mm/core: Do not enforce PKEY permissions on remote mm access
[deliverable/linux.git] / arch / x86 / mm / fault.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
5 */
6 #include <linux/sched.h> /* test_thread_flag(), ... */
7 #include <linux/kdebug.h> /* oops_begin/end, ... */
8 #include <linux/module.h> /* search_exception_table */
9 #include <linux/bootmem.h> /* max_low_pfn */
10 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
11 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
12 #include <linux/perf_event.h> /* perf_sw_event */
13 #include <linux/hugetlb.h> /* hstate_index_to_shift */
14 #include <linux/prefetch.h> /* prefetchw */
15 #include <linux/context_tracking.h> /* exception_enter(), ... */
16 #include <linux/uaccess.h> /* faulthandler_disabled() */
17
18 #include <asm/cpufeature.h> /* boot_cpu_has, ... */
19 #include <asm/traps.h> /* dotraplinkage, ... */
20 #include <asm/pgalloc.h> /* pgd_*(), ... */
21 #include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
22 #include <asm/fixmap.h> /* VSYSCALL_ADDR */
23 #include <asm/vsyscall.h> /* emulate_vsyscall */
24 #include <asm/vm86.h> /* struct vm86 */
25 #include <asm/mmu_context.h> /* vma_pkey() */
26
27 #define CREATE_TRACE_POINTS
28 #include <asm/trace/exceptions.h>
29
30 /*
31 * Page fault error code bits:
32 *
33 * bit 0 == 0: no page found 1: protection fault
34 * bit 1 == 0: read access 1: write access
35 * bit 2 == 0: kernel-mode access 1: user-mode access
36 * bit 3 == 1: use of reserved bit detected
37 * bit 4 == 1: fault was an instruction fetch
38 * bit 5 == 1: protection keys block access
39 */
40 enum x86_pf_error_code {
41
42 PF_PROT = 1 << 0,
43 PF_WRITE = 1 << 1,
44 PF_USER = 1 << 2,
45 PF_RSVD = 1 << 3,
46 PF_INSTR = 1 << 4,
47 PF_PK = 1 << 5,
48 };
49
50 /*
51 * Returns 0 if mmiotrace is disabled, or if the fault is not
52 * handled by mmiotrace:
53 */
54 static nokprobe_inline int
55 kmmio_fault(struct pt_regs *regs, unsigned long addr)
56 {
57 if (unlikely(is_kmmio_active()))
58 if (kmmio_handler(regs, addr) == 1)
59 return -1;
60 return 0;
61 }
62
63 static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
64 {
65 int ret = 0;
66
67 /* kprobe_running() needs smp_processor_id() */
68 if (kprobes_built_in() && !user_mode(regs)) {
69 preempt_disable();
70 if (kprobe_running() && kprobe_fault_handler(regs, 14))
71 ret = 1;
72 preempt_enable();
73 }
74
75 return ret;
76 }
77
78 /*
79 * Prefetch quirks:
80 *
81 * 32-bit mode:
82 *
83 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
84 * Check that here and ignore it.
85 *
86 * 64-bit mode:
87 *
88 * Sometimes the CPU reports invalid exceptions on prefetch.
89 * Check that here and ignore it.
90 *
91 * Opcode checker based on code by Richard Brunner.
92 */
93 static inline int
94 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
95 unsigned char opcode, int *prefetch)
96 {
97 unsigned char instr_hi = opcode & 0xf0;
98 unsigned char instr_lo = opcode & 0x0f;
99
100 switch (instr_hi) {
101 case 0x20:
102 case 0x30:
103 /*
104 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
105 * In X86_64 long mode, the CPU will signal invalid
106 * opcode if some of these prefixes are present so
107 * X86_64 will never get here anyway
108 */
109 return ((instr_lo & 7) == 0x6);
110 #ifdef CONFIG_X86_64
111 case 0x40:
112 /*
113 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
114 * Need to figure out under what instruction mode the
115 * instruction was issued. Could check the LDT for lm,
116 * but for now it's good enough to assume that long
117 * mode only uses well known segments or kernel.
118 */
119 return (!user_mode(regs) || user_64bit_mode(regs));
120 #endif
121 case 0x60:
122 /* 0x64 thru 0x67 are valid prefixes in all modes. */
123 return (instr_lo & 0xC) == 0x4;
124 case 0xF0:
125 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
126 return !instr_lo || (instr_lo>>1) == 1;
127 case 0x00:
128 /* Prefetch instruction is 0x0F0D or 0x0F18 */
129 if (probe_kernel_address(instr, opcode))
130 return 0;
131
132 *prefetch = (instr_lo == 0xF) &&
133 (opcode == 0x0D || opcode == 0x18);
134 return 0;
135 default:
136 return 0;
137 }
138 }
139
140 static int
141 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
142 {
143 unsigned char *max_instr;
144 unsigned char *instr;
145 int prefetch = 0;
146
147 /*
148 * If it was a exec (instruction fetch) fault on NX page, then
149 * do not ignore the fault:
150 */
151 if (error_code & PF_INSTR)
152 return 0;
153
154 instr = (void *)convert_ip_to_linear(current, regs);
155 max_instr = instr + 15;
156
157 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
158 return 0;
159
160 while (instr < max_instr) {
161 unsigned char opcode;
162
163 if (probe_kernel_address(instr, opcode))
164 break;
165
166 instr++;
167
168 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
169 break;
170 }
171 return prefetch;
172 }
173
174 /*
175 * A protection key fault means that the PKRU value did not allow
176 * access to some PTE. Userspace can figure out what PKRU was
177 * from the XSAVE state, and this function fills out a field in
178 * siginfo so userspace can discover which protection key was set
179 * on the PTE.
