x86/vm86: Move the vm86 IRQ definitions to vm86.h
[deliverable/linux.git] / arch / x86 / mm / fault.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
5 */
6 #include <linux/sched.h> /* test_thread_flag(), ... */
7 #include <linux/kdebug.h> /* oops_begin/end, ... */
8 #include <linux/module.h> /* search_exception_table */
9 #include <linux/bootmem.h> /* max_low_pfn */
10 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
11 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
12 #include <linux/perf_event.h> /* perf_sw_event */
13 #include <linux/hugetlb.h> /* hstate_index_to_shift */
14 #include <linux/prefetch.h> /* prefetchw */
15 #include <linux/context_tracking.h> /* exception_enter(), ... */
16 #include <linux/uaccess.h> /* faulthandler_disabled() */
17
18 #include <asm/traps.h> /* dotraplinkage, ... */
19 #include <asm/pgalloc.h> /* pgd_*(), ... */
20 #include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
21 #include <asm/fixmap.h> /* VSYSCALL_ADDR */
22 #include <asm/vsyscall.h> /* emulate_vsyscall */
23
24 #define CREATE_TRACE_POINTS
25 #include <asm/trace/exceptions.h>
26
27 /*
28 * Page fault error code bits:
29 *
30 * bit 0 == 0: no page found 1: protection fault
31 * bit 1 == 0: read access 1: write access
32 * bit 2 == 0: kernel-mode access 1: user-mode access
33 * bit 3 == 1: use of reserved bit detected
34 * bit 4 == 1: fault was an instruction fetch
35 */
36 enum x86_pf_error_code {
37
38 PF_PROT = 1 << 0,
39 PF_WRITE = 1 << 1,
40 PF_USER = 1 << 2,
41 PF_RSVD = 1 << 3,
42 PF_INSTR = 1 << 4,
43 };
44
45 /*
46 * Returns 0 if mmiotrace is disabled, or if the fault is not
47 * handled by mmiotrace:
48 */
49 static nokprobe_inline int
50 kmmio_fault(struct pt_regs *regs, unsigned long addr)
51 {
52 if (unlikely(is_kmmio_active()))
53 if (kmmio_handler(regs, addr) == 1)
54 return -1;
55 return 0;
56 }
57
58 static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
59 {
60 int ret = 0;
61
62 /* kprobe_running() needs smp_processor_id() */
63 if (kprobes_built_in() && !user_mode(regs)) {
64 preempt_disable();
65 if (kprobe_running() && kprobe_fault_handler(regs, 14))
66 ret = 1;
67 preempt_enable();
68 }
69
70 return ret;
71 }
72
73 /*
74 * Prefetch quirks:
75 *
76 * 32-bit mode:
77 *
78 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
79 * Check that here and ignore it.
80 *
81 * 64-bit mode:
82 *
83 * Sometimes the CPU reports invalid exceptions on prefetch.
84 * Check that here and ignore it.
85 *
86 * Opcode checker based on code by Richard Brunner.
87 */
88 static inline int
89 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
90 unsigned char opcode, int *prefetch)
91 {
92 unsigned char instr_hi = opcode & 0xf0;
93 unsigned char instr_lo = opcode & 0x0f;
94
95 switch (instr_hi) {
96 case 0x20:
97 case 0x30:
98 /*
99 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
100 * In X86_64 long mode, the CPU will signal invalid
101 * opcode if some of these prefixes are present so
102 * X86_64 will never get here anyway
103 */
104 return ((instr_lo & 7) == 0x6);
105 #ifdef CONFIG_X86_64
106 case 0x40:
107 /*
108 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
109 * Need to figure out under what instruction mode the
110 * instruction was issued. Could check the LDT for lm,
111 * but for now it's good enough to assume that long
112 * mode only uses well known segments or kernel.
