Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/x86/linux...
[deliverable/linux.git] / arch / x86 / mm / fault.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001,2002 Andi Kleen, SuSE Labs.
4 */
5
6 #include <linux/signal.h>
7 #include <linux/sched.h>
8 #include <linux/kernel.h>
9 #include <linux/errno.h>
10 #include <linux/string.h>
11 #include <linux/types.h>
12 #include <linux/ptrace.h>
13 #include <linux/mman.h>
14 #include <linux/mm.h>
15 #include <linux/smp.h>
16 #include <linux/interrupt.h>
17 #include <linux/init.h>
18 #include <linux/tty.h>
19 #include <linux/vt_kern.h> /* For unblank_screen() */
20 #include <linux/compiler.h>
21 #include <linux/highmem.h>
22 #include <linux/bootmem.h> /* for max_low_pfn */
23 #include <linux/vmalloc.h>
24 #include <linux/module.h>
25 #include <linux/kprobes.h>
26 #include <linux/uaccess.h>
27 #include <linux/kdebug.h>
28
29 #include <asm/system.h>
30 #include <asm/desc.h>
31 #include <asm/segment.h>
32 #include <asm/pgalloc.h>
33 #include <asm/smp.h>
34 #include <asm/tlbflush.h>
35 #include <asm/proto.h>
36 #include <asm-generic/sections.h>
37
38 /*
39 * Page fault error code bits
40 * bit 0 == 0 means no page found, 1 means protection fault
41 * bit 1 == 0 means read, 1 means write
42 * bit 2 == 0 means kernel, 1 means user-mode
43 * bit 3 == 1 means use of reserved bit detected
44 * bit 4 == 1 means fault was an instruction fetch
45 */
46 #define PF_PROT (1<<0)
47 #define PF_WRITE (1<<1)
48 #define PF_USER (1<<2)
49 #define PF_RSVD (1<<3)
50 #define PF_INSTR (1<<4)
51
52 static inline int notify_page_fault(struct pt_regs *regs)
53 {
54 #ifdef CONFIG_KPROBES
55 int ret = 0;
56
57 /* kprobe_running() needs smp_processor_id() */
58 #ifdef CONFIG_X86_32
59 if (!user_mode_vm(regs)) {
60 #else
61 if (!user_mode(regs)) {
62 #endif
63 preempt_disable();
64 if (kprobe_running() && kprobe_fault_handler(regs, 14))
65 ret = 1;
66 preempt_enable();
67 }
68
69 return ret;
70 #else
71 return 0;
72 #endif
73 }
74
75 /*
76 * X86_32
77 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
78 * Check that here and ignore it.
79 *
80 * X86_64
81 * Sometimes the CPU reports invalid exceptions on prefetch.
82 * Check that here and ignore it.
83 *
84 * Opcode checker based on code by Richard Brunner
85 */
86 static int is_prefetch(struct pt_regs *regs, unsigned long addr,
87 unsigned long error_code)
88 {
89 unsigned char *instr;
90 int scan_more = 1;
91 int prefetch = 0;
92 unsigned char *max_instr;
93
94 #ifdef CONFIG_X86_32
95 /* Catch an obscure case of prefetch inside an NX page: */
96 if ((__supported_pte_mask & _PAGE_NX) && (error_code & 16))
97 return 0;
98 #endif
99
100 /* If it was a exec fault on NX page, ignore */
101 if (error_code & PF_INSTR)
102 return 0;
103
104 instr = (unsigned char *)convert_ip_to_linear(current, regs);
105 max_instr = instr + 15;
106
107 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
108 return 0;
109
110 while (scan_more && instr < max_instr) {
111 unsigned char opcode;
112 unsigned char instr_hi;
113 unsigned char instr_lo;
114
115 if (probe_kernel_address(instr, opcode))
116 break;
117
118 instr_hi = opcode & 0xf0;
119 instr_lo = opcode & 0x0f;
120 instr++;
121
122 switch (instr_hi) {
123 case 0x20:
124 case 0x30:
125 /*
126 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
127 * In X86_64 long mode, the CPU will signal invalid
128 * opcode if some of these prefixes are present so
129 * X86_64 will never get here anyway
130 */
131 scan_more = ((instr_lo & 7) == 0x6);
132 break;
133 #ifdef CONFIG_X86_64
134 case 0x40:
135 /*
136 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
137 * Need to figure out under what instruction mode the
138 * instruction was issued. Could check the LDT for lm,
139 * but for now it's good enough to assume that long
140 * mode only uses well known segments or kernel.