180 *
181 * If we get here, we know that the hardware signaled a PF_PK
182 * fault and that there was a VMA once we got in the fault
183 * handler. It does *not* guarantee that the VMA we find here
184 * was the one that we faulted on.
185 *
186 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
187 * 2. T1 : set PKRU to deny access to pkey=4, touches page
188 * 3. T1 : faults...
189 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
190 * 5. T1 : enters fault handler, takes mmap_sem, etc...
191 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
192 * faulted on a pte with its pkey=4.
193 */
194 static void fill_sig_info_pkey(int si_code, siginfo_t *info,
195 struct vm_area_struct *vma)
196 {
197 /* This is effectively an #ifdef */
198 if (!boot_cpu_has(X86_FEATURE_OSPKE))
199 return;
200
201 /* Fault not from Protection Keys: nothing to do */
202 if (si_code != SEGV_PKUERR)
203 return;
204 /*
205 * force_sig_info_fault() is called from a number of
206 * contexts, some of which have a VMA and some of which
207 * do not. The PF_PK handing happens after we have a
208 * valid VMA, so we should never reach this without a
209 * valid VMA.
210 */
211 if (!vma) {
212 WARN_ONCE(1, "PKU fault with no VMA passed in");
213 info->si_pkey = 0;
214 return;
215 }
216 /*
217 * si_pkey should be thought of as a strong hint, but not
218 * absolutely guranteed to be 100% accurate because of
219 * the race explained above.
220 */
221 info->si_pkey = vma_pkey(vma);
222 }
223
224 static void
225 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
226 struct task_struct *tsk, struct vm_area_struct *vma,
227 int fault)
228 {
229 unsigned lsb = 0;
230 siginfo_t info;
231
232 info.si_signo = si_signo;
233 info.si_errno = 0;
234 info.si_code = si_code;
235 info.si_addr = (void __user *)address;
236 if (fault & VM_FAULT_HWPOISON_LARGE)
237 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
238 if (fault & VM_FAULT_HWPOISON)
239 lsb = PAGE_SHIFT;
240 info.si_addr_lsb = lsb;
241
242 fill_sig_info_pkey(si_code, &info, vma);
243
244 force_sig_info(si_signo, &info, tsk);
245 }
246
247 DEFINE_SPINLOCK(pgd_lock);
248 LIST_HEAD(pgd_list);
249
250 #ifdef CONFIG_X86_32
251 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
252 {
253 unsigned index = pgd_index(address);
254 pgd_t *pgd_k;
255 pud_t *pud, *pud_k;
256 pmd_t *pmd, *pmd_k;
257
258 pgd += index;
259 pgd_k = init_mm.pgd + index;
260
261 if (!pgd_present(*pgd_k))
262 return NULL;
263
264 /*
265 * set_pgd(pgd, *pgd_k); here would be useless on PAE
266 * and redundant with the set_pmd() on non-PAE. As would
267 * set_pud.
268 */
269 pud = pud_offset(pgd, address);
270 pud_k = pud_offset(pgd_k, address);
271 if (!pud_present(*pud_k))
272 return NULL;
273
274 pmd = pmd_offset(pud, address);
275 pmd_k = pmd_offset(pud_k, address);
276 if (!pmd_present(*pmd_k))
277 return NULL;
278
279 if (!pmd_present(*pmd))
280 set_pmd(pmd, *pmd_k);
281 else
282 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
283
284 return pmd_k;
285 }
286
287 void vmalloc_sync_all(void)
288 {
289 unsigned long address;
290
291 if (SHARED_KERNEL_PMD)
292 return;
293
294 for (address = VMALLOC_START & PMD_MASK;
295 address >= TASK_SIZE && address < FIXADDR_TOP;
296 address += PMD_SIZE) {
297 struct page *page;
298
299 spin_lock(&pgd_lock);
300 list_for_each_entry(page, &pgd_list, lru) {
301 spinlock_t *pgt_lock;
302 pmd_t *ret;
303
304 /* the pgt_lock only for Xen */
305 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
306
307 spin_lock(pgt_lock);
308 ret = vmalloc_sync_one(page_address(page), address);
309 spin_unlock(pgt_lock);
310
311 if (!ret)
312 break;
313 }
314 spin_unlock(&pgd_lock);
315 }
316 }
317
318 /*
319 * 32-bit:
320 *
321 * Handle a fault on the vmalloc or module mapping area
322 */
323 static noinline int vmalloc_fault(unsigned long address)
324 {
325 unsigned long pgd_paddr;
326 pmd_t *pmd_k;
327 pte_t *pte_k;
328
329 /* Make sure we are in vmalloc area: */
330 if (!(address >= VMALLOC_START && address < VMALLOC_END))
331 return -1;
332
333 WARN_ON_ONCE(in_nmi());
334
335 /*
336 * Synchronize this task's top level page-table
337 * with the 'reference' page table.
338 *
339 * Do _not_ use "current" here. We might be inside
340 * an interrupt in the middle of a task switch..