113 */
114 return (!user_mode(regs) || user_64bit_mode(regs));
115 #endif
116 case 0x60:
117 /* 0x64 thru 0x67 are valid prefixes in all modes. */
118 return (instr_lo & 0xC) == 0x4;
119 case 0xF0:
120 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
121 return !instr_lo || (instr_lo>>1) == 1;
122 case 0x00:
123 /* Prefetch instruction is 0x0F0D or 0x0F18 */
124 if (probe_kernel_address(instr, opcode))
125 return 0;
126
127 *prefetch = (instr_lo == 0xF) &&
128 (opcode == 0x0D || opcode == 0x18);
129 return 0;
130 default:
131 return 0;
132 }
133 }
134
135 static int
136 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
137 {
138 unsigned char *max_instr;
139 unsigned char *instr;
140 int prefetch = 0;
141
142 /*
143 * If it was a exec (instruction fetch) fault on NX page, then
144 * do not ignore the fault:
145 */
146 if (error_code & PF_INSTR)
147 return 0;
148
149 instr = (void *)convert_ip_to_linear(current, regs);
150 max_instr = instr + 15;
151
152 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
153 return 0;
154
155 while (instr < max_instr) {
156 unsigned char opcode;
157
158 if (probe_kernel_address(instr, opcode))
159 break;
160
161 instr++;
162
163 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
164 break;
165 }
166 return prefetch;
167 }
168
169 static void
170 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
171 struct task_struct *tsk, int fault)
172 {
173 unsigned lsb = 0;
174 siginfo_t info;
175
176 info.si_signo = si_signo;
177 info.si_errno = 0;
178 info.si_code = si_code;
179 info.si_addr = (void __user *)address;
180 if (fault & VM_FAULT_HWPOISON_LARGE)
181 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
182 if (fault & VM_FAULT_HWPOISON)
183 lsb = PAGE_SHIFT;
184 info.si_addr_lsb = lsb;
185
186 force_sig_info(si_signo, &info, tsk);
187 }
188
189 DEFINE_SPINLOCK(pgd_lock);
190 LIST_HEAD(pgd_list);
191
192 #ifdef CONFIG_X86_32
193 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
194 {
195 unsigned index = pgd_index(address);
196 pgd_t *pgd_k;
197 pud_t *pud, *pud_k;
198 pmd_t *pmd, *pmd_k;
199
200 pgd += index;
201 pgd_k = init_mm.pgd + index;
202
203 if (!pgd_present(*pgd_k))
204 return NULL;
205
206 /*
207 * set_pgd(pgd, *pgd_k); here would be useless on PAE
208 * and redundant with the set_pmd() on non-PAE. As would
209 * set_pud.
210 */
211 pud = pud_offset(pgd, address);
212 pud_k = pud_offset(pgd_k, address);
213 if (!pud_present(*pud_k))
214 return NULL;
215
216 pmd = pmd_offset(pud, address);
217 pmd_k = pmd_offset(pud_k, address);
218 if (!pmd_present(*pmd_k))
219 return NULL;
220
221 if (!pmd_present(*pmd))
222 set_pmd(pmd, *pmd_k);
223 else
224 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
225
226 return pmd_k;
227 }
228
229 void vmalloc_sync_all(void)
230 {
231 unsigned long address;
232
233 if (SHARED_KERNEL_PMD)
234 return;
235
236 for (address = VMALLOC_START & PMD_MASK;
237 address >= TASK_SIZE && address < FIXADDR_TOP;
238 address += PMD_SIZE) {
239 struct page *page;
240
241 spin_lock(&pgd_lock);
242 list_for_each_entry(page, &pgd_list, lru) {
243 spinlock_t *pgt_lock;
244 pmd_t *ret;
245
246 /* the pgt_lock only for Xen */
247 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
248
249 spin_lock(pgt_lock);
250 ret = vmalloc_sync_one(page_address(page), address);
251 spin_unlock(pgt_lock);
252
253 if (!ret)
254 break;
255 }
256 spin_unlock(&pgd_lock);
257 }
258 }
259
260 /*
261 * 32-bit:
262 *
263 * Handle a fault on the vmalloc or module mapping area
264 */
265 static noinline int vmalloc_fault(unsigned long address)
266 {
267 unsigned long pgd_paddr;
268 pmd_t *pmd_k;
269 pte_t *pte_k;
270
271 /* Make sure we are in vmalloc area: */
272 if (!(address >= VMALLOC_START && address < VMALLOC_END))
273 return -1;
274
275 WARN_ON_ONCE(in_nmi());
276
277 /*
278 * Synchronize this task's top level page-table
279 * with the 'reference' page table.
280 *
281 * Do _not_ use "current" here. We might be inside
282 * an interrupt in the middle of a task switch..
283 */
284 pgd_paddr = read_cr3();
285 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
286 if (!pmd_k)
287 return -1;
288
289 pte_k = pte_offset_kernel(pmd_k, address);
290 if (!pte_present(*pte_k))
291 return -1;
292
293 return 0;
294 }
295 NOKPROBE_SYMBOL(vmalloc_fault);
296
297 /*
298 * Did it hit the DOS screen memory VA from vm86 mode?
299 */
300 static inline void
301 check_v8086_mode(struct pt_regs *regs, unsigned long address,
302 struct task_struct *tsk)
303 {
304 #ifdef CONFIG_VM86
305 unsigned long bit;
306
307 if (!v8086_mode(regs) || !tsk->thread.vm86)
308 return;
309
310 bit = (address - 0xA0000) >> PAGE_SHIFT;
311 if (bit < 32)
312 tsk->thread.vm86->screen_bitmap |= 1 << bit;
313 #endif
314 }
315
316 static bool low_pfn(unsigned long pfn)
317 {
318 return pfn < max_low_pfn;
319 }
320
321 static void dump_pagetable(unsigned long address)
322 {
323 pgd_t *base = __va(read_cr3());
324 pgd_t *pgd = &base[pgd_index(address)];
325 pmd_t *pmd;
326 pte_t *pte;
327
328 #ifdef CONFIG_X86_PAE
329 printk("*pdpt = %016Lx ", pgd_val(*pgd));
330 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
331 goto out;
332 #endif
333 pmd = pmd_offset(pud_offset(pgd, address), address);
334 printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
335
336 /*
337 * We must not directly access the pte in the highpte
338 * case if the page table is located in highmem.
