x86: use helper in fault_64.c
[deliverable/linux.git] / arch / x86 / mm / fault_64.c
1 /*
2 * linux/arch/x86-64/mm/fault.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 2001,2002 Andi Kleen, SuSE Labs.
6 */
7
8 #include <linux/signal.h>
9 #include <linux/sched.h>
10 #include <linux/kernel.h>
11 #include <linux/errno.h>
12 #include <linux/string.h>
13 #include <linux/types.h>
14 #include <linux/ptrace.h>
15 #include <linux/mman.h>
16 #include <linux/mm.h>
17 #include <linux/smp.h>
18 #include <linux/interrupt.h>
19 #include <linux/init.h>
20 #include <linux/tty.h>
21 #include <linux/vt_kern.h> /* For unblank_screen() */
22 #include <linux/compiler.h>
23 #include <linux/vmalloc.h>
24 #include <linux/module.h>
25 #include <linux/kprobes.h>
26 #include <linux/uaccess.h>
27 #include <linux/kdebug.h>
28
29 #include <asm/system.h>
30 #include <asm/pgalloc.h>
31 #include <asm/smp.h>
32 #include <asm/tlbflush.h>
33 #include <asm/proto.h>
34 #include <asm-generic/sections.h>
35
36 /* Page fault error code bits */
37 #define PF_PROT (1<<0) /* or no page found */
38 #define PF_WRITE (1<<1)
39 #define PF_USER (1<<2)
40 #define PF_RSVD (1<<3)
41 #define PF_INSTR (1<<4)
42
43 #ifdef CONFIG_KPROBES
44 static inline int notify_page_fault(struct pt_regs *regs)
45 {
46 int ret = 0;
47
48 /* kprobe_running() needs smp_processor_id() */
49 if (!user_mode(regs)) {
50 preempt_disable();
51 if (kprobe_running() && kprobe_fault_handler(regs, 14))
52 ret = 1;
53 preempt_enable();
54 }
55
56 return ret;
57 }
58 #else
59 static inline int notify_page_fault(struct pt_regs *regs)
60 {
61 return 0;
62 }
63 #endif
64
65 /* Sometimes the CPU reports invalid exceptions on prefetch.
66 Check that here and ignore.
67 Opcode checker based on code by Richard Brunner */
68 static noinline int is_prefetch(struct pt_regs *regs, unsigned long addr,
69 unsigned long error_code)
70 {
71 unsigned char *instr;
72 int scan_more = 1;
73 int prefetch = 0;
74 unsigned char *max_instr;
75
76 /* If it was a exec fault ignore */
77 if (error_code & PF_INSTR)
78 return 0;
79
80 instr = (unsigned char __user *)convert_rip_to_linear(current, regs);
81 max_instr = instr + 15;
82
83 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
84 return 0;
85
86 while (scan_more && instr < max_instr) {
87 unsigned char opcode;
88 unsigned char instr_hi;
89 unsigned char instr_lo;
90
91 if (probe_kernel_address(instr, opcode))
92 break;
93
94 instr_hi = opcode & 0xf0;
95 instr_lo = opcode & 0x0f;
96 instr++;
97
98 switch (instr_hi) {
99 case 0x20:
100 case 0x30:
101 /* Values 0x26,0x2E,0x36,0x3E are valid x86
102 prefixes. In long mode, the CPU will signal
103 invalid opcode if some of these prefixes are
104 present so we will never get here anyway */
105 scan_more = ((instr_lo & 7) == 0x6);
106 break;
107
108 case 0x40:
109 /* In AMD64 long mode, 0x40 to 0x4F are valid REX prefixes
110 Need to figure out under what instruction mode the
111 instruction was issued ... */
112 /* Could check the LDT for lm, but for now it's good
113 enough to assume that long mode only uses well known
114 segments or kernel. */
115 scan_more = (!user_mode(regs)) || (regs->cs == __USER_CS);
116 break;
117
118 case 0x60:
119 /* 0x64 thru 0x67 are valid prefixes in all modes. */
120 scan_more = (instr_lo & 0xC) == 0x4;