341 */
342 pgd_paddr = read_cr3();
343 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
344 if (!pmd_k)
345 return -1;
346
347 pte_k = pte_offset_kernel(pmd_k, address);
348 if (!pte_present(*pte_k))
349 return -1;
350
351 return 0;
352 }
353 NOKPROBE_SYMBOL(vmalloc_fault);
354
355 /*
356 * Did it hit the DOS screen memory VA from vm86 mode?
357 */
358 static inline void
359 check_v8086_mode(struct pt_regs *regs, unsigned long address,
360 struct task_struct *tsk)
361 {
362 #ifdef CONFIG_VM86
363 unsigned long bit;
364
365 if (!v8086_mode(regs) || !tsk->thread.vm86)
366 return;
367
368 bit = (address - 0xA0000) >> PAGE_SHIFT;
369 if (bit < 32)
370 tsk->thread.vm86->screen_bitmap |= 1 << bit;
371 #endif
372 }
373
374 static bool low_pfn(unsigned long pfn)
375 {
376 return pfn < max_low_pfn;
377 }
378
379 static void dump_pagetable(unsigned long address)
380 {
381 pgd_t *base = __va(read_cr3());
382 pgd_t *pgd = &base[pgd_index(address)];
383 pmd_t *pmd;
384 pte_t *pte;
385
386 #ifdef CONFIG_X86_PAE
387 printk("*pdpt = %016Lx ", pgd_val(*pgd));
388 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
389 goto out;
390 #endif
391 pmd = pmd_offset(pud_offset(pgd, address), address);
392 printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
393
394 /*
395 * We must not directly access the pte in the highpte
396 * case if the page table is located in highmem.
397 * And let's rather not kmap-atomic the pte, just in case
398 * it's allocated already:
399 */
400 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
401 goto out;
402
403 pte = pte_offset_kernel(pmd, address);
404 printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
405 out:
406 printk("\n");
407 }
408
409 #else /* CONFIG_X86_64: */
410
411 void vmalloc_sync_all(void)
412 {
413 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END, 0);
414 }
415
416 /*
417 * 64-bit:
418 *
419 * Handle a fault on the vmalloc area
420 *
421 * This assumes no large pages in there.
422 */
423 static noinline int vmalloc_fault(unsigned long address)
424 {
425 pgd_t *pgd, *pgd_ref;
426 pud_t *pud, *pud_ref;
427 pmd_t *pmd, *pmd_ref;
428 pte_t *pte, *pte_ref;
429
430 /* Make sure we are in vmalloc area: */
431 if (!(address >= VMALLOC_START && address < VMALLOC_END))
432 return -1;
433
434 WARN_ON_ONCE(in_nmi());
435
436 /*
437 * Copy kernel mappings over when needed. This can also
438 * happen within a race in page table update. In the later
439 * case just flush:
440 */
441 pgd = pgd_offset(current->active_mm, address);
442 pgd_ref = pgd_offset_k(address);
443 if (pgd_none(*pgd_ref))
444 return -1;
445
446 if (pgd_none(*pgd)) {
447 set_pgd(pgd, *pgd_ref);
448 arch_flush_lazy_mmu_mode();
449 } else {
450 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
451 }
452
453 /*
454 * Below here mismatches are bugs because these lower tables
455 * are shared:
456 */
457
458 pud = pud_offset(pgd, address);
459 pud_ref = pud_offset(pgd_ref, address);
460 if (pud_none(*pud_ref))
461 return -1;
462
463 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
464 BUG();
465
466 pmd = pmd_offset(pud, address);
467 pmd_ref = pmd_offset(pud_ref, address);
468 if (pmd_none(*pmd_ref))
469 return -1;
470
471 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
472 BUG();
473
474 pte_ref = pte_offset_kernel(pmd_ref, address);
475 if (!pte_present(*pte_ref))
476 return -1;
477
478 pte = pte_offset_kernel(pmd, address);
479
480 /*
481 * Don't use pte_page here, because the mappings can point
482 * outside mem_map, and the NUMA hash lookup cannot handle
483 * that:
484 */
485 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
486 BUG();
487
488 return 0;
489 }
490 NOKPROBE_SYMBOL(vmalloc_fault);
491
492 #ifdef CONFIG_CPU_SUP_AMD
493 static const char errata93_warning[] =
494 KERN_ERR
495 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
496 "******* Working around it, but it may cause SEGVs or burn power.\n"
497 "******* Please consider a BIOS update.\n"
498 "******* Disabling USB legacy in the BIOS may also help.\n";
499 #endif
500
501 /*
502 * No vm86 mode in 64-bit mode:
503 */
504 static inline void
505 check_v8086_mode(struct pt_regs *regs, unsigned long address,
506 struct task_struct *tsk)
507 {
508 }
509
510 static int bad_address(void *p)
511 {
512 unsigned long dummy;
513
514 return probe_kernel_address((unsigned long *)p, dummy);
515 }
516
517 static void dump_pagetable(unsigned long address)
518 {
519 pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
520 pgd_t *pgd = base + pgd_index(address);
521 pud_t *pud;
522 pmd_t *pmd;
523 pte_t *pte;
524
525 if (bad_address(pgd))
526 goto bad;
527
528 printk("PGD %lx ", pgd_val(*pgd));
529
530 if (!pgd_present(*pgd))
531 goto out;
532
533 pud = pud_offset(pgd, address);
534 if (bad_address(pud))
535 goto bad;
536
537 printk("PUD %lx ", pud_val(*pud));
538 if (!pud_present(*pud) || pud_large(*pud))
539 goto out;
540
541 pmd = pmd_offset(pud, address);
542 if (bad_address(pmd))
543 goto bad;
544
545 printk("PMD %lx ", pmd_val(*pmd));
546 if (!pmd_present(*pmd) || pmd_large(*pmd))
547 goto out;
548
549 pte = pte_offset_kernel(pmd, address);
550 if (bad_address(pte))
551 goto bad;
552
553 printk("PTE %lx", pte_val(*pte));
554 out:
555 printk("\n");
556 return;
557 bad:
558 printk("BAD\n");
559 }
560
561 #endif /* CONFIG_X86_64 */
562
563 /*
564 * Workaround for K8 erratum #93 & buggy BIOS.