339 * And let's rather not kmap-atomic the pte, just in case
340 * it's allocated already:
341 */
342 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
343 goto out;
344
345 pte = pte_offset_kernel(pmd, address);
346 printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
347 out:
348 printk("\n");
349 }
350
351 #else /* CONFIG_X86_64: */
352
353 void vmalloc_sync_all(void)
354 {
355 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END, 0);
356 }
357
358 /*
359 * 64-bit:
360 *
361 * Handle a fault on the vmalloc area
362 *
363 * This assumes no large pages in there.
364 */
365 static noinline int vmalloc_fault(unsigned long address)
366 {
367 pgd_t *pgd, *pgd_ref;
368 pud_t *pud, *pud_ref;
369 pmd_t *pmd, *pmd_ref;
370 pte_t *pte, *pte_ref;
371
372 /* Make sure we are in vmalloc area: */
373 if (!(address >= VMALLOC_START && address < VMALLOC_END))
374 return -1;
375
376 WARN_ON_ONCE(in_nmi());
377
378 /*
379 * Copy kernel mappings over when needed. This can also
380 * happen within a race in page table update. In the later
381 * case just flush:
382 */
383 pgd = pgd_offset(current->active_mm, address);
384 pgd_ref = pgd_offset_k(address);
385 if (pgd_none(*pgd_ref))
386 return -1;
387
388 if (pgd_none(*pgd)) {
389 set_pgd(pgd, *pgd_ref);
390 arch_flush_lazy_mmu_mode();
391 } else {
392 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
393 }
394
395 /*
396 * Below here mismatches are bugs because these lower tables
397 * are shared:
398 */
399
400 pud = pud_offset(pgd, address);
401 pud_ref = pud_offset(pgd_ref, address);
402 if (pud_none(*pud_ref))
403 return -1;
404
405 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
406 BUG();
407
408 pmd = pmd_offset(pud, address);
409 pmd_ref = pmd_offset(pud_ref, address);
410 if (pmd_none(*pmd_ref))
411 return -1;
412
413 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
414 BUG();
415
416 pte_ref = pte_offset_kernel(pmd_ref, address);
417 if (!pte_present(*pte_ref))
418 return -1;
419
420 pte = pte_offset_kernel(pmd, address);
421
422 /*
423 * Don't use pte_page here, because the mappings can point
424 * outside mem_map, and the NUMA hash lookup cannot handle
425 * that:
426 */
427 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
428 BUG();
429
430 return 0;
431 }
432 NOKPROBE_SYMBOL(vmalloc_fault);
433
434 #ifdef CONFIG_CPU_SUP_AMD
435 static const char errata93_warning[] =
436 KERN_ERR
437 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
438 "******* Working around it, but it may cause SEGVs or burn power.\n"
439 "******* Please consider a BIOS update.\n"
440 "******* Disabling USB legacy in the BIOS may also help.\n";
441 #endif
442
443 /*
444 * No vm86 mode in 64-bit mode:
445 */
446 static inline void
447 check_v8086_mode(struct pt_regs *regs, unsigned long address,
448 struct task_struct *tsk)
449 {
450 }
451
452 static int bad_address(void *p)
453 {
454 unsigned long dummy;
455
456 return probe_kernel_address((unsigned long *)p, dummy);
457 }
458
459 static void dump_pagetable(unsigned long address)
460 {
461 pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
462 pgd_t *pgd = base + pgd_index(address);
463 pud_t *pud;
464 pmd_t *pmd;
465 pte_t *pte;
466
467 if (bad_address(pgd))
468 goto bad;
469
470 printk("PGD %lx ", pgd_val(*pgd));
471
472 if (!pgd_present(*pgd))
473 goto out;
474
475 pud = pud_offset(pgd, address);
476 if (bad_address(pud))
477 goto bad;
478
479 printk("PUD %lx ", pud_val(*pud));
480 if (!pud_present(*pud) || pud_large(*pud))
481 goto out;
482
483 pmd = pmd_offset(pud, address);
484 if (bad_address(pmd))
485 goto bad;
486
487 printk("PMD %lx ", pmd_val(*pmd));
488 if (!pmd_present(*pmd) || pmd_large(*pmd))
489 goto out;
490
491 pte = pte_offset_kernel(pmd, address);
492 if (bad_address(pte))
493 goto bad;
494
495 printk("PTE %lx", pte_val(*pte));
496 out:
497 printk("\n");
498 return;
499 bad:
500 printk("BAD\n");
501 }
502
503 #endif /* CONFIG_X86_64 */
504
505 /*
506 * Workaround for K8 erratum #93 & buggy BIOS.