141 */
142 scan_more = (!user_mode(regs)) || (regs->cs == __USER_CS);
143 break;
144 #endif
145 case 0x60:
146 /* 0x64 thru 0x67 are valid prefixes in all modes. */
147 scan_more = (instr_lo & 0xC) == 0x4;
148 break;
149 case 0xF0:
150 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
151 scan_more = !instr_lo || (instr_lo>>1) == 1;
152 break;
153 case 0x00:
154 /* Prefetch instruction is 0x0F0D or 0x0F18 */
155 scan_more = 0;
156
157 if (probe_kernel_address(instr, opcode))
158 break;
159 prefetch = (instr_lo == 0xF) &&
160 (opcode == 0x0D || opcode == 0x18);
161 break;
162 default:
163 scan_more = 0;
164 break;
165 }
166 }
167 return prefetch;
168 }
169
170 static void force_sig_info_fault(int si_signo, int si_code,
171 unsigned long address, struct task_struct *tsk)
172 {
173 siginfo_t info;
174
175 info.si_signo = si_signo;
176 info.si_errno = 0;
177 info.si_code = si_code;
178 info.si_addr = (void __user *)address;
179 force_sig_info(si_signo, &info, tsk);
180 }
181
182 #ifdef CONFIG_X86_64
183 static int bad_address(void *p)
184 {
185 unsigned long dummy;
186 return probe_kernel_address((unsigned long *)p, dummy);
187 }
188 #endif
189
190 static void dump_pagetable(unsigned long address)
191 {
192 #ifdef CONFIG_X86_32
193 __typeof__(pte_val(__pte(0))) page;
194
195 page = read_cr3();
196 page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT];
197 #ifdef CONFIG_X86_PAE
198 printk("*pdpt = %016Lx ", page);
199 if ((page >> PAGE_SHIFT) < max_low_pfn
200 && page & _PAGE_PRESENT) {
201 page &= PAGE_MASK;
202 page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT)
203 & (PTRS_PER_PMD - 1)];
204 printk(KERN_CONT "*pde = %016Lx ", page);
205 page &= ~_PAGE_NX;
206 }
207 #else
208 printk("*pde = %08lx ", page);
209 #endif
210
211 /*
212 * We must not directly access the pte in the highpte
213 * case if the page table is located in highmem.
214 * And let's rather not kmap-atomic the pte, just in case
215 * it's allocated already.
216 */
217 if ((page >> PAGE_SHIFT) < max_low_pfn
218 && (page & _PAGE_PRESENT)
219 && !(page & _PAGE_PSE)) {
220 page &= PAGE_MASK;
221 page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT)
222 & (PTRS_PER_PTE - 1)];
223 printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page);
224 }
225
226 printk("\n");
227 #else /* CONFIG_X86_64 */
228 pgd_t *pgd;
229 pud_t *pud;
230 pmd_t *pmd;
231 pte_t *pte;
232
233 pgd = (pgd_t *)read_cr3();
234
235 pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK);
236 pgd += pgd_index(address);
237 if (bad_address(pgd)) goto bad;
238 printk("PGD %lx ", pgd_val(*pgd));
239 if (!pgd_present(*pgd)) goto ret;
240
241 pud = pud_offset(pgd, address);
242 if (bad_address(pud)) goto bad;
243 printk("PUD %lx ", pud_val(*pud));
244 if (!pud_present(*pud) || pud_large(*pud))
245 goto ret;
246
247 pmd = pmd_offset(pud, address);
248 if (bad_address(pmd)) goto bad;
249 printk("PMD %lx ", pmd_val(*pmd));
250 if (!pmd_present(*pmd) || pmd_large(*pmd)) goto ret;
251
252 pte = pte_offset_kernel(pmd, address);
253 if (bad_address(pte)) goto bad;
254 printk("PTE %lx", pte_val(*pte));
255 ret:
256 printk("\n");
257 return;
258 bad:
259 printk("BAD\n");
260 #endif
261 }
262
263 #ifdef CONFIG_X86_32
264 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
265 {
266 unsigned index = pgd_index(address);
267 pgd_t *pgd_k;
268 pud_t *pud, *pud_k;
269 pmd_t *pmd, *pmd_k;
270
271 pgd += index;
272 pgd_k = init_mm.pgd + index;
273
274 if (!pgd_present(*pgd_k))
275 return NULL;
276
277 /*
278 * set_pgd(pgd, *pgd_k); here would be useless on PAE
279 * and redundant with the set_pmd() on non-PAE. As would
280 * set_pud.