565 *
566 * BIOS SMM functions are required to use a specific workaround
567 * to avoid corruption of the 64bit RIP register on C stepping K8.
568 *
569 * A lot of BIOS that didn't get tested properly miss this.
570 *
571 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
572 * Try to work around it here.
573 *
574 * Note we only handle faults in kernel here.
575 * Does nothing on 32-bit.
576 */
577 static int is_errata93(struct pt_regs *regs, unsigned long address)
578 {
579 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
580 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
581 || boot_cpu_data.x86 != 0xf)
582 return 0;
583
584 if (address != regs->ip)
585 return 0;
586
587 if ((address >> 32) != 0)
588 return 0;
589
590 address |= 0xffffffffUL << 32;
591 if ((address >= (u64)_stext && address <= (u64)_etext) ||
592 (address >= MODULES_VADDR && address <= MODULES_END)) {
593 printk_once(errata93_warning);
594 regs->ip = address;
595 return 1;
596 }
597 #endif
598 return 0;
599 }
600
601 /*
602 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
603 * to illegal addresses >4GB.
604 *
605 * We catch this in the page fault handler because these addresses
606 * are not reachable. Just detect this case and return. Any code
607 * segment in LDT is compatibility mode.
608 */
609 static int is_errata100(struct pt_regs *regs, unsigned long address)
610 {
611 #ifdef CONFIG_X86_64
612 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
613 return 1;
614 #endif
615 return 0;
616 }
617
618 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
619 {
620 #ifdef CONFIG_X86_F00F_BUG
621 unsigned long nr;
622
623 /*
624 * Pentium F0 0F C7 C8 bug workaround:
625 */
626 if (boot_cpu_has_bug(X86_BUG_F00F)) {
627 nr = (address - idt_descr.address) >> 3;
628
629 if (nr == 6) {
630 do_invalid_op(regs, 0);
631 return 1;
632 }
633 }
634 #endif
635 return 0;
636 }
637
638 static const char nx_warning[] = KERN_CRIT
639 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
640 static const char smep_warning[] = KERN_CRIT
641 "unable to execute userspace code (SMEP?) (uid: %d)\n";
642
643 static void
644 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
645 unsigned long address)
646 {
647 if (!oops_may_print())
648 return;
649
650 if (error_code & PF_INSTR) {
651 unsigned int level;
652 pgd_t *pgd;
653 pte_t *pte;
654
655 pgd = __va(read_cr3() & PHYSICAL_PAGE_MASK);
656 pgd += pgd_index(address);
657
658 pte = lookup_address_in_pgd(pgd, address, &level);
659
660 if (pte && pte_present(*pte) && !pte_exec(*pte))
661 printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
662 if (pte && pte_present(*pte) && pte_exec(*pte) &&
663 (pgd_flags(*pgd) & _PAGE_USER) &&
664 (__read_cr4() & X86_CR4_SMEP))
665 printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
666 }
667
668 printk(KERN_ALERT "BUG: unable to handle kernel ");
669 if (address < PAGE_SIZE)
670 printk(KERN_CONT "NULL pointer dereference");
671 else
672 printk(KERN_CONT "paging request");
673
674 printk(KERN_CONT " at %p\n", (void *) address);
675 printk(KERN_ALERT "IP:");
676 printk_address(regs->ip);
677
678 dump_pagetable(address);
679 }
680
681 static noinline void
682 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
683 unsigned long address)
684 {
685 struct task_struct *tsk;
686 unsigned long flags;
687 int sig;
688
689 flags = oops_begin();
690 tsk = current;
691 sig = SIGKILL;
692
693 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
694 tsk->comm, address);
695 dump_pagetable(address);
696
697 tsk->thread.cr2 = address;
698 tsk->thread.trap_nr = X86_TRAP_PF;
699 tsk->thread.error_code = error_code;
700
701 if (__die("Bad pagetable", regs, error_code))
702 sig = 0;
703
704 oops_end(flags, regs, sig);
705 }
706
707 static noinline void
708 no_context(struct pt_regs *regs, unsigned long error_code,
709 unsigned long address, int signal, int si_code)
710 {
711 struct task_struct *tsk = current;
712 unsigned long flags;
713 int sig;
714 /* No context means no VMA to pass down */
715 struct vm_area_struct *vma = NULL;
716
717 /* Are we prepared to handle this kernel fault? */
718 if (fixup_exception(regs)) {
719 /*
720 * Any interrupt that takes a fault gets the fixup. This makes
721 * the below recursive fault logic only apply to a faults from
722 * task context.
723 */
724 if (in_interrupt())
725 return;
726
727 /*
728 * Per the above we're !in_interrupt(), aka. task context.
729 *
730 * In this case we need to make sure we're not recursively
731 * faulting through the emulate_vsyscall() logic.
