Merge tag 'ras_for_3.8' into x86/urgent
[deliverable/linux.git] / arch / x86 / mm / fault.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
5 */
6 #include <linux/magic.h> /* STACK_END_MAGIC */
7 #include <linux/sched.h> /* test_thread_flag(), ... */
8 #include <linux/kdebug.h> /* oops_begin/end, ... */
9 #include <linux/module.h> /* search_exception_table */
10 #include <linux/bootmem.h> /* max_low_pfn */
11 #include <linux/kprobes.h> /* __kprobes, ... */
12 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
13 #include <linux/perf_event.h> /* perf_sw_event */
14 #include <linux/hugetlb.h> /* hstate_index_to_shift */
15 #include <linux/prefetch.h> /* prefetchw */
16
17 #include <asm/traps.h> /* dotraplinkage, ... */
18 #include <asm/pgalloc.h> /* pgd_*(), ... */
19 #include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
20 #include <asm/fixmap.h> /* VSYSCALL_START */
21 #include <asm/context_tracking.h> /* exception_enter(), ... */
22
23 /*
24 * Page fault error code bits:
25 *
26 * bit 0 == 0: no page found 1: protection fault
27 * bit 1 == 0: read access 1: write access
28 * bit 2 == 0: kernel-mode access 1: user-mode access
29 * bit 3 == 1: use of reserved bit detected
30 * bit 4 == 1: fault was an instruction fetch
31 */
32 enum x86_pf_error_code {
33
34 PF_PROT = 1 << 0,
35 PF_WRITE = 1 << 1,
36 PF_USER = 1 << 2,
37 PF_RSVD = 1 << 3,
38 PF_INSTR = 1 << 4,
39 };
40
41 /*
42 * Returns 0 if mmiotrace is disabled, or if the fault is not
43 * handled by mmiotrace:
44 */
45 static inline int __kprobes
46 kmmio_fault(struct pt_regs *regs, unsigned long addr)
47 {
48 if (unlikely(is_kmmio_active()))
49 if (kmmio_handler(regs, addr) == 1)
50 return -1;
51 return 0;
52 }
53
54 static inline int __kprobes notify_page_fault(struct pt_regs *regs)
55 {
56 int ret = 0;
57
58 /* kprobe_running() needs smp_processor_id() */
59 if (kprobes_built_in() && !user_mode_vm(regs)) {
60 preempt_disable();
61 if (kprobe_running() && kprobe_fault_handler(regs, 14))
62 ret = 1;
63 preempt_enable();
64 }
65
66 return ret;
67 }
68
69 /*
70 * Prefetch quirks:
71 *
72 * 32-bit mode:
73 *
74 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
75 * Check that here and ignore it.
76 *
77 * 64-bit mode:
78 *
79 * Sometimes the CPU reports invalid exceptions on prefetch.
80 * Check that here and ignore it.
81 *
82 * Opcode checker based on code by Richard Brunner.
83 */
84 static inline int
85 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
86 unsigned char opcode, int *prefetch)
87 {
88 unsigned char instr_hi = opcode & 0xf0;
89 unsigned char instr_lo = opcode & 0x0f;
90
91 switch (instr_hi) {
92 case 0x20:
93 case 0x30:
94 /*
95 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
96 * In X86_64 long mode, the CPU will signal invalid
97 * opcode if some of these prefixes are present so
98 * X86_64 will never get here anyway
99 */
100 return ((instr_lo & 7) == 0x6);
101 #ifdef CONFIG_X86_64
102 case 0x40:
103 /*
104 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
105 * Need to figure out under what instruction mode the
106 * instruction was issued. Could check the LDT for lm,
107 * but for now it's good enough to assume that long
108 * mode only uses well known segments or kernel.