281 */
282
283 pud = pud_offset(pgd, address);
284 pud_k = pud_offset(pgd_k, address);
285 if (!pud_present(*pud_k))
286 return NULL;
287
288 pmd = pmd_offset(pud, address);
289 pmd_k = pmd_offset(pud_k, address);
290 if (!pmd_present(*pmd_k))
291 return NULL;
292 if (!pmd_present(*pmd)) {
293 set_pmd(pmd, *pmd_k);
294 arch_flush_lazy_mmu_mode();
295 } else
296 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
297 return pmd_k;
298 }
299 #endif
300
301 #ifdef CONFIG_X86_64
302 static const char errata93_warning[] =
303 KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
304 KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
305 KERN_ERR "******* Please consider a BIOS update.\n"
306 KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
307 #endif
308
309 /* Workaround for K8 erratum #93 & buggy BIOS.
310 BIOS SMM functions are required to use a specific workaround
311 to avoid corruption of the 64bit RIP register on C stepping K8.
312 A lot of BIOS that didn't get tested properly miss this.
313 The OS sees this as a page fault with the upper 32bits of RIP cleared.
314 Try to work around it here.
315 Note we only handle faults in kernel here.
316 Does nothing for X86_32
317 */
318 static int is_errata93(struct pt_regs *regs, unsigned long address)
319 {
320 #ifdef CONFIG_X86_64
321 static int warned;
322 if (address != regs->ip)
323 return 0;
324 if ((address >> 32) != 0)
325 return 0;
326 address |= 0xffffffffUL << 32;
327 if ((address >= (u64)_stext && address <= (u64)_etext) ||
328 (address >= MODULES_VADDR && address <= MODULES_END)) {
329 if (!warned) {
330 printk(errata93_warning);
331 warned = 1;
332 }
333 regs->ip = address;
334 return 1;
335 }
336 #endif
337 return 0;
338 }
339
340 /*
341 * Work around K8 erratum #100 K8 in compat mode occasionally jumps to illegal
342 * addresses >4GB. We catch this in the page fault handler because these
343 * addresses are not reachable. Just detect this case and return. Any code
344 * segment in LDT is compatibility mode.
345 */
346 static int is_errata100(struct pt_regs *regs, unsigned long address)
347 {
348 #ifdef CONFIG_X86_64
349 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) &&
350 (address >> 32))
351 return 1;
352 #endif
353 return 0;
354 }
355
356 void do_invalid_op(struct pt_regs *, unsigned long);
357
358 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
359 {
360 #ifdef CONFIG_X86_F00F_BUG
361 unsigned long nr;
362 /*
363 * Pentium F0 0F C7 C8 bug workaround.
