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
517 tsk->comm, task_pid_nr(tsk), address,
518 (void *) regs->ip, (void *) regs->sp, error_code);
519 print_vma_addr(" in ", regs->ip);
520 printk("\n");
521 }
522
523 tsk->thread.cr2 = address;
524 /* Kernel addresses are always protection faults */
525 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
526 tsk->thread.trap_no = 14;
527 force_sig_info_fault(SIGSEGV, si_code, address, tsk);
528 return;
529 }
530
531 if (is_f00f_bug(regs, address))
532 return;
533
534 no_context(regs, error_code, address);
535 }
536
537 static noinline void bad_area_nosemaphore(struct pt_regs *regs,
538 unsigned long error_code, unsigned long address)
539 {
540 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
541 }
542
543 static void __bad_area(struct pt_regs *regs,
544 unsigned long error_code, unsigned long address,
545 int si_code)
546 {
547 struct mm_struct *mm = current->mm;
548
549 /*
550 * Something tried to access memory that isn't in our memory map..
551 * Fix it, but check if it's kernel or user first..
552 */
553 up_read(&mm->mmap_sem);
554
555 __bad_area_nosemaphore(regs, error_code, address, si_code);
556 }
557
558 static noinline void bad_area(struct pt_regs *regs,
559 unsigned long error_code, unsigned long address)
560 {
561 __bad_area(regs, error_code, address, SEGV_MAPERR);
562 }
563
564 static noinline void bad_area_access_error(struct pt_regs *regs,
565 unsigned long error_code, unsigned long address)
566 {
567 __bad_area(regs, error_code, address, SEGV_ACCERR);
568 }
569
570 /* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */
571 static void out_of_memory(struct pt_regs *regs,
572 unsigned long error_code, unsigned long address)
573 {
574 /*
575 * We ran out of memory, call the OOM killer, and return the userspace
576 * (which will retry the fault, or kill us if we got oom-killed).
577 */
578 up_read(&current->mm->mmap_sem);
579 pagefault_out_of_memory();
580 }
581
582 static void do_sigbus(struct pt_regs *regs,
583 unsigned long error_code, unsigned long address)
584 {
585 struct task_struct *tsk = current;
586 struct mm_struct *mm = tsk->mm;
587
588 up_read(&mm->mmap_sem);
589
590 /* Kernel mode? Handle exceptions or die */
591 if (!(error_code & PF_USER))
592 no_context(regs, error_code, address);
593 #ifdef CONFIG_X86_32
594 /* User space => ok to do another page fault */
595 if (is_prefetch(regs, error_code, address))
596 return;
597 #endif
598 tsk->thread.cr2 = address;
599 tsk->thread.error_code = error_code;
600 tsk->thread.trap_no = 14;
601 force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
602 }
603
604 static noinline void mm_fault_error(struct pt_regs *regs,
605 unsigned long error_code, unsigned long address, unsigned int fault)
606 {
607 if (fault & VM_FAULT_OOM)
608 out_of_memory(regs, error_code, address);
609 else if (fault & VM_FAULT_SIGBUS)
610 do_sigbus(regs, error_code, address);
611 else
612 BUG();
613 }
614
615 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
616 {
617 if ((error_code & PF_WRITE) && !pte_write(*pte))
618 return 0;
619 if ((error_code & PF_INSTR) && !pte_exec(*pte))
620 return 0;
621
622 return 1;
623 }
624
625 /*
626 * Handle a spurious fault caused by a stale TLB entry. This allows
627 * us to lazily refresh the TLB when increasing the permissions of a
628 * kernel page (RO -> RW or NX -> X). Doing it eagerly is very
629 * expensive since that implies doing a full cross-processor TLB
630 * flush, even if no stale TLB entries exist on other processors.
631 * There are no security implications to leaving a stale TLB when
632 * increasing the permissions on a page.