507 *
508 * BIOS SMM functions are required to use a specific workaround
509 * to avoid corruption of the 64bit RIP register on C stepping K8.
510 *
511 * A lot of BIOS that didn't get tested properly miss this.
512 *
513 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
514 * Try to work around it here.
515 *
516 * Note we only handle faults in kernel here.
517 * Does nothing on 32-bit.
518 */
519 static int is_errata93(struct pt_regs *regs, unsigned long address)
520 {
521 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
522 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
523 || boot_cpu_data.x86 != 0xf)
524 return 0;
525
526 if (address != regs->ip)
527 return 0;
528
529 if ((address >> 32) != 0)
530 return 0;
531
532 address |= 0xffffffffUL << 32;
533 if ((address >= (u64)_stext && address <= (u64)_etext) ||
534 (address >= MODULES_VADDR && address <= MODULES_END)) {
535 printk_once(errata93_warning);
536 regs->ip = address;
537 return 1;
538 }
539 #endif
540 return 0;
541 }
542
543 /*
544 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
545 * to illegal addresses >4GB.
546 *
547 * We catch this in the page fault handler because these addresses
548 * are not reachable. Just detect this case and return. Any code
549 * segment in LDT is compatibility mode.
550 */
551 static int is_errata100(struct pt_regs *regs, unsigned long address)
552 {
553 #ifdef CONFIG_X86_64
554 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
555 return 1;
556 #endif
557 return 0;
558 }
559
560 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
561 {
562 #ifdef CONFIG_X86_F00F_BUG
563 unsigned long nr;
564
565 /*
566 * Pentium F0 0F C7 C8 bug workaround:
567 */
568 if (boot_cpu_has_bug(X86_BUG_F00F)) {
569 nr = (address - idt_descr.address) >> 3;
570
571 if (nr == 6) {
572 do_invalid_op(regs, 0);
573 return 1;
574 }
575 }
576 #endif
577 return 0;
578 }
579
580 static const char nx_warning[] = KERN_CRIT
581 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
582 static const char smep_warning[] = KERN_CRIT
583 "unable to execute userspace code (SMEP?) (uid: %d)\n";
584
585 static void
586 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
587 unsigned long address)
588 {
589 if (!oops_may_print())
590 return;
591
592 if (error_code & PF_INSTR) {
593 unsigned int level;
594 pgd_t *pgd;
595 pte_t *pte;
596
597 pgd = __va(read_cr3() & PHYSICAL_PAGE_MASK);
598 pgd += pgd_index(address);
599
600 pte = lookup_address_in_pgd(pgd, address, &level);
601
602 if (pte && pte_present(*pte) && !pte_exec(*pte))
603 printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
604 if (pte && pte_present(*pte) && pte_exec(*pte) &&
605 (pgd_flags(*pgd) & _PAGE_USER) &&
606 (__read_cr4() & X86_CR4_SMEP))
607 printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
608 }
609
610 printk(KERN_ALERT "BUG: unable to handle kernel ");
611 if (address < PAGE_SIZE)
612 printk(KERN_CONT "NULL pointer dereference");
613 else
614 printk(KERN_CONT "paging request");
615
616 printk(KERN_CONT " at %p\n", (void *) address);
617 printk(KERN_ALERT "IP:");
618 printk_address(regs->ip);
619
620 dump_pagetable(address);
621 }
622
623 static noinline void
624 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
625 unsigned long address)
626 {
627 struct task_struct *tsk;
628 unsigned long flags;
629 int sig;
630
631 flags = oops_begin();
632 tsk = current;
633 sig = SIGKILL;
634
635 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
636 tsk->comm, address);
637 dump_pagetable(address);
638
639 tsk->thread.cr2 = address;
640 tsk->thread.trap_nr = X86_TRAP_PF;
641 tsk->thread.error_code = error_code;
642
643 if (__die("Bad pagetable", regs, error_code))
644 sig = 0;
645
646 oops_end(flags, regs, sig);
647 }
648
649 static noinline void
650 no_context(struct pt_regs *regs, unsigned long error_code,
651 unsigned long address, int signal, int si_code)
652 {
653 struct task_struct *tsk = current;
654 unsigned long flags;
655 int sig;
656
657 /* Are we prepared to handle this kernel fault? */
658 if (fixup_exception(regs)) {
659 /*
660 * Any interrupt that takes a fault gets the fixup. This makes
661 * the below recursive fault logic only apply to a faults from
662 * task context.
663 */
664 if (in_interrupt())
665 return;
666
667 /*
668 * Per the above we're !in_interrupt(), aka. task context.
669 *
670 * In this case we need to make sure we're not recursively
671 * faulting through the emulate_vsyscall() logic.
672 */
673 if (current_thread_info()->sig_on_uaccess_error && signal) {
674 tsk->thread.trap_nr = X86_TRAP_PF;
675 tsk->thread.error_code = error_code | PF_USER;
676 tsk->thread.cr2 = address;
677
678 /* XXX: hwpoison faults will set the wrong code. */
679 force_sig_info_fault(signal, si_code, address, tsk, 0);
680 }
681
682 /*
683 * Barring that, we can do the fixup and be happy.