364 */
365 if (boot_cpu_data.f00f_bug) {
366 nr = (address - idt_descr.address) >> 3;
367
368 if (nr == 6) {
369 do_invalid_op(regs, 0);
370 return 1;
371 }
372 }
373 #endif
374 return 0;
375 }
376
377 static void show_fault_oops(struct pt_regs *regs, unsigned long error_code,
378 unsigned long address)
379 {
380 #ifdef CONFIG_X86_32
381 if (!oops_may_print())
382 return;
383 #endif
384
385 #ifdef CONFIG_X86_PAE
386 if (error_code & PF_INSTR) {
387 unsigned int level;
388 pte_t *pte = lookup_address(address, &level);
389
390 if (pte && pte_present(*pte) && !pte_exec(*pte))
391 printk(KERN_CRIT "kernel tried to execute "
392 "NX-protected page - exploit attempt? "
393 "(uid: %d)\n", current->uid);
394 }
395 #endif
396
397 printk(KERN_ALERT "BUG: unable to handle kernel ");
398 if (address < PAGE_SIZE)
399 printk(KERN_CONT "NULL pointer dereference");
400 else
401 printk(KERN_CONT "paging request");
402 #ifdef CONFIG_X86_32
403 printk(KERN_CONT " at %08lx\n", address);
404 #else
405 printk(KERN_CONT " at %016lx\n", address);
406 #endif
407 printk(KERN_ALERT "IP:");
408 printk_address(regs->ip, 1);
409 dump_pagetable(address);
410 }
411
412 #ifdef CONFIG_X86_64
413 static noinline void pgtable_bad(unsigned long address, struct pt_regs *regs,
414 unsigned long error_code)
415 {
416 unsigned long flags = oops_begin();
417 struct task_struct *tsk;
418
419 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
420 current->comm, address);
421 dump_pagetable(address);
422 tsk = current;
423 tsk->thread.cr2 = address;
424 tsk->thread.trap_no = 14;
425 tsk->thread.error_code = error_code;
426 if (__die("Bad pagetable", regs, error_code))
427 regs = NULL;
428 oops_end(flags, regs, SIGKILL);
429 }
430 #endif
431
432 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
433 {
434 if ((error_code & PF_WRITE) && !pte_write(*pte))
435 return 0;
436 if ((error_code & PF_INSTR) && !pte_exec(*pte))
437 return 0;
438
439 return 1;
440 }
441
442 /*
443 * Handle a spurious fault caused by a stale TLB entry. This allows
444 * us to lazily refresh the TLB when increasing the permissions of a
445 * kernel page (RO -> RW or NX -> X). Doing it eagerly is very
446 * expensive since that implies doing a full cross-processor TLB
447 * flush, even if no stale TLB entries exist on other processors.
448 * There are no security implications to leaving a stale TLB when
449 * increasing the permissions on a page.
450 */
451 static int spurious_fault(unsigned long address,
452 unsigned long error_code)
453 {
454 pgd_t *pgd;
455 pud_t *pud;
456 pmd_t *pmd;
457 pte_t *pte;
458
459 /* Reserved-bit violation or user access to kernel space? */
460 if (error_code & (PF_USER | PF_RSVD))
461 return 0;
462
463 pgd = init_mm.pgd + pgd_index(address);
464 if (!pgd_present(*pgd))
465 return 0;
466
467 pud = pud_offset(pgd, address);
468 if (!pud_present(*pud))
469 return 0;
470
471 if (pud_large(*pud))
472 return spurious_fault_check(error_code, (pte_t *) pud);
473
474 pmd = pmd_offset(pud, address);
475 if (!pmd_present(*pmd))
476 return 0;
477
478 if (pmd_large(*pmd))
479 return spurious_fault_check(error_code, (pte_t *) pmd);
480
481 pte = pte_offset_kernel(pmd, address);
482 if (!pte_present(*pte))
483 return 0;
484
485 return spurious_fault_check(error_code, pte);
486 }
487
488 /*
489 * X86_32
490 * Handle a fault on the vmalloc or module mapping area
491 *
492 * X86_64
493 * Handle a fault on the vmalloc area
494 *
495 * This assumes no large pages in there.
496 */
497 static int vmalloc_fault(unsigned long address)
498 {
499 #ifdef CONFIG_X86_32
500 unsigned long pgd_paddr;
501 pmd_t *pmd_k;
502 pte_t *pte_k;
503 /*
504 * Synchronize this task's top level page-table
505 * with the 'reference' page table.