121 break;
122 case 0xF0:
123 /* 0xF0, 0xF2, and 0xF3 are valid prefixes in all modes. */
124 scan_more = !instr_lo || (instr_lo>>1) == 1;
125 break;
126 case 0x00:
127 /* Prefetch instruction is 0x0F0D or 0x0F18 */
128 scan_more = 0;
129 if (probe_kernel_address(instr, opcode))
130 break;
131 prefetch = (instr_lo == 0xF) &&
132 (opcode == 0x0D || opcode == 0x18);
133 break;
134 default:
135 scan_more = 0;
136 break;
137 }
138 }
139 return prefetch;
140 }
141
142 static int bad_address(void *p)
143 {
144 unsigned long dummy;
145 return probe_kernel_address((unsigned long *)p, dummy);
146 }
147
148 void dump_pagetable(unsigned long address)
149 {
150 pgd_t *pgd;
151 pud_t *pud;
152 pmd_t *pmd;
153 pte_t *pte;
154
155 pgd = (pgd_t *)read_cr3();
156
157 pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK);
158 pgd += pgd_index(address);
159 if (bad_address(pgd)) goto bad;
160 printk("PGD %lx ", pgd_val(*pgd));
161 if (!pgd_present(*pgd)) goto ret;
162
163 pud = pud_offset(pgd, address);
164 if (bad_address(pud)) goto bad;
165 printk("PUD %lx ", pud_val(*pud));
166 if (!pud_present(*pud)) goto ret;
167
168 pmd = pmd_offset(pud, address);
169 if (bad_address(pmd)) goto bad;
170 printk("PMD %lx ", pmd_val(*pmd));
171 if (!pmd_present(*pmd) || pmd_large(*pmd)) goto ret;
172
173 pte = pte_offset_kernel(pmd, address);
174 if (bad_address(pte)) goto bad;
175 printk("PTE %lx", pte_val(*pte));
176 ret:
177 printk("\n");
178 return;
179 bad:
180 printk("BAD\n");
181 }
182
183 static const char errata93_warning[] =
184 KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
185 KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
186 KERN_ERR "******* Please consider a BIOS update.\n"
187 KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
188
189 /* Workaround for K8 erratum #93 & buggy BIOS.
190 BIOS SMM functions are required to use a specific workaround
191 to avoid corruption of the 64bit RIP register on C stepping K8.
192 A lot of BIOS that didn't get tested properly miss this.
193 The OS sees this as a page fault with the upper 32bits of RIP cleared.
194 Try to work around it here.
195 Note we only handle faults in kernel here. */
196
197 static int is_errata93(struct pt_regs *regs, unsigned long address)
198 {
199 static int warned;
200 if (address != regs->ip)
201 return 0;
202 if ((address >> 32) != 0)
203 return 0;
204 address |= 0xffffffffUL << 32;
205 if ((address >= (u64)_stext && address <= (u64)_etext) ||
206 (address >= MODULES_VADDR && address <= MODULES_END)) {
207 if (!warned) {
208 printk(errata93_warning);
209 warned = 1;
210 }
211 regs->ip = address;
212 return 1;
213 }
214 return 0;
215 }
216
217 static noinline void pgtable_bad(unsigned long address, struct pt_regs *regs,
218 unsigned long error_code)
219 {
220 unsigned long flags = oops_begin();
221 struct task_struct *tsk;
222
223 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
224 current->comm, address);
225 dump_pagetable(address);
226 tsk = current;
227 tsk->thread.cr2 = address;
228 tsk->thread.trap_no = 14;
229 tsk->thread.error_code = error_code;
230 if (__die("Bad pagetable", regs, error_code))
231 regs = NULL;
232 oops_end(flags, regs, SIGKILL);
233 }
234
235 /*
236 * Handle a fault on the vmalloc area
237 *
238 * This assumes no large pages in there.