684 */
685 return;
686 }
687
688 /*
689 * 32-bit:
690 *
691 * Valid to do another page fault here, because if this fault
692 * had been triggered by is_prefetch fixup_exception would have
693 * handled it.
694 *
695 * 64-bit:
696 *
697 * Hall of shame of CPU/BIOS bugs.
698 */
699 if (is_prefetch(regs, error_code, address))
700 return;
701
702 if (is_errata93(regs, address))
703 return;
704
705 /*
706 * Oops. The kernel tried to access some bad page. We'll have to
707 * terminate things with extreme prejudice:
708 */
709 flags = oops_begin();
710
711 show_fault_oops(regs, error_code, address);
712
713 if (task_stack_end_corrupted(tsk))
714 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
715
716 tsk->thread.cr2 = address;
717 tsk->thread.trap_nr = X86_TRAP_PF;
718 tsk->thread.error_code = error_code;
719
720 sig = SIGKILL;
721 if (__die("Oops", regs, error_code))
722 sig = 0;
723
724 /* Executive summary in case the body of the oops scrolled away */
725 printk(KERN_DEFAULT "CR2: %016lx\n", address);
726
727 oops_end(flags, regs, sig);
728 }
729
730 /*
731 * Print out info about fatal segfaults, if the show_unhandled_signals
732 * sysctl is set:
733 */
734 static inline void
735 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
736 unsigned long address, struct task_struct *tsk)
737 {
738 if (!unhandled_signal(tsk, SIGSEGV))
739 return;
740
741 if (!printk_ratelimit())
742 return;
743
744 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
745 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
746 tsk->comm, task_pid_nr(tsk), address,
747 (void *)regs->ip, (void *)regs->sp, error_code);
748
749 print_vma_addr(KERN_CONT " in ", regs->ip);
750
751 printk(KERN_CONT "\n");
752 }
753
754 static void
755 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
756 unsigned long address, int si_code)
757 {
758 struct task_struct *tsk = current;
759
760 /* User mode accesses just cause a SIGSEGV */
761 if (error_code & PF_USER) {
762 /*
763 * It's possible to have interrupts off here:
764 */
765 local_irq_enable();
766
767 /*
768 * Valid to do another page fault here because this one came
769 * from user space:
770 */
771 if (is_prefetch(regs, error_code, address))
772 return;
773
774 if (is_errata100(regs, address))
775 return;
776
777 #ifdef CONFIG_X86_64
778 /*
779 * Instruction fetch faults in the vsyscall page might need
780 * emulation.
781 */
782 if (unlikely((error_code & PF_INSTR) &&
783 ((address & ~0xfff) == VSYSCALL_ADDR))) {
784 if (emulate_vsyscall(regs, address))
785 return;
786 }
787 #endif
788 /* Kernel addresses are always protection faults: */
789 if (address >= TASK_SIZE)
790 error_code |= PF_PROT;
791
792 if (likely(show_unhandled_signals))
793 show_signal_msg(regs, error_code, address, tsk);
794
795 tsk->thread.cr2 = address;
796 tsk->thread.error_code = error_code;
797 tsk->thread.trap_nr = X86_TRAP_PF;
798
799 force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0);
800
801 return;
802 }
803
804 if (is_f00f_bug(regs, address))
805 return;
806
807 no_context(regs, error_code, address, SIGSEGV, si_code);
808 }
809
810 static noinline void
811 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
812 unsigned long address)
813 {
814 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
815 }
816
817 static void
818 __bad_area(struct pt_regs *regs, unsigned long error_code,
819 unsigned long address, int si_code)
820 {
821 struct mm_struct *mm = current->mm;
822
823 /*
824 * Something tried to access memory that isn't in our memory map..
825 * Fix it, but check if it's kernel or user first..