109 */
110 return (!user_mode(regs) || user_64bit_mode(regs));
111 #endif
112 case 0x60:
113 /* 0x64 thru 0x67 are valid prefixes in all modes. */
114 return (instr_lo & 0xC) == 0x4;
115 case 0xF0:
116 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
117 return !instr_lo || (instr_lo>>1) == 1;
118 case 0x00:
119 /* Prefetch instruction is 0x0F0D or 0x0F18 */
120 if (probe_kernel_address(instr, opcode))
121 return 0;
122
123 *prefetch = (instr_lo == 0xF) &&
124 (opcode == 0x0D || opcode == 0x18);
125 return 0;
126 default:
127 return 0;
128 }
129 }
130
131 static int
132 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
133 {
134 unsigned char *max_instr;
135 unsigned char *instr;
136 int prefetch = 0;
137
138 /*
139 * If it was a exec (instruction fetch) fault on NX page, then
140 * do not ignore the fault:
141 */
142 if (error_code & PF_INSTR)
143 return 0;
144
145 instr = (void *)convert_ip_to_linear(current, regs);
146 max_instr = instr + 15;
147
148 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
149 return 0;
150
151 while (instr < max_instr) {
152 unsigned char opcode;
153
154 if (probe_kernel_address(instr, opcode))
155 break;
156
157 instr++;
158
159 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
160 break;
161 }
162 return prefetch;
163 }
164
165 static void
166 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
167 struct task_struct *tsk, int fault)
168 {
169 unsigned lsb = 0;
170 siginfo_t info;
171
172 info.si_signo = si_signo;
173 info.si_errno = 0;
174 info.si_code = si_code;
175 info.si_addr = (void __user *)address;
176 if (fault & VM_FAULT_HWPOISON_LARGE)
177 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
178 if (fault & VM_FAULT_HWPOISON)
179 lsb = PAGE_SHIFT;
180 info.si_addr_lsb = lsb;
181
182 force_sig_info(si_signo, &info, tsk);
183 }
184
185 DEFINE_SPINLOCK(pgd_lock);
186 LIST_HEAD(pgd_list);
187
188 #ifdef CONFIG_X86_32
189 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
190 {
191 unsigned index = pgd_index(address);
192 pgd_t *pgd_k;
193 pud_t *pud, *pud_k;
194 pmd_t *pmd, *pmd_k;
195
196 pgd += index;
197 pgd_k = init_mm.pgd + index;
198
199 if (!pgd_present(*pgd_k))
200 return NULL;
201
202 /*
203 * set_pgd(pgd, *pgd_k); here would be useless on PAE
204 * and redundant with the set_pmd() on non-PAE. As would
205 * set_pud.
206 */
207 pud = pud_offset(pgd, address);
208 pud_k = pud_offset(pgd_k, address);
209 if (!pud_present(*pud_k))
210 return NULL;
211
212 pmd = pmd_offset(pud, address);
213 pmd_k = pmd_offset(pud_k, address);
214 if (!pmd_present(*pmd_k))
215 return NULL;
216
217 if (!pmd_present(*pmd))
218 set_pmd(pmd, *pmd_k);
219 else
220 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
221
222 return pmd_k;
223 }
224
225 void vmalloc_sync_all(void)
226 {
227 unsigned long address;
228
229 if (SHARED_KERNEL_PMD)
230 return;
231
232 for (address = VMALLOC_START & PMD_MASK;
233 address >= TASK_SIZE && address < FIXADDR_TOP;
234 address += PMD_SIZE) {
235 struct page *page;
236
237 spin_lock(&pgd_lock);
238 list_for_each_entry(page, &pgd_list, lru) {
239 spinlock_t *pgt_lock;
240 pmd_t *ret;
241
242 /* the pgt_lock only for Xen */
243 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
244
245 spin_lock(pgt_lock);
246 ret = vmalloc_sync_one(page_address(page), address);
247 spin_unlock(pgt_lock);
248
249 if (!ret)
250 break;
251 }
252 spin_unlock(&pgd_lock);
253 }
254 }
255
256 /*
257 * 32-bit:
258 *
259 * Handle a fault on the vmalloc or module mapping area
260 */
261 static noinline __kprobes int vmalloc_fault(unsigned long address)
262 {
263 unsigned long pgd_paddr;
264 pmd_t *pmd_k;
265 pte_t *pte_k;
266
267 /* Make sure we are in vmalloc area: */
268 if (!(address >= VMALLOC_START && address < VMALLOC_END))
269 return -1;
270
271 WARN_ON_ONCE(in_nmi());
272
273 /*
274 * Synchronize this task's top level page-table
275 * with the 'reference' page table.
276 *
277 * Do _not_ use "current" here. We might be inside
278 * an interrupt in the middle of a task switch..
279 */
280 pgd_paddr = read_cr3();
281 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
282 if (!pmd_k)
283 return -1;
284
285 pte_k = pte_offset_kernel(pmd_k, address);
286 if (!pte_present(*pte_k))
287 return -1;
288
289 return 0;
290 }
291
292 /*
293 * Did it hit the DOS screen memory VA from vm86 mode?