506 *
507 * Do _not_ use "current" here. We might be inside
508 * an interrupt in the middle of a task switch..
509 */
510 pgd_paddr = read_cr3();
511 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
512 if (!pmd_k)
513 return -1;
514 pte_k = pte_offset_kernel(pmd_k, address);
515 if (!pte_present(*pte_k))
516 return -1;
517 return 0;
518 #else
519 pgd_t *pgd, *pgd_ref;
520 pud_t *pud, *pud_ref;
521 pmd_t *pmd, *pmd_ref;
522 pte_t *pte, *pte_ref;
523
524 /* Make sure we are in vmalloc area */
525 if (!(address >= VMALLOC_START && address < VMALLOC_END))
526 return -1;
527
528 /* Copy kernel mappings over when needed. This can also
529 happen within a race in page table update. In the later
530 case just flush. */
531
532 pgd = pgd_offset(current->mm ?: &init_mm, address);
533 pgd_ref = pgd_offset_k(address);
534 if (pgd_none(*pgd_ref))
535 return -1;
536 if (pgd_none(*pgd))
537 set_pgd(pgd, *pgd_ref);
538 else
539 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
540
541 /* Below here mismatches are bugs because these lower tables
542 are shared */
543
544 pud = pud_offset(pgd, address);
545 pud_ref = pud_offset(pgd_ref, address);
546 if (pud_none(*pud_ref))
547 return -1;
548 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
549 BUG();
550 pmd = pmd_offset(pud, address);
551 pmd_ref = pmd_offset(pud_ref, address);
552 if (pmd_none(*pmd_ref))
553 return -1;
554 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
555 BUG();
556 pte_ref = pte_offset_kernel(pmd_ref, address);
557 if (!pte_present(*pte_ref))
558 return -1;
559 pte = pte_offset_kernel(pmd, address);
560 /* Don't use pte_page here, because the mappings can point
561 outside mem_map, and the NUMA hash lookup cannot handle
562 that. */
563 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
564 BUG();
565 return 0;
566 #endif
567 }
568
569 int show_unhandled_signals = 1;
570
571 /*
572 * This routine handles page faults. It determines the address,
573 * and the problem, and then passes it off to one of the appropriate
574 * routines.
575 */
576 #ifdef CONFIG_X86_64
577 asmlinkage
578 #endif
579 void __kprobes do_page_fault(struct pt_regs *regs, unsigned long error_code)
580 {
581 struct task_struct *tsk;
582 struct mm_struct *mm;
583 struct vm_area_struct *vma;
584 unsigned long address;
585 int write, si_code;
586 int fault;
587 #ifdef CONFIG_X86_64
588 unsigned long flags;
589 #endif
590
591 /*
592 * We can fault from pretty much anywhere, with unknown IRQ state.
593 */
594 trace_hardirqs_fixup();
595
596 tsk = current;
597 mm = tsk->mm;
598 prefetchw(&mm->mmap_sem);
599
600 /* get the address */
601 address = read_cr2();
602
603 si_code = SEGV_MAPERR;
604
605 if (notify_page_fault(regs))
606 return;
607
608 /*
609 * We fault-in kernel-space virtual memory on-demand. The
610 * 'reference' page table is init_mm.pgd.
611 *
612 * NOTE! We MUST NOT take any locks for this case. We may
613 * be in an interrupt or a critical region, and should
614 * only copy the information from the master page table,
615 * nothing more.
616 *
617 * This verifies that the fault happens in kernel space
618 * (error_code & 4) == 0, and that the fault was not a
619 * protection error (error_code & 9) == 0.
620 */
621 #ifdef CONFIG_X86_32
622 if (unlikely(address >= TASK_SIZE)) {
623 #else
624 if (unlikely(address >= TASK_SIZE64)) {
625 #endif
626 if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) &&
627 vmalloc_fault(address) >= 0)
628 return;
629
630 /* Can handle a stale RO->RW TLB */
631 if (spurious_fault(address, error_code))
632 return;
633
634 /*
635 * Don't take the mm semaphore here. If we fixup a prefetch
636 * fault we could otherwise deadlock.