826 */
827 up_read(&mm->mmap_sem);
828
829 __bad_area_nosemaphore(regs, error_code, address, si_code);
830 }
831
832 static noinline void
833 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
834 {
835 __bad_area(regs, error_code, address, SEGV_MAPERR);
836 }
837
838 static noinline void
839 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
840 unsigned long address)
841 {
842 __bad_area(regs, error_code, address, SEGV_ACCERR);
843 }
844
845 static void
846 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
847 unsigned int fault)
848 {
849 struct task_struct *tsk = current;
850 int code = BUS_ADRERR;
851
852 /* Kernel mode? Handle exceptions or die: */
853 if (!(error_code & PF_USER)) {
854 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
855 return;
856 }
857
858 /* User-space => ok to do another page fault: */
859 if (is_prefetch(regs, error_code, address))
860 return;
861
862 tsk->thread.cr2 = address;
863 tsk->thread.error_code = error_code;
864 tsk->thread.trap_nr = X86_TRAP_PF;
865
866 #ifdef CONFIG_MEMORY_FAILURE
867 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
868 printk(KERN_ERR
869 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
870 tsk->comm, tsk->pid, address);
871 code = BUS_MCEERR_AR;
872 }
873 #endif
874 force_sig_info_fault(SIGBUS, code, address, tsk, fault);
875 }
876
877 static noinline void
878 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
879 unsigned long address, unsigned int fault)
880 {
881 if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
882 no_context(regs, error_code, address, 0, 0);
883 return;
884 }
885
886 if (fault & VM_FAULT_OOM) {
887 /* Kernel mode? Handle exceptions or die: */
888 if (!(error_code & PF_USER)) {
889 no_context(regs, error_code, address,
890 SIGSEGV, SEGV_MAPERR);
891 return;
892 }
893
894 /*
895 * We ran out of memory, call the OOM killer, and return the
896 * userspace (which will retry the fault, or kill us if we got
897 * oom-killed):
898 */
899 pagefault_out_of_memory();
900 } else {
901 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
902 VM_FAULT_HWPOISON_LARGE))
903 do_sigbus(regs, error_code, address, fault);
904 else if (fault & VM_FAULT_SIGSEGV)
905 bad_area_nosemaphore(regs, error_code, address);
906 else
907 BUG();
908 }
909 }
910
911 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
912 {
913 if ((error_code & PF_WRITE) && !pte_write(*pte))
914 return 0;
915
916 if ((error_code & PF_INSTR) && !pte_exec(*pte))
917 return 0;
918
919 return 1;
920 }
921
922 /*
923 * Handle a spurious fault caused by a stale TLB entry.
924 *
925 * This allows us to lazily refresh the TLB when increasing the
926 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
927 * eagerly is very expensive since that implies doing a full
928 * cross-processor TLB flush, even if no stale TLB entries exist
929 * on other processors.
930 *
931 * Spurious faults may only occur if the TLB contains an entry with
932 * fewer permission than the page table entry. Non-present (P = 0)
933 * and reserved bit (R = 1) faults are never spurious.
934 *
935 * There are no security implications to leaving a stale TLB when
936 * increasing the permissions on a page.
937 *
938 * Returns non-zero if a spurious fault was handled, zero otherwise.
939 *
940 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
941 * (Optional Invalidation).
942 */
943 static noinline int
944 spurious_fault(unsigned long error_code, unsigned long address)
945 {
946 pgd_t *pgd;
947 pud_t *pud;
948 pmd_t *pmd;
949 pte_t *pte;
950 int ret;
951
952 /*
953 * Only writes to RO or instruction fetches from NX may cause
954 * spurious faults.
955 *
956 * These could be from user or supervisor accesses but the TLB
957 * is only lazily flushed after a kernel mapping protection
958 * change, so user accesses are not expected to cause spurious
959 * faults.
960 */
961 if (error_code != (PF_WRITE | PF_PROT)
962 && error_code != (PF_INSTR | PF_PROT))
963 return 0;
964
965 pgd = init_mm.pgd + pgd_index(address);
966 if (!pgd_present(*pgd))
967 return 0;
968
969 pud = pud_offset(pgd, address);
970 if (!pud_present(*pud))
971 return 0;
972
973 if (pud_large(*pud))
974 return spurious_fault_check(error_code, (pte_t *) pud);
975
976 pmd = pmd_offset(pud, address);
977 if (!pmd_present(*pmd))
978 return 0;
979
980 if (pmd_large(*pmd))
981 return spurious_fault_check(error_code, (pte_t *) pmd);
982
983 pte = pte_offset_kernel(pmd, address);
984 if (!pte_present(*pte))
985 return 0;
986
987 ret = spurious_fault_check(error_code, pte);
988 if (!ret)
989 return 0;
990
991 /*
992 * Make sure we have permissions in PMD.
993 * If not, then there's a bug in the page tables:
994 */
995 ret = spurious_fault_check(error_code, (pte_t *) pmd);
996 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
997
998 return ret;
999 }
1000 NOKPROBE_SYMBOL(spurious_fault);
1001
1002 int show_unhandled_signals = 1;
1003
1004 static inline int
1005 access_error(unsigned long error_code, struct vm_area_struct *vma)
1006 {
1007 if (error_code & PF_WRITE) {
1008 /* write, present and write, not present: */
1009 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1010 return 1;
1011 return 0;
1012 }
1013
1014 /* read, present: */
1015 if (unlikely(error_code & PF_PROT))
1016 return 1;
1017
1018 /* read, not present: */
1019 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1020 return 1;
1021
1022 return 0;
1023 }
1024
1025 static int fault_in_kernel_space(unsigned long address)
1026 {
1027 return address >= TASK_SIZE_MAX;
1028 }
1029
1030 static inline bool smap_violation(int error_code, struct pt_regs *regs)
1031 {
1032 if (!IS_ENABLED(CONFIG_X86_SMAP))
1033 return false;
1034
1035 if (!static_cpu_has(X86_FEATURE_SMAP))
1036 return false;
1037
1038 if (error_code & PF_USER)
1039 return false;
1040
1041 if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
1042 return false;
1043
1044 return true;
1045 }
1046
1047 /*
1048 * This routine handles page faults. It determines the address,
1049 * and the problem, and then passes it off to one of the appropriate
1050 * routines.