294 */
295 static inline void
296 check_v8086_mode(struct pt_regs *regs, unsigned long address,
297 struct task_struct *tsk)
298 {
299 unsigned long bit;
300
301 if (!v8086_mode(regs))
302 return;
303
304 bit = (address - 0xA0000) >> PAGE_SHIFT;
305 if (bit < 32)
306 tsk->thread.screen_bitmap |= 1 << bit;
307 }
308
309 static bool low_pfn(unsigned long pfn)
310 {
311 return pfn < max_low_pfn;
312 }
313
314 static void dump_pagetable(unsigned long address)
315 {
316 pgd_t *base = __va(read_cr3());
317 pgd_t *pgd = &base[pgd_index(address)];
318 pmd_t *pmd;
319 pte_t *pte;
320
321 #ifdef CONFIG_X86_PAE
322 printk("*pdpt = %016Lx ", pgd_val(*pgd));
323 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
324 goto out;
325 #endif
326 pmd = pmd_offset(pud_offset(pgd, address), address);
327 printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
328
329 /*
330 * We must not directly access the pte in the highpte
331 * case if the page table is located in highmem.
332 * And let's rather not kmap-atomic the pte, just in case
333 * it's allocated already:
334 */
335 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
336 goto out;
337
338 pte = pte_offset_kernel(pmd, address);
339 printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
340 out:
341 printk("\n");
342 }
343
344 #else /* CONFIG_X86_64: */
345
346 void vmalloc_sync_all(void)
347 {
348 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
349 }
350
351 /*
352 * 64-bit:
353 *
354 * Handle a fault on the vmalloc area
355 *
356 * This assumes no large pages in there.
357 */
358 static noinline __kprobes int vmalloc_fault(unsigned long address)
359 {
360 pgd_t *pgd, *pgd_ref;
361 pud_t *pud, *pud_ref;
362 pmd_t *pmd, *pmd_ref;
363 pte_t *pte, *pte_ref;
364
365 /* Make sure we are in vmalloc area: */
366 if (!(address >= VMALLOC_START && address < VMALLOC_END))
367 return -1;
368
369 WARN_ON_ONCE(in_nmi());
370
371 /*
372 * Copy kernel mappings over when needed. This can also
373 * happen within a race in page table update. In the later
374 * case just flush:
375 */
376 pgd = pgd_offset(current->active_mm, address);
377 pgd_ref = pgd_offset_k(address);
378 if (pgd_none(*pgd_ref))
379 return -1;
380
381 if (pgd_none(*pgd))
382 set_pgd(pgd, *pgd_ref);
383 else
384 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
385
386 /*
387 * Below here mismatches are bugs because these lower tables
388 * are shared:
389 */
390
391 pud = pud_offset(pgd, address);
392 pud_ref = pud_offset(pgd_ref, address);
393 if (pud_none(*pud_ref))
394 return -1;
395
396 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
397 BUG();
398
399 pmd = pmd_offset(pud, address);
400 pmd_ref = pmd_offset(pud_ref, address);
401 if (pmd_none(*pmd_ref))
402 return -1;
403
404 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
405 BUG();
406
407 pte_ref = pte_offset_kernel(pmd_ref, address);
408 if (!pte_present(*pte_ref))
409 return -1;
410
411 pte = pte_offset_kernel(pmd, address);
412
413 /*
414 * Don't use pte_page here, because the mappings can point
415 * outside mem_map, and the NUMA hash lookup cannot handle
416 * that:
417 */
418 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
419 BUG();
420
421 return 0;
422 }
423
424 #ifdef CONFIG_CPU_SUP_AMD
425 static const char errata93_warning[] =
426 KERN_ERR
427 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
428 "******* Working around it, but it may cause SEGVs or burn power.\n"
429 "******* Please consider a BIOS update.\n"
430 "******* Disabling USB legacy in the BIOS may also help.\n";
431 #endif
432
433 /*
434 * No vm86 mode in 64-bit mode:
435 */
436 static inline void
437 check_v8086_mode(struct pt_regs *regs, unsigned long address,
438 struct task_struct *tsk)
439 {
440 }
441
442 static int bad_address(void *p)
443 {
444 unsigned long dummy;
445
446 return probe_kernel_address((unsigned long *)p, dummy);
447 }
448
449 static void dump_pagetable(unsigned long address)
450 {
451 pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
452 pgd_t *pgd = base + pgd_index(address);
453 pud_t *pud;
454 pmd_t *pmd;
455 pte_t *pte;
456
457 if (bad_address(pgd))
458 goto bad;
459
460 printk("PGD %lx ", pgd_val(*pgd));
461
462 if (!pgd_present(*pgd))
463 goto out;
464
465 pud = pud_offset(pgd, address);
466 if (bad_address(pud))
467 goto bad;
468
469 printk("PUD %lx ", pud_val(*pud));
470 if (!pud_present(*pud) || pud_large(*pud))
471 goto out;
472
473 pmd = pmd_offset(pud, address);
474 if (bad_address(pmd))
475 goto bad;
476
477 printk("PMD %lx ", pmd_val(*pmd));
478 if (!pmd_present(*pmd) || pmd_large(*pmd))
479 goto out;
480
481 pte = pte_offset_kernel(pmd, address);
482 if (bad_address(pte))
483 goto bad;
484
485 printk("PTE %lx", pte_val(*pte));
486 out:
487 printk("\n");
488 return;
489 bad:
490 printk("BAD\n");
491 }
492
493 #endif /* CONFIG_X86_64 */
494
495 /*
496 * Workaround for K8 erratum #93 & buggy BIOS.