633 */
634 static noinline int spurious_fault(unsigned long error_code,
635 unsigned long address)
636 {
637 pgd_t *pgd;
638 pud_t *pud;
639 pmd_t *pmd;
640 pte_t *pte;
641
642 /* Reserved-bit violation or user access to kernel space? */
643 if (error_code & (PF_USER | PF_RSVD))
644 return 0;
645
646 pgd = init_mm.pgd + pgd_index(address);
647 if (!pgd_present(*pgd))
648 return 0;
649
650 pud = pud_offset(pgd, address);
651 if (!pud_present(*pud))
652 return 0;
653
654 if (pud_large(*pud))
655 return spurious_fault_check(error_code, (pte_t *) pud);
656
657 pmd = pmd_offset(pud, address);
658 if (!pmd_present(*pmd))
659 return 0;
660
661 if (pmd_large(*pmd))
662 return spurious_fault_check(error_code, (pte_t *) pmd);
663
664 pte = pte_offset_kernel(pmd, address);
665 if (!pte_present(*pte))
666 return 0;
667
668 return spurious_fault_check(error_code, pte);
669 }
670
671 /*
672 * X86_32
673 * Handle a fault on the vmalloc or module mapping area
674 *
675 * X86_64
676 * Handle a fault on the vmalloc area
677 *
678 * This assumes no large pages in there.
679 */
680 static noinline int vmalloc_fault(unsigned long address)
681 {
682 #ifdef CONFIG_X86_32
683 unsigned long pgd_paddr;
684 pmd_t *pmd_k;
685 pte_t *pte_k;
686
687 /* Make sure we are in vmalloc area */
688 if (!(address >= VMALLOC_START && address < VMALLOC_END))
689 return -1;
690
691 /*
692 * Synchronize this task's top level page-table
693 * with the 'reference' page table.
694 *
695 * Do _not_ use "current" here. We might be inside
696 * an interrupt in the middle of a task switch..
697 */
698 pgd_paddr = read_cr3();
699 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
700 if (!pmd_k)
701 return -1;
702 pte_k = pte_offset_kernel(pmd_k, address);
703 if (!pte_present(*pte_k))
704 return -1;
705 return 0;
706 #else
707 pgd_t *pgd, *pgd_ref;
708 pud_t *pud, *pud_ref;
709 pmd_t *pmd, *pmd_ref;
710 pte_t *pte, *pte_ref;
711
712 /* Make sure we are in vmalloc area */
713 if (!(address >= VMALLOC_START && address < VMALLOC_END))
714 return -1;
715
716 /* Copy kernel mappings over when needed. This can also
717 happen within a race in page table update. In the later
718 case just flush. */
719
720 pgd = pgd_offset(current->active_mm, address);
721 pgd_ref = pgd_offset_k(address);
722 if (pgd_none(*pgd_ref))
723 return -1;
724 if (pgd_none(*pgd))
725 set_pgd(pgd, *pgd_ref);
726 else
727 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
728
729 /* Below here mismatches are bugs because these lower tables
730 are shared */
731
732 pud = pud_offset(pgd, address);
733 pud_ref = pud_offset(pgd_ref, address);
734 if (pud_none(*pud_ref))
735 return -1;
736 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
737 BUG();
738 pmd = pmd_offset(pud, address);
739 pmd_ref = pmd_offset(pud_ref, address);
740 if (pmd_none(*pmd_ref))
741 return -1;
742 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
743 BUG();
744 pte_ref = pte_offset_kernel(pmd_ref, address);
745 if (!pte_present(*pte_ref))
746 return -1;
747 pte = pte_offset_kernel(pmd, address);
748 /* Don't use pte_page here, because the mappings can point
749 outside mem_map, and the NUMA hash lookup cannot handle
750 that. */
751 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
752 BUG();
753 return 0;
754 #endif
755 }
756
757 int show_unhandled_signals = 1;
758
759 static inline int access_error(unsigned long error_code, int write,
760 struct vm_area_struct *vma)
761 {
762 if (write) {
763 /* write, present and write, not present */
764 if (unlikely(!(vma->vm_flags & VM_WRITE)))
765 return 1;
766 } else if (unlikely(error_code & PF_PROT)) {
767 /* read, present */
768 return 1;
769 } else {
770 /* read, not present */
771 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
772 return 1;
773 }
774
775 return 0;
776 }
777
778 /*
779 * This routine handles page faults. It determines the address,
780 * and the problem, and then passes it off to one of the appropriate
781 * routines.