1051 *
1052 * This function must have noinline because both callers
1053 * {,trace_}do_page_fault() have notrace on. Having this an actual function
1054 * guarantees there's a function trace entry.
1055 */
1056 static noinline void
1057 __do_page_fault(struct pt_regs *regs, unsigned long error_code,
1058 unsigned long address)
1059 {
1060 struct vm_area_struct *vma;
1061 struct task_struct *tsk;
1062 struct mm_struct *mm;
1063 int fault, major = 0;
1064 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1065
1066 tsk = current;
1067 mm = tsk->mm;
1068
1069 /*
1070 * Detect and handle instructions that would cause a page fault for
1071 * both a tracked kernel page and a userspace page.
1072 */
1073 if (kmemcheck_active(regs))
1074 kmemcheck_hide(regs);
1075 prefetchw(&mm->mmap_sem);
1076
1077 if (unlikely(kmmio_fault(regs, address)))
1078 return;
1079
1080 /*
1081 * We fault-in kernel-space virtual memory on-demand. The
1082 * 'reference' page table is init_mm.pgd.
1083 *
1084 * NOTE! We MUST NOT take any locks for this case. We may
1085 * be in an interrupt or a critical region, and should
1086 * only copy the information from the master page table,
1087 * nothing more.
1088 *
1089 * This verifies that the fault happens in kernel space
1090 * (error_code & 4) == 0, and that the fault was not a
1091 * protection error (error_code & 9) == 0.
1092 */
1093 if (unlikely(fault_in_kernel_space(address))) {
1094 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1095 if (vmalloc_fault(address) >= 0)
1096 return;
1097
1098 if (kmemcheck_fault(regs, address, error_code))
1099 return;
1100 }
1101
1102 /* Can handle a stale RO->RW TLB: */
1103 if (spurious_fault(error_code, address))
1104 return;
1105
1106 /* kprobes don't want to hook the spurious faults: */
1107 if (kprobes_fault(regs))
1108 return;
1109 /*
1110 * Don't take the mm semaphore here. If we fixup a prefetch
1111 * fault we could otherwise deadlock:
1112 */
1113 bad_area_nosemaphore(regs, error_code, address);
1114
1115 return;
1116 }
1117
1118 /* kprobes don't want to hook the spurious faults: */
1119 if (unlikely(kprobes_fault(regs)))
1120 return;
1121
1122 if (unlikely(error_code & PF_RSVD))
1123 pgtable_bad(regs, error_code, address);
1124
1125 if (unlikely(smap_violation(error_code, regs))) {
1126 bad_area_nosemaphore(regs, error_code, address);
1127 return;
1128 }
1129
1130 /*
1131 * If we're in an interrupt, have no user context or are running
1132 * in a region with pagefaults disabled then we must not take the fault
1133 */
1134 if (unlikely(faulthandler_disabled() || !mm)) {
1135 bad_area_nosemaphore(regs, error_code, address);
1136 return;
1137 }
1138
1139 /*
1140 * It's safe to allow irq's after cr2 has been saved and the
1141 * vmalloc fault has been handled.
1142 *
1143 * User-mode registers count as a user access even for any
1144 * potential system fault or CPU buglet:
1145 */
1146 if (user_mode(regs)) {
1147 local_irq_enable();
1148 error_code |= PF_USER;
1149 flags |= FAULT_FLAG_USER;
1150 } else {
1151 if (regs->flags & X86_EFLAGS_IF)
1152 local_irq_enable();
1153 }
1154
1155 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1156
1157 if (error_code & PF_WRITE)
1158 flags |= FAULT_FLAG_WRITE;
1159
1160 /*
1161 * When running in the kernel we expect faults to occur only to
1162 * addresses in user space. All other faults represent errors in
1163 * the kernel and should generate an OOPS. Unfortunately, in the
1164 * case of an erroneous fault occurring in a code path which already
1165 * holds mmap_sem we will deadlock attempting to validate the fault
1166 * against the address space. Luckily the kernel only validly
1167 * references user space from well defined areas of code, which are
1168 * listed in the exceptions table.