497 *
498 * BIOS SMM functions are required to use a specific workaround
499 * to avoid corruption of the 64bit RIP register on C stepping K8.
500 *
501 * A lot of BIOS that didn't get tested properly miss this.
502 *
503 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
504 * Try to work around it here.
505 *
506 * Note we only handle faults in kernel here.
507 * Does nothing on 32-bit.
508 */
509 static int is_errata93(struct pt_regs *regs, unsigned long address)
510 {
511 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
512 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
513 || boot_cpu_data.x86 != 0xf)
514 return 0;
515
516 if (address != regs->ip)
517 return 0;
518
519 if ((address >> 32) != 0)
520 return 0;
521
522 address |= 0xffffffffUL << 32;
523 if ((address >= (u64)_stext && address <= (u64)_etext) ||
524 (address >= MODULES_VADDR && address <= MODULES_END)) {
525 printk_once(errata93_warning);
526 regs->ip = address;
527 return 1;
528 }
529 #endif
530 return 0;
531 }
532
533 /*
534 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
535 * to illegal addresses >4GB.
536 *
537 * We catch this in the page fault handler because these addresses
538 * are not reachable. Just detect this case and return. Any code
539 * segment in LDT is compatibility mode.
540 */
541 static int is_errata100(struct pt_regs *regs, unsigned long address)
542 {
543 #ifdef CONFIG_X86_64
544 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
545 return 1;
546 #endif
547 return 0;
548 }
549
550 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
551 {
552 #ifdef CONFIG_X86_F00F_BUG
553 unsigned long nr;
554
555 /*
556 * Pentium F0 0F C7 C8 bug workaround:
557 */
558 if (boot_cpu_data.f00f_bug) {
559 nr = (address - idt_descr.address) >> 3;
560
561 if (nr == 6) {
562 do_invalid_op(regs, 0);
563 return 1;
564 }
565 }
566 #endif
567 return 0;
568 }
569
570 static const char nx_warning[] = KERN_CRIT
571 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
572
573 static void
574 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
575 unsigned long address)
576 {
577 if (!oops_may_print())
578 return;
579
580 if (error_code & PF_INSTR) {
581 unsigned int level;
582
583 pte_t *pte = lookup_address(address, &level);
584
585 if (pte && pte_present(*pte) && !pte_exec(*pte))
586 printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
587 }
588
589 printk(KERN_ALERT "BUG: unable to handle kernel ");
590 if (address < PAGE_SIZE)
591 printk(KERN_CONT "NULL pointer dereference");
592 else
593 printk(KERN_CONT "paging request");
594
595 printk(KERN_CONT " at %p\n", (void *) address);
596 printk(KERN_ALERT "IP:");
597 printk_address(regs->ip, 1);
598
599 dump_pagetable(address);
600 }
601
602 static noinline void
603 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
604 unsigned long address)
605 {
606 struct task_struct *tsk;
607 unsigned long flags;
608 int sig;
609
610 flags = oops_begin();
611 tsk = current;
612 sig = SIGKILL;
613
614 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
615 tsk->comm, address);
616 dump_pagetable(address);
617
618 tsk->thread.cr2 = address;
619 tsk->thread.trap_nr = X86_TRAP_PF;
620 tsk->thread.error_code = error_code;
621
622 if (__die("Bad pagetable", regs, error_code))
623 sig = 0;
624
625 oops_end(flags, regs, sig);
626 }
627
628 static noinline void
629 no_context(struct pt_regs *regs, unsigned long error_code,
630 unsigned long address, int signal, int si_code)
631 {
632 struct task_struct *tsk = current;
633 unsigned long *stackend;
634 unsigned long flags;
635 int sig;
636
637 /* Are we prepared to handle this kernel fault? */
638 if (fixup_exception(regs)) {
639 if (current_thread_info()->sig_on_uaccess_error && signal) {
640 tsk->thread.trap_nr = X86_TRAP_PF;
641 tsk->thread.error_code = error_code | PF_USER;
642 tsk->thread.cr2 = address;
643
644 /* XXX: hwpoison faults will set the wrong code. */
645 force_sig_info_fault(signal, si_code, address, tsk, 0);
646 }
647 return;
648 }
649
650 /*
651 * 32-bit:
652 *
653 * Valid to do another page fault here, because if this fault
654 * had been triggered by is_prefetch fixup_exception would have
655 * handled it.