239 */
240 static int vmalloc_fault(unsigned long address)
241 {
242 pgd_t *pgd, *pgd_ref;
243 pud_t *pud, *pud_ref;
244 pmd_t *pmd, *pmd_ref;
245 pte_t *pte, *pte_ref;
246
247 /* Copy kernel mappings over when needed. This can also
248 happen within a race in page table update. In the later
249 case just flush. */
250
251 pgd = pgd_offset(current->mm ?: &init_mm, address);
252 pgd_ref = pgd_offset_k(address);
253 if (pgd_none(*pgd_ref))
254 return -1;
255 if (pgd_none(*pgd))
256 set_pgd(pgd, *pgd_ref);
257 else
258 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
259
260 /* Below here mismatches are bugs because these lower tables
261 are shared */
262
263 pud = pud_offset(pgd, address);
264 pud_ref = pud_offset(pgd_ref, address);
265 if (pud_none(*pud_ref))
266 return -1;
267 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
268 BUG();
269 pmd = pmd_offset(pud, address);
270 pmd_ref = pmd_offset(pud_ref, address);
271 if (pmd_none(*pmd_ref))
272 return -1;
273 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
274 BUG();
275 pte_ref = pte_offset_kernel(pmd_ref, address);
276 if (!pte_present(*pte_ref))
277 return -1;
278 pte = pte_offset_kernel(pmd, address);
279 /* Don't use pte_page here, because the mappings can point
280 outside mem_map, and the NUMA hash lookup cannot handle
281 that. */
282 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
283 BUG();
284 return 0;
285 }
286
287 int show_unhandled_signals = 1;
288
289 /*
290 * This routine handles page faults. It determines the address,
291 * and the problem, and then passes it off to one of the appropriate
292 * routines.
293 */
294 asmlinkage void __kprobes do_page_fault(struct pt_regs *regs,
295 unsigned long error_code)
296 {
297 struct task_struct *tsk;
298 struct mm_struct *mm;
299 struct vm_area_struct * vma;
300 unsigned long address;
301 int write, fault;
302 unsigned long flags;
303 siginfo_t info;
304
305 /*
306 * We can fault from pretty much anywhere, with unknown IRQ state.
307 */
308 trace_hardirqs_fixup();
309
310 tsk = current;
311 mm = tsk->mm;
312 prefetchw(&mm->mmap_sem);
313
314 /* get the address */
315 address = read_cr2();
316
317 info.si_code = SEGV_MAPERR;
318
319
320 /*
321 * We fault-in kernel-space virtual memory on-demand. The
322 * 'reference' page table is init_mm.pgd.
323 *
324 * NOTE! We MUST NOT take any locks for this case. We may
325 * be in an interrupt or a critical region, and should
326 * only copy the information from the master page table,
327 * nothing more.
328 *
329 * This verifies that the fault happens in kernel space
330 * (error_code & 4) == 0, and that the fault was not a
331 * protection error (error_code & 9) == 0.
332 */
333 if (unlikely(address >= TASK_SIZE64)) {
334 /*
335 * Don't check for the module range here: its PML4
336 * is always initialized because it's shared with the main
337 * kernel text. Only vmalloc may need PML4 syncups.
338 */
339 if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) &&
340 ((address >= VMALLOC_START && address < VMALLOC_END))) {
341 if (vmalloc_fault(address) >= 0)
342 return;
343 }
344 if (notify_page_fault(regs))
345 return;
346 /*
347 * Don't take the mm semaphore here. If we fixup a prefetch
348 * fault we could otherwise deadlock.
349 */
350 goto bad_area_nosemaphore;
351 }
352
353 if (notify_page_fault(regs))
354 return;
355
356 if (likely(regs->flags & X86_EFLAGS_IF))
357 local_irq_enable();
358
359 if (unlikely(error_code & PF_RSVD))
360 pgtable_bad(address, regs, error_code);
361
362 /*
363 * If we're in an interrupt or have no user
364 * context, we must not take the fault..
365 */
366 if (unlikely(in_atomic() || !mm))
367 goto bad_area_nosemaphore;
368
369 /*
370 * User-mode registers count as a user access even for any
371 * potential system fault or CPU buglet.
372 */
373 if (user_mode_vm(regs))
374 error_code |= PF_USER;
375
376 again:
377 /* When running in the kernel we expect faults to occur only to
378 * addresses in user space. All other faults represent errors in the
379 * kernel and should generate an OOPS. Unfortunately, in the case of an
380 * erroneous fault occurring in a code path which already holds mmap_sem
381 * we will deadlock attempting to validate the fault against the
382 * address space. Luckily the kernel only validly references user
383 * space from well defined areas of code, which are listed in the
384 * exceptions table.