782 */
783 #ifdef CONFIG_X86_64
784 asmlinkage
785 #endif
786 void __kprobes do_page_fault(struct pt_regs *regs, unsigned long error_code)
787 {
788 unsigned long address;
789 struct task_struct *tsk;
790 struct mm_struct *mm;
791 struct vm_area_struct *vma;
792 int write;
793 int fault;
794
795 tsk = current;
796 mm = tsk->mm;
797 prefetchw(&mm->mmap_sem);
798
799 /* get the address */
800 address = read_cr2();
801
802 if (unlikely(notify_page_fault(regs)))
803 return;
804 if (unlikely(kmmio_fault(regs, address)))
805 return;
806
807 /*
808 * We fault-in kernel-space virtual memory on-demand. The
809 * 'reference' page table is init_mm.pgd.
810 *
811 * NOTE! We MUST NOT take any locks for this case. We may
812 * be in an interrupt or a critical region, and should
813 * only copy the information from the master page table,
814 * nothing more.
815 *
816 * This verifies that the fault happens in kernel space
817 * (error_code & 4) == 0, and that the fault was not a
818 * protection error (error_code & 9) == 0.
819 */
820 #ifdef CONFIG_X86_32
821 if (unlikely(address >= TASK_SIZE)) {
822 #else
823 if (unlikely(address >= TASK_SIZE64)) {
824 #endif
825 if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) &&
826 vmalloc_fault(address) >= 0)
827 return;
828
829 /* Can handle a stale RO->RW TLB */
830 if (spurious_fault(error_code, address))
831 return;
832
833 /*
834 * Don't take the mm semaphore here. If we fixup a prefetch
835 * fault we could otherwise deadlock.
836 */
837 bad_area_nosemaphore(regs, error_code, address);
838 return;
839 }
840
841 /*
842 * It's safe to allow irq's after cr2 has been saved and the
843 * vmalloc fault has been handled.
844 *
845 * User-mode registers count as a user access even for any
846 * potential system fault or CPU buglet.
847 */
848 if (user_mode_vm(regs)) {
849 local_irq_enable();
850 error_code |= PF_USER;
851 } else if (regs->flags & X86_EFLAGS_IF)
852 local_irq_enable();
853
854 #ifdef CONFIG_X86_64
855 if (unlikely(error_code & PF_RSVD))
856 pgtable_bad(regs, error_code, address);
857 #endif
858
859 /*
860 * If we're in an interrupt, have no user context or are running in an
861 * atomic region then we must not take the fault.
862 */
863 if (unlikely(in_atomic() || !mm)) {
864 bad_area_nosemaphore(regs, error_code, address);
865 return;
866 }
867
868 /*
869 * When running in the kernel we expect faults to occur only to
870 * addresses in user space. All other faults represent errors in the
871 * kernel and should generate an OOPS. Unfortunately, in the case of an
872 * erroneous fault occurring in a code path which already holds mmap_sem
873 * we will deadlock attempting to validate the fault against the
874 * address space. Luckily the kernel only validly references user
875 * space from well defined areas of code, which are listed in the
876 * exceptions table.
877 *
878 * As the vast majority of faults will be valid we will only perform
879 * the source reference check when there is a possibility of a deadlock.
880 * Attempt to lock the address space, if we cannot we then validate the
881 * source. If this is invalid we can skip the address space check,
882 * thus avoiding the deadlock.
883 */
884 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
885 if ((error_code & PF_USER) == 0 &&
886 !search_exception_tables(regs->ip)) {
887 bad_area_nosemaphore(regs, error_code, address);
888 return;
889 }
890 down_read(&mm->mmap_sem);
891 } else {
892 /*
893 * The above down_read_trylock() might have succeeded in which
894 * case we'll have missed the might_sleep() from down_read().