656 *
657 * 64-bit:
658 *
659 * Hall of shame of CPU/BIOS bugs.
660 */
661 if (is_prefetch(regs, error_code, address))
662 return;
663
664 if (is_errata93(regs, address))
665 return;
666
667 /*
668 * Oops. The kernel tried to access some bad page. We'll have to
669 * terminate things with extreme prejudice:
670 */
671 flags = oops_begin();
672
673 show_fault_oops(regs, error_code, address);
674
675 stackend = end_of_stack(tsk);
676 if (tsk != &init_task && *stackend != STACK_END_MAGIC)
677 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
678
679 tsk->thread.cr2 = address;
680 tsk->thread.trap_nr = X86_TRAP_PF;
681 tsk->thread.error_code = error_code;
682
683 sig = SIGKILL;
684 if (__die("Oops", regs, error_code))
685 sig = 0;
686
687 /* Executive summary in case the body of the oops scrolled away */
688 printk(KERN_DEFAULT "CR2: %016lx\n", address);
689
690 oops_end(flags, regs, sig);
691 }
692
693 /*
694 * Print out info about fatal segfaults, if the show_unhandled_signals
695 * sysctl is set:
696 */
697 static inline void
698 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
699 unsigned long address, struct task_struct *tsk)
700 {
701 if (!unhandled_signal(tsk, SIGSEGV))
702 return;
703
704 if (!printk_ratelimit())
705 return;
706
707 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
708 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
709 tsk->comm, task_pid_nr(tsk), address,
710 (void *)regs->ip, (void *)regs->sp, error_code);
711
712 print_vma_addr(KERN_CONT " in ", regs->ip);
713
714 printk(KERN_CONT "\n");
715 }
716
717 static void
718 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
719 unsigned long address, int si_code)
720 {
721 struct task_struct *tsk = current;
722
723 /* User mode accesses just cause a SIGSEGV */
724 if (error_code & PF_USER) {
725 /*
726 * It's possible to have interrupts off here:
727 */
728 local_irq_enable();
729
730 /*
731 * Valid to do another page fault here because this one came
732 * from user space:
733 */
734 if (is_prefetch(regs, error_code, address))
735 return;
736
737 if (is_errata100(regs, address))
738 return;
739
740 #ifdef CONFIG_X86_64
741 /*
742 * Instruction fetch faults in the vsyscall page might need
743 * emulation.
744 */
745 if (unlikely((error_code & PF_INSTR) &&
746 ((address & ~0xfff) == VSYSCALL_START))) {
747 if (emulate_vsyscall(regs, address))
748 return;
749 }
750 #endif
751
752 if (unlikely(show_unhandled_signals))
753 show_signal_msg(regs, error_code, address, tsk);
754
755 /* Kernel addresses are always protection faults: */
756 tsk->thread.cr2 = address;
757 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
758 tsk->thread.trap_nr = X86_TRAP_PF;
759
760 force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0);
761
762 return;
763 }
764
765 if (is_f00f_bug(regs, address))
766 return;
767
768 no_context(regs, error_code, address, SIGSEGV, si_code);
769 }
770
771 static noinline void
772 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
773 unsigned long address)
774 {
775 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
776 }
777
778 static void
779 __bad_area(struct pt_regs *regs, unsigned long error_code,
780 unsigned long address, int si_code)
781 {
782 struct mm_struct *mm = current->mm;
783
784 /*
785 * Something tried to access memory that isn't in our memory map..
786 * Fix it, but check if it's kernel or user first..