385 *
386 * As the vast majority of faults will be valid we will only perform
387 * the source reference check when there is a possibility of a deadlock.
388 * Attempt to lock the address space, if we cannot we then validate the
389 * source. If this is invalid we can skip the address space check,
390 * thus avoiding the deadlock.
391 */
392 if (!down_read_trylock(&mm->mmap_sem)) {
393 if ((error_code & PF_USER) == 0 &&
394 !search_exception_tables(regs->ip))
395 goto bad_area_nosemaphore;
396 down_read(&mm->mmap_sem);
397 }
398
399 vma = find_vma(mm, address);
400 if (!vma)
401 goto bad_area;
402 if (likely(vma->vm_start <= address))
403 goto good_area;
404 if (!(vma->vm_flags & VM_GROWSDOWN))
405 goto bad_area;
406 if (error_code & 4) {
407 /* Allow userspace just enough access below the stack pointer
408 * to let the 'enter' instruction work.
409 */
410 if (address + 65536 + 32 * sizeof(unsigned long) < regs->sp)
411 goto bad_area;
412 }
413 if (expand_stack(vma, address))
414 goto bad_area;
415 /*
416 * Ok, we have a good vm_area for this memory access, so
417 * we can handle it..
418 */
419 good_area:
420 info.si_code = SEGV_ACCERR;
421 write = 0;
422 switch (error_code & (PF_PROT|PF_WRITE)) {
423 default: /* 3: write, present */
424 /* fall through */
425 case PF_WRITE: /* write, not present */
426 if (!(vma->vm_flags & VM_WRITE))
427 goto bad_area;
428 write++;
429 break;
430 case PF_PROT: /* read, present */
431 goto bad_area;
432 case 0: /* read, not present */
433 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
434 goto bad_area;
435 }
436
437 /*
438 * If for any reason at all we couldn't handle the fault,
439 * make sure we exit gracefully rather than endlessly redo
440 * the fault.
441 */
442 fault = handle_mm_fault(mm, vma, address, write);
443 if (unlikely(fault & VM_FAULT_ERROR)) {
444 if (fault & VM_FAULT_OOM)
445 goto out_of_memory;
446 else if (fault & VM_FAULT_SIGBUS)
447 goto do_sigbus;
448 BUG();
449 }
450 if (fault & VM_FAULT_MAJOR)
451 tsk->maj_flt++;
452 else
453 tsk->min_flt++;
454 up_read(&mm->mmap_sem);
455 return;
456
457 /*
458 * Something tried to access memory that isn't in our memory map..
459 * Fix it, but check if it's kernel or user first..
460 */
461 bad_area:
462 up_read(&mm->mmap_sem);
463
464 bad_area_nosemaphore:
465 /* User mode accesses just cause a SIGSEGV */
466 if (error_code & PF_USER) {
467
468 /*
469 * It's possible to have interrupts off here.
470 */
471 local_irq_enable();
472
473 if (is_prefetch(regs, address, error_code))
474 return;
475
476 /* Work around K8 erratum #100 K8 in compat mode
477 occasionally jumps to illegal addresses >4GB. We
478 catch this here in the page fault handler because
479 these addresses are not reachable. Just detect this
480 case and return. Any code segment in LDT is
481 compatibility mode. */
482 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) &&
483 (address >> 32))
484 return;
485
486 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
487 printk_ratelimit()) {
488 printk(
489 "%s%s[%d]: segfault at %lx ip %lx sp %lx error %lx\n",
490 tsk->pid > 1 ? KERN_INFO : KERN_EMERG,
491 tsk->comm, tsk->pid, address, regs->ip,
492 regs->sp, error_code);
493 }
494
495 tsk->thread.cr2 = address;
496 /* Kernel addresses are always protection faults */
497 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
498 tsk->thread.trap_no = 14;
499 info.si_signo = SIGSEGV;
500 info.si_errno = 0;
501 /* info.si_code has been set above */
502 info.si_addr = (void __user *)address;
503 force_sig_info(SIGSEGV, &info, tsk);
504 return;
505 }
506
507 no_context:
508
509 /* Are we prepared to handle this kernel fault? */
510 if (fixup_exception(regs)) {
511 return;
512 }
513
514 /*
515 * Hall of shame of CPU/BIOS bugs.