637 */
638 goto bad_area_nosemaphore;
639 }
640
641
642 #ifdef CONFIG_X86_32
643 /* It's safe to allow irq's after cr2 has been saved and the vmalloc
644 fault has been handled. */
645 if (regs->flags & (X86_EFLAGS_IF|VM_MASK))
646 local_irq_enable();
647
648 /*
649 * If we're in an interrupt, have no user context or are running in an
650 * atomic region then we must not take the fault.
651 */
652 if (in_atomic() || !mm)
653 goto bad_area_nosemaphore;
654 #else /* CONFIG_X86_64 */
655 if (likely(regs->flags & X86_EFLAGS_IF))
656 local_irq_enable();
657
658 if (unlikely(error_code & PF_RSVD))
659 pgtable_bad(address, regs, error_code);
660
661 /*
662 * If we're in an interrupt, have no user context or are running in an
663 * atomic region then we must not take the fault.
664 */
665 if (unlikely(in_atomic() || !mm))
666 goto bad_area_nosemaphore;
667
668 /*
669 * User-mode registers count as a user access even for any
670 * potential system fault or CPU buglet.
671 */
672 if (user_mode_vm(regs))
673 error_code |= PF_USER;
674 again:
675 #endif
676 /* When running in the kernel we expect faults to occur only to
677 * addresses in user space. All other faults represent errors in the
678 * kernel and should generate an OOPS. Unfortunately, in the case of an
679 * erroneous fault occurring in a code path which already holds mmap_sem
680 * we will deadlock attempting to validate the fault against the
681 * address space. Luckily the kernel only validly references user
682 * space from well defined areas of code, which are listed in the
683 * exceptions table.
684 *
685 * As the vast majority of faults will be valid we will only perform
686 * the source reference check when there is a possibility of a deadlock.
687 * Attempt to lock the address space, if we cannot we then validate the
688 * source. If this is invalid we can skip the address space check,
689 * thus avoiding the deadlock.
690 */
691 if (!down_read_trylock(&mm->mmap_sem)) {
692 if ((error_code & PF_USER) == 0 &&
693 !search_exception_tables(regs->ip))
694 goto bad_area_nosemaphore;
695 down_read(&mm->mmap_sem);
696 }
697
698 vma = find_vma(mm, address);
699 if (!vma)
700 goto bad_area;
701 if (vma->vm_start <= address)
702 goto good_area;
703 if (!(vma->vm_flags & VM_GROWSDOWN))
704 goto bad_area;
705 if (error_code & PF_USER) {
706 /*
707 * Accessing the stack below %sp is always a bug.
708 * The large cushion allows instructions like enter
709 * and pusha to work. ("enter $65535,$31" pushes
710 * 32 pointers and then decrements %sp by 65535.)
711 */
712 if (address + 65536 + 32 * sizeof(unsigned long) < regs->sp)
713 goto bad_area;
714 }
715 if (expand_stack(vma, address))
716 goto bad_area;
717 /*
718 * Ok, we have a good vm_area for this memory access, so
719 * we can handle it..
720 */
721 good_area:
722 si_code = SEGV_ACCERR;
723 write = 0;
724 switch (error_code & (PF_PROT|PF_WRITE)) {
725 default: /* 3: write, present */
726 /* fall through */
727 case PF_WRITE: /* write, not present */
728 if (!(vma->vm_flags & VM_WRITE))
729 goto bad_area;
730 write++;
731 break;
732 case PF_PROT: /* read, present */
733 goto bad_area;
734 case 0: /* read, not present */
735 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
736 goto bad_area;
737 }
738
739 #ifdef CONFIG_X86_32
740 survive:
741 #endif
742 /*
743 * If for any reason at all we couldn't handle the fault,
744 * make sure we exit gracefully rather than endlessly redo
745 * the fault.