787 */
788 up_read(&mm->mmap_sem);
789
790 __bad_area_nosemaphore(regs, error_code, address, si_code);
791 }
792
793 static noinline void
794 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
795 {
796 __bad_area(regs, error_code, address, SEGV_MAPERR);
797 }
798
799 static noinline void
800 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
801 unsigned long address)
802 {
803 __bad_area(regs, error_code, address, SEGV_ACCERR);
804 }
805
806 static void
807 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
808 unsigned int fault)
809 {
810 struct task_struct *tsk = current;
811 struct mm_struct *mm = tsk->mm;
812 int code = BUS_ADRERR;
813
814 up_read(&mm->mmap_sem);
815
816 /* Kernel mode? Handle exceptions or die: */
817 if (!(error_code & PF_USER)) {
818 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
819 return;
820 }
821
822 /* User-space => ok to do another page fault: */
823 if (is_prefetch(regs, error_code, address))
824 return;
825
826 tsk->thread.cr2 = address;
827 tsk->thread.error_code = error_code;
828 tsk->thread.trap_nr = X86_TRAP_PF;
829
830 #ifdef CONFIG_MEMORY_FAILURE
831 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
832 printk(KERN_ERR
833 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
834 tsk->comm, tsk->pid, address);
835 code = BUS_MCEERR_AR;
836 }
837 #endif
838 force_sig_info_fault(SIGBUS, code, address, tsk, fault);
839 }
840
841 static noinline int
842 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
843 unsigned long address, unsigned int fault)
844 {
845 /*
846 * Pagefault was interrupted by SIGKILL. We have no reason to
847 * continue pagefault.
848 */
849 if (fatal_signal_pending(current)) {
850 if (!(fault & VM_FAULT_RETRY))
851 up_read(&current->mm->mmap_sem);
852 if (!(error_code & PF_USER))
853 no_context(regs, error_code, address, 0, 0);
854 return 1;
855 }
856 if (!(fault & VM_FAULT_ERROR))
857 return 0;
858
859 if (fault & VM_FAULT_OOM) {
860 /* Kernel mode? Handle exceptions or die: */
861 if (!(error_code & PF_USER)) {
862 up_read(&current->mm->mmap_sem);
863 no_context(regs, error_code, address,
864 SIGSEGV, SEGV_MAPERR);
865 return 1;
866 }
867
868 up_read(&current->mm->mmap_sem);
869
870 /*
871 * We ran out of memory, call the OOM killer, and return the
872 * userspace (which will retry the fault, or kill us if we got
873 * oom-killed):
874 */
875 pagefault_out_of_memory();
876 } else {
877 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
878 VM_FAULT_HWPOISON_LARGE))
879 do_sigbus(regs, error_code, address, fault);
880 else
881 BUG();
882 }
883 return 1;
884 }
885
886 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
887 {
888 if ((error_code & PF_WRITE) && !pte_write(*pte))
889 return 0;
890
891 if ((error_code & PF_INSTR) && !pte_exec(*pte))
892 return 0;
893
894 return 1;
895 }
896
897 /*
898 * Handle a spurious fault caused by a stale TLB entry.
899 *
900 * This allows us to lazily refresh the TLB when increasing the
901 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
902 * eagerly is very expensive since that implies doing a full
903 * cross-processor TLB flush, even if no stale TLB entries exist
904 * on other processors.
905 *
906 * There are no security implications to leaving a stale TLB when
907 * increasing the permissions on a page.
908 */
909 static noinline __kprobes int
910 spurious_fault(unsigned long error_code, unsigned long address)
911 {
912 pgd_t *pgd;
913 pud_t *pud;
914 pmd_t *pmd;
915 pte_t *pte;
916 int ret;
917
918 /* Reserved-bit violation or user access to kernel space? */
919 if (error_code & (PF_USER | PF_RSVD))
920 return 0;
921
922 pgd = init_mm.pgd + pgd_index(address);
923 if (!pgd_present(*pgd))
924 return 0;
925
926 pud = pud_offset(pgd, address);
927 if (!pud_present(*pud))
928 return 0;
929
930 if (pud_large(*pud))
931 return spurious_fault_check(error_code, (pte_t *) pud);
932
933 pmd = pmd_offset(pud, address);
934 if (!pmd_present(*pmd))
935 return 0;
936
937 if (pmd_large(*pmd))
938 return spurious_fault_check(error_code, (pte_t *) pmd);
939
940 /*
941 * Note: don't use pte_present() here, since it returns true
942 * if the _PAGE_PROTNONE bit is set. However, this aliases the
943 * _PAGE_GLOBAL bit, which for kernel pages give false positives
944 * when CONFIG_DEBUG_PAGEALLOC is used.