732 */
733 if (current_thread_info()->sig_on_uaccess_error && signal) {
734 tsk->thread.trap_nr = X86_TRAP_PF;
735 tsk->thread.error_code = error_code | PF_USER;
736 tsk->thread.cr2 = address;
737
738 /* XXX: hwpoison faults will set the wrong code. */
739 force_sig_info_fault(signal, si_code, address,
740 tsk, vma, 0);
741 }
742
743 /*
744 * Barring that, we can do the fixup and be happy.
745 */
746 return;
747 }
748
749 /*
750 * 32-bit:
751 *
752 * Valid to do another page fault here, because if this fault
753 * had been triggered by is_prefetch fixup_exception would have
754 * handled it.
755 *
756 * 64-bit:
757 *
758 * Hall of shame of CPU/BIOS bugs.
759 */
760 if (is_prefetch(regs, error_code, address))
761 return;
762
763 if (is_errata93(regs, address))
764 return;
765
766 /*
767 * Oops. The kernel tried to access some bad page. We'll have to
768 * terminate things with extreme prejudice:
769 */
770 flags = oops_begin();
771
772 show_fault_oops(regs, error_code, address);
773
774 if (task_stack_end_corrupted(tsk))
775 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
776
777 tsk->thread.cr2 = address;
778 tsk->thread.trap_nr = X86_TRAP_PF;
779 tsk->thread.error_code = error_code;
780
781 sig = SIGKILL;
782 if (__die("Oops", regs, error_code))
783 sig = 0;
784
785 /* Executive summary in case the body of the oops scrolled away */
786 printk(KERN_DEFAULT "CR2: %016lx\n", address);
787
788 oops_end(flags, regs, sig);
789 }
790
791 /*
792 * Print out info about fatal segfaults, if the show_unhandled_signals
793 * sysctl is set:
794 */
795 static inline void
796 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
797 unsigned long address, struct task_struct *tsk)
798 {
799 if (!unhandled_signal(tsk, SIGSEGV))
800 return;
801
802 if (!printk_ratelimit())
803 return;
804
805 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
806 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
807 tsk->comm, task_pid_nr(tsk), address,
808 (void *)regs->ip, (void *)regs->sp, error_code);
809
810 print_vma_addr(KERN_CONT " in ", regs->ip);
811
812 printk(KERN_CONT "\n");
813 }
814
815 static void
816 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
817 unsigned long address, struct vm_area_struct *vma,
818 int si_code)
819 {
820 struct task_struct *tsk = current;
821
822 /* User mode accesses just cause a SIGSEGV */
823 if (error_code & PF_USER) {
824 /*
825 * It's possible to have interrupts off here:
826 */
827 local_irq_enable();
828
829 /*
830 * Valid to do another page fault here because this one came
831 * from user space:
832 */
833 if (is_prefetch(regs, error_code, address))
834 return;
835
836 if (is_errata100(regs, address))
837 return;
838
839 #ifdef CONFIG_X86_64
840 /*
841 * Instruction fetch faults in the vsyscall page might need
842 * emulation.
843 */
844 if (unlikely((error_code & PF_INSTR) &&
845 ((address & ~0xfff) == VSYSCALL_ADDR))) {
846 if (emulate_vsyscall(regs, address))
847 return;
848 }
849 #endif
850 /* Kernel addresses are always protection faults: */
851 if (address >= TASK_SIZE)
852 error_code |= PF_PROT;
853
854 if (likely(show_unhandled_signals))
855 show_signal_msg(regs, error_code, address, tsk);
856
857 tsk->thread.cr2 = address;
858 tsk->thread.error_code = error_code;
859 tsk->thread.trap_nr = X86_TRAP_PF;
860
861 force_sig_info_fault(SIGSEGV, si_code, address, tsk, vma, 0);
862
863 return;
864 }
865
866 if (is_f00f_bug(regs, address))
867 return;
868
869 no_context(regs, error_code, address, SIGSEGV, si_code);
870 }
871
872 static noinline void
873 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
874 unsigned long address, struct vm_area_struct *vma)
875 {
876 __bad_area_nosemaphore(regs, error_code, address, vma, SEGV_MAPERR);
877 }
878
879 static void
880 __bad_area(struct pt_regs *regs, unsigned long error_code,
881 unsigned long address, struct vm_area_struct *vma, int si_code)
882 {
883 struct mm_struct *mm = current->mm;
884
885 /*
886 * Something tried to access memory that isn't in our memory map..
887 * Fix it, but check if it's kernel or user first..
888 */
889 up_read(&mm->mmap_sem);
890
891 __bad_area_nosemaphore(regs, error_code, address, vma, si_code);
892 }
893
894 static noinline void
895 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
896 {
897 __bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
898 }
899
900 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
901 struct vm_area_struct *vma)
902 {
903 if (!boot_cpu_has(X86_FEATURE_OSPKE))
904 return false;
905 if (error_code & PF_PK)
906 return true;
907 return false;
908 }
909
910 static noinline void
911 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
912 unsigned long address, struct vm_area_struct *vma)
913 {
914 /*
915 * This OSPKE check is not strictly necessary at runtime.
916 * But, doing it this way allows compiler optimizations
917 * if pkeys are compiled out.