516 */
517
518 if (is_prefetch(regs, address, error_code))
519 return;
520
521 if (is_errata93(regs, address))
522 return;
523
524 /*
525 * Oops. The kernel tried to access some bad page. We'll have to
526 * terminate things with extreme prejudice.
527 */
528
529 flags = oops_begin();
530
531 if (address < PAGE_SIZE)
532 printk(KERN_ALERT "Unable to handle kernel NULL pointer dereference");
533 else
534 printk(KERN_ALERT "Unable to handle kernel paging request");
535 printk(" at %016lx RIP: \n" KERN_ALERT,address);
536 printk_address(regs->ip);
537 dump_pagetable(address);
538 tsk->thread.cr2 = address;
539 tsk->thread.trap_no = 14;
540 tsk->thread.error_code = error_code;
541 if (__die("Oops", regs, error_code))
542 regs = NULL;
543 /* Executive summary in case the body of the oops scrolled away */
544 printk(KERN_EMERG "CR2: %016lx\n", address);
545 oops_end(flags, regs, SIGKILL);
546
547 /*
548 * We ran out of memory, or some other thing happened to us that made
549 * us unable to handle the page fault gracefully.
550 */
551 out_of_memory:
552 up_read(&mm->mmap_sem);
553 if (is_global_init(current)) {
554 yield();
555 goto again;
556 }
557 printk("VM: killing process %s\n", tsk->comm);
558 if (error_code & 4)
559 do_group_exit(SIGKILL);
560 goto no_context;
561
562 do_sigbus:
563 up_read(&mm->mmap_sem);
564
565 /* Kernel mode? Handle exceptions or die */
566 if (!(error_code & PF_USER))
567 goto no_context;
568
569 tsk->thread.cr2 = address;
570 tsk->thread.error_code = error_code;
571 tsk->thread.trap_no = 14;
572 info.si_signo = SIGBUS;
573 info.si_errno = 0;
574 info.si_code = BUS_ADRERR;
575 info.si_addr = (void __user *)address;
576 force_sig_info(SIGBUS, &info, tsk);
577 return;
578 }
579
580 DEFINE_SPINLOCK(pgd_lock);
581 LIST_HEAD(pgd_list);
582
583 void vmalloc_sync_all(void)
584 {
585 /* Note that races in the updates of insync and start aren't
586 problematic:
587 insync can only get set bits added, and updates to start are only
588 improving performance (without affecting correctness if undone). */
589 static DECLARE_BITMAP(insync, PTRS_PER_PGD);
590 static unsigned long start = VMALLOC_START & PGDIR_MASK;
591 unsigned long address;
592
593 for (address = start; address <= VMALLOC_END; address += PGDIR_SIZE) {
594 if (!test_bit(pgd_index(address), insync)) {
595 const pgd_t *pgd_ref = pgd_offset_k(address);
596 struct page *page;
597
598 if (pgd_none(*pgd_ref))
599 continue;
600 spin_lock(&pgd_lock);
601 list_for_each_entry(page, &pgd_list, lru) {
602 pgd_t *pgd;
603 pgd = (pgd_t *)page_address(page) + pgd_index(address);
604 if (pgd_none(*pgd))
605 set_pgd(pgd, *pgd_ref);
606 else
607 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
608 }
609 spin_unlock(&pgd_lock);
610 set_bit(pgd_index(address), insync);
611 }
612 if (address == start)
613 start = address + PGDIR_SIZE;
614 }
615 /* Check that there is no need to do the same for the modules area. */
616 BUILD_BUG_ON(!(MODULES_VADDR > __START_KERNEL));
617 BUILD_BUG_ON(!(((MODULES_END - 1) & PGDIR_MASK) ==
618 (__START_KERNEL & PGDIR_MASK)));
619 }
This page took 0.057174 seconds and 5 git commands to generate.