945 */
946 pte = pte_offset_kernel(pmd, address);
947 if (!(pte_flags(*pte) & _PAGE_PRESENT))
948 return 0;
949
950 ret = spurious_fault_check(error_code, pte);
951 if (!ret)
952 return 0;
953
954 /*
955 * Make sure we have permissions in PMD.
956 * If not, then there's a bug in the page tables:
957 */
958 ret = spurious_fault_check(error_code, (pte_t *) pmd);
959 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
960
961 return ret;
962 }
963
964 int show_unhandled_signals = 1;
965
966 static inline int
967 access_error(unsigned long error_code, struct vm_area_struct *vma)
968 {
969 if (error_code & PF_WRITE) {
970 /* write, present and write, not present: */
971 if (unlikely(!(vma->vm_flags & VM_WRITE)))
972 return 1;
973 return 0;
974 }
975
976 /* read, present: */
977 if (unlikely(error_code & PF_PROT))
978 return 1;
979
980 /* read, not present: */
981 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
982 return 1;
983
984 return 0;
985 }
986
987 static int fault_in_kernel_space(unsigned long address)
988 {
989 return address >= TASK_SIZE_MAX;
990 }
991
992 static inline bool smap_violation(int error_code, struct pt_regs *regs)
993 {
994 if (error_code & PF_USER)
995 return false;
996
997 if (!user_mode_vm(regs) && (regs->flags & X86_EFLAGS_AC))
998 return false;
999
1000 return true;
1001 }
1002
1003 /*
1004 * This routine handles page faults. It determines the address,
1005 * and the problem, and then passes it off to one of the appropriate
1006 * routines.
1007 */
1008 static void __kprobes
1009 __do_page_fault(struct pt_regs *regs, unsigned long error_code)
1010 {
1011 struct vm_area_struct *vma;
1012 struct task_struct *tsk;
1013 unsigned long address;
1014 struct mm_struct *mm;
1015 int fault;
1016 int write = error_code & PF_WRITE;
1017 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE |
1018 (write ? FAULT_FLAG_WRITE : 0);
1019
1020 tsk = current;
1021 mm = tsk->mm;
1022
1023 /* Get the faulting address: */
1024 address = read_cr2();
1025
1026 /*
1027 * Detect and handle instructions that would cause a page fault for
1028 * both a tracked kernel page and a userspace page.
1029 */
1030 if (kmemcheck_active(regs))
1031 kmemcheck_hide(regs);
1032 prefetchw(&mm->mmap_sem);
1033
1034 if (unlikely(kmmio_fault(regs, address)))
1035 return;
1036
1037 /*
1038 * We fault-in kernel-space virtual memory on-demand. The
1039 * 'reference' page table is init_mm.pgd.
1040 *
1041 * NOTE! We MUST NOT take any locks for this case. We may
1042 * be in an interrupt or a critical region, and should
1043 * only copy the information from the master page table,
1044 * nothing more.
1045 *
1046 * This verifies that the fault happens in kernel space
1047 * (error_code & 4) == 0, and that the fault was not a
1048 * protection error (error_code & 9) == 0.
1049 */
1050 if (unlikely(fault_in_kernel_space(address))) {
1051 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1052 if (vmalloc_fault(address) >= 0)
1053 return;
1054
1055 if (kmemcheck_fault(regs, address, error_code))
1056 return;
1057 }
1058
1059 /* Can handle a stale RO->RW TLB: */
1060 if (spurious_fault(error_code, address))
1061 return;
1062
1063 /* kprobes don't want to hook the spurious faults: */
1064 if (notify_page_fault(regs))
1065 return;
1066 /*
1067 * Don't take the mm semaphore here. If we fixup a prefetch
1068 * fault we could otherwise deadlock:
1069 */
1070 bad_area_nosemaphore(regs, error_code, address);
1071
1072 return;
1073 }
1074
1075 /* kprobes don't want to hook the spurious faults: */
1076 if (unlikely(notify_page_fault(regs)))
1077 return;
1078 /*
1079 * It's safe to allow irq's after cr2 has been saved and the
1080 * vmalloc fault has been handled.