918 */
919 if (bad_area_access_from_pkeys(error_code, vma))
920 __bad_area(regs, error_code, address, vma, SEGV_PKUERR);
921 else
922 __bad_area(regs, error_code, address, vma, SEGV_ACCERR);
923 }
924
925 static void
926 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
927 struct vm_area_struct *vma, unsigned int fault)
928 {
929 struct task_struct *tsk = current;
930 int code = BUS_ADRERR;
931
932 /* Kernel mode? Handle exceptions or die: */
933 if (!(error_code & PF_USER)) {
934 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
935 return;
936 }
937
938 /* User-space => ok to do another page fault: */
939 if (is_prefetch(regs, error_code, address))
940 return;
941
942 tsk->thread.cr2 = address;
943 tsk->thread.error_code = error_code;
944 tsk->thread.trap_nr = X86_TRAP_PF;
945
946 #ifdef CONFIG_MEMORY_FAILURE
947 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
948 printk(KERN_ERR
949 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
950 tsk->comm, tsk->pid, address);
951 code = BUS_MCEERR_AR;
952 }
953 #endif
954 force_sig_info_fault(SIGBUS, code, address, tsk, vma, fault);
955 }
956
957 static noinline void
958 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
959 unsigned long address, struct vm_area_struct *vma,
960 unsigned int fault)
961 {
962 if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
963 no_context(regs, error_code, address, 0, 0);
964 return;
965 }
966
967 if (fault & VM_FAULT_OOM) {
968 /* Kernel mode? Handle exceptions or die: */
969 if (!(error_code & PF_USER)) {
970 no_context(regs, error_code, address,
971 SIGSEGV, SEGV_MAPERR);
972 return;
973 }
974
975 /*
976 * We ran out of memory, call the OOM killer, and return the
977 * userspace (which will retry the fault, or kill us if we got
978 * oom-killed):
979 */
980 pagefault_out_of_memory();
981 } else {
982 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
983 VM_FAULT_HWPOISON_LARGE))
984 do_sigbus(regs, error_code, address, vma, fault);
985 else if (fault & VM_FAULT_SIGSEGV)
986 bad_area_nosemaphore(regs, error_code, address, vma);
987 else
988 BUG();
989 }
990 }
991
992 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
993 {
994 if ((error_code & PF_WRITE) && !pte_write(*pte))
995 return 0;
996
997 if ((error_code & PF_INSTR) && !pte_exec(*pte))
998 return 0;
999 /*
1000 * Note: We do not do lazy flushing on protection key
1001 * changes, so no spurious fault will ever set PF_PK.
1002 */
1003 if ((error_code & PF_PK))
1004 return 1;
1005
1006 return 1;
1007 }
1008
1009 /*
1010 * Handle a spurious fault caused by a stale TLB entry.
1011 *
1012 * This allows us to lazily refresh the TLB when increasing the
1013 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
1014 * eagerly is very expensive since that implies doing a full
1015 * cross-processor TLB flush, even if no stale TLB entries exist
1016 * on other processors.
1017 *
1018 * Spurious faults may only occur if the TLB contains an entry with
1019 * fewer permission than the page table entry. Non-present (P = 0)
1020 * and reserved bit (R = 1) faults are never spurious.
1021 *
1022 * There are no security implications to leaving a stale TLB when
1023 * increasing the permissions on a page.
1024 *
1025 * Returns non-zero if a spurious fault was handled, zero otherwise.
1026 *
1027 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1028 * (Optional Invalidation).
1029 */
1030 static noinline int
1031 spurious_fault(unsigned long error_code, unsigned long address)
1032 {
1033 pgd_t *pgd;
1034 pud_t *pud;
1035 pmd_t *pmd;
1036 pte_t *pte;
1037 int ret;
1038
1039 /*
1040 * Only writes to RO or instruction fetches from NX may cause
1041 * spurious faults.
1042 *
1043 * These could be from user or supervisor accesses but the TLB
1044 * is only lazily flushed after a kernel mapping protection
1045 * change, so user accesses are not expected to cause spurious
1046 * faults.
1047 */
1048 if (error_code != (PF_WRITE | PF_PROT)
1049 && error_code != (PF_INSTR | PF_PROT))
1050 return 0;
1051
1052 pgd = init_mm.pgd + pgd_index(address);
1053 if (!pgd_present(*pgd))
1054 return 0;
1055
1056 pud = pud_offset(pgd, address);
1057 if (!pud_present(*pud))
1058 return 0;
1059
1060 if (pud_large(*pud))
1061 return spurious_fault_check(error_code, (pte_t *) pud);
1062
1063 pmd = pmd_offset(pud, address);
1064 if (!pmd_present(*pmd))
1065 return 0;
1066
1067 if (pmd_large(*pmd))
1068 return spurious_fault_check(error_code, (pte_t *) pmd);
1069
1070 pte = pte_offset_kernel(pmd, address);
1071 if (!pte_present(*pte))
1072 return 0;
1073
1074 ret = spurious_fault_check(error_code, pte);
1075 if (!ret)
1076 return 0;
1077
1078 /*
1079 * Make sure we have permissions in PMD.
1080 * If not, then there's a bug in the page tables:
1081 */
1082 ret = spurious_fault_check(error_code, (pte_t *) pmd);
1083 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1084
1085 return ret;
1086 }
1087 NOKPROBE_SYMBOL(spurious_fault);
1088
1089 int show_unhandled_signals = 1;
1090
1091 static inline int
1092 access_error(unsigned long error_code, struct vm_area_struct *vma)
1093 {
1094 /*
1095 * Access or read was blocked by protection keys. We do
1096 * this check before any others because we do not want
1097 * to, for instance, confuse a protection-key-denied
1098 * write with one for which we should do a COW.