1169 *
1170 * As the vast majority of faults will be valid we will only perform
1171 * the source reference check when there is a possibility of a
1172 * deadlock. Attempt to lock the address space, if we cannot we then
1173 * validate the source. If this is invalid we can skip the address
1174 * space check, thus avoiding the deadlock:
1175 */
1176 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1177 if ((error_code & PF_USER) == 0 &&
1178 !search_exception_tables(regs->ip)) {
1179 bad_area_nosemaphore(regs, error_code, address);
1180 return;
1181 }
1182 retry:
1183 down_read(&mm->mmap_sem);
1184 } else {
1185 /*
1186 * The above down_read_trylock() might have succeeded in
1187 * which case we'll have missed the might_sleep() from
1188 * down_read():
1189 */
1190 might_sleep();
1191 }
1192
1193 vma = find_vma(mm, address);
1194 if (unlikely(!vma)) {
1195 bad_area(regs, error_code, address);
1196 return;
1197 }
1198 if (likely(vma->vm_start <= address))
1199 goto good_area;
1200 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1201 bad_area(regs, error_code, address);
1202 return;
1203 }
1204 if (error_code & PF_USER) {
1205 /*
1206 * Accessing the stack below %sp is always a bug.
1207 * The large cushion allows instructions like enter
1208 * and pusha to work. ("enter $65535, $31" pushes
1209 * 32 pointers and then decrements %sp by 65535.)
1210 */
1211 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1212 bad_area(regs, error_code, address);
1213 return;
1214 }
1215 }
1216 if (unlikely(expand_stack(vma, address))) {
1217 bad_area(regs, error_code, address);
1218 return;
1219 }
1220
1221 /*
1222 * Ok, we have a good vm_area for this memory access, so
1223 * we can handle it..
1224 */
1225 good_area:
1226 if (unlikely(access_error(error_code, vma))) {
1227 bad_area_access_error(regs, error_code, address);
1228 return;
1229 }
1230
1231 /*
1232 * If for any reason at all we couldn't handle the fault,
1233 * make sure we exit gracefully rather than endlessly redo
1234 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1235 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1236 */
1237 fault = handle_mm_fault(mm, vma, address, flags);
1238 major |= fault & VM_FAULT_MAJOR;
1239
1240 /*
1241 * If we need to retry the mmap_sem has already been released,
1242 * and if there is a fatal signal pending there is no guarantee
1243 * that we made any progress. Handle this case first.
1244 */
1245 if (unlikely(fault & VM_FAULT_RETRY)) {
1246 /* Retry at most once */
1247 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1248 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1249 flags |= FAULT_FLAG_TRIED;
1250 if (!fatal_signal_pending(tsk))
1251 goto retry;
1252 }
1253
1254 /* User mode? Just return to handle the fatal exception */
1255 if (flags & FAULT_FLAG_USER)
1256 return;
1257
1258 /* Not returning to user mode? Handle exceptions or die: */
1259 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1260 return;
1261 }
1262
1263 up_read(&mm->mmap_sem);
1264 if (unlikely(fault & VM_FAULT_ERROR)) {
1265 mm_fault_error(regs, error_code, address, fault);
1266 return;
1267 }
1268
1269 /*
1270 * Major/minor page fault accounting. If any of the events
1271 * returned VM_FAULT_MAJOR, we account it as a major fault.
1272 */
1273 if (major) {
1274 tsk->maj_flt++;
1275 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1276 } else {
1277 tsk->min_flt++;
1278 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1279 }
1280
1281 check_v8086_mode(regs, address, tsk);
1282 }
1283 NOKPROBE_SYMBOL(__do_page_fault);
1284
1285 dotraplinkage void notrace
1286 do_page_fault(struct pt_regs *regs, unsigned long error_code)
1287 {
1288 unsigned long address = read_cr2(); /* Get the faulting address */
1289 enum ctx_state prev_state;
1290
1291 /*
1292 * We must have this function tagged with __kprobes, notrace and call
1293 * read_cr2() before calling anything else. To avoid calling any kind
1294 * of tracing machinery before we've observed the CR2 value.
1295 *
1296 * exception_{enter,exit}() contain all sorts of tracepoints.
1297 */
1298
1299 prev_state = exception_enter();
1300 __do_page_fault(regs, error_code, address);
1301 exception_exit(prev_state);
1302 }
1303 NOKPROBE_SYMBOL(do_page_fault);
1304
1305 #ifdef CONFIG_TRACING
1306 static nokprobe_inline void
1307 trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1308 unsigned long error_code)
1309 {
1310 if (user_mode(regs))
1311 trace_page_fault_user(address, regs, error_code);
1312 else
1313 trace_page_fault_kernel(address, regs, error_code);
1314 }
1315
1316 dotraplinkage void notrace
1317 trace_do_page_fault(struct pt_regs *regs, unsigned long error_code)
1318 {
1319 /*
1320 * The exception_enter and tracepoint processing could
1321 * trigger another page faults (user space callchain
1322 * reading) and destroy the original cr2 value, so read
1323 * the faulting address now.
1324 */
1325 unsigned long address = read_cr2();
1326 enum ctx_state prev_state;
1327
1328 prev_state = exception_enter();
1329 trace_page_fault_entries(address, regs, error_code);
1330 __do_page_fault(regs, error_code, address);
1331 exception_exit(prev_state);
1332 }
1333 NOKPROBE_SYMBOL(trace_do_page_fault);
1334 #endif /* CONFIG_TRACING */
This page took 0.059205 seconds and 6 git commands to generate.