1081 *
1082 * User-mode registers count as a user access even for any
1083 * potential system fault or CPU buglet:
1084 */
1085 if (user_mode_vm(regs)) {
1086 local_irq_enable();
1087 error_code |= PF_USER;
1088 } else {
1089 if (regs->flags & X86_EFLAGS_IF)
1090 local_irq_enable();
1091 }
1092
1093 if (unlikely(error_code & PF_RSVD))
1094 pgtable_bad(regs, error_code, address);
1095
1096 if (static_cpu_has(X86_FEATURE_SMAP)) {
1097 if (unlikely(smap_violation(error_code, regs))) {
1098 bad_area_nosemaphore(regs, error_code, address);
1099 return;
1100 }
1101 }
1102
1103 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1104
1105 /*
1106 * If we're in an interrupt, have no user context or are running
1107 * in an atomic region then we must not take the fault:
1108 */
1109 if (unlikely(in_atomic() || !mm)) {
1110 bad_area_nosemaphore(regs, error_code, address);
1111 return;
1112 }
1113
1114 /*
1115 * When running in the kernel we expect faults to occur only to
1116 * addresses in user space. All other faults represent errors in
1117 * the kernel and should generate an OOPS. Unfortunately, in the
1118 * case of an erroneous fault occurring in a code path which already
1119 * holds mmap_sem we will deadlock attempting to validate the fault
1120 * against the address space. Luckily the kernel only validly
1121 * references user space from well defined areas of code, which are
1122 * listed in the exceptions table.
1123 *
1124 * As the vast majority of faults will be valid we will only perform
1125 * the source reference check when there is a possibility of a
1126 * deadlock. Attempt to lock the address space, if we cannot we then
1127 * validate the source. If this is invalid we can skip the address
1128 * space check, thus avoiding the deadlock:
1129 */
1130 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1131 if ((error_code & PF_USER) == 0 &&
1132 !search_exception_tables(regs->ip)) {
1133 bad_area_nosemaphore(regs, error_code, address);
1134 return;
1135 }
1136 retry:
1137 down_read(&mm->mmap_sem);
1138 } else {
1139 /*
1140 * The above down_read_trylock() might have succeeded in
1141 * which case we'll have missed the might_sleep() from
1142 * down_read():
1143 */
1144 might_sleep();
1145 }
1146
1147 vma = find_vma(mm, address);
1148 if (unlikely(!vma)) {
1149 bad_area(regs, error_code, address);
1150 return;
1151 }
1152 if (likely(vma->vm_start <= address))
1153 goto good_area;
1154 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1155 bad_area(regs, error_code, address);
1156 return;
1157 }
1158 if (error_code & PF_USER) {
1159 /*
1160 * Accessing the stack below %sp is always a bug.
1161 * The large cushion allows instructions like enter
1162 * and pusha to work. ("enter $65535, $31" pushes
1163 * 32 pointers and then decrements %sp by 65535.)
1164 */
1165 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1166 bad_area(regs, error_code, address);
1167 return;
1168 }
1169 }
1170 if (unlikely(expand_stack(vma, address))) {
1171 bad_area(regs, error_code, address);
1172 return;
1173 }
1174
1175 /*
1176 * Ok, we have a good vm_area for this memory access, so
1177 * we can handle it..
1178 */
1179 good_area:
1180 if (unlikely(access_error(error_code, vma))) {
1181 bad_area_access_error(regs, error_code, address);
1182 return;
1183 }
1184
1185 /*
1186 * If for any reason at all we couldn't handle the fault,
1187 * make sure we exit gracefully rather than endlessly redo
1188 * the fault:
1189 */
1190 fault = handle_mm_fault(mm, vma, address, flags);
1191
1192 if (unlikely(fault & (VM_FAULT_RETRY|VM_FAULT_ERROR))) {
1193 if (mm_fault_error(regs, error_code, address, fault))
1194 return;
1195 }
1196
1197 /*
1198 * Major/minor page fault accounting is only done on the
1199 * initial attempt. If we go through a retry, it is extremely
1200 * likely that the page will be found in page cache at that point.
1201 */
1202 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1203 if (fault & VM_FAULT_MAJOR) {
1204 tsk->maj_flt++;
1205 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
1206 regs, address);
1207 } else {
1208 tsk->min_flt++;
1209 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
1210 regs, address);
1211 }
1212 if (fault & VM_FAULT_RETRY) {
1213 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
1214 * of starvation. */
1215 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1216 flags |= FAULT_FLAG_TRIED;
1217 goto retry;
1218 }
1219 }
1220
1221 check_v8086_mode(regs, address, tsk);
1222
1223 up_read(&mm->mmap_sem);
1224 }
1225
1226 dotraplinkage void __kprobes
1227 do_page_fault(struct pt_regs *regs, unsigned long error_code)
1228 {
1229 exception_enter(regs);
1230 __do_page_fault(regs, error_code);
1231 exception_exit(regs);
1232 }
This page took 0.086642 seconds and 6 git commands to generate.