1099 */
1100 if (error_code & PF_PK)
1101 return 1;
1102
1103 if (error_code & PF_WRITE) {
1104 /* write, present and write, not present: */
1105 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1106 return 1;
1107 return 0;
1108 }
1109
1110 /* read, present: */
1111 if (unlikely(error_code & PF_PROT))
1112 return 1;
1113
1114 /* read, not present: */
1115 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1116 return 1;
1117
1118 return 0;
1119 }
1120
1121 static int fault_in_kernel_space(unsigned long address)
1122 {
1123 return address >= TASK_SIZE_MAX;
1124 }
1125
1126 static inline bool smap_violation(int error_code, struct pt_regs *regs)
1127 {
1128 if (!IS_ENABLED(CONFIG_X86_SMAP))
1129 return false;
1130
1131 if (!static_cpu_has(X86_FEATURE_SMAP))
1132 return false;
1133
1134 if (error_code & PF_USER)
1135 return false;
1136
1137 if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
1138 return false;
1139
1140 return true;
1141 }
1142
1143 /*
1144 * This routine handles page faults. It determines the address,
1145 * and the problem, and then passes it off to one of the appropriate
1146 * routines.
1147 *
1148 * This function must have noinline because both callers
1149 * {,trace_}do_page_fault() have notrace on. Having this an actual function
1150 * guarantees there's a function trace entry.
1151 */
1152 static noinline void
1153 __do_page_fault(struct pt_regs *regs, unsigned long error_code,
1154 unsigned long address)
1155 {
1156 struct vm_area_struct *vma;
1157 struct task_struct *tsk;
1158 struct mm_struct *mm;
1159 int fault, major = 0;
1160 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1161
1162 tsk = current;
1163 mm = tsk->mm;
1164
1165 /*
1166 * Detect and handle instructions that would cause a page fault for
1167 * both a tracked kernel page and a userspace page.
1168 */
1169 if (kmemcheck_active(regs))
1170 kmemcheck_hide(regs);
1171 prefetchw(&mm->mmap_sem);
1172
1173 if (unlikely(kmmio_fault(regs, address)))
1174 return;
1175
1176 /*
1177 * We fault-in kernel-space virtual memory on-demand. The
1178 * 'reference' page table is init_mm.pgd.
1179 *
1180 * NOTE! We MUST NOT take any locks for this case. We may
1181 * be in an interrupt or a critical region, and should
1182 * only copy the information from the master page table,
1183 * nothing more.
1184 *
1185 * This verifies that the fault happens in kernel space
1186 * (error_code & 4) == 0, and that the fault was not a
1187 * protection error (error_code & 9) == 0.
1188 */
1189 if (unlikely(fault_in_kernel_space(address))) {
1190 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1191 if (vmalloc_fault(address) >= 0)
1192 return;
1193
1194 if (kmemcheck_fault(regs, address, error_code))
1195 return;
1196 }
1197
1198 /* Can handle a stale RO->RW TLB: */
1199 if (spurious_fault(error_code, address))
1200 return;
1201
1202 /* kprobes don't want to hook the spurious faults: */
1203 if (kprobes_fault(regs))
1204 return;
1205 /*
1206 * Don't take the mm semaphore here. If we fixup a prefetch
1207 * fault we could otherwise deadlock:
1208 */
1209 bad_area_nosemaphore(regs, error_code, address, NULL);
1210
1211 return;
1212 }
1213
1214 /* kprobes don't want to hook the spurious faults: */
1215 if (unlikely(kprobes_fault(regs)))
1216 return;
1217
1218 if (unlikely(error_code & PF_RSVD))
1219 pgtable_bad(regs, error_code, address);
1220
1221 if (unlikely(smap_violation(error_code, regs))) {
1222 bad_area_nosemaphore(regs, error_code, address, NULL);
1223 return;
1224 }
1225
1226 /*
1227 * If we're in an interrupt, have no user context or are running
1228 * in a region with pagefaults disabled then we must not take the fault
1229 */
1230 if (unlikely(faulthandler_disabled() || !mm)) {
1231 bad_area_nosemaphore(regs, error_code, address, NULL);
1232 return;
1233 }
1234
1235 /*
1236 * It's safe to allow irq's after cr2 has been saved and the
1237 * vmalloc fault has been handled.
1238 *
1239 * User-mode registers count as a user access even for any
1240 * potential system fault or CPU buglet:
1241 */
1242 if (user_mode(regs)) {
1243 local_irq_enable();
1244 error_code |= PF_USER;
1245 flags |= FAULT_FLAG_USER;
1246 } else {
1247 if (regs->flags & X86_EFLAGS_IF)
1248 local_irq_enable();
1249 }
1250
1251 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1252
1253 if (error_code & PF_WRITE)
1254 flags |= FAULT_FLAG_WRITE;
1255
1256 /*
1257 * When running in the kernel we expect faults to occur only to
1258 * addresses in user space. All other faults represent errors in
1259 * the kernel and should generate an OOPS. Unfortunately, in the
1260 * case of an erroneous fault occurring in a code path which already
1261 * holds mmap_sem we will deadlock attempting to validate the fault
1262 * against the address space. Luckily the kernel only validly
1263 * references user space from well defined areas of code, which are
1264 * listed in the exceptions table.