746 */
747 fault = handle_mm_fault(mm, vma, address, write);
748 if (unlikely(fault & VM_FAULT_ERROR)) {
749 if (fault & VM_FAULT_OOM)
750 goto out_of_memory;
751 else if (fault & VM_FAULT_SIGBUS)
752 goto do_sigbus;
753 BUG();
754 }
755 if (fault & VM_FAULT_MAJOR)
756 tsk->maj_flt++;
757 else
758 tsk->min_flt++;
759
760 #ifdef CONFIG_X86_32
761 /*
762 * Did it hit the DOS screen memory VA from vm86 mode?
763 */
764 if (v8086_mode(regs)) {
765 unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT;
766 if (bit < 32)
767 tsk->thread.screen_bitmap |= 1 << bit;
768 }
769 #endif
770 up_read(&mm->mmap_sem);
771 return;
772
773 /*
774 * Something tried to access memory that isn't in our memory map..
775 * Fix it, but check if it's kernel or user first..
776 */
777 bad_area:
778 up_read(&mm->mmap_sem);
779
780 bad_area_nosemaphore:
781 /* User mode accesses just cause a SIGSEGV */
782 if (error_code & PF_USER) {
783 /*
784 * It's possible to have interrupts off here.
785 */
786 local_irq_enable();
787
788 /*
789 * Valid to do another page fault here because this one came
790 * from user space.
791 */
792 if (is_prefetch(regs, address, error_code))
793 return;
794
795 if (is_errata100(regs, address))
796 return;
797
798 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
799 printk_ratelimit()) {
800 printk(
801 #ifdef CONFIG_X86_32
802 "%s%s[%d]: segfault at %lx ip %08lx sp %08lx error %lx",
803 #else
804 "%s%s[%d]: segfault at %lx ip %lx sp %lx error %lx",
805 #endif
806 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
807 tsk->comm, task_pid_nr(tsk), address, regs->ip,
808 regs->sp, error_code);
809 print_vma_addr(" in ", regs->ip);
810 printk("\n");
811 }
812
813 tsk->thread.cr2 = address;
814 /* Kernel addresses are always protection faults */
815 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
816 tsk->thread.trap_no = 14;
817 force_sig_info_fault(SIGSEGV, si_code, address, tsk);
818 return;
819 }
820
821 if (is_f00f_bug(regs, address))
822 return;
823
824 no_context:
825 /* Are we prepared to handle this kernel fault? */
826 if (fixup_exception(regs))
827 return;
828
829 /*
830 * X86_32
831 * Valid to do another page fault here, because if this fault
832 * had been triggered by is_prefetch fixup_exception would have
833 * handled it.
834 *
835 * X86_64
836 * Hall of shame of CPU/BIOS bugs.
837 */
838 if (is_prefetch(regs, address, error_code))
839 return;
840
841 if (is_errata93(regs, address))
842 return;
843
844 /*
845 * Oops. The kernel tried to access some bad page. We'll have to
846 * terminate things with extreme prejudice.
847 */
848 #ifdef CONFIG_X86_32
849 bust_spinlocks(1);
850 #else
851 flags = oops_begin();
852 #endif
853
854 show_fault_oops(regs, error_code, address);
855
856 tsk->thread.cr2 = address;
857 tsk->thread.trap_no = 14;
858 tsk->thread.error_code = error_code;
859
860 #ifdef CONFIG_X86_32
861 die("Oops", regs, error_code);
862 bust_spinlocks(0);
863 do_exit(SIGKILL);
864 #else
865 if (__die("Oops", regs, error_code))
866 regs = NULL;
867 /* Executive summary in case the body of the oops scrolled away */
868 printk(KERN_EMERG "CR2: %016lx\n", address);
869 oops_end(flags, regs, SIGKILL);
870 #endif
871
872 /*
873 * We ran out of memory, or some other thing happened to us that made
874 * us unable to handle the page fault gracefully.