895 */
896 might_sleep();
897 }
898
899 vma = find_vma(mm, address);
900 if (unlikely(!vma)) {
901 bad_area(regs, error_code, address);
902 return;
903 }
904 if (likely(vma->vm_start <= address))
905 goto good_area;
906 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
907 bad_area(regs, error_code, address);
908 return;
909 }
910 if (error_code & PF_USER) {
911 /*
912 * Accessing the stack below %sp is always a bug.
913 * The large cushion allows instructions like enter
914 * and pusha to work. ("enter $65535,$31" pushes
915 * 32 pointers and then decrements %sp by 65535.)
916 */
917 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
918 bad_area(regs, error_code, address);
919 return;
920 }
921 }
922 if (unlikely(expand_stack(vma, address))) {
923 bad_area(regs, error_code, address);
924 return;
925 }
926
927 /*
928 * Ok, we have a good vm_area for this memory access, so
929 * we can handle it..
930 */
931 good_area:
932 write = error_code & PF_WRITE;
933 if (unlikely(access_error(error_code, write, vma))) {
934 bad_area_access_error(regs, error_code, address);
935 return;
936 }
937
938 /*
939 * If for any reason at all we couldn't handle the fault,
940 * make sure we exit gracefully rather than endlessly redo
941 * the fault.
942 */
943 fault = handle_mm_fault(mm, vma, address, write);
944 if (unlikely(fault & VM_FAULT_ERROR)) {
945 mm_fault_error(regs, error_code, address, fault);
946 return;
947 }
948 if (fault & VM_FAULT_MAJOR)
949 tsk->maj_flt++;
950 else
951 tsk->min_flt++;
952
953 #ifdef CONFIG_X86_32
954 /*
955 * Did it hit the DOS screen memory VA from vm86 mode?
956 */
957 if (v8086_mode(regs)) {
958 unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT;
959 if (bit < 32)
960 tsk->thread.screen_bitmap |= 1 << bit;
961 }
962 #endif
963 up_read(&mm->mmap_sem);
964 }
965
966 DEFINE_SPINLOCK(pgd_lock);
967 LIST_HEAD(pgd_list);
968
969 void vmalloc_sync_all(void)
970 {
971 unsigned long address;
972
973 #ifdef CONFIG_X86_32
974 if (SHARED_KERNEL_PMD)
975 return;
976
977 for (address = VMALLOC_START & PMD_MASK;
978 address >= TASK_SIZE && address < FIXADDR_TOP;
979 address += PMD_SIZE) {
980 unsigned long flags;
981 struct page *page;
982
983 spin_lock_irqsave(&pgd_lock, flags);
984 list_for_each_entry(page, &pgd_list, lru) {
985 if (!vmalloc_sync_one(page_address(page),
986 address))
987 break;
988 }
989 spin_unlock_irqrestore(&pgd_lock, flags);
990 }
991 #else /* CONFIG_X86_64 */
992 for (address = VMALLOC_START & PGDIR_MASK; address <= VMALLOC_END;
993 address += PGDIR_SIZE) {
994 const pgd_t *pgd_ref = pgd_offset_k(address);
995 unsigned long flags;
996 struct page *page;
997
998 if (pgd_none(*pgd_ref))
999 continue;
1000 spin_lock_irqsave(&pgd_lock, flags);
1001 list_for_each_entry(page, &pgd_list, lru) {
1002 pgd_t *pgd;
1003 pgd = (pgd_t *)page_address(page) + pgd_index(address);
1004 if (pgd_none(*pgd))
1005 set_pgd(pgd, *pgd_ref);
1006 else
1007 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
1008 }
1009 spin_unlock_irqrestore(&pgd_lock, flags);
1010 }
1011 #endif
1012 }
This page took 0.060469 seconds and 4 git commands to generate.