1265 *
1266 * As the vast majority of faults will be valid we will only perform
1267 * the source reference check when there is a possibility of a
1268 * deadlock. Attempt to lock the address space, if we cannot we then
1269 * validate the source. If this is invalid we can skip the address
1270 * space check, thus avoiding the deadlock:
1271 */
1272 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1273 if ((error_code & PF_USER) == 0 &&
1274 !search_exception_tables(regs->ip)) {
1275 bad_area_nosemaphore(regs, error_code, address, NULL);
1276 return;
1277 }
1278 retry:
1279 down_read(&mm->mmap_sem);
1280 } else {
1281 /*
1282 * The above down_read_trylock() might have succeeded in
1283 * which case we'll have missed the might_sleep() from
1284 * down_read():
1285 */
1286 might_sleep();
1287 }
1288
1289 vma = find_vma(mm, address);
1290 if (unlikely(!vma)) {
1291 bad_area(regs, error_code, address);
1292 return;
1293 }
1294 if (likely(vma->vm_start <= address))
1295 goto good_area;
1296 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1297 bad_area(regs, error_code, address);
1298 return;
1299 }
1300 if (error_code & PF_USER) {
1301 /*
1302 * Accessing the stack below %sp is always a bug.
1303 * The large cushion allows instructions like enter
1304 * and pusha to work. ("enter $65535, $31" pushes
1305 * 32 pointers and then decrements %sp by 65535.)
1306 */
1307 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1308 bad_area(regs, error_code, address);
1309 return;
1310 }
1311 }
1312 if (unlikely(expand_stack(vma, address))) {
1313 bad_area(regs, error_code, address);
1314 return;
1315 }
1316
1317 /*
1318 * Ok, we have a good vm_area for this memory access, so
1319 * we can handle it..
1320 */
1321 good_area:
1322 if (unlikely(access_error(error_code, vma))) {
1323 bad_area_access_error(regs, error_code, address, vma);
1324 return;
1325 }
1326
1327 /*
1328 * If for any reason at all we couldn't handle the fault,
1329 * make sure we exit gracefully rather than endlessly redo
1330 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1331 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1332 */
1333 fault = handle_mm_fault(mm, vma, address, flags);
1334 major |= fault & VM_FAULT_MAJOR;
1335
1336 /*
1337 * If we need to retry the mmap_sem has already been released,
1338 * and if there is a fatal signal pending there is no guarantee
1339 * that we made any progress. Handle this case first.
1340 */
1341 if (unlikely(fault & VM_FAULT_RETRY)) {
1342 /* Retry at most once */
1343 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1344 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1345 flags |= FAULT_FLAG_TRIED;
1346 if (!fatal_signal_pending(tsk))
1347 goto retry;
1348 }
1349
1350 /* User mode? Just return to handle the fatal exception */
1351 if (flags & FAULT_FLAG_USER)
1352 return;
1353
1354 /* Not returning to user mode? Handle exceptions or die: */
1355 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1356 return;
1357 }
1358
1359 up_read(&mm->mmap_sem);
1360 if (unlikely(fault & VM_FAULT_ERROR)) {
1361 mm_fault_error(regs, error_code, address, vma, fault);
1362 return;
1363 }
1364
1365 /*
1366 * Major/minor page fault accounting. If any of the events
1367 * returned VM_FAULT_MAJOR, we account it as a major fault.
1368 */
1369 if (major) {
1370 tsk->maj_flt++;
1371 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1372 } else {
1373 tsk->min_flt++;
1374 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1375 }
1376
1377 check_v8086_mode(regs, address, tsk);
1378 }
1379 NOKPROBE_SYMBOL(__do_page_fault);
1380
1381 dotraplinkage void notrace
1382 do_page_fault(struct pt_regs *regs, unsigned long error_code)
1383 {
1384 unsigned long address = read_cr2(); /* Get the faulting address */
1385 enum ctx_state prev_state;
1386
1387 /*
1388 * We must have this function tagged with __kprobes, notrace and call
1389 * read_cr2() before calling anything else. To avoid calling any kind
1390 * of tracing machinery before we've observed the CR2 value.
1391 *
1392 * exception_{enter,exit}() contain all sorts of tracepoints.
1393 */
1394
1395 prev_state = exception_enter();
1396 __do_page_fault(regs, error_code, address);
1397 exception_exit(prev_state);
1398 }
1399 NOKPROBE_SYMBOL(do_page_fault);
1400
1401 #ifdef CONFIG_TRACING
1402 static nokprobe_inline void
1403 trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1404 unsigned long error_code)
1405 {
1406 if (user_mode(regs))
1407 trace_page_fault_user(address, regs, error_code);
1408 else
1409 trace_page_fault_kernel(address, regs, error_code);
1410 }
1411
1412 dotraplinkage void notrace
1413 trace_do_page_fault(struct pt_regs *regs, unsigned long error_code)
1414 {
1415 /*
1416 * The exception_enter and tracepoint processing could
1417 * trigger another page faults (user space callchain
1418 * reading) and destroy the original cr2 value, so read
1419 * the faulting address now.
1420 */
1421 unsigned long address = read_cr2();
1422 enum ctx_state prev_state;
1423
1424 prev_state = exception_enter();
1425 trace_page_fault_entries(address, regs, error_code);
1426 __do_page_fault(regs, error_code, address);
1427 exception_exit(prev_state);
1428 }
1429 NOKPROBE_SYMBOL(trace_do_page_fault);
1430 #endif /* CONFIG_TRACING */
This page took 0.061088 seconds and 6 git commands to generate.