875 */
876 out_of_memory:
877 up_read(&mm->mmap_sem);
878 if (is_global_init(tsk)) {
879 yield();
880 #ifdef CONFIG_X86_32
881 down_read(&mm->mmap_sem);
882 goto survive;
883 #else
884 goto again;
885 #endif
886 }
887
888 printk("VM: killing process %s\n", tsk->comm);
889 if (error_code & PF_USER)
890 do_group_exit(SIGKILL);
891 goto no_context;
892
893 do_sigbus:
894 up_read(&mm->mmap_sem);
895
896 /* Kernel mode? Handle exceptions or die */
897 if (!(error_code & PF_USER))
898 goto no_context;
899 #ifdef CONFIG_X86_32
900 /* User space => ok to do another page fault */
901 if (is_prefetch(regs, address, error_code))
902 return;
903 #endif
904 tsk->thread.cr2 = address;
905 tsk->thread.error_code = error_code;
906 tsk->thread.trap_no = 14;
907 force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
908 }
909
910 DEFINE_SPINLOCK(pgd_lock);
911 LIST_HEAD(pgd_list);
912
913 void vmalloc_sync_all(void)
914 {
915 #ifdef CONFIG_X86_32
916 /*
917 * Note that races in the updates of insync and start aren't
918 * problematic: insync can only get set bits added, and updates to
919 * start are only improving performance (without affecting correctness
920 * if undone).
921 */
922 static DECLARE_BITMAP(insync, PTRS_PER_PGD);
923 static unsigned long start = TASK_SIZE;
924 unsigned long address;
925
926 if (SHARED_KERNEL_PMD)
927 return;
928
929 BUILD_BUG_ON(TASK_SIZE & ~PGDIR_MASK);
930 for (address = start; address >= TASK_SIZE; address += PGDIR_SIZE) {
931 if (!test_bit(pgd_index(address), insync)) {
932 unsigned long flags;
933 struct page *page;
934
935 spin_lock_irqsave(&pgd_lock, flags);
936 list_for_each_entry(page, &pgd_list, lru) {
937 if (!vmalloc_sync_one(page_address(page),
938 address))
939 break;
940 }
941 spin_unlock_irqrestore(&pgd_lock, flags);
942 if (!page)
943 set_bit(pgd_index(address), insync);
944 }
945 if (address == start && test_bit(pgd_index(address), insync))
946 start = address + PGDIR_SIZE;
947 }
948 #else /* CONFIG_X86_64 */
949 /*
950 * Note that races in the updates of insync and start aren't
951 * problematic: insync can only get set bits added, and updates to
952 * start are only improving performance (without affecting correctness
953 * if undone).
954 */
955 static DECLARE_BITMAP(insync, PTRS_PER_PGD);
956 static unsigned long start = VMALLOC_START & PGDIR_MASK;
957 unsigned long address;
958
959 for (address = start; address <= VMALLOC_END; address += PGDIR_SIZE) {
960 if (!test_bit(pgd_index(address), insync)) {
961 const pgd_t *pgd_ref = pgd_offset_k(address);
962 unsigned long flags;
963 struct page *page;
964
965 if (pgd_none(*pgd_ref))
966 continue;
967 spin_lock_irqsave(&pgd_lock, flags);
968 list_for_each_entry(page, &pgd_list, lru) {
969 pgd_t *pgd;
970 pgd = (pgd_t *)page_address(page) + pgd_index(address);
971 if (pgd_none(*pgd))
972 set_pgd(pgd, *pgd_ref);
973 else
974 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
975 }
976 spin_unlock_irqrestore(&pgd_lock, flags);
977 set_bit(pgd_index(address), insync);
978 }
979 if (address == start)
980 start = address + PGDIR_SIZE;
981 }
982 /* Check that there is no need to do the same for the modules area. */
983 BUILD_BUG_ON(!(MODULES_VADDR > __START_KERNEL));
984 BUILD_BUG_ON(!(((MODULES_END - 1) & PGDIR_MASK) ==
985 (__START_KERNEL & PGDIR_MASK)));
986 #endif
987 }
This page took 0.064768 seconds and 6 git commands to generate.